Reservoir Dam Inspection Report

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

Cover Program reads:
Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

Key Words
- DAMS, INSPECTION, DAM SAFETY,
- Kennebec River Basin
- Waterville Maine
- Unnamed (Tributary to Kennebec River)

Abstract
The dam is a small earthfill, concrete core dam located in central Maine about 2 miles north of Waterville. The dam is 735 ft. long and 27 ft. high. The visual inspection showed that the dam and its aputent structures are in good condition. It is small in size with a high hazard classification. Remedial measure include routine general maintenance to keep the vegetation trimmed among a few others.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Honorable Joseph E. Brennan
Governor of the State of Maine
State Capitol
Augusta, Maine 04330

Dear Governor Brennan:

Inclosed is a copy of the Reservoir Dam (ME-00472) Phase I Inspection Report, prepared under the National Program for Inspection of Non-Federal Dams. This report is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. I approve the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is vitally important.

Copies of this report have been forwarded to the Department of Agriculture and to the owner, Kennebec Water District. Copies will be available to the public in thirty days.

I wish to thank you and the Department of Agriculture for your cooperation in this program.

Sincerely,

[Signature]

WILLIAM F. HODGSON, Jr.
Colonel, Corps of Engineers
Acting, Division Engineer
NATIONAL DAM INSPECTION PROGRAM

PHASE I INSPECTION REPORT

Identification No. : ME 00472
Name of Dam : Reservoir Dam
Town : Waterville, ME.
County & State : Kennebec & Somerset Counties, Maine
Stream : Unnamed (Tributary to Kennebec River)
Date of Inspection : November 16, 1979

BRIEF ASSESSMENT

Reservoir Dam is a small earthfill, concrete core dam located in central Maine about two miles north of Waterville. The dam was built to supplement the water supply of the Kennebec Water District. It is essentially a pumped storage project with all of the storage (with the exception of direct precipitation) being pumped into the reservoir from China Lake about 10 miles away. The original structure was built in 1918 but it was enlarged in 1951 so as to double the reservoir storage capacity. The Kennebec Water District owns the dam. They also maintain and monitor the project on a regular basis. The project includes the main dam which is 735 feet long and 27 feet high, a dike along the upper reaches of the reservoir, and a runoff diversion ditch around the perimeter of the project.

The visual inspection showed that the dam and its apurtenant structures are in good condition. With a maximum storage capacity of 156 acre-feet and height of 27 feet it is classified as a small dam. Results from the dam breach analysis determined that the structure should be classified as a high hazard potential because more than a few lives would be threatened in the event of a dam breach.

A test flood was estimated for the Reservoir Dam using the "Preliminary Guidance for Estimating Maximum Probable Discharges in Phase I Safety Investigations", New England Division Corps of Engineers, March 1978. It was assumed that the dike system surrounding the project would prevent any runoff from entering the reservoir during a PMF event. Therefore, only direct precipitation was considered during a Probable Maximum Precipitation (PMP) storm. This resulted in the water level being increased by 1.6 feet to elevation 328.6. This increase when added to the normal water level elevation of 327 would remain below the crest of the dam at Elevation 330 but it would exceed the top of the perimeter dike at Elevation 328.
No urgent or emergency actions are required for Reservoir Dam based on this inspection. Remedial measures include routine general maintenance to keep the vegetation trimmed, monitoring the project during periods of intense rainfall, establishing a monthly visual inspection program, and developing a downstream warning system.

J.E. Giles, Jr., P.E.
Project Manager
Massachusetts Registration No. 1643
This Phase I Inspection Report on Reservoir Dam (ME-00472) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

ARAXMAST NAHTESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

JOSEPH W. FINEGAN, JR., CHAIRMAN
Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project compliance with OSHA rules and regulations is also excluded.
TABLE OF CONTENTS

Section Page
Letter of Transmittal
Brief Assessment
Review Board Page
Preface i
Table of Contents ii-iv
Overview Photo v
Location Map vi

REPORT

1. PROJECT INFORMATION 1-1

1.1 General 1-1
 a. Authority 1-1
 b. Purpose of Inspection 1-1
 c. Scope of Inspection Program 1-2

1.2 Description of Project 1-2
 a. Location 1-2
 b. Description of Dam and Appurtenances 1-2
 c. Size Classification 1-3
 d. Hazard Classification 1-3
 e. Ownership 1-3
 f. Operator 1-3
 g. Purpose of Dam 1-3
 h. Design and Construction History 1-3
 i. Normal Operational Procedure 1-4
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 Pertinent Data</td>
<td>1-4</td>
</tr>
<tr>
<td>2. ENGINEERING DATA</td>
<td></td>
</tr>
<tr>
<td>2.1 Design Data</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Construction Data</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Operation Data</td>
<td>2-1</td>
</tr>
<tr>
<td>2.4 Evaluation of Data</td>
<td>2-2</td>
</tr>
<tr>
<td>3. VISUAL INSPECTION</td>
<td></td>
</tr>
<tr>
<td>3.1 Findings</td>
<td>3-1</td>
</tr>
<tr>
<td>a. General</td>
<td>3-1</td>
</tr>
<tr>
<td>b. Dam</td>
<td>3-1</td>
</tr>
<tr>
<td>c. Appurtenant Structures</td>
<td>3-1</td>
</tr>
<tr>
<td>d. Reservoir Area</td>
<td>3-2</td>
</tr>
<tr>
<td>e. Downstream Channel</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2 Evaluation</td>
<td>3-2</td>
</tr>
<tr>
<td>4. OPERATIONAL AND MAINTENANCE PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.1 Operational Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>a. General</td>
<td>4-1</td>
</tr>
<tr>
<td>b. Description of any Warning System in Effect</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Maintenance Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>a. General</td>
<td>4-1</td>
</tr>
<tr>
<td>b. Operating Facilities</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Evaluation</td>
<td>4-1</td>
</tr>
<tr>
<td>5. EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES</td>
<td></td>
</tr>
<tr>
<td>5.1 General</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Design Data</td>
<td>5-1</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>5.3 Experience Data</td>
<td>5-1</td>
</tr>
<tr>
<td>5.4 Test Flood Analysis</td>
<td>5-1</td>
</tr>
<tr>
<td>5.5 Dam Failure Analysis</td>
<td>5-1</td>
</tr>
<tr>
<td>6. EVALUATION OF STRUCTURAL STABILITY</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1 Visual Observation</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2 Design and Construction Data</td>
<td>6-1</td>
</tr>
<tr>
<td>6.3 Post-Construction Changes</td>
<td>6-1</td>
</tr>
<tr>
<td>6.4 Seismic Stability</td>
<td>6-1</td>
</tr>
<tr>
<td>7. ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES</td>
<td>7-1</td>
</tr>
<tr>
<td>7.1 Dam Assessment</td>
<td>7-1</td>
</tr>
<tr>
<td>a. Condition</td>
<td>7-1</td>
</tr>
<tr>
<td>b. Adequacy of Information</td>
<td>7-1</td>
</tr>
<tr>
<td>c. Urgency</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2 Recommendations</td>
<td>7-1</td>
</tr>
<tr>
<td>7.3 Remedial Measures</td>
<td>7-1</td>
</tr>
<tr>
<td>7.4 Alternatives</td>
<td>7-1</td>
</tr>
</tbody>
</table>

APPENDIXES

APPENDIX A - INSPECTION CHECKLIST A-1
APPENDIX B - ENGINEERING DATA B-1
APPENDIX C - PHOTOGRAPHS C-1
APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS D-1
APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS E-1
SECTION I
PROJECT INFORMATION

1.1 General

a. Authority - Public Law 92-367, August 8, 1972 authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Chas. T. Main, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Maine. Authorization and notice to proceed were issued to Chas. T. Main, Inc. under a letter of November 6, 1979 from Max B. Scheider, Colonel, Corps of Engineers. Contract No. DACW 33-80-C-0011 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) The purposes of the inspection program are: To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) To encourage and prepare the states to initiate effective dam safety programs for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.
c. **Scope of Inspection Program** - The scope of this Phase I inspection report includes:

1. Gathering, reviewing and presenting all available data as can be obtained from the owners, previous owners, the state and other associated parties.

2. A field inspection of the facility detailing the visual condition of the dam, embankments and appurtenant structures.

3. Computations concerning the hydraulics and hydrology of the facility and its relationship to the calculated flood through the existing spillway.

4. An assessment of the condition of the facility and corrective measures required.

It should be noted that this report does not pass judgment on the safety or stability of the dam other than on a visual basis. The inspection is to identify those features of the dam which need corrective action and/or further study.

1.2 **Description of Project**

a. **Location** - Reservoir Dam is located on the Somerset and Kennebec County Line on an unnamed stream, approximately 1.75 miles above the Kennebec River and two miles north of Waterville. The dam location is included on U.S.G.S. 15 minute series Quadrangle, Waterville, Maine with approximate coordinates of N44°35'0", W69°38'40".

b. **Description of Dam and Appurtenances** - The project consists of three main features; an earthfill concrete core dam, an earthfill dike, and a runoff diversion ditch. The dam is approximately 735 feet long, 27 feet high, and 12 feet wide at the crest (Elev. 330 NGVD) with upstream and downstream slopes of 1.5 H:1V. The reinforced concrete core wall is 16 inches thick with a 3' x 3' footing that rests on a rock foundation. The top of the wall is five feet lower than the crest of the dam. The upstream face of the dam is protected with rip-rap and the downstream face has a heavy grass cover with a drainage ditch running along the toe.

The earthfill dike extends around the reservoir adjoining the dam at both abutments. It was installed in 1951 to double the storage capacity of the reservoir. The height of the dike varies but the crest is at constant Elevation 328 NGVD. The embankment slope is 2:1 on the reservoir side with a rip-rap cover and 3:1 on the dry side which has a well established grass cover.

Running completely around the project is a runoff diversion ditch. The purpose of this ditch is to prevent any surface run-off from entering and contaminating the reservoir supply.
Two inlet lines, one 24" and one 20" diameter pipes supply water to the reservoir. Two outlet lines, one 16" and one 12" diameter pipes carry the discharge as needed. A 14" line installed when the original dam construction took place in 1918 was closed in 1951. The gate valves on both lines are normally left open to maintain the water pressure in the system and to facilitate water supply operations. The flow within these pipelines, whether filling or emptying the reservoir, is controlled by the Kennebec Water District through its pump house controls located 180 feet downstream from the dam. The source of supply for the reservoir is China Lake located 10 miles southeast of the dam with a drainage area of 36 square miles.

A 14" diameter open pipe serves as an overflow outlet with Invert Elevation 327 NGVD. It has a small concrete receptacle at the inlet and empties into the drainage ditch at the toe of the dam.

c. **Size Classification** - The maximum embankment height is approximately 27 feet above the downstream toe and the maximum storage is 145 acre-feet at the crest of the dike. This classifies the structure as a small dam (less than 1000 acre feet) in accordance with the Corps of Engineers Recommended Guidelines for Safety Inspection of Dams.

d. **Hazard Classification** - This facility is classified as a high hazard potential dam based on the potential for loss of more than a few lives in the event of a dam failure in several occupied dwellings downstream of the dam.

e. **Ownership** - The dam and associated works are owned by the Kennebec Water District.

f. **Operators** - The project is operated and maintained by the Kennebec Water District. The District Superintendent is Mr. Theodore Rohman in Waterville, Telephone (207) 872-2763.

g. **Purpose of Dam** - Reservoir Dam was constructed to supply a secondary water supply source for the Kennebec Water District. The reservoir is entirely contained; surface runoff is diverted around it. The reservoir is supplied through a pipeline distribution network from China Lake.

h. **Design and Construction History** - The original dam was built in 1918 by the firm of Mr. James H. Kerr of Rumford, Maine. It was designed by Metcalf and Eddy Consulting Engineers from Boston. In 1951, the dam was enlarged and the dike was added so as to double the storage capacity. This work was performed by A. P. Wyman, Inc. of Waterville, Maine, with the engineering supervised by Mr. J. Elliot.
Hale. Then in 1978, some minor revisions were performed on the project when the gunite facing was replaced by rip-rap.

i. Normal Operating Procedures - Water is pumped from the China Lake pipe line into the Water Districts distribution pipes, and if the rate of pumping exceeds the consumption at the moment, the excess flows into the reservoir; conversely, if the consumption exceeds the pumping rate, water is drawn from the reservoir to make up the difference. The reservoir thus serves as an equalizer, and assists in the maintenance of a uniform pressure in the pipes. The water level at the reservoir is monitored and recorded on a continuous weekly chart. Normal operating level is between Elevations 327 and 325.

