CONTRACTING FOR WEAPON SYSTEM SOFTWARE:
THE PRICING ARRANGEMENT

MAJOR MICHAEL A. SPATOLA 85-2560
"insights into tomorrow"
DISCLAIMER

The views and conclusions expressed in this document are those of the author. They are not intended and should not be thought to represent official ideas, attitudes, or policies of any agency of the United States Government. The author has not had special access to official information or ideas and has employed only open-source material available to any writer on this subject.

This document is the property of the United States Government. It is available for distribution to the general public. A loan copy of the document may be obtained from the Air University Interlibrary Loan Service (AUL/LDEX, Maxwell AFB, Alabama, 36112) or the Defense Technical Information Center. Request must include the author's name and complete title of the study.

This document may be reproduced for use in other research reports or educational pursuits contingent upon the following stipulations:

-- Reproduction rights do not extend to any copyrighted material that may be contained in the research report.

-- All reproduced copies must contain the following credit line: "Reprinted by permission of the Air Command and Staff College."

-- All reproduced copies must contain the name(s) of the report's author(s).

-- If format modification is necessary to better serve the user's needs, adjustments may be made to this report--this authorization does not extend to copyrighted information or material. The following statement must accompany the modified document: "Adapted from Air Command and Staff Research Report (number) entitled (title) by (author)."

-- This notice must be included with any reproduced or adapted portions of this document.
REPORT NUMBER 85-2560

TITLE CONTRACTING FOR WEAPON SYSTEM SOFTWARE: THE PRICING ARRANGEMENT

AUTHOR(S) MAJOR MICHAEL A. SPATOLA, USAF

FACULTY ADVISOR MAJOR THOMAS G. JONES, ACSC/EDCM

SPONSOR WILLOUGHBY J. RAU, HQ BMO/PMSA

Submitted to the faculty in partial fulfillment of requirements for graduation.

AIR COMMAND AND STAFF COLLEGE
AIR UNIVERSITY
MAXWELL AFB, AL 36112
ITEM 11: SOFTWARE: THE PRICING ARRANGEMENT

Software is a critical cost and performance element of weapon system acquisition. Among other problems, there has been a mismatch between software acquisition and contracts. This study reviews the procurement, acquisition, budget, and software development processes to determine the appropriate pricing arrangement for weapon system software. It concludes that either a cost-plus-fixed-fee or cost-plus-award-fee contract is appropriate for software development.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Software has critical cost and performance impacts on weapon system acquisition. The reemphasis on using appropriate contract types and recent release of the Federal Acquisition Regulation offer an opportune time to address a concern that "software acquisitions and contract type [are] often mismatched." This staff analysis project determines the appropriate pricing arrangement, as described in the Federal Acquisition Regulation (FAR), for operational weapon system software.

The approach to the problem is: determine pricing arrangement uses and limitations; determine characteristics of procurement, acquisition and software development that affect pricing arrangement; and select the appropriate pricing arrangement using FAR criteria. This project is sponsored by the Ballistic Missile Office (BMO). Specific BMO program examples that support study findings are in appendices.

The author wishes to acknowledge the following people: Ms. Willoughby J. Rau, BMO/PMSA, for her support, assistance, and sponsorship of this work; Major Thomas G. Jones, ACSC/EDCM, for his critical review of this effort as the project advisor which made the project and this report better; and Majors Buddy B. Wood and Sherry D. Sims for their technical review and comment.
ABOUT THE AUTHOR

Major Michael A. Spatola graduated from the United States Air Force Academy in 1971 with a Bachelor of Science degree in Mathematics. He also holds graduate degrees from Colorado State University in Mathematics (Master of Science), from the University of Southern California in Systems Management (Master of Science), and from Webster University in Procurement Management (Master of Arts). Major Spatola's initial assignment following graduate school in 1972 was at the Foreign Technology Division as an ICBM trajectory analyst. He then spent one year at the C. S. Draper Laboratory in Cambridge, Massachusetts as an assistant to staff scientists under AFIT's Education With Industry program. Following his assignment at Draper, Major Spatola spent five years at the Ballistic Missile Office (BMO), Norton AFB, California. At BMO, Major Spatola was the Chief, MX Software Development Branch. He was also the Minuteman command and control software manager during its last program updates. As the computer resources focal point at BMO, Major Spatola received a Certificate of Excellence from the Air Force Systems Command Inspector General for establishing a computer resources management program that was rated "excellent". Major Spatola has given presentations on "Managing Software in the Weapon System Environment" to numerous organizations including the AIAA Computers in Aerospace III Conference. Prior to attending Air Command and Staff College, Major Spatola was stationed at the USAF Academy as an Assistant Professor in the Department of Mathematical Sciences. A distinguished graduate of Squadron Officer School, he was recently selected as an Outstanding Young Man of America for 1984.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>111</td>
</tr>
<tr>
<td>About the Author</td>
<td>1v</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>vi</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>vI</td>
</tr>
<tr>
<td>CHAPTER ONE - PROJECT INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>System Development Processes</td>
<td>3</td>
</tr>
<tr>
<td>Analysis Approach</td>
<td>4</td>
</tr>
<tr>
<td>Summary</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER TWO - THE GOVERNMENT WEAPON SYSTEM PROCUREMENT PROCESS</td>
<td></td>
</tr>
<tr>
<td>The Regulatory System</td>
<td>7</td>
</tr>
<tr>
<td>System Life Cycle Models</td>
<td>12</td>
</tr>
<tr>
<td>Summary</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER THREE - SOFTWARE DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>Software Costs and Problems</td>
<td>19</td>
</tr>
<tr>
<td>Software Development Process</td>
<td>20</td>
</tr>
<tr>
<td>The Changing Software Model</td>
<td>22</td>
</tr>
<tr>
<td>Summary</td>
<td>25</td>
</tr>
<tr>
<td>CHAPTER FOUR - SOFTWARE CONTRACTS</td>
<td></td>
</tr>
<tr>
<td>Software and the Life Cycle Model</td>
<td>27</td>
</tr>
<tr>
<td>Software and R&D Categories</td>
<td>27</td>
</tr>
<tr>
<td>FAR Criteria Analysis</td>
<td>28</td>
</tr>
<tr>
<td>Software Pricing Arrangements</td>
<td>29</td>
</tr>
<tr>
<td>Summary</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER FIVE - CONCLUSIONS AND FINDINGS</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td>31</td>
</tr>
<tr>
<td>Findings</td>
<td>31</td>
</tr>
<tr>
<td>Summary</td>
<td>32</td>
</tr>
<tr>
<td>CHAPTER SIX - RECOMMENDATIONS</td>
<td></td>
</tr>
<tr>
<td>Follow-on Study</td>
<td>32</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td>APPENDICES:</td>
<td></td>
</tr>
<tr>
<td>Appendix A - MINUTEMAN SOFTWARE MODIFICATIONS</td>
<td>43</td>
</tr>
<tr>
<td>Appendix B - PEACEKEEPER PROGRAM MANAGEMENT DIRECTIVES</td>
<td>45</td>
</tr>
<tr>
<td>Appendix C - MINUTEMAN SOFTWARE ERROR ANALYSIS</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

