A NEW DRAWING TECHNIQUE FOR NYLON 6 BY REVERSIBLE PLASTICIZATION WITH IOD. (U) MASSACHUSETTS UNIV AMHERST DEPT OF POLYMER SCIENCE AND ENGINE. H H CHUAH ET AL.

UNCLASSIFIED 25 MAR 85 TR-25 N00014-83-K-0228 F/G 11/5 NL
A New Drawing Technique For Nylon 6 By
Reversible Plasticization With Iodine
by
Hoe Hin Chuah and Roger S. Porter
Submitted for Publication
in the British journal, POLYMER

Materials Research Laboratory
Polymer Science and Engineering Department
University of Massachusetts
Amherst, Massachusetts 01003

March 25, 1985

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is limited
A new drawing technique for Nylon 6 by reversible plasticization with iodine has been developed using iodine as a reversible plasticizer. This is based on the ability of the α-crystals to fully transform to γ-crystals by treatment with an aqueous KI₃ solution. Drawing is performed on the intermediate Nylon 6-1 complex and iodine is subsequently removed with sodium thiosulfate to generate back a transparent, drawn Nylon 6. At 55°C, a 790% elongation has been obtained, considerably higher than previously reported for Nylon 6. A dynamic mechanical study of the undrawn complex showed an α-transition at 41–53°C. Above this temperature, it is rubbery and thus readily drawn.
ABSTRACT

A new technique to draw Nylon 6 is developed by using iodine as a reversible plasticizer. This is based on the ability of the α-crystals to fully transform to γ-crystals by treatment with an aqueous KI₃ solution. Drawing is performed on the intermediate Nylon 6-I complex and iodine is subsequently removed with sodium thiosulfate to generate back a transparent, drawn Nylon 6. At 55°C, a 790% elongation has been obtained, considerably higher than previously reported for Nylon 6. A dynamic mechanical study of undrawn complex showed an α-transition at 41-53°C. Above this temperature, it is rubbery and can be easily stretched. Wide-angle x-ray diffraction scans show the complete disappearance of Nylon 6 crystalline peaks indicating a fully amorphous structure. Drawing of the complex produced new diffraction peaks, implying a strain-induced crystallization to a new crystal structure. This new structure is shown to be monoclinic with the a-axis expanded to 17.2Å to accommodate iodine intercalating between the Nylon 6 chains.
INTRODUCTION

Of the important commercial thermoplastics, Nylon 6 is among the most difficult to draw to high ratio and tensile modulus. Generally, drawing processes result in a maximum draw of about 5, comparing this to polyethylene which can be drawn 250X leading to a remarkable reported tensile modulus of 222 GPa1. The highest reported modulus of drawn Nylon 6 is 14 GPa2, only a small fraction of its calculated theoretical modulus of 262 GPa3. Nylon 6, however, has a high melting point of 225°C; a high modulus Nylon 6 would therefore potentially have a much wider temperature range application than a high modulus polyethylene would. An advancement in ultra-drawing Nylon 6 thus represents a challenge.

The inability to ultra-draw Nylon 6 is largely due to the presence of intermolecular hydrogen bonding between adjacent amide groups4. Hydrogen bonding exists in both crystalline and amorphous regions and has an activation energy of ~8 kcal/mole. They act as quasi-crosslinks, inhibiting the sliding of chains along the hydrogen bond plane during drawing. Drawing thus occurs mainly in the softer amorphous phase. With strain-induced crystallization, drawing is further restricted.

As a result, special processes have been developed to improve the ductility of Nylon 6. One of these is a reversible plasticization concept that involves imbibing Nylon 6 with liquid ammonia5 which is subsequently removed after solid-state coextrusion. The plasticizer, therefore, does not have any deleterious effect on the final properties of the drawn polymer. However, plasticization
with liquid ammonia occurs only in the amorphous phase6, with crystals still inaccessible to drawing. In this work, we pursue the reversible plasticization concept using iodine as a plasticizer for entry in both amorphous and crystalline phases.