1.3 Pertinent Data

a. Drainage Area - Reservoir Dam controls a drainage area of 0.25 square miles. Runoff from the upstream drainage area is diverted around the reservoir. Thus, runoff drainage is not considered when evaluating the hydrologic conditions of this dam.

b. Discharge at Damsite

(1) Outlet Works - The storage is discharged through a 24" diameter and 14" diameter pipe controlled by the pumphouse equipment at the downstream end. The invert elevation of the 24" is 316 and of the 14" is 302. Also, a 14" diameter open overflow pipe is at invert Elevation 327.

(2) Maximum known flood - Unavailable in existing data.

c. Elevations (feet above NGVD)

(1) Streambed at toe of dam 303
(2) Bottom of cutoff 295
(3) Maximum tailwater Not available
(4) Normal Pool 327
(5) Full flood control pool Not applicable
(6) Spillway crest (overflow pipe) 327
(7) Design surcharge (Original Design) Not available
(8) Top of upstream dike 328
(9) Top of dam 330

1 - 4
(10) Test flood surcharge 328.6

d. Reservoir (Length in feet)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Normal pool @ Elev. 327</td>
<td>230</td>
</tr>
<tr>
<td>(2) Flood control pool</td>
<td>Not applicable</td>
</tr>
<tr>
<td>(3) Spillway crest pool</td>
<td>230</td>
</tr>
<tr>
<td>(4) Top of dam</td>
<td>230</td>
</tr>
<tr>
<td>(5) Test flood pool</td>
<td>230</td>
</tr>
</tbody>
</table>

e. Storage (acre-feet)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Normal Pool</td>
<td>128</td>
</tr>
<tr>
<td>(2) Flood control pool</td>
<td>Not applicable</td>
</tr>
<tr>
<td>(3) Spillway crest pool</td>
<td>128</td>
</tr>
<tr>
<td>(4) Top of dike</td>
<td>145</td>
</tr>
<tr>
<td>(5) Test flood pool</td>
<td>156</td>
</tr>
</tbody>
</table>

f. Reservoir Surface (acres)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Normal Pool</td>
<td>11.1</td>
</tr>
<tr>
<td>(2) Flood-control pool</td>
<td>Not applicable</td>
</tr>
<tr>
<td>(3) Spillway crest</td>
<td>11.1</td>
</tr>
<tr>
<td>(4) Test flood pool</td>
<td>11.4</td>
</tr>
<tr>
<td>(5) Top of dam</td>
<td>12.0</td>
</tr>
</tbody>
</table>

g. Dam and Dike

<table>
<thead>
<tr>
<th></th>
<th>Dam</th>
<th>Dike</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Type</td>
<td>Earthfill</td>
<td>Earthfill</td>
</tr>
<tr>
<td></td>
<td>concrete core</td>
<td></td>
</tr>
<tr>
<td>(2) Length</td>
<td>735 feet</td>
<td>1,535 ft.</td>
</tr>
<tr>
<td>(3) Height</td>
<td>27 feet</td>
<td>Varies</td>
</tr>
<tr>
<td>(4) Top Width</td>
<td>12 feet</td>
<td>12 ft.</td>
</tr>
</tbody>
</table>
(5) Side Slopes

<table>
<thead>
<tr>
<th>DAM</th>
<th>DIKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream 1.5:1</td>
<td>Upstream 2.0:1</td>
</tr>
<tr>
<td>Downstream 1.5:1</td>
<td>Downstream 3.0:1</td>
</tr>
</tbody>
</table>

(6) Zoning

None

None

(7) Impervious Core

Concrete

None

(8) Cutoff

Concrete

None

(9) Grout curtain

None

None

(10) Other

Rip-rap face

Rip-rap face

h. Diversion and Regulating Tunnel

- None

i. Principal Outlet Works

(1) Invert - 327' NGVD

(2) Size - 14" Dia.

(3) Description - Overflow control

(4) Control Mechanism - Open - No valves

(5) Other - None

j. Regulating Outlets

(1) i. Invert - 302' NGVD

ii. Size - 20" Dia.

iii. Description - Inlet & Outlet Supply Pipeline

iv. Control Mechanism - Pumps located downstream govern flow; check valve in valve chamber on dam.

(2) i. Invert - 316' NGVD

ii. Size - 24" Dia.

iii. Description - Inlet & Outlet Supply Pipeline

iv. Control Mechanism - Pumps located downstream govern flow; check valve located 180' downstream.
SECTION 2
ENGINEERING DATA

2.1 Design

Metcalf & Eddy Consulting Engineers from Boston Massachusetts, were the engineers responsible for designing the original Reservoir Dam structure. Three of their original drawings were obtained and are included in Appendix B. Also, the report from Metcalf & Eddy to the Trustees of the Kennebec Water District; Re., "Necessity and Approximate Cost of a New Distributing Reservoir", August 3, 1916, was reviewed in preparing this report. Two additional drawings showing the 1951 revisions were obtained and are in Appendix B. The Contract and Specifications for "Improvements to Reservoir for Kennebec Water District", March 1, 1951, were reviewed. Also, the Trustees' Statements from 1917, 1919 and 1951 were received from the Kennebec Water District. Unfortunately, design calculations from neither the 1918 nor 1951 construction were available in preparing this report.

The general design of the dam is an earthfill structure with a concrete core wall down to bedrock. The 16" thick reinforced wall has a 3' x 3' concrete base which sets on a rock foundation. The embankment slopes were originally 2.5:1 and 2:1 on the upstream and downstream slopes respectively but these were changed in 1951 such that both slopes are now 1.5:1.

2.2 Construction

There are no actual records of the original or revised construction other than the report from the Kennebec Water District. The earthfill was taken from the reservoir area which, according to Metcalf and Eddy, was a clayey hardpan, extremely hard and laid in layers with the "best selected material" forming the upstream embankment and the "second grade material" forming the downstream embankment. The original dam was built by the firm of Mr. James H. Kerr from Rumford, Maine. The 1951 changes were performed by A. P. Wyman, Inc. of Waterville, Maine.

2.3 Operation

The daily level of the reservoir is monitored and recorded by the Kennebec Water District. The level of the reservoir is maintained between Elevations 325 and 327 under normal use. The water level is mechanically controlled by the pumps and valves within the Water District's distribution network. The pipeline pressure at the pumping station downstream from the dam is approximately 110 p.s.i. due to the pressure head from the reservoir. During low usage when it is not economical to run the systems
large pumps, the reservoir becomes the major source of water supply, taking advantage of its pressure head for distribution.

2.4 Evaluation

a. Availability: All of the engineering data acquired was received from the Kennebec Water District. This includes the drawings, reports, and miscellaneous material. All of the drawings received are included in Appendix B.

b. Adequacy: The limited amount of engineering data did not allow for a definitive review. Evaluation must be based on visual inspection, past performance history, and engineering judgment.

c. Validity: The field inspection indicated that the external features of the dam and appurtenances substantially agree with those shown on the available drawings.
SECTION 3
VISUAL INSPECTION

3.1 Findings

a. General - The field inspection was conducted by Mr. L. Seward and Mr. J. Jonas of Chas. T. Main, Inc. on 16 November 1979 and J. E. Giles, Jr. on March 10, 1981. On the dates of inspection, the Reservoir Dam was in good condition. General maintenance of the project is necessary but no urgent or emergency actions are required at this time.

b. Dam

(1) Crest - The embankment crest was true to line with no apparent dips, sags, cracks or other evidence of distress (Photo 1 & Overview). The crest has a well established grass cover with no signs of trespassing.

(2) Upstream slopes - The upstream face was in very good condition with an undamaged rip-rap cover (Photos 1, 2, 3 & Overview).

(3) Downstream slope - The downstream slope is dry with a heavy, well established grass cover (Photo 4). The slope showed no signs of lateral movement, erosion, sagging, or slides. No seepage was observed. The grass and weeds appeared overgrown and uncut but in general the slope was in good condition.

(4) Downstream toe - No boils or seeps were observed. The drainage ditch running along the toe contained a small amount of running water from upstream of the reservoir. The flow was approximately ten gals per minute. It appeared in good condition although somewhat overgrown with cattails, brambles, and other weeds.

(5) Underdrain system - The dam has no underdrain system.

(6) Instrumentation - The only instrument at the project is the water level device which was not observed during the inspection. A copy of a weekly chart which records the water level was made available and is included in Appendix B.

c. Appurtenant Structures

(1) Dike - The dike surrounding the upper part of the reservoir and adjoining the dam abutments was in good condition. It has no apparent dips, sags, or other evidence of distress along the crest. There was no evidence of seepage. The crest and dry-side slopes did have a well-established grass cover. The embankment had a very good rip-rap cover along the entire length.
(2) Intercepting ditch - The intercepting or diversion ditch completely surrounds the project. At the time of inspection it had a small amount of water flowing through it. Most of this water flowed along the western side of the reservoir with only a trickle flowing along the eastern side. The ditch appeared to be functioning properly, that is, diverting the surface runoff around the reservoir.

(3) Inlet and outlet works - Because both supply and outlet lines were buried and their inlets and outlets submerged, these were not able to be inspected. (See Section 7) The housing for the valve control for the 14" abandoned pipeline is unused with some rubbish accumulated at the bottom.

d. Reservoir Area

The reservoir looked very clean with no irregularities observed. On the northwest upstream end of the reservoir, outside of the dike but inside the diversion ditch, a small pool of relatively stagnant water was observed. It appeared that this shallow pool would occasionally spill over the dike (without damage) into the reservoir. Probably the result of rainwater, this pool is not a serious problem at present. (See Section 7)

e. Downstream Channel

There is a well-defined downstream channel below the dam with only a small flow consisting of the discharge from the diversion ditch around the project. There were no obstructions noted.

3.2 Evaluation

The dam, dike, reservoir, and diversion channel are all in good condition. The only points which should be checked are operability of the controls, the overgrowth of grass and weeds on the downstream slope and around the drainage ditch, and the pool of stagnant water at the northwest corner of the project.
SECTION 4
OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

a. General: Reservoir Dam is used exclusively for water supply. Inflow and outflow are based on water supply demand within the system. The fluctuation of the reservoir level is about two feet during normal operations with the maximum level controlled by an overflow pipe at Elevation 327 NGVD.

b. Warning System: No warning system or emergency evacuation plans are in effect for this project. (See Section 7)

4.2 Maintenance Procedures

a. General: The dam is maintained by the Kennebec Water District. The site is visited daily by members of the Kennebec Water District staff. Repairs and general maintenance are performed as required.

b. Operating Facilities: At the project site, there are no manual operations necessary during normal use. The check valves on both supply lines are left open at all times and the reservoir level is monitored by a recording device.

4.3 Evaluation

The operational and maintenance procedures required at the Reservoir Dam are minimal. There does appear to be a lack of general slope maintenance, that is, keeping the grass and weeds trimmed.
SECTION 5
EVALUATION OF HYDROLOGIC AND HYDRAULIC FEATURES

5.1 General - The runoff from the watershed area above Reservoir Dam is diverted around the reservoir. The dam is located approximately two miles above the town of Waterville Maine. The catchment area of the reservoir is 0.25 square miles. For the Test Flood Analysis the 24 hour Probable Maximum Precipitation (PMP) of 19 inches was used. This results in the dike being overtopped by about six inches.

5.2 Design Data - The dam embankment is approximately 735 feet long and 27 feet high with crest at Elevation 330 NGVD. The embankment has upstream and downstream slopes of 1.5:1. The capacity of the reservoir at various elevations was taken from a table used by the project operators.

5.3 Experience Data - No past hydrology data was available.

5.4 Test Flood Analysis - Because the reservoir is not subjected to runoff from the watershed area above it, the Test Flood Analysis was performed using only direct precipitation into the reservoir during a PMP event. The PMP for this portion of Maine is assumed to be 19 inches. The starting elevation of the reservoir prior to the PMP is taken as Elevation 327, the invert of the overflow pipe. The top of the dike is at Elevation 328 which means that approximately seven inches of water will overtop the dike. Of course, this is assuming that the overflow pipe is not passing any water which is not altogether realistic. Because of the small area of the reservoir together with the 12 inches of freeboard at the pool's maximum operating level, Reservoir Dam is expected to adequately control the Test Flood. However, it should be noted, the assumption that all of the upstream runoff will be diverted around the reservoir because of the dike and diversion channel may not be true. It is possible that some of the runoff will overtop the dike and enter the reservoir but a flood analysis to take this into account is beyond the scope of this report.