TABLES

TABLE 1 - Federal and Private Procurement Comparisons 8
TABLE 2 - Contract Types for R&D Activities 17

FIGURES

FIGURE 1 - Hardware/Software Cost Relationships 2
FIGURE 2 - Project Analysis Approach 4
FIGURE 3 - Federal Procurement Process 9
FIGURE 4 - Contract Type Versus Risk 11
FIGURE 5 - Interrelated System Cycles 13
FIGURE 6 - Software Development Model 21
FIGURE 7 - Software Life Cycle Activities 22
FIGURE 8 - Software Development 23
FIGURE 9 - Software Development "Build" Approach 24
EXECUTIVE SUMMARY

Part of our College mission is distribution of the students' problem solving products to DoD sponsors and other interested agencies to enhance insight into contemporary, defense related issues. While the College has accepted this product as meeting academic requirements for graduation, the views and opinions expressed or implied are solely those of the author and should not be construed as carrying official sanction.

REPORT NUMBER 85-2560

AUTHOR(S) MAJOR MICHAEL A. SPATOLA, USAF

TITLE CONTRACTING FOR WEAPON SYSTEM SOFTWARE: THE PRICING ARRANGEMENT

I. Purpose: To determine the appropriate contract pricing arrangement, as described in the Federal Acquisition Regulation (FAR), for the development of operational software during weapon system acquisition.

II. Problem: With an increased emphasis on using contract types that are appropriate for the specific acquisition and the recent release of the new Federal Acquisition Regulations, it is necessary to correct what some studies refer to as a "mismatch between software acquisitions and contracts".

III. Data: The FAR and laws enacted by Congress regulate the federal procurement system. The FAR describes applications and limitations for contracts. The Defense System Acquisition Review Council (DSARC) procedures and federal budget process influence system acquisition. Department of Defense (DoD) directives and Air Force regulations govern both system acquisition and software development. Data for this project include directives, regulations, and analyses of procurement, system acquisition, and software development.

IV. Conclusions: Weapon system software development has the following characteristics: changing requirements, inadequate cost estimates, and unknown risks. As a result, either a cost-plus-fixed-fee (CPFF) or cost-plus-award-fee (CPAF) contract is an appropriate pricing arrangement.
Chapter One

PROJECT INTRODUCTION

Former Deputy Undersecretary of Defense Frank Carlucci emphasized the need to "employ contract types that are appropriate, considering all the facts and circumstances involved in a specific acquisition." This emphasis is especially important for software development contracts, not only because of the large Department of Defense (DoD) software investment, but also because "software acquisition and contract type [are] often mismatched." This staff analysis project determines what contract pricing arrangement, as described in the Federal Acquisition Regulations (FAR), is appropriate for the development of operational software during weapon system acquisition.

This first chapter introduces the software problem and analysis approach. Chapter Two describes the procurement, acquisition, and budget processes in detail and their effects on pricing arrangement, while Chapter Three is an analysis of software development for the "facts and circumstances ... in a specific acquisition." The software pricing arrangement selection is in Chapter Four. Chapter Five presents final findings and conclusions with recommendations for further study in Chapter Six.

This chapter describes the staff analysis project by first discussing the growing importance of software in systems acquisition and some software problems. It then highlights processes that affect contracting for software: the procurement process, the acquisition process, and the budget process. Finally, this chapter describes the analysis approach for the project.

BACKGROUND

Growing interest and debate within Congress are weapon system acquisitions such as the F-15 and F-16 aircraft, and the small intercontinental ballistic missile (ICBM) and Peacekeeper missile systems. Historical cost overruns, difficulties with production schedules, and inadequate follow-on support are major concerns that affect program cost (23:02). They are also three acquisition goals that the Department of Defense (DoD) and Congress share (23:02). Regardless of the weapon system, any acquisition includes software development. Software is now a critical performance and cost element of weapon system acquisition.

Critical Importance

One reason for the critical performance and cost impact of software is
Rapid advances in computer technology. Rapid advances in technology mean wide-spread use of computers and microprocessors. Embedded computers (computers that are an integral part of a larger system) in the Department of Defense will increase from less than 10,000 in 1980 to over 250,000 by the end of the decade (13:48). The numbers alone illustrate the expanded use of computers (and software) in defense applications. Increasing software applications mean a greater software cost impact.

Software costs in a computer system development now exceed hardware costs (11:1: 5:74). The growth in software costs relative to hardware costs, shown in Figure 1, is due to decreasing hardware costs and an increasing reliance on software to perform system functions. Because of that reliance, some estimates are that software development is 55-70% of the acquisition costs for major Air Force weapon systems (10:19).

![Figure 1. Hardware/Software Cost Relationship](image)

Besides Air Force acquisition costs, software is now a major part of the DoD budget. The DoD software investment of $3 billion in 1974 will grow to $24 billion in 1994 (9:10: 13:48). This rising cost of software development includes significant costs to maintain software. "The cost of maintaining software is estimated to account for about 75 percent of software life-cycle costs" (6:20). In terms of either cost or performance, software is an important part of a weapon system. Cost and performance are also software problems.
Software Problems

Significant problems continue to plague software. While new technologies ease the situation, "software overruns still occur, schedules still slip, and software products still fall short of their goals." Studies addressing those problems list such factors as incomplete requirements, poor design, lack of standards, and insufficient testing (5:73). But other studies add "insufficient management discipline" (9:17). Still others add "inadequate acquisition planning" and a mismatch between "software acquisition and contract type" to the list (13:168). With the reemphasis on using appropriate pricing arrangements and the recent FAR release, it is necessary to correct that "mismatch.

System Development Processes

Determining an appropriate contract strategy, specifically the pricing arrangement to stimulate contractor performance, requires considering the procurement, acquisition, and budget processes. The procurement and acquisition processes make up key interrelated parts of the system development process. The budgeting process adds additional constraints and considerations. Each impacts the suitability of a particular contract type.

Procurement Process

Highly specialized and complex contract law regulates government procurements and pricing arrangements. Agencies of the Government must procure supplies and services in accordance with numerous laws, regulations, directives, and policies. The recently released Federal Acquisition Regulation, whose index alone requires 34 pages, contains many of those requirements.

Government agencies must apply the new FAR as well as procurement policy guidance to each procurement and every contract. Former Deputy Undersecretary of Defense Frank Carlucci reemphasized the policy to "employ contract types that are appropriate, considering all the facts and circumstances involved in a specific acquisition" (33:1-4). Government agencies must now apply that policy within FAR constraints. Among the FAR constraints are those that define both the application and limitations of contract types (pricing arrangements) throughout the acquisition cycle.

