Sprague Upper Reservoir Dam
R1 03105
June 1979

Document Identification

Date Accessioned

Date Received in DTIC

Date Returned

Registered or Certified No.

Photograph this Sheet and Return to DTIC-DDAC
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Cover Program

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

Key Words

DAMS, INSPECTION, DAM SAFETY,

Providence River Basin
Smithfield, Rhode Island
The da

Abstract

The dam is a 25 ft. high and 252 ft. long stone wall dam with uncemented joints constructed across a steep-sided valley reach on an unnamed brook. The dam is intermediate in size with a high hazard potential. The spillway is inadequate to jardle the test flood and the dam would be overtopped by about 1.4 ft.
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated “Probable Maximum Flood” for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

Section Page

Letter of Transmittal i
Brief Assessment ii
Review Board Page vi
Preface iii
Table of Contents iv
Overview Photos v
Location Map vi

1. PROJECT INFORMATION 1

1.1 General 1
 a. Authority 1
 b. Purpose of Inspection 1

1.2 Description of Project 1
 a. Location 1
 b. Description of Dam and Appurtenances 1
 c. Size Classification 2
 d. Hazard Classification 2
 e. Ownership 3
 f. Operator 3
 g. Purpose of Dam 3
 h. Design and Construction History 3
 i. Normal Operational Procedure 3

1.3 Pertinent Data 3

2. ENGINEERING DATA 7

2.1 Design Data 7
2.2 Construction Data 7
2.3 Operation Data 7
2.4 Evaluation of Data 7
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. VISUAL INSPECTION</td>
<td></td>
</tr>
<tr>
<td>3.1 Findings</td>
<td>8</td>
</tr>
<tr>
<td>a. General</td>
<td>8</td>
</tr>
<tr>
<td>b. Dam</td>
<td>8</td>
</tr>
<tr>
<td>c. Appurtenant Structures</td>
<td>8</td>
</tr>
<tr>
<td>d. Reservoir Area</td>
<td>9</td>
</tr>
<tr>
<td>e. Downstream Channel</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Evaluation</td>
<td>9</td>
</tr>
<tr>
<td>4. OPERATIONAL PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.1 Procedures</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Maintenance of Dam</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Maintenance of Operating Facilities</td>
<td>11</td>
</tr>
<tr>
<td>4.4 Description of any Warning System in Effect</td>
<td>11</td>
</tr>
<tr>
<td>4.5 Evaluation</td>
<td>11</td>
</tr>
<tr>
<td>5. HYDRAULIC/HYDROLOGIC</td>
<td></td>
</tr>
<tr>
<td>5.1 Evaluation of Features</td>
<td>12</td>
</tr>
<tr>
<td>a. General</td>
<td>12</td>
</tr>
<tr>
<td>b. Design Data</td>
<td>12</td>
</tr>
<tr>
<td>c. Experience Data</td>
<td>12</td>
</tr>
<tr>
<td>d. Visual Observations</td>
<td>12</td>
</tr>
<tr>
<td>e. Test Flood Analysis</td>
<td>12</td>
</tr>
<tr>
<td>f. Dam Failure Analysis</td>
<td>13</td>
</tr>
<tr>
<td>6. STRUCTURAL STABILITY</td>
<td></td>
</tr>
<tr>
<td>6.1 Evaluation of Structural Stability</td>
<td>15</td>
</tr>
<tr>
<td>a. Visual Observations</td>
<td>15</td>
</tr>
<tr>
<td>b. Design and Construction Data</td>
<td>15</td>
</tr>
<tr>
<td>c. Operating Records</td>
<td>15</td>
</tr>
<tr>
<td>d. Post-ConSTRUCTION Changes</td>
<td>15</td>
</tr>
<tr>
<td>e. Seismic Stability</td>
<td>15</td>
</tr>
</tbody>
</table>
7. ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Condition</td>
<td>16</td>
</tr>
<tr>
<td>b. Adequacy of Information</td>
<td>16</td>
</tr>
<tr>
<td>c. Urgency</td>
<td>16</td>
</tr>
<tr>
<td>d. Need for Additional Investigation</td>
<td>16</td>
</tr>
</tbody>
</table>

7.2 Recommendations | 16

7.3 Remedial Measures | 17

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Operation and Maintenance Procedures</td>
<td>17</td>
</tr>
</tbody>
</table>

7.4 Alternatives | 17

APPENDICES

- **APPENDIX A** - INSPECTION CHECKLIST
- **APPENDIX B** - ENGINEERING DATA
- **APPENDIX C** - PHOTOGRAPHS
- **APPENDIX D** - HYDROLOGIC AND HYDRAULIC COMPUTATIONS
- **APPENDIX E** - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS
Overview from left abutment showing crest of dam

Overview from left abutment showing upstream slope of dam and catchment
PHASE I INSPECTION REPORT
SPRAGUE UPPER RESERVOIR DAM RI 03105

Section 1 - PROJECT INFORMATION

1.1 General

a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Louis Berger & Associates, Inc., has been retained by the New England Division to inspect and report on selected dams in the State of Rhode Island. Authorization and notice to proceed was issued to Louis Berger & Associates, Inc., under a letter of 19 March 1979 from John P. Chandler, Colonel, Corps of Engineers. Contract No. BAC33-79-C-0051 has been assigned by the Corps of Engineers for this work.

b. Purpose.

(1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) Encourage and assist the States to initiate quickly effective dam safety programs for non-Federal dams.

(3) Update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location. Sprague Upper Reservoir Dam is located between the communities of Greenville and West Greenville in Smithfield, Providence County, Rhode Island. The dam is reached via State Highway 41, 3.2 miles west from I-295 in Greenville, north 0.8 miles on Mapleville Road and north 0.7 miles on Colwell Road. The dam is situated at the headwaters of an unnamed brook which flows from Sprague Upper Reservoir to Sprague Lower Reservoir. This unnamed brook then joins the Stillwater River, just west of Route 116. The Stillwater River is a tributary of the Woonasquatucket River which joins the Providence River about 12 miles downstream near the Providence Central Business District. The normal storage level of the reservoir is 121 S.G., while the convenience of the unnamed brook and the Stillwater River a mile downstream is at about 218 S.G.

b. Description of Dam and Appurtenances.

(1) Description of Dam. Sprague Upper Reservoir Dam is a 25 ft. high and 250 ft. long stone wall dam with uncoated joints constructed across a steep-sided valley reach on an unnamed brook. The top thickness of the stone
6.1 Evaluation of Structural Stability

a. Visual Observations. The field investigation revealed no significant displacements or distress that would warrant the preparation of stability computations based on assumed soil properties and engineering factors.

b. Design and Construction Data. No plans, specifications, or construction records of value to a stability assessment are known to exist.

c. Operating Records. There are no operating records of any significance to structural stability.

d. Post Construction Changes. There are several post construction changes made to the dam over the course of its history. The principal ones are as follows:

(1) A 16-inch outlet pipe was installed to a length of 14 feet inside the 2 ft. by 2.5 ft. stone box culvert.

(2) A concrete wall was built around the outlet pipe.

(3) A tile stack was added above the wood plank gate to the outlet pipe.

(4) A bentonitic clay fill was dumped on the upstream side of the gate.

(5) Openings in the concrete apron on the north side of the gatehouse were caulked and concreted.

e. Seismic Stability. The dam is located in seismic Zone No. 1 and in accordance with recommended Phase I Guidelines does not warrant seismic analysis.
the rise in the Reservoir's water surface level and this flooding would be of a marginal nature.

