MASSACHUSETTS COASTAL BASIN
COHASSET, MASSACHUSETTS

AARON RIVER DAM
MA 01280

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Copy available to DTIC does not
permit fully legible reproduction

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

SEPTEMBER 1980

85 06 11 010
1. **REPORT NUMBER**
 MA 01280

2. **GOVT ACCESSION NO.**
 AD-A156340

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**
 Aarps River Dam

5. **TYPE OF REPORT & PERIOD COVERED**
 INSPECTION REPORT

6. **PERFORMING ORG. REPORT NUMBER**

7. **AUTHOR(s)**
 U.S. ARMY CORPS OF ENGINEERS
 NEW ENGLAND DIVISION

8. **CONTRACT OR GRANT NUMBER(s)**

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 DEPT. OF THE ARMY, CORPS OF ENGINEERS
 NEW ENGLAND DIVISION, NEDED
 424 TRAPELO ROAD, WALTHAM, MA. 02254

10. **PROGRAM ELEMENT, PROJECT, TASK AREAS & WORK UNIT NUMBERS**

11. **CONTROLLING OFFICE NAME AND ADDRESS**
 DEPT. OF THE ARMY, CORPS OF ENGINEERS
 NEW ENGLAND DIVISION, NEDED
 424 TRAPELO ROAD, WALTHAM, MA. 02254

12. **REPORT DATE**
 September 1980

13. **NUMBER OF PAGES**
 50

14. **MONITORING AGENCY NAME AND ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)**

15. **SECURITY CLASS. (OF THIS REPORT)**
 UNCLASSIFIED

16. **DISTRIBUTION STATEMENT (OF THIS REPORT)**
 APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. **DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 15, IF DIFFERENT FROM REPORT)**

18. **SUPPLEMENTARY NOTES**
 Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. **KEY WORDS**
 DAMS, INSPECTION, DAM SAFETY,
 Massachusetts Coastal Basin
 Cohasset, Massachusetts
 Aaron River

20. **ABSTRACT**
 The dam is about 900 ft. long with a maximum height of about 29.5 ft. The facility was found to be in good condition but is rated fair because seismic analysis is lacking for the facility. It is intermediate in size with a hazard potential of high. Investigations are recommended to assess the seismic ability and to establish criteria for monitoring the existing piezometers.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
AARON RIVER DAM
MA 01280

MASSACHUSETTS COASTAL BASIN
COHASSET, MASSACHUSETTS

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Identification: MA 01280
Name of Dam: AARON RIVER DAM
Town: TOWN OF COHASSET
County and State: NORFOLK COUNTY, MASSACHUSETTS
Stream: AARON RIVER
Date of Inspection: 28 JULY 1980

BRIEF ASSESSMENT

Aaron River Dam, construction in 1978, is approximately 500 ft. long excluding the spillway and has a maximum height of approximately 29.5 ft. It consists of an earth embankment with a riprapped upstream face and a loamed and seeded crest and upper portion of the downstream face. The bottom portion of the face has a crushed stone berm and riprapped downstream toe. Both the gate operator for the low level intake and the fish ladder are present at the right side of the dam. The principal spillway is located at the left abutment. The facility also has an emergency spillway in the form of a grassed and riprapped embankment in a separate swale about 1/4 mile to the left of the dam.

The facility was found to be in good condition but is rated as fair according to Corps of Engineer Guideline as seismic analysis is lacking for the facility.

Based on the size classification, intermediate, and hazard potential classification, high, in accordance with Corps of Engineers Guidelines, the spillway test flood is the Probable Maximum Flood. Hydraulic analyses indicate that the principal spillway capacity at test flood stage is approximately 3,180 cfs and the routed test flood outflow is 3,500 cfs (inflow of 3,840 cfs or 800 csm). Approximately 320 cfs would discharge through the emergency spillway and fishway outlet under test flood condition. The estimated test flood stage is about 2.8 ft. below the top of dam. The total discharge capacity of the spillways is 13,520 cfs or 385 percent of the routed test flood outflow with the reservoir stage at the top of the dam.

Investigations are recommended to assess the seismic stability of the facility and to establish criteria for monitoring the existing piezometers. Recommended remedial measures include the mowing of grass on the emergency spillway, the restoration of riprap wave protection, the establishing of an access road to the emergency spillway, performing maintenance work on the fishway intake, principal spillway and emergency spillway, and the locating and maintenance of all existing piezometers. The Owner should develop a formal maintenance program, operational procedure, and emergency procedures plan and should institute a program of biennial technical inspections. The remedial measures and recommendations should be performed as discussed in Section 7 within two years of receipt of this report by the Owner.

CAMP DRESSER & McKEE INC.

Roger H. Wood
Vice President
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I Investigations are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the test flood is based on the estimated "probable maximum flood" for the region (greatest reasonably possible storm runoff), or a fraction thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td></td>
</tr>
<tr>
<td>Brief Assessment</td>
<td></td>
</tr>
<tr>
<td>Review Board Page</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii & iii</td>
</tr>
<tr>
<td>Overview Photo</td>
<td>iv</td>
</tr>
<tr>
<td>Location Map</td>
<td>v</td>
</tr>
</tbody>
</table>

REPORT

1. PROJECT INFORMATION

1.1 General

 a. Authority 1-1
 b. Purpose 1-1

1.2 Description of Project

 a. Location 1-1
 b. Description of Dam and Appurtenances 1-2
 c. Size Classification 1-3
 d. Hazard Classification 1-3
 e. Ownership 1-3
 f. Operator 1-3
 g. Purpose of Dam 1-3
 h. Design and Construction History 1-4
 i. Normal Operation Procedures 1-4

1.3 Pertinent Data 1-4

2. ENGINEERING DATA

2.1 Design 2-1
2.2 Construction 2-1
2.3 Operation 2-1
2.4 Evaluation 2-1

3. VISUAL INSPECTION

3.1 Findings

 a. General 3-1
 b. Dam 3-1
 c. Appurtenant Structures 3-2
 d. Reservoir Area 3-2
 e. Downstream Channel 3-2

3.2 Evaluation 3-2

4. OPERATIONAL PROCEDURES

4.1 Procedures 4-1
4.2 Maintenance of Dam 4-1
4.3 Maintenance of Operating Facilities 4-1
4.4 Description of Any Warning System in Effect 4-1
4.5 Evaluation 4-1
TABLE OF CONTENTS (Cont'd)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>HYDRAULIC/HYDROLOGIC</td>
<td>Page</td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluation of Features</td>
<td>5-1</td>
</tr>
<tr>
<td>a.</td>
<td>General</td>
<td>5-1</td>
</tr>
<tr>
<td>b.</td>
<td>Design Data</td>
<td>5-1</td>
</tr>
<tr>
<td>c.</td>
<td>Experience Data</td>
<td>5-1</td>
</tr>
<tr>
<td>d.</td>
<td>Visual Observations</td>
<td>5-1</td>
</tr>
<tr>
<td>e.</td>
<td>Test Flood Analysis</td>
<td>5-2</td>
</tr>
<tr>
<td>f.</td>
<td>Dam Failure Analysis</td>
<td>5-2</td>
</tr>
<tr>
<td>6.</td>
<td>STRUCTURAL STABILITY</td>
<td>Page</td>
</tr>
<tr>
<td>6.1</td>
<td>Evaluation of Structural Stability</td>
<td>6-1</td>
</tr>
<tr>
<td>a.</td>
<td>Visual Observation</td>
<td>6-1</td>
</tr>
<tr>
<td>b.</td>
<td>Design and Construction Data</td>
<td>6-1</td>
</tr>
<tr>
<td>c.</td>
<td>Operating Records</td>
<td>6-1</td>
</tr>
<tr>
<td>d.</td>
<td>Post-Construction Changes</td>
<td>6-1</td>
</tr>
<tr>
<td>e.</td>
<td>Seismic Stability</td>
<td>6-1</td>
</tr>
<tr>
<td>7.</td>
<td>ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES</td>
<td>Page</td>
</tr>
<tr>
<td>7.1</td>
<td>Dam Assessment</td>
<td>7-1</td>
</tr>
<tr>
<td>a.</td>
<td>Condition</td>
<td>7-1</td>
</tr>
<tr>
<td>b.</td>
<td>Adequacy of Information</td>
<td>7-1</td>
</tr>
<tr>
<td>c.</td>
<td>Urgency</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2</td>
<td>Recommendations</td>
<td>7-1</td>
</tr>
<tr>
<td>7.3</td>
<td>Remedial Measures</td>
<td>7-1</td>
</tr>
<tr>
<td>a.</td>
<td>Operation and Maintenance Procedures</td>
<td>7-1</td>
</tr>
<tr>
<td>7.4</td>
<td>Alternatives</td>
<td>7-2</td>
</tr>
</tbody>
</table>

APPENDIXES

- APPENDIX A - INSPECTION CHECKLIST A-1
- APPENDIX B - ENGINEERING DATA B-1
- APPENDIX C - PHOTOGRAPHS C-1
- APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS D-1
- APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS E-1
1. OVERVIEW OF DAM FROM RIGHT ABUTMENT.
SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority - Public Law 92-367, 8 August 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region.

Camp Dresser & McKee Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Massachusetts. Authorization and notice to proceed was issued to Camp Dresser & McKee Inc. under a letter of 27 March 1979, from Colonel John P. Chandler, Corps of Engineers. Contract No. DACW 33-79-C-0053 has been assigned by the Corps of Engineers for this work. Contract Modification No. P0004, effective 18 July 1980, was subsequently issued by Colonel William E. Hodgson, Jr., Corps of Engineers. Haley and Aldrich, Inc. has been retained by Camp Dresser & McKee Inc. for the soils and geological portions of the work.

b. Purpose - The primary purpose of the investigation is to:

(1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) Encourage and assist the States to initiate quickly effective dam safety programs for non-Federal dams.

(3) Update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location - Aaron River Dam is located at the end of Beechwood Street in the Town of Cohasset, Massachusetts, about 1.4 miles southwest of State Route 3A, as shown on the report's Location Map. The dam impounds the waters of the Aaron River to form a water supply impoundment. Aaron River becomes Bound Brook as it flows to Cohasset Harbor, a distance of approximately 3 miles away. The coordinates for the dam are 70 degrees-49.4 minutes Longitude and 42 degrees-12.6 minutes Latitude.
b. Description of Dam and Appurtenances - The Aaron River Dam consists of an earth embankment which has a low level outlet pipe near the center, a combination high level intake and fishway outlet structure to the right which connects to a fish ladder along the right toe of the embankment and a spillway at the left abutment. In addition, there is an emergency spillway formed by a low embankment located approximately 1,250 ft. beyond the left abutment of the dam. A generalized plan showing the dam and appurtenances is included in Appendix C.

The dam is about 900 ft. long, 29.5 ft. high and 12 ft. wide at the crest. The upstream face is sloped at 2.5H to IV and has riprap wave protection on the upper part. The grass covered downstream slope is at 2H to IV, with a 10-ft. wide crushed stone berm along the toe. The crest has a gravel surface.