Acquisition Process

The framework for control of the acquisition process is the Defense Systems Acquisition Review Council (DSARC). In May 1989, the DSARC established a Weapon System Acquisition concept of decentralized management with centralized control of key development decisions (22:11). Although there have been procedural changes in this approach, the DSARC review process for system acquisition is not substantially different than it was in 1969. The four acquisition phases (concept exploration, demonstration/validation, full-scale development, and production deployment) have key decision points or milestones (24:44-47). The budgeting cycle also affects the acquisition process.
Budget Process

The budget process involves both DoD and Congress. The planning, programming, and budgeting system (PPBS) is a key DoD step in weapon system acquisition. "Approval of the (Program Objective Memorandum) POM constitutes the beginning of the acquisition process" (24:43). The PPBS is a process that identifies needs, determines resource requirements, and allocates resources (31:8). Each PPBS cycle "results in the annual DoD budget request which goes to the President for inclusion in the budget ... to Congress" (31:8).

The federal budget undergoes a rigorous Congressional review during the budget enactment process. Three key committees in Congress review defense programs and budgets. This review often changes both programs and budgets (26:179-180). As a result, this process is also a factor for analysis.

ANALYSIS APPROACH

To determine the appropriate contract pricing arrangement for software developments, this staff analysis project determines characteristics of the procurement, acquisition, budget, and software development processes that affect the selection of a pricing arrangement. The pricing arrangement selection criteria are the FAR contract applications and limitations. This analysis approach, shown in Figure 2, relies heavily on direct data sources.

![Diagram](https://via.placeholder.com/150.png)

Figure 2. Project Analysis Approach
Sources for the procurement process analysis are the Defense Acquisition Regulation (DAR), Armed Services Procurement Manual, course materials for Government Contract Law, and professional journals that have studies and analyses of the federal procurement system and its application.

Sources for the acquisition process analysis are DoD directives, military standards, Air Force regulations, guidebooks on acquisitions, and professional journals that report results from acquisition process studies and analyses.

Sources for budget (PPBS and enactment) characteristics are Air Command and Staff College phase material and professional acquisition journals that report results of analyses of the budgeting process.

Sources for analysis of the software development process are DoD directives, military standards, Air Force regulations, guidebooks on acquisitions, and professional journals that report results from studies and analyses of the software development process.

Limitations

It is possible to classify weapon system software into three categories: operational, support, and auxiliary software. Operational software are computer programs with a direct link to the weapon system. Support software are computer programs needed to maintain weapon systems but not directly linked to the system. Auxiliary software are computer programs used to develop, test, or maintain operational or support software. This study only considers operational software development because that software is critical in satisfying operational weapon system requirements.

Summary

The increasing debate within Congress on budget cuts to reduce the deficit demand that the Government procure its needed systems properly (23:62). Software is now a critical weapon system cost and performance element. The Department of Defense must properly procure this major element and correct the mismatch between software acquisition and contract type. The first step in determining the appropriate contract type is to consider the Government weapon system procurement process.
Chapter Two

THE GOVERNMENT WEAPON SYSTEM PROCUREMENT PROCESS

The government awards contracts to "acquire necessary supplies and services of the desired quality, in a timely manner, and at a fair and reasonable price" (10:141). The procurement process is the same regardless of the "supplies or services." However, the acquisition process described in the Office of Management and Budget (OMB) Circular A-109 structures weapon system development. The budget process affects both procurement and acquisition. This chapter describes these processes and their impacts on contract selection by first discussing the federal regulatory system for procurement. It then describes acquisition, fiscal (budget), and research and development (R&D) issues in the government weapon system procurement process. Finally, it summarizes considerations for contract pricing arrangements.

The Regulatory System

Accomplishing the immediate objective of quality, timeliness, and a "fair and reasonable price" requires satisfying restrictions from agency policies and laws enacted by Congress. Because of these restrictions, Government representatives are not free to obtain supplies and services in an arbitrary manner. Agencies of the Government have only a limited, specifically delegated authority to contract (14:1). On the other hand, private parties or companies may generally contract as they please. While the private party is concerned with rules or laws that would prevent a specific contract action, the Government representative must determine a legal authority which permits a specific contract action (14:1-2).

As a result, Government contract law is highly specialized and complex. Legal authority includes statutes, executive orders, judicial decisions, and regulations. The Federal Acquisition Regulation (FAR) is especially important. FAR provisions are issued under statutory authority, have the force and effect of law, and provide mandatory contract clauses (18:1). The FAR establishes a single regulation for all Executive agencies procuring supplies and services with appropriated funds (funds budgeted by Congress). As a replacement for the Armed Services Procurement Regulation (ASPR), Defense Acquisition Regulation (DAR), and NASA procurement regulations, the FAR is intended to:

a. produce a clear, understandable document that improves uniformity in the acquisition process;

b. reduce the growth of agency acquisition regulations;

c. implement recent recommendations from Federal and Congressional commissions; and
Government Versus Private Contracting

The FAR places strict limits on Government contracts. These limits are partially due to inherent differences between Government and private contracting. Differences for Government contracting include: public policy objectives for ensuring legal equality of all private parties (treat everyone the same), social objectives (minority-hiring goals), and public oversight of funds (extensive cost accounting). Table 1 shows a more detailed comparison of federal versus private procurements.

<table>
<thead>
<tr>
<th>Area</th>
<th>Federal</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Status of parties</td>
<td>government writes rules or is pre-eminent party</td>
<td>legal status of supplier and buyer equal advantage company size or financial status</td>
</tr>
<tr>
<td>2. Accountability</td>
<td>oversight of funds legal procedures political review public access</td>
<td>general accounting standards and ethics</td>
</tr>
<tr>
<td>3. Contracting process</td>
<td>detailed procedures detailed documentation standards legal restrictions</td>
<td>relatively simple individual company policies, standards, and documentation</td>
</tr>
<tr>
<td>4. Objectives</td>
<td>public use/benefit agency use only multiple objectives social goals</td>
<td>production needs commercial needs profit and loss competitive posture</td>
</tr>
</tbody>
</table>

Table 1. Federal and Private Procurement Comparisons
Although the comparison emphasizes differences between public and private procurement, legal principles of offer, acceptance, consideration, competently performing, and definite terms apply to both (14:11). The basic contract solicitation and award processes for the two procurements are also similar (14:2).

In summary:

The activities, Figure 7, from the 1972 Commission on Government Procurement model of the federal procurement process are similar to those in the private sector (14:77). The federal procurement process activities of planning, solicitation, selection, award, and contract administration work within statutory and regulatory limits to satisfy the funded need. These activities are summarized below:

1. Planning - The agency develops an overall contracting strategy. There is a review and validation of specific needs and objectives. The agency then starts individual procurement actions to meet those needs.

2. Solicitation - The procuring agency completes the contract Statement of Work (SOW). The SOW includes tasks, schedules, delivery items, and other performance and quality requirements. This SOW is an essential part of an invitation for contractors to

![Diagram of Federal Procurement Process](image)
bid (make an offer) on needed services or supplies. In some cases, the contracting office releases a draft SOW for comment.

c. Selection - The procuring agency evaluates all offers. The evaluation criteria may be price, technical capabilities, or a combination of price and other factors.

d. Award - The Government accepts an offer and signs a contract.

e. Contract administration - The contractor performs the specified contract tasks. Both the contractor and the contracting agency perform contract management.