With an outflow of 8,500 cfs from Sprague Lower Reservoir, the roadway leading to the Reservoir will be inundated. Route 116, (Pleasant View Avenue) will be inundated by the outflow as the box culvert under the roadway will only pass a discharge of approximately 2200 cfs before overtopping. This control point will cause a water surface rise of about 11 ft. above that which would be expected in the stream just prior to failure of the dam and would create backwater stages in the Stillwater River up to a depth of about 13 ft. An average cross section and slope on Stillwater River was computed, showing a stage of about 8 ft. for a discharge of 8,500 cfs. This stage is about 7 ft. higher than that which would be experienced just prior to failure of the dam, and would affect two structures, (one commercial and one home) located downstream of Route 116 with moderate flooding. As previously mentioned, about 2000 ft. beyond Route 116 the flow would enter the relatively large Stillwater Reservoir.

In summary about 8 homes, 2 commercial establishments, and 2 roadways, one of which is a state highway (Route 116) are within the area of potential flooding. Mountaintdale Road near Stillwater Reservoir also might sustain damage as a result of a breach failure of Sprague Upper Reservoir. See Appendix D, Figure 4, Sheet D-18 which shows the area of potential flooding.
Discharge tables and curves for the spillway and for over the top of the dam are shown on Sheets D-7, D-8 and D-9 and Fig. 3 Sheet D-10, Appendix D.

Flood routings were performed for both 1/2 and full PMF. Results of these routings are shown on Sheets D-11, D-12, and D-13, and are summarized as follows:

<table>
<thead>
<tr>
<th>Flood Magnitude</th>
<th>Max. Head</th>
<th>Max. Disch.</th>
<th>Max. Over Dam</th>
<th>Max. Over Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 PMF</td>
<td>610</td>
<td>325.2</td>
<td>1.0</td>
<td>420</td>
</tr>
<tr>
<td>PMF (TEST FLOOD)</td>
<td>1,120</td>
<td>325.6</td>
<td>1.4</td>
<td>890</td>
</tr>
</tbody>
</table>

From the above table, it can be seen that the project will not pass the test flood without overtopping the dam by 1.4 ft. The project, however, can handle 11% of the PMF flood without overtopping the dam.

Drawdown of the reservoir is not possible through the 16 in. dia. pipe as it is inoperable.

f. Dam Failure Analysis. As discussed above, the dam would be overtopped by the PMF test flood. Also, a breach owing to structural failure of the dam by piping or sloughing is a possibility. For this analysis a breach was assumed with the water level at the top of dam. The "rule of thumb" criteria suggested in the NED March 1978 Guidance Report was used for the breach analysis. With a breach width of 40 percent of the dam length equal to 56 feet, an outflow of about 11,800 cfs would be realized. (See Sheets D-14 thru D-17, Appendix D)

In the reaches below the breach the outflow first passes through Sprague Lower Reservoir, then along an unnamed stream for about 1000 ft. where it then joins the Stillwater River just above its crossing with Pleasant View Avenue (Route 116). About 2000 ft. below this point Stillwater River empties into Stillwater Reservoir where the entire volume from the breach could be stored.

The dam at the outlet of Sprague Lower Reservoir has been breached and has not been reconstructed. A control section at this point was taken and a stage discharge curve for this section was computed. The analysis indicated that the water level in Sprague Lower Reservoir would rise about 11 ft., with an outflow of about 8,500 cfs. Whereas, the water level in Sprague Lower Reservoir is believed to be below the elevation shown on the USGS Quadrangle Sheet because of Sprague Lower Reservoir's breached dam, only about six residential structures surrounding Sprague Lower Reservoir would be effected by
SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. General. Sprague Upper Reservoir Dam is an uncedmented stone wall dam with an upstream earth fill impounding a normal storage of about 281 acre-ft. with provision for an additional 87 acre-ft. of capacity in its surcharge space to the top of the dam. It is basically a low surcharge - low spillage facility used for recreational purposes. The spillway is capable of discharging about 120 cfs with surcharge to the top of the dam. The general topographic characteristic of the 0.5 sq. mi. (314 acres) drainage basin is best described as rolling terrain. The drainage area measures about 1.1 miles long and 0.67 miles wide and rises from elevation 321.0 at the spillway crest to elevation 375 MSL. The area is generally forested.

b. Design Data. There is no design data available for this dam.

c. Experiences. No records are available in regard to past operation of the reservoir, nor of surcharge encroachments and spills through the spillway. The maximum past inflows are unknown.

d. Visual Observations. There are no present evidences either along the reservoir or in the downstream channel to indicate high water levels or signs of major spillway outflows. No one contacted could recollect any such occurrences.

e. Test Flood Analysis. Reservoir area and capacity curves and tables, for use in flood routings, are shown on Fig. 2, Sheet D-5 and Sheet D-6, Appendix D. For determining surface areas and surcharge capacities, planimetered areas were taken from contours delineated on USGS 2,000 ft. per in. quadrangle sheets.

The test flood chosen to evaluate the hydrologic and hydraulic capacity of Sprague Upper Reservoir Dam was selected in accordance with the criteria presented in the Recommended Guidelines for Safety Inspection of Dams. Since this dam is classified as small in size with a high hazard potential, a test flood of magnitude corresponding to 1/2 PMF to full PMF could be selected for the evaluation. Due to the extensive residential and commercial areas that could be affected, a test flood of a full PMF was selected.

Precipitation data were obtained from Hydrometeorological Report No. 33, which for the Rhode Island area approximates 24.0 in. of 6 hour point rainfall over a 10 square mile area. This value was then reduced by 20 percent to allow for basin size, shape and fit factors. The 6 hour rainfall was distributed into one hour incremental periods as suggested in COE Publication EC 1110-2-1411. A constant loss factor of 0.1 in. per hour was deducted from the precipitation values to give the excess rainfall used to prepare an inflow hydrograph.

A triangular incremental unitgraph was assumed for the inflow hydrographs, using a computed lag time value of 1.90 hours to derive a time-to-peak for the triangular hydrograph of 1.8 hours (see computations on Sheets D-2 and D-3 Appendix D). A PMF inflow hydrograph is shown on Fig. 1, Sheet D-4, Appendix D, indicating a peak inflow of about 1,490 cfs or a CSM of about 2,980.
SECTION 4 - OPERATIONAL PROCEDURES

4.1 Procedures

The Sprague Upper Reservoir facility is operated by personnel of the Greater Providence YMCA. There are no reservoir operations as the outlet gate is inoperable, nor are there documented operating procedures. The caretaker for the dam lives adjacent to Sprague Upper Reservoir and usually visits the dam daily in the summer and less frequently in the winter.

4.2 Maintenance of Dam

Little maintenance is required except for periodic cutting of brush and tree growth on the dam crest. No documented maintenance instructions have been prepared.

4.3 Maintenance of Operating Facilities

Except for the maintenance noted above, no specific maintenance program is in effect. It is presumed that some maintenance to the gate has been performed in the past to keep the mechanisms operative. However, this has not been done for some time as the outlet gate is now inoperative.

4.4 Description of any Warning System in Effect

No warning system is in effect at Sprague Upper Reservoir Dam.