5.5 Dam Failure Analysis - The maximum water surface elevation of 328.6 feet and 156 acre-feet is considered in dam breach analysis. The impact of failure of the dam was assessed using the "Rule of Thumb Guidance for Estimating Downstream Dam Failure Hydrographs" prepared by the Corps of Engineers. The breach width was selected to be 35 percent of the length of the dam at mid-height 257 feet. The downstream discharge from the breach of the dam was estimated to be about 56,000 cfs. This discharge was routed downstream. At the northern end of Waterville, the flood surcharge will enter the residential section with an initial height of 4.4 feet and volume of 4000 cfs. It is felt that a wave of this size would cause considerable damage once it reached the town, especially if its flow were restricted when passing through the residential area. The downstream
flood impact area is outlined on the Location Map. Between the dam and the northern side of Waterville some 9,000 feet downstream (Reach 26), there are no residences or other structures which would be damaged by the dam breach surcharge. When the surcharge reaches the homes in the northern side of Waterville it is expected that serious property damage and loss of more than a few lives would result. For this reason, the dam has been classified as a high hazard potential.
SECTION 6

EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observation

The visual inspections of the Reservoir Dam on November 16, 1979 and March 10, 1981 revealed a sound structure with no evidence of instability. There were no dips, sags, or depressions observed in the embankment.

6.2 Design and Construction Data

Original design and construction data was not available in preparing this report.

6.3 Post Construction Changes

In 1951 the dam was raised five feet and the dike was added. In 1978, the gunite facing was replaced with a rip-rap cove. No other major structural changes were performed to the dam.

6.4 Seismic Stability

The dam is located in Seismic Zone No. 2 and, in accordance with recommended Phase I guidelines, does not warrant seismic analysis.
SECTION 7
ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition - This inspection indicates that Reservoir Dam is in good condition including the dike and diversion ditch.

b. Adequacy of Information - The lack of in-depth engineering data did not allow for a definitive review. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data but is based primarily on visual inspection, past performance history and engineering judgment.

c. Urgency - The remedial measures presented below should be implemented by the Owner within one year of receipt of this Phase I Inspection Report.

7.2 Recommendations

a. Drain pool outside dike at north west corner of reservoir by connecting to the drainage ditch.

b. Place shutoff valves inside the reservoir on both the two inlet and two outlet pipe lines.

7.3 Remedial Measures The owner should:

a. Establish a formal downstream warning and evacuation plan to be implemented in the event of an emergency.

b. Establish a system to monitor the project during periods of intense rainfall.

d. Conduct a technical investigation of the project every two years.

e. Obtain and maintain a set of as-built drawings and inspection reports.

f. Periodically trim the grass and remove the weeds on the downstream slope and around the drainage channel.

7.4 Alternatives

There are no practical alternatives to the recommendations of Sections 7.2 and 7.3.
APPENDIX A

FIELD INSPECTION CHECK LIST
INSPECTION CHECK LIST

PARTY ORGANIZATION

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>DATE</th>
<th>TIME</th>
<th>WEATHER</th>
<th>U.S. ELEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir Dam, Waterville, ME</td>
<td>Nov. 16, 1979</td>
<td>11:00 A.M.</td>
<td>Fair, Windy, 30°F</td>
<td></td>
</tr>
</tbody>
</table>

PARTY:

<table>
<thead>
<tr>
<th></th>
<th>Civil</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stanley S. Marshall, Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Jan N. Jonas, Civil Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>J. E. Giles, Jr., Project Manager*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROJECT FEATURE

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>All project features were inspected by each member of the inspection party.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*at site March 10, 1981
Inspection Check List

Project: Reservoir Dam, Waterville, ME
Date: Nov. 16, 1979

Project Feature: Earthfill Dam-water sply
Name: Stanley S. Marshall

Discipline: Hydro
NME: Jan N. Jonas

### Area Evaluated	Conditions
Crest Elevation | 330 feet
Current Pool Elevation | 327 feet
Maximum Impoundment to Date | 40,000,000 gallons (elev. 327)
Surface Cracks | None visible
Pavement Condition | Gravel
Movement or Settlement of Crest | None visible
Lateral Movement | None visible
Vertical Alignment | Good
Horizontal Alignment | Good
Condition at Abutment and at Concrete Structures | Not applicable
Indications of Movement of Structural Items on Slopes | Not applicable
Trespassing on Slopes | None visible
Vegetation on Slopes | Some weeds and grass
Sloughing or Erosion of Slopes or Abutments | None visible
Rock Slope Protection - Riprap Failures | No failures visible
Unusual Movement or Cracking at or near Toes | None visible
Unusual Embankment or Downstream Seepage | None
Piping or Boils | None visible
Foundation Drainage Features | Runoff drainage ditch
Toe Drains | Same
Instrumentation System | None
Project
- **Project**: Reservoir Dam, Waterville, ME
- **Date**: Nov. 16, 1979
- **Name**: Stanley S. Marshall
- **Name**: Jan N. Jonas

Area Evaluated

<table>
<thead>
<tr>
<th>Cutout Area - Intake Channel and Intake Structure</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>Slope Conditions</td>
<td></td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td></td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td></td>
</tr>
<tr>
<td>Log Boom</td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td></td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td></td>
</tr>
<tr>
<td>b. Intake Structure</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td>Not visible</td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td></td>
</tr>
</tbody>
</table>

Not applicable - diversion ditch by-passes reservoir
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - CONTROL TOWER</td>
<td>Valve chamber in dam embankment</td>
</tr>
<tr>
<td>a. Concrete and Structural</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td></td>
</tr>
<tr>
<td>Condition of Joints</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Rusting or Staining of Concrete</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Joint Alignment</td>
<td></td>
</tr>
<tr>
<td>Unusual Seepage or Leaks in Gate Chamber</td>
<td></td>
</tr>
<tr>
<td>Cracks</td>
<td></td>
</tr>
<tr>
<td>Rusting or Corrosion of Steel</td>
<td></td>
</tr>
<tr>
<td>b. Mechanical and Electrical</td>
<td>N/A</td>
</tr>
<tr>
<td>Air Vents</td>
<td>N/A</td>
</tr>
<tr>
<td>Float Wells</td>
<td>N/A</td>
</tr>
<tr>
<td>Crane Hoist</td>
<td>N/A</td>
</tr>
<tr>
<td>Elevator</td>
<td>N/A</td>
</tr>
<tr>
<td>Hydraulic System</td>
<td>N/A</td>
</tr>
<tr>
<td>Service Gates</td>
<td>Operability of check valve not known</td>
</tr>
<tr>
<td>Emergency Gates</td>
<td>N/A</td>
</tr>
<tr>
<td>Lightning Protection System</td>
<td>N/A</td>
</tr>
<tr>
<td>Emergency Power System</td>
<td>N/A</td>
</tr>
<tr>
<td>Wiring and Lighting System in Gate Chamber</td>
<td>N/A</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>OUTLET WORKS - TRANSITION AND CONDUIT</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>Not visible</td>
</tr>
<tr>
<td>Rust or Staining on Concrete</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td></td>
</tr>
<tr>
<td>Alignment of Monoliths</td>
<td></td>
</tr>
<tr>
<td>Alignment of Joints</td>
<td></td>
</tr>
<tr>
<td>Numbering of Monoliths</td>
<td></td>
</tr>
<tr>
<td>DIKE EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>328 feet</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>None</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Good</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Good</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>None</td>
</tr>
<tr>
<td>Vegetation on Slopes</td>
<td>Heavily grassed</td>
</tr>
<tr>
<td>Sloughing or Erosion</td>
<td>None</td>
</tr>
<tr>
<td>Rip-rap Cover</td>
<td>Good</td>
</tr>
<tr>
<td>Seepage</td>
<td>None</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEl</td>
<td>Not applicable</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Condition at Joints</td>
<td></td>
</tr>
<tr>
<td>Drain holes</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Loose Rock or Trees Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td></td>
</tr>
</tbody>
</table>

PROJECT Reservoir Dam Waterville, ME
DATE Nov. 16, 1979
PROJECT FEATURE Earthfill Dam
NAME Stanley S. Marshall
DISCIPLINE Hydro
NAME Jan N. Jonas
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td>Not applicable</td>
</tr>
<tr>
<td>General Condition</td>
<td></td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td></td>
</tr>
<tr>
<td>b. Weir and Training Walls</td>
<td>None</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Drain Holes</td>
<td></td>
</tr>
<tr>
<td>c. Discharge Channel</td>
<td>Good</td>
</tr>
<tr>
<td>General Condition</td>
<td></td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>None</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>N/A</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td>None</td>
</tr>
</tbody>
</table>
INSPECTION CHECK LIST

PROJECT Reservoir Dam Waterville, ME

PROJECT FEATURE Earthfill Dam

DISCIPLINE Hydro

DATE Nov. 16, 1979

NAME Stanley S. Marshall

NAME Jan N. Jonas

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SERVICE, BRIDGE</td>
<td>None</td>
</tr>
<tr>
<td>a. Super Structure</td>
<td>None</td>
</tr>
<tr>
<td>Bearings</td>
<td>None</td>
</tr>
<tr>
<td>Anchor Bolts</td>
<td>None</td>
</tr>
<tr>
<td>Bridge Seat</td>
<td>None</td>
</tr>
<tr>
<td>Longitudinal Members</td>
<td>None</td>
</tr>
<tr>
<td>Under Side of Deck</td>
<td>None</td>
</tr>
<tr>
<td>Secondary Bracing</td>
<td>None</td>
</tr>
<tr>
<td>Deck</td>
<td>None</td>
</tr>
<tr>
<td>Drainage System</td>
<td>None</td>
</tr>
<tr>
<td>Railings</td>
<td>None</td>
</tr>
<tr>
<td>Expansion Joints</td>
<td>None</td>
</tr>
<tr>
<td>Paint</td>
<td>None</td>
</tr>
<tr>
<td>b. Abutment & Piers</td>
<td>None</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>None</td>
</tr>
<tr>
<td>Alignment of Abutment</td>
<td>None</td>
</tr>
<tr>
<td>Approach to Bridge</td>
<td>None</td>
</tr>
<tr>
<td>Condition of Slat & Backwall</td>
<td>None</td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA

LIST OF ENCLOSED DRAWINGS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-2</td>
<td>Plan for Relaying Paving at Reservoir of Kennebec Water District, July 1973. Improvements to Reservoir Dam, 1951</td>
</tr>
<tr>
<td>B-3</td>
<td>Reservoir Record Plan, Improvements Made 1951</td>
</tr>
<tr>
<td>B-4</td>
<td>Contour Plan of Completed Reservoir, Oct. 1, 1918</td>
</tr>
<tr>
<td>B-5</td>
<td>Record Plan, Oct. 1, 1918</td>
</tr>
<tr>
<td>B-6</td>
<td>Contract Plans - Sheet No. 2; Details of Dam, Aug. 21, 1916</td>
</tr>
</tbody>
</table>
Reservoir During a Typical Week

"10" on the Chart is the Elevation of the Overflow Invert
APPENDIX C

PHOTOGRAPHS
Photo 1
Upstream Face from Left Abutment

Photo 2
Upstream Right Abutment from Overflow Structure

Photo 3
Upstream Right Face with Concrete Overflow Structure
Photo 4
Downstream Face from Right Side.

Photo 5
Downstream Outlet of 14" Ø Overflow Pipe

Photo 6
View Across Reservoir from Left Side Looking Towards Dam.
"RULE OF THUMB" GUIDANCE FOR ESTIMATING DOWNSTREAM DAM FAILURE HYDROGRAPHS

STEP 1: DETERMINE OR ESTIMATE RESERVOIR STORAGE (S) IN AC-FT AT TIME OF FAILURE.

