MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A
CONNECTICUT RIVER BASIN
WASHINGTON, NEW HAMPSHIRE

BUTTERFIELD POND DAM
NH 00233
NHWRB NO. 245.01

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Copy available to DTIC does not permit fully legible reproduction

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

MARCH 1980

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
The dam is a stone filled gravity structure about 210 ft. long and 12.5 ft. high. The dam is considered to be in very poor condition. It is small in size with a significant hazard potential. The recommendations and remedial measure should be implemented as soon as possible.
Honorable Hugh J. Gallen
Governor of the State of New Hampshire
State House
Concord, New Hampshire 03301

Dear Governor Gallen:

Inclosed is a copy of the Butterfield Pond Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam.

Butterfield Pond Dam has been rated as being in very poor condition. The brief assessment and Section 3 of this report contain a discussion as to the condition of the dam. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Water Resources Board, the cooperating agency for the State of New Hampshire. In addition, a copy of the report has also been furnished the owner, The State of New Hampshire Resource and Economic Development Dept., Division of Parks and Recreation.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Water Resources Board for your cooperation in carrying out this program.

Sincerely,

[Signature]

MAX B. SCHEIDER
Colonel, Corps of Engineers
Division Engineer
NATIONAL DAM INSPECTION PROGRAM
PHASE I - INSPECTION REPORT
BRIEF ASSESSMENT

Identification No: NH 00233
Name of Dam: Butterfield Pond Dam
Town: Washington
County and State: Sullivan, New Hampshire
Stream: Ashuelot River
Date of Inspection: December 6, 1979

Butterfield Pond Dam is a stone-filled gravity structure about 210 feet in overall length and 12.5 feet high from crest of dam to toe of slope. Located in the center of the dam is the principal overflow section which is 57 feet long and consists of a concrete capped, stone weir with concrete training walls. Near the middle of the overflow section is a 16.2 feet wide by 0.2 feet deep low flow spillway weir cast into the concrete cap. Located at the right training wall of the overflow section is the outlet structure which consists of a reinforced concrete sluice gate structure containing a wood-plank sluice gate. Both the left and right embankments consist of unmortared stone. There is no emergency spillway.

The dam impounds Butterfield Pond and adjoining May Pond and the discharge flows through the Ashuelot River in a southwesterly direction approximately 6.0 miles to Ashuelot Pond. The original purpose of the dam is reported to have been to supply power to a mill, but its present use is recreational. The pond is 1.25 miles in length with a surface area of about 126 acres. The maximum storage capacity is about 590 acre feet.

As a result of the visual inspection of this facility, the dam is considered to be in VERY POOR condition. Major concerns are: a sinkhole in the earthfill on the upstream side of the right stone embankment with pond water flowing into the sinkhole; subsidence of the crest and bulging of the downstream slope of the left stone embankment; severely broken and eroded condition of the concrete cap and the downstream concrete facing of the overflow section; and significant leakage and seepage at numerous locations along the downstream face of the dam.

This dam is classified as SMALL in size and a SIGNIFICANT hazard structure in accordance with the recommended guidelines established by the Corps of Engineers. The test flood for this dam therefore, ranges from a 100-year flood to one-half the Probable Maximum Flood (1/2 PMF). Due to the very poor condition of the dam, the 1/2 PMF was selected for this hydrologic analysis. The test flood inflow was estimated to be 7,500 cfs and resulted in a routed test flood outflow equal to 5,430 cfs which would overtop the dam crest by about 5.3 feet. The maximum
spillway discharge capacity with the water level at the dam crest was estimated to be 160 cfs or about 3 percent of the routed test flood outflow. A major breach with the reservoir surface at the dam crest would overtop New Hampshire Route 31, by 2 to 3 feet, where it crosses the channel 350 feet below the dam. This could result in significant damage to the bridge and roadway. Although the potential for loss of life exists if the bridge were to wash out, no loss of life is anticipated.

It is recommended that the owner engage a qualified engineer to: investigate the sinkhole, crest subsidence, erosion channel on the downstream slope, and seepage at the left end of the right stone embankment; investigate the subsidence of the crest, sinkhole in the upstream earthfill, bulging of the downstream slope and seepage at the downstream toe of the left stone embankment; investigate the structural condition of the overflow section and the sluice gate; and do a detailed hydrologic-hydraulic investigation to assess further the potential of overtopping the dam, the adequacy of the spillway to pass the test flood, and the need for and means to increase project discharge capacity. It is also recommended that the owner clear brush and trees from a zone 25 feet wide on each side of the discharge channel between the dam and the highway bridge downstream of the dam.

The recommendations and remedial measures are described in Section 7 and should be addressed by the owner within one year after receipt of this Phase I Inspection Report.

Kenneth M. Stewart
Project Manager
N.H.P.E. 3531
S E A Consultants Inc.
Rochester, New Hampshire
This Phase I Inspection Report on Butterfield Pond Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

ARAMAST MAHTESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

RICHARD DIBUONO, CHAIRMAN
Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

JAC B. FRYAR
Chief, Engineering Division
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and
rarity of such a storm event, finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespassing and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td>i</td>
</tr>
<tr>
<td>Brief Assessment</td>
<td>ii</td>
</tr>
<tr>
<td>Review Board Page</td>
<td>iv</td>
</tr>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>Overview Photo</td>
<td>ix</td>
</tr>
<tr>
<td>Location Map</td>
<td>x</td>
</tr>
<tr>
<td>1. PROJECT INFORMATION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 General</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Description of Project</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3 Pertinent Data</td>
<td>1-3</td>
</tr>
<tr>
<td>2. ENGINEERING DATA</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Design</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Construction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Operation</td>
<td>2-1</td>
</tr>
<tr>
<td>2.4 Evaluation</td>
<td>2-1</td>
</tr>
<tr>
<td>3. VISUAL INSPECTION</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Findings</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Evaluation</td>
<td>3-3</td>
</tr>
<tr>
<td>4. OPERATIONAL AND MAINTENANCE PROCEDURES</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Operational Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Maintenance Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Evaluation</td>
<td>4-1</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5. EVALUATION OF HYDROLOGIC/HYDRAULIC FEATURES</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 General</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Design Data</td>
<td>5-1</td>
</tr>
<tr>
<td>5.3 Experience Data</td>
<td>5-1</td>
</tr>
<tr>
<td>5.4 Test Flood Analysis</td>
<td>5-1</td>
</tr>
<tr>
<td>5.5 Dam Failure Analysis</td>
<td>5-1</td>
</tr>
<tr>
<td>6. EVALUATION OF STRUCTURAL STABILITY</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1 Visual Observations</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2 Design and Construction Data</td>
<td>6-1</td>
</tr>
<tr>
<td>6.3 Post-Construction Changes</td>
<td>6-2</td>
</tr>
<tr>
<td>6.4 Seismic Stability</td>
<td>6-2</td>
</tr>
<tr>
<td>7. ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES</td>
<td>7-1</td>
</tr>
<tr>
<td>7.1 Dam Assessment</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2 Recommendations</td>
<td>7-2</td>
</tr>
<tr>
<td>7.3 Remedial Measures</td>
<td>7-2</td>
</tr>
<tr>
<td>7.4 Alternatives</td>
<td>7-3</td>
</tr>
</tbody>
</table>

APPENDICES

APPENDIX A - INSPECTION CHECKLIST A-1
APPENDIX B - ENGINEERING DATA B-1
APPENDIX C - SELECTED PHOTOGRAPHS C-1
APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS D-1

viii
OVERVIEW PHOTO - BUTTERFIELD POND DAM
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT
BUTTERFIELD POND DAM

SECTION 1
PROJECT INFORMATION

1.1 General

a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. S E A Consultants Inc. has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to S E A Consultants Inc. under a letter of November 5, 1979 from William Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0008 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) To perform technical inspection and evaluation of non-federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-federal interests.

(2) To encourage and prepare the states to initiate quickly effective dam safety programs for non-federal dams.

(3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location. The Butterfield Pond Dam is located in the town of Washington, New Hampshire, at the south end of Butterfield Pond, just east of New Hampshire Route 31. The dam impounds water from Butterfield Pond and adjoining May Pond which, after passing over the spillway, flows through the Ashuelot River in a southwesterly direction for approximately 6.0 miles where it discharges into Ashuelot Pond. The dam is shown on U.S.G.S. Quadrangle, Lovewell Mountain, New Hampshire, with coordinates approximately N43°13'33", W72°07'08", Sullivan County, New Hampshire. (See Location Plan)

b. Description of Dam and Appurtenances. Butterfield Pond Dam is a stone-filled gravity structure with a concrete capped overflow section and a reinforced concrete sluice gate structure. The dam is approximately 210 feet in overall length and 12.5 feet high from crest of dam to toe of slope. Both embankments consist of unmortared stone and have a crest width of approximately
6.0 feet. The left embankment has a downstream slope of unmortared stone which extends from crest of dam to toe of slope at approximately 1.5 feet vertical to 1.0 foot horizontal (1.5:1). The right embankment has a downstream slope of earthfill at approximately 1.0 foot vertical to 2.0 feet horizontal (1:2).

Located in the center of the dam is the principal overflow section which is 57 feet long and consists of a concrete capped, stone weir with concrete training walls. Near the middle of the overflow section is a 16.2 feet wide by 0.2 feet deep low flow spillway weir cast into the concrete cap.

Located at the right training wall of the overflow section is the outlet structure which consists of a reinforced concrete sluice gate structure containing a wood plank sluice gate. All mechanical equipment to operate the sluice gate has been removed and the sluice gate is split, leaking and inoperable. Flow passing through the sluice gate structure discharges into a 12 feet wide stone-lined sluiceway that extends approximately 56 feet to the main channel.

c. **Size Classification.** Small (height - 12.5 feet; storage - 590 acre-feet) based on storage (less than 1,000 acre-feet and greater than or equal to 50 acre-feet) as given in the Recommended Guidelines for Safety Inspection of Dams.

d. **Hazard Classification.** Significant Hazard. Failure of the dam could result in damage to a state bridge and highway (NH Route 31), since the capacity of the highway bridge is nearly 2,000 cfs less than the dam failure discharge and the roadway would be overtopped by 2 to 3 feet. There are no dwellings located near the downstream channel until the river discharges into Ashuelot Pond. However, at this point the stage would decrease rapidly to less than a foot and dwellings located on the pond would not be impacted. Although the potential for loss of life would exist if the bridge were to wash out, no loss of life is anticipated.

e. **Ownership.** No information regarding the original owner was found, but according to the files of the State of New Hampshire Water Resources Board, the original dam was built to create a pond and provide power for what was called Butterfield Mill. The dam was reconstructed in 1934 by the Civilian Conservation Corp., and at that time was owned by the State of New Hampshire Forestry Reservation. Since that time, the dam has always been owned by an agency of the State of New Hampshire, and is presently owned by Pillsbury State Park; more specifically, the State of New Hampshire Resources and Economic Development Department, Division of Parks and Recreation, Post Office Box 856, Concord, New Hampshire 03301. Telephone No. (603) 271-3254.

f. **Operator.** The dam is maintained and operated by Pillsbury State Park, under the State of New Hampshire Resources and Economic Development Department, Division of Parks and Recreation, Post Office Box 856, Concord, New Hampshire 03301. Telephone No. (603) 271-3254.

g. **Purpose of Dam.** The original purpose of the dam was to provide power to a mill. The present purpose of the dam is recreational.
h. Design and Construction History. No information regarding the original design or construction of the dam was found. Early records indicate that it was last rebuilt in 1934. A set of plans dated 1934, showing plan, elevation, and section of an existing structure and proposed reconstruction prepared by R. D. Chapin, Civil Engineer, Newport, New Hampshire, are on file at the State of New Hampshire Water Resources Board. None of the details shown on these plans are consistent with the configuration of the present structure. Photographs taken in 1937 that are on file substantially agree with the detail of the present structure.

i. Normal Operating Procedures. The Butterfield Pond Dam is used primarily to retain the waters of Butterfield Pond and adjoining May Pond for recreational use at Pillsbury State Park. There is no normal operating procedure for this dam.

1.3 Pertinent Data

a. Drainage Area. The drainage area above the Butterfield Pond Dam covers nearly 7.15 square miles (approximately 4576 acres), consisting of steeply sloped terrain surrounding Butterfield Pond and adjoining May Pond, and other smaller ponds located upstream from Butterfield Pond. The topography in the drainage basin ranges from 2332 feet (NGVD) on top of Bean Mountain to approximately 1592 feet (NGVD) at the base of the dam. The majority of the basin is heavily wooded and generally undeveloped. The development which does exist consists of structures associated with Pillsbury State Park.

b. Discharge at Damsite. Discharge at the damsite normally occurs over the overflow section located between the two concrete training walls. A 16.2 feet wide by 0.2 foot deep low flow spillway is located near the middle of the overflow section. The invert of the spillway weir is at elevation 1603.0 feet (NGVD) and has a capacity of nearly 4 cfs. A 6.1 foot wide by 6.05 foot high sluice gate is located adjacent to the right training wall. The sluice gate is normally closed, and presently is inoperable and leaking through a split in the gate. This gate, if operable, would allow the reservoir to be lowered to an elevation of 1595.2 feet.

(1) The capacity of the sluice gate was estimated to be 435 cfs with the water surface at the top of dam (elevation 1604.2 feet) and 595 cfs with the water surface at the test flood elevation (elevation 1609.5 feet).

(2) Maximum known flood at damsite - unknown

(3) The ungated spillway capacity with the water surface elevation at the top of the dam (elevation 1604.2 feet) was estimated to be 160 cfs

(4) The ungated spillway capacity with the water surface elevation at the test flood elevation (elevation 1609.5 feet) was estimated to be 2,375 cfs
The total spillway capacity at the test flood elevation was estimated to be 2,375 cfs at 1609.5 elevation.

The total project discharge at the top of the dam was estimated to be 210 cfs at 1604.2 elevation (with the sluice gate closed) and 630 cfs at 1604.2 elevation (with the sluice gate open).