4.5 Evaluation

Although little is known about the construction of the facility, it has simple operating devices and, as such, requires no detailed operating procedures. Maintenance involves periodic growth removal from the embankment and surveillance regarding seeps, slope damage, animal burrows, etc. The outlet operating gate requires checking and repairs should be made as necessary. A formal warning system should be developed.
works are judged to be in very poor condition, owing to the lack of operative dewatering facilities and the presence of a sinkhole on the crest of the dam immediately above the outlet culvert. Although this depression is reported to have been there for a long time, it appears to have become significantly larger recently. This, in conjunction with the large volume of seepage, indicates that the structural integrity of the dam may be threatened. There is also extensive tree and brush growth on the crest of the dam.
dam axis for about 120 ft. It then cascades down a natural rock face to the valley below and into the unnamed brook leading into the lower reservoir. (See Photo Nos. 5 & 6, Appendix C)

The outlet for this project is located at mid-span of the dam. According to the plans of the Rhode Island Department of Public Works, Division of Harbors and Rivers, the outlet culvert is a 2 ft. by 2.5 ft. stone box culvert leading from the gatehouse on the upstream face. However, the actual outlet observed was a 16 in. dia. cast iron pipe. This pipe was apparently inserted into the stone box culvert to a length of approximately 10 ft. to 14 ft. in 1940 or earlier. A concrete headwall was then built around this pipe which measures 18 ft. wide and varies from 3.5 ft. to 4 ft. high. The outlet channel just downstream of the outlet pipe runs through a natural valley in the rock. This bedrock appears to be a weathered gneiss.

The gatehouse at the crest of the dam is over a wet well. According to an inspection report dated January 16, 1957, the upper end of the outlet pipe is covered with a plank gate set in steel channels that act as gate guides. A pre-existing valve stem made of wooden timbers rotted away and in 1957 was removed and replaced with 2 inch galvanized pipe. There is an intake stack consisting of three 12-inch vitrified tile pipes with a large copper screen installed over the intake stack. The inlet level is approximately 9 feet below the top of the Dam. The plank gate is inoperable. (See Drawings, Appendix B and Photo Nos. 7 & 8, Appendix C)

d. Reservoir Area. The shoreline of the reservoir upstream of the dam is very stable and bedrock is well exposed over perhaps 50 percent of the shore. No evidence of slides or other problems were noted.

The reservoir area is used as a YMCA day camp and there are several docks located on the shoreline. There would probably be no damage to these owing to a rise of the water level within the surcharge space of the reservoir; however the access road to the dam would certainly be flooded.

e. Downstream Channel. The unnamed brook below Sprague Upper Reservoir empties into Sprague Lower Reservoir about 1/2 mile downstream. There are many homes along the shoreline of this lower reservoir. The dam at this lower reservoir has been breached and outflows from it would continue along the unnamed brook to the Stillwater River just west of the Route 116 river crossing. Eight homes and several commercial establishments are situated along the unnamed brook below the lower reservoir and the Stillwater River. The culvert carrying Route 116 over the Stillwater River is about 22 ft. long and 8 ft. high.

3.2 Evaluation

The visual inspection has adequately revealed key characteristics of the dam as they may relate to its stability and integrity. The dam and appurtenant
SECTION 3 - VISUAL INSPECTION

3.1 Findings

a. General. The visual inspection of Sprague Upper Reservoir Dam took place on 3 April 1979. The reservoir was at about elevation 321 ft. There was leakage through the 16 in. dia. outlet pipe (about 10 gpm) and through the outlet culvert headwall and adjacent stone wall face (estimated to be about 300 to 400 gpm). The dam appeared to be in very poor condition.

b. Dam. The Sprague Upper Reservoir Dam is an uncemented stone wall dam with an upstream earth fill. The crest length is about 252 ft.; the top width of the dam varies from about 15 feet at the abutments to 80 feet at the mid-span of the dam and the maximum height of the dam is about 25 feet. The batter of the downstream wall is about 1 horizontal to 8 vertical. The upstream slope of the earthfill dam is partly covered with small rock riprap. The slope appears to vary from about 2 horizontal to 1 vertical, to about 1 1/2 to 1. Brush growth has begun to intrude on this upstream slope, while at the crest of the stone wall many 3 in. to 6 in. dia. trees have become established (see Photo No. 1, Appendix C).

The masonry wall forming the downstream slope is primarily a dry wall. However, there are some mortarred joints, particularly on the bottom 10 to 12 feet above the base of the dam. There is a pronounced bulge on the face of the stone wall. However, previous sketches and inspection reports indicate that this condition has existed for some time. The downstream face of the wall is partially covered with vegetation. (See Photo No. 2, Appendix C)

There is a small pothole or sinkhole, located at the center of the dam in line with the outlet pipe and gatehouse, or about 96 ft. left of the right abutment and 66 ft. right of the left abutment. It measures approximately 3 ft. in diameter and about 14 in. deep. Previous inspection reports have indicated that this condition has existed for several years. However, generally this condition was referred to as a slight depression. Discussions with the operator indicated that the sinkhole has appeared recently (see Photo Nos. 3 & 4, Appendix C).

Seepage was noted at the location of the outlet pipe for a distance of approximately 60 to 70 ft. to the right. The heaviest seepage occurred over the top of a poured low concrete wall over the outlet pipe, estimated at about 300 to 400 gpm. There is also minor seepage of about 3 to 5 gpm approximately 40 ft. left of the outlet pipe at the toe of the dam (See Photo Nos. 9 & 10).

c. Appurtenant Structures. The spillway is located 300 ft. north of the left abutment and consists of a natural channel through a solid bedrock gorge. The channel sides appear to be stable. This spillway is spanned by a small wooden bridge about 20 ft. long. The channel proceeds perpendicular to the
SECTION 2 - ENGINEERING DATA

2.1 Design Data

No data on the design of the dam or appurtenances has been recovered and probably none exist. In the course of the inspection, measurements were taken and a sketch plan and profile layout of Sprague Upper Reservoir Dam and appurtenances has been prepared. These sketches are shown on Figure 1 in Appendix B.

2.2 Construction Data

No records or correspondence regarding construction have been found.

2.3 Operation Data

The dam is operated by the Greater Providence YMCA. There appear to be no formal records.

2.4 Evaluation Data

a. Availability. Since no engineering data is available, it is not possible to make an assessment of the safety of the embankment. The basis of the information presented in this report is principally the visual observations of the inspection team.

b. Adequacy. The lack of in-depth engineering data did not allow for a definitive review. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and sound engineering judgment.

c. Validity. Not applicable.
e. Storage (acre-ft.)

(1) Recreation pool - Not applicable
(2) Flood control pool - Not applicable
(3) Spillway crest pool El. 321.0 - 281
(4) Top of dam El. 324.21 - 368
(5) Test flood pool El. 325.6 - 416

f. Reservoir Surface (acres)

(1) Recreation pool - Not applicable
(2) Flood control pool - Not applicable
(3) Spillway crest El. 321.0 - 23.4
(4) Top of dam El. 324.21 - 26.5
(5) Test flood pool El. 325.6 - 27.6

g. Dam

(1) Type - Uncemented stone wall with upstream earth fill
(2) Length - 252 ft.
(3) Height - 26 ft.
(4) Top width - Varies from about 15 ft. to 80 ft.
(5) Side slopes - Upstream from 2 horizontal to 1 vertical to 1 1/2:1
 Downstream 1 horizontal to 8 vertical
(6) Zoning - Not applicable
(7) Impervious core - Not applicable
(8) Cutoff - Unknown
(9) Grout curtain - Unknown
(10) Other - Nil

h. Diversion and Regulating Tunnel - None
1. **Spillway**

(1) Type - Natural rock gorge
(2) Length of weir - 3 ft. (+)
(3) Crest elevation - 321.0
(4) Gates - None
(5) Upstream channel - Natural rock gorge
(6) Downstream channel - Natural rock gorge
(7) General - Nil

1. **Regulating Outlets**

(1) Invert - 299.84
(2) Size - 2 ft. by 2.5 ft.
(3) Description - Stone box culvert through dam
(4) Control Mechanism - Gate valve in line in wet well at gatehouse, with control hoist.
(5) Other - A 16 in. dia. pipe emanates from a headwall constructed at the downstream end of the stone box culvert.
(3) Ungated Spillway Capacity at Top of Dam. The spillway at the reservoir is an ungated natural rock gorge. The total spillway capacity at top of dam, elevation 325.6 MSL, is 200 cfs.