A typical embankment section is included in Appendix B. The dam embankment was constructed according to "Alternate B" as shown on the contract plans.

The central and upstream portions consist of "impervious fill" which was manufactured by mixing on-site glacial till and silt materials. The impervious zone extends to rock along the dam centerline.

The downstream portion of the dam is "random fill" which is drained by a chimney and blanket drain consisting of free draining sand and gravel. Seepage is collected and discharged by a system of pipes located in the toe berm. Ten piezometers were installed to monitor seepage conditions within the dam embankment.

The emergency spillway embankment is about 160 ft. long, 6 ft. high and 12 ft. wide at the crest. The upstream face is at 6H to IV, with crushed stone and grass cover. There is a 3 ft. wide riprap berm along the upstream toe. The downstream face is at 2H to IV and has riprap erosion protection. The crest is grass-covered. The embankment consists of a central and upstream zone of impervious fill which extends to glacial till or rock along the centerline. The downstream portion is random fill.

The principal spillway is a gravity concrete section with an ogee crest founded on and keyed into ledge. The crest has an irregular alignment roughly in the form of a "z". The total weir length is 230 feet of which 45 feet has a crest elevation of 66.0 while the remaining portion has a crest elevation of 65.0. Water flowing over the weir drops into a rock cut discharge channel for a major length of the weir alignment with flow from the remaining length of weir discharging onto exposed ledge before eventually dropping into the rock cut channel.
The low level outlet, which also serves as the reservoir drain, has a reinforced concrete box drop inlet with an invert elevation of 45.0 at the connecting 24-inch RCP conduit. An inclined trash screen within the drop inlet guards the conduit entrance. The low level outlet is controlled by a sluice gate at the end of the intake pipe within the concrete vault located at the upstream edge of the crest near the center of the dam. The gate operator is a manual crank type floor stand positioned on top of the vault. A 24-inch RCP conduit with an invert elevation of 43.25 leaves the concrete vault and discharges into an open channel at the toe of the dam.

The fishway near the right end of dam also serves as the high level intake. The intake structure extends approximately 35 feet into the reservoir from the upstream edge of the crest. The outer 20 feet is a reinforced concrete "U" type channel, 2 feet wide by 5 feet deep with an invert elevation of 59.5. Grating placed on top of the channel forms an access walkway to the manually operated fishway gate at the outer end. Water from the intake passes just beneath the crest of the dam in a 48" wide by 72" high corrugated aluminum conduit. The conduit discharges into a 24-inch wide by 60-inch high (min.) baffled reinforced concrete fish ladder placed along the valley side slope. Flow from the fish ladder discharges into a riprapped trapazoidal channel at the toe of the dam embankment.

c. Size classification - The maximum height of the dam is approximately 29.5 ft. and the estimated total storage capacity at the top of the dam is 2,350 acre-feet. According to Guidelines established by the Corps of Engineers, the dam is classified in the intermediate category based on storage capacity.

d. Hazard Classification - The results of the dam failure analysis indicate that about 50 houses, the Town of Cohasset Water Treatment Plant and several roadways would be affected by the flood wave and the potential loss of life would be in excess of 10 persons. Consequently, the dam is classified in the "high" hazard category.

e. Ownership - The dam is owned by the Town of Cohasset, Massachusetts. The Owner is represented by Mr. Edwin H. Pratt, Water Department Superintendent. His business address is 339 King Street, Cohasset, Massachusetts 02025, Tel. (617) 383-0057.

f. Operator - Mr. Edwin H. Pratt, Superintendent Water Department, is assigned responsibility for operation of the dam. His business address is 339 King Street, Cohasset, Massachusetts 02025, Tel. (617) 383-0057.

g. Purpose of the Dam - The Aaron River Dam provides water storage and regulates its release to a downstream pond which is used for water supply to the Town of Cohasset.
h. Design and Construction History - The dam was designed in 1976 by SEA Consultants, Inc., 54 Canal Street, Boston, Massachusetts 02114, with Goldberg, Zoino, and Associates as the geotechnical consultants. The construction was completed in 1978 by Arthur Schofield, Inc., Contractor. Records of the construction are available at SEA Consultants, Inc.

i. Normal Operating Procedure - There is no established procedure for the operation of the dam. The spillways have a fixed weir crest, and require no adjustment. The fishway gate can be adjusted to regulate the reservoir discharge to the Water Treatment Plant depending on the water supply demand of the Town of Cohasset. The reservoir level may be lowered to EL. 59.5 by adjusting the fishway gate. Below EL. 59.5, reservoir discharge is through the 24-inch reservoir drain. Maintenance of the facility is performed on the basis of need.

1.3 Pertinent Data - Elevations given in this report are on National Geodetic Vertical Datum (NGVD) formerly referred to as Mean Sea Level.

Field measurements indicated a top of dam elevation 1.5-ft. higher than that shown on the design drawings. Discussions with the designer indicated the dam was built higher than the design elevation to allow for settlement. In addition, it was decided not to seed the crest of the dam but rather to add 6-inches of gravel to the finished crest.

a. Drainage Area - The drainage area tributary to the dam site is 4.8 square miles of flat and coastal terrain. It is mostly undeveloped land and includes the southeast section of Wompatuck State Park and several swamps. Aaron River Reservoir accounts for approximately 5 percent of the total drainage area.

b. Discharge at Dam Site - There are no records of significant discharges at the dam site. The operator indicated that once in the spring of 1979, there was some minor discharge over the principal spillway, but no measurements were taken.

(1) Outlet works size: 24-inch reinforced concrete pipe. Capacity with reservoir at principal spillway elevation is 80 cfs.

(2) Maximum known flood at dam site: None

(3) Ungated spillway capacity at top of dam:

Principal Spillway: 10,375 cfs at 70.5 elev.
Emergency Spillway: 3,145 cfs at 70.5 elev.

(4) Ungated principal spillway capacity at test flood elevation: 3,180 cfs at 67.7 elev.
(5) Gated spillway capacity at normal pool elevation: N/A
(6) Gated spillway capacity at test flood elevation: N/A
(7) Total spillway capacity at test flood elevation:

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Elev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal spillway</td>
<td>3,180 cfs</td>
<td>67.7</td>
</tr>
<tr>
<td>Emergency spillway</td>
<td>280 cfs</td>
<td>67.7</td>
</tr>
</tbody>
</table>

(8) Total Project discharge at test flood elevation:

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Elev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Spillway</td>
<td>3,180 cfs</td>
<td>67.7</td>
</tr>
<tr>
<td>Emergency Spillway</td>
<td>280 cfs</td>
<td>67.7</td>
</tr>
<tr>
<td>Fishway</td>
<td>40 cfs</td>
<td>67.7</td>
</tr>
<tr>
<td>Total</td>
<td>3,500 cfs</td>
<td>67.7</td>
</tr>
</tbody>
</table>

c. Elevation (ft. above NGVD)

<table>
<thead>
<tr>
<th>Type</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streambed at toe of dam</td>
<td>41.0</td>
</tr>
<tr>
<td>Test flood tailwater</td>
<td>50.0</td>
</tr>
<tr>
<td>Upstream portal invert diversion tunnel</td>
<td>N/A</td>
</tr>
<tr>
<td>Normal pool</td>
<td>65.0</td>
</tr>
<tr>
<td>Full flood control pool</td>
<td>N/A</td>
</tr>
<tr>
<td>Spillway crest: Principal spillway</td>
<td>65.0</td>
</tr>
<tr>
<td>Emergency spillway</td>
<td>67.0</td>
</tr>
<tr>
<td>Design surcharge (Original Design)</td>
<td>66.0</td>
</tr>
<tr>
<td>Top of dam</td>
<td>70.5</td>
</tr>
<tr>
<td>Test flood surcharge</td>
<td>67.7</td>
</tr>
</tbody>
</table>
d. Length of Reservoir (miles estimated)

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal pool</td>
<td>0.8</td>
</tr>
<tr>
<td>Flood control pool</td>
<td>N/A</td>
</tr>
<tr>
<td>Spillway crest pool</td>
<td>0.8</td>
</tr>
<tr>
<td>Pool at top of dam</td>
<td>1.2</td>
</tr>
<tr>
<td>Test flood pool</td>
<td>1.0</td>
</tr>
</tbody>
</table>
e. **Storage** (acre-feet)

<table>
<thead>
<tr>
<th>Description</th>
<th>Storage (acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Normal pool</td>
<td>1,470</td>
</tr>
<tr>
<td>(2) Flood control pool</td>
<td>N/A</td>
</tr>
<tr>
<td>(3) Spillway crest pool</td>
<td>1,470</td>
</tr>
<tr>
<td>(4) Top of dam</td>
<td>2,350</td>
</tr>
<tr>
<td>(5) Test flood pool</td>
<td>1,895</td>
</tr>
</tbody>
</table>

f. **Reservoir Surface** (acres)

<table>
<thead>
<tr>
<th>Description</th>
<th>Reservoir Surface (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Normal pool</td>
<td>143</td>
</tr>
<tr>
<td>(2) Flood-control pool</td>
<td>N/A</td>
</tr>
<tr>
<td>(3) Spillway crest pool</td>
<td>143</td>
</tr>
<tr>
<td>(4) Test flood pool</td>
<td>158</td>
</tr>
<tr>
<td>(5) Top of dam</td>
<td>178</td>
</tr>
</tbody>
</table>

g. **Embankments**

<table>
<thead>
<tr>
<th>Description</th>
<th>Main Dam</th>
<th>Emergency Spillway Weir</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Type</td>
<td>Zoned Earth</td>
<td>Zoned Earth</td>
</tr>
<tr>
<td>(2) Length</td>
<td>900 ft.</td>
<td>160 ft.</td>
</tr>
<tr>
<td>(3) Height</td>
<td>29.5 ft.</td>
<td>6 ft.</td>
</tr>
<tr>
<td>(4) Top width</td>
<td>12 ft.</td>
<td>12 ft.</td>
</tr>
<tr>
<td>(5) Side Slopes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream</td>
<td>2.5H to 1V</td>
<td>6H to 1V (with riprap toe berm)</td>
</tr>
<tr>
<td>Downstream</td>
<td>2H to 1V</td>
<td>2H to 1V</td>
</tr>
<tr>
<td>(6) Zoning</td>
<td>Impervious fill upstream, random fill downstream</td>
<td></td>
</tr>
<tr>
<td>(7) Impervious Core</td>
<td>Compacted glacial till/silt mixture</td>
<td></td>
</tr>
<tr>
<td>(8) Cutoff</td>
<td>To rock</td>
<td>To glacial till</td>
</tr>
<tr>
<td>(9) Grout Curtain</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

h. **Diversion and Regulating Tunnel**

<table>
<thead>
<tr>
<th>Description</th>
<th>None</th>
</tr>
</thead>
</table>
1. Spillway

(1) Type Principal Spillway: Ogee-shaped concrete weir
 Emergency Spillway: Riprapped earth weir

(2) Length of Weir Principal Spillway: 230 ft.
 Emergency Spillway: 160 ft.