A key part of this procurement process is to determine contract strategy. This includes determining pricing arrangement.

Pricing Arrangements

Part of contract strategy is selecting a pricing arrangement such as a fixed-price or a cost-reimbursement contract. In the fixed-price arrangement the contractor agrees to deliver a product or perform a service while the Government agrees to pay a price equal to the firm price specified in the contract. The contractor’s actual costs have no effect on the agreement to deliver or on the Government’s agreement to pay. The contractor’s ability to avoid a loss or make a profit is directly related to controlling costs. If actual costs are less than the negotiated price, the difference is profit. If actual costs are more, the difference is loss. The contractor assumes the performance risk in a fixed-price contract (15:2C1-2C4).

In cost-reimbursement efforts, the Government agrees to reimburse the contractor for all reasonable and allowable costs that are allocable to contract performance (15:2C1-2C4). The contractor agrees only to use a best effort to complete the contract within cost estimates. The contractor is not obligated to continue performance when the estimate is exceeded nor is the Government obligated to reimburse costs in excess of the original estimate (15:2C1-2C4). In this contract type, the Government assumes performance risk since the Government must pay whatever costs are required to complete the effort or be satisfied with whatever effort was made.

The FAP discusses selecting appropriate pricing arrangements. Pricing arrangements stimulate the performance of the contractor doing the work by defining several ways for the contractor to receive payment and profit. The choice of a fixed-price or cost-reimbursement contract often rests on performance risk. The FAP and the Armed Services Procurement Manual address contract type, risk, and profit relationships:

1. Both the Government and the contractor should be concerned with harnessing the profit motive in stimulating performance.

2. Success in effectively harnessing this motive requires negotiating sound performance goals and standards.

3. Contract type should tie profits to contractor efficiency in controlling costs and meeting performance, reliability, quality, and delivery requirements.

4. There are situations where the profit motive may be secondary...

5. The firm fixed-price contract is the most preferred method...
The various types of contracts will be illustrated in Figure 4.

![Diagram](image)

Figure 4. Contract Types versus Cost

In the basic type of contracts, there are many variations in the way of expressing the calculated profit. The intent of the different contracts is to achieve the most effective reward or punishment, or either combination thereof, for innovation in selecting the most appropriate contract type.

Types of Contracts

There are five major contract types, each with specific goals and attributes:

1. **Type A:**
2. **Type B:**
3. **Type C:**
4. **Type D:**
5. **Type E:**
Fixed-Fixed-Price (FFP) Contract. The fixed-fixed-price contract provides for a payment which is not subject to any adjustment for actual costs. The difference between negotiated and actual costs is profit or loss. This type of contract places maximum risk upon the contractor. The FFP contract is suitable when reasonably definite design or performance specifications are available and the government can establish price (15:203; 17:10,2).

Fixed-Price-Incentive-Fee (FPIF) Contract. The FPIF contract is a fixed-price type contract with a provision for adjusting profit. How well the contractor meets performance or delivery requirements increases or decreases profit. FPIF contracts are appropriate where incentives can improve performance levels or delivery. Fixed-price-incentive-fee contracts should not be used unless the contractor has an adequate accounting system. An FPIF should not be used unless it is likely to be less costly than other methods of contracting for the same item (15:204-209; 17:16.403).

Cost-Plus-Incentive-Fee (CPIF) Contract. The cost-plus-incentive-fee contract is a cost-reimbursement contract with adjustments in fee (profit). The relationship of actual costs to target cost increases or decreases profit. The CPIF contract is suitable primarily for development and test. It should be used when it is likely that a profit adjustment is a positive incentive for effective management. The CPIF contract is appropriate when development is highly feasible, there are well-defined performance objectives, and the contract is administratively practical to manage (15:205-208; 17:16.404-1).

Cost-Plus-Fixed-Fee (CPFF) Contract. The CPFF contract is a cost-reimbursement contract where fee (profit) does not vary with actual costs or performance. Because fee does not vary, there may be only a minimum incentive for effective management of costs. The CPFF contract is suitable for research projects or when the needed level-of-effort is unknown. This type of contract normally should not be used for development of major weapons where there is a high probability that development, performance objectives, and schedule are achievable (15:212-215; 17:16.406-3).

Cost-Plus-Award-Fee (CPAF) Contract. The CPAF contract is a cost-reimbursement contract with special fee (profit) provisions. It provides a profit incentive in cases where it is difficult to quantitatively measure performance. Award criteria vary, but may include quality, management, and schedule factors. The CPAF contract is suitable for level-of-effort contracts where the performance of services is clear but determining level of achievement is subjective. It is also suitable for efforts where it is difficult to establish definite milestones. There are limitations to its use: it should not be used to avoid a CPFF contract, or when procurement is for Engineering Development or Operational System Development activities (15:218-221; 17:16.404-1). These activities are part of the FAP’s R&D cycle for a system life cycle.

System Life Cycle Models

The total system life cycle, Figure 5, includes system acquisition, research and development (R&D), and fiscal year budget cycles. A weapon system life cycle, as defined in AFR 800-2, "Program Management, and AFR 800-10."
A Defense Acquisition Review Council (DARC) review process is used in the current weapon system acquisition. The review process consists of four review points: the first was introduced in 1973. The second was charged with evaluating major system programs to define, review, and advise on the Secretary of Defense's readiness of each program to advance to the next stage.

The four review points are: PDAS, PMS, FFGS, and FFGS. This process involves the preparation of a detailed report on the program's progress and readiness. The report is then reviewed by the DARC, which makes recommendations to the Secretary of Defense regarding the program's status and readiness for advancement.
cept, guidance, and policies for major weapon systems acquisition; the second provides specific tasks and responsibilities (24:41-42). While there is now some flexibility in scheduling milestones, each milestone has a specific purpose:

a. At Milestone 0, the Secretary of Defense approves the start of a new program following analyses that identify a mission need.

b. At Milestone I, the Secretary of Defense, after a DSARC review and recommendation, selects a specific concept from a number of alternatives based on such factors as costs, schedules, mission objectives, supportability, industrial base, and affordability. This milestone occurs at the end of the concept exploration phase. Concept exploration emphasizes identifying alternatives and maintaining competition.

c. At Milestone II, again following a DSARC review and recommendation, the Secretary of Defense gives approval to begin or proceed with full-scale development based on performance definition, costs, schedules, risks, and supportability. This milestone normally occurs at the end of the demonstration and validation phase where there is extensive prototype testing. It may occur later in the system development phase to refine cost, schedule, and performance requirements or estimates.

d. At Milestone III, either the Service Secretary or the Secretary of Defense decides to produce and deploy the system (24:43-47).

