CONNECTICUT RIVER BASIN
ROXBURY, NEW HAMPSHIRE

BABBIDGE RESERVOIR DAM
NH 00398
NHWRB 206.03

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

AUGUST 1981

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
Babbidge Reservoir Dam

National Program for Inspection of Non-Federal Dams

U.S. Army Corps of Engineers

New England Division

The dam is a 38 ft. high earth embankment with a reinforced concrete corewall. It is small in size with a high hazard potential. Significant economic loss and possible loss of more than a few lives could result from the event of a dam failure. With stoplogs, the spillway is capable of passing 9% of the test flood. The dam is in fair condition. Remedial measures should be undertaken by the owner.
Honorable Hugh J. Gallen
Governor of the State of New Hampshire
State House
Concord, NH 03301

Dear Governor Gallen:

Inclosed is a copy of the Babbidge Reservoir Dam (NH-00398) Phase I
Inspection Report, prepared under the National Program for Inspection
of Non-Federal Dams. The report is based upon a visual inspection, a
review of past performance, and a preliminary hydrological analysis.

The preliminary hydrologic analysis indicated that the spillway
capacity would likely be exceeded by floods greater than five percent of
the Probable Maximum Flood (PMF). Our screening criteria specifies
that a dam classified as high hazard with a spillway capacity
insufficient to discharge fifty percent of the PMF be judged as having
a seriously inadequate spillway. As a result, this dam is assessed as
unsafe, non-emergency until more detailed studies prove otherwise or
corrective measures are completed.

The term "unsafe" applied to a dam because of an inadequate spillway
does not indicate the same degree of emergency as that term would if
applied because of structural deficiency. It does indicate, however,
that a severe storm may cause overtopping and possible failure of the
dam, with significant damage and potential loss of life downstream.

We recommend that within twelve months from the date of this report
the owner of the dam engage the services of a qualified registered
engineer to determine further the potential of overtopping the dam and
the need for and the means to increase project discharge capacity.
Based on this determination, appropriate remedial mitigating measures
should be designed and completed within 24 months of this date of
notification. In the interim a detailed emergency operation plan and
warning system should be promptly developed and round-the-clock
surveillance should be provided during periods of unusually heavy
precipitation or high project discharge.
NEDED-E

Honorable Hugh J. Gallen

I approve the report and support the findings and recommendations described in Section 7, with qualifications as noted above. I request that you keep me informed of the actions taken to implement these recommendations since this follow-up is an important part of the program.

Copies of this report have been forwarded to the Water Resources Board and to the owner, State of New Hampshire, Water Resources Board. Copies will be available to the public in thirty days.

I wish to thank you and the Water Resources Board for your cooperation in this program.

Sincerely,

C. E. EDGAR, III
Colonel, Corps of Engineers
Commander and Division Engineer
IDENTIFICATION NO.: NH 00398
NHWRB NO.: 206.03
NAME OF DAM: Babbidge Reservoir Dam
(Towering Brook Dam)
TOWN: Roxbury
COUNTY AND STATE: Cheshire, New Hampshire
STREAM: Roaring Brook
DATE OF INSPECTION: May 13, 1981

BRIEF ASSESSMENT

The Babbidge Reservoir Dam, also known as Roaring Brook Dam, is a 38-foot-high earth embankment with a reinforced concrete corewall. There is a 36-foot-long concrete overflow spillway at the left abutment and a gatehouse at the crest which controls flow from the reservoir and from the Quarry Dam upstream. The overall length of the dam is 255 feet, and its maximum impoundment is 528 acre-feet. The dam was constructed in 1931, to be used for water supply for the City of Keene, New Hampshire. It is presently owned by the City of Keene and is in service.

The drainage area for the dam covers approximately 5.5 square miles of rolling to mountainous forest with some storage available in Woodward Pond in the upper reaches of the watershed.

The Babbidge Reservoir Dam is SMALL in size, and its hazard potential classification is HIGH since significant economic loss and possible loss of more than a few lives could result from the event of a dam failure. The appropriate test flood for a dam classified as small with a high hazard potential is between one-half of the Probable Maximum Flood and the Probable Maximum Flood (PMF). One-half of the Probable Maximum Flood has been adopted as the appropriate test flood. The analysis in Appendix D shows the one-half PMF to be 5,500 cfs with the water surface at elevation 980.2 feet (NGVD). This flood would overtop the dam by 3.2 feet. The spillway is capable of passing 29% of the test flood before overtopping with no stoplogs in place. With stoplogs, the spillway is capable of passing 9% of the test flood.
The dam is in FAIR condition at the present time. It is recommended that the owner retain the services of a qualified registered professional engineer to perform a detailed hydraulic and hydrologic investigation to further define the need for and means to increase the project discharge capacity or the ability of the dam to withstand overtopping; to develop a method for removal of the trees and stumps (including the roots) from the embankments, and backfill the resulting voids with suitable compacted material; to uncover and evaluate the condition and location of the downstream end of the outlet conduit; to inspect the spillway under low-flow conditions; and to repair the concrete on the gatehouse, right end wall, and spillway.

Remedial measures to be undertaken by the owner include implementing a program of diligent and periodic maintenance; implementing a program of annual technical inspections of the dam and its appurtenances, including operation of all outlet works and monitoring the seepage areas near the downstream right abutment; developing a plan for surveillance of the dam during flood periods and a formal written system for warning the appropriate officials and the downstream residents in the event of an emergency; and redecking the timber footbridge.

These engineering studies and remedial measures should be implemented by the owner within one year of receipt of this Phase I Inspection Report.
This Phase I Inspection Report on Babbidge Reservoir Dam (NH-00398) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval.

ARAMAST NAHTESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

JOSEPH W. FINEGAN, JR., CHAIRMAN
Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C., 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need from such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does not include an assessment of the need for fences, gates, no trespassing signs, repairs to existing fences and railings, and other items which may be needed to minimize trespassing and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td></td>
</tr>
<tr>
<td>Brief Assessment</td>
<td></td>
</tr>
<tr>
<td>Review Board Page</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>Overview Photo</td>
<td>v</td>
</tr>
<tr>
<td>Location Map</td>
<td>vi</td>
</tr>
</tbody>
</table>

REPORT

1. PROJECT INFORMATION 1-1

1.1 General 1-1

 a. Authority 1-1
 b. Purpose of Inspection 1-1

1.2 Description of Project 1-1

 a. Location 1-1
 b. Description of Dam and Appurtenances 1-2
 c. Size Classification 1-3
 d. Hazard Classification 1-3
 e. Ownership 1-3
 f. Operator 1-4
 g. Purpose of Dam 1-4
 h. Design and Construction History 1-4
 i. Normal Operational Procedure 1-4

1.3 Pertinent Data 1-4

2. ENGINEERING DATA 2-1

2.1 Design Data 2-1

2.2 Construction Data 2-1
2.3 Operation Data 2-1
2.4 Evaluation of Data 2-1

3. VISUAL INSPECTION 3-1
3.1 Findings 3-1
 a. General 3-1
 b. Dam 3-1
 c. Appurtenant Structures 3-2
 d. Reservoir Area 3-2
 e. Downstream Channel 3-2
3.2 Evaluation 3-2

4. OPERATIONAL AND MAINTENANCE PROCEDURES 4-1
4.1 Operational Procedures 4-1
 a. General 4-1
 b. Description of any Warning System in Effect 4-1
4.2 Maintenance Procedures 4-1
 a. General 4-1
 b. Operating Facilities 4-1
4.3 Evaluation 4-1

5. EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES 5-1
5.1 General 5-1
5.2 Design Data 5-2
5.3 Experience Data 5-2
5.4 Test Flood Analysis 5-2
5.5 Dam Failure Analysis 5-3

6. EVALUATION OF STRUCTURAL STABILITY 6-1
6.1 Visual Observation 6-1
6.2 Design and Construction Data 6-1
6.3 Post Construction Changes 6-1
6.4 Seismic Stability 6-1

7. ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES 7-1

7.1 Dam Assessment 7-1
 a. Condition 7-1
 b. Adequacy of Information 7-1
 c. Urgency 7-1

7.2 Recommendations 7-1

7.3 Remedial Measures 7-1

7.4 Alternatives 7-2

APPENDICES

APPENDIX A INSPECTION CHECKLIST A-1
APPENDIX B ENGINEERING DATA B-1
APPENDIX C PHOTOGRAPHS C-1
APPENDIX D HYDROLOGIC AND HYDRAULIC COMPUTATIONS D-1
APPENDIX E INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS E-1
Overview of Dam
1.1 General

(a) Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Goldberg-Zoino & Associates, Inc. (GZA) has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to GZA under a letter of April 29, 1980, from Colonel William E. Hodgson, Jr., Corps of Engineers. Contract No. DACW 33-80-C-0055 has been assigned by the Corps of Engineers for this work.

(b) Purpose

(1) Perform technical inspection and evaluation of nonfederal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by nonfederal interests.

(2) Encourage and prepare the states to initiate quickly effective dam safety programs for nonfederal dams.

(3) Update, verify, and complete the National Inventory of Dams.