The total project discharge at the test flood elevation was estimated to be 5,430 cfs at 1609.5 elevation.

c. **Elevation (feet, NGVD) based on elevation 1603.0 shown on U.S.G.S. quad sheet assumed to be pool elevation at top of permanent spillway crest**

(1) Streambed at toe of dam - 1591.9
(2) Bottom of cutoff - unknown
(3) Maximum tailwater - unknown
(4) Recreation pool - 1603.2
(5) Full flood control pool - N/A
(6) Spillway crest - 1603.0
(7) Design surcharge (Original Design) - unknown
(8) Top of dam - 1604.2
(9) Test flood design surcharge - 1609.5

d. **Reservoir (length in feet) (Butterfield Pond and adjoining May Pond)**

(1) Normal pool - 6,565
(2) Flood control pool - N/A
(3) Spillway crest pool - 6,550
(4) Top of dam - 6,630
(5) Test flood pool - 6,990
e. **Storage** (acre-feet) (Butterfield Pond and adjoining May Pond)

 (1) Normal pool - 465
 (2) Flood control pool - N/A
 (3) Spillway crest pool - 440
 (4) Top of dam - 590
 (5) Test flood pool - 1,415

f. **Reservoir Surface** (acres) (Butterfield Pond and adjoining May Pond)

 (1) Normal pool - 126
 (2) Flood control pool - N/A
 (3) Spillway crest - 125
 (4) Test flood pool - 175
 (5) Top of dam - 134

g. **Dam**

 (1) Type - stone-filled gravity structure with concrete capped overflow section
 (2) Length - 210 feet overall
 (3) Height - 12.5 feet maximum
 (4) Top Width - 6.0 feet (at stone embankments)

 8.0 feet (at overflow section)
 (5) Side Slopes - 1.5 V to 1.0 H downstream slope (left embankment)
 1.0 V to 2.0 H downstream slope (right embankment)
 (6) Zoning - unknown
 (7) Impervious core - unknown
 (8) Cutoff - unknown
 (9) Grout curtain - none
 (10) Other - none
h. Diversion and Regulating Tunnel

Not applicable (see Section j below)

i. Spillway

(1) Type - stone fill, concrete capped overflow section with concrete training walls

(2) Length of weir - 57 feet (entire overflow section)
 16.2 feet (low flow spillway section)

(3) Crest elevation - 1603.0 (invert low flow spillway)
 1603.2 (invert main overflow section)

(4) Gates - N/A

(5) U/S Channel - The banks of Butterfield Pond and May Pond are tree lined. For the most part the slopes appear to be stable, although some debris has blocked the sluice gate. Other than the debris blocking the sluice gate, no evidence of significant sedimentation was observed.

(6) D/S Channel. The dam's overflow section discharges into a natural river channel (Ashuelot River) which is about 20 feet wide and 3.5 feet deep. Approximately 350 feet downstream from the dam, the river passes beneath a state highway (NH Route 31). The bridge opening (perpendicular to the centerline of the channel) measures 24.3 feet wide by 10.4 feet high. After passing through the bridge, the river travels in a southerly direction until it discharges into Ashuelot Pond, approximately 6 miles downstream from the dam.

j. Regulating Outlets

(1) Invert - Sluice gate - 1595.2 (bottom of gate opening)

(2) Size - Sluice gate - 6.1 feet wide x 6.05 feet high opening

(3) Description - Sluice gate - 5 inch thick wooden planks, 7.1 feet wide, bolted together to form gate in 6.1 feet wide opening

SECTION 2
ENGINEERING DATA

2.1 Design

No design data were disclosed for Butterfield Pond Dam. A set of plans dated 1934 showing plan, elevation, and section of an existing structure and proposed reconstruction of the dam by R.D. Chaplin, Civil Engineer, Newport, New Hampshire are on file at the State of New Hampshire Water Resources Board. None of the details shown on those plans were consistent with the configuration of the present structure.

2.2 Construction

No construction records were disclosed.

2.3 Operation

No engineering operational data were found.

2.4 Evaluation

a. Availability. No engineering data were available for Butterfield Pond Dam. A search of the files of the State of New Hampshire Water Resources Board revealed a limited amount of recorded information.

b. Adequacy. The final assessments and recommendations of this investigation are based on the visual inspection and the hydrologic and hydraulic calculations.

c. Validity. The field investigation indicated that the external features of the Butterfield Pond Dam almost completely disagree with the detail shown on the plans on file at the State of New Hampshire Water Resources Board.
SECTION 3
VISUAL INSPECTION

3.1 Findings

a. General. Butterfield Dam impounds a pond of small size. The drainage area above the dam consists of steeply sloped terrain surrounding Butterfield Pond and adjoining May Pond, and other smaller ponds located upstream from Butterfield Pond. The majority of the basin is heavily wooded and generally undeveloped. The development which does exist consists of structures associated with Pillsbury State Park. The downstream area is undeveloped except for the bridge crossing of NH State Route 31.

The field inspection of Butterfield Pond Dam was made on December 6, 1979. The inspection team consisted of personnel from S E A Consultants Inc. and Geotechnical Engineers, Inc. Inspection checklists, completed during the visual inspection, are included in Appendix A. At the time of inspection, water was passing approximately 2-1/2 inches deep over the 16.2 feet wide low flow spillway. The pool elevation was at approximately 1603.2 feet (NGVD). The upstream face of the dam could only be inspected above this water level.

b. Dam. Butterfield Pond Dam is a stone-filled gravity structure about 210 feet in overall length and 12.5 feet high from crest of dam to toe of slope. (See Plans and Detailing in Appendix B.)

The central portion of the dam consists of a stone-masonry overflow section about 57 feet long with concrete training walls and a stone weir, concrete capped on the crest and downstream side. (See Photo Nos. 2 and 7.) The crest of the overflow section is about 8 feet wide and the downstream face is vertical. (See Photo Nos. 3 and 7.) The upstream side of the overflow section is not completely visible beneath the water surface, but does indicate the existence of an unmortared stone apron. Located near the middle of the overflow section cast into the concrete cap is the low flow spillway which is 16.2 feet wide and 0.2 feet deep. (See Photo Nos. 7 and 8.) The concrete cap on the crest of the overflow section is broken and severely eroded at numerous locations. (See Photo Nos. 8 and 10.) At one location there is a small eddy where water is flowing down into a hole on the crest. Water is leaking from the downstream face at the contact between the overflow section and the foundation bedrock. (See Photo No. 9.) Major leakage is discharging from loose rocks at the toe of the right end of the overflow section.

Between the sluice gate at the right training wall of the overflow section and the right abutment, there is a stone embankment which appears to consist of a vertical dry-stone-masonry wall with earthfill against the upstream and downstream sides. In the fill immediately adjacent to the upstream side of the wall, there is a ditch in which water is flowing from the pond toward a sinkhole which is about 15 to 20 feet to the right of the concrete sluice gate structure. (See Plans and Details in Appendix B.) It appears that the water which flows into this sinkhole is discharging at the base of the downstream end of the right training wall of the sluice gate structure. (See Photo No. 13.) About 5 feet to the right of the concrete sluice gate structure, the crest of the stone embankment has subsided about 2 feet. Directly in line with this subsidence, there is an apparent erosion channel that
extends from the crest to the toe of the downstream slope of the embankment. This channel is filled with weeds and brush, and there are stumps of some small trees in the channel. Some brush and one small tree are growing on the earthfill on the upstream side of the stone embankment. Brush and weeds are growing on the earthfill on the downstream side of the stone embankment. (See Photo No. 4.)

Between the left training wall of the overflow section and the left abutment there is a stone embankment which has a downstream slope inclined at about 1.5V:1H and which has an earthfill against its upstream side. There appears to be a major bulge in the downstream slope of this stone embankment close to the overflow section of the dam. (See Photo No. 5.) Major seepage is discharging at the toe of the stone embankment next to the overflow section. The crest of the stone embankment has settled about 1 to 1 1/2 feet within about 10 feet of the overflow section and the crest of the earthfill on the upstream side of the embankment has a sinkhole about 3 to 4 feet deep above pond level at a location about 25 feet to the left of the overflow section. (See Photo No. 6.) Brush and small trees are growing on the earthfill on the upstream side of the embankment. Brush and trees are growing at the downstream toe of the embankment. (See Photo No. 4.)

c. Appurtenant Structures. Located at the right training wall of the overflow section is the dam's outlet structure which consists of a reinforced concrete sluice gate structure that discharges into a 12 foot wide stone-lined sluiceway that extends approximately 56 feet to the main channel. (See Photo Nos. 10 and 11.) The sluice gate itself consists of 5-inch thick wood planks that are secured together by two long vertical bolts. The gate is approximately 6.1 feet wide and 6.05 feet high and is raised and lowered through steel slots embedded in the sides of the concrete sluice gate structure. Near the top of the gate, a severe crack has developed between the wood planks and water is pouring through and discharging into the sluiceway. (See Photo No. 12.)

A 6-inch thick concrete slab cast on top of the sluice gate structure acts as a control tower for the gate. The lifting mechanism has been removed, and the gate is jammed in the closed position. The upstream face of the left wall of the concrete sluice gate structure is being undermined and is deteriorated, exposing reinforcing steel.

d. Reservoir Area. The slopes of the ponds appear to be stable. No evidence of significant sedimentation was observed. The approach channel to the spillway is wide and unobstructed.

e. Downstream Channel. The dry-stone-masonry wall on the right side of the sluiceway downstream of the sluice gate structure is in poor condition. Some brush is growing in the channel downstream of the sluiceway. Some trees overhang the channel downstream of the overflow section of the dam, and one tree has blown over across the channel. (See Photo Nos. 14, 15 and 16.)
3.2 Evaluation

On the basis of the results of the visual inspection, Butterfield Pond Dam is considered to be in very poor condition.

A major sinkhole into which water from the pond is flowing on the upstream side of the stone embankment at the right end of the dam, subsidence of the crest of the right stone embankment, an apparent erosion channel on the downstream slope of the right embankment, and a major discharge of water from the base of the right training wall of the sluice gate structure are all signs of serious stability problems of the right embankment. It is possible that this embankment could fail at any time.

A major subsidence of the crest of the stone embankment at the left end of the dam, a major sinkhole in the earthfill on the upstream side of the left stone embankment, apparent bulging of the downstream slope of the left embankment, and a major discharge of water from the downstream toe of the left embankment are all signs of serious stability problems of the left embankment. It is possible that this embankment could fail at any time.

The broken and eroded condition of the concrete cap and downstream facing of the overflow section of the dam, leakage from cracks in the downstream facing, leakage at the contact between the overflow section of the dam and the bedrock foundation, and the flow of pond water into a hole on the crest of the overflow section are all signs of serious stability problems in the overflow section of the dam.

A large crack between the wood planks of the sluice gate and the water pouring through and discharging into the sluiceway, and the absence of any lifting mechanism are signs of considerable deterioration of the gate. It is possible that the gate could fail at any time.

Trees growing at the downstream toe of the dam, and brush which will eventually attain tree-size on the earthfills on the upstream side of the left stone embankment and on the upstream and downstream sides of the right stone embankment may lead to erosion and seepage problems if a tree blows over and pulls out its roots, or if a tree dies or is cut and its roots rot.
SECTION 4
OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

a. General. The Butterfield Pond Dam is used primarily to retain the waters of Butterfield Pond and adjoining May Pond. There are no written or routine operational procedures.

b. Description of Any Warning System in Effect. No written warning system exists for the dam.

4.2 Maintenance Procedures

a. General. The owner, the New Hampshire Resources and Economic Development Department, Division of Parks and Recreation, is responsible for the maintenance of the dam. No formal plan for maintenance was discussed.

b. Operating Facilities. No formal plan for maintenance of operating facilities was disclosed.

4.3 Evaluation

The current operation and maintenance procedures for the Butterfield Pond Dam are inadequate to insure that all problems encountered can be remedied within a reasonable period of time. The owner should establish a written operation and maintenance procedure, as well as establish a warning system to follow in event of flood flow conditions or imminent dam failure.
SECTION 5
EVALUATION OF HYDROLOGIC/HYDRAULIC FEATURES

5.1 General. Butterfield Pond Dam is a stone-filled gravity structure approximately 210 feet in overall length and 12.5 feet high from crest of dam to toe of slope. Located near the center of the dam is the principal overflow section which is 57 feet long and consists of a concrete capped, stone weir with concrete training walls. Near the middle of the overflow section is a 16.2 feet wide by 0.2 foot deep low flow spillway weir. Adjacent to the right training wall of the overflow section is a 6.1 feet wide by 6.05 feet high sluice gate housed in a reinforced concrete structure. The sluice gate discharges into a 12 feet wide stone-lined sluiceway which extends approximately 56 feet to the main channel. At this time, the wooden plank sluice gate is inoperable and is severely leaking through a gap between two of the planks.

In addition to Butterfield Pond, five other ponds are located in the drainage area upstream from Butterfield Pond. Consequently, nearly two-thirds of the runoff from the watershed is intercepted by these ponds before flowing into Butterfield Pond.

5.2 Design Data. No hydrological or hydraulic design data were disclosed.

5.3 Experience Data. No experience data were disclosed. Maximum flood flows or elevations are unknown.

5.4 Test Flood Analysis. Due to the absence of detailed design and operational information, the hydrologic evaluation was performed utilizing data gathered during field inspection, watershed size and an estimated test flood determined from the Corps of Engineers guide curves. For this dam (small size and significant hazard) the test flood ranges from a 100-Year Flood to one-half the Probable Maximum Flood (1/2 PMF). Due to the very poor condition of the dam the 1/2 PMF was selected for this analysis. Since the drainage area consists of steeply sloping terrain, the "mountainous" curve, from the Corps of Engineers set of guide curves, was used to estimate the maximum probable peak flow rate.

Based on an estimated maximum probable flood peak flow rate of 2,100 cfs per square mile and a drainage area of 7.15 square miles, the test flood inflow was estimated to be 7,500 cfs. The test flood was routed through the reservoir in accordance with the Corps of Engineers procedure for Estimating Effect of Surcharge Storage on Maximum Probable Discharge. The routed test flood outflow was estimated to be 5,430 cfs. This analysis indicated that the dam crest would be overtopped by approximately 5.3 feet. The maximum spillway capacity (assuming that the sluice gate is closed) with the water level at the dam crest was estimated to be 160 cfs, which is only about 3 percent of the routed test flood outflow.

5.5 Dam Failure Analysis. The impact of dam failure with the reservoir surface at the dam crest was assessed utilizing the "Rule of Thumb" Guidance for Estimating Downstream Dam Failure Hydrographs published by the Corps of Engineers. The analysis covered a reach extending approximately 6 miles downstream to Ashuelot Pond. Based on this analysis, the Butterfield Pond Dam has been classified as a significant hazard.
Failure of the Butterfield Pond Dam would increase the stage along the immediate downstream channel by 7.5 feet, with an associated discharge of 5,950 cfs. Since this discharge exceeds the capacity of the highway bridge by nearly 2,000 cfs, it is probable that the pool formed by the flow restriction of the bridge would overtop the roadway by 2 to 3 feet and could cause significant damage to the bridge and roadway. The stage of the river would be reduced to about 4.5 feet by the time it discharges into Ashuelot Pond. The stage, however, would decrease rapidly, to less than a foot, as the flow passes through the wider portions of the pond. Although the potential for loss of life would exist if the bridge were to wash out, no loss of life is anticipated.
SECTION 6
EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations

The visual inspection indicates the following potential structural problems:

(1) A major sinkhole into which water from the pond is flowing on the upstream side of the stone embankment at the right end of the dam, subsidence of the crest of the right stone embankment, an apparent erosion channel on the downstream slope of the right embankment, and a major discharge of water from the base of the right training wall of the sluice gate structure are all signs of serious stability problems in the right embankment. It is possible that this embankment could fail at any time.