Although the DSARC review process instills discipline into acquisition, it also has faults (22:4,53; 3:13). A recent study of 16 programs developed under the DSARC process concludes that although effective, the review process is inefficient (22:i-v). Among the inefficiencies are:

a. decisions are not considered to be binding budget decisions—since the budget process operates independently of the DSARC review process, changes to programs often do not find their way into the budget, are appealed during the budget process, or are reversed during the budget cycle;

b. there is a perception of micromanagement—rather than considering broad system issues, DSARC reviews overemphasize technical issues and engineering solutions at subsystem or component levels;

c. strategies and program direction change whenever the staff changes (every 2-3 years)—alternatives are reconsidered, studies reaccomplished, and previous phases repeated as the new staff reviews earlier efforts; and

d. Congressional authorization or appropriation bills often include program tasks, limitations, and guidance (22:51-55).

Fiscal Cycle

The Planning, Programming, and Budgeting System (PPBS) ends in the DoD budget input for the Congressional budget process. Although the PPBS completes a cycle each year, "several cycles are in progress simultaneously" (31:8). Because of that, the PPBS cycle is not time-phased exactly as shown in Figure 5, but is a series of overlapping cycles. These two interrelated PPBS and...
The long-term, unprecedent funding cycle introduces instability. Funds contributed to cost increases in a weapon system. One reason is a tendency to ensure program funding for the upcoming year at the expense of long-term weapon system implications. Many costs are sometimes underestimated, either because the necessary personnel is not available for funding rather than the funding required, or because contractors purposely lower their cost estimates to win a contract (28:198). As a result, program costs for later years increase to meet the needs. This produces instability in program requirements and schedules. This represents Congress' view that "[an]... cost, schedule, and performance estimates are consistently overly optimistic and highly uncertain at the outset.

In order, Congress inability to enact budget legislation by the start of the fiscal year affects program stability. Congress uses a continuing resolution authority to fund programs when it fails to enact budget legislation. A continuing resolution allows the expenditure of funds at the current rate. This results in procurement actions and puts programs on hold. Among the problems are: difficulty in long-range planning; reduced management flexibility; funding uncertainty; and unstable program schedules (28:198). To some degree, these problems occur every year.

The years 1980-1984 began with a continuing resolution ranging from 2 weeks to 11 weeks with an average of 10 1/2 weeks before Congress enacted a general budget (28:194). This problem is a recurring one. Since 1972, thirteen continuing resolutions have been enacted into law. Since 1976, all appropriations bills enacted by the beginning of the fiscal year even in that year a continuing resolution was needed to fund some programs (28:198).

Pricing Arrangement Considerations

As in the development cycle in the system model, Figure 5, consider the important activities for pricing arrangement considerations. The activities are divided into three categories as an aid in determining pricing arrangement.

1. Basic Research includes all scientific study and experimentation efforts directed toward increasing knowledge and understanding in those fields of the physical, engineering, environmental and life sciences related to long-term national security needs. It requires fundamental knowledge required for the solution of military problems.

2. Development includes all efforts directed toward the solution of specific military problems, short of major development projects. It involves only minor development efforts. The dominant characteristic of this category is evaluating proposed solutions to specific military problems for feasibility.

3. Advanced Development includes all efforts for projects which
are developing prototype hardware for test. The prime result of this type of effort is proof of a design concept rather than hardware development.

d. Engineering Development - includes any projects in full-scale engineering development. There is no approval for system production yet.

e. Operational System Development - includes those projects still in full-scale engineering development but with approval for production (16:4-101: 17:16.164).

There are both general and specific pricing arrangement guidelines for those R&D activities. General guidelines include:

a. A contract other than FFP should be used when: contracting for research and development; when price competition is not present; when cost or pricing data available does not permit sufficiently realistic estimates of probable cost of performance; or uncertainties cannot be evaluated.

b. It is possible for different parts of a project to fit several different categories. The contract must be selected to fit the work required not the program classification (17: Part 16).

There are also specific guidelines, Table 2, that describe characteristics of the R&D phases and the appropriate contract types for each phase. As shown, there is more than one appropriate contract for any general R&D activity. Specific projects may have other considerations for a final contract selection. Table 2 groups together R&D categories with similar characteristics.

The Research and Exploratory Development categories have similar characteristics. An important one is a lack of definitive requirements. As a result, several cost-reimbursement contracts are appropriate. The selection depends on other factors including risk. Similarly, the Engineering Development category shares such common characteristics as engineering design and prototypes with the Operational System Development category. In this case, the degree of project definition (requirements) and risk are among factors to consider.

There are few restrictions in the Advanced Development category. Because this phase often has many major changes as a result of systems analysis and cost studies, the contract is usually a CPFF. In cases where it is possible to define measurable cost, schedule, or performance criteria, incentives are possible.

Summary

The weapon system procurement process includes procurement, acquisition and budget processes. The procurement process defines how to contract and when to use certain pricing arrangements. In general, when risk is minimal, a fixed contract is appropriate. As uncertainties increase, however, cost reimbursement contracts are appropriate. As an aid in that selection, the FAH defined five categories that are similar to acquisition process activities. The acquis-
osition process formalizes weapon system development. Congress not only affects these processes during the budget process as it reviews programs, but also by its inability to pass a budget at the start of a fiscal year. The following characteristics result from the interrelationship of all these activities:

a. While the DSARC review process is effective in formally reviewing programs, it is inefficient—continued review, micromanagement, and resulting program instability; and
b. Budget and fiscal cycles add to program instability—unrealistic program costs, lack of a budget at the start of the fiscal year, and Congressional program direction in budget bills.

These general factors for weapon system development are considerations when selecting pricing arrangements. The next step is to specifically consider software development for other factors affecting pricing arrangement.
Chapter Three

SOFTWARE DEVELOPMENT

Correct the mismatch between software acquisition and contracts required a detailed look at software development. This chapter highlights historical costs and problems with software and describes the current software development model. It then describes changes in that model as a reaction to software problems. Finally, it summarizes software development characteristics affecting pricing arrangements.

SOFTWARE COSTS AND PROBLEMS

Software development is a major weapon system cost. There are estimates that 25-70% of the acquisition costs of major Air Force weapon systems are for software development (30:19). Additionally, the DoD software investment will grow to $14 billion in 1984 (9:10; 13:48). While these costs often result from expanding software applications, high software costs are also due to development factors. The following are major examples:

a. the labor-intensive aspect of software development often requiring highly skilled and creative programmers;
b. extensive software testing during development;
c. changes in a program's design and code as errors are found and then corrected; and
d. vague or changing requirements.

Another reason is the cost to maintain software. "The cost of maintaining software is estimated to account for about 75 percent of software costs" (01:06). The above reasons for high software development cost also apply to the high cost of maintaining software. While hardware is maintained by replacing worn or failed parts with new ones, it is not possible to maintain software by replacing it with an identical copy of the original program. Software maintenance means redesign requiring the same tools, techniques, and skills as development (11:54). That redesign is often to correct software so "much of this expense (for software maintenance) is attributable to time spent 'fixing up' software that was not correctly developed in the first place" (16:23).