1.2 Description of Project

(a) Location

The Babbidge Reservoir Dam is located on Roaring Brook, approximately 1.3 miles upstream of Roxbury, New Hampshire.
and one mile upstream of the confluence with Otter Brook. It can be reached from town roads which intersect State Route 101 near Keene, New Hampshire. The dam is shown on U.S.G.S. Monadnock, NH Quadrangle at approximate coordinates N42 56.0', W72 13.3' (see Location Map on Page vi). Page B-2 of Appendix B is a site plan for this dam.

(b) Description of Dam and Appurtenances

The Babbidge Reservoir Dam consists of a homogeneous earthenfill embankment with a concrete corewall, a concrete overflow spillway at the left abutment, two inlet pipes equipped with trash racks, and two outlet pipes. A gatehouse near the middle of the dam houses four gate stems which route flow through the dam. Intakes include a low-level and a high-level intake at this dam and a pipe from an upstream dam. Outlets route flow to the town water supply system and a 24-inch-diameter outlet conduit which daylighted at the downstream toe of the dam. The overall length of the dam is approximately 255 feet.

(1) Embankment

The embankment is constructed of semipervious silt, sand, and gravel. It is 215 feet long and a maximum of 31 feet high. The upstream slope is approximately 2.5 horizontal to 1 vertical, and the downstream slope is approximately 2 horizontal to 1 vertical. The crest width is 12 feet. A concrete corewall extends from the spillway to the right abutment. This wall is keyed into bedrock at the left end and 4 feet to 5 feet into glacial till at the right end. This wall is 2 feet 3 inches thick at the bottom and tapers to 1 foot thick at the top. The top is 2 feet below the crest of the dam.

(2) Concrete Spillway

The spillway is a gravity concrete overflow structure at the left abutment. Its crest is 6 feet below the crest of the dam (elevation 971.0), and it is divided into four bays of 9 feet 3 inches each. Each bay is equipped with stoplogs to elevation 974.4. A walkway extends across the spillway from the dam embankment to the left abutment. There is a reinforced concrete training wall at the right side of the spillway which extends downstream approximately 120 feet.
(3) **Appurtenant Structures**

There is a brick masonry gatehouse located at the crest of the dam near the middle of the embankment. This structure houses four gate stems which control and route flow from the reservoir and a pipe from the Quarry Dam upstream. Inlet pipes include the 12-inch pipe from the upstream dam, a 20-inch-diameter pipe from the reservoir low-level intake at elevation 947, and a 16-inch-diameter pipe from the reservoir high-level intake at elevation 960. There is a 24-inch-diameter outlet conduit which daylights at the downstream toe of the embankment and a 12-inch-diameter pipe which carries water to the Keene water supply system.

(c) **Size Classification**

The dam has a maximum impoundment of 528 acre-feet and a height of 38 feet. According to the Corps of Engineers' Recommended Guidelines, a small size dam is one with a maximum storage section between 50 acre-feet and 1,000 acre-feet or a height between 25 feet and 40 feet. Therefore, this dam is classified as SMALL in size, based on both criteria.

(d) **Hazard Classification**

The hazard potential classification for this dam is HIGH because of the significant economic losses and potential for loss of more than a few lives downstream in the event of dam failure. There are six houses approximately one mile downstream and three houses 1.2 miles downstream which could be affected by the dam failure flood. The prefailure flow conditions would cause no flooding, but the postfailure flow would cause 1 foot to 5 feet of flooding at the first set of houses and 7 feet of flooding at the second.

(e) **Ownership**

The dam is owned by the City of Keene, New Hampshire. It is overseen by the Department of Public Works, Keene, New Hampshire, 03431.
(f) **Operator**

The operation of the dam is controlled by the Department of Public Works of Keene, New Hampshire. Mr. Demilio of the DPW can be reached by telephone at (603) 352-6550.

(g) **Purpose of Dam**

The dam serves as a storage reservoir for the water supply system of the City of Keene, New Hampshire.

(h) **Design and Construction History**

The dam was constructed in 1931. It was designed by Weston and Sampson Consulting Engineers, 10 High Street, Boston, Massachusetts. It was built by the Public Service Commission, Concord, New Hampshire.

(i) **Normal Operating Procedure**

No formal operating procedures exist for this dam. The waste gate is normally closed. The water supply gate is normally open.

1.3 **Pertinent Data**

(a) **Drainage Area**

The drainage area for this dam covers 5.5 square miles. It is made up primarily of rolling woodland with some storage available in Woodland Pond in the upper reaches of the watershed. Elevations range from 960 to 1686 feet NGVD in this area.

(b) **Discharge at Dam Site**

(1) **Outlet Works**

The outlet works at this dam consist of a 24-inch-diameter waste pipe, equipped with a vertical lift slide gate and a 12-inch-diameter water supply pipe, which is also equipped with a gate. Two intake structures are located on the upstream slope. The lower intake
is at elevation 946.4 feet (NGVD), and the upper intake is at elevation 959.3 feet (NGVD). The discharge capacity of the waste outlet with the reservoir at the top-of-dam elevation (977 feet NGVD) is 82 cfs.

(2) **Maximum Known Flood**

Based on a questionnaire dated October 13, 1938, (Page B-22 of this report) and some calculations based on the dam rating curve, the hurricane of 1938 caused a spillway discharge of approximately 700 cfs at this dam.

(3) **Ungated Spillway Capacity at Top of Dam**

The capacity of the spillway with the reservoir at top-of-dam elevation (977 feet NGVD) is 1,850 cfs with no stoplogs in place.

(4) **Ungated Spillway Capacity at Test Flood**

The discharge capacity of the spillway at the test flood elevation (980.2 feet NGVD) is 3,220 cfs with no stoplogs in place.

(5) **Gated Spillway Capacity at Normal Pool**

There are no gated spillways.

(6) **Gated Spillway Capacity at Test Flood**

There are no gated spillways.

(7) **Total Spillway Capacity at Test Flood**

The total discharge over the spillway at the test flood elevation (980.2 feet NGVD) is 3,220 cfs.

(8) **Total Project Discharge at Top of Dam**

The total project discharge at test flood elevation (980.2 feet NGVD) is 5,500 cfs.
(c) **Elevation**

1. Streambed at downstream toe of dam: 939+
2. Bottom of cutoff: Unknown
3. Maximum tailwater: Unknown
4. Normal pool: Approximately 973
5. Full flood control pool: Not applicable
6. Spillway crest: 971.0
 With stoplogs: 974.4
7. Design surcharge: Unknown
8. Top of dam: 977
9. Test flood surcharge: 980.2

(d) **Reservoir (length in feet)**

1. Normal pool: 2,000
2. Flood control pool: Not applicable
3. Spillway crest pool: 2,000
4. Top of dam pool: 2,000
5. Test flood pool: 2,000

(e) **Storage (acre-feet)**

1. Normal pool: 450
2. Flood control pool: Not applicable
3. Spillway crest pool: 450
4. Top of dam pool: 528
5. Test flood pool: 624
(f) **Reservoir Surface (acres)**

1. Normal pool: 30
2. Flood control pool: Not applicable
3. Spillway crest pool: 30
4. Test flood: 30
5. Top of dam: 30

(g) **Dam**

1. Type: Homogeneous earth embankment
2. Length: 215 feet
3. Height: 38 feet
4. Top width: 12 feet
5. Side slopes:
 - Upstream: 2.5 horizontal to 1 vertical
 - Downstream: 2.0 horizontal to 1 vertical
6. Zoning: Homogeneous
7. Impervious core: Concrete corewall
8. Cutoff: Corewall keyed into rock or glacial till
9. Grout curtain: None

(h) **Division and Regulating Tunnel**

Not applicable

(i) **Spillway**

1. Type: Broad crested channel blasted in rock in the left abutment
2. Length of weir: 36 feet
(3) Crest elevation: 971 feet NGVD

(4) Gates: None, stoplogs to elevation 974.4 feet NGVD

(5) Upstream channel: Reservoir

(6) Downstream channel: Steep rock channel

(j) Regulating Outlets

The regulating outlet is a system of four gates controlling flows to the water supply pipe and the waste pipe. The 24-inch-diameter waste pipe has an invert elevation of 946.3 feet (NGVD) at the discharge end. It is fed by a 20-inch-diameter vertical lift gate from the lower intake and a 16-inch-diameter vertical lift gate from the upper level intake.
Section 2: Engineering Data

2.1 Design

Some of the original design plans by Weston and Sampson are available, as are the final site plans. Reduced copies of these plans are reproduced in Appendix B of this report. Concrete and soil sample records are available.

2.2 Construction

Photographs taken during construction, concrete test data, and some correspondence are contained in the file maintained by the New Hampshire Water Resources Board.

2.3 Operation

No operational records are available for this dam.

2.4 Evaluation of Data

(a) Availability

There is minimal detailed design and construction data available for evaluation.

(b) Adequacy

The lack of in-depth engineering precludes a definitive review. Therefore, the adequacy of the dam cannot be assessed from the standpoint of reviewing design and construction data. This assessment of the dam is based primarily on the visual inspection, past performance, and sound engineering judgment.

(c) Validity

Since the observations of the inspection team generally confirm the information contained in the records of the New Hampshire Water Resources Board, a satisfactory evaluation for validity is indicated.
Section 3: Visual Inspection

3.1 Findings

(a) General

The Babbidge Reservoir Dam is in fair condition at the present time.

