PISCATAQUA RIVER BASIN
ROLLINSFORD, NEW HAMPSHIRE

ROLLINSFORD DAM
NH 00396

STATE NO 205.02

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

DECEMBER 1979

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
Rollinsford Dam
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

U.S. ARMY CORPS OF ENGINEERS
NEW ENGLAND DIVISION

DEPT. OF THE ARMY, CORPS OF ENGINEERS
NEW ENGLAND DIVISION, NEDED
424 TRAPELO ROAD, WALTHAM, MA. 02254

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

The dam is a run of the rive split stone and concrete gravity da. It is 385 ft. long adn 20 ft. high. The dam is in fair condition with a few major concerns which must be corrected. It is small in size with a significant hazard potential.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Honorable Hugh J. Gallen
Governor of the State of New Hampshire
State House
Concord, New Hampshire 03301

Dear Governor Gallen:

Inclosed is a copy of the Rollinsford Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Water Resources Board, the cooperating agency for the State of New Hampshire. In addition, a copy of the report has also been furnished the owner, the town of Rollinsford.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Water Resources Board for your cooperation in carrying out this program.

Sincerely,

[Signature]

Max E. Scheider
Colonel, Corps of Engineers
Division Engineer
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT

Identification No.: NH00396
Name of Dam: Rollinsford Dam
Town: Rollinsford
County and State: Strafford County, New Hampshire
River: Salmon Falls River
Date of Inspection: October 25, 1979

BRIEF ASSESSMENT

Rollinsford Dam is a run-of-the-river split-stone and concrete gravity dam. The dam totals 385 feet in length and has a hydraulic height of 20 feet. The northeast abutment consists of a stone masonry wall. At the southwest abutment are remnants of an approach channel, gates, and penstock structure. The approach channel and gate area have been filled with earth and the gate operators have been removed. The dam is located on the eastern boundary of the State of New Hampshire. The dam impounds a reservoir with a maximum storage capacity of 820 acre-feet. The reservoir is 0.9 miles in length with a surface area of 57 acres. The impoundment behind the dam is utilized as one of the main sources of water for fire protection for the Town of Rollinsford.

The dam is in fair condition. Concerns are the major seepage at the base of the dry stone masonry training wall at the southwest end of the spillway; erosion of the ground between the northeast end of the dam and the railroad pier; possible subsidence of earthfill next to the southwest end of the dam; and no usable low-level outlet.

Based on small size and significant hazard classification in accordance with Corps guidelines, the test flood ranges from the 100-year to ½ the Probable Maximum Flood (PMF). Because the dam's size is in the upper range of the size classification, ½ PMF was selected as the test flood. The watershed consists of 230 square miles of gently to moderately sloping partly wooded terrain. The test flood inflow was determined to be 34,500 cfs. Routing through the reservoir resulted in negligible surcharge storage effects in reducing the peak inflow. Therefore the routed test flood outflow equals the peak inflow value of 34,500 cfs (150 csm) at elevation 82' NGVD. The test flood analysis indicates the dam would be overtopped by about 7.4 feet (12 feet over spillway crest) during the test flood conditions. Spillway capacity at top of dam is 7,010 cfs which is 20 percent of the test flood discharge. A major breach of the dam would probably not result in any loss of life but could cause appreciable property damage.

The owner, Town of Rollinsford, should implement the results of the recommendations and remedial measures given in Sections 7.2 and 7.3 within one year after receipt of this Phase I Inspection Report.

Warren A. Guinan
Project Manager
N.H. P.E. 2339
This Phase I Inspection Report on Rollinsford Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

ARAMAST MAHTESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

RICHARD DIBUONO, CHAIRMAN
Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. PRIAR
Chief, Engineering Division
This report is prepared under guidance contained in the
Recommended Guidelines for Safety Inspection of Dams, for
Phase I Investigations. Copies of these guidelines may be
obtained from the Office of Chief of Engineers, Washington,
D.C. 20314. The purpose of a Phase I Investigation is to
identify expeditiously those dams which may pose hazards to
human life or property. The assessment of the general condi-
tion of the dam is based upon available data and visual
inspections. Detailed investigation and analyses involving
topographic mapping, subsurface investigations, testing, and
detailed computational evaluations are beyond the scope of a
Phase I investigation; however, the investigation is intended
to identify any need for such studies.

In reviewing this report, it should be realized that the
reported condition of the dam is based on observations of
field conditions at the time of inspection along with data
available to the inspection team. In cases where the reservoir
was lowered or drained prior to inspection, such action, while
improving the stability and safety of the dam, removes the
normal load on the structure and may obscure certain conditions
which might otherwise be detectable if inspected under the
normal operating environment of the structure.

It is important to note that the condition of a dam depends
on numerous and constantly changing internal and external
conditions, and is evolutionary in nature. It would be
incorrect to assume that the present condition of the dam
will continue to represent the condition of the dam at some
point in the future. Only through continued care and inspec-
tion can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed
hydrologic and hydraulic analyses. In accordance with the
established Guidelines, the Spillway Test flood is based on
the estimated "Probable Maximum Flood" for the region (greatest
reasonably possible storm runoff), or fractions thereof.
Because of the magnitude and rarity of such a storm event,
a finding that a spillway will not pass the test flood should
not be interpreted as necessarily posing a highly inadequate
condition. The test flood provides a measure of relative
spillway capacity and serves as an aid in determining the
need for more detailed hydrologic and hydraulic studies,
considering the size of the dam, its general condition and
the downstream damage potential.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTER OF TRANSMITTAL</td>
<td></td>
</tr>
<tr>
<td>BRIEF ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>REVIEW BOARD PAGE</td>
<td></td>
</tr>
<tr>
<td>PREFACE</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>OVERVIEW PHOTO</td>
<td>vi</td>
</tr>
<tr>
<td>LOCATION MAP</td>
<td>vii</td>
</tr>
</tbody>
</table>

REPORT

Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PROJECT INFORMATION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 General</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Description of Project</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3 Pertinent Data</td>
<td>1-3</td>
</tr>
<tr>
<td>2 ENGINEERING DATA</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Design</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Construction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Operation</td>
<td>2-1</td>
</tr>
<tr>
<td>2.4 Evaluation</td>
<td>2-1</td>
</tr>
<tr>
<td>3 VISUAL INSPECTION</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Findings</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Evaluation</td>
<td>3-2</td>
</tr>
<tr>
<td>4 OPERATIONAL PROCEDURES</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Maintenance of Dam</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Maintenance of Operating Facilities</td>
<td>4-1</td>
</tr>
<tr>
<td>4.4 Description of Any Warning System in Effect</td>
<td>4-1</td>
</tr>
<tr>
<td>4.5 Evaluation</td>
<td>4-1</td>
</tr>
<tr>
<td>5 HYDROLOGIC/HYDRAULIC</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 Evaluation of Features</td>
<td>5-1</td>
</tr>
<tr>
<td>6 STRUCTURAL STABILITY</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1 Evaluation of Structural Stability</td>
<td>6-1</td>
</tr>
<tr>
<td>7 ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES</td>
<td>7-1</td>
</tr>
<tr>
<td>7.1 Dam Assessment</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2 Recommendations</td>
<td>7-1</td>
</tr>
<tr>
<td>7.3 Remedial Measures</td>
<td>7-2</td>
</tr>
<tr>
<td>7.4 Alternatives</td>
<td>7-2</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Designation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VISUAL INSPECTION CHECKLIST</td>
<td>A</td>
</tr>
<tr>
<td>ENGINEERING DATA</td>
<td>B</td>
</tr>
<tr>
<td>PHOTOGRAPHS</td>
<td>C</td>
</tr>
<tr>
<td>HYDROLOGIC AND HYDRAULIC COMPUTATIONS</td>
<td>D</td>
</tr>
<tr>
<td>INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS</td>
<td>E</td>
</tr>
</tbody>
</table>
October 1979