We need to fix software is one problem with software developments. Others are overruns, late deliveries, and system failure. These often occur at the same time. Cost overruns of "four times the original estimates ... with half the planned capability are not uncommon" (30:5). Overruns often occur because of an inability to accurately estimate costs.
Models for estimating software costs are "poor and there is little correlation from one model to another" (13:67). Particularly critical for weapon system software acquisition is that models "do not produce good estimates 3 to 5 years in advance, at the time the initial budgeting estimates are made in the Program Objective Memorandum" (30:5). With the difficulty in estimating costs, the resulting cost, schedule, and performance problems are not surprising. Another reason given for those problems is failure to follow an adequately structured and properly managed development process (21:1; 13:63).

SOFTWARE DEVELOPMENT PROCESS

To follow a structured and properly managed software development process requires recognizing both the role and nature of software. The software role changes during weapon system development. In early phases of weapon system development, software supports hardware engineering models and prototype tests. As the system development progresses, software supports test tool and simulation development while continuing to support hardware development. Finally, software is a distinct product in the weapon system. With all these roles, a properly structured and managed development must plan to both develop software and support other activities. Software can readily support other activities because of its nature.

Software programs are easy to modify while software development is iterative. Software modifications can quickly change system functions for hardware tests, new requirements, or design corrections (13:69). (Appendix A gives examples of modifying software to improve system functions.) This creates the incorrect impression that since it is easy to modify software, modifying software is easy.

Modifying software is not easy because it means redesigning the program. This requires analysis, coding, and testing—the same tasks needed to develop software. In fact, "current practices for modifying delivered software systems frequently result in excess costs, failure to realize performance potential, (and) systems out of action for unreasonable lengths of time" (13:69). This means yet another modification. Developing software that works properly, then, is an iterative process.

Software development is iterative because of changes "to make the system meet the original requirements" (13:69). Changes often correct errors which fall into one of three categories: requirements, design, or code (these are also three software development phases) (5:74). Regardless of the system, software, or testing program, errors are detected during each phase of software development "... from every major category. And more importantly, each phase caught errors which should have been detected earlier" (2:79). This means that during the design phase there are errors in both design and requirements; and during the test phase, there are errors in requirements, design, and code. But software development process models have not shown software modifications or software's iterative nature.
A simplified model of the current software development process has a "sequential set of well defined phases, each with specific goals" (29:1). MIL-STD-1541A, "Technical Reviews and Audits for Electronic Equipment, and Computer Programs", defines the technical reviews and audits which "... monitor the orderly evaluation of software in sequential steps in the development process" (29:1).

![Software Development Model Diagram](image-url)

Figure 5. Software Development Model

Each technical review and audit has a specific purpose. Technical reviews emphasize engineering and design while audits emphasize program qualification and configuration verification:

- **System Design Reviews (SDRs)** aim to evaluate the entire system concept (hardware and software) and the distribution of risk.
The changing software model

In reality, software phases are not distinct or sequential steps. Requirements analysis does not stop at a distinct point, nor does preliminary design wait until all requirements are defined. Instead, all phases blend together throughout software development as in Figure 7. Each phase also repeats as software matures. "Several software development life cycles... occur during one system development life cycle" (25:5). These software life cycles are software modifications in response to new requirements, more efficient design, or test results.
Other software development models exploit software modification. These models recognize that each phase of software development will sometimes require changes. Figure 7 shows a flowchart to correct errors. These changes may modify requirements, code, or both. Since “error categories appeared to be distributed in time across all phases,”[275] to control those changes, other process models were created to repeat phases, define software “builds,” and add reviews.

In these models, requirements analysis, design, code, and test activities are shown in Figure 8. Because software modification is a redesign, it modifies all development activities. As an example, Figure 8 shows that from the code check phase it is possible to repeat either requirements analysis and continue in detailed design and continue. Similarly, at any activity, it is possible to repeat any earlier activity. The repetition of development activities and changing requirements are factors that led to software “builds” as a way to control software changes.
Software Development "Builds"

In the "build" approach, software development occurs in stages. Early builds of the software have basic program structure and a subset of requirements. Incremental development, Figure 9, allows progressively refined builds that add to or expand initial capabilities. Changes can be incorporated in the next version or delivery. Figure 9 shows an offset in activities to indicate that build modules are time-phased and activities overlap. Factors that influence the choice of requirements for the first build are hardware development, test-bed requirements, and interface definition. In specifically defining each version, builds help to manage unstructured and uncontrolled changes.

<table>
<thead>
<tr>
<th>BUILD</th>
<th>REQUIREMENTS</th>
<th>PRELIMINARY DESIGN</th>
<th>DETAILED DESIGN</th>
<th>CODE AND CHECKOUT</th>
<th>QUALIFICATION TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REQUIREMENTS</td>
<td>PRELIMINARY DESIGN</td>
<td>DETAILED DESIGN</td>
<td>CODE AND CHECKOUT</td>
<td>QUALIFICATION TEST</td>
</tr>
<tr>
<td>2</td>
<td>REQUIREMENTS</td>
<td>PRELIMINARY DESIGN</td>
<td>DETAILED DESIGN</td>
<td>CODE AND CHECKOUT</td>
<td>QUALIFICATION TEST</td>
</tr>
<tr>
<td>3</td>
<td>REQUIREMENTS</td>
<td>PRELIMINARY DESIGN</td>
<td>DETAILED DESIGN</td>
<td>CODE AND CHECKOUT</td>
<td>QUALIFICATION TEST</td>
</tr>
<tr>
<td>n</td>
<td>REQUIREMENTS</td>
<td>PRELIMINARY DESIGN</td>
<td>DETAILED DESIGN</td>
<td>CODE AND CHECKOUT</td>
<td>QUALIFICATION TEST</td>
</tr>
</tbody>
</table>

Figure 9. Software Development "Build" Approach

There are several ways to define the capabilities of each build. Guidelines for defining distinct builds include:

a. ensure the build is functionally logical with operations;
b. maximize the uniqueness of added capabilities in each build; and
c. minimize the amount of modification required of previous builds for the new increment (7:271-277).
In many software development processes, incremental builds solve these problems by:

1. Erasing the need for early versions of a software program to serve as hardware interfaces for breadboards or engineering evaluation.
2. First versions of software often do not function properly. Thus, software development is often a trial-and-error approach through problem-solving.

In General

In all software development process models, reviews and tests are utilized.

Some organizations tailor MIL-STD 1521A to incorporate incremental builds with the build concept:

System Hardware Acceptance Review (SSAR). SSARs are to ensure in accordance to the equipment prior to preliminary design. This includes the initial distribution of requirements to specific builds (12:114-127).

Qualification Test Readiness Review (CIBAR). One of the early specific reviews critical to government acceptance is the final software in accordance to requirements. These are qualification tests. The objective is to determine whether the status of the software program, support tools, and documentation prior to qualification testing (12:119-127).