(b) Dam

(1) Embankment (See Photos 1, 3, 4, and 5)

The alignment of the dam along the crest is generally good to slightly irregular. The irregularity consists of a vertical depression near the gatehouse which is visible in Photo No. 1. This depression is due to the manner of construction and is not attributed to movement of the crest. The riprap on the upstream slope is generally in good condition, although there is brush growing through the riprap.

There is heavy brush and tree growth on the lower portion of the downstream slope, and there are stumps remaining from previous clean-up efforts.

Some seepage was noted at two locations (see Page C-2) on the downstream slope. The seepage noted at the downstream toe at the rock fill was on the order of one to two gallons per minute. This seepage was clear although there is some rust-colored staining of the ground in this area. The rockfill is believed to cover the downstream end of the outlet conduit, and the seepage may be the result of the leaking gate. Clear seepage on the order of one-half gallon per minute was noted at the right abutment. These conditions are not significant at present, but the flows should be observed on a regular basis, and any change in the quantity or clarity of the flow should be investigated.

(2) Spillway (See Photos 7 and 8)

The spillway appears to be in good condition, although it was inspected under sheet flow conditions. A thorough inspection of this structure should be made under low flow conditions. There is some surface
erosion up to 4 inches deep on the downstream face. There is some debris caught at the flashboards which should be cleared. The stoplogs are in good condition with the exception of one broken plank. The elevation of the stoplogs in the center bays is slightly higher than the end bays. The wooden footbridge over the spillway is partially deteriorated, and one plank at the right endwall is missing. The steel pipe railing is in good condition.

(3) Right End Wall (See Photos 8, 9, and 10)

The upstream portion of this wall is in good condition, with no evidence of spalls, erosion, or cracking. The downstream portion of the wall has been subjected to erosion up to 4 inches deep at its interface with the rock foundation. At the angle point of the wall, there is an area of concrete erosion 3 feet long, 18 inches high, and 12 inches deep. Reinforcing steel is exposed at this location.

(c) Appurtenant Structures

Gatehouse (See Photos 1, 4, and 6)

Surface erosion 18 inches high, 12 inches wide, and 6 inches deep has occurred at the left upstream corner of the foundation of this structure. The brick bearing walls and the wood framed roof are in good condition. At the time of the inspection, no access was available to the gatehouse, so the interior and gate stems could not be observed. The gates are reported to be operable. The outlet end of the waste pipe could not be observed due to riprap dumped around the pipe. The outlet is apparently buried within the embankment.

(d) Reservoir Area (See Photo 1)

The shore of the reservoir area is generally gently, sloping woodland. It appears to be stable and in good condition.
(e) Downstream Channel (See Photos 2, 8, and 9)

The rock channel slopes steeply down the left abutment to the natural streambed. The channel appears stable and in good condition.

3.2 Evaluation

The dam and its appurtenances are generally in fair condition at the present time. The potential problems observed during the visual inspection are listed below:

(a) Trees and stumps on downstream slope may damage slope due to growth uprooting or rotting of roots, leaving a path for seepage and internal erosion of the dam embankment.

(b) Brush growth on upstream slope may damage slope or riprap.

(c) Debris on spillway decreases the spillway capacity.

(d) Deterioration of footbridge over spillway is a safety hazard.

(e) Deterioration of concrete on gatehouse and right training wall should be repaired.

(f) Rock dumped over the end of the waste pipe decreases the discharge capacity and should be corrected.
Section 4: Operational and Maintenance Procedures

4.1 Operational Procedures
(a) General

No written operational procedures exist for this dam. It is operated as necessary for the water supply of the City of Keene, New Hampshire.

4.2 Maintenance Procedures

Maintenance of the dam is performed on an "as needed" basis by the Department of Public Works of the City of Keene. No formal maintenance program exists for this dam.

4.3 Maintenance of Operating Facilities

No maintenance program exists for the operating facilities of this dam. The gates are not operated regularly.

4.4 Description of Warning System

There is no warning system in effect.

4.5 Evaluation

The dam's present condition is a direct result of the lack of a maintenance program for the dam. Emphasis on routine maintenance will assist the owner in assuring the long-term safety of the dam and operating facilities. A formal, written, downstream emergency warning system should be developed for this dam.
Section 5: Evaluation of Hydraulic/Hydrologic Features

5.1 General

Babbidge Dam is an earthfill structure on Roaring Brook in the town of Roxbury, New Hampshire. The dam is about one mile upstream of the confluence of Roaring Brook and Otter Brook, which is downstream of the Otter Brook Reservoir. The dam was built in 1931 and still functions as a water supply reservoir. The 5.5-square-mile drainage area is rolling and forested, with some storage available from Woodward Pond located in the upper reaches of the watershed.

The dam has a 215-foot-long crest with a concrete core wall, and a 36-foot stoplog section. The overall length of the dam is about 255 feet. The stoplog section consists of four bays that are at elevation 974.4 feet (NGVD). The crest of the remainder of the dam is at 977 feet, which is about 38 feet higher than the downstream channel. The downstream face of the dam is an earth-filled slope which is grassed and wooded.

Downstream of the dam, the gradient of Roaring Brook sharply increases, and the overbanks are steep and thickly covered. Another dam and a small pond are located approximately 4,000 feet downstream of Babbidge Dam. The pond appears to have been a holding pond for water supply, but it is now abandoned. While the dam is about 75 feet long and 20 feet high, the ponding area occupies less than one acre, with very little storage capacity. This impoundment would not significantly attenuate a dam break flood, nor would it represent a hazard area impacted by the break.

About a mile downstream of Babbidge Reservoir, Roaring Brook passes through a 16-foot-wide by 6-foot-high box culvert with a low chord 2 feet below the roadway. Two houses upstream of this crossing are, respectively, 5 feet and 3 feet above the road elevation. On the downstream side are four houses which are all within about one foot of the road elevation.

Just downstream of this crossing, Roaring Brook joins Otter Brook. About 500 feet downstream of this confluence are three houses, all about 6 feet above the Otter Brook streambed. Otter Brook has a much wider stream cross section than Roaring Brook, and the stream gradient flattens out. Just over a mile downstream of the confluence, Minnewawa Brook joins Otter Brook and the channel widens to about 30 to 40 feet.
5.2 Design Data

Babbidge Dam (originally called Roaring Brook Dam) was built in 1931 and used as a water supply reservoir. Some of the original design plans by Weston and Sampson are available, as are the final plans for the site. These are shown on Pages B-3 through B-9 of this report.

5.3 Experience Data

A questionnaire dated October 13, 1938, indicates that the 1938 hurricane flood on Roaring Brook brought the pond stage to about 3.5 feet above the permanent crest of the spillway and that two stoplogs were washed out. From this information and the dam rating curve, if the permanent crest of the spillway is taken to be the present crest of the stoplog section at 974.4 feet, then a flood of about 700 cfs would have occurred. This is reasonable for the 5.5 square mile drainage area.

5.4 Test Flood Analysis

The impoundment of less than 1,000 feet and the height of less than 40 feet classify this dam as a SMALL structure. The appropriate hazard classification is HIGH because of the damage expected at several residential houses and the potential for loss of more than a few lives. The Test Flood for a dam classified as small with a high hazard potential is between one-half of the Probable Maximum Flood (PMF) and the PMF. Since the reservoir stage of 450 acre-feet is on the lower side of the small size category, one-half the PMF has been adopted as the Test Flood.

The Corps of Engineers guidelines for "Maximum Probable Flood Peak Flow Rates" give a PMF rate of 2,000 cfs per square mile (CSM) for rolling to mountainous terrain, an area of 5.5 square miles. This results in a one-half PMF flow of 5,500 cfs.

The reservoir would not attenuate a flood of this magnitude significantly. The peak routed Test Flood outflow would, therefore, be 5,500 cfs, which would create a stage of about 4.8 feet above the stoplog spillway and reach an elevation of about 980.2 feet.
This would be about 3.2 feet above the crest height of the dam. The spillway capacity of 485 cfs is only 9% of the peak Test Flood outflow with the stoplogs in place to elevation 974.4 feet NGVD and is 29% of the peak Test Flood outflow with no stoplogs in place.

5.5 Dam Failure Analysis

The peak downstream flows that would result from the failure of Babbidge Dam are estimated using the procedure suggested in "Rule of Thumb Guidelines for Estimating Downstream Dam Failure Hydrographs." The failure is assumed to occur with the water surface elevation at the dam crest 977 feet NGVD. The outflow prior to dam failure would be 485 cfs, creating a tailwater of 3.7 feet in the channel downstream of the dam.

For an assumed breach width equal to 40% of the dam width at the half-height, the gap in the embankment due to failure would be about 44 feet. The resulting peak failure outflow would 18,500 cfs, which would increase the tailwater stage from 3.7 feet to 19.2 feet.

The peak failure outflow would attenuate to a peak of about 15,900 cfs by the time it reached the road crossing about one mile downstream. The peak stage would be 14.2 feet, enough to cause severe flooding at all six of the houses in this area (see Visual Observations). The culvert and road might also be damaged by such severe flooding. Downstream of this area, Roaring Brook enters Otter Brook, and the wider channel of Otter Brook will also attenuate the peak flow. At the end of the next 6,250-foot reach, the peak flow is attenuated to 12,100 cfs and the peak stage reduced to 12.9 feet. The three houses located along the Otter Brook bank in this reach would also experience severe flooding as a result of the failure flow.