Figure 1 - Overview of Rollinsford Dam.
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT
ROLLINSFORD DAM

SECTION 1
PROJECT INFORMATION

1.1 General

a. Authority. Public Law 92-367, August 8, 1972 authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Anderson-Nichols & Company, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to Anderson-Nichols under a letter of March 22, 1979 from John P. Chandler, Corps of Engineers. Contract No. DACW33-79-C-0050, as changed, has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) To encourage and prepare the States to initiate quickly effective dam safety programs for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location. Rollinsford Dam, commonly known as Salmon Falls River Dam #2, is located in the Towns of Rollinsford, New Hampshire and Berwick, Maine. The dam is a run-of-the-river dam spanning Salmon Falls River approximately 5 miles above its confluence with the Cocheco River. The centerline of the river serves as the boundary between New Hampshire and Maine. The Piscataqua River originates at the confluence of the Salmon Falls and Cocheco Rivers. Rollinsford Dam is shown on USGS 7.5-Minute Quadrangle, Dover East, Maine - New Hampshire and 15-Minute Quadrangle, Dover, New Hampshire - Maine with coordinates approximately at N 43° 14' 17", W 70° 49' 06". Rollinsford is located in Strafford County, New Hampshire and Berwick is located in York County, Maine. (See Location Map, page vii.)
b. Description of Dam and Appurtenances. Rollinsford Dam is a run-of-the-river dam totaling 385 feet in length and having a hydraulic height of 20 feet. The dam is a split-stone and concrete gravity dam. The northeast spillway abutment consists of a stone masonry wall. An earth fill section exists between this abutment 70 feet to a railroad pier. The concrete gravity spillway is 245 feet long and has a sloping downstream face. At the southwest abutment are remnants of an approach channel, gates, and penstock structure. The approach channel and gate area have been filled with earth and the gate operators have been removed. An access road runs perpendicular to the southwest abutment of the dam.

c. Size Classification. Small (hydraulic height - 20 feet; storage - 820 acre-feet) based on storage (≥ 50 to < 1000 acre-feet) as given in Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification. Significant Hazard. A major breach would probably result in no loss of life but could cause appreciable property damage. The pondage behind this dam is utilized as one of the main sources of water for fire protection for the Town of Rollinsford. Therefore, loss of pondage would result in interruption of the services of a public utility. In addition damage to the railroad bridge piers could occur. (See 5.1 f.)

e. Ownership. No records were found which revealed the original owners of the dam. In 1935, the Public Service Company of New Hampshire is reported to have had ownership. According to found records, the Twin State Gas and Electric Company owned the structure in 1940. In 1950 ownership is again listed as Public Service Company of New Hampshire. Ownership was conveyed to the Town of Rollinsford sometime in 1973. The Town of Rollinsford has since remained the owner of the dam.

f. Operator. The current owner and operator of the Rollinsford Dam is the Town of Rollinsford, Rollinsford, New Hampshire.

g. Purpose of Dam. The purpose of the original construction is believed to have been for water power production for the mill complex downstream. The dam was utilized for hydropower generation for both the Public Service Company and the Twin State Gas and Electric Company. Presently, the pondage behind the dam supplies one of the two main sources of water for fire protection for the Town of Rollinsford.

h. Design and Construction History. No information was found regarding the design or construction of the dam. The dam appears to be of the vintage of the mid 1800's. The southwest end of the dam did contain power generating facilities. The intake channel and headgates to the powerhouse were filled in sometime prior to 1970.
i. Normal Operating Procedures. The dam currently acts only as a river barrier with its pondage providing water for the Rollinsford Fire Department.

1.3 Pertinent Data

a. Drainage Area. The drainage area consists of 230 square miles (147,200 acres) of gently to moderately sloping partly wooded terrain. The normal pool has a surface area of 57 acres, which constitutes 0.04 percent of the watershed.

b. Discharge at Damsite

(1) Outlet works (conduits): None at the present time.
(2) The maximum discharge at damsite is unknown. No records of past overtoppings were disclosed.
(3) Ungated spillway capacity @ top of dam elevation - 7,010 cfs at 74.6' NGVD
(4) Ungated spillway capacity @ test flood elevation - 29,530 cfs at 82' NGVD
(5) Gated spillway capacity at top of dam elevation - not applicable
(6) Gated spillway capacity at test flood elevation - not applicable
(7) Total spillway capacity at test flood elevation - 29,530 cfs at 82' NGVD
(8) Total project discharge at test flood elevation - 34,500 cfs at 82' NGVD

c. Elevation (ft. above NGVD of 1929; formerly Mean Sea Level (MSL), see (6) below.)

(1) Streambed at centerline of dam - 55 (at downstream toe)
(2) Maximum tailwater - unknown
(3) Upstream portal invert diversion tunnel - not applicable
(4) Recreation pool - not applicable
(5) Full flood control pool - not applicable
(6) Spillway crest - 70.0 (obtained from USGS Quadrangle sheet and assumed to be spillway elevation)
(7) Design surcharge (original design) - unknown
(8) Top dam - 74.6
(9) Test flood pool - 82.0

d. Reservoir (miles)
 (1) Length of maximum pool - 1
 (2) Length of spillway crest - 0.9
 (3) Length of flood control pool - not applicable

e. Storage (acre-feet)
 (1) Recreation pool - not applicable
 (2) Flood control pool - not applicable
 (3) Spillway crest pool - 456
 (4) Test flood pool - 1525
 (5) Top dam - 820

f. Reservoir Surface (acres)
 (1) Recreation pool - not applicable
 (2) Flood control pool - not applicable
 (3) Spillway crest - 57
 (4) Test flood pool - 113
 (5) Top of dam - 80

g. Dam
 (1) Type - split-stone and concrete gravity dam
 (2) Length - 385'
 (3) Height - 23.5' structural height
 (4) Top width - varies
 (5) Side slopes - spillway upstream - vertical; downstream - sloping; abutments - vertical upstream and downstream.
 (6) Zoning - unknown
 (7) Impervious core - unknown
 (8) Cutoff - unknown
(9) Grout curtain - unknown

h. Diversion and Regulating Tunnel - not applicable
 (See j. below)

i. **Spillway**
 (1) Type - overflow spillway
 (2) Length of weir - 245'
 (3) Crest elevation - 70.0' NGVD
 (4) Gates - none
 (5) U/S Channel - Salmon Falls River. The banks are tree-lined.