STEP 2: DETERMINE PEAK FAILURE OUTFLOW (Qp1).

\[Qp_1 = \frac{9}{27} w_b \sqrt{y_0} y_0^{3/2} \]

- \(w_b \) = Breach width - suggest value not greater than \(\frac{4}{5} \) of \(C' \) length across river at mid height.
- \(y_0 \) = Total height from river bed to pool level at failure.

STEP 3: USING USGS TOPO OR OTHER DATA, DEVELOP REPRESENTATIVE STAGE-DISCHARGE RATING FOR SELECTED DOWNSTREAM RIVER REACH.

STEP 4: ESTIMATE REACH OUTFLOW (Qp2) USING FOLLOWING ITERATION.

A. APPLY \(Qp_1 \) TO STAGE RATING, DETERMINE STAGE AND ACCOMPANYING VOLUME (\(V_1 \)) IN REACH IN AC-FT. (NOTE: IF \(V_1 \) EXCEEDS 1/2 OF S, SELECT SHORTER REACH.)

B. DETERMINE TRIAL \(Qp_2 \).

\[Qp_2 (\text{TRIAL}) = Qp_1 \left(1 - \frac{y_0}{5}\right) \]

C. COMPUTE \(V_2 \) USING \(Qp_2 (\text{TRIAL}) \).

D. AVERAGE \(V_1 \) AND \(V_2 \) AND COMPUTE \(Qp_2 \).

\[Qp_2 = Qp_1 \left(1 - \frac{y_0}{5}\right) \]

STEP 5: FOR SUCCEEDING REACHES REPEAT STEPS 3 AND 4.

APRIL 1978
STEP 3: a. Determine Surcharge Height and "STOR2" To Pass "Qp2"

b. Avg "STOR1" and "STOR2" and Compute "Qp3".

c. If Surcharge Height for Qp3 and "STORAVG" agree O.K. If Not:

STEP 4: a. Determine Surcharge Height and "STOR3" To Pass "Qp3"

b. Avg. "Old STORAVG" and "STOR3" and Compute "Qp4"

c. Surcharge Height for Qp4 and "New STORAVG" should Agree closely
ESTIMATING EFFECT OF SurchARGE STORAGE ON MAXIMUM PROBABLE DISCHARGES

STEP 1: Determine Peak Inflow (Q_{p1}) from Guide Curves.

STEP 2: a. Determine Surcharge Height To Pass "Q_{p1}".
 b. Determine Volume of Surcharge (STOR1) In Inches of Runoff.
 c. Maximum Probable Flood Runoff In New England equals Approx. 19", Therefore:

 $$Q_{p2} = Q_{p1} \times (1 - \frac{\text{STOR1}}{19})$$

STEP 3: a. Determine Surcharge Height and "STOR2" To Pass "Q_{p2}".
 b. Average "STOR1" and "STOR2" and Determine Average Surcharge and Resulting Peak Outflow "Q_{p3}".
Drainage Area = 0.25 sq.mi.

For drainage area of 0.25 sq.mi. (by extending the Corps of Engineers Curve) \(Q_{MF} = 2750 \text{ cfs/sq.mi.} \)

The peak discharge becomes

\[Q_p = 2750 \times 0.25 = 687.5 \text{ cfs.} \]

There is an intercepting ditch around the reservoir area preventing the flows to inter into the reservoir. In addition the dam is raised to top elevation 330.0 FT and a dike of top elevation 328.0 FT was constructed around the circumference of the reservoir. Due to this set-up no water is anticipated to inter into the reservoir except direct precipitation.

The PMP for this area is considered to be 19 inches which may raise the water elevation of the reservoir about 1.6 ft. to elevation 327 + 1.6 = 328.6 FT which will be lower than the crest elevation of the dam (330.0 FT).

The water surface elevation 328.6 FT is considered in dam breach analyses.
<table>
<thead>
<tr>
<th>ELV (ft)</th>
<th>CAPACITY (Gallons)</th>
<th>CAPACITY (AC-Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.04</td>
<td>14,000</td>
<td>0.043</td>
</tr>
<tr>
<td>3.05</td>
<td>51,000</td>
<td>0.157</td>
</tr>
<tr>
<td>3.06</td>
<td>121,000</td>
<td>0.271</td>
</tr>
<tr>
<td>3.07</td>
<td>237,000</td>
<td>0.727</td>
</tr>
<tr>
<td>3.08</td>
<td>407,000</td>
<td>1.249</td>
</tr>
<tr>
<td>3.09</td>
<td>639,000</td>
<td>1.961</td>
</tr>
<tr>
<td>3.10</td>
<td>953,000</td>
<td>3.925</td>
</tr>
<tr>
<td>3.11</td>
<td>1,369,000</td>
<td>4.202</td>
</tr>
<tr>
<td>3.12</td>
<td>1,909,000</td>
<td>5.859</td>
</tr>
<tr>
<td>3.13</td>
<td>2,605,000</td>
<td>7.995</td>
</tr>
<tr>
<td>3.14</td>
<td>3,494,000</td>
<td>10.723</td>
</tr>
<tr>
<td>3.15</td>
<td>4,632,000</td>
<td>14.216</td>
</tr>
<tr>
<td>3.16</td>
<td>6,082,000</td>
<td>18.666</td>
</tr>
<tr>
<td>3.17</td>
<td>7,973,000</td>
<td>24.470</td>
</tr>
<tr>
<td>3.18</td>
<td>10,421,000</td>
<td>31.983</td>
</tr>
<tr>
<td>3.19</td>
<td>13,217,000</td>
<td>44.564</td>
</tr>
<tr>
<td>3.20</td>
<td>16,107,000</td>
<td>49.424</td>
</tr>
<tr>
<td>3.21</td>
<td>22,000,000</td>
<td>67.520</td>
</tr>
<tr>
<td>3.22</td>
<td>25,207,000</td>
<td>77.341</td>
</tr>
<tr>
<td>3.23</td>
<td>29,243,000</td>
<td>89.618</td>
</tr>
<tr>
<td>3.24</td>
<td>33,400,000</td>
<td>102.508</td>
</tr>
<tr>
<td>3.25</td>
<td>37,300,000</td>
<td>114.477</td>
</tr>
<tr>
<td>3.26</td>
<td>40,000,000</td>
<td>122.764</td>
</tr>
</tbody>
</table>
CURVE FITTING

<table>
<thead>
<tr>
<th>X(I)</th>
<th>Y(I)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77.34</td>
<td>323</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>89.61</td>
<td>324</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>102.58</td>
<td>325</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>114.47</td>
<td>326</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>122.76</td>
<td>327</td>
<td>0.000</td>
</tr>
</tbody>
</table>

P = 0.98

YHAT = 287.992 + 8.042LOG X

CAPACITY (ac-ft)
\[Y (\text{Elevation}) = 287.992 + 8.042 \log (\text{Capacity}) \]

or

\[x (\text{Capacity}) = e^{\frac{Y (\text{Elevation}) - 287.992}{8.042}} \]

\(Y \) in (ft), \(x \) in (acre-ft).

Elev. - Capacity Curve
STEP 1: Reservoir Storage at time of failure \(V_r = 1559 \text{ A} \cdot \text{ft.} \)
\(= \text{LV} = 378.6 \text{ ft.} \)

STEP 2: The Failure Outflow peak \(Q_p, \)
\[Q_p = \frac{8}{27} \cdot W_b \sqrt{h_0^2} \]
Ref: Corps of Eng. Guidelines

Where,
- \(W_b = \text{Breach width (ft.)} \)
- \(W_b = 0.40 \cdot W_d \)
- \(W_d = \text{Dam Length} \)
- \(W_b = 0.40 \cdot 735 \text{ ft.} = 294.0 \text{ ft.} \)
- \(h_0 = \text{Total height from river bed to pool level at failure} \)
- \(h_0 = 25.6 \text{ ft.} (378.6 - 303.0) \)

STEP 3: Derivation of Stage-Discharge Relationship

For simplification, the cross-sections in any reach are converted as triangular shape.

Area, \(A = \frac{b \cdot h}{2} \times 2 \)
\[A = h \cdot b \]
\[\frac{b}{h} = \tan \alpha \]
\[b = \frac{h}{\tan \alpha} \]
\[A = \frac{h^2}{\tan \alpha} \]
Wetted Parameter, \(W \),

\[
W = 2l \quad \frac{b}{L} = \alpha \quad l = \frac{b}{\alpha L}
\]

\[
W = 2 \frac{b}{\alpha L}
\]

Hydraulic Radius, \(R \),

\[
R = \frac{b}{W} = \frac{b^2}{2} = \frac{h}{2} \cdot \cos \alpha
\]

\[
R = \left(\frac{h}{2} \right)^{2/3}
\]

Manning's Formula,

\[
Q = 1.49 \cdot R^{2/3} \cdot S^{1/2}
\]

\[
Q = 1.49 \cdot \frac{h^2}{m} \cdot \tan \alpha \cdot \left(\frac{h \cos \alpha}{2} \right)^{2/3} \cdot S^{1/2}
\]

\[
Q = 1.49 \cdot \frac{h}{m} \cdot \tan \alpha \cdot \frac{(h \cos \alpha)^{2/3}}{2^{2/3}} \cdot S^{1/2}
\]

\[
Q = \left[\frac{m \cdot \tan \alpha \cdot 2^{2/3}}{1.49 \cdot (h \cos \alpha)^{2/3} \cdot S^{1/2} \cdot Q} \right]^{3/8}
\]

\[
Q = \left[\frac{1.068 \cdot m \cdot \tan \alpha \cdot 2^{2/3}}{(h \cos \alpha)^{2/3} \cdot S^{1/2} \cdot Q} \right]^{3/8}
\]

STEP 4: For this step, a computer program is developed, which is presented in pages 8 through 9. The results are tabulated in page 7.
There is no emergency spillway and the only spillway is 14 inches overflow pipe at elev 327. Maximum water elev. during test flood is 328.6 and with 1.6 ft head the discharge from the pipe is assumed to be minimal for a study for pre-failure conditions.

KENNEBEC DAM
DAM FAILURE ANALYSIS

These calculations are performed according to the RULE OF THUMB procedures of the Corps of Engineers.

The breach discharge:

\[Q_p = 9/27 \times Wb \times \gamma \times 0.5 \times Yo^{2/3} \]

Where,

\(Yo \) is the height of the breach (from river bed to the max. pool level).

\(Wb \) is 35% of the length of the dam, or \(Wb = \frac{35}{100} \times Wd \)

\(\gamma \) is the acceleration of the gravity (32.2 ft/sec^2)

\(Yo = 25.6 \) (ft)

\(Wd = 735 \) (ft)

\(Wb = 257 \) (ft)

From above equation:

\[Q_p = 56023 \text{ (cfs)} \]

The natural channel cross sections are simplified as triangular cross sections.