With software development models reflecting a build concept, there may be discrimination. The reviews cited earlier may repeat during each build. For example, if the build number 3 would be an incremental build on number 2 or incremental reviews vary for individual programs, or that build needs a complete set of incremental reviews.

Summary

Many software development models are due to inherent problems in development. Development characteristics include lack of life cycle, ill-defined requirements and testing. Poor design, testing and requirements, poor test estimates, errors, and poor documentation. New software development models now depict a blending of development.
an iterative development process. These models are often software "builds" that control changes in requirements, design, and code. Key characteristics, then, when selecting a pricing arrangement for software development are:

a. changing requirements;
b. poor cost estimation; and
c. an iterative development process.

These factors indicate that software development is a high risk effort regardless of the system acquisition phase. The final step to correct the mismatch between software acquisition and contracts is to relate these software characteristics and the Government procurement process factors from Chapter Two to the FAR pricing arrangement guidelines.
SOFTWARE CONTRACTS

In current weapon system procurement and software development, software development models are crucial. This chapter describes the relationship of the FBM software development model to the system life cycle model shown earlier in Figure 3, as well as how it relates to software development. This chapter also addresses relationship to the FBM software development model shown earlier in Figure 3. It describes software development models and their relationship to the system life cycle model shown earlier in Figure 3. It describes software development models and their relationship to the system life cycle model shown earlier in Figure 3.

SOFTWARE DEVELOPMENT MODELS AND SYSTEM ACQUISITION OBJECTIVES

Software development models and system acquisition objectives influence software development as a full-scale development (FSD) activity. Software development models begin with establishing software requirements, in which the system's requirements analysis ends with the system design review (SDR). Other models include a Software Specification Review (SSR) as shown in Figure 3. The purpose of these reviews occurs as the final review prior to acquisition validation phase products or as the initial review in the Full-Scale Development (FSD) Phase for systems not requiring a formal SDR. Software development design, code, and test effort for the SSR and SDR occur in the FSD Phase shown in Figure 3. Software development is an FSD activity occurring in the FSD Phase 1 Engineering Development phase.

SOFTWARE LIFE CYCLE CATEGORIES

A software development phase or phases, characteristics, table is shown in Table 1. A software development phase is a product of program development. In fact, software development differs from traditional software development in the same manner as hardware development. The reason is that software development requires no production line. But software directly from full-scale development to deployment (SSD) are possible. There are several software development life cycles that continue to the same cycle. This means software has engineering design and prototype.

Software design is part of software development. Software design interacts with requirements to develop designs. Designs are processed into software in more detail. At various times, parts of the design may need to be developed bleediness, or adequacy. These designs are part of design that develop into a final design and program. In some sense.
opment models, these designs are prototypes.

Prototypes are complete designs to test program requirements and operational capabilities. A next build or prototype version improves design and code for better efficiency or use. These interim versions are not the final product but a means to arrive at the final design and program. This is consistent with activities in the FAR's Engineering Development phase.

FAR CRITERIA ANALYSIS

Factors in selecting a contract type for Engineering Development efforts. Table 2. include degree of project definition, accuracy of cost estimates, and degree of Government control and direction. These factors determine the appropriate contract type (pricing arrangement).

Project Definition

Weapon system program stability and software development characteristics are key ingredients for project definition. The conclusions in Chapter Two indicate that weapon systems suffer from program instability (a specific example of program instability is in Appendix B). Even if that was not the case, software development problems include "original requirements that are incomplete" (5:73). The iterative nature of software development includes changes in requirements. This is additional evidence that software project definition is poor. (Appendix C shows an example of reported errors in requirements throughout development). Software's poor project definition affects cost estimate accuracy (32:2).

Accuracy of Cost Estimates

There are a number of reasons why it is difficult to estimate software costs. With program instability and ill-defined or vague requirements, "the resulting cost estimate... will be imprecise and undependable" (32:2). Even with firm requirements, "current software cost estimation (SCE) models do not produce good results" (30:5). SCE models require estimates of the software program size (30:5). But size estimates are inaccurate (30:5). Even SCE models with factors for program size, complexity, hardware, personnel, and schedule give different estimates for the same project (36:--). The size of the program changes during development as modifications occur.

Modifications during development to fix "software that was not correctly developed in the first place" also affect cost estimates (a:20). These modifications occur from review, analysis, and test. The ability to predict the number of errors or changes during development is limited. "All error prediction models suffer from the inability to predict to the accuracy desired" (4:104). Because of that, software development has cost risks.

Risk

The FAR discusses risk in terms of cost and performance. Cost risks are primarily adequacy of Government and contractor cost estimates realistic
itself. In the future, the military will require programs that are continually updated and maintained. This will require a cooperative effort among the software developers, maintenance personnel, and users. The Department of Defense must develop and maintain a comprehensive approach to software development, maintenance, and support. This approach must include:

- A standard set of software development and maintenance practices.
- A comprehensive software documentation and maintenance plan.
- A system for tracking and controlling software changes.
- A method for evaluating and approving software changes.
- A system for training software developers and maintenance personnel.
- A program for monitoring and controlling software usage.

In addition, the Department of Defense must develop and maintain a comprehensive approach to software security. This approach must include:

- A standard set of software security practices.
- A comprehensive software security documentation and maintenance plan.
- A system for tracking and controlling software security changes.
- A method for evaluating and approving software security changes.
- A system for training software developers and maintenance personnel in software security.
- A program for monitoring and controlling software security usage.

Finally, the Department of Defense must develop and maintain a comprehensive approach to software availability. This approach must include:

- A standard set of software availability practices.
- A comprehensive software availability documentation and maintenance plan.
- A system for tracking and controlling software availability changes.
- A method for evaluating and approving software availability changes.
- A system for training software developers and maintenance personnel in software availability.
- A program for monitoring and controlling software availability usage.

In summary, the Department of Defense must develop and maintain a comprehensive approach to software development, maintenance, security, and availability. This approach must include:

- A standard set of software development and maintenance practices.
- A comprehensive software documentation and maintenance plan.
- A system for tracking and controlling software changes.
- A method for evaluating and approving software changes.
- A system for training software developers and maintenance personnel.
- A program for monitoring and controlling software usage.
- A standard set of software security practices.
- A comprehensive software security documentation and maintenance plan.
- A system for tracking and controlling software security changes.
- A method for evaluating and approving software security changes.
- A system for training software developers and maintenance personnel in software security.
- A program for monitoring and controlling software security usage.
- A standard set of software availability practices.
- A comprehensive software availability documentation and maintenance plan.
- A system for tracking and controlling software availability changes.
- A method for evaluating and approving software availability changes.
- A system for training software developers and maintenance personnel in software availability.
- A program for monitoring and controlling software availability usage.

These approaches will ensure that software systems are developed, maintained, and used in a secure, available, and effective manner.
Cost-Plus-Fixed-Fee (CPFF) Contract

CPFF contracts are suitable for research or when level-of-effort is unknown. As discussed above and earlier in Chapter Three, software cost estimation models are inaccurate. Changing requirements and modifications throughout development make software level-of-effort unknown. This contract type may be appropriate for software developments.