(2) A major subsidence of the crest of the stone embankment at the left end of the dam, a major sinkhole in the earthfill on the upstream side of the left stone embankment, apparent bulging of the downstream slope of the left embankment, and a major discharge of water from the downstream toe of the left embankment are all signs of serious stability problems in the left embankment. It is possible that this embankment could fail at any time.

(3) The broken and eroded condition of the concrete cap and downstream facing of the overflow section of the dam, leakage from cracks in the downstream facing, leakage at the contact between the overflow section of the dam and the bedrock foundation, and the flow of pond water into a hole on the crest of the overflow section are all signs of serious stability problems in the overflow section of the dam.

(4) The large crack between the wood planks of the sluice gate and the water pouring through and discharging into the sluiceway, and the absence of any lifting mechanism are signs of considerable deterioration of the gate. It is possible that the gate could fail at any time.

(5) Trees growing at the downstream toe of the dam, and brush which will eventually attain tree-size on the earthfills on the upstream side of the left stone embankment and on the upstream and downstream sides of the right stone embankment, may lead to erosion and seepage problems if a tree blows over and pulls out its roots, or if a tree dies or is cut and its roots rot.

6.2 Design and Construction Data

No information regarding the original design or construction of the dam was found.
6.3 Post-Construction Changes

Early records indicate that the dam was rebuilt in 1934. A set of plans dated 1934, showing plan, elevation, and section of an existing structure and proposed reconstruction prepared by R.D. Chapin, Civil Engineer, Newport, New Hampshire, are on file at the New Hampshire Water Resources Board. None of the detail shown on these plans are consistent with the configuration of the present structure. Photographs taken in 1937 that are on file substantially agree with the detail of the present structure.

6.4 Seismic Stability

This dam is located in Seismic Zone 2 and, in accordance with the Phase I guidelines, does not warrant seismic analysis.
SECTION 7
ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. The visual examination indicates that Butterfield Pond Dam is in very poor condition. The major concerns with respect to the integrity of the dam are:

1. Sinkhole in the earthfill on the upstream side of the right stone embankment, with pond water flowing into the sinkhole.
2. Major subsidence of the crest of the left stone embankment.
3. Bulging of the downstream slope of the left stone embankment.
4. Severely broken and eroded condition of the concrete cap and the downstream concrete facing of the overflow section.
5. Leakage from cracks in the downstream facing of the overflow section and at the contact between the overflow section and the foundation bedrock.
6. Subsidence of the crest of the right stone embankment.
7. Erosion channel from the crest to downstream toe of the right embankment.
8. Major seepage at the base of the right training wall of the sluice gate structure.
9. Sinkhole above pond level in the earthfill on the upstream side of the left stone embankment.
10. Major seepage at the downstream toe of the left embankment.
11. Leakage through a large crack between the wood planks of the sluice gate.
12. Trees overhanging the discharge channel downstream of the overflow section of the dam and one tree which has blown over across the channel.
13. Inadequacy of the spillway to pass the test flood.
b. **Adequacy of Information.** The information available from the visual inspection is adequate to identify the problems that are listed in 7.2. These problems will require the attention of a qualified registered professional engineer who will have to make additional engineering studies to design or specify remedial measures. No additional information is needed for the purpose of this Phase I investigation.

c. **Urgency.** The owner should implement the recommendations in 7.2 and 7.3 immediately upon receipt of this Phase I report.

7.2 **Recommendations**

The owner should retain a registered professional engineer qualified in the design and construction of dams to:

1. Investigate the sinkhole, crest subsidence, erosion channel on the downstream slope, and seepage at the left end of the right stone embankment, and design remedial measures as needed.

2. Investigate the subsidence of the crest, sinkhole in the upstream earthfill, bulging of the downstream slope, and seepage at the downstream toe of the left stone embankment, and design remedial measures as needed.

3. Investigate the structural condition of the overflow section and design remedial measures as needed.

4. Investigate the structural condition of the sluice gate and design remedial measures as needed.

5. Do a detailed hydrologic-hydraulic investigation to assess further the potential of overtopping the dam, the adequacy of the spillway to pass the test flood, and the need for and means to increase project discharge capacity.

The owner should carry out the recommendations made by the engineer.

7.3 **Remedial Measures**

a. **Operating and Maintenance Procedures.** The owner should:

1. Clear brush and trees from a zone 25 feet wide on each side of the discharge channel between the dam and the highway bridge downstream of the dam.

2. Visually inspect the dam and appurtenant structures once a month.

3. Engage a registered professional engineer qualified in the design and construction of dams to make a comprehensive technical inspection of the dam once every year.
(4) Establish a surveillance program for use during and immediately after heavy rainfall, and also a warning program to follow in case of emergency conditions.

7.4 Alternatives

There are no practical alternatives to the recommendations of Section 7.2 and 7.3 except removal of the dam.
APPENDIX A

INSPECTION CHECKLIST
INSPECTION CHECK LIST

PARTY ORGANIZATION

PROJECT: Butterfield Pond Dam, NH
DATE: December 6, 1979
TIME: 9:00 a.m.
WEATHER: Cool, partly cloudy
W.S. ELEV. 1603.2 U.S.1591.0 D.N.S. (NGVD)

PARTY:
1. Kenneth Stewart, S E A
2. Robert Durfee, S E A
3. Bruce Pierstorff, S E A
4. Philip Ricardi, S E A
5. Ronald Hirschfeld, GEI
6. Kenneth Stern, NHWRB
7. Richard DeBood, NHWRB
8.
9.
10.

PROJECT FEATURE
INSPECTED BY
REMARKS

1. Structural Stability
 K. Stewart/R. Durfee
2. Hydrology/Hydraulics
 B. Pierstorff/P. Ricardi
3. Soils and Geology
 R. Hirschfeld
4.
5.
6.
7.
8.
9.
10.

A-1
INSPECTION CHECK LIST

PROJECT: Butterfield Pond Dam, NH
DATE: December 6, 1979

PROJECT FEATURE: Dam Embankment
NAME:

DISCIPLINE:

AREA EVALUATED

<table>
<thead>
<tr>
<th>DAM EMBANKMENT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Elevation</td>
<td>1603.0</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>1603.2</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None observed</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>Not paved</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>One sinkhole in crest to right of sluice gate structure, one sinkhole in crest near left end of overflow section</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>Bulging of downstream dry stone masonry wall between left end of overflow section and left abutment in vicinity of sinkhole on crest</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Sinkholes, as noted above</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>See "Lateral Movement" above</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Fair</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>None observed</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>No evidence observed</td>
</tr>
<tr>
<td>Vegetation on Slopes</td>
<td>Brush and some small trees on upstream side of embankment, on abutments, and downstream of toe of dam</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td>Major erosion channel on downstream slope next to training wall on right side of sluiceway</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>No riprap</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toe</td>
<td>None observed</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage Piping or Boils</td>
<td>Major seepages at several locations</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>None observed</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>None observed</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>None observed</td>
</tr>
</tbody>
</table>
INSPECTION CHECK LIST

PROJECT: Butterfield Pond Dam, NH
DATE: December 6, 1979

PROJECT FEATURE: Dike Embankment
NAME:

DISCIPLINE:

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIKE EMBANKMENT</td>
<td>No dike</td>
</tr>
<tr>
<td>Crest Elevation</td>
<td></td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td></td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td></td>
</tr>
<tr>
<td>Surface Cracks</td>
<td></td>
</tr>
<tr>
<td>Pavement Condition</td>
<td></td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td></td>
</tr>
<tr>
<td>Lateral Movement</td>
<td></td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td></td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td></td>
</tr>
<tr>
<td>Condition at Abutment and at</td>
<td></td>
</tr>
<tr>
<td>Concrete Structures</td>
<td></td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td></td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td></td>
</tr>
<tr>
<td>Vegetation on Slopes</td>
<td></td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td></td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td></td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toe</td>
<td></td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td></td>
</tr>
<tr>
<td>Piping or Boils</td>
<td></td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td></td>
</tr>
<tr>
<td>Toe Drains</td>
<td></td>
</tr>
<tr>
<td>Instrumentation System</td>
<td></td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITIONS</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>OUTLET WORKS - INTAKE CHANNEL AND</td>
<td></td>
</tr>
<tr>
<td>INTAKE STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>Slope Conditions</td>
<td>Good</td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td>Not visible beneath pond surface</td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td>None</td>
</tr>
<tr>
<td>Log Boom</td>
<td>None</td>
</tr>
<tr>
<td>Debris</td>
<td>Debris built up against sluice gate</td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td>Loose stone lining</td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td>None</td>
</tr>
<tr>
<td>b. Intake Structure</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td>Fair to poor. Exposed reinforcing steel and</td>
</tr>
<tr>
<td></td>
<td>numerous cracks.</td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td>Wooden gate (not operable) split and leaking.</td>
</tr>
</tbody>
</table>
INSPECTION CHECK LIST

PROJECT: Butterfield Pond Dam, NH
DATE: December 6, 1979

PROJECT FEATURE: Control Tower
NAME: ________________

DISCIPLINE: ________________
NAME: ________________

AREA EVALUATED

<table>
<thead>
<tr>
<th>OUTLET WORKS - CONTROL TOWER</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Concrete and Structural</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Fair</td>
</tr>
<tr>
<td>Condition of Joints</td>
<td>Good</td>
</tr>
<tr>
<td>Spalling</td>
<td>Minor</td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td>Visible reinforcement on leading edge of both sides of intake channel</td>
</tr>
<tr>
<td>Rusting or Staining of Concrete</td>
<td>Minor</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>Minor</td>
</tr>
<tr>
<td>Joint Alignment</td>
<td>Good</td>
</tr>
<tr>
<td>Unusual Seepage or Leaks in Gate Chamber</td>
<td>None observed</td>
</tr>
<tr>
<td>Cracks</td>
<td>Numerous</td>
</tr>
<tr>
<td>Rusting or Corrosion of Steel</td>
<td>Rusting of visible reinforcing steel</td>
</tr>
<tr>
<td>b. Mechanical and Electrical</td>
<td></td>
</tr>
<tr>
<td>Air Vents</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Float Wells</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Crane Hoist</td>
<td>None</td>
</tr>
<tr>
<td>Elevator</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Hydraulic System</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Service Gates</td>
<td>Not accessible - water pouring through apparent split in wooden gate</td>
</tr>
<tr>
<td>Emergency Gates</td>
<td>Same as service gates</td>
</tr>
<tr>
<td>Lightning Protection System</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Emergency Power System</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Wiring and Lighting System</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
INSPECTION CHECK LIST

PROJECT: Butterfield Pond Dam, NH
DATE: December 6, 1979
PROJECT FEATURE: Transition and Conduit
DISCIPLINE:
NAME:

AREA EVALUATED

<table>
<thead>
<tr>
<th>OUTLET WORKS - TRANSITION AND CONDUIT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining on Concrete</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td></td>
</tr>
<tr>
<td>Alignment of Monoliths</td>
<td></td>
</tr>
<tr>
<td>Alignment of Joints</td>
<td></td>
</tr>
<tr>
<td>Numbering of Monoliths</td>
<td></td>
</tr>
</tbody>
</table>

Not applicable
INSPECTION CHECK LIST

PROJECT: Butterfield Pond Dam, NH
DATE: December 6, 1979
PROJECT FEATURE: Outlet Structure
DISCIPLINE:

AREA EVALUATED

<table>
<thead>
<tr>
<th>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Condition of Concrete</td>
</tr>
<tr>
<td>Rust or Staining</td>
</tr>
<tr>
<td>Spalling</td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
</tr>
<tr>
<td>Visible Reinforcing</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
</tr>
<tr>
<td>Condition at Joints</td>
</tr>
<tr>
<td>Drain holes</td>
</tr>
<tr>
<td>Channel</td>
</tr>
<tr>
<td>Loose Rock or Trees Overhanging Channel</td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Both wing walls undermined and eroded. (Left side more serious.)</td>
</tr>
<tr>
<td>None observed</td>
</tr>
<tr>
<td>Some efflorescence</td>
</tr>
<tr>
<td>Cracking at lift boundaries</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>Trees overhanging channel. Dry stone masonry wall on the right side of the sluiceway channel is in poor condition.</td>
</tr>
<tr>
<td>Fair</td>
</tr>
</tbody>
</table>
AREA EVALUATED

<table>
<thead>
<tr>
<th>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None observed</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>None observed</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>Not visible beneath pond surface</td>
</tr>
<tr>
<td>b. Weir and Training Walls</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>Extensively deteriorated</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>None observed</td>
</tr>
<tr>
<td>Spalling</td>
<td>Large sections of concrete cap broken away</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>None</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>Extensive seepage</td>
</tr>
<tr>
<td>Drain Holes</td>
<td>None</td>
</tr>
<tr>
<td>c. Discharge Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Fair</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None observed</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Trees in channel and overhanging channel</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Boulder-covered</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td>One tree has fallen across channel</td>
</tr>
</tbody>
</table>
Inspection Check List

Project: Butterfield Pond Dam, NH
Date: December 6, 1979

Project Feature: Service Bridge
Name:

Discipline:
Name:

<table>
<thead>
<tr>
<th>Area Evaluated</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Works - Service Bridge</td>
<td>No service bridge</td>
</tr>
<tr>
<td>a. Super Structure</td>
<td></td>
</tr>
<tr>
<td>Bearings</td>
<td></td>
</tr>
<tr>
<td>Anchor Bolts</td>
<td></td>
</tr>
<tr>
<td>Bridge Seat</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Members</td>
<td></td>
</tr>
<tr>
<td>Under Side of Deck</td>
<td></td>
</tr>
<tr>
<td>Secondary Bracing</td>
<td></td>
</tr>
<tr>
<td>Deck</td>
<td></td>
</tr>
<tr>
<td>Drainage System</td>
<td></td>
</tr>
<tr>
<td>Railings</td>
<td></td>
</tr>
<tr>
<td>Expansion Joints</td>
<td></td>
</tr>
<tr>
<td>Paint</td>
<td></td>
</tr>
<tr>
<td>b. Abutment & Piers</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Alignment of Abutment</td>
<td></td>
</tr>
<tr>
<td>Approach to Bridge</td>
<td></td>
</tr>
<tr>
<td>Condition of Seat & Backwall</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA
AVAILABLE ENGINEERING DATA

No Engineering Data other than past inspection reports from the State of New Hampshire Water Resource Board were available.
MEMO

December 7, 1979

To: Vern Knowlton

From: Ken Stern

Re: Corps Inspection of May Pond Dam

(Butterfield Dam) 245.01, Washington

On December 6, 1979 I accompanied the inspection team from SEA Consultants. This dam is in poor condition. The concrete is extremely deteriorated, the rock abutments have settled, there is major leakage at several locations.