Nylon 6 is polymorphic and exists in several crystal forms, the most important of these are the α- and γ-crystals. Both have monoclinic unit cell structure with difference in the direction of hydrogen bonding between adjacent chains. The α-crystal has hydrogen bonds between antiparallel chains whereas the γ-crystal has bonds between parallel chains. It has been reported that a transformation of the α- to γ-crystals can be achieved by treatment with an iodine and potassium iodide solution followed by iodine removal by titration with sodium thiosulfate7. The crystal transformation is complete in both undrawn and drawn Nylon 6, and without a loss of orientation8! This crystal transformation implies that the hydrogen bonds in both the amorphous and crystalline phases in the intermediate iodine complex must be disrupted to allow chain rotation and a mobility to generate the γ-crystals. With this as a basis, we developed a method for drawing the Nylon 6-iodine complex. The iodine acts as a reversible plasticizer and is removed after drawing by titration with sodium thiosulfate solution to generate back Nylon 6 of controlled crystal forms.
EXPERIMENTAL

Nylon 6 film ([\eta] = 1.04 in 85% formic acid) was used as obtained from Dr. T. Kunigi of the University of Yamamashi, Japan. The film was 130\(\mu\) thick: It is isotropic with no measurable birefringence and of \(\gamma\)-crystal form. Annealing of this film at 200\(^\circ\)C for 3 hrs. converts the \(\gamma\)-crystal to \(\alpha\)-crystal. It was found that both the \(\alpha\)- and \(\gamma\)-Nylon 6 readily absorbed iodine and the complexes of both showed similar drawing behavior. The unannealed \(\gamma\)-Nylon 6 was used for study.

The complex was prepared by immersing the Nylon 6 film in 1N \(\text{KCl}_3\) solution for 48 hours at room temperature. It was then air dried. Stress-strain measurements were made with an Instron tensile tester, equipped with environmental chamber, at strain rate 0.01 \(\text{min}^{-1}\). Dynamic mechanical measurements were made using a Toyo Dynamic Viscoelastometer Model DDV-II.

Wide-angle x-ray scan of the complex was obtained with a Siemen D-500 diffractometer equipped with scintillation counter, operating at 30 mA, 40 kV and using a Cu \(K\alpha\) radiation with Ni filter. Scanning was made on undrawn complex and at increasing elongation with a stretcher attachment in the diffractometer at room temperature.

Photographic techniques using a Statton flat film with 5 cm sample-to-film distance and a Weissenberg camera of 57.3 mm diameter were used to supplement the diffractometer data.
RESULTS AND DISCUSSION

Although the transformation of α-crystal of Nylon 6 to the γ-form by treatment with aqueous KI₃ solution has been reported as early as 1958⁹, previous studies emphasized the determination of the γ-crystal structure¹⁰-¹² and on the mechanism in which it is generated. We review here the mechanism that has been proposed since this new drawing technique is based on the chain mobility of the complex outlined in the mechanisms.

Frayer, Koenig and Lando¹³ noted from the structural arrangement of the α- and γ-Nylon 6 chains, suggested if the tight amide folds at the lamellar surface act as pivots and with alternating chains in the α-form rotated 180°, the methylene groups will then match properly and with the amide groups twisted in proper direction to form hydrogen bonding between parallel chains, a γ-structure will be obtained. Such a proposal involved large scale movement of the chains and the breaking and remaking of hydrogen bondings, however, it did not consider the role of iodine in the transformation.

Arimoto¹² proposed a mechanism involving iodine entering the crystalline region and coordinating with the oxygen of the amide group to form a complex. Such coordination destroys hydrogen bonds and the amide group is preferentially twisted out-of-plane with respect to the fiber axis. On removing iodine, hydrogen bonds form between the nearest amide groups in parallel chains giving a pleated sheet α-structure.

An alternate mechanism involving I₃⁻ ion was proposed by Matsubara and Magill¹⁴ from infrared study of the complex. Their study also used
N-methylacetamide-iodine complex as a model and led to the same conclusion as Doslocilova and Schneider15 that the triiodide ion is coordinated to the nitrogen of the amide group with protonation of K^+ or H^+ ions at the oxygen atom.

The above mechanisms were further reviewed by Abu-Isa16 who found that when a thin Nylon 6 film is exposed to iodine vapor alone, the infrared spectrum obtained is similar to that of the complex obtained from KI$_3$ solution treatment, except in the degree of severity. Complex formation with iodine vapor alone, though, is possible but proceeds very slowly. This finding suggests that molecular iodine is capable of complex formation. We are not aware of further studies to substantiate whether molecular iodine or I$_3^-$ ion is involved in the complex formation with Nylon 6.