The stage-discharge relationship becomes as:

\[h = \left[1.068 + n \times \tan(a) + 0.5 \cos(a)^2 \right]^{1/3} \]

Where,

\(h \) = Discharge (cfs)

\(n \) = Side slope angle (deg)

\(S \) = Channel slope

The cross section Area:

\[A = h^2 \times \tan(a) \] (ft^2)

The volume of the Reservoir:

\(V = A \times 9 \) (ac-ft)

\(V = 213,004 \) (cub-ft)
REACH (1) CALCULATIONS

Test flood discharge:
Qt = 0 (cfs)

\[\theta = 3.81 \text{(deg.)} \]
\[S = 04 \]
\[n = 0.07 \]
\[L = 350 \text{(ft)} \]

From Formula (I),

Prefailure height,
\[h_1 = 0 \text{(ft)} \]

From Formula (II),
\[A_1 = 0 \text{(sq-ft)} \]

\[O = O_1 + Qt \]

From Formula (I),

Total Height,
\[h = 15.1 \text{(ft)} \]

From Formula (II),

Total Area,
\[A = 3430 \text{(sq-ft)} \]

Residual Area,
\[A_2 = A - A_1 \]
\[A_2 = 3430 \text{(sq-ft)} \]

Residual Volume,
\[V_1 = L \times A_2 \]
\[V_1 = 1200727 \text{(cub-ft)} \]

From Formula (I),

\[O_2 = O_1 \times (1 - V_1 / V) \]
\[O_2 = 46117 \text{(cfs)} \]

\[0 = O_2 + Qt \]

\[O = 46117 \text{(cfs)} \]

\[h = 14 \text{(ft)} \]

From Formula (II),

\[A = 2964 \text{(ft)} \]

Residual Area,
\[A_2 = A - A_1 \]
\[A_2 = 2964 \text{(ft)} \]

\[V_2 = A_2 \times L \]
\[V_2 = 1037692 \text{(cub-ft)} \]

\[V_{ave} = (V_1 + V_2) / 2 \]
\[V_{ave} = 1119209 \text{(cub-ft)} \]

\[O_2 = O_1 \times (1 - V_{ave} / V) \]
\[O_2 = 46790 \text{(cfs)} \]

From Formula (I),

\[0 = O_2 + Qt \]

\[h_2 = 14.1 \text{(ft)} \]

RESULTS:

1) Prefailure Height = 0 (ft)
2) Postfailure Height = 14.1 (ft)
3) Breach Discharge = 46790 (cfs)
4) Reach Length = 350 (ft)
REACH (2) CALCULATIONS

Test flood discharge:
\[Q_0 = 0 \text{ (cfs)} \]

From Formula (I),
\[a = 3.81 \text{ (deg)} \]
\[s = 0.04 \]
\[n = 0.07 \]
\[L = 350 \text{ (ft)} \]

From Formula (II),
\[h_1 = 0 \text{ (ft)} \]

From Formula (I),
\[h = 14.1 \text{ (ft)} \]

Total Area,
\[A = 2997 \text{ (sq-ft)} \]

Residual Area,
\[A_2 = A - A_1 \]
\[A_2 = 2642 \text{ (ft)} \]

Residual Volume,
\[V_2 = A_2 \times L \]
\[V_2 = 924975 \text{ (cub-ft)} \]

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 13.3 (ft)
3. Breach Discharge = 39989 (cfs)
4. Peach Length = 350 (ft)
PEACH (3) CALCULATIONS

Test flood discharge:
Qt = 0 (cfs)

Test slope:
a = 3.81 (deg.)
S = 0.04

Test reach length:
L = 350 (ft)

From Formula (I),
Prefailure height:
h1 = 0 (ft)

From Formula (II),
Total Area,
A1 = 0 (sq. ft.)

Q = Qp1 + Qt

From Formula (I),
Total Height,
h = 13.3 (ft)

From Formula (II),
Total Area,
A = 2664 (sq-ft)

Residual Area,
A2 = A - A1
A2 = 2664 (sq-ft)

Residual Volume,
V1 = L * A2
V1 = 932458 (cub-ft)

Qp2 = Qp1 * (1 - V1 / V)
Qp2 = 34498 (cfs)

From Formula (I),
Q=Qp2+Qt
Q = 34498 (cfs)

h = 12 (ft)

From Formula (II),
A = 2384 (ft)

Residual Area,
A2 = A - A1
A2 = 2384 (ft)

V2 = A2 * L
V2 = 834682 (cub-ft)

Vave = (V1 + V2) / 2
Vave = 883570 (cub-ft)

Qp2 = Qp1 * (1 - Vave / V)
Qp2 = 34786 (cfs)

From Formula (I),
Q=Qp2+Qt
Q = 34786 (cfs)

h2 = 12.6 (ft)

RESULTS:

1) Prefailure Height = 0 (ft)
2) Postfailure Height = 12.6 (ft)
3) Breach Discharge = 34786 (cfs)
4) Reach Length = 350 (ft)
REACH (4) CALCULATIONS

Test flood discharge:
At = 0 (cfs)
θ = 3.81 (deg.)
S = .04
h = .07
L = 350 (ft)

From Formula (I),
Prefailure height,
h1 = 0 (ft)

From Formula (II),
A1 = 0 (sq. ft.)

0 = θ1 + θt

From Formula (I),
Total Height,
h = 12.6 (ft)

From Formula (II),
Total Area,
A = 2399 (sq.-ft)

Residual Area,
A2 = A - A1
A2 = 2173 (ft)

V2 = A2 * L
V2 = 750721 (cub-ft)

Vave = (V1 + V2) / 2
Vave = 375361 (cub-ft)

0e2 = 0e1 * (1 - V1 / V)
0e2 = 30484 (cfs)

From Formula (I),
0 = 0e2 + θt
0 = 30484 (cfs)

h = 12 (ft)

From Formula (II),
A = 2173 (ft)

Residual Area,
A2 = A - A1
A2 = 2173 (ft)

V2 = A2 * L
V2 = 750721 (cub-ft)

Vave = (V1 + V2) / 2
Vave = 375361 (cub-ft)

0e2 = 0e1 * (1 - Vave / V)
0e2 = 30487 (cfs)

From Formula (I),
0 = 0e2 + θt
h2 = 12 (ft)

RESULTS:

1) Prefailure Height = 0 (ft)
2) Postfailure Height = 12 (ft)
3) Reach Discharge = 30487 (cfs)
4) Reach Length = 350 (ft)
REACH (5) CALCULATIONS

Test flood discharge:
Qf = 0 (cfs)

a = 3.81 (deg.)
S = 0.04
n = 0.07
L = 350 (ft)

From Formula (I),
Prefailure height,
h1 = 0 (ft)
From Formula (II),
A1 = 0 (sq. ft)

P = Qf + Qt
From Formula (I),
Total Height,
h = 12 (ft)
From Formula (II),
Total Area,
A = 2184 (sq-ft)
Residual Area,
A2 = A - A1
A2 = 2184 (sq-ft)

Residual Volume,
V1 = L * A2
V1 = 764514 (cub-ft)

RESULTS:
1. Prefailure Height = 0 (ft)
2. Postruure Height = 11.5 (ft)
3. Breach Discharge = 27380 (cfs)
4. Reach Length = 350 (ft)
PERCH (6) CALCULATIONS

Test flood discharge:
\[Q_t = 0 \text{ (cfs)} \]
\[a = 3.81 \text{ (deg.)} \]
\[S = 0.04 \]
\[n = 0.07 \]
\[L = 350 \text{ (ft)} \]

From Formula (I),
Prefailure height,
\[h_1 = 0 \text{ (ft)} \]

From Formula (II),
\[R_1 = 0 \text{ (sq. ft.)} \]
\[Q = Q_1 + Q_t \]

From Formula (I),
Total Height,
\[h = 11.5 \text{ (ft)} \]

From Formula (II),
Total Area,
\[A = 2005 \text{ (sq-ft)} \]

Residual Area,
\[A_2 = A - A_1 \]
\[A_2 = 1847 \text{ (ft)} \]

Residual Volume,
\[V_1 = L \times A_2 \]
\[V_1 = 701857 \text{ (cub-ft)} \]

\[Q_2 = Q_1 \times (1 - V_1 / V) \]
\[Q_2 = 24550 \text{ (cfs)} \]

From Formula (I),
\[0 = Q_2 + Q_t \]
\[0 = 24550 \text{ (cfs)} \]

\[h = 11 \text{ (ft)} \]

From Formula (II),
\[A = 1847 \text{ (ft)} \]

Residual Area,
\[A_2 = A - A_1 \]
\[A_2 = 1847 \text{ (ft)} \]

\[V_2 = A_2 \times L \]
\[V_2 = 646718 \text{ (cub-ft)} \]

\[V_{ave} = (V_1 + V_2) / 2 \]
\[V_{ave} = 674288 \text{ (cub-ft)} \]

\[Q_2 = Q_1 \times (1 - V_{ave} / V) \]
\[Q_2 = 24661 \text{ (cfs)} \]

From Formula (I),
\[0 = Q_2 + Q_t \]
\[0 = 24661 \text{ (cfs)} \]

RESULTS

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 11.1 (ft)
3. Breach Discharge = 24661 (cfs)
4. Reach Length = 350 (ft)
P.R.A.C.H. (7) CALCULATIONS

R.G.H. (7) CALCULATIONS

Test flood discharge:

\[Q = Q_p^2 + 0t \]
\[Q = 22305 \text{ (cfs)} \]

From Formula (I),

\[Q = 0p1 + 0t \]
\[Q = 22305 \text{ (cfs)} \]

From Formula (I),

Prefailure height,

\[h_1 = 0 \text{ (ft)} \]

From Formula (II),

\[A_1 = 0 \text{ (sa-ft)} \]

\[Q = 0p1 + 0t \]
\[Q = 22305 \text{ (cfs)} \]

From Formula (I),

Total Height,

\[h = 11.1 \text{ (ft)} \]

From Formula (II),

Total Area,

\[A = 1854 \text{ (sq-ft)} \]

Residual Area,

\[A_2 = A - A_1 \]
\[A_2 = 1854 \text{ (sq-ft)} \]

Residual Volume,

\[V_1 = L \times A_2 \]
\[V_1 = 648313 \text{ (cub-ft)} \]

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 10.7 (ft)
3. Breach Discharge = 22390 (cfs)
4. Reach Length = 350 (ft)
REACH (8) CALCULATIONS

Test flood discharge:
Q = 0 (cfs)

a = 3.81 (deg.)
S = 04
n = .07
L = 350 (ft)

From Formula (I):
Prefailure height,
h1 = 0 (ft)

From Formula (II):
A1 = 0 (sq.ft.)
Q = Qf1 + Qt

From Formula (I):
Total Height,
h = 10.7 (ft)

From Formula (II):
Total Area,
A = 1724 (sq-ft)
Residual Area,
A2 = A - A1
A2 = 1724 (sq-ft)

Residual Volume,
V1 = L * A2
V1 = 603558 (cu-ft)

"\[Qf2 = Qf1 + 1 - V1 \cdot U\]
\[Qf2 = 20400 \text{ (cfs)}\]

From Formula (I):
Q = Qf2 + Qt
Q = 20400 (cfs)

h = 10 (ft)

From Formula (II):
A = 1608 (ft)

Residual Area,
A2 = A - A1
A2 = 1608 (ft)

V2 = A2 * L
V2 = 562863 (cu-ft)

Vave = (V1 + V2) / 2
Vave = 583210 (cu-ft)

Qf2 = Qf1 * (1 - Vave / V1)
Qf2 = 20467 (cfs)

From Formula (I):
Q = Qf2 + Qt
Q = 20467 (cfs)

h2 = 10.3 (ft)

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 10.3 (ft)
3. Breach Discharge = 20467 (cfs)
4. Reach Length = 350 (ft)
P R E A C H (9) C A L C U L A T I O N S

Test flood discharge:
Qf = 0 (cfs)

a = 3.81 (deg.)

S = 0.04

h = 0.07

L = 350 (ft)

From Formula (I),
Prefailure height,
h1 = 0 (ft)

From Formula (II),
A1 = 0 (sq. ft)

A = Qf1 + Qt

From Formula (I),
Total Height,
h = 10.3 (ft)

From Formula (II),
Total Area,
A = 1612 (sq-ft)

Residual Area,
A2 = A - A1

Residual Volume,
V1 = L * A2

V1 = 564250 (cub-ft)

\[Qf2 = Qf1 \times \left(1 - \frac{V1}{V} \right) \]

\[Qf2 = 18767 \text{ (cfs)} \]

From Formula (I),
\[Q = Qf2 + Qt \]

\[Q = 18767 \text{ (cfs)} \]

h = 10 (ft)

From Formula (II),
A = 1510 (ft)

Residual Area,
A2 = A - A1

A2 = 1510 (ft)

V2 = A2 * L

V2 = 528710 (cub-ft)

\[Vavg = \frac{V1 + V2}{2} \]

\[Vavg = 546480 \text{ (cub-ft)} \]

\[Qf2 = \frac{Qf1 \times \left(1 - \frac{Vavg}{V} \right)}{Vavg} \]

\[Qf2 = 18820 \text{ (cfs)} \]

From Formula (I),
\[Q = Qf2 + Qt \]

\[Q = 1510 \text{ (ft)} \]

h2 = 10 (ft)

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure height = 10 (ft)
3. Breach Discharge = 18820 (cfs)
4. Reach Length = 350 (ft)
P R E A C H (10) CALCULATIONS

Test flood discharge:

\[Q = \theta \ (\text{cfs}) \]

\[a = 1.15 \ (\text{deg}) \]

\[S = 0.0133 \]

\[n = 0.07 \]

\[L = 350 \ (\text{ft}) \]

From Formula (I),

Prefailure height,

\[h_1 = 0 \ (\text{ft}) \]

From Formula (II),

\[A_1 = 0 \ (\text{sq ft}) \]

\[Q = Q_1 + Q_2 \]