(3) Crest elevation. Principal Spillway: 185 ft. at EL. 65.0,
 and 45 ft. at EL. 66.0
 Emergency Spillway: EL. 67.0

(4) Gates .. None

(5) U/S Channel Irregular natural ground with
 rock outcrops in areas.

(6) D/S Channel Excavated channel through rock
 formation for a weir length of about 150 ft.; Irregular rock
 formation surface for other 80 ft. of weir length.

j. Regulating Outlets - The regulating outlets for this structure
consist of a movable fishway gate at the intake to the fish ladder
and a 24-in. reinforced concrete pipe reservoir drain, both
located to the right of center of the dam. The fishway gate crest
elevation may vary from a maximum of 63.0 to a minimum of 59.5.
The invert elevation to the reservoir drain is 45.0. The reser-
voir drain is controlled manually by a gate operator at the crest
of the dam. Both the fish ladder and the reservoir drain
discharge to a riprapped channel at the right toe of the dam.
SECTION 2: ENGINEERING DATA

2.1 Design Records - Design data in the form of plans, specifications, a soil report, and an application to the State for authorization to construct the dam were located at SEA Consultants, Inc., 54 Canal Street, Boston, Massachusetts 02114. The soil report is also available from Goldberg, Zoino, and Associates, 30 Tower Road, Newton, Massachusetts.

2.2 Construction Records - Construction records for this project are located at SEA Consultants, Inc.

2.3 Operation Records - No operation records other than piezometer readings taken when the reservoir was first filled, and again a few months after, were located for this facility.

2.4 Evaluation

 a. Availability - The soil report and the piezometer readings are available at Goldberg, Zoino and Associates. Other documents described above are available at SEA Consultants, Inc.

 b. Validity - The available data are in good agreement with conditions observed during the site examination with the exception of the elevation of top of dam. Field measurements indicated a top of dam elevation 1.5-ft. higher than that shown on the design drawings. Discussions with the designer confirmed the dam was constructed to a higher elevation than shown on the plans.

 c. Adequacy - The available data, in combination with the visual evaluation described in the following section, is adequate for the purpose of the Phase I investigation.
SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General - The Phase I visual examination of the Aaron River Dam was conducted on 28 July 1980.

In general, the earthen embankment, principal and emergency spillways and appurtenances were observed to be in good condition. The reservoir level at the time of the site examination was 3.0 ft. below the weir crest.

Visual inspection checklists for the site visit are included in Appendix A and selected photographs are given in Appendix C.

b. Dam - Visual observations of the dam, principal spillway and emergency spillway earthen weir revealed no evidence of lateral movement, settlement or other indication of instability. The following items were noted at the dam:

(1) The downstream slope has a reasonably good grass cover and was mowed as shown in Photos 1 and 3. Some weeds were present in the riprap and along the toe berm.

(2) The upstream riprap wave protection is in generally good condition as indicated by Photo 4. However, a few stones have been dislodged (apparently by trespassers) near the fishway.

(3) There was no visible evidence of seepage along the toe, although observations were limited by the presence of tailwater in the discharge channel as indicated in Photo 3. The outlet pipes from the toe drain system were not discernable.

(4) Two of the ten piezometers shown on the plans (P-8 and P-9) were not located.

The following items were noted at the emergency spillway earthen weir:

(1) The crest has a good grass cover, but was not mowed. Some weeds were growing in the riprap as shown in Photo 12.

(2) There was an accumulation of driftwood near the left end of the embankment.

(3) The discharge channel has started to become overgrown with brush as shown in Photo 13.

(4) There is no defined path or road for access to the emergency spillway.
The following items were noted at the principal spillway:

(1) Two boulders are present in the discharge channel immediately adjacent to the spillway weirs as shown in Photo 5.

(2) Cracks in the spillway weir have been recently sealed.

c. Appurtenant Structures - The visible portions of the low level outlet works, as shown in Photos 8 and 9, are in excellent condition. Only some slight efflorescence was observed on the interior of the control vault. The fishway shown in Photos 10 and 11 was also noted to be in excellent condition. Some minor logs were observed partially obstructing the intake and they were removed during the inspection. One section of hand railing on the right hand side of the intake accessway on the right hand side of the intake accessway has been vandalized.

d. Reservoir Area - Aaron River Reservoir is surrounded by moderate to flat terrain which is moderately forested. The shoreline of the pond is totally undeveloped. There appears to be no significant potential for landslides into the pond which would create waves that might overtop the dam. No conditions were noted that could result in a sudden increase in sediment load into the pond.

e. Downstream Channel - Discharges from the principal spillway pass through a rock cut to an improved riprapped channel at the toe of dam as shown in Photos 2, 6 and 7 before becoming the Aaron River. This river passes under Doane Street and joins Herring Brook flowing from Lily Pond to form Bound Brook. Bound Brook passes under Beechwood Street and State Route 3A, traverses North Scituate and discharges into Cohasset Harbor at the Cohasset - Scituate, Massachusetts town line. The waterway from the dam to North Scituate is on a flat gradient and passes through a series of swamps. The control structure shown in Photo 14 controls the water level in the upper portion of Bound Brook, Herring Brook and Lily Pond. The channels upstream of the control structure to Lily Pond were excavated during the construction of the dam to improve their flow characteristics. The Doane Street and Beechwood Street areas adjacent to the waterway are developed and Bound Brook passes through North Scituate which is a developed area. Discharges from the emergency spillway would flow over a cleared strip of land which has started to become overgrown with brush as shown in Photo 13. The flow would enter a swamp upstream of Doane Street and join the downstream waterways from the swamp that abuts Lily Pond, Herring Brook and the Aaron River downstream of Doane Street. With the exception of the flow passing over Doane Street, the flow would be passing through underdeveloped areas.

3.2 Evaluation - The dam is considered to be in good condition based on visual observations. A few minor deficiencies require maintenance, as detailed in Section 7.
SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures - In general, there is no formally established routine for the operation of the dam. The reservoir level is established by the water consumption needs of the Town of Cohasset. The reservoir drain is normally closed and some flow is maintained through the fish ladder.

4.2 Maintenance of the Dam - There is no established formal maintenance program for the dam. The operator indicated that the dam is inspected and maintained on the basis of need.

4.3 Maintenance of Operating Facilities - Water is released from the reservoir to meet minimum flow requirements in Bound Brook (1cfs) and water supply requirements of the Town through the fishway intake. At reservoir levels below EL. 59.5, water may be released from the reservoir through the 24-inch diameter reservoir drain. Maintenance of the fish ladder and the reservoir drain is performed on a need basis. Although the operability of these facilities was not demonstrated during the site inspection, they are both reported to be in good operating order and no conditions were observed which would indicate otherwise.

4.4 Description of any Warning System in Effect - There is no established warning system or emergency preparedness plan in effect for this structure.

4.5 Evaluation - Maintenance of the facility is being performed on the basis of need. There is currently no formal operational procedures in effect for Aaron River Dam. Formal operational procedures, maintenance programs, warning system and emergency preparedness plans should be established.
5.1 Evaluation of Features

a. General - Aaron River Dam is an earth embankment project on the Aaron River and forms a water supply impoundment in the southwest corner of Cohasset, Massachusetts. The watershed is 4.8 square miles of mostly undeveloped land including the southeast section of the Wampatuck State Park. The drainage area is flat and coastal with considerable upstream storage. At principal spillway crest (El. 65.0 NGVD) the reservoir storage is about 1,470 acre-ft, increasing to 1,780 acre-ft. at the emergency spillway crest (El. 67.0) and about 2,350 acre-ft. at the top of the dam (El. 70.5). The principal spillway, which has no facilities for flashboards, is ogee shaped and is about 230 feet long. The emergency spillway is a 160 ft. long riprapped earthen weir with crest El. 67.0. It is located about 1,250 ft. to the left of the principal spillway and is separated from it by natural high ground.

The length of the dam, not including the principal spillway which is located to the left of the dam, is about 900 ft. The overall height of the dam is about 29.5 ft. The reservoir drain is a 24-in. reinforced concrete pipe located to the right of center of the dam and is controlled from a gate operator on the crest of the dam. Further to the right is an intake to a fishway which discharges to a riprapped open channel at the toe of the dam. The dam is basically a high spillage-low surcharge project.

b. Design Data - The following hydraulic/hydrologic design data for the dam was obtained from SEA Consultants, Inc. 54 Canal Street, Boston, MA 02114.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area, (square miles)</td>
<td>4.8</td>
</tr>
<tr>
<td>Peak Outflow (100-year flood), (cfs)</td>
<td>550</td>
</tr>
<tr>
<td>Design Storm Duration, (hours)</td>
<td>24</td>
</tr>
<tr>
<td>Peak Hour Rainfall Intensity, (in/hr)</td>
<td>2.7</td>
</tr>
<tr>
<td>Runoff, (inches)</td>
<td>5.0</td>
</tr>
<tr>
<td>Design Flood Level Elev. (NGVD), (FT.)</td>
<td>66.0</td>
</tr>
</tbody>
</table>

c. Experience Data - There have been no major floods since the dam was put into operation late in 1978. The owner representative indicated that there was some discharge from the principal spillway in the spring of 1979, but there were no measurements taken of the reservoir level.

d. Visual Observations - The visual inspection of the dam was made on 28 July 1980. At the time, the reservoir water level was about 3.0 ft. below the principal spillway crest level (65.0 NGVD). The average freeboard at the dam was about 8.5 ft. The principal spillway approach channel was shallow with rock outcrops.
in areas. There were also some rock outcrops against the downstream face of the spillway crest which would influence discharge. The spillway discharges into an excavated rock channel leading to a riprapped channel along the toe of the dam. The outlet works was closed during the inspection.

e. Test Flood Analysis - Based on the Corps of Engineers Guidelines, the recommended test flood for the size, intermediate, and the hazard potential, high, is the PMF (Probable Maximum Flood). The test flood was determined using the Corps of Engineers "Guidelines for Estimating Maximum Probable Discharge in Phase I Dam Safety Investigations". Based on a flat and coastal drainage area, a PMF peak inflow rate of 800 cfs per square mile was selected for the 4.8 square mile drainage area. The resulting peak test flood inflow is 3,840 cfs.

Surcharge storage routing resulted in a routed test flood outflow of 3,500 cfs at a stage of 67.7. The dam would not be overtopped and would maintain about 2.8 ft. of freeboard. The depth of water over the principal spillway would be about 2.7 ft. and the depth of water over the emergency spillway would be about 0.7 ft. The principal spillway capacity at the test flood elevation would be about 3,180 cfs or approximately 91 percent of the routed test flood outflow. The remaining 9 percent would discharge through the emergency spillway and the fishway outlet. The outlet works capacity at spillway crest elevation is approximately 80 cfs.

f. Dam Failure Analysis - Based on the Corps of Engineers Guidelines for estimating Dam Failure Hydrographs, and assuming a failure would occur along 40 percent of the mid-height length of the dam with water at test flood stage (El. 67.7), the dam failure outflow is approximately 51,000 cfs. The project test flood discharge prior to a dam failure is 3,500 cfs for a total outflow of 54,500 cfs. The project discharge prior to a failure would flood one house at Doane Street by 1.0 to 1.5 ft., Doane Street would be overtopped by about 1.5 ft. and the Old Cohasset Water Treatment Facility would be flooded by about 1.0 ft. It is estimated that no other structures would be affected. After a dam failure, the combined outflow of 54,500 cfs would affect substantial residential development, the new Cohasset Water Treatment Plant, State Route 3A and several other roadways with a resulting "high" hazard. The area between the dam and Doane Street would be the most severely affected. Doane Street is only about 1000 ft. downstream of the dam and the reach has no storage capacity which could attenuate the flood wave. Doane Street would be overtopped by about 14 ft. and 25 houses would be flooded in this area. Downstream of Doane Street the flood wave would attenuate significantly in the swamp. Still, in the reach between Doane Street and Beachwood Street, 12 houses would be flooded by about 3 ft. of water or less. The Old Water Treatment Plant would be flooded by about 4 ft. and the new Treatment Plant Facility by about 1.5 to 2 ft. Beachwood Street would be overtopped by 3 to 3.5 ft.