Arimoto17 also found that when non-polar solvent KI$_3$ solution is used, the amount of absorbed iodine was very much smaller than those in polar solvents at the same iodine concentration. Matsubara and Magill14, however, found that the IR spectra was unaffected. It is well known that when iodine dissolves in a polar solvent, it complexes with the solvent to give a brown solution of I$_3^-$ ions in equilibrium with I$_2$, whereas it dissolves in non-polar solvent to give purple solution of molecular iodine18. From these studies of solvent effect, the ability of Nylon 6 to absorb strongly and to produce significant change in the IR spectra only in a polar solvent indicates, though not conclusively, that I$_3^-$ ion is largely responsible for the complex formation.

Even though none of the above mechanisms are satisfactorily confirmed, it is certain that hydrogen bonds in both crystalline and amorphous regions are
interrupted and there is considerable chain mobility in the Nylon 6-I complex during the transformation. Using this idea, a new reversible plasticization method on drawing Nylon 6, with the possible unravelling of chains from previously unaccessible crystalline regions may be developed to give high draw ratio. Iodine can then be subsequently removed by reacting with sodium thiosulfate solution. The temperature and solvent used in the reaction determine the type of crystal, α- or γ-formed finally. Using water/ethylene glycol mixture at below 35°C, γ-crystal is obtained. Above 50°C, α-crystals are formed, whereas between 35-50°C, a mixture of both crystals is reported. The reaction condition can thus be used to control the type of crystals desired in the drawn Nylon 6.

Drawing and Mechanical Properties

The wet complex film immediately after treatment in an aqueous KI₃ solution is swollen and soft. It can be easily stretched by hand and shows necking. A stress-strain curve of such film tested with an Instron tensile tester at room temperature is shown in Figure 1. It has a very low yield stress of 5 MPa and necks at 20% elongation. It strain hardens on further stretching and breaks at 550% elongation with a strength of 16 MPa. It is remarkable to note that complexing with iodine changes drastically the drawing behavior of Nylon 6. A stretched, wet film, on releasing the load, will retract slightly from elastic recovery and contraction from deswelling on solvent evaporation.

A dried complex film is however very much stiffer. To help determine the temperature range for effective drawing, dynamic mechanical properties were
measured with a Rheovibron at three different frequencies of 11, 35 and 110 Hz. Plots of dynamic mechanical loss tan δ results are shown in Figure 2. The curves at 35 and 110 Hz are displaced vertically for visualization. Two loss peaks are found for the complex. A small peak occurs at -40°C, its maxima does not shift appreciably with change of frequency. The second loss peak is of much higher magnitude, with maximum tan δ of 0.2. The maxima occurs at 41°C at 11 Hz, increasing to 53°C at 110 Hz. Up to 60°C, the results are reversible. However, above 80°C, the complex shows irreversible viscous flow.

In an untreated γ-Nylon 6, dynamic mechanical study gives three relaxation peaks. The highest ν-relaxation is the glass transition, Tg, which is 80-90°C. Tg of Nylon 6 is strongly influenced by water content which can be drastically reduced. β-relaxation occurs at -40°C and is associated with the presence of water. Its magnitude decreases when water content in Nylon 6 is reduced. The γ-relaxation of crankshaft motion of the methylene chains in the amorphous phase at -120°C is, however, not observed for the complex. Thus, comparing the dynamic mechanical properties of the complex with that of γ-Nylon 6, we identify the relaxation temperature at 41°C of the complex as the ν-relaxation which has been depressed by the plasticizing effect of iodine and the presence of some water as is evidenced from the appearance of a small ι-relaxation peak. The u-relaxation of the complex is also detected in a Differential Scanning Calorimeter (DSC), which shows prominent second order transition at a lower temperature of 32.5°C.

From the maxima of tan δ curves, log f (frequency) is plotted against the reciprocal relaxation temperature, 1/T, (Figure 3) to give the Arrhenius
activation energy ΔH_a of 17 kcal/mole. Kunugi20 reported from the stress relaxation of oriented Nylon 6, the Arrhenius plots of shift factor were represented by two straight lines having a break point at 80-110°C, corresponding to the temperature of the breakdown of hydrogen bonds in the amorphous region. ΔH_a above this temperature range was 17 and 33 kcal/mole for Nylon 6 drawn 3 and 4 fold respectively. A value of 34 kcal/mole was also reported by Hoashi and Andrews19. The measured ΔH_a for the complex is low compared to the reported values. This low ΔH_a implies greater molecular chain mobility. By analogy, this must be resulting from the plasticizing effect of iodine with the interruption of intermolecular hydrogen bondings.