At the end of this reach, Otter Brook joins the Minnewawa Brook, the banks widen, and the stream slope flattens. Some minor damage may be incurred in South Keene, but it is expected that the increased storage available will prevent high, damaging stages.

The appropriate hazard classification is HIGH because of the potential damage to several residential houses and the associated risk of loss of more than a few lives in the event of a dam failure. The downstream impacts of failure of this dam are summarized in the chart of the following page.
Downstream Impact of the Failure of Babbidge Reservoir

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance Downstream of Dam (ft.)</th>
<th>Number of Structures</th>
<th>Level Above Stream (ft.)</th>
<th>Flow and Stage Before Failure</th>
<th>Flow and Stage After Failure</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just Downstream of Dam</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>485 cfs 3.7 ft.</td>
<td>18485 cfs 19.2 ft.</td>
<td>no significant structures</td>
</tr>
<tr>
<td>Houses upstream of road crossing</td>
<td>5300</td>
<td>2 houses</td>
<td>5.3</td>
<td>485 cfs 3.7 ft.</td>
<td>15900 cfs 14.2 ft.</td>
<td>structure damage, danger of loss of life</td>
</tr>
<tr>
<td>Road crossing</td>
<td>5300</td>
<td>16' W by 6' H Culvert</td>
<td>-</td>
<td>485 cfs</td>
<td>15900 cfs</td>
<td>possibly damaged</td>
</tr>
<tr>
<td>Houses downstream of road crossing</td>
<td>5300</td>
<td>4 houses</td>
<td>8-9</td>
<td>485 cfs</td>
<td>15900 cfs</td>
<td>structure damage, danger of loss of life</td>
</tr>
<tr>
<td>Houses of left bank of Otter Brook</td>
<td>5800</td>
<td>3 houses</td>
<td>6</td>
<td>930 cfs 4 ft.</td>
<td>16800 cfs 14.7 ft.</td>
<td>damage, danger of loss of life</td>
</tr>
</tbody>
</table>
Section 6: Structural Stability

6.1 Visual Observations

There has been no significant displacement nor distress which would warrant the preparation of structural stability calculation, based on assumed sectional properties and engineering factors. Some erosion was noted on the spillway and right end wall.

6.2 Design and Construction Data

There are no calculations of value to a stability assessment available for this dam.

6.3 Post Construction Changes

There have been no known construction changes since the dam was completed in 1931.

6.4 Seismic Stability

The dam is located in seismic zone No. 2 and, in accordance with the recommended Phase I guidelines, does not warrant seismic analysis.
Section 7: Assessment, Recommendations, and Remedial Measures

7.1 Dam Assessment

(a) Condition

The Babidge Reservoir Dam is in fair condition at the present time.

(b) Adequacy of Information

The lack of in-depth engineering data precludes a definitive review. Therefore, the adequacy of the dam cannot be assessed from the standpoint of reviewing design and construction data. This assessment is based primarily on the visual inspection, past performance, and sound engineering judgment.

(c) Urgency

The engineering studies and improvements described herein should be implemented by the owner within one year of receipt of this Phase 1 Inspection Report.

7.2 Recommendations

It is recommended that the city of Keene retain the services of a registered professional engineer to:

(a) Conduct a detailed hydraulic and hydrologic study to further define the need for and means to increase the project discharge capacity or the ability of the dam to withstand overtopping.

(b) Develop a method to remove all trees and stumps (including the roots), from the embankments, and backfill the resulting voids with suitable compacted material.

(c) Uncover and evaluate the condition and location of the downstream end of the outlet conduit.

(d) Inspect the spillway under low flow conditions.

(e) Repair the concrete on the gatehouse, right end wall, and spillway.
The owner should implement the findings of the above engineering studies.

7.3 Remedial Measures

It is recommended that the owner institute the following remedial measures:

(a) Implement and intensify a program of diligent and periodic maintenance including, but not limited to: mowing embankment slopes; backfilling drainage gullies or animal burrows with suitable, well-tamped soil; and clearing debris from spillways, outlets, and slopes.

(b) Implement a program of annual technical inspections of the dam and its appurtenances, including operation of all outlet works and monthly monitoring of the seepage areas near the downstream right abutment for quantity and turbidity.

(c) Develop a plan for surveillance of the dam during and immediately after periods of intense rainfall and a formal, written system for warning the appropriate officials and the downstream residents in the event of an emergency.

(d) Redock the timber footbridge across the spillway.

7.4 Alternatives

There are no meaningful alternatives to the above recommendations.
APPENDIX A

VISUAL CHECKLIST WITH COMMENTS
Inspection Team Organization

DATE: May 13, 1981

PROJECT: NH00398
Babbidge Reservoir Dam
Roxbury, New Hampshire
NHWRB No. 206.03

WEATHER: Sunny, warm

INSPECTION TEAM:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicholas A. Campagna</td>
<td>Goldberg-Zoino & Assoc.</td>
<td>Team Captain</td>
</tr>
<tr>
<td>William S. Zoino</td>
<td>GZA</td>
<td>Soils</td>
</tr>
<tr>
<td>Jeffrey M. Hardin</td>
<td>GZA</td>
<td>Soils</td>
</tr>
<tr>
<td>Paul Razgha</td>
<td>Andrew Christo Engineers</td>
<td>Structures</td>
</tr>
<tr>
<td>Carl Razgha</td>
<td>ACE</td>
<td>Structures</td>
</tr>
</tbody>
</table>

NOTE: Mr. Richard Laramie of Camp, Dresser, & McKee, Inc. performed the hydrologic inspection of this dam on May 7, 1981.
CHECKLIST FOR VISUAL INSPECTION

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS AND REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>N/A</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>977.0 feet (NGVD)</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>974.4 feet</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>Unknown</td>
</tr>
<tr>
<td>Pavement Conditions</td>
<td>None noted</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>Slight depression near gatehouse is a result of construction (not settlement)</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>None noted</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Good</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Good</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>None noted</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>None noted</td>
</tr>
<tr>
<td>Vegetation on Slopes</td>
<td>Heavy tree and brush growth on lower downstream slope, light brush growth on upstream slope.</td>
</tr>
</tbody>
</table>
CHECKLIST FOR VISUAL INSPECTION

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>BY</th>
<th>CONDITIONS AND REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td>NAC</td>
<td>None noted</td>
</tr>
<tr>
<td>Rock Slope Protection</td>
<td></td>
<td>Riprap on upstream slope has light brush growth - otherwise good</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toes</td>
<td></td>
<td>None noted</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>NAC</td>
<td>Slight seepage at right abutment, not significant at the present time (1/2 GPM). Approximately 1 to 2 GPM of seepage from rockfill covering waste pipe outlet. Water was clear with rust-colored staining on the ground</td>
</tr>
<tr>
<td>Piping or Boils</td>
<td></td>
<td>None noted</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td></td>
<td>None noted</td>
</tr>
<tr>
<td>Toe Drains</td>
<td></td>
<td>None noted</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>NAC</td>
<td>None noted</td>
</tr>
<tr>
<td>PRINCIPAL SPILLWAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete Erosion</td>
<td>PA</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>Up to 4 inches deep</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>BY</td>
<td>CONDITIONS AND REMARKS</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>------------------------</td>
</tr>
<tr>
<td>Spalling</td>
<td>PR</td>
<td>None noted</td>
</tr>
<tr>
<td>Cracking</td>
<td>PR</td>
<td>None noted</td>
</tr>
<tr>
<td>Efflorescence</td>
<td>PR</td>
<td>None noted</td>
</tr>
<tr>
<td>Rusting or Staining of Concrete</td>
<td></td>
<td>None noted</td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
<td>None noted</td>
</tr>
<tr>
<td>Wood Footbridge</td>
<td></td>
<td>Plank missing</td>
</tr>
<tr>
<td>Metal Railing</td>
<td></td>
<td>Good</td>
</tr>
<tr>
<td>LEFT END WALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td></td>
<td>Fair</td>
</tr>
<tr>
<td>Erosion</td>
<td></td>
<td>At interface of wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and rock. Erosion at</td>
</tr>
<tr>
<td></td>
<td></td>
<td>angle point in wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 feet long, 18 inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high, and 12 inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>deep</td>
</tr>
<tr>
<td>Spalling</td>
<td>CN</td>
<td>None noted</td>
</tr>
<tr>
<td>Cracking</td>
<td>CN</td>
<td>Minor</td>
</tr>
<tr>
<td>Efflorescence</td>
<td>CN</td>
<td>None noted</td>
</tr>
<tr>
<td>Rusting or Staining of Concrete</td>
<td></td>
<td>None noted</td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
<td>At angle point in wall</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>BY</td>
<td>CONDITIONS AND REMARKS</td>
</tr>
<tr>
<td>------------------------</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>GATEHOUSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation</td>
<td>PR</td>
<td>Erosion 12 inches high, 12 inches wide, and 6 inches deep at left upstream corner</td>
</tr>
<tr>
<td>Bearing Walls</td>
<td></td>
<td>Good</td>
</tr>
<tr>
<td>Wood Framed Roof</td>
<td>PR</td>
<td>Good</td>
</tr>
<tr>
<td>RESERVOIR AREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slopes</td>
<td>MK</td>
<td>Generally shallow to moderate slope. Appear to be stable and in good condition</td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA
BABBIDGE RESERVOIR DAM ROXBURY, NEW HAMPSHIRE

SITE PLAN

FILE No. 2605

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS

FILE No. 2605

BABBIDGE RESERVOIR DAM ROXBURY, NEW HAMPSHIRE

SCALE 1' = 60

DATE JUNE 1961

GOLDENBERG ZONO & ASSOCIATES, INC.