The only structure threatened should the dam fail is a highway bridge on state route 31. This bridge has a large clear opening. If the dam were to fail gradually there may be no damage to the bridge.

I discussed the dam with Gary, who has been there, and we agree that major reconstruction is needed. Once work is considered, total reconstruction may be inevitable.

I recommend that the stoplogs be removed and the pond lowered until remedial action is taken. This would reduce the hydraulic pressure on the dam and reduce the amount of water discharged should the dam fail. The lowered water level would redistribute the location and magnitude of the ice pressures on the structure.

I recommend lowering the pond. A decision should be made and action taken now.

KS/ln

B-3
May Pond, Dam No. 245.01, Washington, New Hampshire

This is a stone-fill, gravity with concrete abutments and spillway cap dam type structure. It is approximately 225' long and with a maximum height of 18'. The present structure has several serious leaks through the stonework, and cracks and holes in the concrete. It also contains a pond drain gate near the base of the dam which also leaks. The present configuration of the dam and spillway does not permit the passage of the estimated 100 year flood flow (1,450cfs) without the dam being overtopped. The Board's proposal includes work to stop the leakage and increase the discharge capacity to equal the 100 year flood flows.

The proposal incorporates constructing an access road, removing the leaking spillway stones and concrete cap, the leaking gate section abutments, constructing steel reinforced concrete face walls and abutments, and a new concrete spillway with flashboards. This will require the removal of accumulated silt and debris from the upstream side of the dam. The project also includes constructing a stoplog section to act as a pond drain which may require some channel excavation to improve the hydraulics of the downstream channel.

The attached cost estimate reflects the materials of construction and labor costs of this proposal to be constructed not later than the end of 1980.
MAY POND DAM (§245.01)
WASHINGTON, NEW HAMPSHIRE

1. Dam originally constructed to create a mill pond, but now used to maintain a recreation pond for users of Pillsbury State Park

2. Pond area - 103 Acres

3. Ratio of net drainage to pond area - 37:1

4. 100 year flood flows - 1450 cfs

5. Shoreline - 3± Miles

6. Altitude - 1632 feet

7. Watershed - Connecticut

8. River system - Ashuelot River

9. Inlets - Ashuelot River

10. Color of water - colorless

11. Ownership - State, Division of Parks
MAY POND DAM (#245.01)
PILLSBURY STATE PARK
WASHINGTON, N. H.

At the present time, the dam on May Pond does not have capacity
to flow the 100 year storm frequency flow without overtopping the dam.
The present design standard requires dams to pass storms equal to 100
year frequency flood flows. The dam also has several serious leaks
through the stonework.

The design for this project includes:

1. Removing existing spillway and construction a permanent
 concrete crest with automatic flashboards.
2. Stoplog section construction.
3. New concrete abutments and cut-off and upstream face walls
to prevent the leak which is now occurring.

The following is a cost estimate:

1. Access Road $8,000.00
2. Remove cut brush and grass 2,000.00
3. Remove existing stone spillway, debres
 and silt 10,000.00
4. Concrete, reinforcements, etc. (200 cy) 70,000.00
5. Stoplog construction 8,000.00
6. Backfill & clean-up 6,000.00

SUB-TOTAL $104,000.00

20% Engineering & Contingencies 20,800.00

TOTAL $124,800.00

ROUNDED TOTAL $125,000.00
TO: Vernon A. Knowlton
 Chief Engineer

FROM: Gary Kerr
 Water Resources Engineer

SUBJECT: Dam Inspection #245.01 - Report of Leakage

DATE: August 16, 1978

DATE OF INSPECTION: August 14, 1978

Via a letter from the S.C.S. office in Claremont I was instructed to reinspect the subject dam for a serious leak. Below are listed my observations and please refer to the accompanying photos and file for clarity.

1. Dam is founded on ledge and consists of piled stones embankment and spillway with a concrete cap.
2. A stoplog section with concrete abutments.
3. Serious leakage occurring in the structure at several places:
 a. Right embankment
 b. Left side pier of the stoplog section
 c. Thru the hole in the spillway cap

This structure is listed as a menace dam because of the pondage (approx. 103 acres) DA of 7.3 m³ and downstream development.

The Ashuelot River flows thru May Pond, under Route 31 and into Ashuelot Pond, Washington. There is considerable domestic development around Ashuelot Pond and points South.

In F.C.M.'s inspection report of 1971, he states that the dam's flood capacity is sufficient to pass the estimated 100 flood with 1/2' of freeboard and no gate (now stoplogs) operation. He also indicated "it appeared (through openings in the snow) to be well built, substantial, and water tight." Unfortunately now these assumptions are not entirely true. The dam has deteriorated, rocks have moved, the spillway cap is broken and the structure does leak seriously.

I strongly suggest that the pond be lowered or the dam sealed, sufficiently enough to stop the leakage thru the embankment and spillway cap. This may require a drawdown of 2-3', and since we are approaching the hurricane season, the drawdown would reduce the potential flooding of a full pond plus runoff from the storm should the dam fail.
HIGH STONE EMBANKMENT
ARROWS DENOTE FLOW PATHS

ENTRAUCE PATH

EXIT AT BASE OF STONE
EMBANKMENT NEAR STOPLOG

MAY POND EMB. #243.01
LEAKAGE PROBABLY FROM STOPLOG SECTION

HOLE IN SPILLWAY (CONCRETE CAP)

EXIT FOR HOLE IN CAP.
STATE OF NEW HAMPSHIRE
INTER-DEPARTMENT COMMUNICATION

DATE August 16, 1978
AT (OFFICE) Water Resources Board

FROM George M. McGee, Sr.
Chairman

SUBJECT Leakage through dam #245.01 at May Pond

TO Theodore Natti, Director
Division of Resources Development

This office has been alerted to the fact that your "Butterfield Dam" (245.01), at May Pond, Pillsbury State Park is leaking quite badly. An engineer re-inspected this dam and filed his report. Please be aware that this dam was inspected, per your request, in September, 1975 and a copy of the suggested repairs was sent to you. The inspector noted that none of the suggested repairs, short term or otherwise, were implemented and now the dam condition has deteriorated seriously.

As a result of this inspection the following items require your immediate attention:

1. The right hand piled stone embankment (looking downstream) no longer acts as a pond retaining structure as water freely flows through it.

2. This same embankment appears to have sloughed, to the extent that it no longer retains the shape of a stone wall with vertical sides.

3. Because of the present pond elevation and erosion on the upstream side of this embankment, leakage is occurring through the right hand embankment (please see photos).

4. Leakage is also freely flowing through the enlarged hole in the concrete spillway cap (please see photo).

5. Leakage is also evident adjacent to the left hand pier for the stoplog section on the downstream side of the spillway.

All of the above constitute a hazardous condition and threatens the stability of the dam and as such require corrective action.

Because this dam is a menace structure, we require that you send us a schedule of your proposed repairs within 30 days. We do suggest that you reduce the pond level 2-3 feet, or more, effectively immediately and remain lowered until your repairs are completed, or the causes of the leakage eliminated.

If you have any questions, please contact us.

Sincerely yours,

George M. McGee, Sr.
N. H. WATER RESOURCES BOARD
Concord, N. H. 03301

DAM SAFETY INSPECTION REPORT FORM

Town: WASHINGTON Dam Number: 245.01
Inspected by: GARY L. KEER Date: 30 Sep 1975
Local name of dam or water body: May Pond
Owner: PULSBOURG STATE PARK Address:

Owner was not interviewed during inspection.

Drainage Area: 6.01 sq. mi. Stream: ASHURST RIVER
Pond Area: 103 (Ft) Storage: __ Ac-Ft. Max. Head: __

Foundation: Type LEDGE & ROCKS, Seepage present at toe: No
Spillway: Type CONCRETE CAP, Freeboard over perm. crest: 2'
Width: 40', Flashboard height: 3' max.
Max. Capacity: ______ c.f.s.

Embankment: Type ROCK, Cover: ROCKS Width: 5 1/2'
Upstream slope: 1:6 to 1; Downstream slope: 1:6 to 1
Abutments: Type CONCRETE, Condition: Fair

Gates or Pond Drain: Size: 5' long, Capacity: Type STOP LOGS
Lifting apparatus: None, Operational condition: Yes 1/20

Changes since construction or last inspection:

Changes since construction or last inspection:

Changes since construction or last inspection:

Downstream development:

This dam would not be a menace if it failed. WASH OUT 20

Suggested reinspection date: __________

Remarks: (LOST IN CONCRETE CAP OF SPILLWAY

WATER PROVING OR ABUTMENTS

APPROX. 2" FLOW OVER SPILLWAY

B-11
On January 25, 1971, I inspected the dam called Butterfield dam that flows back into May Pond in Washington at the head-waters of Ashuelot River. This dam was well rebuilt by C.C.C. forces in 1934, consisting of rock fill dam with concrete capped spillway.

The capacity of the spillway with 1/2 foot freeboard and no overflow through a 6' x 6' gate is once in 100 years. The dam appears, through openings in the snow, to be well built, substantial and water tight. However, there may be some trees to be removed from dam ($500.), some concrete patching ($3,500.) and miscellaneous work ($1,000.) totaling about $5,000. upon inspection at a later time.

Two views are shown in photos taken at this dam. The gate section could be opened to lower the pond if necessary. This dam is near N. H. H. W. Route #31 midway between Washington and Goshen on the northeast side of the highway.

As seen in the photos, water was going an estimated 4" over the spillway.
NEW HAMPSHIRE WATER CONTROL COMMISSION
DATA ON DAMS IN NEW HAMPSHIRE

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>STATE NO. 245.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town</td>
<td>Washington ✓</td>
</tr>
<tr>
<td>County</td>
<td>Washington ✓</td>
</tr>
<tr>
<td>Stream</td>
<td>May Pond ✓</td>
</tr>
<tr>
<td>Basins</td>
<td>Conn. R. ✓</td>
</tr>
<tr>
<td>Local Name</td>
<td>Old Butterfield Mill</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage area: Controlled Sq. Mi.: Uncontrolled Sq. Mi.: Total 6.01 Sq. Mi.</td>
</tr>
<tr>
<td>Overall length of dam 225 ft.: Date of Construction rebuilt 1934 ✓</td>
</tr>
<tr>
<td>Height: Stream bed to highest elev. 18 ft.: Max. Structure 15.5 ft. 15.25 ft.</td>
</tr>
<tr>
<td>Cost—Dam Reservoir</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockfill-Concrete cap spillway, stone & timber ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: concrete ✓</td>
</tr>
<tr>
<td>Number: Size 6 ft. high x 6 ft.</td>
</tr>
<tr>
<td>Elevation Invert 8.5 ft.: Total Area 36 sq. ft.</td>
</tr>
<tr>
<td>Hoist</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste Gates Conduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number: Materials</td>
</tr>
<tr>
<td>Size ft.: Length ft.: Area sq. ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Embankment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: concre</td>
</tr>
<tr>
<td>Height—Max. ft.: Min. ft.</td>
</tr>
<tr>
<td>Top—Width ft.: Elev. ft.</td>
</tr>
<tr>
<td>Slopes—Upstream on: Downstream on</td>
</tr>
<tr>
<td>Length—Right of Spillway ft.: Left of Spillway ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spillway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials of Construction: concrete cap</td>
</tr>
<tr>
<td>Length—Total 47.5' high 17.5' long: Net ft.</td>
</tr>
<tr>
<td>Height of permanent section—Max. 15.5 ft.: Min. 15.25 ft.</td>
</tr>
<tr>
<td>Flashboards—Type: Height ft.</td>
</tr>
<tr>
<td>Elevation—Permanent Crest: Top of Flashboard ft.</td>
</tr>
<tr>
<td>Flood Capacity cfs: cfs/sq. mi.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abutments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials:</td>
</tr>
<tr>
<td>Freeboard: Max. 2.75 ft.: Min. 2.5 ft.</td>
</tr>
</tbody>
</table>

| Headworks to Power Devel.— (See “Data on Power Development”) |
| N.H. Forestry Reservation |

<table>
<thead>
<tr>
<th>OWNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.H. Forestry Reservation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional spillway over gate 6' wide, same elevation. ✓</td>
</tr>
<tr>
<td>Use—Recreation. Good Condition</td>
</tr>
</tbody>
</table>

Tabulation By RLT B-13 Date 9/22/39
New Hampshire Water Resources Board

Inventory of Dams and Water Power Developments

<table>
<thead>
<tr>
<th>Dam</th>
<th>Basin</th>
<th>River</th>
<th>Town</th>
<th>Miles from Mouth</th>
<th>D.A. Sq. M.</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Connecticut</td>
<td>Max Pond</td>
<td>Washington</td>
<td>2.45.01</td>
<td>6.01</td>
<td>N.H. Forestry Reservation</td>
</tr>
</tbody>
</table>

Description
- **Location**: Old Butterfield Mill
- **Type**: Stone, timber, concrete spillway

Dam Details
- **Pond Area (Acres)**: 107.65
- **Drawdown (Ft)**: __________
- **Pond Capacity (Acres Ft)**: __________
- **Height-TOP to Bed of Stream (Ft)**: 18
- **Max. Flood Height Above Crest (Ft)**: __________
- **Overall Length of Dam (Ft)**: 225
- **Permanent Crest Elev. U.S.G.S.**: __________
- **Local Gage**: __________
- **Tailwater Elev. U.S.G.S.**: __________
- **Local Gage**: __________
- **Spillway Lengths (Ft)**: 47, High 17.5 Low, Freeboard (Ft) 2.5 and 2.75
- **Flashboards Type, Height Above Crest**: __________
- **Waste Gates (No. Width Max. Opening Depth Sill Below Crest)**: 1 6 6 8.5

Remarks
- Condition: Fair to Good. Dam has been rebuilt.
- Probably WPA Project
- T is in Swift River

Power Development

<table>
<thead>
<tr>
<th>Units No.</th>
<th>Rated HP</th>
<th>Head Feet</th>
<th>C.F.S.</th>
<th>Full Gate</th>
<th>KW</th>
<th>Make</th>
</tr>
</thead>
</table>

Use
- **Once power for mill now recreation**

Remarks
- Additional spillway over gate 6' wide. Same elevation.
- P.S.C. says: run 1922

Date
- **01.21.17**

B-14
MAY POND IN WASHINGTON
N. H. Forestry Dept.
September 28, 1937

Gate
PLANS AND DETAILS
APPENDIX C

SELECTED PHOTOGRAPHS
Photo No. 1 - General view of reservoir from dam.