Figure 4 shows the stress-strain curves of Nylon 6 and its iodine complex at temperatures below and above the α-relaxation. The solid lines are Nylon 6 which shows high yield stress of 55 MPa and breaks at 180% elongation at room temperature. Increasing the draw temperature to 55°C lowered the yield stress but did not increase the elongation at break appreciably. At room temperature, the yield stress of the complex is comparatively low, 24 MPa, and decreases with increasing temperature. At 55°C, the complex shows rubbery behavior and elongates to 790% before breaking. This is a much higher draw than possible for an untreated Nylon 6. Drawing behavior at 55°C is very similar to drawing of the wet complex at room temperature (Figure 1) except in the higher elongation of break. Thus the presence of water provides an additional plasticizing effect. Above 80°C, the complex exhibits viscous flow; drawing does not produce significant orientation.
Table 1 lists the modulus, % crystallinity from DSC and crystal orientation function, f_C obtained from complex drawn and washed under fixed length with sodium thiosulfate solution at room temperature. Removal of iodine under this condition gives γ-crystal form. The orientation function was obtained from the azimuthal scan of the (020) reflection in a wide-angle x-ray diffractometer. Orientation produced is high with $f_C > 0.978$. For a perfect orientation, $f_C = 1$. For drawing at room temperature, draw ratio and modulus obtained are comparable to reported values from drawing at elevated temperature. Drawing at 55°C gives higher draw of 7.5X with relatively high modulus of 6.0 GPa. % crystallinity in all cases increases by 15-27% from the 27% crystallinity of initial untreated Nylon 6.

X-Ray Diffraction Studies

Wide-angle x-ray diffractometer scan of the undrawn complex is shown in Figure 5. A single weak, broad new peak at $2\theta = 5.3$ (d-spacing = 16.7Å) is obtained. This new peak is observed for complex regardless of the starting Nylon 6 being α- or γ-form. In α-Nylon 6, strong (200) and (002 + 202) diffraction occurs at $2\theta = 20.2^\circ$ and 24.0° respectively, and γ-Nylon 6 has (200) and (002) diffractions at $2\theta = 21.8^\circ$ and 22.7° respectively. All these crystalline peaks are absent in the complex and is proof for the disruption of crystallinity and implying that iodine or I_3^- ion goes into both amorphous and crystalline phases, likely due to the ability to complex with the amide groups as a driving force.
On drawing the complex, weak diffraction peaks appear at $2\theta = 11.43^\circ$ and 22.93°. Neither of these two new peaks are related to the crystalline peaks of the parent Nylon 6. Their intensities increase with drawing, becoming very strong at draw ratio 4. The low angle peak at $2\theta = 5.3^\circ$ also shifts slightly to higher angle of 5.6°. The appearance of these new diffraction peaks is unique for the Nylon 6-I complex, whether initially an α- or γ-Nylon 6 is used. Thus the complex has a unique structure of its own. From the d-spacings, the 22.93° peak is a second order diffraction of the 11.43° peak. This diffraction has also been observed for both iodine-doped cis- or trans-polyacetylene and is characteristic of iodination. The spacing is reasonably close to the sum of the spacings of the most intense diffractions in the precursor polyacetylene and the van der Waals diameter of iodine, and was suggested to be the interplanar spacing between iodine layers separated by a close-packed plane of polyacetylene. However, we observe more diffractions for the drawn Nylon 6-I complex to index differently.