(4) Ungated Spillway Capacity at Test Flood Elevation. The ungated spillway capacity is about 80 cfs at test flood elevation 325.6 MSL.

(5) Gated Spillway Capacity at Test Flood Elevation. Not applicable.

(6) Gated Spillway Capacity at Test Flood Elevation. Not applicable.

(7) Total Spillway Capacity at Test Flood Elevation. The total spillway capacity at the test flood elevation is the same as (4) above, 200 cfs at elevation 325.6 MSL.

(8) Total Project Discharge at Test Flood Elevation. The spillway is inadequate to handle the test flood and the dam would be overtopped by about 1.4 ft. at elevation 325.6 MSL. The total discharge through the spillway and over the dam would be about 1,120 cfs.

c. Elevations (ft. above MSL)

(1) Streambed at centerline of dam - 299.84
(2) Maximum tailwater - Not computed
(3) Upstream invert of outlet culvert - 300.29
(4) Recreation Pool - Not applicable
(5) Full flood control pool - Not applicable
(6) Ungated spillway crest - 321.0
(7) Design surcharge (original design) - Unknown
(8) Top of dam - 324.21
(9) Test flood design surcharge - 325.6

d. Reservoir

(1) Length of maximum pool - 2,500 ft.
(2) Length of recreation pool - Not applicable
(3) Length of flood control pool - Not applicable
been classified as having a high hazard potential in accordance with the Recommended Guidelines for the Safety Inspection of Dams.

e. Ownership. The dam is owned by the Greater Providence YMCA, Providence, Rhode Island.

f. Operator. Mr. Cezar L. Ferreira, Asst. Program Director, Greater Providence YMCA, 160 Broad Street, Providence, Rhode Island, 02903. Telephone: (401) 456-0100.

g. Purpose of Dam. The dam impounds a lake used for recreational purposes.

h. Design and Construction History. It is not known by whom the dam was designed or constructed. A 1946 inspection report by the Rhode Island Department of Public Works, Division of Harbors and Rivers, states that between 1905 and 1910 the Woonasquatucket Reservoir Company took over ownership of the dam from a man named Donovan and at that time the pond was called "Upper Donovan". The inspection report also stated that there was a record of leaks in the dam going back several years to when a grist mill was operated at the site by Mr. Donovan. Hence, it is surmised that the dam was constructed around the turn of the century.

i. Normal Operating Procedure. As the outlet gate is inoperative, there are no normal operating procedures for release of water. The dam is maintained by the Greater Providence YMCA. Trees, brush and debris are removed periodically.

1.3 Pertinent Data

a. Drainage Area. The drainage area contributing to the Sprague Upper Reservoir is situated at the headwater of an unnamed brook. The drainage area encompasses a total of about 0.5 sq. mi. (319 acres), of which 23 acres are occupied by the lake. The longest circuitous stream course contributing to the lake is about 4,600 ft. long with an elevation difference of about 54 ft., or at a slope of about 64 ft. per mile. The drainage area has a length of about 1.1 miles and a maximum width of about 0.67 miles, with an average width of about 0.6 miles. The basin consists of both open fields and forested areas, with sparse population.

b. Discharge at Damsite.

(1) Outlet works conduit. Discharge from Sprague Upper Reservoir is provided by a 16 in. dia. outlet pipe which has been installed in the downstream end of a 2 ft. by 2.5 ft. stone box culvert. The invert of the outlet culvert at the dam is at elevation 299.84 MSL. Presently the outlet gate at the upstream end of the culvert is inoperative.

(2) Maximum Known Flood at Damsite. No records are available of flood inflows into Sprague Upper Reservoir, nor of spillway releases and surcharge heads during such inflows.
wall dam is about 2 ft. and the downstream face of the stone wall has a batter of 1 horizontal to 8 vertical. The slope of the upstream face of the stone wall could not be ascertained. The upstream face of the stone wall is covered with an earth fill which varies from about 15 ft. wide at the abutments to about 80 ft. wide at the mid-span of the dam. The upstream slope of the earth fill varies from 2 horizontal to 1 vertical, to about 1 1/2 to 1 and the slope is covered with small riprap.

(2) Spillway. The spillway for Sprague Upper Reservoir Dam is located about 300 ft. north of the dam and consists of a natural channel through a rock gorge. The channel floor is about 3.2 ft. below the crest of the dam, has a bottom width of 2.5 ft. and side slopes of 3 horizontal to 1 vertical on the left side and nearly 1 to 1 on the right side. The rock formation appears hard and competent and is not lined with concrete.

The spillway channel is carried roughly perpendicular to the dam axis for about 120 ft. into and through the abutment, and drops in elevation about 4.5 ft. At the end of the channel water flowing through the spillway cascades down a rock face to the valley floor below and then back to the unnamed brook. A wooden bridge is provided where the access roadway crosses the spillway channel.

(3) Outlets. The outlet for this project is located at mid-span of the dam, where a 12 ft. by 12 ft. gate house is located just upstream from the dam crest. A 2 ft. high by 2.5 ft. wide stone box culvert extends from the upstream face of the gate house to a concrete headwall at the toe of the downstream face. A 16 in. dia. pipe installed in the downstream end of the culvert provides the outlet for water flowing through the stone box culvert. A wooden plank vertical slide gate operated from a rod and handwheel regulates flows through the outlet. At the time of inspection this gate was not operative and it has not been operative for several years.

c. Size Classification. The Sprague Upper Reservoir Dam is about 26 ft. high, impounding a storage of 280 acre-ft. to spillway crest level and about 368 acre-ft. to top of dam. In accordance with size and capacity criteria promulgated in the Recommended Guidelines for Safety Inspection of Dams, the project is categorized in the small classification.

d. Hazard Classification. A breach failure of the dam at Sprague Upper Reservoir would release water down the unnamed brook leading to Sprague Lower Reservoir. It could be expected that a sudden release of water from Sprague Upper Reservoir would be stored in the lower reservoir with some flooding of shore side properties. However, inspection of Sprague Lower Reservoir Dam revealed that this dam is breached. A flood wave would therefore pass through this reservoir, continue down the unnamed brook to its confluence with Stillwater River. In this instance it would be expected that there would be danger of about eight homes being affected with a possibility of loss of more than a few lives and excessive economic loss. Two commercial establishments as well as the Route 116 crossing over the Stillwater River could also be affected. Consequently, Sprague Upper Reservoir Dam has
SECTION 7
ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. On the basis of the Phase I visual examination, Sprague Upper Reservoir Dam appears to be in very poor condition at the present time. The deficiencies revealed indicate that further investigations are required. The principal items of concern are: the major seepage of 300 to 400 gpm emanating from the downstream face of the stone wall, the presence of a small sinkhole at the crest of the dam above the outlet culvert from the gatehouse, inadequate spillway capacity, and the lack of drawdown capability for emergency conditions and/or repairs and maintenance work.

There is also a considerable amount of brush growth on the upstream slope, as well as many 3 in. to 6 in. dia. trees along the top of the stone wall.

b. Adequacy of Information. The lack of in-depth engineering data did not allow for a definitive review. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and sound engineering judgment.

c. Urgency. The recommendations and remedial measures enumerated below should be implemented by the owner within one year after receipt of the Phase I Inspection Report, except that the investigations of the sinkhole at the crest of the dam should be carried out within three months.

d. Need for Additional Investigation. Additional investigations are required as recommended in Para. 7.2.