 (6) D/S Channel - Salmon Falls River. Discharge from dam flows southerly. A railroad bridge is located immediately downstream of the dam. Bedrock is exposed along most of the length of the dam. A road crossing is located 300 feet downstream of the dam. Salmon Falls River Dam is located 5500 feet downstream of Rollingsford Dam.

j. **Regulating Outlets.** None operable; all gates and openings have been filled with earth.
SECTION 2
ENGINEERING DATA

2.1 Design
No design data were obtained for Rollinsford Dam.

2.2 Construction Records
No construction records were disclosed.

2.3 Operation
No engineering operational data were found.

2.4 Evaluation
 a. Availability. A search of the files of the New Hampshire Water Resources Board revealed only a limited amount of recorded information.
 b. Adequacy. Because of the limited amount of detailed data available the final assessments and recommendations of this investigation are based on the visual inspection and the hydrologic and hydraulic calculations.
 c. Validity. No engineering data were found to validate.
3.1 Findings

a. General. Rollinsford Dam is a low dam which impounds a reservoir of small size. The watershed above the reservoir is gently to moderately sloping and partially wooded. The downstream area is flat to moderately sloping.

b. Dam. Rollinsford Dam is a run-of-the-river split-stone and concrete gravity dam, with a hydraulic height of 20 feet and totaling 385 feet in length. (See Appendix C - Figure 2.) Bedrock is exposed across the entire width of the river channel downstream of the dam and this observation is consistent with a statement in an undated data sheet of the New Hampshire Water Control Commission that the dam is founded on "ledge." (See Appendix C - Figure 3.)

Remnants of an approach canal, head gates, and penstock entrance structure are located at the southwest abutment. The approach canal and gate area have been filled with earth and the gate operators have been removed. (See Appendix C - Figure 4.) Also, remnants of a large sluice gate are located just west of the former head gates. (See Appendix C - Figure 5.)

Major leakage is discharging at three locations at the base of the dry stone-masonry training wall at the southwest end of the overflow section of the dam. (See Appendix C - Figure 6.) The remnants of the gate structures are located between this wall and the southwest abutment. This is apparently the same leakage that was noted in the reports of inspections made on 11/30/77, 9/10/73, 6/30/50, and 7/14/40. Along the southwest abutment, just upstream of the dam, are the two pipes which the Rollinsford Fire Department uses to pump water from the impoundment behind the dam. (See Appendix C - Figure 7.)

The northeast abutment of the dam consists of a stone masonry wall. (See Appendix C - Figure 8.) At the northeast end of the dam it appears that flowing water has eroded a channel in the ground between the abutment block at the northeast end of the overflow section of the dam and a railroad pier which is about 75 feet from the end of the dam. (See Appendix C - Figure 9.)

c. Appurtenant Structures.

(1) The earth fill in the former approach channel at the southwest abutment is approximately 18 inches lower than the surrounding granite masonry walls at the gate structure. It could not be determined from the inspection whether this fill
has subsided or was originally placed in that manner. The existing intake structures have been blocked with earth fill, thus making it impossible to inspect. The downstream face of a small abandoned overflow structure, located at the right abutment approximately 30 feet downstream of the principal spillway, was severely eroded and the exposed wooden gate stems are badly weathered.

(2) Principal spillway - Only a limited portion of the spillway at each end could be inspected because of the flow of water over the dam. The surface of the concrete was observed to have minor surface erosion with some of the coarse aggregate exposed. No flashboards were on the spillway crest.

d. Reservoir. The watershed above the reservoir is gently to moderately sloping and partially wooded. (See Appendix C - Figure 10.) No evidence of significant sedimentation was observed.

e. Downstream Channel. Bedrock is exposed for the entire width in the channel downstream of the dam. Some trees overhang the channel and some logs are lodged on an island in the center of the channel but otherwise the channel is generally wide and unobstructed. A bridge crosses the channel about 250 feet downstream of the dam. (See Appendix C - Figure 11.) The channel downstream of this bridge is wide and unobstructed; mill buildings are located on the right bank of the channel. (See Appendix C - Figure 12.) Further downstream, about 600 yards, is the water treatment plant. Beyond this, the river flows into the large pondage area of Salmon Falls River Dam, a low-head hydropower facility.

3.2 Evaluation

Based on the visual inspection, Rollinsford Dam is in fair condition.

Major seepage is discharging at three locations at the base of the dry stone-masonry training wall at the southwest end of the overflow section of the dam. Although this seepage has been mentioned in previous inspection reports dating back to 1940, insufficient information is available to conclude that it poses a potential problem.

Possible subsidence of the earth fill adjacent to the southwest end of the overflow section of the dam could adversely affect the stability of the southwest end of the dam.

Erosion of the ground between the northeast end of the dam and a nearby railroad bridge pier indicates that the northeast abutment has been overtopped. Future overtopping of the abutment could affect the stability of that abutment.

The dam has no usable low-level outlet to lower the pond in case of emergency.
SECTION 4
OPERATIONAL PROCEDURES

4.1 Procedures

No written operational procedures were found.

4.2 Maintenance of Dam

The Town of Rollinsford is responsible for the maintenance of the dam.

4.3 Maintenance of Operating Facilities

Since no operating facilities exist, this is not applicable.

4.4 Description of Any Warning System in Effect

No written warning system was revealed.

4.5 Evaluation

Maintenance procedures appear to be minimal. Leakages were observed that require attention and all operating facilities have been effectively discontinued by filling gates and openings with earth and gate operating mechanisms completely removed.
5.1 Evaluation of Features

a. General. Rollinsford Dam is a run-of-the-river, split-stone and concrete gravity dam which impounds a reservoir of small size. At the southwest abutment there are remnants of an approach canal, gates, and penstock entrance structure. The approach canal and gate area have been filled with earth and the gate operators have been removed. The watershed above the dam consists of 230 square miles of gently to moderately sloping partly wooded terrain.

b. Design Data. No original hydrologic and hydraulic design data were found.

c. Experience Data. No information regarding past overtopping of Rollinsford Dam was revealed.

d. Visual Observation. Based on the visual inspection it appears that overtopping may have occurred between the northeast spillway abutment and the railroad pier.

e. Test Flood Analysis. Rollinsford Dam is classified as being small in size having a hydraulic height of 20 feet and a maximum storage capacity of 820 acre-feet; the dam was determined to have a significant hazard classification because of potential damage to the railroad bridge and loss of the impoundment as a source of water to fight fires in Rollinsford. No loss of life is anticipated. Using the Recommended Guidelines for Safety Inspection of Dams, the test flood ranges from the 100-year to \(\frac{1}{2} \) the Probable Maximum Flood (PMF). Because the dam's size is in the upper range of the size classification, \(\frac{1}{2} \) PMF was selected as the test flood. The test flood inflow for Rollinsford Dam, having a drainage area of 230 square miles, was determined to be 34,500 cfs. Routing through the reservoir resulted in negligible surcharge storage effects in reducing peak inflows. Therefore, the routed test flood outflow is also equal to the inflow value of 34,500 cfs at elevation 82' NGVD. The test flood analysis indicates that the dam embankment would be overtopped by approximately 7.4 feet during test flood conditions (12 feet over the spillway). The maximum spillway capacity at top of dam is 7,010 cfs which is about 20 percent of the routed test flood outflow.