Subsequent downstream streets, including State Route 3A, would be overtopped by 1 to 1.5 ft. About 15 houses would be affected by 1 ft. of water or less before the reservoir storage would empty to the Cohasset Harbor.
SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations - No evidence of instability was observed during the site examination on 28 July 1980.

b. Design and Construction Data - Available records include Plans and Specifications, a Geotechnical Engineering Report and a published article describing earthwork operations. Based on a review of this data, it is considered that the dam, principal spillway and emergency spillway earthen weir should have adequate margins of safety for stability under static conditions.

c. Operating Records - The only available operating records relating to structural stability are two sets of piezometer readings. The piezometers were read in January 1979, at the completion of the first reservoir filling, and again in March 1979. This data indicates that the internal chimney drain is effective in limiting pore water pressures within the downstream portion of the dam embankment.

d. Post Construction Changes - There have been no known structural modifications to the embankments since construction.

e. Seismic Stability - The Aaron River Dam is located within Seismic Zone 3 and, in accordance with recommended Corps of Engineer's Guidelines, suitable analyses relative to the vulnerability of the dam to seismic events should be on record. Seismic analyses are not available. Therefore, the stability of the dam under seismic loading conditions is not substantiated.
SECTION 7: ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition - Based on the visual examination and review of available records, the dam and spillways were found to be in good condition but are rated in fair condition due to lack of seismic analysis.

b. Adequacy of Information - The evaluation of the facility has been based on the visual examination, consideration of available documents and past performance and application of engineering judgement. The information available or obtained has generally been adequate for the purposes of the Phase I assessment. However, it is recommended that additional information relative to seismic stability be obtained as outlined in Section 7.2.

c. Urgency - The recommendations for additional investigations and remedial work, outlined in Sections 7.2 and 7.3, respectively, should be completed by the Owner within 2 years after receipt of this report.

7.2 Recommendations

It is recommended that the Owner arrange for the following to be performed by a registered professional engineer qualified and experienced in dam design:

1) Assess the vulnerability of the dam embankment to seismic events by performing appropriate engineering analyses.

2) Establish criteria for regular monitoring of the existing piezometers.

The Owner should implement corrective action if required based on the results of the above engineering evaluation.

7.3 Remedial Measures

a. Operation and Maintenance Procedures - The following work should be performed by the Owner:

(1) Mow the emergency spillway embankment and remove accumulated debris. Both dam and spillway embankments should be mowed at least once per year to facilitate visual inspection.

(2) Restore riprap wave protection as required.
(3) Locate and maintain all existing piezometers. Monitor piezometers on a regular basis. Long term changes in piezometer water levels may indicate the need for maintenance of the toe drain system.

(4) Restore the fishway accessway railing.

(5) Clear brush from the emergency spillway discharge channel.

(6) Establish an access way to the emergency spillway to facilitate its maintenance.

(7) Remove weeds and brush from riprap and crushed stone sections of dam to insure that the growth does not become unmanageable.

(8) Remove loose stones and boulders from the principal spillway discharge channel.

(9) Develop a formal operation and maintenance manual for the facility.

(10) Establish an emergency preparedness plan and warning system in cooperation with downstream officials and institute a program of biennial technical inspections.

7.4 Alternatives - There are no practical alternatives recommended.
APPENDIX A

INSPECTION CHECKLIST

VISUAL INSPECTION PARTY ORGANIZATION

VISUAL INSPECTION CHECK LIST

Embankment: Dam
Spillway: Principal
Outlet Works: Reservoir Drain
Outlet Works: Fishway
Embankment: Emergency Spillway

Page No.
A-1
A-2
A-3
A-4
A-5
A-6
VISUAL INSPECTION PARTY ORGANIZATION

NATIONAL DAM INSPECTION PROGRAM

DAM: Aaron River Dam

DATE: 28 July 1980

TIME: 1:30 PM

WEATHER: Sunny

WATER SURFACE ELEVATION UPSTREAM: 62 (NGVD)

STREAM FLOW: Minor (some discharge through fishway)

INSPECTION PARTY:
1. Roger H. Wood, CDM
2. Joseph E. Downing, CDM
3. Joseph R. Araujo, CDM
4. John W. Critchfield, H&A
5. Douglas G. Gifford, H&A

PROJECT FEATURE	**INSPECTED BY**	**REMARKS**
1. Structural/Operations | Roger H. Wood |
2. Hydraulics/Hydrology | Joseph E. Downing and Joseph R. Araujo |
3. Embankments | Douglas Gifford and John Critchfield |
4. | |

PRESENT DURING INSPECTION:
1. Edwin H. Pratt, Superintendent Water Department, Owner Representative and Operator
2.
3.
VISUAL INSPECTION CHECK LIST
NATIONAL DAM INSPECTION PROGRAM

DAM: Aaron River Dam
DATE: 28 July 1980
EMBANKMENT: DAM

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
</table>
| 1. Upstream Slope
 a. Vegetation
 b. Sloughing or Erosion
 c. Rock Slope Protection - Riprap Failures
 d. Animal Burrows
| 1.
 a. Few weeds in riprap.
 b. None apparent.
 c. Few riprap stones dislodged.
 d. None observed. |
| 2. Crest
 a. Vegetation
 b. Sloughing or Erosion
 c. Surface cracks
 d. Movement or Settlement
| 2.
 a. Gravel, with isolated weeds.
 b. None apparent.
 c. None apparent.
 d. None apparent. |
| 3. Downstream Slope
 a. Vegetation
 b. Sloughing or Erosion
 c. Surface Cracks
 d. Animal Burrows
 e. Movement or Cracking near toe
 f. Unusual Embankment or Downstream Seepage
 g. Piping or Boils
 h. Foundation Drainage Features
 i. Toe Drains
| 3.
 a. Grass and weeds, mowed.
 b. None apparent.
 c. None apparent.
 d. None observed.
 e. None apparent.
 f. None observed (tailwater present in fishway ditch).
 g. None observed.
 h. Internal chimney drain with collector pipe at toe. |
| 4. General
 a. Lateral Movement
 b. Vertical Alignment
 c. Horizontal Alignment
 d. Condition at Abutments and at Structures
 e. Indications of Movement of Structural Items
 f. Trespassing
 g. Instrumentation Systems
| 4.
 a. None apparent.
 b. Good.
 c. Good.
 d. Good.
 e. None observed.
 f. Frequent (hole in fence).
 g. Found 8 of 10 piezometers. |
<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. General Condition</td>
<td>a. Good.</td>
</tr>
<tr>
<td>b. Obstructions</td>
<td>b. Small log in channel.</td>
</tr>
<tr>
<td>c. Log Boom etc.</td>
<td>c. None.</td>
</tr>
<tr>
<td>2. Weir</td>
<td>2. None.</td>
</tr>
<tr>
<td>a. Flashboards</td>
<td>a. None.</td>
</tr>
<tr>
<td>b. Weir Elev. Control (Gate)</td>
<td>b. None.</td>
</tr>
<tr>
<td>c. Vegetation</td>
<td>c. None observed.</td>
</tr>
<tr>
<td>d. Seepage or Efflorescence</td>
<td>d. 2 minor efflorescent spots.</td>
</tr>
<tr>
<td>e. Rust or Stains</td>
<td>e. None observed.</td>
</tr>
<tr>
<td>g. Condition of Joints</td>
<td>g. Excellent.</td>
</tr>
<tr>
<td>h. Spalls, Voids or Erosion</td>
<td>h. No material condition observed.</td>
</tr>
<tr>
<td>i. Visible Reinforcement</td>
<td>i. None.</td>
</tr>
<tr>
<td>3. Discharge Channel</td>
<td>3. None.</td>
</tr>
<tr>
<td>a. Apron</td>
<td>a. None.</td>
</tr>
<tr>
<td>b. Stilling Basin</td>
<td>b. Rock ledge (2 boulders)</td>
</tr>
<tr>
<td>d. Vegetation</td>
<td>d. Minor.</td>
</tr>
<tr>
<td>e. Seepage</td>
<td>e. None observed.</td>
</tr>
<tr>
<td>f. Obstructions</td>
<td>f. Two boulders present.</td>
</tr>
<tr>
<td>g. General Struct. Condition</td>
<td>g. Good.</td>
</tr>
<tr>
<td>4a Right Side</td>
<td>4a Right Side</td>
</tr>
<tr>
<td>(1) Vegetation</td>
<td>(1) None observed.</td>
</tr>
<tr>
<td>(2) Seepage or Efflorescence</td>
<td>(2) None observed.</td>
</tr>
<tr>
<td>(3) Rust or Stains</td>
<td>(3) None observed.</td>
</tr>
<tr>
<td>(4) Cracks</td>
<td>(4) None observed. Minor crack at weir.</td>
</tr>
<tr>
<td>(5) Condition of Joints</td>
<td>(5) None observed.</td>
</tr>
<tr>
<td>(6) Spalls, Voids or Erosion</td>
<td>(6) None observed.</td>
</tr>
<tr>
<td>(7) Visible Reinforcement</td>
<td>(7) None observed.</td>
</tr>
</tbody>
</table>
VISUAL INSPECTION CHECK LIST
NATIONAL DAM INSPECTION PROGRAM