7.2 Recommendations

It is recommended that the owner should retain the services of a competent registered professional engineer to make investigations and studies of the following items, and, if proved necessary, design appropriate remedial works:

(1) Make soils and foundation studies, and determine the cause of the sinkhole at the crest of the dam.

(2) Determine the cause of the seepage at the toe of the dam.

(3) Determine whether the dam should be raised and/or additional spillway capacity provided to prevent an overtopping of the dam.

(4) Determine whether the existing outlet culvert and slide gate are repairable and of adequate size for emergency evacuation of the reservoir.

(5) Determine whether the outlet culvert headwall requires repair.
7.3 Remedial Measures

a. Operation and Maintenance Procedures

(1) Brush growth on the upstream slope of the earthfill should be removed and controlled on a regular basis.

(2) A program for removal of trees and their root systems from the top of the stone wall and filling with suitable backfill material should be adopted.

(3) Debris and overhanging trees should be removed from the spillway discharge channel.

(4) Seepage quantity and clarity in the outlet channel should be monitored on a monthly basis until its source is determined.

(5) A formal surveillance and flood warning plan should be developed, including continuous monitoring of the facility during heavy precipitation.

(6) Procedures for an annual periodic technical inspection of the dam, and appurtenant works should be instituted.

7.4 Alternatives

The only practical alternative to those discussed in Para. 7.2 is to drain the reservoir and breach the dam.
VISUAL INSPECTION CHECKLIST

PARTY ORGANIZATION

PROJECT: Sprague Upper Reservoir Dam
DATE: 3 April 1979
TIME: 9:00 a.m.
WEATHER: Cloudy, Cold, -40°F
W.S. ELEV: 321.0
U.S. N/A: DNS.

PARTY:

1. Pasquale F. Carsetti
2. Roger E. Berry
3. Carl J. Hoffman
4. William S. Zoino
5.

PROJECT FEATURE
INSPECTED BY
REMARKS

1. Hydrologic
 - Roger E. Berry

2. Hydraulic/Structures
 - Carl J. Hoffman

3. Soils and Geology
 - William S. Zoino

4. General Features
 - Pasquale F. Carsetti

5.

6.

7.

8.

9.

10.

PERIODIC INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>Stonewall Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT FEATURE</td>
<td>Stonewall Dam</td>
</tr>
<tr>
<td>DISCIPLINE</td>
<td>Soils/Structures</td>
</tr>
<tr>
<td>DISCIPLINE</td>
<td>Soils/Structures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Elevation</td>
<td>324.21 MSL</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>321.0 MSL</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td></td>
</tr>
<tr>
<td>Pavement Condition</td>
<td></td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td></td>
</tr>
<tr>
<td>Lateral Movement</td>
<td></td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td></td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td></td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td></td>
</tr>
<tr>
<td>Indication of Movement of Structural Items on Slopes</td>
<td></td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td></td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td></td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td></td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toes</td>
<td></td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td></td>
</tr>
<tr>
<td>Piping or Leaks</td>
<td></td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td></td>
</tr>
<tr>
<td>Toe Drains</td>
<td></td>
</tr>
<tr>
<td>Instrumentation System</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>NAME</th>
<th>DISCIPLINE</th>
<th>NAME</th>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprague Upper Reservoir Dam</td>
<td>C. Hoffman</td>
<td>Structures</td>
<td></td>
<td>Control Tower</td>
<td>General Condition</td>
</tr>
<tr>
<td>DATE: 3 April 1979</td>
<td></td>
<td></td>
<td></td>
<td>a. Concrete and Structural</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General Condition</td>
<td>Isolated areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Condition of Joints</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spalling</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Visible Reinforcing</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rusting or Staining of Concrete</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any Seepage or Efflorescence</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Joint Alignment</td>
<td>None evident</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pursenal Seepage or Leaks in Gate Chamber</td>
<td>Some minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cracks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rusting or Corrosion of Steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b. Mechanical and Electrical</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air Vent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Float Wells</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass East</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elevator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hydraulic System</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service Gates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emergency Gates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lighting Protection System</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emergency Power System</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Electrical Lighting System in Gate Chamber</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

PROJECT Sprague Upper Reservoir Dam DATE 3 April 1979

PROJECT FEATURE Spillway NAME C. Hoffman

DISCIPLINE STRUCTURE NAME

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL CONDITION OF CONCRETE</td>
<td>N/A</td>
</tr>
<tr>
<td>RUST OR STAINING</td>
<td></td>
</tr>
<tr>
<td>SPALLING</td>
<td></td>
</tr>
<tr>
<td>EROSION OR CAVITATION</td>
<td></td>
</tr>
<tr>
<td>VISIBLE REINFORCING</td>
<td></td>
</tr>
<tr>
<td>ANY SEEPAGE OR ESSFLORESCENCE</td>
<td></td>
</tr>
<tr>
<td>CONDITION AT JOINTS</td>
<td></td>
</tr>
<tr>
<td>DRAIN HOLES</td>
<td></td>
</tr>
<tr>
<td>CHANNEL</td>
<td></td>
</tr>
<tr>
<td>LOOSE ROCK OR TREE OVERHANGING CHANNEL</td>
<td></td>
</tr>
<tr>
<td>CONDITION OF DISCHARGE CHANNEL</td>
<td></td>
</tr>
<tr>
<td>NATURAL CHANNEL OVER BEDROCK</td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CLUTTERED WITH DEBRIS</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

PROJECT Sprague Upper Reservoir Dam
PROJECT FEATURE Spillway
DISCIPLINE Hydraulics

DATE 3 April 1979
NAME C. Hoffman

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>No</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Yes</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>Natural rock</td>
</tr>
<tr>
<td>b. Weir and Training Walls</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>N/A</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Drain Holes</td>
<td></td>
</tr>
<tr>
<td>c. Discharge Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>No</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Yes</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Natural rock</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td>None visible</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

PROJECT_ Sprague Upper Reservoir Dam_ DATE_ 3 April 1979_
PROJECT FEATURE_ Access Road Bridge NAME_ C. Hoffman_
DISCIPLINE_ Structures NAME_

AREA EVALUATED CONDITIONS

OUTLET WORKS - SERVICE BRIDGE

a. Superstructure
 - Wooden bridge, spanning natural rock spillway channel
 - Good
 - Wooden timbers
 - Good condition
 - N/A - founded on bedrock

 b. Abutment & Piers
 - General Condition of Concrete
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dike Embankment</td>
<td>N/A</td>
</tr>
<tr>
<td>Outlet Works-Intake Channel and Intake Structure</td>
<td>N/A</td>
</tr>
<tr>
<td>Outlet Works-Transition and Conduit</td>
<td>N/A</td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA
NARRAGANSETT IMPROVEMENT COMPANY
223 ALLENS AVENUE, PROVIDENCE 3, R. I.
TELEPHONE DEXTER 1-0051
COMMERCIAL • INDUSTRIAL • RESIDENTIAL
PAVEMENTS
BITUMINOUS CONCRETE FOR SALE
CONSTRUCTION EQUIPMENT FOR HIRE

January 21, 1966

DOWNTOWN BRANCH PROV. YMCA
160 Broad Street
Providence, R. I.