GEOTECHNICAL - GEOMORPHOLOGICAL CONSULTANTS

NEWTON UPPER FALLS, MASSACHUSETTS

U.S. ARMY ENGINEER DIV. NEW ENGLAND

CORPS OF ENGINEERS

WALTHAM, MASSACHUSETTS
CITY OF KEENE
NEW HAMPSHIRE
ROARING BROOK DAM
IN THE DAKIN MEADOW
ROXBURY, N.H.
PLAN
Scale 1'-10"
JUNE 1931
WESTON & SAMPTON
Consulting Engineers
14 Beacon St., Boston, Mass.
Contour Plan of Dam Site
For
The City of Kalamazoo
In
Kalamazoo County
Scale: 1 in. = 100 ft.
Contour Interval: 1 foot
ROARING BROOK DAM
IN THE DAKIN MEADOW
ROXBURY, N.H.
CONTOUR PLAN

CITY OF KEENE
NEW HAMPSHIRE
WELLS GROVE BROOK DAM

ELEVATION AND SECTIONS

CITY OF KEENE
NEW HAMPSHIRE

ROARING BROOK DAM
IN THE DAKIN MEADOW
ROXBURY, N.H.

ELEVATION AND SECTIONS
Scales as Noted

Sectional Elevation on F-F
Scale 1/1

Plan

Section of Spillway on C-C
Scale 1/1

C-C

Sectional Elevation on C-C
Scale 1/1

B-B

C-C

Sectional Elevation on B-B
Scale 1/1

Plan

Section of Spillway on B-B
Scale 1/1

A-A
City of Keene
New Hampshire
Roaring Brook Dam
In the Dakin Meadow
Roxbury, N.H.
Gate Chamber, Gate House and Details
Scale 1\footnotesize{\text{-}}1

June 1931

B-9
<table>
<thead>
<tr>
<th>NEW HAMPSHIRE WATER RESOURCES BOARD</th>
<th>U.S. CORPS OF ENGINEERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVENTORY OF DAMS</td>
<td></td>
</tr>
<tr>
<td>SITE EVALUATION DATA</td>
<td></td>
</tr>
<tr>
<td>Quad. Monadnock</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID No.</th>
<th>NH No.</th>
<th>C.O.E. No.</th>
<th>NAME OF IMPOUNDMENT</th>
<th>POPULAR NAME</th>
<th>OWNER(S)</th>
<th>ADDRESS</th>
<th>ZIP CODE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>20603</td>
<td>398</td>
<td>Patlidge</td>
<td></td>
<td>Keene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIVER OR STREAM</th>
<th>EXISTING DOWNSTREAM DEVELOPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otter Brook Tributary</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOWNSTREAM HAZARD:</th>
<th>3 = Low</th>
<th>2 = Significant</th>
<th>1 = High</th>
<th>NO Hazard</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TYPE OF DAM:</th>
<th>Earth, Rockfill, Gravity, Buttress, Arch, Timber Crib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>With concrete step by section</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PURPOSE:</th>
<th>Irr., Hydro., Fld. Control, Water Supply, Rec., Wildlife Mgt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>3:1 upstr. slope 2:1 down str.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEIGHT:</th>
<th>Structural 28'</th>
<th>Hydraulic 28'</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>POND SIZE (acres):</th>
<th>10 acres</th>
<th>AVERAGE DEPTH (feet):</th>
<th>15'</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DAM CREST LENGTH (bank to bank):</th>
<th>255'</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPILLWAY:</th>
<th>Controlled, Uncontrolled, None</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDTH:</td>
<td>39'</td>
</tr>
<tr>
<td>FREEBOARD:</td>
<td>5.9'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTLET WORKS:</th>
<th>4 bays 9'2' long 5.9' high step by section 3.4' side</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP TOL</td>
<td>Present</td>
</tr>
</tbody>
</table>

| **REMARKS:** | **Spillway section - top of spill section to base of structure on lodge is 13.9'** |

<table>
<thead>
<tr>
<th>D.A. 5.5 SQ.MI.</th>
</tr>
</thead>
</table>
January 13, 1977

Mr. George M. McGee, Sr.
State of New Hampshire
Water Resources Board
Concord, New Hampshire 03301

Dear Mr. McGee:

This letter is in reference to your letter dated December 20, 1976 pertaining to (Dam #206.01 and Dam #206.03) and letter dated January 5, 1977 pertaining to (Dam #126.03).

As of this date, all work done has been completed as per your request on Dam #206.03.

The work on Dam #206.01 will be started in May 1977 when the snow has gone and spring conditions permit vehicles being able to get to this dam.

This work should be accomplished within two (2) weeks from the starting date.

Dam #126.03, the work will start during the week of January 17th and should be completed by February 1, 1977.

Very truly yours,

George M. Gline
DIRECTOR OF PUBLIC WORKS

GMG:eam
NEW HAMPSHIRE WATER RESOURCES BOARD

INSPECTION REPORT

Town: Roxbury Dam Number: 206.03

Name of Dam, Stream and/or Water Body: Babbage Res

Owner: Keene Water Works Telephone Number:

Mailing Address:

Max. Height of Dam: 16' Pond Area: 32 Length of Dam: 215'

FOUNDATION: Hardpan & ledge

OUTLET WORKS:

4 - 9' stoplog sections water about 3\text{"} above
crest

16\text{"} x 12\text{"} water system In take pipe

20\text{"} waste pipe

ABUTMENTS:

EMBANKMENT:

Earth Embankment 2'2'' to 1 section with riprap
downstream With many trees

Note: Give Sizing, Condition and detailed description for each item, if applicable.
SPILLWAY:
Length: 40' 9''
Freeboard: Total 6'

SEEPAGE:
Location, estimated quantity, etc.

Changes Since Construction or Last Inspection:

Tail Water Conditions:

Overall Condition of Dam: Good

Contact With Owner:

Date of Inspection: 2-3 Nov 76
Suggested Reinspection Date __________

Class of Dam: ____________________

Signature _______________________
Date ___________________________

Note: Give Sizing, Condition and detailed description for each item, if applicable.
Dec. 20, 1976

Director,
Keene Water Works
Keene, N. H 03431

Dear Sir:

Under the provisions of RSA 482, Section 8 thru 15, on Nov. 30, 1976, an engineer of the Water Resources Board staff inspected four dams in the Town of Roxbury owned by the Keene Water Works. These dams, on Woodward Pond (Dam #20b.01) and on Babbage Reservoir (Dam #206.03) are classified in the files of this office as menace structures and as such must be maintained in a manner not to endanger public safety nor become a dam in disrepair.

As a result of this inspection it was noted that several items of maintenance or repairs in need of attention.

Woodward Pond (Dam #20b.01)

1. The west abutment wall at the overflow spillway is cracked and is tipping into the spillway. This is to be repaired to prevent water from washing around the spillway.

2. There is a small area to the West of the outlet pipe where water appears to be seeping under or through the embankment. This seepage is to be stopped to prevent the possible undermining and washout of the embankment.

Babbage Reservoir (Dam #206.03)

1. Trees that are on the embankment are to be removed. This is to prevent possible damage by the roots or an entire tree being uprooted.
Because these dams are classified as menace structures we require that you send us a proposed schedule of repairs within thirty days. This is not to say that the work is to be completed or even started within this time but that we would like your anticipated dates that this work will take place.

If we can be of any assistance or you have any questions please contact us at your convenience.

Very truly yours,

George M. McGee, Sr.
Chairman
WATER CONTROL COMMISSION
STATE OF NEW HAMPSHIRE

Concord, New Hampshire
October 13, 1938.

Keene Water Board,
Keene, N H

RE: Babcock Rest Dam. N. C. C. No. 0303.03

Gentlemen:

In order that we may determine the magnitude and extent of the flood of September 21-24 just passed, we are requesting the various dam owners in the State to supply us with the following information:

1. Was this dam injured? Ans. No
2. If so, to what extent? Ans.
3. Did all flashboards go out? Ans. 2 - 9 flashboards.
4. What was the maximum height of water over the permanent crest of spillway? Ans. 3'-6"
5. At what day and hour did the maximum flood height reach your dam? Ans. Some time, Sept. 22.
6. Any other interesting information regarding the flood or rainfall may be given on the back of this sheet, or attach sheets.

Will you please return this letter with as much information as you can give us as promptly as possible. A self-addressed envelope is attached hereto.

We thank you for your cooperation.