DAM: Aaron River Dam
OUTLET WORKS: RESERVOIR DRAIN
DATE: 28 July 1980

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inlet</td>
<td>1. Within pond, not observed.</td>
</tr>
<tr>
<td>a. Obstructions</td>
<td></td>
</tr>
<tr>
<td>b. Channel</td>
<td></td>
</tr>
<tr>
<td>c. Structure</td>
<td></td>
</tr>
<tr>
<td>d. Screens</td>
<td></td>
</tr>
<tr>
<td>e. Stop Logs</td>
<td></td>
</tr>
<tr>
<td>f. Gates</td>
<td></td>
</tr>
<tr>
<td>2. Control Facility</td>
<td>2.</td>
</tr>
<tr>
<td>b. Screens</td>
<td>b. None.</td>
</tr>
<tr>
<td>c. Stop Logs</td>
<td>c. None.</td>
</tr>
<tr>
<td>e. Conduit</td>
<td>e. Not observed.</td>
</tr>
<tr>
<td>f. Seepage or Leaks</td>
<td>f. Efflorescence one foot down from top.</td>
</tr>
<tr>
<td>3. Outlet</td>
<td>3.</td>
</tr>
<tr>
<td>b. Erosion or Cavitation</td>
<td>b. None observed.</td>
</tr>
<tr>
<td>c. Obstructions</td>
<td>c. None observed.</td>
</tr>
<tr>
<td>d. Seepage or Leaks</td>
<td>d. None observed.</td>
</tr>
<tr>
<td>a. Crane Hoist</td>
<td>a., b and d through f - not applicable.</td>
</tr>
<tr>
<td>c. Service Power</td>
<td></td>
</tr>
<tr>
<td>d. Emergency Power</td>
<td></td>
</tr>
<tr>
<td>e. Lighting</td>
<td></td>
</tr>
<tr>
<td>f. Lightning Protection</td>
<td></td>
</tr>
<tr>
<td>5. Other</td>
<td></td>
</tr>
</tbody>
</table>
VISUAL INSPECTION CHECK LIST
NATIONAL DAM INSPECTION PROGRAM

DAM: Aaron River Dam
OUTLET WORKS: FISHWAY
DATE: 28 July 1980

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inlet</td>
<td></td>
</tr>
<tr>
<td>a. Obstructions</td>
<td>1. Two minor logs.</td>
</tr>
<tr>
<td>b. Channel</td>
<td>b. Within pond.</td>
</tr>
<tr>
<td>c. Structure</td>
<td>c. None.</td>
</tr>
<tr>
<td>d. Screens</td>
<td>d. None.</td>
</tr>
<tr>
<td>e. Stop Logs</td>
<td>e. None.</td>
</tr>
<tr>
<td>2. Control Facility</td>
<td></td>
</tr>
<tr>
<td>a. Structure</td>
<td>2. Excellent(one railing missing left side)</td>
</tr>
<tr>
<td>b. Screens</td>
<td>b. None.</td>
</tr>
<tr>
<td>c. Stop Logs</td>
<td>c. None.</td>
</tr>
<tr>
<td>d. Gates</td>
<td>d. See 1 f.</td>
</tr>
<tr>
<td>e. Conduit</td>
<td>e. None observed.</td>
</tr>
<tr>
<td>f. Seepage or Leaks</td>
<td>f. None observed.</td>
</tr>
<tr>
<td>3. Outlet</td>
<td></td>
</tr>
<tr>
<td>b. Erosion or Cavitation</td>
<td>b. None observed.</td>
</tr>
<tr>
<td>c. Obstructions</td>
<td>c. None observed.</td>
</tr>
<tr>
<td>d. Seepage or Leaks</td>
<td>d. None observed.</td>
</tr>
<tr>
<td>4. Mechanical and Electrical</td>
<td></td>
</tr>
<tr>
<td>a. Crane Hoist</td>
<td>4. N/A.</td>
</tr>
<tr>
<td>b. Hydraulic System</td>
<td>b. N/A.</td>
</tr>
<tr>
<td>d. Emergency Power</td>
<td>d. N/A.</td>
</tr>
<tr>
<td>e. Lighting</td>
<td>e. N/A.</td>
</tr>
<tr>
<td>f. Lightning Protection</td>
<td>f. N/A.</td>
</tr>
<tr>
<td>5. Other</td>
<td></td>
</tr>
</tbody>
</table>
VISUAL INSPECTION CHECK LIST
NATIONAL DAM INSPECTION PROGRAM

DAM: Aaron River Dam
DATE: 28 July 1980
EMBANKMENT: EMERGENCY SPILLWAY (earthen weir)

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Upstream Slope</td>
<td></td>
</tr>
<tr>
<td>a. Vegetation</td>
<td>1. Few weeds in riprap.</td>
</tr>
<tr>
<td>b. Sloughing or Erosion</td>
<td>a. None observed.</td>
</tr>
<tr>
<td>c. Rock Slope Protection -</td>
<td>b. None observed.</td>
</tr>
<tr>
<td>Riprap Failures</td>
<td>c. None observed.</td>
</tr>
<tr>
<td>d. Animal Burrows</td>
<td>d. None observed.</td>
</tr>
<tr>
<td>2. Crest</td>
<td></td>
</tr>
<tr>
<td>a. Vegetation</td>
<td>2. Grass and weeds.</td>
</tr>
<tr>
<td>b. Sloughing or Erosion</td>
<td>a. None observed.</td>
</tr>
<tr>
<td>c. Surface cracks</td>
<td>b. None observed.</td>
</tr>
<tr>
<td>d. Movement or Settlement</td>
<td>c. None observed.</td>
</tr>
<tr>
<td>3. Downstream Slope</td>
<td></td>
</tr>
<tr>
<td>b. Sloughing or Erosion</td>
<td>a. None observed.</td>
</tr>
<tr>
<td>c. Surface Cracks</td>
<td>b. None observed.</td>
</tr>
<tr>
<td>d. Animal Burrows</td>
<td>c. None observed.</td>
</tr>
<tr>
<td>e. Movement or Cracking near toe</td>
<td>d. None observed.</td>
</tr>
<tr>
<td>f. Unusual Embankment or</td>
<td>e. None apparent.</td>
</tr>
<tr>
<td>Downstream Seepage</td>
<td>f. None observed.</td>
</tr>
<tr>
<td>g. Piping or Boils</td>
<td>g. None observed.</td>
</tr>
<tr>
<td>h. Foundation Drainage Features</td>
<td>h. None.</td>
</tr>
<tr>
<td>i. Toe Drains</td>
<td>i. None.</td>
</tr>
<tr>
<td>4. General</td>
<td></td>
</tr>
<tr>
<td>c. Horizontal Alignment</td>
<td>b. Good.</td>
</tr>
<tr>
<td>d. Condition at Abutments and at Structures</td>
<td>c. Good.</td>
</tr>
<tr>
<td>e. Indications of Movement of Structural Items</td>
<td>d. Good.</td>
</tr>
<tr>
<td>f. Trespassing</td>
<td>e. No structural items.</td>
</tr>
<tr>
<td>g. Instrumentation Systems</td>
<td>f. Frequent (campfire on crest, right end).</td>
</tr>
<tr>
<td></td>
<td>g. None.</td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA

DOCUMENTS

List of Available Documents

PRIOR INSPECTION REPORTS

<table>
<thead>
<tr>
<th>Date</th>
<th>By</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 25, 1975</td>
<td>SEA Consultants, Inc.</td>
<td>B-2-10</td>
</tr>
<tr>
<td></td>
<td>A.A. Vulgaropulos</td>
<td>B-11-13</td>
</tr>
<tr>
<td></td>
<td>Cohasset Water Department</td>
<td>B-14-15</td>
</tr>
<tr>
<td>February 13, 1978</td>
<td>New England Construction</td>
<td>B-16-18</td>
</tr>
</tbody>
</table>

DRAWINGS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dam Plan and Profile</td>
<td>B-19</td>
</tr>
<tr>
<td>2.</td>
<td>Typical Dam Sections & Details</td>
<td>B-20</td>
</tr>
<tr>
<td>3.</td>
<td>Emergency Spillway and Low Level Outlet</td>
<td>B-21</td>
</tr>
<tr>
<td>4.</td>
<td>Low Level Outlet Details</td>
<td>B-22</td>
</tr>
<tr>
<td>5.</td>
<td>Miscellaneous Sections & Details</td>
<td>B-23</td>
</tr>
<tr>
<td>6.</td>
<td>Fishway Structure (Excerpt from Sheet 8 of 10)</td>
<td>B-24</td>
</tr>
</tbody>
</table>
LIST OF AVAILABLE DOCUMENTS

<table>
<thead>
<tr>
<th>DOCUMENT</th>
<th>LOCATION</th>
</tr>
</thead>
</table>
54 Canal Street
Boston, MA 02114 |
| 2. Soils Report | Goldberg, Zoino, and Associates
30 Tower Road
Newton, MA |
APPLICATION FOR AUTHORIZATION TO CONSTRUCT OR ALTER
A RESERVOIR, RESERVOIR DAM OR MILL DAM

Aaron River Dam, Cohasset, Mass.

JURISDICTION - General Laws - Chapter 253, s. 84 et seq. as amended by
Chapter 706 of the Acts of 1975

The approval of the Commissioner shall not apply to small dams, constructed
for irrigation or for other purposes, the breaking of which would involve no risk
to life or property, nor to standpipes or tanks, nor to a dam where the area
draining into the pond formed thereby does not exceed one square mile; unless the
dam is more than ten feet in height above the natural bed of the stream at any
point, or unless the quantity of water which the dam impounds exceeds one million
gallons. However, information must be submitted to enable the Commissioner to
determine whether approval is necessary.

Approval of this plan does not release the applicant from the requirement
of a license under G. L. Chapter 91, if such a license is necessary.

Revised 12/25/75
Part "A"

JURISDICTIONAL DETERMINATION
(check the appropriate column)

1. Is there a risk to Life and Property downstream in the event of failure?
 Yes [X] No

2. Does the area draining into the pond exceed one square mile?
 Yes [X] No

3. Does the height of the dam exceed 10 ft. above the natural bed of the stream at any point?
 Yes [X] No

4. Does the volume of water impounded at maximum pool level exceed one million gallons?
 Yes [X] No

If the answer to any one of the above questions is Yes, then the Commissioner of Environmental Quality Engineering has jurisdiction. Proceed with Part B of this application.

If the answers to all four of the above questions are No, please submit backup information for a review by this Department for our jurisdictional determination. The backup information should include at least:

a. A copy of a topographic map clearly indicating the location of the dam and the effective drainage area.

b. A sketch showing the maximum section of the dam indicating its height, as measured from the lowest point of the streambed.

c. Calculations for the volume of water impounded at the maximum design pool level.

d. A brief statement pertaining to downstream conditions with respect to risk to life and property.

e. The signature of applicant and engineer.
GENERAL INFORMATION

1. Location (City-Town) Cohasset

2. Detailed description of dam location
 At westerly end of Beachwood St., near the easterly limit of the Wompatuck State Park. About 1.4 miles southwesterly from Route 3A; and 0.2 miles westerly from Doane Street and Summer Street.

3. Present or Prospective Owner(s)
 Name(s) Town of Cohasset, Mass. Board of Water Commissioners
 Street 43 Elm Street
 City/Town Cohasset, State Mass. Zip 02025
 Telephone (617) 381-0667

4. Name of U.S. Geological Survey Map Quadrangle
 Cohasset, Mass.

5. Name of Reservoir or Waterway Aaron River/Bound Brook

6. Is there specific legislative authority to construct the dam
 Yes (x) Identify Chapter 1163 of 1973
 No () An Act relating to the Improvement of the water supply for the town of Cohasset.

7. Purpose for the dam Municipal Water Supply

8. Nature of the work
 Proposed dam (x)
 Alteration of existing dam ()
 Major repair of existing dam ()
HAZARD EVALUATION
(Downstream field investigation)

1. The estimated number of people that could be affected by overtopping or failure of the structure, and to what degree they would be affected.