Mr. Frank Nagy, Ex-Secretary
Dear Sir:

I have been asked by the Camp Committee to report to you our findings regarding repairs to the dam at the new Day Camp Center in Greenville. We have been unable to find any blueprints or records regarding construction or previous repairs, however in talking with Mr. Steere who worked on the dam when Brown owned it and after making a careful on site inspection we have the following recommendations:

The present gate and spillway seem to be tight. The majority of the leakage seems to be north of the existing gate. Attempts to stop these leaks by adding concrete to the water side of the dam have been partly effective. Attempts to stop up the pipe on the lower side of the dam only divert the water through the stones around the pipe. We have hearsay information that one time another spillway existed in the area where leaks seem to exist. To determine the conditions in this area and the methods necessary to stop the leaks an excavation approximately 50' by 20' by about 20' will be required. A crane will be necessary for this excavation because of the depth and the need to cast the dirt out of the area. If the leaks are all in the area of an old spillway repairs and backfill will be fairly easy and inexpensive. If not we should be able to determine how extensive the needed repairs will be. This exploratory excavation and backfill should be done at a period of low water and should cost not over $700.00.

Yours truly,
Kirke P. Everson Jr.
January 21, 1966

DOWNTOWN BRANCH, PROV. Y.M.C.A.
160 Broad Street
Providence, R. I.

Mr. Frank Nagy, Ex-Secretary

Dear Sir:

I have been asked by the Camp Committee to report to you our findings regarding repairs to the dam at the new Day Camp Center in Greenville. We have been unable to find any blueprints or records regarding construction or previous repairs, however in talking with Mr. Steers who worked on the dam when Brown owned it and after making a careful on-site inspection we have the following recommendations:

The present gate and spillway seem to be tight. The majority of the leakage seems to be north of the existing gate. Attempts to stop these leaks by driving concrete to the water side of the dam have been partially effective. Attempts to stop the pipe or the lower side of the dam only divert the water through the cracks around the pipe. We have learned information that one time an old spillway existed in the area where leaks seem to exist. To determine the conditions in this area and the holes in necessary to stop the leaks an excavation approximately 50' by 50' by about 30' will be required. A crane will be necessary for this excavation because of the depth and the need to cast the dirt out of the area. If the leaks are all in the area of an old spillway repair and backfill will be fairly easy and inexpensive. If not we should be able to determine how extensive the needed repairs will be. The exploratory excavation and backfill should be done at a period of low water and should cost not over $700.00.

Yours truly,

Kirke R. Eyerson Jr.
Mr. Gerald R. Hutz
Executive Director
Greater Providence YMCA
Providence, R.I.

March 12, 1946

Mr. Hutz:

Following an inspection of the impoundment on the YMCA property in Smithfield on Thursday March 12, 1946 with Assistant State Conservationist, Fairman S. Howard, Agricultural Engineer, Henry F. Taylor and myself the following conclusions have been reached.

The leak in the present structure may be caused by one or more factors. It is our firm belief that a major repair program must be instituted to correct the situation properly and prevent a recurrence. We feel that the leak may be caused by either porous material such as spare pipe under pressure between stones and or boulders, piping resulting from decaying root system from trees and plants on the dam or from a defective drain pipe.

We recommend that a reliable contractor with proper equipment be engaged to erect a new and proper concrete from the bottom of the dam and extend to a core trench at least 10 to 12 feet wide for the full length of the core and down into a firm original base. Extra core will be required in working in the area of the pipe.

If it is decided that the drain pipe system is inadequate then backfilling with a good stone fill and concrete material will compacted carefully done to complete the job. Such material should be the full width of the core trench of 10 to 12 feet.

In calculating the requirements of a structure such as this to meet the state requirements we have the following figures:
The drainage area is 316 acres with a 100 yr. frequency run off of 527 cubic feet per second. This figure adjusted to compensate for storage results in a drainage capacity of 1160 cfs to be handled.
An emergency spillway 25 feet wide located 10 feet above the ground. The embankment structure or grating spillway required to handle 30% of this amount would have to be 29 feet above the foundation 11 inches in diameter with a river box 34 x 34 x 36.

I am enclosing a form for the State for proper inspection approval of plan involving construction or repair of dam. The state has to written on the back side of the form.

Sincerely yours,

[Signature]

Henry M. Berenger
December 10, 1912.

Mr. Flanagin,
Mills, Black, Collins & Company,
1215 Market Road Building,
Providence, R. I.

Dear Sirs:—

You have inquired of this office as to the safety of the dam at Upper Baker Reservoir.

During the period of our recent inspections the water entering the pond has been passed via locks in the dam. The pond level has remained practically constant at a height not much above the top of the draw-off opening.

The owner has recently removed the cover plate on the down-stream end of the draw-off pipe. This is an improvement to the extent that it avoids saturation of the rock stream.

Before the pond could be maintained at a higher level, construction of the pond side (to make the earthen tights) would have to be installed and tested.

The representatives of the reservoir corporation have advised that they have no interest in a higher pond level.

You appreciate that it is not within the authority of this office to compel such repairs to a dam which would be necessary if a full pond were maintained; when the owner, as in this case, does not maintain such a pond level, it rather places the responsibility of maintaining a low pond within the capacity of the embankment.

Yours very truly,

[Signatures]

W. L. Flanagin
Mr. Holdsworth
Mr. Anderson

Frank J. O'Connor, Chief.
Spillway - The spillway is a ditch in rock cut which at full bank will have a sectional area of about 40 sq. feet. The roughness of the ditch makes it impossible to closely estimate its discharging capacity without a rating by current meter measurements. It is probable that the velocity of the water at full bank will be about 10 feet per second which results in a spillway capacity of 460 c.f.s.

The Draw-off is in bad order. The leakage in and around the draw-off has recently kept the pond at a relatively low level even with the gate on Draw-off closed. This condition indicates that it is not safe to fill the pond.

Estimated extreme flow: 74 c.f.s.
In 1884 a retaining wall was placed at the end of the well chamber on the 35' plain level of the dam and a second chamber somewhat increased from one level to the next with a remarkable plate at the end.

A second supply was provided with a second chamber situated under the dam and now under water to the north of present intake & situated the present above centre at about the middle of the dam. This present chamber is made of field stones, having very firm rocky, slate and cemented & is located on the original pond side. A wooden gate (sitting in cemented bed) is opened from a gate house having above well above.

At the present of construction, although the water level of the dam has been located up to the bottom of the dam, the base of the intake has been made in the same, as it was filled with sand and soil with the clay weighted beneath, it will reach at a level of 500 feet.

The Wm. H. Gifford, Associate Engineer, is particularly interested in maintaining the reservoirs at the head of the dam. The dam was built in large sections and has been filled with cement. The dam is all under cemented and is located to the water table at the location.

The reservoir is not formed because of the water in the reservoir not being aligned with the lake in the water table at the location.

The reservoir is not formed because of the water in the reservoir not being aligned with the lake in the water table at the location.
R.I. DEPARTMENT OF PUBLIC WORKS
DIVISION OF HARBOURS AND RIVERS
SPECIAL INSPECTION REPORT

EMERGENCY CALLS

1. Mr. Anderson, Eng. of Flood Control Co. at 411 E. Main St., Narragansett, R.I. at 208
2. Mr. Lewis, Foreman of the Police, at 411 E. Main St., Narragansett, R.I.
3. Mr. Brown, Foreman of the Police, at 411 E. Main St., Narragansett, R.I.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

EMERGENCY CALLS

1. Mr. Anderson, Eng. of Flood Control Co. at 411 E. Main St., Narragansett, R.I.
2. Mr. Lewis, Foreman of the Police, at 411 E. Main St., Narragansett, R.I.
3. Mr. Brown, Foreman of the Police, at 411 E. Main St., Narragansett, R.I.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.