Photo No. 2 - View of crest of dam from left abutment looking toward right abutment.
Photo No. 5 - View of downstream face of left stone embankment (Note depression in crest of embankment)

Photo No. 6 - Closeup view of 4 feet deep sink hole located to left of overflow section
Photo No. 9 - Closeup of seepage and cracks on downstream face of overflow section.

Photo No. 10 - View of upstream face of sluice gate structure and erosion of concrete cap of overflow section.
Photo No. 13 - Closeup view of seepage at the downstream end of the right training wall of the sluice gate structure.

Photo No. 14 - General view of downstream channel immediately below dam.
APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS
Fig. 2

Butterfield Pond Dam

DRAINAGE BASIN

Scale in Feet
I. Basic Data

A. Drainage Area

1. 7.15 square miles — as defined on U.S. G.S. sheets and Cem planimetered

2. Drainage area would classify as mountainous for estimating MPF Peak Flow Rates

B. Dam and Storage Information

1. Size Classification: SMALL sand on storage (≤1000 acre-ft and ≥ 50 acre-ft)

 As indicated below, storage at crest of dam estimated to be 590 acre-ft

2. Hazard Potential: SIGNIFICANT

 Failure could result in damage to highway bridge and highway (N.H. Route 2)
* Notes:
(1) Elevations: NGVD
(2) Normal pool taken to correspond with pool shown on USGS sheet, elevation of overflow spillway weir equal to 1603.0 ft (NGVD).
(3) Surface area at crest determined by interpolating between the surface areas derived from pool shown on USGS sheet and the 1620 ft contour.
(4) Storage at spillway weir crest computed by dividing reservoir into truncated frustum sections and determining volume of each section with the equation for the volume of a truncated frustum.

C. Spillway Information

1. Overflow section located near the center of the dam has a concrete cap. Adjacent to the front training wall is a wooden gate. The gate is constructed of wooden planks nailed in a crowned concrete structure. The gate is presently in operable and leaks considerably.

2. For the subsequent calculation of spillway capacity it was assumed that its slimmer was closed and not leaking.

2. Discharge over the spillway given by ovoid-crested weir formula

\[Q = CLH^{3/2} \]

\[Q = \text{discharge}, \ \text{cfs} \]
\[C = \text{discharge coefficient}, \ \text{cfs} \]
\[L = \text{length inft}, \ \text{cfs} \]
II Estimate Effect of Surcharge Storage on Maximum Probable Discharge.

A. Develop Stage-discharge curve for outflow from dam-complex

1. Define sources of outflow

a. Discharge over spillway + outflow structure - above elevation 1603.0 - as defined above

b. Discharge through opening above sluiceway - above elevation 1603.3

(i) Use broad-crested weir equation from elevation 1603.3 to elevation 1604.3 with C = 2.6

(ii) Above elevation 1604.3 flow defined by discharge through an orifice

\[Q = C \cdot a \cdot \sqrt{gh} \]

where
- \(Q \) = discharge, cfs
- \(C \) = coeff of discharge use 2.6
- \(a \) = area of orifice, sq. ft
- \(g \) = acceleration due to gravity = 32.2 ft/sec^2
- \(h \) = head on horizontal center line ft + sea level, feet

C. Discharge over stone embankment adjacent to left abutment - above elevation 1604.2

Use broad-crested weir equation as defined above with C = 2.6
d. Discharge over right stone embankment
 above elevation 1606.5
 (1) use broad-crested weir equation as defined above with C = 2.6

e. Discharge over abutments and concrete sluice gate
 structure - above elevation 1606.6
 (1) use broad-crested weir equation as defined above with C = 2.6
f. Discharge over gravel road - above elevation 1607.9
 (1) use broad-crested weir equation - with C = 2.6

2. Discharge over spillway & overflow structures

<table>
<thead>
<tr>
<th>Elevation (feet NGVD)</th>
<th>C</th>
<th>L (feet)</th>
<th>H (feet)</th>
<th>D (cf/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1603.0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1604.0</td>
<td>2.6</td>
<td>57</td>
<td>0.95</td>
<td>137</td>
</tr>
<tr>
<td>1605.0</td>
<td>1.95</td>
<td></td>
<td></td>
<td>404</td>
</tr>
<tr>
<td>1606.0</td>
<td>2.95</td>
<td></td>
<td></td>
<td>751</td>
</tr>
<tr>
<td>1607.0</td>
<td>3.95</td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>1608.0</td>
<td>4.95</td>
<td></td>
<td></td>
<td>2720</td>
</tr>
<tr>
<td>1609.0</td>
<td>5.95</td>
<td></td>
<td></td>
<td>2160</td>
</tr>
<tr>
<td>1610.0</td>
<td>6.95</td>
<td></td>
<td></td>
<td>3320</td>
</tr>
<tr>
<td>1611.0</td>
<td>7.95</td>
<td></td>
<td></td>
<td>3770</td>
</tr>
<tr>
<td>1612.0</td>
<td>8.95</td>
<td></td>
<td></td>
<td>4650</td>
</tr>
</tbody>
</table>

3. Discharge through opening above sluice gate
 a between elevations 1603.27' and 1607.27'

<table>
<thead>
<tr>
<th>Elevation (feet NGVD)</th>
<th>C</th>
<th>L (feet)</th>
<th>H (feet)</th>
<th>D (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1603.27</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1604.0</td>
<td>2.6</td>
<td>6.1</td>
<td>0.73</td>
<td>10</td>
</tr>
<tr>
<td>1605.0</td>
<td>1.73</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>1606.0</td>
<td>2.73</td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>1607.0</td>
<td>3.73</td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>
4. Discharge over left stone embankment

a. Triangular x-section

<table>
<thead>
<tr>
<th>Elevation (feet NGVD)</th>
<th>C</th>
<th>L (feet)</th>
<th>H, avg (feet)</th>
<th>O (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1604.17</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1605.0</td>
<td>2.6</td>
<td>9</td>
<td>3.42</td>
<td>6</td>
</tr>
<tr>
<td>1606.0</td>
<td>18</td>
<td>0.92</td>
<td>1.92</td>
<td>125</td>
</tr>
<tr>
<td>1607.0</td>
<td></td>
<td></td>
<td>2.92</td>
<td>83</td>
</tr>
<tr>
<td>1608.0</td>
<td></td>
<td></td>
<td>3.92</td>
<td>51</td>
</tr>
<tr>
<td>1609.0</td>
<td></td>
<td></td>
<td>4.92</td>
<td>374</td>
</tr>
<tr>
<td>1610.0</td>
<td></td>
<td></td>
<td>5.92</td>
<td>952</td>
</tr>
<tr>
<td>1611.0</td>
<td></td>
<td></td>
<td>6.92</td>
<td>1340</td>
</tr>
</tbody>
</table>

b. Remainder of left stone embankment

<table>
<thead>
<tr>
<th>Elevation (feet NGVD)</th>
<th>C</th>
<th>L (feet)</th>
<th>H, avg (feet)</th>
<th>O (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1606.08</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1607.0</td>
<td>2.6</td>
<td>63</td>
<td>0.75</td>
<td>75</td>
</tr>
<tr>
<td>1608.0</td>
<td>1.4</td>
<td>1.75</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>1609.0</td>
<td>1.6</td>
<td>1.42</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>1610.0</td>
<td>1.6</td>
<td>1.35</td>
<td>490</td>
<td></td>
</tr>
</tbody>
</table>
6. discharge over right stone embankment

<table>
<thead>
<tr>
<th>Elevation (feet NGVD)</th>
<th>C</th>
<th>L (feet)</th>
<th>H (feet)</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1606.48</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1607.0</td>
<td>2.6</td>
<td>4.6</td>
<td>1.47</td>
<td>29</td>
</tr>
<tr>
<td>1609.0</td>
<td>2.4</td>
<td>5.1</td>
<td>1.47</td>
<td>236</td>
</tr>
<tr>
<td>1609.0</td>
<td>2.47</td>
<td>5.2</td>
<td>1.47</td>
<td>515</td>
</tr>
<tr>
<td>1610.0</td>
<td>2.47</td>
<td>5.2</td>
<td>1.47</td>
<td>357</td>
</tr>
<tr>
<td>1611.0</td>
<td>2.47</td>
<td>5.2</td>
<td>1.47</td>
<td>1250</td>
</tr>
<tr>
<td>1612.0</td>
<td>2.47</td>
<td>5.2</td>
<td>1.47</td>
<td>1700</td>
</tr>
<tr>
<td>1613.0</td>
<td>2.47</td>
<td>5.2</td>
<td>1.47</td>
<td>2180</td>
</tr>
</tbody>
</table>

6. discharge over left training wall & sluice gate structure

a. left training wall

<table>
<thead>
<tr>
<th>Elevation (feet NGVD)</th>
<th>C</th>
<th>L (feet)</th>
<th>H (feet)</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1606.58</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1607.0</td>
<td>2.6</td>
<td>4</td>
<td>3.42</td>
<td>2</td>
</tr>
<tr>
<td>1609.0</td>
<td>2.42</td>
<td>5.1</td>
<td>1.42</td>
<td>13</td>
</tr>
<tr>
<td>1609.0</td>
<td>2.42</td>
<td>5.1</td>
<td>1.42</td>
<td>23</td>
</tr>
<tr>
<td>1610.0</td>
<td>2.42</td>
<td>5.1</td>
<td>1.42</td>
<td>33</td>
</tr>
<tr>
<td>1611.0</td>
<td>2.42</td>
<td>5.1</td>
<td>1.42</td>
<td>43</td>
</tr>
<tr>
<td>1612.0</td>
<td>2.42</td>
<td>5.1</td>
<td>1.42</td>
<td>53</td>
</tr>
<tr>
<td>1613.0</td>
<td>2.42</td>
<td>5.1</td>
<td>1.42</td>
<td>63</td>
</tr>
</tbody>
</table>
b. Sluicegate Structure

<table>
<thead>
<tr>
<th>Elevation (feet, NGVD)</th>
<th>C</th>
<th>L (feet)</th>
<th>H (feet)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1607.77</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1608.0</td>
<td>2.6</td>
<td>17.6</td>
<td>0.23</td>
<td>5</td>
</tr>
<tr>
<td>1609.0</td>
<td></td>
<td></td>
<td>1.23</td>
<td>2</td>
</tr>
<tr>
<td>1610.0</td>
<td></td>
<td></td>
<td>2.23</td>
<td>52</td>
</tr>
<tr>
<td>1611.0</td>
<td></td>
<td></td>
<td>3.23</td>
<td>123</td>
</tr>
<tr>
<td>1612.0</td>
<td></td>
<td></td>
<td>4.23</td>
<td>396</td>
</tr>
<tr>
<td>1613.0</td>
<td></td>
<td></td>
<td>5.23</td>
<td>547</td>
</tr>
</tbody>
</table>

7. Discharge over gravel road to west of right sheet embankment

<table>
<thead>
<tr>
<th>Elevation (feet, NGVD)</th>
<th>C</th>
<th>L (feet)</th>
<th>H (feet)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1607.38</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1608.0</td>
<td>2.6</td>
<td>32</td>
<td>1.37</td>
<td>19</td>
</tr>
<tr>
<td>1609.0</td>
<td></td>
<td>35</td>
<td>1.37</td>
<td>140</td>
</tr>
<tr>
<td>1610.0</td>
<td></td>
<td>39</td>
<td>2.27</td>
<td>49</td>
</tr>
<tr>
<td>1611.0</td>
<td></td>
<td>42</td>
<td>2.27</td>
<td>676</td>
</tr>
<tr>
<td>1612.0</td>
<td></td>
<td>45</td>
<td>3.37</td>
<td>1078</td>
</tr>
<tr>
<td>1613.0</td>
<td></td>
<td>47</td>
<td>5.23</td>
<td>1590</td>
</tr>
</tbody>
</table>
Table: Total Discharge from Project Site

<table>
<thead>
<tr>
<th>Elevation (feet NGVD)</th>
<th>Q</th>
<th>Q</th>
<th>Q</th>
<th>Q</th>
<th>Q</th>
<th>Q</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1603.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1604.0</td>
<td>137</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>1605.0</td>
<td>404</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>1606.0</td>
<td>751</td>
<td>72</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>854</td>
</tr>
<tr>
<td>1607.0</td>
<td>1160</td>
<td>114</td>
<td>240</td>
<td>39</td>
<td>3</td>
<td>0</td>
<td>1580</td>
</tr>
<tr>
<td>1608.0</td>
<td>1630</td>
<td>194</td>
<td>679</td>
<td>236</td>
<td>19</td>
<td>0</td>
<td>2780</td>
</tr>
<tr>
<td>1609.0</td>
<td>2150</td>
<td>227</td>
<td>1264</td>
<td>515</td>
<td>101</td>
<td>149</td>
<td>4400</td>
</tr>
<tr>
<td>1610.0</td>
<td>2720</td>
<td>256</td>
<td>1981</td>
<td>867</td>
<td>219</td>
<td>330</td>
<td>6400</td>
</tr>
<tr>
<td>1611.0</td>
<td>3320</td>
<td>231</td>
<td>2324</td>
<td>1250</td>
<td>343</td>
<td>570</td>
<td>5710</td>
</tr>
<tr>
<td>1612.0</td>
<td>3970</td>
<td>305</td>
<td>3792</td>
<td>1700</td>
<td>447</td>
<td>1070</td>
<td>11,400</td>
</tr>
<tr>
<td>1613.0</td>
<td>4650</td>
<td>327</td>
<td>4370</td>
<td>2180</td>
<td>716</td>
<td>1590</td>
<td>14,300</td>
</tr>
</tbody>
</table>

Discharge vs. Elevation shown graphically in Figure 2.
FIGURE 1
DISCHARGE VS ELEVATION
B. Effect of surcharge storage on max. prob. discharge

1. Pertinent Data
 a. Drainage area = 7.15 square miles
 b. Characteristics of basin = Mountainous
 c. Test flood = $\frac{1}{2}$ PMF (small size and insignificant)
 d. Follow Army Corps' procedure

2. STEP 1: Determine Peak Inflow Q_{p1} from Guide Curve
 a. the maximum probable discharge was estimated to be 2,100 cfs /sq. mi

 $PMF = (2100 \text{ cfs/sq. mi}) (7.15 \text{ sq. mi})$

 $\approx 15,000 \text{ cfs}$

 $\frac{1}{2} \text{ PMF} = 7,500 \text{ cfs}$

3. STEP 2: Determine surcharge height to pass Q_{p1}, STO_P, and Q_{p2}
 a. from Figure 1 determine surcharge height to pass $Q_{p1} = 7,500 \text{ cfs}$

 \[
 \text{Surcharge elevation} = 1610.5' \\
 \text{Elev. of overflow spillway weir} = 1603.0' \\
 \text{Surcharge height} = 7.5 \text{ feet}
 \]

 b. determine volume of surcharge STO_P in inches of runoff

 First determine volume of storage STO_P in feet
 (1) determine surface area of weir corresponding to surcharge elevation from Figure 2 = 132.0
 (2) average surface area for surcharge 101.0