Very truly yours,

Richard S. Holmgren
Chief Engineer

B-16
206.03 Daffage Res.
Condition is good except for slight leaks that are not dangerous.
NEW HAMPSHIRE WATER CONTROL COMMISSION
DATA ON DAMS IN NEW HAMPSHIRE

LOCATION

<table>
<thead>
<tr>
<th>Town</th>
<th>Roxbury</th>
<th>County</th>
<th>Cheshire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
<td>Babbage</td>
<td>Basin-Primary</td>
<td>Connecticut</td>
</tr>
<tr>
<td>Local Name</td>
<td></td>
<td>Coordinates-Lat. : Long.</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL DATA

<table>
<thead>
<tr>
<th>Drainage area: Controlled</th>
<th>Sq. Mi.: Uncontrolled</th>
<th>Sq. Mi.: Total</th>
<th>Overall length of dam</th>
<th>Date of Construction</th>
<th>Height: Stream bed to highest elev</th>
<th>Max. Structure</th>
<th>Cost-Dam</th>
<th>Reservoir</th>
</tr>
</thead>
</table>

DESCRIPTION

Earthen fill, earth, stone, and concrete

Waste Gates

<table>
<thead>
<tr>
<th>Type</th>
<th>1½" pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Size: ft. high x ft. wide</td>
</tr>
<tr>
<td>Elevation Invert</td>
<td>Total Area: sq. ft.</td>
</tr>
<tr>
<td>Hoist</td>
<td></td>
</tr>
</tbody>
</table>

Waste Gates Conduit

<table>
<thead>
<tr>
<th>Number</th>
<th>Materials</th>
</tr>
</thead>
</table>

Embankment

<table>
<thead>
<tr>
<th>Type</th>
<th>Height: Max. ft.: Min. ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-Width</td>
<td>Elev. ft.</td>
</tr>
<tr>
<td>Slopes-Upstream</td>
<td>on.</td>
</tr>
<tr>
<td>Length-Right of Spillway</td>
<td>Left of Spillway</td>
</tr>
</tbody>
</table>

Spillway

<table>
<thead>
<tr>
<th>Materials of Construction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of permanent section-Max.</td>
<td>ft.</td>
</tr>
<tr>
<td>Flashboards-Type</td>
<td>Removable</td>
</tr>
<tr>
<td>Elevation-Permanent Crest: Top of Flashboard</td>
<td></td>
</tr>
<tr>
<td>Flood Capacity</td>
<td>2100 cfs: 300 cfs/sq. mi.</td>
</tr>
</tbody>
</table>

Abutments

<table>
<thead>
<tr>
<th>Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeboard: Max.</td>
</tr>
</tbody>
</table>

Headworks to Power Devel.—(See "Data on Power Development")

OWNER

| City of Keene |

REMARKS

Condition fair, water supply

Tabulation By	G.S.W.	Date

B-18
New Hampshire Water Resources Board

Inventory of Dams and Water Power Developments

Dam

<table>
<thead>
<tr>
<th>Basin</th>
<th>Connecticut</th>
<th>No.</th>
<th>206.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>River</td>
<td>Rabbits Reservoir</td>
<td>Miles From Mouth</td>
<td>60</td>
</tr>
<tr>
<td>Town</td>
<td>City of Keans</td>
<td>Dam Sq. Mi</td>
<td>6.0</td>
</tr>
<tr>
<td>Local Name of Dam</td>
<td>Rabbits Reservoir</td>
<td>Owner</td>
<td>City of Keans</td>
</tr>
<tr>
<td>BUILT</td>
<td>1921</td>
<td>DESCRIPTION</td>
<td>Stone Cement</td>
</tr>
</tbody>
</table>

- Foundation: Hardpan & ledge foundation
-超水位: 浮动水位

<table>
<thead>
<tr>
<th>Pond Area (Acres)</th>
<th>10</th>
<th>Drawdown (ft)</th>
<th>Pond Capacity (Acres Ft. 400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (Top to Bed of Stream) (ft)</td>
<td>50</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>Overall Length of Dam (ft)</td>
<td>300</td>
<td>Hixon Flood Height Above Crest (ft)</td>
<td></td>
</tr>
<tr>
<td>Permanent Crest Elevation (U.S.G.S.)</td>
<td>Local Gage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailwater Elevation (U.S.G.S.)</td>
<td>Local Gage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillway Lengths (ft)</td>
<td>20</td>
<td>Max.</td>
<td>Min.</td>
</tr>
</tbody>
</table>
| Flashboards - Type, Height and oversized Crest | 2.75 ft "Concrete Stirrups"
| Waste Gates - No. with Max. Opening | Depth Sill Below Crest |

Remarks

- Designed by Western Cape, B-70
- Capacity: 150,000,000 gal. Colddiff Sept.

Power Development

<table>
<thead>
<tr>
<th>Units No.</th>
<th>Rated HP</th>
<th>Head Feet</th>
<th>C.F.S.</th>
<th>Full Gate</th>
<th>KW</th>
<th>Name</th>
</tr>
</thead>
</table>

- Use: Water Supply

Remarks

- Date: 1925 F-28
APPENDIX C

PHOTOGRAPHS
1. Overview of Downstream Slope From Left Abutment

2. Downstream Channel
3. Downstream Right Slope. Note: Tree and Brush Growth

4. Downstream Left Slope. Note: Tree and Brush Growth and Stumps
5. Seepage Emanating From Rock Fill at Downstream Toe. This is Probably the Location of the Outlet Pipe
6. Deterioration of Concrete at the Base of the Gate House
7. Downstream Side of Spillway

8. Downstream Channel Showing Retaining Wall
9. Downstream Section of Retaining Wall

10. Deterioration of Concrete at Bend in Retaining Wall
APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS
BABBIDGE DAM

Babbidge Dam is an earth fill structure with a crest length of 215 feet at elevation 977, and a 36 foot long stop log spillway section. The stop log section consists of four bays each 9 feet wide. The overall length of the dam is 255 feet. Part of the dam structure also contains a gate house with two water supply intake pipes (1.3 and 1.7 foot diameter) and a 2 foot diameter outlet pipe. For the purposes of this report, the outlet pipe will be assumed not opened during flood conditions and hence is neglected from the discharge capacity calculations. Shown on the next page is a sketch of the dam.

Stage-Discharge Curve

The stage discharge curve applies to the conditions depicted in the sketch. The significant features are:

1. A 215 foot wide dam crest at elevation 977.0.
2. A 36 foot wide stop log section at elevation 974.4.
3. The overbank slopes at 1:1.5 and 1:2.5 for the left and right side of the structure, respectively.

The discharge formulas for these conditions are as follows:
BABBIDGE DAM
(Looking Downstream)

From Site Plans (December 1931), and Field Notes

NOT TO SCALE
From $H = 0$ to $H = 2.6$ feet ($H = 0.0$ at elevation 974.4)

\[Q_1 = 3.2 \times 36 (H)^{1.5} \]

$H > 2.6$ feet

\[Q_1 = 3.2 \times 36 (H)^{1.5} \]

\[Q_2 = 3.1 \times 215 (H - 2.6)^{1.5} \]

\[Q_3 = 2.8 \times 2.5(H - 2.6)(.5(H - 2.6))^{1.5} \]

\[Q_4 = 2.8 \times 1.5(H - 2.6)(.5(H - 2.6))^{1.5} \]

Shown on the next pages are the BASIC program using the above formulas, a stage discharge table and stage-discharge curve.
100 REM STAGE/DISCHARGE CURVE FOR BABBIDGE DAM
110 REM - STORED ON TAPE B-1 FILE 23
120 PAGE
130 PRINT USING 140;
140 IMAGE 10T:"STAGE VS. DISCHARGE RELATIONSHIP FOR BABBIDGE DAM"
150 PRINT USING 160;
160 IMAGE /1T:"HEAD"
170 PRINT USING 180;
180 IMAGE 1T"(FT.ABOVE LOGS)"
190 PRINT USING 200:
200 IMAGE 13T"SPILLWAY"2ST"DAM"35T"ABUTMENTS"47T"TOTAL"
210 FOR H1=36.4 TO 42.4 STEP 0.2
220 01=0
230 02=0
240 03=0
250 04=0
255 05=0
256 06=0
257 H=H1-36.4
260 01=3.2*36*H1.5
270 IF H<=2.6 THEN 310
280 02=3.1*155*(H-2.6)1.5
290 03=2.8*2.5*(H-2.6)*(0.5*(H-2.6))1.5
300 04=2.8*1.5*(H-2.6)*(0.5*(H-2.6))1.5
310 05=01+02+03+04
320 06=03+04
330 PRINT USING 340:H,01,02,06,05
340 IMAGE 2D.2D,11D.2D,6D.2D,9D.2D,9D.2D
350 NEXT H1
360 END
Stage vs. Discharge Relationship for Babidge Dam

Head (ft. above logs) vs. Discharge (CFS)