INSTRUCTION: After the inspection, return this form to the Inspector.

IN INSPECTION REPORT BY HANDY REASON REQUESTED AND INSPECTION DATE 5/23/1946.
I believe it is true that Brown University does not control the riparian rights nor does it own the dam. The work that Brown University has done has not been to alter or in any way affect the structure of the dam.

Recently Brown University has put in a material below the water level on the banks of the dam called bentonite which it is hoped will tend to reduce the leaking around the dam. Again this does not in any way affect the structure of the dam.

This work by Brown University has been done with the regular maintenance staff under the supervision of the Superintendent of Buildings and Grounds and it has been assumed this was for experimental and maintenance purposes and in no way was it for alterations or rebuilding of the dam.

We will be very glad to go into further detail concerning this matter if it appears necessary and I trust this has been an adequate explanation of the points raised in your letter.

Sincerely yours,

[Signature]

Wm. H. Jones, Director
Secretary of Brown Outing Reservation Board

Mr. Lowney
March 7, 19__
Mr. Henry Lis, Chief
Division of Rivers & Harbors
Department of Public Works
State Office Building
Providence, R.I.

Dear Mr. Lis:

Your letter of February 20th addressed to Mr. Davenport has been referred to me and Mr. Davenport regrets there has been a delay in sending it to me.

Although I had intended to answer your letter paragraph by paragraph I think now I had better treat it in a little different manner.

In 1946 Brown University discussed with the Wequagutucket Reservoir Company, the owners of the Upper Sprague Dam, some matters concerning the repair of the dam. The Reservoir Company in August of 1946 stated substantially that they were unable to make repairs at the reservoir but the Board of Directors would "sanction to the University to make such repairs as they may see fit to improve the boating and swimming facilities.

From that time until now the University has been unable to do anything about minor repairs. However on November 11, 1945 I wrote to Mr. A.A. Anderson, the Supervising Engineer for the company, describing the installation of a tile pipe stack in the sluiceway on the water side of the dam. This was to be installed so that if at any time such installation seemed undesirable it could be removed without affecting the dam in any way. Subsequently Mr. Anderson called me on November 23, 1945 to say that the work would be satisfactory and I acknowledged his conversation in my letter of November 15, 1945 expressing appreciation for giving us the opportunity to experiment with methods of improving the water level of the reservoir.

At the present time there is installed this stack of tile mentioned and on its top it inserted a grill through which water can flow if it reaches the height of the stack. Incidentally the height of the stack is well below the high-water mark for the reservoir, beyond that I have been informed by our Superintendent of Buildings and Grounds that this installation in no way affects the structure of the dam for it is installed on the water side of the dam which has been closed, I believe, for some time.
SPECIAL INSPECTION REPORT

DATE: 3/12/49

L. A. B. ANDERSON, Engr., 600 Andalf Road, Cranston, R. I. Tel. 6223

Z. Henry A. Fuller, Greenville, R. I. (Brook Hill Road, Gloucester) Tel. 4316

3/13/47 CONDITION POOR

After water was drained and pipe was swung off pipe, pipe has been at a point for about 1/2 hour, base of gatehouse, was very difficult to handle, with water in pipe, to-day gate was apparently closed, but leaked with water in pipe, through pipe, and part of pipe at dam, still in existence, behind head. Some still in pipe. Slime off swing-off pipe.

11/26/47

Pipe at swing-off pipe has been replaced on downstream side of gate on this time in place. Slime out pipe, under concrete, to be cleaned. Water in pipe to day, pipe at swing-off pipe. Leaks at concrete base at gate are to be repaired by time of change at

3/15/50 PER President of Woonasquatucket Reservoir Association, per J. V. Keily, Mr. D. L. Connell

Mr. Atlantic Mills, 120 Wm. A. Ave., Providence. Secretary & Treasurer David C. Hartman & R

Providence C. B. & G. Co., 52 Valley St., Providence. Mr. Anderson is still employed for the Reservoir Association.
July 7, 1967

TO: Mr. Henry Isé, Chief

FROM: C. F. Replinger

SUBJECT: Inspection of R.I. Dam No. 120, Upper Sprague Dam, Smithfield, R.I.

Pursuant to your instructions I investigated subject dam on July 5, 1967.

The Greenville Y.M.C.A. Outing Center is under the jurisdiction of Don Nelson, c/o Y.M.C.A. 160 Broad St., Providence, phone 331-9200. The phone at the camp is 231-9530.

Narragansett Improvement Co., 223 Allen Ave., Providence, phone 331-0051 (Kirke Everson) made temporary repairs to the dam by excavating near the gate house down to water level and found a leak which they stopped with a clay fill. This was considered as a temporary plug. Plans are in process by Everson for permanent repairs which are anticipated to be done in the fall.

At present the water in the reservoir is 2 ft. below the gate house floor. Very little water is on the downstream side of the dam, the level being approximately 5' ft. below the reservoir level.

A good flow of water is going over the spillway, approximately 535 ft. to the northwest of the gate house.

Byron Steere of Brown University has aided the Y.M.C.A. in its plans for repairs.

Application forms were left with Mr. Nelson.

C.F. Replinger

[Signature]
Attached is a copy of a letter to Mr. A. S. Pettit, Secretary-

manager of the Wanaumkett Lake fishing operation, which he requested. We will respond when necessary.

A new blueprint of the dam is to be drawn. It copy will be sent to you as soon as completed.

Sincerely yours,

J. S. Keene
Resident Engineer

cc:
Mr. Cochran
Mr. Suprenant
Mr. Steere
Mr. Davenport

Enclosure
Mr. Henry Joss
Division of Harbors and Rivers
Department of Public Works
State Office Building
Providence 2, Rhode Island

Dear Mr. Joss:

In accordance with your wish, I am confirming in writing our discussion of the repairs made in and adjacent to the Gate House on the Upper Thames Dam.

In a previous talk with you it had been indicated that a steel gate valve might be installed in place of the plank valve. On closer examination of the space available it was found impractical to accomplish this so the plank valve is still in use.

It was found the valve stem, made of wooden timbers, had rotted away. This was removed and replaced with four inch galvanized pipe.

The bottom of the Gate House was cleaned thoroughly of all matter restricting the drainage area. The plank gate was removed for inspection and found to be in very good condition. One more section, six inches deep, was added to ensure adequate depth to cover the sluiceway opening. The plank gate was replaced after cleaning the steel channels that act as guides. The same operating wheel and screw were reinstalled.

A large copper screen was installed over the intake stack. The intake stack has been raised in height so that its inlet is approximately 15 feet the high water level for the pond.

All openings in the concrete screen on the north side of the gate house have been sealed and grouted and this, in conjunction with the wall closed in the cement bank on the south side, has closed all the water leaks.

Additional gravel has been spread on the road and it is now safe to drive with normal traffic content to the Gate House, at which point a sprinkler has been erected to protect cars from running over the high embankment to the north.

January 15, 1957
DEPARTMENT OF NATURAL RESOURCES

WATER SUPPLY DIVISION

RIVER: Farm Brook
WATERSHED: Counterpan Field

NAME: Mr. Ferreira
ADDRESS: 123 Smith Street

OWNER: Mr. Ferreira
NOTE: Mrs. Ferreira accompanied the inspection, Mr. Ferreira disabled from recent knee operation.