 $\text{Volume of surcharge} = 101.0 \times 132.0$
FIGURE 2

SURFACE AREA vs ELEVATION

ELEVATION, ft (NED)

SURFACE AREA, acs
STOR\(_1\) = Volume of storage (in. 5 in. inches)

\[
\text{STOR}_1 = \frac{\text{Volume of storage}}{\text{Drainage area}}
\]

\[
\text{STOR}_1 = \frac{(132 \text{ acres} + 125 \text{ acres})(7.5 \text{ ft}) (12/4)}{4576 \text{ acres}}
\]

\[
\text{STOR}_1 = 3.02 \text{ inches}
\]

c. determine \(Q_{P2}\)

\[
Q_{P2} = Q_{P1} \left(1 - \frac{\text{STOR}_1}{9.5}\right)
\]

\[
Q_{P2} = (7500 \text{ cfs}) \left(1 - \frac{3.02}{9.5}\right)
\]

\[
Q_{P2} = 5120 \text{ cfs}
\]

4. **STEP 3**: Determine surcharge height for \(Q_{P2}\) and then \(Q_{P1}\)

a. From Figure 1 determine surcharge height to pass \(Q_{P2}\)

\[
Q_{P2} = 5120 \text{ cfs}
\]

Surcharge elevation = 1609.4

Elev. spillway crest = 1603.0

Surcharge height = 6.4 ft

Surface area at 1609.4' = 174 acres
b. determine \(\text{STOR}_2 \)

\[
\text{STOR}_2 = \left(\frac{174.81 + 125.62}{2} \right) \left(6.4 \frac{c}{s} \right) \left(2 \frac{ft}{s} \right) \vspace{2mm} \\
4576 \text{ acres} \\
= 2.51 \text{ inches}
\]

c. Average \(\text{STOR}_1 \) and \(\text{STOR}_2 \)

\[
\text{STOR}_{\text{avg}} = \frac{\text{STOR}_1 + \text{STOR}_2}{2} \\
= \frac{3.02'' + 2.51''}{2} \\
= 2.77 \text{ inches}
\]

d. determine \(Q_{p3} \)

\[
Q_{p3} = (7,500 \text{ cfs}) \left(1 - \frac{2.77''}{9.5''} \right) \\
= 5,320 \text{ cfs}
\]

5. **STEP 4**: Determine surcharge height for \(Q_{p3} \) and \(\text{STOR}_3 \)

a. from Figure 1 surcharge height for \(Q_{p3} = 5,320 \text{ cfs} \)

\[
\text{surcharge elevation} = 1609.5' \\
\text{elev spillway weir crest} = 1603.0' \\
\text{surcharge height} = 6.5 \text{ ft} \\
\text{surface area at 1609.5' = 175 acres}
\]

b. determine \(\text{STOR}_3 \)

\[
\text{STOR}_3 = \left(\frac{175 \text{ acre} + 125 \text{ acre}}{2} \right) \left(6.5 \frac{ft}{s} \right) \left(12''/\text{acre} \right) \vspace{2mm} \\
4576 \text{ acres} \\
= 2.51 \text{ inches}
\]
c. determine \(STOR_{AVG} \)

\[STOR_{AVG} = \frac{2.77'' + 2.56''}{2} \]

\[STOR_{AVG} = 2.67 \text{ inches} \]

d. determine \(Q_{pu} \)

\[Q_{pu} = (7,500 \text{ cfs}) \left(1 - \frac{2.67''}{9.5''} \right) \]

\[Q_{pu} = 5,390 \text{ cfs} \]

6. STEP 5: Determine surcharge height for \(Q_{pu} \) and \(STOR_{4} \): and \(Q_{ps} \)

a. From Figure 1 surcharge height for \(Q_{pu} = 5,390 \text{ cfs} \)

\[
\text{surcharge elevation} = 1609.5
\]

\[
\text{elev. spillway weir crest} = 1603.5
\]

\[
\text{surcharge height} = 6.5
\]

Surface area at 1609.5' = 17.8

b. determine \(STOR_{4} \)

\[STOR_{4} = \frac{(175ac + 125ac) \left(6.5ft \right) \left(\frac{1}{2}'' \right)}{1.576 \text{ acres}} \]

\[STOR_{4} = 2.56 \text{ inches} \]

c. determine \(STOR_{AVG} \)

\[STOR_{AVG} = \frac{2.67'' + 2.56''}{2} \]

\[STOR_{AVG} = 2.62 \text{ inches} \]
d. determine Q_{ps}

$$Q_{ps} = (7,500 \text{ cfs})(1 - \frac{2.62}{9.5})$$

$$Q_{ps} = 5,430 \text{ cfs}$$

6. **STEP 6**: Determine surcharge height for Q_{ps} and $STORS$

a. From Figure 1 surcharge height for $Q_{ps} = 5,430 \text{ cfs}$

$$\text{Surcharge height} = 1609.5 \text{ ft}$$

also, spillway weir crest = 1603.0

$$\text{Surcharge height} = 6.5 \text{ ft}$$

Surface area at 1609.5' = 175 acres

b. determine $STORS$

$$STORS = \frac{175 \text{ acre} + 125 \text{ acre}}{2}(6.5 \text{ ft})/12 \frac{\text{ft}}{\text{in}}$$

$$STORS = 4,576 \text{ acres}$$

$$STORS = 2.56 \text{ inches}$$

c. determine $STOR_{ave}$

$$STOR_{ave} = \frac{2.62 + 2.56}{2}$$

$$STOR_{ave} = 2.59 \text{ inches}$$

$STORS$ and $STOR_{ave}$ agree to within 1% where 2.56 ft is surcharge = $5,430 \text{ cfs}$ at surcharge 2.56 = 1609.5' feet

7. In Conclusion

a. Test flood discharge = $5,430 \text{ cfs}$ and will overtop cur. spillway weir crest by 6.5 feet and dam crest by 5.3 feet.
b. overflow spillway: capacity

\[Q = (2.6)(19.2')(1604.2 - 1603.5)^{3/2} \]
\[+ (2.6)(40.3')(1604.2 - 1603.2)^{3/2} = 1606 \text{ cfs} \]

(2) water surface at top of left abutment - 1606.6'

\[Q = (2.6)(19.2')(1606.6 - 1603.6)^{3/2} \]
\[+ (2.6)(40.3')(1606.6 - 1603.2)^{3/2} = 340.5 \text{ cfs} \]

(3) water surface at test flood elevation - 1609.5'

\[Q = (2.6)(19.2')(1609.5 - 1603.0)^{3/2} \]
\[+ (2.6)(40.3')(1609.5 - 1603.2)^{3/2} = 2376 \text{ cfs} \]

C. sluice-gate capacity: includes discharge through 6.1' wide by 6.05' high sluice-gate - orifice discharge

(1) water surface at low point on left side embankment - 1604.2'

\[Q_{\text{sluice-gate}} = (0.6)(6.1')(6.05') \left[(2.6)(3.3')(604.2 - 1598.2) \right] \]
\[Q_{\text{sluice-gate}} = 435 \text{ cfs} \]

(2) water surface at top of left abutment - 1606.6'

\[Q_{\text{sluice-gate}} = (0.6)(6.1')(6.05') \left[(2.6)(3.3')(606.6 - 1598.2) \right] \]
\[Q_{\text{sluice-gate}} = 515 \text{ cfs} \]
(3) Water surface at test flood elevation = 1609.5'

\[
Q_{\text{simulated}} = (0.6)(6.1')(6.05')\left[(2)(37.3' - 1609.5' - 159.25')^{1/2} \right]
\]

\[Q_{\text{simulated}} = 595 \text{ cfs}\]

Capacity of low flow spillway

\[Q = (2.6)(10.2)(0.2)^{3/2} = 3.3 \text{ cfs}\]
III. Using "Rule of Thumb" Guidance for Estimating Downstream Dam Failure

Hydrographs examine impact of dam failure

1. Pertinent Data

 a. Failure occurs when reservoir level at crest of dam - elevation = 1604.2 feet

 b. Storage at crest elevation estimated to be approximately 590 acre-feet

A. Reach 1

1. **STEP 1:** Determine reservoir storage at time of failure from previous calcs. storage = 590 acre-ft

2. **STEP 2:** Determine Peak Failure Outflow \(Q_{p1} \)

\[
Q_{p1} = \left(\frac{8}{27} \right) W_b \sqrt{g} Y_o^{3/2}
\]

where:
- \(W_b \): Breach width (use 40% of total length)
 \(= \left(210 \text{ feet} \right) \left(0.40 \right) \)
 \(= 84 \text{ feet} \)
- \(Y_o \): Total height from channel bed to pool level at failure
 \(= 12.2 \text{ feet} + \approx 1592.0' \)

\[
Q_{p1} = \left(\frac{8}{27} \right) (84 \text{ feet})^{3/2} (12.2 \text{ ft}^{3/2})
\]

\[
Q_{p1} \approx 6,000 \text{ cfs}
\]
3. **STEP 3**: Prepare stage-discharge curve for Reach 1

a. Pertinent Data

 (1) Reach length = 350 feet

 (2) Channel slope = 0.0155

 (3) Manning n = 0.05

 (4) Channel shape = trapezoidal

 (5) Base width ≈ 20 feet

b. See Figure 3 for stage-discharge curve

4. **STEP 4**: Estimate Reach Outflow

a. Determine stage for $Q_{P1} = 6000$ ft$^3/s$ from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 7.6 feet

 (2) Volume in reach = (reach length) (x-area) (cross-sectional area of channel)

 x-area = $(0.5) (7.6 + 20 + 132) = 58.1$ ft2

 Volume = $V_1 = \frac{(591)(350)}{43560} = 4.7$ acre-ft

 $V_1 < \frac{S}{2}$; reach length OK

b. Determine Q_{P2} (TRIAL)

 $Q_{P2}(TRIAL) = Q_{P1} \left(1 - \frac{V_1}{S}\right)$

 $Q_{P2}(TRIAL) = (6000 \text{ ft}^3/s)(1 - \frac{4.7 \text{ acre-ft}}{590 \text{ acre-ft}})$

 $Q_{P2} = 5950 \text{ ft}^3/s$
c. Compute V_2 using $Q_{P2}(\text{TRIAL})$

From Figure 3 determine stage for $Q_{P2}(\text{TRIAL})$

Stage = 7.5 ft

X-area = $(0.5)(7.5 \text{ ft})(20 + 132 + 132) = 570 \text{ ft}^2$

$V_2 = \frac{(570 \text{ ft}^2)(350 \text{ ft})}{43,560 \text{ in}^2/\text{ft}^2}$

$V_2 = 4.6 \text{ ace-ft}$

d. Average V_1 and V_2 and compute Q_{P2}

$(1) \quad V_{avg} = \frac{V_1 + V_2}{2}$

$V_{avg} = \frac{4.7 \text{ acre-ft} + 4.6 \text{ acre-ft}}{2}$

$V_{avg} = 4.7 \text{ acre-ft}$

$(2) \quad Q_{P2} = Q_{P1} \left(1 - \frac{V_{avg}}{S}\right)$

$Q_{P2} = (6000 \text{ cfs}) \left(1 - \frac{4.7}{590}\right)$

$Q_{P2} = 5950 \text{ cfs}$
3. **STEP 3:** Prepare stage-discharge curve for Reach 2

 a. Pertinent Data

 (1) Reach length = 175 feet
 (2) Channel slope = 0.0375
 (3) Manning n = 0.05
 (4) Channel shape = trapezoidal
 (5) Base width = 20 feet

 b. See Figure 3 for stage-discharge curve

4. **STEP:** Estimate Reach Outflow

 a. Determine stage for $Q_{P2} = 5950$ ft³/s from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 6.3 feet
 (2) Volume in reach = (reach length)(cross-sectional area of channel)

 X-area = $0.5 \times 6.3 \times 25 = 78.75$ ft²

 Volume = $V_1 = \frac{425 \ \text{ft}^2}{43.5 \ \text{ft}^2/\text{acre}}$

 $\approx 9.7 \ \text{ac}-\text{ft}$

 $V_1 < \frac{S}{2}$; reach length OK

 b. Determine $Q_{P2(\text{TRIAL})}$

 $Q_{P2(\text{TRIAL})} = Q_{P2} \left(1 - \frac{V_1}{S}\right)$

 $Q_{P2(\text{TRIAL})} = 5950 \ \text{ft}^3/\text{s} \left(1 - \frac{9.7}{59.0}\right)$

 $Q_{P2(\text{TRIAL})} = 5930 \ \text{ft}^3/\text{s}$
c. Compute V_2 using $Q_{P_3}(\text{TRIAL})$

From Figure 3 determine stage for Q_p (TRIAL)

\[
\text{Stage} = 6.3 \text{ ft}
\]
\[
X\text{-area} = (0.5)(6.3)(20 + 115) = 425 \text{ ft}^2
\]

\[
V_2 = \frac{(425 \text{ ft}^2)(17.5 \text{ ft})}{43,560 \text{ ft}^2/\text{acre}}
\]

\[
V_2 = 1.7 \text{ acre-ft}
\]

d. Average V_1 and V_2 and compute Q_{P_3}

\[
(1) \quad V_{avg} = \frac{V_1 + V_2}{2}
\]

\[
V_{avg} = \frac{1.7 \text{ acre-ft} + 1.7 \text{ acre-ft}}{2} = 1.7 \text{ acre-ft}
\]

\[
Q_{P_3} = Q_{P_2} \left(1 - \frac{V_{avg}}{Q_{P_2}}\right)
\]

\[
Q_{P_3} = (5950 \text{ cfs}) \left(1 - \frac{1.7}{590}\right)
\]

\[
Q_{P_3} = 5930 \text{ cfs}
\]
3. **STEP 3**: Prepare stage-discharge curve for Reach 3

 a. Pertinent Data

 (1) Reach length = 725 feet
 (2) Channel slope = 0.0276
 (3) Manning n = 0.05
 (4) Channel shape - trapezoidal
 (5) Base width ≈ 20 feet

 b. See Figure 3 for stage-discharge curve

4. **STEP 4**: Estimate Reach Outflow

 a. Determine stage for \(Q_{P3} = 5,930 \text{ cfs} \) from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 6.8 feet

 (2) Volume in reach = \(\frac{\text{reach length}}{\text{cross-sectional area of channel}} \)

 \[
 \text{X-area} = (0.5)(6.8 - 1.25)(20) + 122 = 483 \text{ ft}^2
 \]

 \[
 \text{Volume} = V_1 = \frac{483 \text{ ft}^2 \times 725 \text{ ft}}{2 \times 2,560 \text{ ft}^2/\text{acre}} = 8.0 \text{ acre-ft}
 \]