<table>
<thead>
<tr>
<th>Head</th>
<th>Spill Way</th>
<th>Dam</th>
<th>Abutments</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.20</td>
<td>10.30</td>
<td>0.00</td>
<td>0.00</td>
<td>10.30</td>
</tr>
<tr>
<td>0.40</td>
<td>29.14</td>
<td>0.00</td>
<td>0.00</td>
<td>29.14</td>
</tr>
<tr>
<td>0.60</td>
<td>53.54</td>
<td>0.00</td>
<td>0.00</td>
<td>53.54</td>
</tr>
<tr>
<td>0.80</td>
<td>82.43</td>
<td>0.00</td>
<td>0.00</td>
<td>82.43</td>
</tr>
<tr>
<td>1.00</td>
<td>115.20</td>
<td>0.00</td>
<td>0.00</td>
<td>115.20</td>
</tr>
<tr>
<td>1.20</td>
<td>151.43</td>
<td>0.00</td>
<td>0.00</td>
<td>151.43</td>
</tr>
<tr>
<td>1.40</td>
<td>190.83</td>
<td>0.00</td>
<td>0.00</td>
<td>190.83</td>
</tr>
<tr>
<td>1.60</td>
<td>233.15</td>
<td>0.00</td>
<td>0.00</td>
<td>233.15</td>
</tr>
<tr>
<td>1.80</td>
<td>278.20</td>
<td>0.00</td>
<td>0.00</td>
<td>278.20</td>
</tr>
<tr>
<td>2.00</td>
<td>325.83</td>
<td>0.00</td>
<td>0.00</td>
<td>325.83</td>
</tr>
<tr>
<td>2.20</td>
<td>375.91</td>
<td>0.00</td>
<td>0.00</td>
<td>375.91</td>
</tr>
<tr>
<td>2.40</td>
<td>428.32</td>
<td>0.00</td>
<td>0.00</td>
<td>428.32</td>
</tr>
<tr>
<td>2.60</td>
<td>482.96</td>
<td>0.00</td>
<td>0.00</td>
<td>482.96</td>
</tr>
<tr>
<td>2.80</td>
<td>539.75</td>
<td>59.61</td>
<td>0.07</td>
<td>599.43</td>
</tr>
<tr>
<td>3.00</td>
<td>598.60</td>
<td>168.61</td>
<td>0.40</td>
<td>767.61</td>
</tr>
<tr>
<td>3.20</td>
<td>659.44</td>
<td>309.76</td>
<td>1.10</td>
<td>970.31</td>
</tr>
<tr>
<td>3.40</td>
<td>722.22</td>
<td>476.91</td>
<td>2.27</td>
<td>1201.40</td>
</tr>
<tr>
<td>3.60</td>
<td>786.88</td>
<td>666.50</td>
<td>3.96</td>
<td>1457.34</td>
</tr>
<tr>
<td>3.80</td>
<td>853.35</td>
<td>876.14</td>
<td>6.25</td>
<td>1735.73</td>
</tr>
<tr>
<td>4.00</td>
<td>921.60</td>
<td>1104.06</td>
<td>9.18</td>
<td>2034.84</td>
</tr>
<tr>
<td>4.20</td>
<td>991.58</td>
<td>1348.90</td>
<td>12.82</td>
<td>2353.30</td>
</tr>
<tr>
<td>4.40</td>
<td>1063.24</td>
<td>1609.57</td>
<td>17.21</td>
<td>2690.02</td>
</tr>
<tr>
<td>4.60</td>
<td>1136.55</td>
<td>1885.15</td>
<td>22.40</td>
<td>3044.10</td>
</tr>
<tr>
<td>4.80</td>
<td>1211.47</td>
<td>2174.87</td>
<td>28.43</td>
<td>3414.78</td>
</tr>
<tr>
<td>5.00</td>
<td>1287.98</td>
<td>2478.09</td>
<td>35.33</td>
<td>3801.40</td>
</tr>
</tbody>
</table>
\[Q_1 = 3.0 \left(\frac{?6}{25} \right) ^{1/5} \]
\[Q_2 = 3.1 \left(\frac{?5}{25} \right) ^{1/5} \]
\[Q_2 = 2.8 + 2.5 \left(\frac{?}{25} \right) \left(0.5 \left(\frac{?}{25} \right) \right) ^{1/5} \]
\[Q_4 = 2.8 \left(\frac{?}{25} \right) \left(0.5 \left(\frac{?}{25} \right) \right) ^{1/5} \]

Loss removed - H = 4 in core, base 1.5 in

<table>
<thead>
<tr>
<th>(H)</th>
<th>(Q_1)</th>
<th>(Q_2)</th>
<th>(Q_2 + Q_4)</th>
<th>Total (Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>108</td>
<td></td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>2</td>
<td>305</td>
<td></td>
<td>305</td>
<td>305</td>
</tr>
<tr>
<td>3</td>
<td>561</td>
<td></td>
<td>561</td>
<td>561</td>
</tr>
<tr>
<td>4</td>
<td>864</td>
<td></td>
<td>864</td>
<td>864</td>
</tr>
<tr>
<td>5</td>
<td>1207</td>
<td></td>
<td>1207</td>
<td>1207</td>
</tr>
<tr>
<td>6</td>
<td>1587</td>
<td></td>
<td>1587</td>
<td>1587</td>
</tr>
<tr>
<td>7</td>
<td>2000</td>
<td>667</td>
<td>2667</td>
<td>2667</td>
</tr>
<tr>
<td>8</td>
<td>2444</td>
<td>1385</td>
<td>3831</td>
<td>4351</td>
</tr>
<tr>
<td>9</td>
<td>2976</td>
<td>2003</td>
<td>5023</td>
<td>6446</td>
</tr>
<tr>
<td>10</td>
<td>3415</td>
<td>5012</td>
<td>8427</td>
<td>8760</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From Rating Curve:

Spillway Capacity = 1590 cfs.

Test Flood outflow of 5,500 cfs would create a stage of about 2.6 ft above the slab.

Spillway capacity is \(\frac{1590}{5500} \times 100\% = 30\\% \)

of the Peak Test Flood outflow.
Stage-Storage Relationship

The normal storage behind Babbidge Dam (with the water at the stop log elevation) is about 450 acre-feet. The surface area of the pond is about 30 acres. Assuming no spreading as the pond rises:

\[h = \text{feet above streambed} \]
\[\text{surcharge storage} = 30 (h - 36.4) \]
\[\text{total storage} = 450 + 30 (h - 36.4) \]

For the drainage area of 5.5 square miles:

\[1 \text{ inch of runoff} = \frac{5.5 \times 640}{12 \times \text{(in/ft)}} = 295 \text{ acre-feet} \]
\[1 \text{ acre-foot} = \frac{1}{295} = .0034 \text{ inches of runoff} \]

Surcharge storage to dam crest = 30 \times 2.5 = 78 \text{ acre-feet} \text{ inches of runoff} \]

At the dam crest, total storage = 450 + 78 = 528 acre-feet.
Dam Failure Analysis

Assume failure occurs when water overtops the dam crest and abutments, \(h = 2.6 \), 977 feet msl.

Peak Failure Outflow = Normal Flow + Breach Outflow

Normal Flow, from Discharge Curve = 485 cfs

Breach Outflow = \(Q_p = \frac{8}{27} \sqrt{g} W_b Y_o^{3/2} \)

\(Y_o \) = water surface height above channel invert at failure
\[Y_o = 977 - 938 = 39 \text{ feet} \]

\(W_b \leq .4 \) (width at 1/2 height)

1/2 height = 20 feet; elevation 958

From site plans, width at 1/2 height = 110 feet

\(W_b \leq .4 \) (110) = 44 feet

\[Q_p = \frac{8}{27} \sqrt{g} (44) (39)^{1.5} = 18,000 \text{ cfs} \]

Peak Failure Outflow = 18,000 + 485 = 18,485 cfs

On the next page is shown a typical cross section for Roaring Brook just downstream of the dam.
The stage-normal flow relationship for this reach is given on the next two pages. A pre-failure flow of 485 cfs would cause a stage of about 2.8 feet in the stream below the dam. At the failure flow of 18,485 cfs, however, the stage would rise to a height of 15.1 feet above the streambed, an increase of 12.3 feet.