The appearance of the low angle peak in the undrawn complex at $2\theta = 5.3^\circ$ is significant. It has a d-spacing of 16.7Å and provides intermolecular chain information without going into more detailed radial distribution function. Taking the van der Waal radii of the methylene groups in the Nylon 6 chain as 2.0Å and iodine or ionic radius of I$_3^-$ as 2.15Å, the packing of iodine between Nylon 6 chains give a dimension of 8.4Å. If this is repeated at the adjacent chain, the total dimension would be 16.6Å, close to the observed d-spacing. An alternating arrangement of iodine and Nylon 6 chains can be surmised.
Intercalation of iodine between chains would most likely have occurred between the hydrogen bond planes. For α-Nylon 6, this is the (001) plane with c-axis 8.01Å, for γ-Nylon 6, this plane is (100) and a-axis is 9.33Å. When iodine or I$_3^-$ ions are intercalated between the hydrogen bond planes, c-axis of α-Nylon 6 will expand to 16.61Å and a-axis of γ-Nylon 6 will expand to 17.93Å. The first dimension is close to the observed d-spacing while the latter is greater by 1.23Å. The γ-Nylon 6 has a less close-packed structure with packing density of 0.707 compared to 0.75 for the α-crystal23. Since we observe the same d-spacings for both their complexes and therefore possibly same complex structure, the complexing of iodine or I$_3^-$ ion with the γ-Nylon 6 amide groups could cause closer packing and slight reduction in the van der Waal radii, and therefore a smaller dimension for the expanded a-axis as would be expected from simple addition. Therefore intercalation between the hydrogen bond planes is very likely in the complex formation. Since there is only one weak reflection indicating lateral packing of iodine alternation between Nylon 6 chains, the undrawn complex has a mesomorphic structure.

Figure 6 shows the rotation photograph of a complex drawn 4X. Three layer lines are found with a fiber identity period of 8.33Å. This is about half of the repeat distance in the unit cell chain axis and therefore equivalent to one monomer unit. Using standard bond angles and distances, a fully extended planar zig-zag Nylon 6 monomer unit is 8.7Å. Rotation of the amide group about C'-C φ bond in -C'-C'-NH- out-of-plane by 69° gives this observed identity period. This rotation is 2° more than that reported for α-Nylon 610. The observed
reflection can be indexed with a monoclinic unit cell with \(a = 17.2\,\text{Å}, b = 8.33\,\text{Å}, c = 8.52\,\text{Å}\) and \(\beta = 115^\circ\) (Table 2). The \(a\)-axis of the original \(\gamma\)-Nylon 6 expands to accommodate the intercalation of iodine or \(I_3^-\) ion. Because of complexing between amide groups with iodine or \(I_3^-\), the amide group is twisted out-of-plane, shortening the chain axis and changing the interaxial angle. Figure 7 shows a space filling model of one quarter of the unit cell viewed in the \(a\)-\(c\) plane. When the setting angle of the Nylon 6 chain is \(5^\circ\), iodine with van der Waal radius of \(2.15\,\text{Å}\) can be accommodated easily between the chains.

The undrawn complex shows lateral order with mesomorphic structure. Only on drawing, the complexed chains are forced to align giving a more well defined structure with definite fiber identity period. Iodine, being a heavy atom, is a very strong scatterer and dominates the observed intensities. Higher order diffractions are observed indicating a high degree of regularity in the intercalated iodine. Here we do not observe the \(3\,\text{Å}\) periodicity of polyiodide as reported for poly(vinyl alcohol)-iodine complex\(^2\) and iodine-doped polyacetylene\(^2\). The intercalated structure proposed here can be found in many complexes. An example is the detailed structural study of benzamide-iodine complex\(^2\) which has \(I_3^-\) ion inserted between the benzamide dimers. The present proposed structure, though without in-depth study such as exploiting the possibility of the heavy iodine atom to do Patterson mapping, does depict the structure developed during strain-induced crystallization of the complex.
Application to Other Nylons

The reversible plasticization technique proposed here can also be potentially applied to other Nylons. Arimoto, Matsubara and Magill had extensively studied complex formation of several series of Nylons. They found that crystal transformation occurs only for even-odd, odd-even and some \(\omega \)-amino acid type of Nylons. These Nylons thus have potential application of the reversible plasticization drawing technique. Even though crystal transformation may not have occurred as long as iodine or \(I_3^- \) are capable of complexing with the amide groups, interrupting hydrogen bonding, this technique may then be applicable.

Other possible reversible plasticizers can also be explored such as phenol which has been reported capable of transforming the \(\gamma \)- to the \(\alpha \)-form Nylon 6. A study of the variation within other Nylons is a subject of our future study.