 \(V_1 < \frac{S}{2} \), reach length OK

 b. Determine \(Q_{P4(\text{TRIAL})} \)

 \[
 Q_{P4(\text{TRIAL})} = Q_{P3} \left(1 - \frac{V_1}{S}\right)
 \]

 \[
 Q_{P4(\text{TRIAL})} = (5,930 \text{ cfs}) \left(1 - \frac{8.0}{590}\right)
 \]

 \(Q_{P4(\text{TRIAL})} = 5,350 \text{ cfs} \)
c. Compute V_2 using $Q_{P4}(\text{TRIAL})$

From Figure 3 determine stage for $Q_{P4}(\text{TRIAL})$

Stage = 6.8 feet

$$X\text{-area} = (0.5)(6.8\text{ ft})(20 \text{ ft} + 122 \text{ ft})$$
$$= 483 \text{ ft}^2$$

$$V_2 = \frac{(483 \text{ ft}^2)(725 \text{ ft})}{13,560 \text{ ft}^2/\text{acre}}$$

$$V_2 = 8.0 \text{ acre-ft}$$

d. Average V_1 and V_2 and comment on:

(1) $V_{avg} = \frac{V_1 + V_2}{2}$

$$V_{avg} = \frac{8.0 \text{ acre-ft} + 8.0 \text{ acre-ft}}{2}$$

$$V_{avg} = 8.0 \text{ acre-ft}$$

(2) $Q_{P4} = Q_{P3} \left(1 - \frac{V_{avg}}{Q_{P3}}\right)$

$$Q_{P4} = \left(5,930 \text{ cfs}\right) \left(1 - \frac{8.0}{590}\right)$$

$$Q_{P4} = 5,850 \text{ cfs}$$
3. **STEP 3**: Prepare stage-discharge curve for Reach 4

 a. Pertinent Data

 (1) Reach length = 1650 feet
 (2) Channel slope = 0.0077
 (3) Manning n = 0.05
 (4) Channel shape = trapezoidal
 (5) Base width = 20 feet

 b. See Figure 3 for stage-discharge curve

4. **STEP 4**: Estimate Reach Outflow

 a. Determine stage for $Q_{p4} = 5,850$ cfs from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 4.4 feet

 (2) Volume in reach = (reach length) \times area of channel

 \[X\text{-area} = \left(0.5 \times 4.4 \text{ ft} \right) \times 1650 \text{ ft} = 1320 \text{ ft}^2 \]

 \[\text{Volume} = V_1 = \frac{1320 \times 4.4}{43,560} \text{ ft}^3/\text{acre} = 0.05 \text{ acre-ft} \]

 \[V_1 < \frac{S}{2} \text{ : reach length OK} \]

 b. Determine $Q_{p5(\text{TRIAL})}$

 \[Q_{p5(\text{TRIAL})} = Q_{p4} \left(1 - \frac{n}{5} \right) \]

 \[Q_{p5(\text{TRIAL})} = \left(5,850 \text{ ft}^3/\text{sec} \right) \left(1 - \frac{50}{50} \right) = 5,350 \text{ ft}^3/\text{sec} \]
c. Compute V_2 using Q_{PS}(TRIAL)

From Figure 7 determine stage for Q_{PS}(TRIAL)

Stage = 4.2 ft

X-area = $(0.5)(4.2 ft)(20 ft + 554 ft)$

$\approx 1205 ft^2$

$v_2 = \frac{(1205 ft^2)(1650 \text{ feet})}{45,580 \text{ ft}^2/\text{acre}}$

$V_2 = 45.7 \text{ acre-ft}$

d. Average V_1 and V_2 and compute Q_{PS}

1. $V_{avg} = \frac{V_1 + V_2}{2}$

$V_{avg} = \frac{50.0 \text{ acre-ft} + 45.7 \text{ acre-ft}}{2}$

$v_{avg} = 47.9 \text{ acre-ft}$

2. $Q_{PS} = Q_{PS}(1 - \frac{v_{avg}}{S})$

$Q_{PS} = (5,950 \text{ cfs})(1 - \frac{47.9}{520})$

$Q_{PS} = 5,380 \text{ cfs}$
3. STEP 3: Prepare stage-discharge curve for Reach 5

a. Pertinent Data

(1) Reach length = 950 ft
(2) Channel slope = 0.0077
(3) Manning n = 0.05
(4) Channel shape = trapezoidal
(5) Base width = 20 ft

b. See Figure 3 for stage-discharge curve

4. STEP 4: Estimate Reach Outflow

a. Determine stage for $Q_{5} = 5,380$ cfs from Figure 3 and find volume in reach

(1) Stage (depth of flow) = 6.8 ft
(2) Volume in reach = (reach length) (cross-sectional area of channel)

$K_{area} = (0.5)(6.8 ft)(20 ft + 234 ft)$

$\approx 864 ft^2$

Volume $= V_1 = \frac{(864 ft^2)(950 ft)}{2.66 ft^2}$

$= 18,820 ft^3$

$b. Determine Q_{56}(TRIAL)$

\[Q_{56}(TRIAL) = Q_{5} \left(1 - \frac{V_1}{\overline{V}}\right) \]

\[Q_{56}(TRIAL) = (5,380 cfs) \left(1 - \frac{18,820}{2,560}\right) \]

\[Q_{56} = 5,210 cfs \]
c. Compute \(V_2 \) using \(Q_{P6} (\text{TRIAL}) \)

From Figure 3 determine stage for \(Q_p \) (TRIAL)

Stage = 6.7 feet

\[X\text{-area} = (0.5)(6.7 \text{ feet})(20 \text{ feet} + 230 \text{ feet}) \approx 838 \text{ ft}^2 \]

\[V_2 = \frac{(838 \text{ ft}^2)(950 \text{ ft})}{43,560 \text{ ft}^2/\text{acre}} \]

\[V_2 = 18.3 \text{ acre-ft} \]

d. Average \(V_1 \) and \(V_2 \) and compute \(V_6 \)

\[V_{avg} = \frac{V_1 + V_2}{2} \]

\[V_{avg} = \frac{18.8 \text{ acre-ft} + 18.3 \text{ acre-ft}}{2} \]

\[V_{avg} = 18.5 \text{ acre-ft} \]

(2) \[Q_{P6} = Q_{P5} \left(1 - \frac{V_{avg}}{S} \right) \]

\[Q_{P6} = (5,380 \text{ cfs})(1 - \frac{18.5}{590}) \]

\[Q_{P6} = 5,210 \text{ cfs} \]
3. **STEP 3**: Prepare stage-discharge curve for Reach 6

 a. Pertinent Data

 (1) Reach length = 1550 feet
 (2) Channel slope = 0.00457
 (3) Manning n = 0.05
 (4) Channel shape - trapezoidal
 (5) Base width = 20 feet

 b. See Figure 3 for stage-discharge curve

4. **STEP 4**: Estimate Reach Outflow

 a. Determine stage for \(Q_{P6} = 5210 \text{ cfs} \) from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 7.5 feet

 (2) Volume in reach = (reach length) \(\left(\frac{\text{cross-sectional area of channel}}{\text{area of channel}} \right) \)

 \[
 X\text{-area} = \left(0.5 \right) \left(7.5 \text{ ft} \right) \left(20 \text{ ft} + 255 \text{ ft} \right) = 1031 \text{ ft}^2
 \]

 \[
 \text{Volume} = V_1 = \frac{(1031 \text{ ft}^2) \left(1550 \text{ ft} \right)}{43560 \text{ ft}^2/\text{acre}} = 36.7 \text{ acre-ft}
 \]

 \[
 V_1 < \frac{S}{2} \quad \therefore \text{reach length OK}
 \]

 b. Determine \(Q_{PT}^{\text{(TRIAL)}} \)

 \[
 Q_{PT}^{\text{(TRIAL)}} = Q_{P6} \left(1 - \frac{V_1}{S} \right)
 \]

 \[
 Q_{PT}^{\text{(TRIAL)}} = \left(5210 \text{ cfs} \right) \left(1 - \frac{36.7}{590} \right)
 \]

 \[
 Q_{PT}^{\text{(TRIAL)}} = 4890 \text{ cfs}
 \]
c. Compute V_2 using $Q_{p7}^{(TRIAL)}$

From Figure 3 determine stage for $Q_{p7}^{(TRIAL)}$

Stage = 7.3 ft

\[
\begin{align*}
x\text{-area} &= (0.5)(7.3 \text{ ft}) \times (20 \text{ ft} + 249 \text{ ft}) \\
&= 982 \text{ ft}^2 \\
V_2 &= \frac{(982 \text{ ft}^2)(1550 \text{ ft})}{43,560 \text{ ft}^2/\text{acre}} \\
V_2 &= 34.9 \text{ acre-ft}
\end{align*}
\]

d. Average V_1 and V_2 and compute V_{av}

(1) \[V_{av} = \frac{V_1 + V_2}{2}\]

\[
V_{av} = \frac{36.7 \text{ acre-ft} + 34.9 \text{ acre-ft}}{2}
\]

\[
V_{av} = 35.8 \text{ acre-ft}
\]

(2) \[Q_{p7} = Q_6 \left(1 - \frac{V_{av}}{590}\right)\]

\[
Q_{p7} = (5210 \text{ cfs}) \left(1 - \frac{35.8}{590}\right)
\]

\[
Q_{p7} = 4890 \text{ cfs}
\]
3. **STEP 3:** Prepare stage-discharge curve for Reach 7

 a. Pertinent Data

 (1) Reach length = 2825 feet
 (2) Channel slope = 0.00457
 (3) Manning n = 0.05
 (4) Channel shape - trapezoidal
 (5) Base width ≈ 20 feet

 b. See Figure 3 for stage-discharge curve

4. **STEP 4:** Estimate Reach Outflow

 a. Determine stage for \(Q_{PT} = 4,890 \text{ cfs} \) from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 7.4 feet

 (2) Volume in reach = (reach length) \((\text{cross-sectional area of channel})\)

 \[
 \text{X-area} = (0.5)(7.4 \text{ ft})(20 + 245) = 981 \text{ ft}^2
 \]

 \[
 \text{Volume} = V_1 = \frac{(981 \text{ ft}^2)(2825 \text{ ft})}{43,560 \text{ ft}^2/\text{acre}}
 \]

 \[
 = 63.6 \text{ acre-ft}
 \]

 \[
 V_1 < \frac{S}{2} \therefore \text{reach length OK}
 \]

 b. Determine \(Q_{P8(\text{TRIAL})} \)

 \[
 Q_{P8(\text{TRIAL})} = Q_{PT} \left(1 - \frac{V_1}{S/2}\right)
 \]

 \[
 Q_{P8(\text{TRIAL})} = (4,890 \text{ cfs}) \left(1 - \frac{63.6}{590}\right)
 \]

 \[
 Q_{P8(\text{TRIAL})} = 4,360 \text{ cfs}
 \]
c. Compute V_2 using $Q_{P8}(\text{TRIAL})$

From Figure 3 determine stage for $Q_{P8}(\text{TRIAL})$

Stage = 7.0 \text{ feet}

X-area = (0.5)(7.0 \text{ feet})(232 \text{ ft}^2 + 232 \text{ ft}^2)

= 882 \text{ ft}^2

$V_2 = \frac{882 \text{ ft}^2 \cdot 282.5 \text{ ft}}{43.560 \text{ ft}^2/\text{acre}}$

$V_2 = 57.2 \text{ acre-ft}$

d. Average V_1 and V_2 and compute Q_{P8}

(1) $V_{avg} = \frac{V_1 + V_2}{2}$

$V_{avg} = \frac{63.6 \text{ acre-ft} + 57.2 \text{ acre-ft}}{2}$

$V_{avg} = 60.4 \text{ acre-ft}$

(2) $Q_{P8} = Q_{P7} \left(1 - \frac{V_{avg}}{S}\right)$

$Q_{P8} = (4,890 \text{ cfs}) \left(1 - \frac{60.4}{590}\right)$

$Q_{P8} = 4,390 \text{ cfs}$
3. **STEP 3**: Prepare stage-discharge curve for Reach 8

a. Pertinent Data

 (1) Reach length = **56.25 feet**
 (2) Channel slope = 0.00856
 (3) Manning n = 0.05
 (4) Channel shape - trapezoidal
 (5) Base width ≈ 20 feet

b. See Figure 3 for stage-discharge curve

4. **STEP 4**: Estimate Reach Outflow

a. Determine stage for $Q_p = 4,390$ cfs from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = **6.1** feet

 (2) Volume in reach = (reach length) \((\text{cross-sectional area of channel})\)

 \[V_1 = \frac{(114.4 \text{ ft}^2)(56.25 \text{ ft})}{43.56 \text{ ft}^3/\text{acre}} \]

 \[V_1 = 148 \text{ acre-ft} \]

 \[V_1 < \frac{S}{2} : \text{reach length OK} \]

b. Determine $Q_p(TRIAL)$

 \[Q_p(TRIAL) = Q_p(1 - \frac{S}{2}) \]

 \[Q_p(TRIAL) = (4,390 \text{ cfs})(1 - \frac{148}{500}) \]

 \[Q_p(TRIAL) = 3,290 \text{ cfs} \]
c. Compute V_2 using $Q_{P9}(TRIAL)$

From Figure 3 determine stage for $Q_{P9}(TRIAL)$

Stage = 5.4 feet

X-area = $(0.5)(5.4 \text{ ft}^2)(20 \text{ ft} + 318 \text{ ft}^2) = 913 \text{ ft}^2$

$$V_2 = \frac{(913 \text{ ft}^2)(5625 \text{ ft}^2)}{43,560 \text{ ft}^3/\text{acre}}$$

$$V_2 = 118 \text{ acre-ft}$$

d. Average V_1 and V_2 and compute Q_{P9}

$$V_{avg} = \frac{V_1 + V_2}{2}$$

$$V_{avg} = \frac{148 \text{ acre-ft} + 118 \text{ acre-ft}}{2}$$

$$V_{avg} = 133 \text{ acre-ft}$$

$$Q_{P9} = Q_{P9}(1 - \frac{V_{avg}}{5})$$

$$Q_{P9} = (4,390 \text{ cfs})(1 - \frac{133}{590})$$

$$Q_{P9} = 3,400 \text{ cfs}$$
3. **STEP 3:** Prepare stage-discharge curve for Reach 2

 a. Pertinent Data

 (1) Reach length = 2875 feet
 (2) Channel slope = 0.0139
 (3) Manning n = 0.08
 (4) Channel shape - trapezoidal
 (5) Base width = 40 feet

 b. See Figure 3 for stage-discharge curve

4. **STEP 4:** Estimate Reach Outflow

 a. Determine stage for \(Q_{p0} = 3400 \text{ cfs} \) from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 5.5 feet

 (2) Volume in reach = (reach length) (cross-sectional area of channel)

 \[
 \text{X-area} = \left(0.5 \times 5.5 \text{ feet}\right) \left(4.5 + 7.2 \text{ feet}\right) = 2090 \text{ ft}^2
 \]

 \[
 \text{Volume} = V_1 = \frac{2090 \text{ ft}^2 \times 2875 \text{ ft}}{42,560 \text{ ft}^3/\text{acre-ft}} = 138 \text{ acre-ft}
 \]

 \[
 V_1 < \frac{S}{2} : \text{reach length OK}
 \]

 b. Determine \(Q_{p0(\text{Trial})} \)

 \[
 Q_{p0(\text{Trial})} = Q_{p0} \left(1 - \frac{V_1}{S}\right)
 \]

 \[
 Q_{p0(\text{Trial})} = (3400 \text{ cfs}) \left(1 - \frac{138}{590}\right)
 \]

 \[
 Q_{p0(\text{Trial})} = 2610 \text{ cfs}
 \]
c. Compute V_2 using $Q_{P(\text{TRIAL})}$.