Cost-Plus-Award-Fee (CPAF) Contract

CPAF contracts are suitable where determining the level of achievement is subjective or where it is difficult to establish definite milestones. When different software designs satisfy requirements, their evaluation is subjective. Meeting the requirements is difficult. Especially difficult is establishing and meeting definite milestones. CPAF contracts, then, may also be appropriate for a weapon system software development.

SUMMARY

Weapon system software development has a lack of firm requirements, inadequate cost estimates, and extensive Government control and direction. These are also pricing arrangement characteristics for a cost-reimbursement contract. The characteristics indicate that software development is high risk during any system acquisition phase. High risk developments normally require a cost-reimbursement contract as shown earlier in Figure 4. Reviewing the three major cost contracts to answer the question what contract pricing arrangement, as described in the Federal Acquisition Regulation (FAR) is appropriate for the development of operational software during weapon system acquisition gives this answer: a cost-reimbursement contract—either cost-plus-fixed-fee (CPFF) or cost-plus-award-fee (CPAF). The important part of this conclusion is that software development requires a cost-reimbursement contract. A selection between a CPFF or CPAF requires additional specific acquisition considerations. The individual software program, type of functions, previous experience, computer system, and other areas would help choose between a CPFF or CPAF contract.
The PPBN and budget enactment processes also add to program instability. Findings in this area are:

1. The PPBN contributes to cost increases as unrealistic initial budget estimates cause increases in later cost estimates.
2. Congress failure to enact budget legislation at the start of a fiscal year cause difficulties in long-range planning, reduced management flexibility, funding uncertainty, and unstable program schedules.
3. Congressional program direction in budget bills adds tasks, constraints, and restrictions on programs.

Software developments also add factors affecting pricing arrangements. These are the findings from the software development analysis:

1. Requirements for software are ill-defined and often change.
2. It is difficult to estimate software program size or software development costs.
3. Software development is iterative as errors are found and corrected.

SUMMARY

The analysis process for this project considered the procurement, acquisition, budget, and software development processes to determine the appropriate pricing arrangement for weapon system software. The findings from each area indicate that software is a high-risk effort with characteristics of research and exploratory development activities. This leads to the conclusion that either cost-plus-fixed-fee or cost-plus-award-fee pricing arrangements are appropriate for weapon system software development.

Official Documents

Unpublished Materials

BIBLIOGRAPHY

A. REFERENCES CITED

Books

Articles and Periodicals

CONTINUED

Other Sources

B. RELATED SOURCES

Books

Articles and Periodicals

Official Documents

Unpublished Materials

APPENDICES

APPENDIX A - Minuteman Software Modifications 43
APPENDIX B - Peacekeeper Program Management Directives 45
APPENDIX C - Minuteman Software Error Analysis 47
MINUTEMAN SOFTWARE MODIFICATIONS

Software programs are easy to modify. The advantage to software modifications is that system functions can be changed by modifying software, rather than hardware or by minimizing hardware modifications. Both Minuteman II and Minuteman III ICBM weapon systems have a history of software modifications. Recent examples are:

ea. In the mid-1970s, Minuteman II communication system updates included software modifications.

b. Following hardware transitions, Minuteman II systems were updated in 1977-1979 with new Improved Launch Control System (ILCS) software.

c. In the mid-1970s, Minuteman III systems were updated with Command Data Buffer (CDB) and Hybrid Explicit (HE) software changes.

d. Software only changes to improve weapon system accuracy were added to Minuteman III systems in 1978.

e. Minuteman III software changes as part of an Air Force Logistics Command (AFLC) effort, Accuracy, Reliability, and Supportability Improvement Program (ARSIP), are scheduled for 1980.

f. Minuteman III software changes for ARSIP are scheduled for 1988.

These changes affect a number of software programs including executive, code processing, guidance, and targeting programs. The major efforts in the mid-1970s have been to improve weapon system functions by only making software programs.
PEACEKEEPER PROGRAM HISTORY

Program and requirements development, and design and fabrication of prototype systems. As an example of one such program, a summary of PEACEKEEPER MDM for the Peacekeeper warhead. Two of these in construction.

(a) MDM 075.01, dated Dec 1979, developed the system and directed the design of the system for both operating bases.

(b) MDM 075.05, dated Nov 1979, developed the PEACEKEEPER CONFIGURATION.

(c) MDM 075.05.1, dated Dec 1979, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(d) MDM 075.05.2, dated Jan 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(e) MDM 075.05.3, dated Feb 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(f) MDM 075.05.4, dated Mar 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(g) MDM 075.05.5, dated Apr 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(h) MDM 075.05.6, dated May 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(i) MDM 075.05.7, dated Jun 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(j) MDM 075.05.8, dated Jul 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(k) MDM 075.05.9, dated Aug 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(l) MDM 075.05.10, dated Sep 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(m) MDM 075.05.11, dated Oct 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(n) MDM 075.05.12, dated Nov 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(o) MDM 075.05.13, dated Dec 1980, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(p) MDM 075.05.14, dated Jan 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(q) MDM 075.05.15, dated Feb 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(r) MDM 075.05.16, dated Mar 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(s) MDM 075.05.17, dated Apr 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(t) MDM 075.05.18, dated May 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(u) MDM 075.05.19, dated Jun 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(v) MDM 075.05.20, dated Jul 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(w) MDM 075.05.21, dated Aug 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(x) MDM 075.05.22, dated Sep 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(y) MDM 075.05.23, dated Oct 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.

(z) MDM 075.05.24, dated Nov 1981, added a new configuration description of PEACEKEEPER, based on initial system review and physical design.
1. PMD R-M 0075(12), undated, implemented decisions to base 122 Peacekeeper missiles in existing Minuteman silos and directed additional basing studies to include the small missile.

2. PMD R-M 0075(13), dated Sep 1983, initiated Peacekeeper missile production and directed engineering design and demonstration for small, single warhead missiles, hard missile silos, and deep basing.

m. PMD 0075(14), dated Sep 1983, directed design, development, and test of a common ALCC capability for Peacekeeper and Minuteman.

n. PMD 0075(15), dated Oct 1984, updated program funding.

o. PMD 0075(16), undated, provided further guidance on the common ALCC capability and updated program funding.
MINUTEMAN SOFTWARE ERROR ANALYSIS

Both a developing contractor and a second, independent contractor analyzed Minuteman software programs. This approach is very successful in finding systems that work properly. Throughout the development these two contractors find errors in requirements, design, and code. These errors or anomalies are resolved with no change, deferred changes, or a change in the software. The following summary is from anomalies reported by an independent contractor:

a. 574 anomalies on two projects, each with three software programs, were reported;

b. 171 of the anomalies were reported against requirements; 398 against design/code;

c. Requirements anomalies were reported both before and after coding; and

d. Design and code anomalies were reported during the coding phase (178--).

These examples indicate that even in highly disciplined, well-defined programs, anomalies (errors) always occur.
END

FILMED

8-85

DTIC