 Overtopping flood level alone would not affect any people directly.

 Failure of the dam would affect about 30 people downstream by flooding of their properties.

2. The number of properties (homes, buildings etc.) and the estimated extent of damage by overtopping or failure. Overtopping flood level alone would inundate about 60 additional acres around the reservoir. Failure of the dam would flood about 140 additional acres downstream including less than 10 homes.

3. Roads (type) or other structures that could be affected by overtopping or failure. Beechwood Street, Doane Street, the Old Water Treatment Plant Road, Bound Brook Control Structure.

4. Additional Information:

 Under existing conditions there is flooding potential of certain properties downstream in the area of Doane Street, Lily Pond and North Scituate. The Aaron River Dam would regulate flows to some extent and lessen the flooding potential.
HYDROLOGIC CONSIDERATIONS

Procedures for hydrologic design as contained in the latest edition of the U. S. Department of the Interior, Bureau of Reclamation "Design of Small Dams

1. Peak Outflow (100 yr) 550 c.f.s.
2. Design storm duration 24 hours
3. Rainfall Intensity (Peak Hour) 2.7 "/hr.
 Percent Runoff Varies
 Rainfall = 6.8 "; inches.
 Runoff = 5.0 "
4. Contributory Drainage Area 4.8 sq.mi.
 (attach a copy of U. S. Topographic Map with the outline of the drainage divide).
5. Previous Known Flood of record Elev. 51.5 + at Doane St.
 (month) March (year) 1968
6. Design maximum flood level elevation 66.0
7. Additional information: A two foot wide gated fishway will carry excess runoff from frequent storms. The principal spillway will overflow generally during greater than 5-year storms. The emergency spillway would operate only during rare storms in excess of 100-year frequency.
DESIGN CRITERIA

1. Datum used:
 (a) M.S.L. of 1929 Yes
 (b) Assumed
 (c) Other

2. Maximum height of the dam 26.0 ft.
 (a) Top elevation of dam 69.0
 (b) Top elevation of spillway 65.0

3. Volume of water impounded, at maximum design pool level. 1570 ac-ft = 513.0 million gallons

4. Present river bed or channel elevation @ dam 43.0

5. Normal pool elev. surface area 63.0 129 ac

6. Maximum pool elev. surface area 65.0 148 ac

7. Type of structure (earth, concrete, etc)
 Earth Embankment

8. Crest width 12 ft.

9. Freeboard, as measured from the maximum design pool level 3.0

10. Length of Principal spillway 200 ft

11. Description of principal spillway, Gorge concrete weir with shute spillway in rock

12. Emergency spillway Yes (x) No ()
 If yes, describe Low earth embankment with stone protection. Crest @ 67.0

13. Gates Yes (x) Number 1 @ Fishway Size 2' x 3.5'
 No () 1 @ low level outlet

14. Nature of slope protection Riprap (above elev. -55.0 face and below elev. 69.0 at toe downstream)
 loamed and seeded (top and downstream face)

15. Stop log structure(s)
 Yes () Mechanical () Manual ()
 No (x)
SUBSURFACE INVESTIGATION

Boring logs, analysis and recommendations to accompany this application.
See Plans and Specifications.

CONSTRUCTION DRAWINGS

(Submit 2 copies with this application) Names & addresses of property owners for all parcels of land within the flowage area must be clearly indicated on the plan.

CONSTRUCTION SPECIFICATIONS

(Submit 2 copies with this application)

CERTIFICATION OF INSPECTION DURING CONSTRUCTION

Inspecting agent (Must be approved by the Design Engineer)

Name
S E A Consultants, Inc.

Street
90 Canal Street

City/Town
Boston, State Mass.

Telephone
(617) 742-1133

Inspection during construction periods will be conducted by the approved engineer on a full-time basis. Bi-monthly progress reports are to be submitted to the Massachusetts Department of E.Q.E. (local District office) with copies submitted to the owner and design engineer.

Inspector signature
Paul C. Pass
Date 2/17/76

Applicant signature
Date 2/17/76

Design engineer
Date 2/17/76
SIGNATURE SHEET

APPLICANT

Name: Town of Cohasset - Board of Water Commissioners
Street: 43 Elm Street
City/Town: Cohasset, State Mass.
Telephone: (617) 383-0057
Signature: [Signature]

CONSULTANT ENGINEER FIRM

Name: S E A Consultants, Inc.
Street: 90 Canal Street
City/Town: Boston, State Mass.
Telephone: (617) 742-1133
Signature and P.E. Stamp: [Signature]

(P.E. STAMP & SIGNATURE REQUIRED ON ALL SUBMITTALS)

Final or "as built" drawings are to be submitted to this office upon completion of the project.

No alterations shall be made without the prior review and approval of the Commissioner.

FAILURE TO COMPLY WITH THE TERMS OF THIS APPLICATION WILL AUTOMATICALLY CAUSE REVOCATION OF THE COMMISSIONER'S APPROVAL.
Cohasset Water Supply
Improvements Program
1978-1979

Board Of Water Commissioners
John W. Hobbs
William I. Montouri
Lot E. Bates

Consulting Engineers
S·E·A Consultants Inc.
Engineers/Planners
Boston, Ma.

Superintendent
Cohasset Water Department
Edwin H. Pratt

This Folder Published Through Courtesy Of The Cohasset Savings Bank
THE THREE ELEMENTS OF COHASSET'S IMPROVED WATER SUPPLY

1. AARON RIVER DAM AND RESERVOIR

The Aaron River Dam is an earthfill dam approximately 960 feet long and approximately 50 feet high. An upstream blanket prevents seepage beneath the dam structure and a concrete apron spillway protects the dam from overtopping under flood conditions. The reservoir created by the dam holds about 104 million gallons of water and has a surface area of about 135 acres which is within Wampatuck State Park. A fish ladder has been constructed at the dam to allow fish to migrate into and from the reservoir. The dam contains approximately 17,000 cubic yards of various types of fill material including 6,000 cubic yards of impervious fill material for the core. Permanent monitoring wells have been installed to observe water level fluctuations both upstream and downstream of the dam. Water level is monitored by a weir gate at the entrance to the fish ladder. A low level outlet pipe is used only to drain the reservoir in emergencies or for maintenance. In addition to the concrete apron over the spillway, an upstream spillway protects the dam during periods of high rainfall and runoff.

2. BOUND BROOK CONTROL STRUCTURE

The Bound Brook Control Structure is a reinforced concrete structure at the Beachwood Street Bridge which provides control of the water surface elevation in Lify Pond by means of adjustable gates. It is designed to maintain the water level in Lify Pond between elevations 47 and 45 and has a hydraulic capacity of 860 cubic feet per second. A fish ladder was also incorporated into the design and construction to encourage the eventual reclamation of fish into the Atlantic Ocean to the new Aaron River Reservoir. It is required that a minimum flow of one cubic foot per second be maintained at all times in Bound Brook below the control structure in order to accommodate the requirements for the water supply in Lify Pond for the water treatment facility. Release of water will be made from the Aaron River Dam during periods of low precipitation and runoff.

The control structure at Bound Brook diverts this needed water into Lify Pond by adjustment of the movable weir gates. The stream channel system of the control structure, including Bound Brook and Storrow Brook, are necessary to provide increased flood capacity from the dam to the control structure.

The construction cost for the Bound Brook Control Structure was $62,000.

J. M. Contra, Inc. Contractor

3. WATER TREATMENT FACILITY

The Cohasset Water Treatment Facility has been designed to process an average flow of 1.8 million gallons per day and a peak flow of 3.0 million gallons per day. Water treatment units have been designed with expansion capacity of 8.5 million gallons per day capacity. The facility employs both physical and chemical processes including high velocity contact raw water. Clarifier volume ranges from 10 to over 250 units.

The raw water contains iron, manganese, and other iron component which exceed acceptable limits. The treatment process includes lime and carbon treatment, sand filtration, and chlorination. The final product is then filtered at high pressure and the pH adjusted.

The building and its associated equipment are located on the upper level of the treatment plant. The building is made of a reinforced concrete structure. The building consists of a control room, operator's room, and an intake structure. The building and the associated equipment are located on the upper level of the treatment plant.

The construction cost for the treatment facility was $1.360,000.

A. B. Root & Co., Inc. Contractor

RAW COHASSET'S WATER IS PURIFIED

Cohasset's new water treatment plant employs the latest technological advancements in water treatment. Here is the step-by-step purification process:

Raw water from Lify Pond flows to the intake structure containing coarse and fine screens and then enters the plant through a flow metering and control device. The metering device, designated DCF-100, measures the total quantity of flow and also provides an automatic signal for controlling the amount of chemicals fed into the water.

Complexing chemicals are added to the water in rapid mix tanks and are rapidly and thoroughly mixed at the DCF-100. The chemically treated water then flows to a flocculation unit where the tiny coagulated particles become larger and easier to settle. The water then flows into the sedimentation unit where the coagulated particles settle out. The clarified water then passes on to the filters.

The filters consist of a 30-inch layered bed of sand and gravel, including different particle sizes and density fractions, and a 15-inch gravel layer. Each filter bed rests on a 15-inch gravel layer. The level of water above the surface of the media in the filters automatically controls the amount of water entering the treatment plant and passing through the various treatment units.

After the water passes through the filters it moves to a clear well or filtered water reservoir. There is a rising tank and two pumps at the filters with a potable water distribution system. If the rate of output of the treatment plant exceeds the rate of consumption, the water is pumped to the storage on the top of Bear Hill where it is stored for use during periods of peak demand.
Firm Makes Fill For Cohasset Dam By Blending The On-Site Soil

Contractor Schofield and designers eliminate need for borrow by concocting impervious fill for dam in field

By manufacturing specified backfill material right on the construction site and using a simple but effective dewatering system, the design/build team for a 1000-foot-long earth dam in Cohasset, Mass., was able to save both time and money.

General contractor Arthur Schofield Inc. and a design group that included designers SEA Consultants, geotechnical engineers Goldberg Zoiro Dunnichiff, hydrologist Arthur Vukaropulos, geotechnical engineers McPhail Associates and a retired Perini Corp. project manager, Cesare Caronzi, were able to build the 25-foot-high dam using "unsuitable" material in a swamp without installing a wellpoint or deep well system.

The dam is being built across the Aaron River to create a $25,000,000 gallon reservoir to supplement the
A Hupco #900 excavator digs into the tough layer of till as the cut-off trench nears bottom. Once the trench was completed, it was filled with impervious fill to prevent water seepage.

A fractured rock was scraped from the bottom of the trench, workers cleaned it with blasts of high-pressure air using a 2 1/2-in. hose supplied by a 600 cfm Ingersoll-Rand compressor.

As water supply. It is part of a $3 million project to boost the community's water system so that water shortages in effect during summers for the last ten years may be eliminated. Also being built is a three-million-gallon water treatment plant, expected to be completed by general contractor A. Bonfatti early this year.

To prevent water from seeping or "piping" through the earth dam, the consultants incorporated a "cut-off" trench into its design. Before dam construction began, a trench resembling a truncated "V" was dug to remove the natural porous soil. It was replaced by an impervious blend of soils, then the dam was continued upward, using the same blend of materials.