f. Dam Failure Analysis. The impact of failure of the dam at top of dam was assessed using the Guidance for Estimating Downstream Dam Failure Hydrographs issued by the Corps of Engineers. The analysis covered the reach from the dam to Salmon Falls River Dam, a distance of 1 mile downstream. Salmon Falls River Dam, which is located 1 mile downstream of Rollinsford Dam, provides a large storage area for breach discharge. A breach would result in no loss of lives but may damage the piers of the railroad bridge and the Salmon Falls River Dam downstream. A breach discharge in the
reach between these two would stay in bank. Because the Rollinsford Dam is used for fire protection for the Town of Rollinsford, the loss of the pondage due to dam failure would be considered as public utility loss. The dam was classified Significant Hazard.
SECTION 6
STRUCTURAL STABILITY

6.1 Visual Observations

The visual examination indicates the following potential structural problems:

a. Major seepage at the base of the dry stone-masonry training wall at the southwest end of the overflow section of the dam, which could adversely affect the stability of the gate structure and southwest end of the overflow section of the dam.

b. Erosion of the ground between the northeast end of the overflow section of the dam and a bridge pier on the northeast abutment, which could adversely affect the stability of the northeast end of the dam and abutment.

c. Possible subsidence of the earth fill next to the southwest end of the overflow section of the dam, which may be associated with piping that could adversely affect the stability of the dam.

d. No usable low-level outlet to lower the pondage in case of emergency.

6.2 Design and Construction Data

No design and construction data are available.

6.3 Operating Records

None.

6.4 Post-Construction Changes

An inspection report of 8/10/70 indicates that the head gate channel has been filled in and effectively cuts off flow through the penstock. The penstock has been removed. The report of an inspection dated 11/30/77 indicates that the gate operators were removed and the penstock area filled with dirt.

6.5 Seismic Stability

This dam is located in Seismic Zone 2 and, in accordance with Phase I guidelines, does not warrant seismic analysis.
SECTION 7
ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. The visual examination indicates that Rollinsford Dam is in fair condition. The major concerns with respect to the integrity of the dam, if left uncorrected, are:

 (1) Major seepage at the base of the dry stone-masonry training wall at the southwest end of the overflow section of the dam.

 (2) Erosion at the northeast abutment, possibly the result of overtopping.

 (3) Possible subsidence of the earth fill next to the southwest end of the dam.

 (4) Uncertainty about the earth fill at the southwest abutment and consequent potential for erosion if area is overtopped.

b. Adequacy of Information. The information available is such that the assessment of this dam must be based primarily on the results of the visual inspection.

c. Urgency. The owner should implement the recommendations in 7.2 and 7.3 within one year after receipt of this Phase I report.

d. Need for Additional Investigation. The information available from the visual inspection is adequate to identify the potential problems which are listed in 7.2 a below. These problems require the attention of a professional engineer experienced in the design and construction of dams who will have to make additional engineering studies to design or specify remedial measures to rectify the problems.

7.2 Recommendations

a. The owner should engage a professional engineer qualified in the design and construction of dams to:

 (1) Re-establish a low-level outlet for the impoundment to use in case of emergency.

 (2) Inspect the downstream face of the concrete spillway when no water is flowing over the crest.

7-1
(3) Investigate the seepage at the base of the dry stone-masonry training wall at the southwest end of the overflow section of the dam and design appropriate remedial measures.

(4) Design repairs and erosion protection for the eroded area on the northeast abutment.

(5) Design repairs for the subsided area of the earth fill at the southwest end of the overflow section of the dam.

(6) Evaluate the earth fill at the southwest abutment with respect to erosion if overtopped, and to recommend remedial measures, if needed.

The owner should carry out the recommendations made by the engineer.

7.3 Remedial Measures

a. Operating and Maintenance Procedures. The owner should:

(1) Visually inspect the dam and appurtenant structures once a month.

(2) Engage a professional engineer qualified in the design and construction of dams to make a comprehensive technical inspection once every year after the recommendations made in 7.2 a have been carried out.

(3) Establish a surveillance program for use during and immediately after heavy rainfall and snowmelt and also a downstream warning program to follow in case of emergency conditions.

7.4 Alternatives. None.
APPENDIX A

VISUAL INSPECTION CHECKLIST
VISUAL INSPECTION CHECKLIST
PARTY ORGANIZATION

PROJECT Rollinsford Dam, NH

DATE October 25, 1979
TIME 2:30 PM
WEATHER Sunny, cool

W.S. ELEV. U.S. DN.S.

70 'NGVD55'NGVD

PARTY:
1. Warren Guinan (ANCo)
2. Stephen Gilman (ANCo)
3. Leslie Williams (ANCo)
4. Terri Sapp (ANCo)
5. Mehdi Miremadi (ANCo)
6. Kenneth Stern (NHWRB)
7. Ronald Hirschfeld (GEI)
8.
9.
10.

PROJECT FEATURE
1. Hydrology/Hydraulics
2. Structural Stability
3. Soils & Geology

INSPECTED BY REMARKS
M. Miremadi/ L. Williams
S. Gilman
R. Hirschfeld

4.
5.
6.
7.
8.
9.
10.

A-1
PERIODIC INSPECTION CHECKLIST

PROJECT Rollinsford Dam, NH \hspace{1cm} DATE Oct. 25, 1979
PROJECT FEATURE Intake Channel & Structure \hspace{1cm} NAME
DISCIPLINE \hspace{1cm} NAME

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>Slope Conditions</td>
<td>Good</td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td>Not visible beneath reservoir</td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td>None</td>
</tr>
<tr>
<td>Log Boom</td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td>None</td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td></td>
</tr>
<tr>
<td>b. Intake Structure</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td></td>
</tr>
<tr>
<td>Intake structures and gates are abandoned and filled in. Not operable and not visible for inspection.</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

PROJECT Rollinsford Dam, NH
DATE Oct. 25, 1979
PROJECT FEATURE Outlet Structure & Channel
DISCIPLINE
NAME

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</td>
<td>No outlet works are visible. It appears that all outlet works at the southwest abutment have been removed or filled in and abandoned.</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Condition at Joints</td>
<td>None observed</td>
</tr>
<tr>
<td>Drain holes</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Loose Rock or Trees</td>
<td>Some trees overhanging channel</td>
</tr>
<tr>
<td>Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td>Good. Some logs lodged on island at center of channel, but channel is generally wide and unobstructed.</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

PROJECT Rollinsford Dam, NH

DATE Oct. 25, 1979

PROJECT FEATURE Spillway Weir

AREA EVALUATED	CONDITION
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS

a. Approach Channel
 - General Condition
 - Loose Rock Overhanging Channel
 - Trees Overhanging Channel
 - Floor of Approach Channel
 - Good
 - None
 - A few overhanging channel
 - Not visible beneath reservoir surface

b. Weir and Training Walls
 - General Condition of Concrete
 - Rust or Staining
 - Spalling
 - Any Visible Reinforcing
 - Any Seepage or Efflorescence
 - Drain Holes
 - Fair. Surface of concrete exposed to water is eroded.
 Only at embedded item
 - Several exposed areas are spalled to 1" depth. Coarse aggregate is exposed.
 None
 - Large quantity of water discharging through stone masonry immediately downstream of southwest end of spillway.
 None observed.