From Formula (I),

Total Height,

\[h = 7 \ (\text{ft}) \]

From Formula (II),

Total Area,

\[A = 3084 \ (\text{sq ft}) \]

Residual Area,

\[A_2 = h - A_1 \]

\[A_2 = 3084 \ (\text{sq ft}) \]

Residual Volume,

\[V_1 = L \times A_2 \]

\[V_1 = 1079542 \ (\text{cub ft}) \]

\[Q_2 = 0 \times (1 - V_1 / V) \]

\[Q_2 = 15828 \ (\text{cfs}) \]

From Formula (I),

\[Q = Q_2 + Q_1 \]

\[Q = 15828 \ (\text{cfs}) \]

\[h = 7 \ (\text{ft}) \]

From Formula (II),

\[A = 2708 \ (\text{ft}) \]

Residual Area,

\[A_2 = A - A_1 \]

\[A_2 = 2708 \ (\text{ft}) \]

\[V_2 = A_2 \times L \]

\[V_2 = 948090 \ (\text{cub ft}) \]

\[V_1 = (V_1 + V_2) / 2 \]

\[V_1 = 1013816 \ (\text{cub ft}) \]

\[Q_2 = 0 \times (1 - V_1 / V) \]

\[Q_2 = 16011 \ (\text{cfs}) \]

From Formula (I),

\[Q = Q_2 + Q_1 \]

\[h_2 = 7.4 \ (\text{ft}) \]

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 7.4 (ft)
3. Breach Discharge = 16011 (cfs)
4. Reach Length = 350 (ft)
From Formula (I),
\[Q_2 = Q_1 \times (1 - V_1 / V) \]
\[Q_2 = 13756 \text{ (cfs)} \]

From Formula (I),
\[Q = Q_2 + Q_1 \]
\[Q = 13756 \text{ (cfs)} \]

Test flood discharge:
\[Q_t = 0 \text{ (cfs)} \]
\[a = 1.15 \text{ (deg.)} \]
\[S = 0.13 \]
\[n = 0.7 \]
\[L = 350 \text{ (ft)} \]

From Formula (I),
\[h = 6 \text{ (ft)} \]

From Formula (II),
\[A_2 = A - A_1 \]
\[A_2 = 2438 \text{ (ft)} \]

\[V_2 = A_2 \times L \]
\[V_2 = 853380 \text{ (cub-ft)} \]

\[V_{ave} = (V_1 + V_2) / 2 \]
\[V_{ave} = 904820 \text{ (cub-ft)} \]

\[Q_2 = Q_1 \times (1 - V_{ave} / V) \]
\[Q_2 = 13877 \text{ (cfs)} \]

From Formula (I),
\[h_2 = 7 \text{ (ft)} \]

\[A_2 = A - A_1 \]
\[A_2 = 2438 \text{ (ft)} \]

\[H = 7.4 \text{ (ft)} \]

\[A_2 = 2732 \text{ (sa-ft)} \]

\[R_2 = A - A_1 \]
\[R_2 = 2732 \text{ (sa-ft)} \]

\[\text{Residual Volume,} \]
\[V_1 = L \times A_2 \]
\[V_1 = 956261 \text{ (cub-ft)} \]

\[\text{PE A C H (II) CALCULATIONS} \]

\[V_1 = L \times A_2 \]
\[V_1 = 956261 \text{ (cub-ft)} \]

\[\text{RESULTS:} \]

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 7 (ft)
3. Breach Discharge = 13877 (cfs)
4. Reach Length = 350 (ft)
REACH (12) CALCULATIONS

Test flood discharge:
Qf = 0 (cfs)

From Formula (I),
Prefailure height,
h1 = 0 (ft)

From Formula (II),
A1 = 0 (sq ft)

0 = Qf + Qt

From Formula (I),
Total Height,
h = 7 (ft)

From Formula (II),
Total Area,
A = 2454 (sq ft)

Residual Area,
A2 = A - A1
A2 = 2454 (sq ft)

Residual Volume,
V1 = L * A2
V1 = 853016 (cub-ft)

Qf = Qf1 * (1 - V1 / V)

0 = 12122 (cfs)

From Formula (I),
Q = Qf + Qt

0 = 12122 (cfs)

h = 6 (ft)

From Formula (II),
A = 2217 (ft)

Residual Area,
A2 = A - A1
A2 = 2217 (ft)

V2 = A2 * L
V2 = 776160 (cub-ft)

Vavg = (V1 + V2) / 2
Vavg = 387588 (cub-ft)

Qf = Qf1 * (1 - Vavg / V)

0 = 12207 (cfs)

From Formula (I),
Q = Qf + Qt

0 = 12207 (cfs)

From Formula (I),

Total Height,
h2 = 6.6 (ft)

RESULTS:

1.) Prefailure Height = 0 (ft)
2.) Postfailure Height = 6.6 (ft)
3.) Reach Discharge = 12207 (cfs)
4.) Reach Length = 350 (ft)
From Formula (I),

\[Q = Q_{p1} + Q_t \]

From Formula (II),

\[A = 2034 \text{ (ft)} \]

Residual Area,

\[A_2 = A - A_1 \]

\[A_2 = 2034 \text{ (ft)} \]

\[V_2 = A_2 \times L \]

\[V_2 = 711976 \text{ (cub-ft)} \]

\[V_{ave} = \frac{V_1 + V_2}{2} \]

\[V_{ave} = 746099 \text{ (cub-ft)} \]

\[Q_{p2} = Q_{p1} \times (1 - \frac{V_{ave}}{V}) \]

\[Q_{p2} = 10865 \text{ (cfs)} \]

From Formula (I),

\[Q = Q_{p2} + Q_t \]

\[Q = 10864 \text{ (cfs)} \]

\[h = 6 \text{ (ft)} \]

From Formula (II),

\[A = 2034 \text{ (ft)} \]

Residual Area,

\[A_2 = A - A_1 \]

\[A_2 = 2229 \text{ (sq-ft)} \]

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 6.4 (ft)
3. Breach Discharge = 10864 (cfs)
4. Reach Length = 350 (ft)
REACH (14) CALCULATIONS

Test flood discharge:
Qt = 0 (cfs)
a = 1.15 (deg.)
S = 0.133
h = 0.07
L = 350 (ft).

From Formula (I),
Prefailure height,
h1 = 0 (ft)

From Formula (II),
A1 = 0 (sq. ft.)

Q = Qp1 + Qt

From Formula (I),
Total Height,
h = 6.4 (ft)

From Formula (II),
Total Area,
A = 2042 (sq-ft)

Residual Area,
A2 = A - A1
A2 = 2042 (sq-ft)

Residual Volume,
V1 = L * A2
V1 = 715006 (cub-ft)

Qp2 = Qp1 * (1 - V1 / V)
Qp2 = 9721 (cfs)
From Formula (I),
Q = Qp2 + Qt
Q = 9721 (cfs)

h = 6 (ft)
From Formula (II),
A = 1879 (ft)
Residual Area,
A2 = A - A1
A2 = 1879 (ft)

V2 = A2 * L
V2 = 657767 (cub-ft)

Vavg = (V1 + V2) / 2
Vavg = 686386 (cub-ft)

Qp2 = Qp1 * (1 - Vavg / V)
Qp2 = 9767 (cfs)

From Formula (I),
Q = Qp2 + Qt
Q = 9767 (cfs)

RESULTS:

1) Prefailure Height = 0 (ft)
2) Postfailure Height = 6.1 (ft)
3) Breach Discharge = 9767 (cfs)
4) Reach Length = 350 (ft)
From Formula (I),
\(Q = Q_1 + Q_t \)

From Formula (I),
Total Height,
\(h = 6.1 \) (ft)

From Formula (II),
Total Area,
\(A = 1885 \) (sq-ft)

Residual Area,
\(A_2 = A - A_1 \)
\(A_2 = 1885 \) (sq-ft)

Residual Volume,
\(V_1 = L \times A_2 \)
\(V_1 = 660089 \) (cub-ft)

\[Q_2 = Q_1 \times \left(1 - \frac{V_1}{V} \right) \]
\[Q_2 = 8818 \) (cfs)

From Formula (II),
\(A = 1746 \) (ft)

Residual Area,
\(A_2 = A - A_1 \)
\(A_2 = 1746 \) (ft)

\(V_2 = A_2 \times L \)
\(V_2 = 611359 \) (cub-ft)

\(V_{ave} = \frac{V_1 + V_2}{2} \)
\(V_{ave} = 635724 \) (cub-ft)

\[Q_2 = Q_1 \times \left(1 - \frac{V_{ave}}{V} \right) \]
\(Q_2 = 8853 \) (cfs)

From Formula (I),
\(Q = Q_2 + Q_t \)
\(Q = 8818 \) (cfs)

RESULTS

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 5.9 (ft)
3. Breach Discharge = 8853 (cfs)
4. Reach Length = 350 (ft)
RE = C H (16) CALCULATIONS

Test flood discharge:
\[Q_t = 0 \text{ (cfs)} \]
\[a = 1.15 \text{ (ree)} \]
\[S = 0.133 \]
\[n = 0.7 \]
\[L = 750 \text{ (ft)} \]

From Formula (I),
Prefailure height,
\[h_1 = 0 \text{ (ft)} \]
From Formula (II),
\[A_1 = 0 \text{ (sq. ft.)} \]
\[Q = Q_1 + Q_t \]
From Formula (I),
Total Height,
\[h = 5.9 \text{ (ft)} \]
From Formula (II),
Total Area,
\[A = 1751 \text{ (sq-ft)} \]
Residual Area,
\[A_2 = A - A_1 \]
\[A_2 = 1751 \text{ (sq-ft)} \]
Residual Volume,
\[V = L \times A_2 \]
\[V = 613180 \text{ (cub-ft)} \]

\[Q = 0 \times 1 + 0 \]
\[Q = 8053 \text{ (cfs)} \]

From Formula (I),
\[Q = Q_1 + Q_t \]
\[Q = 8053 \text{ (cfs)} \]
\[h = 5 \text{ (ft)} \]
From Formula (II),
\[A = 1631 \text{ (ft)} \]
Residual Area,
\[A_2 = A - A_1 \]
\[A_2 = 1631 \text{ (ft)} \]
\[V_2 = A_2 \times L \]
\[V_2 = 571183 \text{ (cub-ft)} \]
\[V_{ave} = \frac{V_1 + V_2}{2} \]
\[V_{ave} = 592174 \text{ (cub-ft)} \]
\[Q = Q_1 \times (1 - V_{ave} / V) \]
\[Q = 8081 \text{ (cfs)} \]

From Formula (I),
\[Q = Q_2 + Q_t \]
\[h_2 = 5.7 \text{ (ft)} \]

RESULTS:

1.) Prefailure Height = 0 (ft)
2.) Postfailure Height = 5.7 (ft)
3.) Breach Discharge = 8081 (cfs)
4.) Reach Length = 350 (ft)
REACH (17) CALCULATIONS

Test flood discharge:
Qf = 0 (cfs)

a = 0.15 (deg.)
C = 0.33
r = 0.7
L = 350 (ft)

From Formula (I),
Prefailure height,
h1 = 0 (ft)

From Formula (II),
A1 = 0 (sq. ft)

C = Qf1 + Qt

From Formula (I),
Total Height,
h = 5.7 (ft)

From Formula (II),
Total Area,
A = 1531 (sq. ft)

Residual Area,
A2 = A - A1
A2 = 1531 (sq. ft)

Residual Volume,
V1 = L * A2
V1 = 572624 (cub. ft)

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 5.5 (ft)
3. Breach Discharge = 7421 (cfs)
4. Reach Length = 350 (ft)
REACH (18) CALCULATIONS

Test flood discharge:

\[Q = 0 + 0t \]

Using Formula (I),

\[A = 1442 \text{ ft}^2 \]

Residual Area

\[A_2 = A - A_1 \]

\[A_2 = 1442 \text{ ft}^2 \]

\[V_2 = A_2 \times L \]

\[V_2 = 505001 \text{ (cubic ft)} \]

\[V_{avg} = \frac{(V_1 + V_2)}{2} \]

\[V_{avg} = 521100 \text{ (cubic ft)} \]

\[Q_2 = Q_1 + 1 - \frac{V_{avg}}{V} \]

\[Q_2 = 6852 \text{ cfs} \]

\[h = 5 \text{ ft} \]

\[h = 5.3 \text{ ft} \]

\[h = \frac{V_2}{L \times A_2} \]

\[h = \frac{505001}{350 \times 1534} \]

\[h = 5.3 \text{ ft} \]