From Figure 3 determine stage for $Q_{P(\text{TRIAL})}$:

Stage $= 4.9$ feet

\[
x - \text{area} = (0.5)(4.9 \text{ ft})(40 \text{ ft} + 600 \text{ ft})
\]

\[
= 1568 \text{ ft}^2
\]

\[
V_2 = \frac{(1568 \text{ ft}^2)(2.875 \text{ ft})}{43.560 \text{ ft}^3/\text{acre}}
\]

\[
V_2 = 103 \text{ acre-ft}
\]

d. Average V_1 and V_2 and compute Q_P.

(1) $V_{\text{avg}} = \frac{V_1 + V_2}{2}$

\[
V_{\text{avg}} = \frac{138 \text{ acre-ft} + 103 \text{ acre-ft}}{2}
\]

\[
V_{\text{avg}} = 121 \text{ acre-ft}
\]

(2) $Q_{P(\text{TRIAL})} = Q_{P(9)} \left(1 - \frac{V_{\text{avg}}}{9}
ight)$

\[
Q_{P(\text{TRIAL})} = (3,400 \text{ cfs})(1 - \frac{121}{590})
\]

\[
Q_{P(\text{TRIAL})} = 2,710 \text{ cfs}
\]
3. **STEP 3:** Prepare stage-discharge curve for Reach 9

 a. Pertinent Data
 (1) Reach length = 5,300 feet
 (2) Channel slope = 0.0011
 (3) Manning n = 0.08
 (4) Channel shape - trapezoidal
 (5) Base width ≈ 40 feet

 b. See Figure 3 for stage-discharge curve

4. **STEP 4:** Estimate Reach Outflow

 a. Determine stage for $Q_{p10} = 2.710$ cfs from Figure 3 and find volume in reach
 (1) Stage (depth of flow) = 6.7 feet
 (2) Volume in reach = (reach length) (cross-sectional area of channel)
 \[X \text{-area} = (0.5) (6.7 \text{ ft}) (90 + 525 \text{ ft}) \]
 \[= 1893 \text{ ft}^2 \]
 \[V_1 = \frac{(1893 \text{ ft}^2)(5300 \text{ ft})}{43560.561 \text{ ft}^2 / \text{ ac}} \]
 \[= 230 \text{ ac} - \text{ft}^3 \]
 \[V_1 < \frac{S_x}{2} \therefore \text{reach length OK} \]

 b. Determine $Q_{p1n(\text{TRIAL})}$
 \[Q_{p1n(\text{TRIAL})} = Q_{p10}(1 - \frac{V_1}{S_x}) \]
 \[Q_{p1n(\text{TRIAL})} = (2.710 \text{ cfs})(1 - \frac{230}{590}) \]
 \[Q_{p1n(\text{TRIAL})} = 1650 \text{ cfs} \]
c. Compute V_2 using Q_{p11} (TRIAL)

From Figure 3 determine stage for Q_p (TRIAL)

Stage = 5.4 feet

X-area = (0.5) (5.4 feet) (40 ft + 433 ft)

= 1277 ft2

$V_2 = \frac{(1277 \text{ ft}^2) (5,300 \text{ ft})}{43,560}$

$V_2 = 155 \text{ acre-ft}$

d. Average V_1 and V_2 and compute Q_p

$V_{avg} = \frac{V_1 + V_2}{2}$

$V_{avg} = \frac{230 \text{ ac-ft} + 155 \text{ ac-ft}}{43,560 \text{ ft}^2/\text{acre}}$

$V_{avg} = 193 \text{ acre-ft}$

(2) $Q_{p1} = Q_{p11} \left(1 - \frac{V_{avg}}{S}\right)$

$Q_{p1} = (2.710 \text{ cfs}) \left(1 - \frac{193}{590}\right)$

$Q_{p1} = 1830 \text{ cfs}$
3. STEP 3: Prepare stage-discharge curve for Reach I

a. Pertinent Data

(1) Reach length = 5,000 feet
(2) Channel slope = 0.0011
(3) Manning n = 0.08
(4) Channel shape = trapezoidal
(5) Base width = 40 feet

b. See Figure 3 for stage-discharge curve

4. STEP 4: Estimate Reach Outflow

a. Determine stage for \(Q_{p1} = 1,830 \text{ cfs} \) from Figure 3 and find volume in reach

(1) Stage (depth of flow) = 5.7 feet
(2) Volume in reach = (reach length) \((\text{cross-sectional area of channel})\)

\[
\begin{align*}
X\text{-area} &= (0.5)(5.7 \text{ ft})(40 \text{ ft} + 455 \text{ ft}) \\
&= 1411 \text{ ft}^2 \\
Volume &= V_1 = \left(\frac{1411 \text{ ft}^2 \times 5000 \text{ ft}^2}{43560 \text{ ft}^2/\text{acre}} \right) \\
&= 162 \text{ acre-ft}
\end{align*}
\]

\[V_1 < \frac{S}{T} \quad \therefore \text{reach length OK} \]

b. Determine \(Q_{p1(\text{TRIAL})} \)

\[
Q_{p1(\text{TRIAL})} = Q_{p1} \left(1 - \frac{V_1}{S} \right)
\]

\[
Q_{p2(\text{TRIAL})} = (1,930 \text{ cfs}) \left(1 - \frac{162}{5000} \right)
\]

\[
Q_{p2(\text{TRIAL})} = 1330 \text{ cfs}
\]
c. Compute \(V_2 \) using \(Q_{P1Z(\text{TRIAL})} \)

From Figure 3 determine stage for \(Q_{P1Z(\text{TRIAL})} \)

\[
\text{Stage} = 5.0 \text{ feet}
\]

\[
\text{x-area} = (0.5) (5.04)(40 + 40) = 1113 \text{ ft}^2
\]

\[
V_2 = \frac{(1113 \text{ ft}^2)(5200 \text{ ft})}{13.5 \text{ acre-ft} \cdot \text{ft}}
\]

\[
V_2 = 128 \text{ acre-ft}
\]

d. Average \(V_1 \) and \(V_2 \) and compute \(Q_p \)

(1) \[
V_{avg} = \frac{V_1 + V_2}{2}
\]

\[
V_{avg} = \frac{162 \text{ acre-ft} + 128 \text{ acre-ft}}{2}
\]

\[
V_{avg} = 145 \text{ acre-ft}
\]

(2) \[
Q_{P1Z} = Q_{P11} \left(1 - \frac{V_{avg}}{S} \right)
\]

\[
Q_{P1Z} = (1,830 \text{ cfs}) \left(1 - \frac{145}{590} \right)
\]

\[
Q_{P1Z} = 1,380 \text{ cfs}
\]
3. **STEP 3**: Prepare stage-discharge curve for Reach 12

a. Pertinent Data

 (1) Reach length = 5,000 feet
 (2) Channel slope = 0.0011
 (3) Manning n = 0.08
 (4) Channel shape = trapezoidal
 (5) Base width = 40 feet

b. See Figure 3 for stage-discharge curve

4. **STEP 4**: Estimate Reach Outflow

a. Determine stage for $Q_{PL} = 1,380 cfs$ from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 5.0 feet
 (2) Volume in reach = (reach length) \(\times \) (area of channel)
 \[
 X\text{-area} = \left(0.5\right)\left(5.0\text{ ft}\right) \left(40\text{ ft} + 405\text{ ft}\right) = 1113\text{ ft}^2
 \]
 \[
 \text{Volume} = V_1 = \frac{\left(1113\text{ ft}^2\right) \left(5000\text{ ft}\right)}{43,560\text{ ft}^3/\text{acre}} = 128\text{ acre-ft}
 \]
 \[
 V_1 < \frac{S}{2}\therefore \text{reach length OK}
 \]

b. Determine $Q_{P\text{TRIAL}}$

 \[
 Q_{P\text{TRIAL}} = Q_{PL}\left(1 - \frac{V_1}{S}\right)
 \]
 \[
 Q_{P\text{TRIAL}} = \left(1,380\text{ cfs}\right)\left(1 - \frac{128}{5000}\right)
 \]
 \[
 Q_{P\text{TRIAL}} = 1,080\text{ cfs}
 \]
c. Compute V_2 using $Q_{P_1}^{X\text{TRIAL}}$

From Figure 3 determine stage for $Q_{P_1}^{X\text{TRIAL}}$

Stage = 4.6 feet

x-area = $(0.5) (4.6 \text{ ft}) (40 \text{ ft} + 375) = 955 \text{ ft}^2$

$$V_2 = \frac{(955 \text{ ft}^2)(5000 \text{ ft})}{3.500 \text{ ft}^2/\text{acre}}$$

$$V_2 = 110 \text{ acre-ft}$$

d. Average V_1 and V_2 and compute $Q_{P_{13}}$

(1) $V_{avg} = \frac{V_1 + V_2}{2}$

$$V_{avg} = \frac{129 \text{ acre-ft} + 110 \text{ acre-ft}}{2}$$

$$V_{avg} = 119 \text{ acre-ft}$$

(2) $Q_{P_{13}} = Q_{P_{12}} (1 - \frac{V_{avg}}{5})$

$$Q_{P_{12}} = (1,380 \text{ cfs}) (1 - \frac{119}{590})$$

$$Q_{P_{13}} = 1,100 \text{ cfs}$$
3. **STEP 3:** Prepare stage-discharge curve for Reach 13

 a. Pertinent Data
 (1) Reach length = 3,050 ft
 (2) Channel slope = 0.0011
 (3) Manning n = 0.08
 (4) Channel shape - trapezoidal
 (5) Base width = 2,080 ft

 b. See Figure 3 for stage-discharge curve

4. **STEP 4:** Estimate Reach Outflow

 a. Determine stage for \(Q_{p_{13}} = 1,100 \text{ cfs} \) from Figure 3 and find volume in reach

 (1) Stage (depth of flow) = 0.7 ft

 (2) Volume in reach = (reach length) (cross-sectional area of channel)

 \[
 X\text{-area} = (0.5)(0.7\text{ft})\left(2 \times 380 + 2 \times 110\right) = 14674.5
 \]

 \[
 \text{Volume} = V_1 = \frac{14674.5 \times 3050}{43,560 + \text{area}} = 103 \text{ acre-ft}
 \]

 \(V_1 < \frac{S}{2} \): reach length OK

 b. Determine \(Q_{p_{(TRIAL)}} \)

 \[
 Q_{p_{(TRIAL)}} = Q_{p_{13}} \left(1 - \frac{V_1}{S}\right)
 \]

 \[
 Q_{p_{(TRIAL)}} = (1100 \text{ cfs}) \left(1 - \frac{103}{550}\right)
 \]

 \[
 Q_p \text{ (TRIAL)} = 910 \text{ cfs}
 \]
c. Compute V_2 using $Q_{P\text{W(Trial)}}$

From Figure 3 determine stage for $Q_{P\text{W(Trial)}}$

Stage = 0.6 feet

X-area = \((0.5)(0.6+)(2,080 + 2,105)\)
\[= 1256 \text{ ft}^2\]

\[
V_2 = \frac{(1256 \text{ ft}^2)(3050)}{43,560 \text{ ft}^2/\text{acre}}
\]

\[
V_2 = 88 \text{ acre-ft}
\]

d. Average V_1 and V_2 and compute Q_{P14}

\[
(1) \quad V_{\text{avg}} = \frac{V_1 + V_2}{2}
\]

\[
V_{\text{avg}} = \frac{103 \text{ ac-ft} + 88 \text{ ac-ft}}{2}
\]

\[
V_{\text{avg}} = 95 \text{ ac-ft}
\]

\[
(2) \quad Q_{P14} = Q_{P13} \left(1 - \frac{V_{\text{avg}}}{8}\right)
\]

\[
Q_{P14} = (1,100 \text{ cfs}) \left(1 - \frac{95}{593}\right)
\]

\[
Q_{P14} = 920 \text{ cfs}
\]
INVENTORY OF DAMS IN THE UNITED STATES

<table>
<thead>
<tr>
<th>STATE NUMBER</th>
<th>STATE</th>
<th>COUNTY</th>
<th>NAME</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>NY</td>
<td>ON</td>
<td>BUTTERFIELD POND DAM</td>
<td>4313.4</td>
<td>7207.1</td>
<td>26MAR80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POPULAR NAME</th>
<th>NAME OF IMPOUNDMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTTERFIELD POND</td>
<td>BUTTERFIELD POND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGION</th>
<th>BASIN</th>
<th>RIVER OR STREAM</th>
<th>NEAREST DOWNSTREAM CITY-TOWN-VILLAGE</th>
<th>DIST. FROM DAM (MI.)</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>06</td>
<td>ASHUEL OT RIVER</td>
<td>MARLON</td>
<td>9</td>
<td>514</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF DAM</th>
<th>YEAR COMPLETED</th>
<th>PURPOSES</th>
<th>MAX. MET.</th>
<th>HYDRAUL.</th>
<th>IMPOUNDING CAPACITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGERCT</td>
<td>1954</td>
<td>R</td>
<td>13</td>
<td>13</td>
<td>590</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIST. OWN</th>
<th>FED R</th>
<th>PRV/FED</th>
<th>ECON YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>80</td>
<td>50</td>
<td>1984</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OWNER</th>
<th>ENGINEERING BY</th>
<th>CONSTRUCTION BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH RES AND ECONOMIC DEV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGULATORY AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH WATER RES BOARD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>CONSTRUCTION</th>
<th>OPERATION</th>
<th>MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH WATER RES BOARD</td>
<td>NH WATER RES BOARD</td>
<td>NH WATER RES BOARD</td>
<td>NH WATER RES BOARD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSPECTION BY</th>
<th>INSPECTION DATE</th>
<th>AUTHORITY FOR INSPECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B E A CONSULTANTS INC</td>
<td>06DEC79</td>
<td>P.L. 92 = 367</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
END

FILMED

9-85

DTIC