Total storage behind the dam above the tailwater level would be $450 + 30 \times (2.6) = 528$ acre-feet. In the reach between the dam and a road one mile downstream, some attenuation of the failure flow would occur. The calculations for the attenuation are shown following the normal flow table. (Reach Storage = Length x Average Area; Average Area = \(\frac{\text{Area Upstream} + \text{Area Downstream}}{2}\). The area of the failure wave at the upstream end is 797 sq. ft.).
<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>ELEV (ft.)</th>
<th>AREA (ft.²)</th>
<th>WPER (ft.)</th>
<th>HYD-R (ft.)</th>
<th>AR2/3</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.50</td>
<td>0.5</td>
<td>5.2</td>
<td>11.2</td>
<td>0.5</td>
<td>3.1</td>
<td>28.1</td>
</tr>
<tr>
<td>1.00</td>
<td>1.0</td>
<td>10.6</td>
<td>12.4</td>
<td>0.9</td>
<td>9.6</td>
<td>87.7</td>
</tr>
<tr>
<td>1.50</td>
<td>1.5</td>
<td>16.4</td>
<td>13.5</td>
<td>1.2</td>
<td>18.6</td>
<td>170.2</td>
</tr>
<tr>
<td>2.00</td>
<td>2.0</td>
<td>22.5</td>
<td>14.7</td>
<td>1.5</td>
<td>29.9</td>
<td>272.5</td>
</tr>
<tr>
<td>2.50</td>
<td>2.5</td>
<td>28.9 a</td>
<td>15.9</td>
<td>1.8</td>
<td>43.1</td>
<td>392.9</td>
</tr>
<tr>
<td>3.00</td>
<td>3.0</td>
<td>35.6 b</td>
<td>17.1</td>
<td>2.1</td>
<td>58.2</td>
<td>530.7</td>
</tr>
<tr>
<td>3.50</td>
<td>3.5</td>
<td>42.7</td>
<td>18.3</td>
<td>2.3</td>
<td>75.1</td>
<td>685.4</td>
</tr>
<tr>
<td>4.00</td>
<td>4.0</td>
<td>50.0</td>
<td>19.4</td>
<td>2.6</td>
<td>93.9</td>
<td>856.6</td>
</tr>
<tr>
<td>4.50</td>
<td>4.5</td>
<td>58.8</td>
<td>24.5</td>
<td>2.4</td>
<td>105.2</td>
<td>1083.6</td>
</tr>
<tr>
<td>5.00</td>
<td>5.0</td>
<td>70.0</td>
<td>29.6</td>
<td>2.4</td>
<td>124.2</td>
<td>1340.7</td>
</tr>
<tr>
<td>5.50</td>
<td>5.5</td>
<td>83.8</td>
<td>34.7</td>
<td>2.4</td>
<td>150.6</td>
<td>1633.1</td>
</tr>
<tr>
<td>6.00</td>
<td>6.0</td>
<td>100.0</td>
<td>39.8</td>
<td>2.5</td>
<td>184.7</td>
<td>1965.0</td>
</tr>
<tr>
<td>6.50</td>
<td>6.5</td>
<td>118.8</td>
<td>44.9</td>
<td>2.6</td>
<td>227.0</td>
<td>2340.3</td>
</tr>
<tr>
<td>7.00</td>
<td>7.0</td>
<td>140.0</td>
<td>50.0</td>
<td>2.8</td>
<td>278.0</td>
<td>2762.4</td>
</tr>
<tr>
<td>7.50</td>
<td>7.5</td>
<td>163.8</td>
<td>55.1</td>
<td>3.0</td>
<td>338.4</td>
<td>3234.5</td>
</tr>
<tr>
<td>8.00</td>
<td>8.0</td>
<td>190.0</td>
<td>60.2</td>
<td>3.2</td>
<td>408.7</td>
<td>3759.8</td>
</tr>
<tr>
<td>8.50</td>
<td>8.5</td>
<td>218.8</td>
<td>65.3</td>
<td>3.3</td>
<td>489.6</td>
<td>4341.2</td>
</tr>
<tr>
<td>9.00</td>
<td>9.0</td>
<td>250.0</td>
<td>70.4</td>
<td>3.5</td>
<td>581.8</td>
<td>4981.8</td>
</tr>
<tr>
<td>9.50</td>
<td>9.5</td>
<td>283.8</td>
<td>75.5</td>
<td>3.8</td>
<td>685.8</td>
<td>5684.1</td>
</tr>
<tr>
<td>10.00</td>
<td>10.0</td>
<td>320.0</td>
<td>80.6</td>
<td>4.0</td>
<td>802.2</td>
<td>6451.1</td>
</tr>
<tr>
<td>10.50</td>
<td>10.5</td>
<td>358.8</td>
<td>85.7</td>
<td>4.2</td>
<td>931.7</td>
<td>7285.3</td>
</tr>
<tr>
<td>11.00</td>
<td>11.0</td>
<td>400.0</td>
<td>90.8</td>
<td>4.4</td>
<td>1074.8</td>
<td>8189.3</td>
</tr>
<tr>
<td>11.50</td>
<td>11.5</td>
<td>443.8</td>
<td>95.9</td>
<td>4.6</td>
<td>1232.1</td>
<td>9165.7</td>
</tr>
<tr>
<td>12.00</td>
<td>12.0</td>
<td>490.0</td>
<td>101.0</td>
<td>4.9</td>
<td>1404.1</td>
<td>10216.9</td>
</tr>
<tr>
<td>12.50</td>
<td>12.5</td>
<td>538.8</td>
<td>106.1</td>
<td>5.1</td>
<td>1591.4</td>
<td>11345.4</td>
</tr>
<tr>
<td>13.00</td>
<td>13.0</td>
<td>590.0</td>
<td>111.2</td>
<td>5.3</td>
<td>1794.6</td>
<td>12553.5</td>
</tr>
<tr>
<td>13.50</td>
<td>13.5</td>
<td>643.8</td>
<td>116.3</td>
<td>5.5</td>
<td>2014.2</td>
<td>13843.7</td>
</tr>
<tr>
<td>14.00</td>
<td>14.0</td>
<td>700.0</td>
<td>121.4</td>
<td>5.8</td>
<td>2250.7</td>
<td>15218.3</td>
</tr>
<tr>
<td>14.50</td>
<td>14.5</td>
<td>758.8</td>
<td>126.5</td>
<td>6.0</td>
<td>2504.6</td>
<td>16679.5</td>
</tr>
<tr>
<td>15.00</td>
<td>15.0</td>
<td>820.0</td>
<td>131.6</td>
<td>6.2</td>
<td>2776.5</td>
<td>18229.6</td>
</tr>
</tbody>
</table>
Attenuated Peak Dam Failure Flow One Mile Downstream

Stage versus Normal Flow

Stage = 14.2

Normal Flow (cfs)

16,000

17,000

18,000

19,000

20,000

21,000

22,000

23,000

24,000

25,000

26,000

27,000

28,000

29,000

30,000

31,000

32,000

33,000

34,000

35,000

Area above 5' = \(A = \frac{K}{2} \times L \times T \)

\(K = \frac{485}{\sqrt{15}} \)

\(T = 485 + 16,000 \times (1 - 5\%) \)

\(L = 5200 \)

\(A = 51.4 \times 11 \)
The attenuated dam failure flow at the downstream end of the reach is 15,900 cfs, with a stage of 14.2 feet. Although this stage is rather high, no structures exist within this reach and so no significant damage will be incurred. At the end of this reach, however, Roaring Brook flows through a 16 foot wide by 6 foot high box culvert, with the top of the road only 2 feet above the crown of the culvert.

On the downstream side of the culvert are four houses which are all slightly above the roadway elevation. On the upstream side are two houses; one is about 5 feet above the roadway elevation and the other is about 3 feet above the roadway elevation. It is expected that this area would be severely damaged by the failure flow wave and the threat of loss of life here would be serious. The roadway would also be affected.

Immediately downstream of the road, Roaring Brook enters Otter Brook. Along the banks of Otter Brook are three houses which are about 6 feet above the streambed. A typical cross section and rating curve table for Otter Brook are given on the next pages.

The reach between the confluence of Otter Brook and Roaring Brook and the downstream confluence of Otter Brook and Minnewawa Brook is about 6250 feet. It will be assumed that at pre-failure the stream depth is about 4 feet, with a flow of 930 cfs. Adding the attenuated peak
dam failure flow gives approximately 16,800 cfs and a stage of about 14.7 feet at the upstream end of this reach. The flow area at the upstream end would be about 1348 square feet (1460 - 112). The attenuation due to stream storage is shown on the next page.

As shown in the calculations, the attenuated peak stage at the end of this reach is 12.9 feet above the streambed. Otter Brook then merges with Minnewawa Brook and the peak stage is further reduced. Although further damage is possible in the area of South Keene, it is expected that the wider channel of Otter Brook would reduce the peak stage enough so that the damage would be minor as compared to the damage potential at the junction of Roaring Brook and Otter Brook.
Reach on Otter Brook

\[Q_2 = 330 + h \left(1 - \frac{\text{STOR}}{575} \right) = 330 + 1.5\text{,}000(1 - \frac{\text{STOR}}{575}) \]

<table>
<thead>
<tr>
<th>Stage (feet)</th>
<th>Area above 4.0 feet</th>
<th>STOR = AREA x 1348</th>
<th>4250</th>
<th>(Q_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>998</td>
<td>168.0</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>600</td>
<td>154.3</td>
<td>12,380</td>
<td></td>
</tr>
</tbody>
</table>

Stage versus \(Q_2 \)

\(Q_2 = 12,100 \text{ cfs} \)

Stage = 17.9 feet

Stage versus Normal Flow

10,000 11,000 12,000 13,000 14,000

Normal Flow (cfs)

D-23
Test Flood Analysis

Size Classification: SMALL (storage between 50 and 1000 acre-feet; height less than 40 feet)

Hazard Classification: HIGH

The failure of Babbidge Dam with the water surface at the crest of the dam prior to failure would cause severe damage to some residential houses downstream of the dam. The loss of more than a few lives could be expected. A road about one mile downstream of the dam could be seriously damaged.

The appropriate Test Flood for a dam classified as SMALL in size with a HIGH hazard potential would be between one-half of the Probable Maximum Flood (PMF) and the PMF. Since the hazard potential of the dam is at the lower end of HIGH, one-half the PMF is the appropriate Test Flood.

The terrain of the Babbidge Reservoir drainage area is both rolling and mountainous, and with a drainage area of 5.5 square miles. A PMF discharge rate of 2000 cfs/square mile is appropriate for this type of terrain and drainage area. This results in a PMF inflow of 11,000 cfs. One-half of the PMF is 5,500 cfs.

For a peak test flood inflow of 5,500 cfs, the attenuation due to storage in this small reservoir would be negligible for a flood of this magnitude, so the routed peak test outflow may be said to be
5,500 cfs. The runoff volume would be about 2655 acre-feet as compared to a reservoir surcharge storage-volume of 78 acre-feet to the dam crest (9 in * 295 acre-feet/in = 2655 acre-feet).

The peak stage for this event would be about 5.8 feet above the stop log level or 980.2 feet msl. This is 3.2 feet above the dam crest and abutments.
APPENDIX E
INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS
NOT AVAILABLE AT THIS TIME
END
DATE
FILMED
8 - 85