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 5.3 (ft)
3. Breach Discharge = 6852 (cfs)
4. Reach Length = 350 (ft)
REACH (19) CALCULATIONS

Test flood discharge:
0t = 0 (cfs)

\[a = 115 \text{ (deg.)} \]

\[S = 0.133 \]

\[n = 0.07 \]

\[L = 350 \text{ (ft)} \]

From Formula (I),

\[h = 5 \text{ (ft)} \]

From Formula (II),

\[A = 1364 \text{ (ft)} \]

Residual Area,

\[A2 = A - A1 \]

\[A2 = 1364 \text{ (ft)} \]

\[V2 = A2 \times L \]

\[V2 = 477430 \text{ (cub-ft)} \]

\[Vave = \frac{V1 + V2}{2} \]

\[Vave = 491703 \text{ (cub-ft)} \]

\[Qp2 = Qp1 \times (1 - Vave / V1) \]

\[Qp2 = 6355 \text{ (cfs)} \]

From Formula (I),

\[Q = Qp2 + 0t \]

\[h2 = 5.2 \text{ (ft)} \]

RESULTS

\[A2 = 1445 \text{ (sq-ft)} \]

\[A1 = 1365 \text{ (sq-ft)} \]

\[V1 = L \times A2 \]

\[V1 = 585376 \text{ (cub-ft)} \]

\[\text{Reach Length} = 350 \text{ (ft)} \]

\[\text{Reach Length} = 350 \text{ (ft)} \]
P R E A C H H < 20 > C A L C U L A T I O N S

Test flood discharge:
\(Q_f = 0 \) (cfs)

\(h = 1.15 \) (deg.)
\(S = 0.133 \)
\(m = 0.7 \)
\(L = 350 \) (ft)

From Formula (I),
Prefailure height,
\(h_1 = 0 \) (ft)
From Formula (II),
\(A_1 = 0 \) (sq. ft.)

\(Q = Q_f + Q_t \)
From Formula (I),
Total Height,
\(h = 5.2 \) (ft)
From Formula (II),
Total Area,
\(A = 1366 \) (sq-ft)
Residual Area,
\(A_2 = A - A_1 \)
\(A_2 = 1293 \) (ft)

\(V_2 = A_2 * L \)
\(V_2 = 452754 \) (cub-ft)

\(V_{ave} = (V_1 + V_2) / 2 \)
\(V_{ave} = 465498 \) (cub-ft)

\(Q_{p2} = Q_f * (1 - V_{ave} / V) \)
\(Q_{p2} = 5920 \) (cfs)

From Formula (I),
\(Q = Q_{p2} + Q_t \)
\(h_2 = 5 \) (ft)

RESULTS

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 5 (ft)
3. Breach Discharge = 5920 (cfs)
4. Breach Length = 350 (ft)
REACH (21) CALCULATIONS

Test flood discharge:
\[Qt = 0 \text{ (cfs)} \]

\[a = 1.15 \text{ (deg.)} \]
\[S = 0.133 \]
\[n = 0.7 \]
\[L = 350 \text{ (ft)} \]

From Formula (I),
Prefailure height,
\[h1 = 0 \text{ (ft)} \]

From Formula (II),
\[A1 = 0 \text{ (sq. ft)} \]
\[Q = Qp1 + Qt \]
From Formula (I),
Total Height,
\[h = 5 \text{ (ft)} \]

From Formula (II),
Total Area,
\[A = 1295 \text{ (sq-ft)} \]

Residual Area,
\[A2 = A - A1 \]
\[A2 = 1295 \text{ (sq-ft)} \]

Residual Volume,
\[V1 = L \times A2 \]
\[V1 = 453440 \text{ (cub-ft)} \]

\[Qp2 = Qp1 + (1 - W1) \]
\[Qp2 = 5525 \text{ (cfs)} \]

From Formula (I),
\[Q = Qp2 + Qt \]
\[Q = 5525 \text{ (cfs)} \]

\[h = 4 \text{ (ft)} \]
From Formula (II),
\[A = 1230 \text{ (ft)} \]

Residual Area,
\[A2 = A - A1 \]
\[A2 = 1230 \text{ (ft)} \]

\[V2 = A2 \times L \]
\[V2 = 430537 \text{ (cub-ft)} \]

\[Vave = \frac{V1 + V2}{2} \]
\[Vave = 441988 \text{ (cub-ft)} \]

\[Qp2 = 0p1 \times \left(1 - \frac{Vave}{V} \right) \]
\[Qp2 = 5534 \text{ (cfs)} \]

From Formula (I),
\[Q = Qp2 + Qt \]
\[h2 = 4.9 \text{ (ft)} \]

RESULTS:

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 4.9 (ft)
3. Breach Discharge = 5534 (cfs)
4. Reach Length = 350 (ft)
From Formula (I),
Test flood discharge,
Qt = 0 (cf/s)

\(a = 1.15 \) (deg.)
\(\phi = 0.133 \)
\(L = 350 \) (ft)

From Formula (I),
Collapse taper
\(h_1 = 0 \) (ft)

From Formula (II),
Prefailure height,
\(A_1 = 0 \) (sq. ft)

\(Q = Q_2 + Q t \)

From Formula (I),
Total height,
\(h = 4 \) (ft)

From Formula (II),
Total Area,
\(A = 1172 \) (ft)

Residual area,
\(A_2 = A - A_1 \)

\(A_2 = 1172 \) (ft)

\(V_2 = A_2 * L \)
\(V_2 = 410426 \) (cub-ft)

\(V_{ave} = \frac{(V_1 + V_2)}{2} \)
\(V_{ave} = 420773 \) (cub-ft)

\(0 \phi_2 = 0 \phi_1 * (1 - V_{ave} / V_1) \)
\(0 \phi_2 = 5182 \) (cf/s)

From Formula (I),
\(Q = Q_2 + Q t \)

\(h_2 = 4.3 \) (ft)

RESULTS:

1.) Prefailure Height = 0 (ft)
2.) Postfailure Height = 4.3 (ft)
3.) Breach Discharge = 5182 (cfs)
4.) Reach Length = 350 (ft)
R E A C H (23) CALCULATIONS

Test flood discharge:
\(Q_t = 0 \) \text{(cfs)}

\(s = 1 \text{ (deg.)} \)

\(B = 0.01 \)

\(L = 350 \text{ (ft)} \).

From Formula (I),
Prefailure height:
\(h_1 = 0 \text{ (ft)} \)

From Formula (II),
Residual Area,
\(A_2 = A - A_1 \)

\(A_2 = 1281 \text{ (ft)} \)

\(V_2 = A_2 \times L \)

\(V_2 = 448571 \text{ (cub-ft)} \)

Wave = \(\left(V_1 + V_2 \right) / 2 \)

\(V_1 = 461066 \text{ (cub-ft)} \)

\(O_2 = 0_1 \times \left(1 - \text{wave} / V \right) \)

\(O_2 = 4839 \text{ (cfs)} \)

From Formula (I),
Residual Height
\(h_2 = 4.7 \text{ (ft)} \)

RESULTS

1. Prefailure Height = 0 \text{ (ft)}
2. Postfailure Height = 4.7 \text{ (ft)}
3. Reach Discharge = 4839 \text{ (cfs)}
4. Reach Length = 350 \text{ (ft)}
FAILURE ANALYSIS

MEACH (24) CALCULATIONS

Test flood discharge:

\[Q = 0 \text{ (cfs)} \]

\[\theta = 1 \text{ (deg)} \]

\[\gamma = 0 \]

\[L = 250 \text{ (ft)} \]

From Formula (I),

Prefailure height:

\[h_1 = 0 \text{ (ft)} \]

From Formula (II),

\[A_1 = 0 \text{ (sq ft)} \]

\[C = 0 = 0 \]

From Formula (II),

Total area:

\[h = 4.7 \text{ (ft)} \]

From Formula (II),

Total area:

\[A = 1283 \text{ (sq ft)} \]

Residual area:

\[A_2 = A_1 = A_1 \]

\[A_2 = 1283 \text{ (sq ft)} \]

Residual volume:

\[V_1 = L \times A_2 \]

\[V_1 = 449257 \text{ (cub ft)} \]

\[0 = 0 \]

\[0 = 0 \]

\[h = 4 \text{ (ft)} \]

From Formula (II),

\[A = 1219 \text{ (ft)} \]

Residual area:

\[A_2 = A - A_1 \]

\[A_2 = 1219 \text{ (ft)} \]

\[V_2 = A_2 \times L \]

\[V_2 = 426759 \text{ (cub ft)} \]

\[\text{Wave} = \left(\frac{V_1 + V_2}{2} \right) \]

\[\text{Wave} = 437798 \text{ (cub ft)} \]

\[0 = 0 \]

\[0 = 0 \]

\[0 = 0 \]

\[0 = 0 \]

\[0 = 0 \]

\[0 = 0 \]

\[0 = 0 \]

\[h = 4.6 \text{ (ft)} \]

RESULTS:

1. Prefailure height = 0 (ft)
2. Postfailure height = 4.6 (ft)
3. Breach discharge = 4727 (cfs)
4. Reach length = 350 ft...
Client: CORPS OF ENGINEERS
Job No: 1345-CFL
Sheet 32 of 38

Subject: KENNEBEC DAM
FAILURE ANALYSIS

By: T. OTTOVA
Data: 2-24-87

Cint

REACH (25) CALCULATIONS

Test flood discharge:
Qt = 0 (cfs)

a = 1 (deg.)

v = 01

L = 350 (ft)

From Formula (I),

Prefailure height,
h1 = 0 (ft)

From Formula (II),

A1 = 0 (sq.ft.)

Q = 0v1 + v1

From Formula (I),

Total Height,
h = 4.5 (ft)

From Formula (II),

Total Area,
A = 1220 (sq-ft)

Residual Area,
A2 = A - A1

A2 = 1162 (sq-ft)

Residual Volume,
V1 = L * A2

V1 = 427326 (cub-ft)

D-36

0v2 = 0v1 + (1 - V1)

0v2 = 4242 (cfs)

From Formula (I),

Q = 0v1 + v1

Q = 4242 (cfs)

h = 4 (ft)

From Formula (II),

A = 1162 (ft)

Residual Area:

A2 = A - A1

V2 = A2 * L

V2 = 406996 (cub-ft)

Vave = (V1 + V2) / 2

Vave = 417161 (cub-ft)

Qv2 = 0v1 + (1 - Vave / V1)

Qv2 = 4249 (cfs)

From Formula (I),

Q = 0v2 + v1

h2 = 4.5 (ft)

RESULTS:

1) Prefailure Height = 0 (ft)

2) Postfailure Height = 4.5 (ft)

3) Breach Discharge = 4249 (cfs)

4) Breach Length = 350 (ft)
Failure Analysis

Calculations

Test flood discharge:
\[Q_1 = 0 \text{ cfs} \]

\[h = 1 \text{ (deg.)} \]

\[s = 0.01 \]

\[m = 0.07 \]

\[L = 350 \text{ ft} \]

From Formula (I),

\[h_1 = 0 \text{ ft} \]

From Formula (II),

\[A_1 = 0 \text{ (sq. ft)} \]

\[h = 4.5 \text{ (ft) \} } \]

From Formula (II),

Total Area,

\[A = 1164 \text{ (sq-ft) \} } \]

Residual Area,

\[A_2 = A - A_1 \]

\[A_2 = 1164 \text{ (sq-ft) \} } \]

Residual Volume,

\[V_1 = L + A_2 \]

\[V_1 = 407483 \text{ (cub-ft) \} } \]

\[0 = 0P_1 + 0 \]

From Formula (I),

\[0 = 0Q_2 + 0 \]

From Formula (II),

\[0 = 0Q_2 + 0 \]

Results -

1. Prefailure Height = 0 (ft)
2. Postfailure Height = 4.4 (ft)
3. Breach Discharge = 4000 (cfs)
4. Reach Length = 350 (ft)
PART I — INVENTORY OF DAMS IN THE UNITED STATES
(PURSUANT TO PUBLIC LAW 92–572)

See reverse side for instructions.