c. Discharge Channel
 - General Condition
 - Loose Rock Overhanging Channel
 - Trees Overhanging Channel
 - Floor of Channel
 - Other Obstructions
 - Good
 - None
 - Some
 - Bedrock
 - Some logs lodged on small island at center of channel.
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability of Shoreline</td>
<td>Good</td>
</tr>
<tr>
<td>Sedimentation</td>
<td>Not visible</td>
</tr>
<tr>
<td>Changes in Watershed</td>
<td>None observed</td>
</tr>
<tr>
<td>Runoff Potential</td>
<td>None</td>
</tr>
<tr>
<td>Upstream Hazards</td>
<td>Railroad bridge piers, road, dam 1 mile downstream.</td>
</tr>
<tr>
<td>Downstream Hazards</td>
<td>None posted</td>
</tr>
<tr>
<td>Alert Facilities</td>
<td>None</td>
</tr>
<tr>
<td>Hydrometeorological Gages</td>
<td>None posted</td>
</tr>
<tr>
<td>Operational & Maintenance Regulations</td>
<td>None posted.</td>
</tr>
</tbody>
</table>
APPENDIX B
ENGINEERING DATA
Mem To File
From SC Brann
Subject Inspection of Dam 205.03
Date 30 Nov 77

This dam is in good shape. The leakage mention
by Mr Rapoza & Mr Moore is still evident. The
gate operators have been removed and penstock area
filled with dirt. There is a lot of debris on the
spillway crest.
MEMORANDUM

DATE: September 17, 1973
FROM: Donald M. Rapoza, Water Resources Engineer
SUBJECT: Dam inspection on Salmon Falls River in Rollinsford, N.H. - #205.02

TO: Vernon A. Knowlton, Chief Engineer, Water Resources Board

On September 10, 1973, I inspected the dam on the Salmon Falls River in Rollinsford. At the present time, the structure is owned by the Town of Rollinsford, which intends to convey the structure to the Salmon Falls River Watershed Association.

The structure is in fairly good shape: the left abutment (in Maine) has relatively little seepage. The right abutment has some leakage at the toe of the spillway. This leakage is not endangering the structure, but should be checked on a yearly basis for any increased discharge. The leakage has been reported in previous inspection reports. The concrete spillway is eroding and will have to be refaced sometime in the future.

I could not locate the leak in the spillway that Francis mentioned in his August 10, 1969 report. Perhaps debris had plugged the area in question.

DMR: js
Mr. Wayne E. Murray
Beamis and Davis
58 High Street
Somersworth, NH 03878

Dear Mr. Murray:

This is in response to your letter requesting the New Hampshire Water Resources Board review the status of a dam owned by the Town of Rollinsford in the Salmon Falls River.

On September 10, 1973, I inspected the structure and found it to be in relatively good shape. There was some leakage at the right abutment which had been previously reported in other inspection reports. At this time there is no serious problems connected with this leakage, but the area should be inspected on a yearly basis.

Due to the flow over the spillway crest, I could not find the leak on the lip of the concrete spillway, as Mr. Moore mentioned in his August 10, 1969 report. There is the possibility that the area in question has been clogged with floating debris. To conduct a thorough inspection of the spillway, flow over the spillway would have to be bulkheaded, or the ponded area drawn down below the spillway crest.

The estimated costs of repairing the concrete lip in Mr. Moore's letter, dated March 3, 1972, should be increased by 20%, making a total of $3,600.

Please feel free to call or write this office if you have any further questions.

Very truly yours,

Donald M. Rapoza
Water Resources Engineer

B-3
DATE: August 10, 1970

FROM: Francis C. Moore, P.E.
 Water Resources Engineer

SUBJECT: Salmons Falls Power Station Property - Rollinsford

TO: Vernon A. Knowlton
 Chief Water Resources Engineer

Forrest Hodgdon and I inspected Public Service Company of New Hampshire power station land and dam at Rollinsford, New Hampshire with Noel Sheldon on 8/6/70.

The land north of the power station is about 30 feet wide and about 350 feet from a town road, mainly occupied by a large pressure concrete penstock. This land would be useful to the mill, Sports Specialties Shoemaker Co. The balance of that lot except the power station and its immediate land would undoubtedly be retained for use of their Sub-Station.

The land across the river in Maine is steep for 50' to 75' from river and sloping to the old railroad right-of-way and highway line. It is remotely possible that the south end of this lot would possibly be of interest to Maine authorities if boat launching into the upper end of the Central Maine Power Company pool could be constructed. The land near the river is ledgy.

This dam is in fairly good shape. Some concreting of the spillway lip is needed to fill a serious leak about midway of the dam. The head gate channel has been filled in and effectively cuts off flow through the penstock to the power house. The shoe shop has an intake to a pipe line to a 75,000 gallon water tank on the hill to furnish fire protection to the mills. This intake is about thirty feet upstream of the gate house - a 5' concrete pipe set into the bank of the pond.

There is possible boat launching from the land at the New Hampshire end of the dam upstream of the intake canal. The river and pond could be navigated up to the next dam about 2 1/2 miles above. Some places the river is 1000' wide but averages around 200'.

The land in Maine at the end of the dam should be conveyed with the dam. It is less than one-third acre in size and offers no boat launching possibilities.

FCM/jb
NEW HAMPSHIRE WATER CONTROL COMMISSION

REPORT ON DAM INSPECTION

TOWN: Rollingford
DAM NO: 2052
STREAM: Salmon Falls River

OWNER: Pub. Serv. Co. of Me
ADDRESS: Manchester, Me

In accordance with Section 20 of Chapter 133, Laws of 1937, the above dam was inspected by me on 2/20/1937 accompanied by

NOTES ON PHYSICAL CONDITION

Abutments: Good

Spillway: Good except for some surface discontinuities which should be grouted.

Gates: Operable

Other: Between canal and right abutment there is a single break that is to be repaired where a marble stone has fallen. This has been leaking since dam was inspected in 1930.

CHANGES SINCE LAST INSPECTION: None

FUTURE INSPECTIONS: Yes

This dam (is) not a menace because of highway, railroad and property downstream.

REMARKS: The water at the powerhouse has extended but not serious erosion in concrete about 4" over permanent gutter.

Copy to Owner	Date

SIGNED

FRANCIS W. MORE
INSPECTOR

(Additional Notes Over)
NEW HAMPSHIRE WATER CONTROL COMMISSION

REPORT ON DAM INSPECTION

TOWN ROLLSFORD

DAM NO. 205

STREAM Salmon Falls River

OWNER Twin State Gas & Elec. Co.

ADDRESS Dover, N. H.

In accordance with Section 20 of Chapter 133, Laws of 1937, the above dam was inspected by me on July 17, 1940, accompanied by

NOTE ON PHYSICAL CONDITION

Abutments Excellent shape. No apparent leaks.

Spillway Good shape. Concrete shows some recession at some joints. Not dangerous. Condition becomes worst.