The final cross-section of the dam resembles a hexagon with shorter top and bottom sides. The side slopes of the dam are 2:1, while the trench sides slope at 1:1. Overall depth of the structure, from the 10-foot wide trench bottom to the 12-foot-wide road on top, is roughly 50 feet.

The original soil at the site of the dam was composed of layers of five distinct materials: a two-foot, top layer of peat (with water table at ground level), an eight-foot layer of sand and gravel, a seven-foot layer of till, and at the bottom, a layer of fractured granite.

Although no one layer was suitable for use as backfill material, the team noticed that the silt and till, if mixed properly, would produce the impervious material they needed. By themselves, the till was too coarse, and the silt contained too many fines.

Through calculations followed by trial-and-error blending, the team settled on a mixing procedure that let them use all on-site material to build the dam.

Soil excavated from the cut-off trench was brought to an area nearby on the site roughly the size of a football field. Two Michigan rear dump wagons and a Hupco 900 backhoe worked together to remove till and fractured rock. A Cat 641 and two Michigan 381 scrapers removed the silt, sand and gravel and peat.

At the mixing area, the till and silt were laid down alternately in 12-inch lifts, until a six-foot-tall "sandwich" of silt and till was built up. If the soil was wet, as it was many times because of heavy rains during the early stages of the job, a Fiat-Allis HD-21 bulldozer first tamped a sheepfoot or harrow over the material which helped to dry it out. The actual mixing was accomplished by a Cat D-9 bulldozer.

The D-9 mixed the material by pushing along the edge of the soil sandwich, so that it sliced across all six of the stacked layers of silt and till. By continuously shaving off the edge of this sandwich, the dozer's blade kept turning over and mixing the two soils, forming a blend of material that met specifications for imperviousness.

Rock that was scraped from the bottom of the cut-off trench was stockpiled for later use as rip rap on the upstream face of the dam. If the rock pieces exceeded the 250-lb. maximum allowed by the specifications, they were broken up by a Northwest

A Case skidder and a Cat dozer work during the very early stages of the Cohasset project. Clearing operations and brook widening were performed during the winter of 1976-1977.

crane dropping a three-ton demolition ball. After the trench bottom was scraped by the Hopto 900, a crew used a 600 cfm Ingersoll-Rand compressor and 2-inch hose to clean off the bottom with blasts of high-pressure air. Then fill operations began.

Compaction of the impervious dam fill material was critical. So following deposition of each lift of the fill by the Cat and Michigan scrapers it was consolidated by an Essex vibratory compactor towed by a John Deere tractor. Compaction had to be at least 95 percent, and was checked constantly by Goldberg, Zoino, Dunnicliff. Approximately 60,000 cubic yards of fill were required to construct the dam.

Water handling at first was thought to be the biggest problem for the design/build team. They had built an eight-foot-tall cofferdam of impervious fill and a 600-foot-long diversion channel to shunt the Aaron River away from the construction area, but there was still plenty of water at the dam site itself. A deep well or wellpoint system was considered by the team, but they then decided to first try digging a sump in the middle of the dam site, and pumping the area dry.

Four three-inch electric submersible pumps --- two Flygt and two Gorman Rupp --- were placed in the fast-filling sump. Surprisingly, the simple system dropped the water table dramatically, right down to the rock bottom of the cut-off trench. Piezometers were placed all around the site to monitor water levels, and they registered what the workmen already knew --- the area was nearly chalk dry. Helping to keep it dry was the fact that the Aaron River diversion ditch, at hydrologist Vulgaropulos' suggestion, had been lined with polyethylene sheeting. Hence, no water was allowed to seep from the diversion trench into the dam area. When the dam is completed, water from the new reservoir behind it will be fed into a brook downstream by means of a Waterman Sluice Gate and pipe on the reservoir floor.

The Cohasset Dam and the new water treatment plant were scheduled to be finished by the time this report went to press. When the new system is operational sometime this spring, it will be capable of supplying up to three million gallons per day of pure drinking water --- enough to serve the community until the year 2000.

Key personnel on the $5.7 million improvement program are for the town. Ed Pratt, water superintendent, for Arthur Schofield Inc., Arthur Schofield, president, Howard Rice, superintendent, Keith Banks, ass't superintendent, John Roma, project engineer, and Virginia Ober, project coordinator, for SEA Consultants Inc., Fred Aufiero, SEA project manager, and Ed Robinson, SEA resident engineer, for Goldberg Zoino, Dunnicliff Associates, Jim Webber, John Ayres and Bill Zoino, for McPhail Associates, Robert McPhail and Robert Hoxter, consultants Cesare Cueroni and Arthur Vulgaropulos, and for A Bonfiglioli Inc., builders of the water treatment plant. Frank Cambridge, superintendent.

A Warner Swasey Hopto loads unsuitable peat material onto a Mack haul truck. Approximately two feet of peat had to be disposed of. Note water table is right up to ground level.
APPENDIX C

SELECTED PHOTOGRAPHS OF PROJECT

LOCATION PLAN

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Overview of Dam from Right Abutment</td>
<td>iv</td>
</tr>
<tr>
<td>2.</td>
<td>Overview of Dam from Left Abutment with Portion of Principal Spillway Discharge Channel in Foreground</td>
<td>C-2</td>
</tr>
<tr>
<td>3.</td>
<td>Downstream Face of Dam Looking Towards Right Abutment</td>
<td>C-2</td>
</tr>
<tr>
<td>4.</td>
<td>Upstream Face of Dam Showing Riprap Wave Protection and Reservoir Drain Gate Operator</td>
<td>C-3</td>
</tr>
<tr>
<td>5.</td>
<td>View of Principal Spillway from Left Abutment</td>
<td>C-3</td>
</tr>
<tr>
<td>6.</td>
<td>View of Principal Spillway Discharge Channel from Downstream</td>
<td>C-4</td>
</tr>
<tr>
<td>7.</td>
<td>View of Downstream Channel from Crest of Dam</td>
<td>C-4</td>
</tr>
<tr>
<td>8.</td>
<td>Reservoir Drain Gate Operator and Top of Access Vault</td>
<td>C-5</td>
</tr>
<tr>
<td>9.</td>
<td>Interior View of Reservoir Drain Access Vault</td>
<td>C-5</td>
</tr>
<tr>
<td>10.</td>
<td>Fishway Inlet Structure near Right Abutment of Dam</td>
<td>C-6</td>
</tr>
<tr>
<td>11.</td>
<td>View of Fish Ladder from Crest of Dam</td>
<td>C-6</td>
</tr>
<tr>
<td>12.</td>
<td>Overview of Emergency Spillway from Right Abutment</td>
<td>C-7</td>
</tr>
<tr>
<td>13.</td>
<td>View of Downstream Channel from the Emergency Spillway</td>
<td>C-7</td>
</tr>
<tr>
<td>14.</td>
<td>Bound Brook Control Structure</td>
<td>C-8</td>
</tr>
</tbody>
</table>
KEY PLAN

PLAN OF EMERGENCY SPILLWAY

PLAN OF DAM

NOTES:
1. PLAN BASED ON MARCH 1976 DESIGN DRAWING AND CDM FIELD OBSERVATIONS.
2. 1 DENOTES PHOTOGRAPH NUMBER AND DIRECTION OF VIEW.

LOCATION OF PHOTOGRAPHS

CAMP DRESSER & MCKEE, INC. U.S. ARMY ENG. DIV. NEW ENGLAND CORPS OF ENGINEERS BOSTON, MASSACHUSETTS WALTHAM, MA.

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS
2. OVERVIEW OF DAM FROM LEFT ABUTMENT WITH PORTION OF PRINCIPAL SPILLWAY DISCHARGE CHANNEL IN FOREGROUND.

3. DOWNSTREAM FACE OF DAM LOOKING TOWARDS RIGHT ABUTMENT.
1. UPSTREAM FACE OF DAM SHOWING RIPRAP WAVE PROTECTION AND RESERVOIR DRAIN GATE OPERATOR.

5. VIEW OF PRINCIPAL SPILLWAY FROM LEFT ABUTMENT.
6. VIEW OF PRINCIPAL SPILLWAY DISCHARGE CHANNEL FROM DOWNSTREAM.

7. VIEW OF DOWNSTREAM CHANNEL FROM CREST OF DAM.
8. RESERVOIR DRAIN GATE OPERATOR AND TOP OF ACCESS VAULT.

9. INTERIOR VIEW OF RESERVOIR DRAIN ACCESS VAULT.
10. FISHWAY INLET STRUCTURE NEAR RIGHT ABUTMENT OF DAM.

11. VIEW OF FISH LADDER FROM CREST OF DAM.
12. OVERVIEW OF EMERGENCY SPILLWAY FROM RIGHT ABUTMENT.

13. VIEW OF DOWNSTREAM CHANNEL FROM THE EMERGENCY SPILLWAY.
14. BOUND BROOK CONTROL STRUCTURE LOCATED AT BEECHWOOD STREET, APPROXIMATELY 1.2 MILES DOWNSTREAM OF THE DAM.
APPENDIX D
HYDRAULIC AND HYDROLOGIC COMPUTATIONS

FIGURES

Drainage Area Map D-1
Dam Failure Impact Area Map D-2

COMPUTATIONS

Elevations; Surface Areas; Reservoir Storage; and Test Flood Determination D-3
Stage-Discharge Relationships; and Surcharge-Storage Routing D-4
Stage-Discharge Relationship and Storage-Elevation Curves D-5
Outlet Works Capacity; and Tailwater Analysis D-6
Dam Failure Analysis D-7
ELEVATIONS

All elevations refer to National Geodetic Vertical Datum (NGVD)

Top of Dam 70.5
Toe of Dam 41.0
Reservoir Drain Invert (24-in. Cyl) 42.55
Principal Spillway Crest 185 feet @ El. 65.0; 45 feet @ El. 66.0
Emergency Spillway Crest 67.0
Fishway Invert (48° 75° Aluminum Yr) 59.5; The weir crest gate is moveable.

SURFACE AREAS

Drainage Area = 4.8 sq. mi. (from SEH dam construction application
Reservoir Surface Areas:
@ Principal Spillway Crest, El. 65.0, = 193 acres (from SEH computation)
@ Emergency Spillway Crest, El. 67.0, = 153 acres
@ Top of Dam, El. 70.5, = 178 acres

RESERVOIR STORAGE

@ Principal Spillway Crest, Storage = 1470 ac-ft (from SEH comp)
@ Emergency Spillway Crest, Storage = 1780 ac-ft
@ Top of Dam, Storage = 2350

TEST FLOOD DETERMINATION

Based on an hydraulic height of 29.5 ft and a storage of top of
dam of 2350 ac-ft, the size classification is INTERMEDIATE.

Based on the high hazard resulting from a dam failure
and an INTERMEDIATE size classification, the COE
guidelines recommend a test flood for the Aaron River
Darn to be a PMF.

The drainage area is flat and coastal with some
scattered development. Therefore, use the flat and
coastal curve of the NED Corp of Engineers "Preliminary
Guidance for Estimating Discharges in Phase I Dam Safety
Investigations".