CONCLUSIONS

A new drawing technique for Nylon 6 by reversible plasticization with iodine is proposed. A 130\(\mu \) thick Nylon 6 film was immersed in a 1N aqueous KI3 solution for 48 hours. The complexed film was then drawn at temperatures between 23°C and 55°C, corresponding to temperatures below and above the \(\alpha \)-relaxation temperature as determined from Rheovibron. At 55°C, the complexed film showed rubbery behavior with low yield stress and high elongation at break of 790\%, therefore, a much higher draw possible for Nylon 6. The drawn film was washed with sodium thiosulfate solution at room temperature to remove the absorbed iodine, giving a highly oriented \(\gamma \)-Nylon 6 with \(f_C > 0.978 \). Wide-
angle x-ray showed crystallinity of original Nylon 6 was destroyed with the development of new diffraction peaks, an evidence of plasticization of both the amorphous and crystalline phases. The complex showed strain-induced crystallization giving new diffraction peaks corresponding to a monoclinic structure. The a-axis expanded to 17.2A, a dimension big enough for iodine to intercalate between Nylon 6 chains.

ACKNOWLEDGEMENTS

We wish to express appreciation to the Office of Naval Research for the support of this research.
REFERENCES

TABLE 1

Properties of Drawn γ-Nylon 6 from Drawing of Nylon 6-I Complex after Iodine Removal with Sodium Thiosulfate Solution at Room Temperature

<table>
<thead>
<tr>
<th>Draw Temperature</th>
<th>Draw Ratio</th>
<th>Modulus (GPa)</th>
<th>% Crystallinity</th>
<th>f_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>23°C</td>
<td>3.5</td>
<td>3.4</td>
<td>42.2</td>
<td>-</td>
</tr>
<tr>
<td>23°C</td>
<td>4.0</td>
<td>3.9</td>
<td>44.9</td>
<td>0.978</td>
</tr>
<tr>
<td>23°C</td>
<td>4.5</td>
<td>4.1</td>
<td>43.3</td>
<td>0.984</td>
</tr>
<tr>
<td>23°C</td>
<td>5.3</td>
<td>4.5</td>
<td>44.3</td>
<td>0.987</td>
</tr>
<tr>
<td>55°C</td>
<td>7.5</td>
<td>6.0</td>
<td>53.9</td>
<td>0.985</td>
</tr>
</tbody>
</table>
TABLE 2
Comparison of Observed and Calculated d-Spacings for a Nylon 6-I Complex Drawn 4X

<table>
<thead>
<tr>
<th>(hkl)</th>
<th>d-Spacing (Å)</th>
<th>Intensity*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Calculated</td>
</tr>
<tr>
<td>100</td>
<td>15.56</td>
<td>15.57</td>
</tr>
<tr>
<td>300</td>
<td>5.20</td>
<td>5.20</td>
</tr>
<tr>
<td>001</td>
<td>7.73</td>
<td>7.73</td>
</tr>
<tr>
<td>002</td>
<td>3.88</td>
<td>3.87</td>
</tr>
<tr>
<td>003</td>
<td>2.58</td>
<td>2.58</td>
</tr>
<tr>
<td>004</td>
<td>1.94</td>
<td>1.93</td>
</tr>
<tr>
<td>011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>7.43</td>
<td>7.35</td>
</tr>
<tr>
<td>210</td>
<td>5.69</td>
<td>5.69</td>
</tr>
<tr>
<td>021</td>
<td>3.66</td>
<td>3.66</td>
</tr>
</tbody>
</table>

*s = strong, m = medium, w = weak, vw = very weak
FIGURE CAPTIONS

FIGURE 1: Stress-Strain Curve of a Wet Nylon 6-I Complex Film, Tested Immediately After Immersing in 1M Aqueous KI$_3$ Solution for 48 hours.

FIGURE 2: Loss Factor tan δ for Undrawn Nylon 6-I Complex at Frequencies 11, 35 and 110 Hz.

FIGURE 3: Arrhenius Plot of Log f (frequency) vs. 1/T for Undrawn Nylon 6-I Complex.

FIGURE 4: Stress-Strain Curves for γ-Nylon (solid lines) and Nylon 6-I Complex (broken lines) at Temperatures Below and Above the α-Relaxation of the Complex.

FIGURE 5: Wide-Angle X-Ray Diffractometer Scan of an Undrawn Nylon 6-I Complex and at Increasing Draw Ratio.

FIGURE 6: Rotation Photograph of a Nylon 6-I Complex Drawn 4X.

FIGURE 7: Space Filling Model of One Quarter of the Proposed Structure in a-c Plane, Showing Iodine Intercalated Between Nylon 6 Chains.
END

FILMED

8-85

DTIC