Gates Main cannel gate in good condition - operable. Flood gate in cannel operable. In good condition.

Other Fairly large rock in south-west corner of main spillway location and cannel entrance. Site pit head on top. Lots of blacks falling out.

CHANGES SINCE LAST INSPECTION

FUTURE INSPECTIONS

This dam (is) (is not) a menace because of location above railroad and private property at lower elevation.

REMARKS Visited powerhouse operator.

Copy to Owner Date

[Table with handwritten dates and signatures]

INSPECTOR

[Handwritten signature]
NEW HAMPSHIRE WATER CONTROL COMMISSION
DATA ON DAMS IN NEW HAMPSHIRE

LOCATION

State No. 205-02

Town Rollinsford : County Strafford
Stream Salmon Falls River
Basin-Primary Ocean : Secondary Salmon Falls R.
Local Name

Coordinates—Lat. 43°15' = 4050 : Long. 70°50' = 4000

GENERAL DATA

Drainage area: Controlled Sq. Mi.: Uncontrolled Sq. Mi.: Total 230 Sq. Mi.
Overall length of dam 350 ft.: Date of Construction
Height: Stream bed to highest elev. 19 ft.: Max. Structure 14'9"
Cost—Dam Reservoir

DESCRIPTION

Gravity concrete splitstone Foundation ledge

Waste Gates
Type
Number : Size ft. high x ft. wide
Elevation Invert : Total Area sq. ft.
Hoist

Waste Gates Conduit
Number : Materials
Size ft.: Length ft.: Area sq. ft.

Embankment
Type
Height—Max. ft.: Min. ft.
Top—Width : Elev. ft.
Slopes—Upstream on : Downstream on
Length—Right of Spillway : Left of Spillway

Spillway
Materials of Construction Concrete
Length—Total 255 ft.: Net ft.
Height of permanent section—Max. ft.: Min. ft.
Flashboards—Type Pin type : Height 120 ft.
Elevation—Permanent Crest : Top of Flashboard
Flood Capacity 6885 cfs.: 30 cfs/sq. mi.

Abutments
Materials:
Freeboard: Max. 4'7" ft.: Min. ft.

Headworks to Power Devel.—(See “Data on Power Development”)

OWNER P.S. of New Hampshire Manchester, N.H.

REMARKS Condition good Subject to inspection
Use power B-7

Tabulation By G.S.W Date
New Hampshire Water Control Commission

Data on Water Power Developments in New Hampshire

Location

- **Town**: Bollingford
- **County**: Strafford
- **Stream**: Salmon Falls R.
- **Basin-Primary**: Ocean
- **Basin-Secondary**: Salmon Falls R.

General Data

<table>
<thead>
<tr>
<th>Head-Max</th>
<th>ft.: Min.</th>
<th>ft.: Ave.</th>
<th>ft.</th>
<th>Date of Construction</th>
<th>Use of Power</th>
<th>Pondage</th>
<th>ac. ft.: Storage</th>
<th>ac. ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Public Utility</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

<table>
<thead>
<tr>
<th>Racks</th>
<th>Size of Rack Opening</th>
<th>Material</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Area: Gross</th>
<th>Sq. Ft.: Net</th>
<th>sq. ft.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Head Gates</th>
<th>Type</th>
<th>Number: Size ft. high x ft. wide</th>
<th>Elevation of Invert</th>
<th>Total Area sq. ft.</th>
<th>Hoist</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Penstock</th>
<th>Number</th>
<th>Material</th>
<th>Size</th>
<th>Length</th>
<th></th>
</tr>
</thead>
</table>

Turbines

<table>
<thead>
<tr>
<th>Number</th>
<th>Makers</th>
<th>Rating HP. per unit 1500 H.P. ea.</th>
<th>Total Capacity 3500 HP.</th>
<th>Max. Dement C.F.S., per unit</th>
<th>Total</th>
<th>cfs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Morgan Smith</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drive

<table>
<thead>
<tr>
<th>Type</th>
<th></th>
</tr>
</thead>
</table>

Generator

<table>
<thead>
<tr>
<th>Number</th>
<th>Make</th>
<th>Rating KW., per unit</th>
<th>Total Capacity</th>
<th>K.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Westinghouse</td>
<td>1250 k.w.a. 1205 amps. 600 v.</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Exciter

<table>
<thead>
<tr>
<th>Number</th>
<th>Make</th>
<th>Rating-per unit</th>
<th>Total Capacity</th>
<th>K.W.</th>
</tr>
</thead>
</table>

Output—KWHRS

<table>
<thead>
<tr>
<th>19</th>
<th>19</th>
<th>19</th>
<th>19</th>
<th>19</th>
<th>19</th>
</tr>
</thead>
</table>

Owner

Public Service Commission of New Hampshire

Tabulation By R.T. **Date** B-8
To the Public Service Commission:

The foregoing memorandum on the above dam is submitted covering inspection made November 6, 1935, according to notification to owner dated November 4, 1935, and bill for same is enclosed.

Nov. 14, 1935
Copy to Owner

Samuel J. Lord
Hyd. Eng.
NEW HAMPSHIRE WATER RESOURCES BOARD

INVENTORY OF DAMS AND WATER POWER DEVELOPMENTS

<table>
<thead>
<tr>
<th>DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIN</td>
</tr>
<tr>
<td>RIVER</td>
</tr>
<tr>
<td>TOWN</td>
</tr>
<tr>
<td>LOCAL NAME OF DAM</td>
</tr>
<tr>
<td>BUILT</td>
</tr>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>ON LEDGE</td>
</tr>
</tbody>
</table>

POOL AREA - ACRES	0.44
DRAW DOWN FT.	
POND CAPACITY - ACRE FT.	
HEIGHT - TOP TO BED OF STREAM FT.	14'
MAX.	
MIN.	
OVERALL LENGTH OF DAM FT.	357'
MAX. FLOOD HEIGHT ABOVE CREST FT.	
PERMANENT CREST ELEV. U.S.G.S.	
TAILWATER ELEV. U.S.G.S.	
LOCAL GAGE	
SPILLWAY LENGTHS FT.	150'
FREEBOARD FT.	4.67
FLASHBOARDS - TYPE, HEIGHT ABOVE CREST	125 Pin Type
GATE GATES - NO. WIDTH	
MAX. OPENING	
LIP. P. STILL BELLO CREST	

| REAMS | Condition: Good. Freeboard & Etc. Equipment & I into Piscataqua R. Matt. 1899 from Inspect. 1899 |

Salmon Falls Station, P.S. Company

POWER DEVELOPMENT

<table>
<thead>
<tr>
<th>UNITS</th>
<th>RATED</th>
<th>HEAD</th>
<th>C.F.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. HP</td>
<td>FEET</td>
<td>FULL GATE</td>
<td>KW</td>
</tr>
<tr>
<td>2</td>
<td>4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

MAKE:

Morgan Smith

WESTINGHOUSE 300V.