<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>DIVISION</th>
<th>STATE</th>
<th>COUNTY</th>
<th>LONG. STATE</th>
<th>LONG. DIST</th>
<th>NAME</th>
<th>LATITUDE (NORTH)</th>
<th>LONGITUDE (W–E)</th>
<th>REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>NED010101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVOIR DAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>POPULAR NAME</th>
<th>NAME OF IMPOUNDMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FARM</td>
<td>CHINA LAKE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>REGION</th>
<th>RIVER OR STREAM</th>
<th>NEAREST DOWNSTREAM CITY — TOWN — VILLAGE</th>
<th>DIST FROM DAM (M)</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>WAREHAM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATISTICS</th>
<th>TYPE OF DAM</th>
<th>YEAR COMPLETED</th>
<th>PURPOSES</th>
<th>STRUCTURAL HEIGHT (Ft)</th>
<th>HYDRAULIC HEIGHT (Ft)</th>
<th>IMPOUNDING CAPSITIES</th>
<th>COMP. ENGR. DIST</th>
<th>VERIFICATION DATE</th>
<th>BLANK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPG</td>
<td>1918</td>
<td>5</td>
<td>25</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ENG FORM NO. 1 DEC 52 4474
GENERAL INSTRUCTIONS

The form is for use in preparing the inventory of dams in the United States, under the requirements of the National Program for the Inspection of Dams. P.L. 92-367. All items of Part I and Part II (Items 0-9) must be completed as instructed below. Print entries**BRICK** or on paper. For letters a, e, i, o, and u, write 0, 2, and L.

Write only one letter or numeral in each space, do not use more letters than blocks allowed for an item. Do not abbreviate on Part I. Leave one space between words and no space between code letters.

For all letter codes or word entries place first letters in block of field. In word fields any alphabetic, numeric, or special character may be entered. For all numerical entries, use only numerals placing the last digit of numerals in the right block of field, including trailing zeros. Do not include a decimal point! In fields where decimals are required values are to be placed around the decimal point printed on the form.

Leave blank those spaces where item does not apply, e.g., do not write "N/A," "None," etc., unless instructed to do so by specific instructions. Use the remarks line when additional space is needed for an item, or to clarify an entry. Peruse each remark with the item number (see Item 128 for Example instructions).

PART I

Item 1 IDENTITY

The Division Engineer will assign and control the identity for dams in the states for which he is responsible. The first two characters of the identity will be the two-letter state abbreviation in accordance with Federal Information Processing Standards Publication, June 15, 1970 (IPS PUB 8-1). In cases where a dam is physically located in two or more states, one state will be designated as the principal state for the identity. The last five (5) characters of the identity will be a sequential number assigned to identify dams within a state.

LINE 0

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1710</td>
<td>DIVISION</td>
<td>Enter the three (3) letter official symbol for the division in accordance with ABRR Report Code, Appendix B, P.L. 92-367, Civil Works Information System, e.g., NA, OR, SW, etc.</td>
</tr>
<tr>
<td>1800</td>
<td>STATE</td>
<td>Enter two (2) letter principal state abbreviation in accordance with IPS PUB 8-1</td>
</tr>
<tr>
<td>1900</td>
<td>COUNTY</td>
<td>Enter three (3) digit county identification in accordance with IPS PUB 8-1</td>
</tr>
<tr>
<td>1910</td>
<td>CITY</td>
<td>Enter one (1) or two (2) digit number for congressional districts in which dam is located</td>
</tr>
<tr>
<td>1920</td>
<td>TOWN</td>
<td>Enter the two locations for structures situated in more than one state</td>
</tr>
<tr>
<td>1930</td>
<td>DAM NAME</td>
<td>Enter official name of dam. Do not abbreviate unless the abbreviation is a part of the official name. For dams that do not have a name, create a name by consulting the two (2) letter state abbreviation plus "NAME" plus a sequential number. Example: If two dams in the State of Alabama do not have names, they would be named as ALNAME1 and ALNAME2</td>
</tr>
<tr>
<td>1940</td>
<td>LATITUDE AND LONGITUDE</td>
<td>Enter the latitude and longitude in degrees, minutes, and seconds of a minute</td>
</tr>
<tr>
<td>1950</td>
<td>REPORT DATE</td>
<td>Enter the date (11) or (22) digits day for the first (11) or (22) digits year in which the data has been revised, updated, or otherwise changed</td>
</tr>
</tbody>
</table>

LINE 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>IPS NAME OF DAM</td>
<td>Enter official name of dam or reservoir. Leave blank if reservoir does not have a name</td>
</tr>
<tr>
<td>1961</td>
<td>NAME OF IMPREGNATED</td>
<td>Enter official name of lake or reservoir</td>
</tr>
</tbody>
</table>

Item 2 REGION AND BASIN

Enter two (2) digit numbers for Region and Basin in accordance with Appendix C, P.L. 92-367, Civil Works Information System.

LINE 2

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>REGION</td>
<td>Enter official name of region or stream on which the dam is built. If stream is without name, indicate as "unnamed stream". Enter name of river, e.g., "KOLA" (Kola River), enter name of river plus "OR STREAM"</td>
</tr>
<tr>
<td>2200</td>
<td>NEAREST DOWNSTREAM CITY/TOWN/VILLAGE</td>
<td>Enter the nearest downstream city/town/village on which the dam can be located on a general map</td>
</tr>
<tr>
<td>2300</td>
<td>DISTANCE FROM DAM</td>
<td>Enter distance from dam to nearest downstream city/town/village on the nearest mile</td>
</tr>
</tbody>
</table>

LINE 3

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>POPULATION</td>
<td>Enter population of city/town/village given in Item 8</td>
</tr>
</tbody>
</table>

Item 3 TYPE OF DAM

Enter two (2) letter codes, in any order, to describe type of dam |

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>LANDFILL</td>
<td>Enter one (1) letter code that describes the purpose for which the reservoir is used. The order entered should indicate the relative decreasing importance of the project purposes</td>
</tr>
<tr>
<td>2520</td>
<td>HYDROELECTRIC</td>
<td>Enter two (2) letter codes that describe the purposes for which the reservoir is used</td>
</tr>
<tr>
<td>2540</td>
<td>FLOOD CONTROL</td>
<td>Enter two (2) letter codes that describe the purposes for which the reservoir is used</td>
</tr>
<tr>
<td>2560</td>
<td>NAVIGATION</td>
<td>Enter two (2) letter codes that describe the purposes for which the reservoir is used</td>
</tr>
<tr>
<td>2580</td>
<td>OTHER</td>
<td>Enter two (2) letter codes that describe the purposes for which the reservoir is used</td>
</tr>
</tbody>
</table>

LINE 4

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600</td>
<td>REMARKS</td>
<td>Peruse remarks with the item number to which it pertains, e.g., 2200: ORIGINALLY CONSTRUCTED</td>
</tr>
</tbody>
</table>

In 1928, 235 TILLING BASSIN. Only one remark line should be used for Part I Remarks.
PART III - INVENTORY OF DAMS IN THE UNITED STATES
SUPPLEMENTARY DATA

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TOWN</th>
<th>N.E.D. PERMIT NO</th>
<th>STATE NUMBER</th>
<th>F.E.R.C NO.</th>
<th>U.S.G.S SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WATERTON, ME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRAINAGE CHARACTERISTICS</th>
<th>DRAINAGE AREA</th>
<th>MIN</th>
<th>MAX</th>
<th>FLOW DATA</th>
<th>AVE</th>
<th>MAX</th>
<th>CREST ELEV</th>
<th>ABUT ELEV</th>
<th>Usable Storage</th>
<th>RESERVOIR AREA</th>
<th>FLASH BOARD NO</th>
<th>OUTLET CONDUITS</th>
<th>INVERT ELEV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER DATA</th>
<th>GENERATION UNITS</th>
<th>INSTALLED</th>
<th>ANNUAL GENERATION</th>
<th>LAST GEN YEAR</th>
<th>RETIRED YEAR</th>
<th>FORMER USE</th>
<th>CAPACITY FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
<td>CAP K W</td>
<td>K W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NED FORM 1 JAN TO 30 SEPT (TEST)
PART II:

Item 1 **IDENTITY:** Enter identity per GENERAL INSTRUCTIONS on PART I.

LINE 5:

Item 1D **H/S HAZ:** Enter the digit that most closely represents the hazard potential that could occur in the downstream (D/S) area resulting from failure or mis-operation of the dam or facilities.

HAZARD POTENTIAL

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>LOSS OF LIFE (Extent of Development)</th>
<th>ECONOMIC LOSS (Extent of Development)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>None expected (No permanent structures for human habitation)</td>
<td>Minimal (Undeveloped to occasional structure or agriculture)</td>
</tr>
<tr>
<td>Significant</td>
<td>Few (No urban developments and no more than a small number of inhaontable structures)</td>
<td>Appriciable (Notable agriculture, industry or structures)</td>
</tr>
<tr>
<td>High</td>
<td>More than few</td>
<td>Extensive (Extensive community, industry or agriculture)</td>
</tr>
</tbody>
</table>

Item 1E **LENGTH:** Enter, to the nearest foot, the crest length of the dam which is defined as the total horizontal distance measured along the axis at the elevation of the top of dam between abutments or ends of dam. Note that this includes spillway, powerhouse sections, and navigation locks where they form a continuous part of the dam water retaining structure. Detached spillways, locks, and powerhouses shall not be included.

Spillway:

Item 1E **TYPE:** Enter the one letter code that applies.

- **C:** Controlled
- **U:** Uncontrolled
- **N:** None

Item 1F **WIDTH:** Enter to the nearest foot, the width of the spillway available for discharge when the reservoir is at its maximum designed water surface elevation.

VOLUME OF DAM: Enter the total number of cubic yards occupied by the materials used in the dam structure. If volume of aggregate material is known, enter in remarks. Include portions of powerhouses, locks and spillways only if integral with the dam and essential for structural stability.

Power Capacity:

Item 1G **INSTALLED:** Enter installed capacity to one cubic (1/10) Megawatt at of the report date.

PROPOSED: Enter the future additional capacity proposed to one cubic (1/10) Megawatt.

Navigation Locks:

Item 1H **NUMBER:** Enter the number of existing navigation locks for the project.

Item 1I **LENGTH:** Enter to the nearest foot the length of the navigation lock.

Item 1J **WIDTH:** Enter to the nearest foot the width of the navigation lock.

Item 1K thru 1N Enter the lengths and widths of additional locks.

LINE 6:

Item 1J **OWNER:** Enter name of owner. Abbreviate as necessary.

Item 1J **ENGINEER:** Enter name of organization that engineered the main dam structure. Abbreviate as required.

Item 1J **CONSTRUCTION:** Enter name of construction agency responsible for construction of main structure. Abbreviate as required.

Regulatory Agency:

Item 1K **DESIGN:** Enter the name of the organization other than the owner having regulatory or approval authority over the design of the dam. If no organization other than the owner has regulatory or approval authority over the design of the dam, indicate **NONE.**

Item 1M **CONSTRUCTION:** Enter the name of the organization other than the owner having regulatory authority or inspection responsibilities over the construction of the dam. If no organization other than the owner has regulatory authority or inspection responsibilities over the construction of the dam, indicate **NONE.**

Item 1P **MAINTENANCE:** Enter the name of the organization other than the owner having regulatory authority, operational control or surveillance responsibilities over the operation of the dam. If no organization other than the owner has regulatory authority, operational control, or surveillance responsibilities over the operation of the dam, indicate **NONE.**

Inspection:

Item 1Q **BY:** Enter the name of the organization that performed the last safety inspection. Abbreviate as required. If no inspection has been performed enter **NONE.**

Item 1R **DATE:** Enter the day (1) or two (2) digits for the day, the first three (3) letters of the month and a two (2) digit year when the inspection was performed. If not applicable, leave blank.

Item 1S **AUTHORITY:** Enter the regulatory or administrative authority performing the inspection indicated in item 3, e.g., C.S. 10 APR 1003, Div. 2 Water Code, State of Calif., Section 1110-2-100, etc.

LINE 9:

Item 1T **REMARKS:** Preface remarks with the item number to which it pertains, e.g., 34.2, 507,000 c.f. dam 475,000 c.f. earthfill. Only one Remarks line should be used for PART II remarks.
END

FILMED

8-85

DTIC