PMF = 800 cfs/sq. mi x 4.8 sq. mi = 3,840 cfs

Hydraulic Profile of Dam:

[Diagram showing the hydraulic profile with elevations and orientation angles]
STAGE-DISCHARGE RELATIONSHIP

<table>
<thead>
<tr>
<th>Reservoir Water</th>
<th>PRINCIPAL SPILLWAY DISCHARGE</th>
<th>Emergency Spillway Flow</th>
<th>Fishway Discharge</th>
<th>TOTAL DISCHARGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface Elevation (NGVD)</td>
<td>L=125-ft</td>
<td>C-value</td>
<td>L=45-ft</td>
<td>C-value</td>
</tr>
<tr>
<td>65.0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5</td>
<td>3.2</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.0</td>
<td>3.25</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.5</td>
<td>3.3</td>
<td>112</td>
<td>3.2</td>
<td>51</td>
</tr>
<tr>
<td>67.0</td>
<td>3.35</td>
<td>175</td>
<td>3.25</td>
<td>146</td>
</tr>
<tr>
<td>67.5</td>
<td>3.4</td>
<td>248</td>
<td>3.3</td>
<td>273</td>
</tr>
<tr>
<td>68.0</td>
<td>3.45</td>
<td>331</td>
<td>3.35</td>
<td>426</td>
</tr>
<tr>
<td>68.5</td>
<td>3.5</td>
<td>424</td>
<td>3.4</td>
<td>605</td>
</tr>
<tr>
<td>69.0</td>
<td>3.55</td>
<td>525</td>
<td>3.45</td>
<td>807</td>
</tr>
<tr>
<td>70.5</td>
<td>3.7</td>
<td>882</td>
<td>3.5</td>
<td>1576</td>
</tr>
</tbody>
</table>

Notes: 1. The C-values for the principal spillway reflect field condition.
2. The fishway discharge will vary depending on the position of the movable weir-gate crest. For this report it is assumed that the weir crest is at its highest elevation of 63.0. Then, Q = CAVL9H = 0.8 x (5 x 2164) = 683.76.

SURCHARGE-STORAGE ROUTING

Peak Test Flood Inflow = 3,840 cfs; Surcharge El 67.85

\[
STOR_1 = \frac{\text{Surcharge Storage}}{\text{Drainage Area}} = \frac{450 \times 2 \times 12 \text{ ft}^3}{3072 \text{ acres}} = 1.76 \text{ inches}
\]

Outflow, \(Q_p = \frac{Q_p (1 - STOR_1)}{19} = 3,840 \left(1 - \frac{1.76}{19}\right) = 3143 \text{ cfs} \rightarrow \text{El. 67.7} \)

\[
STOR_2 = \frac{(4.25 \times 12)}{3072} = 1.66 \text{ in}; \ STOR_{AVG} = \frac{(1.76 + 1.66)}{2} = 1.71 \text{ in}
\]

\[
Q_p = \frac{3840 \left(1 - \frac{1.71}{19}\right)}{19} = 3143, 324 \text{ cfs} \rightarrow \text{El. 67.7}
\]

Peak Test Flood Inflow = 3,840 cfs

Routed Test Flood Outflow = 3,500 cfs @ Surcharge El. 67.7 (NGVD)
DRAIN PIPE CAPACITY @ Spillway Crest

\[Q = CA/2gH \]

where \(C = 0.75 \), \(A = \pi r^2 = 3.14 (1)^2 = 3.14 \text{ sq. ft} \)

\[H = \text{Spillway Crest E1} - \& 24\text{-in Drain Inlet} = 65' - 46' = 19' \]

\[Q = 0.75(3.14)\sqrt{69.4(19)} \approx 80 \text{ cfs} \]

TRIALWATER ANALYSIS

A. @ Spillway - A visual examination of the area immediately downstream of the spillway indicated areas where tailwater would definitely affect the spillway discharge efficiency. This is due to rock outcrops near the spillway. This reduced spillway efficiency is reflected in the choice of C-values for estimating the spillway discharge.

B. @ Toe of Dam - Discharge from the reservoir (via the fishway, the principal spillway or the reservoir drain - the emergency spillway discharges at a remote point (east of the dam) converges at a culvert about 50 feet from the toe of dam. This structure acts to pond water 41 3/4' to toe of the dam due to its limited hydraulic capacity.

Estimate the tailwater El. @ toe of Dam:

Stage-Discharge Relationship

<table>
<thead>
<tr>
<th>Water Elevation (NGL)</th>
<th>Culvert Capacity</th>
<th>Weir Capacity</th>
<th>Total Capacity (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>660</td>
<td>2840</td>
<td>3500</td>
</tr>
</tbody>
</table>

Tailwater on toe of Dam @ Routed Test Flood Outflow (3500 cfs) is at approximately El. 50.0. This is just about the top of rip rap on the toe of the dam and about a foot lower than the top of the lowest point on the crushed stone berm.
DAM FAILURE ANALYSIS

Project Discharge prior to dam failure = Flouted Test Flood Outflow
\[Q = 3,500 \text{ cfs @ stage } 67.7 \text{ (MWD)} \]

Such a discharge would affect one house @ Doane Street by about
1685 ft of water (Doane St is located = 1000 ft N.) Doane Street would
be overlapped by about 1.5 feet. Downstream of Doane St.
the existing swamps would attenuate the peak but would
surcharge to about roadway level. No additional houses
would be affected, except for the old Cohasset Water Treatment
which would be flooded by about one foot of water. This facility is
no longer used and has been replaced by a new facility near-
ly pond which would not be flooded.

\[W_b = \text{Max. of 40} \% \text{of the dam's mid-} \]
\[\text{height length} \]
\[Q = \frac{g}{2} (y_0)^{1.5} (220)^{1.5}, \text{where:} \]
\[y_0 = \text{Height of Failure Section} \]
\[= 67.7 - 11.0 \]
\[= 26.7 \text{ ft} \]

\[Q = \frac{g}{2} (220)^{1.5} \]
\[= 51,000 \text{ cfs} \]

Total Outflow = 51,000 + 3,500 = 54,500 cfs

The results of the dam failure are as follows:

REACH 1 — Aaron River Dam to Doane Street, located about 1000 ft
downstream.

\[\text{Approx. Sect. Geometry} \]

Stage-Discharge Relationship:

<table>
<thead>
<tr>
<th>Water Depth over Roadway (ft)</th>
<th>Culvert Capacity @ C = 0.7 (cfs)</th>
<th>Roadway Capacity (cfs)</th>
<th>Total Capacity (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>900</td>
<td>23,800</td>
<td>24,700</td>
</tr>
<tr>
<td>15</td>
<td>1050</td>
<td>58,600</td>
<td>59,650</td>
</tr>
</tbody>
</table>

At an outflow of 54,500 cfs the roadway would be
overtopped by about 17 feet. About 25 houses would
be affected by varying depths up to 10 feet. About
15 of these were 3.5 of the upstream side of the
road and would be most severely affected.
REACH 2 - Doane Street to Beechwood Street located about 5500-ft downstream of the dam.

The Town of Cohasset installed a fish ladder and a gated structure to regulate low flows. The gates are operated to allow discharges from the reservoir to be diverted to Lily Pond, which serves as a water supply to the town. A minimum flow is maintained through the fish ladder. This control structure only regulates low flows; the twin storm culvert under Beechwood Street controls the hydraulics at significant outflows.

Given the significant storage upstream of Beechwood Street, assume that the routed test flood outflow will surcharge the swamp to about roadway elevation.

X-Section Geometry

Stage-Discharge-Surcharge Storage Relationship:

<table>
<thead>
<tr>
<th>WSE@</th>
<th>Culvert Flow</th>
<th>Flow over Roadway</th>
<th>Total Flow</th>
<th>Surcharge Storage @ 0.60 ft above roadway</th>
<th>Existing Storage @ 0.60 ft above roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>790</td>
<td>-</td>
<td>790</td>
<td>2560</td>
<td>2560</td>
</tr>
<tr>
<td>55</td>
<td>1020</td>
<td>6,000</td>
<td>7,020</td>
<td>5120</td>
<td>5120</td>
</tr>
<tr>
<td>60</td>
<td>1210</td>
<td>25,300</td>
<td>26,510</td>
<td>8392</td>
<td>8392</td>
</tr>
<tr>
<td>65</td>
<td>1370</td>
<td>63,700</td>
<td>63,700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The reservoir storage at the routed test flood outflow stage of 69.7 is about 1900 ac-ft. The available surcharge storage in the swamp between Doane Street and Beechwood Street for exceeds the Aaron River reservoir storage at the time of failure. Therefore, the dam failure outflow would attain a maximum stage in the swamp with a significantly reduced outflow at Beechwood St. The stage in the swamp would rise about 9.5 feet to accommodate the storage outflow from the reservoir at the time of failure. This indicates an outflow of about 5,150 cfs @ Beechwood Street — say the outflow is 5,000 cfs. This is very conservative since some of the reservoir storage would have discharged past Beechwood Street by the time the dam releases its storage. The WSE@ the roadway would be 53.5 ft 0.6 ft above.

About twenty to twenty-five (20-25) hours would be affected in Reach 2. About half of these, which are located around the...
Drove Street area would be affected by 5 to 7 feet of water. The other homes located further downstream would be affected by about 3 feet of water or less. The old Cohasset Water Treatment Plant would be flooded by 4 feet of water, and the new one by about 0.5 to 2.0 feet of water.

REACH 3 - Beechwood Street to State Route 3A, located about 5000 ft DS of Beechwood St.

Approx. Section Geometry:

Stage-Discharge Relationship:

<table>
<thead>
<tr>
<th>Water Depth</th>
<th>Culvert Capacity</th>
<th>Weir Capacity</th>
<th>Total Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ft)</td>
<td>C = 0.7</td>
<td>C = 2.8</td>
<td>(cfs)</td>
</tr>
<tr>
<td>0</td>
<td>1115</td>
<td></td>
<td>1115</td>
</tr>
<tr>
<td>1</td>
<td>1190</td>
<td>2575</td>
<td>3765</td>
</tr>
<tr>
<td>1.5</td>
<td>1230</td>
<td>5090</td>
<td>6290</td>
</tr>
</tbody>
</table>

A discharge of 5000 cfs the roadway would be overtopped by 1 to 3.5 feet, given no attenuation of the peak outflow from Beechwood Street. However, this reach as well as the areas downstream of Rt 3A down to the Cohasset Harbor, where the brook discharges are very flat and would attenuate the dam failure peak outflow.

There would be five houses affected in this reach by 2 to 1.5 feet of water. Downstream of Rt 3A the hydraulic characteristics of the area are similar to those at Route 3A. One would expect the three roadways downstream to be slightly overtopped and about 0.5 houses to be affected by a foot or less of water.

The impact of a failure of the Aaron River Dam would result in a HIGH hazard, especially to those people and structures between the Old Dam and the Doane Street area. The houses downstream of the Doane Street area would not be as severely impacted.
APPENDIX E

INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS
END

FILMED

8-85

DTIC