USE:

REMARKS: PERACO USES 14 power pumps each 300 hp total

DATE: 11/6/30
1 Westinghouse

2 - 1000KW 125V

2 - 1000KW 125V

2 - Morgan Smith Wheels 1500 Pouch

45" Head Maximum

15" Flashboards

225 RPM

4 Photos
Three Leaks

Rollinsford Dam
Salmon Falls River
New Hampshire

Scale not to scale
Date December 1979
ELEVATION A-A

CROSS SECTION B-B

ROLLINSFORD DAM

SALMON FALLS DAM

SCALE NOT TO SCALE
DATE DECEMBER 1979

Andersom-Nichols Co., Inc
U.S. ARMEE ENGINEER DIV. NEW ENGLAND
CONCORD NEW HAMPSHIRE
CORPS OF ENGINEERS
WALTHAM, MA

NATIONAL PROGRAM OF INSPECTION OF NON-FEDDAMS
APPENDIX C

PHOTOGRAPHS
October 25, 1979

Figure 2 - Looking northeast across spillway crest.

Figure 3 - View of the downstream face of the dam from the road crossing just downstream.

October 25, 1979
Figure 4 - View of the filled in approach channel and gate structures.

Figure 5 - Looking at an inoperable gate on the southwest end of the dam.
October 25, 1979

Figure 6 - View of the three leakages at the southwest end of the spillway.

October 25, 1979

Figure 7 - Looking at the two pipes which are utilized to obtain water from the impoundment for use in fire protection for Town of Rollinsford.
October 25, 1979

Figure 8 - View of the northeast spillway abutment.

October 25, 1979

Figure 9 - Looking at erosion between the northeast spillway abutment and railroad pier.

C-5
October 25, 1979

Figure 10 - Looking upstream into the reservoir from the southwest abutment.

October 25, 1979

Figure 11 - Looking downstream at the road crossing from the northeast discharge channel.
October 25, 1979

Figure 12 - View of the channel downstream of the road crossing shown on Figure 11.
APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS
Purpose: Determine depth of water
Assumptions: 1. No flow over spillway 2. Break occurs at top of dam

Following equation is used to predict peak outflow \(Q_P \)

\[
Q_P = \frac{8}{27} W_b \sqrt{y_0}
\]

where
- \(W_b \): breach width = 100 ft
- \(y_0 \): tailwater elevation = 57.8 ft

\[
y_0 = 76.8 - 57.8 = 19.0 \text{ ft}
\]

\[
Q_P = \frac{8}{27} (100) \sqrt{19.0} = 13925 \text{ cfs}
\]

Total breach \(Q = 13925 \text{ cfs} \)
DAM LOCATED DIS OF ROLLINSFORD DAM:

D. A. = 232 M.
Length of the dam = 362.
Length of spillway = 250 FT.

WEIR SECTION DATA:

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27.5 MSL</td>
</tr>
<tr>
<td>60</td>
<td>27.5'</td>
</tr>
<tr>
<td>60</td>
<td>20'</td>
</tr>
<tr>
<td>278</td>
<td>20'</td>
</tr>
<tr>
<td>278</td>
<td>27.5'</td>
</tr>
<tr>
<td>362</td>
<td>27.5'</td>
</tr>
</tbody>
</table>

D-3
<table>
<thead>
<tr>
<th>STAGE (ft MSL)</th>
<th>DISCHARGE (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>(2.9(218) \times 5) = 7070</td>
</tr>
<tr>
<td>27.5</td>
<td>(2.9(217) \times 10) = 13000</td>
</tr>
<tr>
<td>30</td>
<td>(2.9(84)(2.5) + 2.9(218)(10) + 2.9(60)(2.5)) = 7070 + 13000 + 1680 = 21650</td>
</tr>
</tbody>
</table>

Refer to rating curve (p. 5)

At 13925 cfs (breach Q) = ELEV. = 27.8' MSL
ELEV. top of dam = 27.5' MSL

Depth of water over spillway crest = 7.8'

The dam will be overtopped by 0.3' of water.
NORMAL POOL ELEVATION = 20' MSL
SURFACE AREA AT NORMAL POOL = 400 AC-FT
ASSUME CHANNEL DEPTH = 10'
NORMAL POOL STORAGE = 400 AC-FT

USING FRUSTUM OF PYRAMID EQUATION

\[V = \frac{1}{3} h (b_1 + b_2 + \sqrt{b_1 b_2}) \]

WHERE
- \(h \) = ELEV. ABOVE NORMAL POOL (FT)
- \(b_1 \) = NORMAL POOL SURFACE AREA (AC)
- \(b_2 \) = ENLARGED SURFACE AREA (AC)

\[\begin{align*}
60' & \quad 4130 \text{ AC-FT} \\
40' & \quad 1885 \text{ AC-FT} \\
20' & \quad 400 \text{ AC-FT}
\end{align*} \]

AT ELEV. 40' => SURFACE AREA = 115 AC.

\[V = \frac{1}{3} (20) (40 + 115 + \sqrt{40(115)}) = 1485 \text{ AC-FT} \]

TOTAL STORAGE = 1485 + 400 = 1885 AC-FT

AT ELEV. 60' => SURFACE AREA = 160 AC.

\[V = \frac{1}{3} (20) (115 + 160 + \sqrt{115(160)}) = 2737 \text{ AC-FT} \]

TOTAL STORAGE = 2737 + 400 = 4622 AC-FT

USE ABOVE CURVE TO DEVELOP STORAGE-ELEV. CURVE

* SURFACE AREAS WERE MANUALLY DRAFTED OFF U.S. G.S. QUAD SHEET D-7
At ELEV. 27.8' NISL (BREACH & ELEV.)

Storage = 1125

Normal Storage = 400

Surcharge Storage = 1125 - 400 = 725
D/S HAZARD ANALYSIS:

A RAILROAD BRIDGE IS LOCATED JUST D/S OF THE DAM. THE BREACH DISCHARGE MIGHT DAMAGE THE PIERS OF THE RAILROAD BRIDGE.

AN ACTIVE MINING BUILDING IS LOCATED ABOUT 300' D/S OF THE DAM, AND IS PROTECTED BY A CONCRETE TRAINING WALL.

AN ABANDONED MINING BUILDING IS LOCATED ABOUT 500' D/S OF THE DAM WHICH WOULD BE EFFECTED BY BREACH DISCHARGE.

SALMON FALLS RIVER DAM WHICH IS LOCATED ABOUT 1 MILE D/S OF ROLLINSFORD DAM PROVIDES A LARGE STORAGE AREA FOR BREACH DISCHARGE, RESULTING IN ATTENUATION OF THE BREACH WAVE. ROLLINSFORD DAM, BREACH COULD OVER TOP THIS DAM BY 0.3 OF WATER.

ROLLINSFORD DAM IS A PUBLIC UTILITY DAM (USED FOR FIRE PROTECTION FOR THE TOWN OF ROLLINSFORD). THEREFORE THE LOSS OF RONCHGE DUE TO DAM FAILURE WOULD BE CONSIDERED A PUBLIC UTILITY LOSS. ROLLINSFORD WAS TIER II CLASSIFIED.

D-10
DRAINAGE AREA = 230 ft²
SIZE CLASSIFICATION = SMALL
HAZARD CLASSIFICATION = SIGNIFICANT
TEST FLOOD = 1/2 PMF

CALCULATE PMF USING "PRELIMINARY GUIDANCE FOR ESTIMATING MAXIMUM PROBABLE DISCHARGES IN PHASE I DAM SAFETY INSPECTION, MARCH, 1978"

USING FLAT 4 CREST (HOW TO DETERMINE PMF)

\[PMF = 300 \frac{\text{cfs}}{\text{ft}^2} \times 230 \text{ ft}^2 = 69000 \text{ cfs} \]

\[\text{PEAK INFLOW} = \frac{1}{2} \text{PMF} = \frac{1}{2} \times 69000 = 34500 \text{ cfs} \]
DETERMINING RATING CURVE

USE WEIR EQUATION

\[Q = C \cdot L \cdot h^{3/2} \]

WHERE

* \(C = 2.9 \) FOR CONCRETE SECTION

* \(C = 2.6 \) FOR WOODEN EMBANKMENT

<table>
<thead>
<tr>
<th>STAGE (FT)</th>
<th>DISCHARGE (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>72</td>
<td>(2.9 \cdot (245)(2) = 2010)</td>
</tr>
<tr>
<td>74.6</td>
<td>(2.9 \cdot (245)(4.6) = 7010)</td>
</tr>
<tr>
<td>76</td>
<td>(2.9 \cdot (245)(1.2) + (2.9)(15)(1.4) = 10515)</td>
</tr>
<tr>
<td>77</td>
<td>(2.9 \cdot (245)(1) + (2.9)(15)(2.4) = 13320)</td>
</tr>
</tbody>
</table>
| 77.5 | \(2.9 \cdot (245)(3.5) + (2.9)(15)(2.3) + 2.6(50)(0.5) \)
| | \(= 14595 + 215 + 50 + 2 \)
| | \(= 14860 \) |
| 78.5 | \(2.9 \cdot (245)(3.9) + (2.9)(15)(3.9) + \)
| | \(2.6(50)(1.5) + 2.6(12.5)(1.5) \cdot 5 \cdot 17610 + 335 \)
| | \(+ 239 + 30 = 18400 \) |

* "C" VALUES WERE TAKEN FROM BRAHEK & KING'S "HANDBOOK OF HYDRAULICS"
<table>
<thead>
<tr>
<th>STAGE (FT)</th>
<th>DISCHARGE (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.1</td>
<td>2.6(71)(2.6) + 2.9(4)(2.6) + 2.9(245)(11.1) + 2.9(15)(6.5) + 2.6(50)(4.1) + 2.6(34)(4.1) = 1261 + 49 + 26275 + 721 + 1080 + 367 = 29750</td>
</tr>
<tr>
<td>82</td>
<td>2.6(71)(4.5) + 2.9(4)(3.5) + 2.9(245)(12) + 2.9(15)(7.4) + 2.6(50)(5) + 2.6(4)(0.9) + 2.6(42)(5) + 2.6(45)(0.9) = 1762 + 76 + 29535 + 876 + 1453 + 610 + 100 + 5 = 34500</td>
</tr>
</tbody>
</table>

TOTAL TEST FLOOD INFLOW = 34500 CFS
REFER TO CURVE ON PAGE
AT 34500 CFS ⇒ ELEV. = 82’ MSL

THE DEPTH OF WATER OVER SPILLWAY CREST DURING 1/2 PMF WILL APPROXIMATELY BE

\[82' - 70' = 12' \]

THE DAM WILL BE OVERTOPPED BY

\[82' - 74.6' = 7.4' \]

DURING 1/2 PMF

D-13
SURFACE AREA AT NORMAL POOL = 57 ac
ASSUME A DEPTH OF 8' FT.
NORMAL POOL STORAGE = 456 ac-ft.
USE FRUSTUM OF PYRAMID EQUATION

\[V = \frac{1}{3} h (b_1 + b_2 + \sqrt{b_1 b_2}) \]

WHERE
- \(h = \text{ELEV. ABOVE NORMAL POOL (FT)} \)
- \(b_1 = \text{NORMAL POOL SURFACE AREA (AC)} \)
- \(b_2 = \text{ENHANCED SURFACE AREA (AC)} \)

AT ELEV. 80' MSL \[\Rightarrow \] SURFACE AREA = 105 ac

\[V = \frac{1}{3} (10) (57 + 105 + \sqrt{57(105)}) = 800 \text{ ac-ft} \]

TOTAL STORAGE = 456 + 800 = 1256 ac-ft

AT ELEV. 100' MSL \[\Rightarrow \] SURFACE AREA = 192 ac.

\[V = \frac{1}{3} (20) (105 + 192 + \sqrt{105(192)}) = 2635 \text{ ac-ft} \]

TOTAL STORAGE = 2635 + 1256 = 3891 ac-ft

* SURFACE AREAS WERE HYDRAULICALLY OBTAINED OFF NSGS QUAD SHEETS. D-15
AT CLEV. 62' MSL (T.B.S. 5'6" O.H.V.):

STORAGE = 15.5 AC-FT
NORMAL STOR. AGE = 456 AC-FT
SURCHARGE STOR. AGE = 15.5 - 456 = 1069 AC-FT

\[\frac{1069 \text{ AC-FT} \times \frac{1}{230 \text{ in}^2} \times \frac{1 \text{ ft}^3}{4330 \text{ AC} \times 12 \text{ in}^2}}{\frac{18.11}{230 \text{ in}^2}} = 0.0072' = 0.086" \]

\[Q_{1/2} = \frac{t}{t} \left(1 - \frac{500}{19'000} \right) \]

\[Q_{1/2} = 34500 \left(1 - \frac{0.086}{19'000} \right) = 34336 \text{ CF} \]

DETERMINE SURCHARGE HEIGHT TO PASS Q_{1/2} OF 34390 CF.
REFER TO RATING CURVE (H. 15)

AT 34336 CF --> CLEV. = 81.9' MSL
REFER TO STOR. AGE - STOR. CURVE (H. 16)

AT 81.9' MSL --> STORAGE = 1510 AC-FT

\[(1510 - 456) \text{ AC-FT} \times \frac{1}{230 \text{ in}^2} \times \frac{1 \text{ ft}^3}{4330 \text{ AC} \times 12 \text{ in}^2} = 0.007' = 0.086" \]

\[STOR.1 = 0.087" \]
\[STOR.2 = 0.086" \]

AVG. RISE = 0.085" = 0.0072'

\[1060 \times \frac{230 \text{ in}^2}{4330 \text{ AC} \times 12 \text{ in}^2} = 1060 \text{ AC-FT} \]

1060 + 456 = 1516 AC-FT

FROM STOR. AGE - STOR. CURVE (H. 15) --> AT 1516 AC-FT

CLEV. = 81.9' MSL
FROM RATING CURVE (H. 15) -->
AT ELEV. 81.9 MSL = DISCHARGE = 34200 CFS

NORMAL STORAGE = 956 AC-FT

MAXIMUM STORAGE = 820 AC-FT

Storage effects if dam will be negligible.

Test Flood discharge = 34,500 cfs
Test Flood elevation = 82' MSL

Dam will be surmounted by 7.4 feet (12 feet over spillway crest) during test flood of 1/2 DIF.
APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS
NOT AVAILABLE AT THIS TIME