REPORT NO.: 111
REASON FOR INSPECTION: Written Report by Mrs. H. Ferreira
DATE OF INSPECTION: April 23, 1969

INVESTIGATION BY:

INVESTIGATION:

DATE OF INSPECTION:

INVESTIGATION:

INVESTIGA
Greater Providence Young Men's Christian Association

Oct. 11, 1966

Memo to: Whom it may concern
From: Don Nelson, Frank Kasey, and Gerry Bates
Re: Dam at the Greenville YMCA Outing Center

On a recent tour of the facilities at the Shepard Reservation in Greenville several conclusions were drawn concerning necessary steps to be taken on the dam repair project:

1. That Mr. Kirke Everson be encouraged to begin his exploratory project immediately; this project is one about which he has been previously contacted and has agreed to undertake for the approximate sum of $700. The hopeful outcome of the exploratory project is the finding of an apparent leakage in the core of the dam. This must be completed now.

2. With the knowledge gained from the exploratory project, the leakage area must be dredged out and the core of the dam repaired in whatever way is deemed feasible and necessary by Mr. Everson and the engineers. This project preferably to be completed in the fall of 1966.

3. The existing gatehouse which is not operable must be either repaired or renewed in order that the level of the lake may be maintained at the height desirable for day camp use. This part of the project to be completed as soon as possible.
There also has been constructed by the University, as a temporary expedient, a reinforced concrete box culvert out into the pond as an extension of the old stone culvert. Into the top of this culvert is connected a vertical overflow tile pipe riser. The upper end of this new culvert is closed. The apparent reason for its construction was to prevent leakage through the old wooden slide gate.

We are of the opinion that it will be worthwhile to attempt further repairs only after complete draw-down of the pond for a thorough examination of the dam and its foundations. We are also of the opinion that further attempts at blocking any leakage should be confined to only the upstream side of the dam for the reason that blocking the downstream face may even be dangerous by causing saturation of the earth fill and so reducing its stability.

If and when the pond is drawn down it will be advisable to measure the changing rate of outflow under the reducing head.

The suggestion has been made (as a temporary expedient for this summer) of pumping the leak at the downstream side of the dam up and over and into the pond. This would require a motor-driven pump in the order of 10-horsepower capacity which may have to be operated continuously during the dry season.

Needless to say, we would be glad to work with you on this entire problem if your interests so require.

Very truly yours,

CHARLES A MAGUIRE & ASSOCIATES

Wendell S. Brown
We are of the opinion that the question of satisfactory repair of the dam is a major undertaking involving considerable time and expense.

From what we can learn of the construction of the earth fill dam, there is no cut-off wall within it or under it, and it rests upon a ledge sloping downstream; and has a record of at least one failure, and a history of serious continuous leaking for the past several years.

At the present time, there is an old stone box culvert, approximately 2 feet high and 2 1/2 feet wide (probably with open joints), extending from the upstream face at the level of the bottom of the pond, sloping down to a discharge point on the downstream face approximately 20 feet below the top of the dam.

Along the lower or downstream face, a concrete headwall has been constructed within recent years, apparently to reduce leakage. This has penetrated by a 14-inch steel pipe laid in the bottom of the culvert and extending a few feet into it.

This pipe is now carrying most of the free flow of the dam which we estimate to be in the order of 200 gallons per minute. You have found by experience, stopping up the downstream end of this overflow pipe merely forces the water around the pipe and elsewhere around and under the bottom of the concrete wall above-mentioned.

Apparently, therefore, the stone box culvert acts mostly as a free flow collection and discharge point for seepage through the earth dam.

At the upper end of this stone culvert, that is at the upstream face of the dam, there is a wood plank vertical slide gate operated from a rod and handwheel in a concrete powerhouse above. This may or may not be leaking, but has been inoperative for so long as to make its intended use dispensable in the point of view of being able to close it again.
RECOMMENDATIONS

At the present time the leaks in the dam appear to be sufficient to pass all the water received in the pond.

The wall built south of the gatehouse on the pond side of the embankment is an effort made in the right direction to stop this leakage, but further study of the trouble should be made with the idea of devising means to make the dam tight by constructions on the pond face of the dam. Any work done on the down-stream face of the embankment to stop leakage results in saturating the embankment and if carried out to an extent which stops all the leakage, may produce a condition which may allow the material in the embankment to slide. A minor improvement to avoid high saturation of the embankment would be the removal of the plate at the end of the 10" spiral pipe in the old draw-off culvert.

It is advisable to do this immediately and no further work should be done in the down-stream face of the embankment for the purpose of stopping the leakage.

When work is contemplated for the purpose of stopping this leakage, plans should be submitted to this office for approval before any construction is started.
SPECIAL INSPECTION REPORT

OWNER

REPORT ON

NEW CONSTRUCTION

PLANS BY:

INSPECTION DATE

Inspector's Name

The inspector at the time of inspection found the following:

- All utilities were properly installed and connected.
- The electrical system was in accordance with the plans submitted.
- The plumbing system met all code requirements.
- The structural integrity of the building was satisfactory.
- All fire protection systems were installed as per plans.

The owner and contractor are requested to address the following:

- Address any deficiencies noted during the inspection.
- Ensure all work meets the required standards.
- Have a final inspection conducted by the building department.

Date: [Insert Date]

Inspector's Signature

[Optional: Additional comments or observations]
APPENDIX C

PHOTOGRAPHS
1. View from right abutment showing brush and tree growth on top of dam

2. Downstream face of stone wall
3. View of sinkhole at mid-length of dam crest.

4. View of sinkhole near right abutment.
C Elev 325.5

\[Q = 2.9 \times (80)(1.25)^{3/2} + 2.9(3.5)(1.02)^{3/2} + 2.9(60)(.65)^{3/2} + 2.9(40)(.19)^{3/2} + 2.9(40)(.31)^{3/2} + 2.9(40)(.23)^{3/2} \]

\[Q = 704.9 + 644.9 + 91.2 + 9.6 + 64.5 + 26.8 \]

\[Q = 742 \text{ cfs} \]

C Elev 325.0

\[Q = 2.9 \times (80)(0.75)^{3/2} + 2.9(3.5)(.52)^{3/2} + 2.9(40)(.12)^{3/2} + 2.9(50)(.40)^{3/2} = 125.9 + 89.2 + 13.8 + 36.7 \]

\[Q = 276 \text{ cfs} \]
\[Q = CLH^{3/2} \quad C = 2.9 \]

C.E. Boy 3/4/57

\[Q = 2.9(3) \left[(2.6)^{3/2} + (2.14)^{3/2} + (6.7)^{3/2} + (5.4)^{3/2} + (8.1)^{3/2} \right] + 2.9(3)^2 \]

\[= 2.9 \left(90.4 + 0.05 + 1.04 + 0.06 + 0.02 \right) + 2.9(3)^2 \]

\[= 2.9 \left(0.4 \right) + 2.9(3)(0.4) + 2.9(3)(0.02) \]

\[= 45.4 + 0.2 = 45.6 \mathrm{cft} \]

C. Eulry 9/6

\[Q = 2.9(3) \left[(2.6)^{3/2} + (0.7)^{3/2} + (1.6)^{3/2} + (1.5)^{3/2} \right] + 2.9(3)^2 \]

\[= 2.9 \left(1.24 + 0.03 + 1.16 + 0.21 \right) + 2.9(3)^2 \]

\[= 2.9 \left(1.24 \right) + 2.9(3)(0.21) + 2.9(3)^2 \]

\[= 1.67 + 0.24 + 0.09 + 0.12 + 0.14 + 0.62 \]

\[= 2.8 + 0.14 + 0.11 + 0.04 + 0.12 + 0.14 + 0.15 \]

\[Q = 5.2 \left(0.32 \right) \approx 1.15 = 1445 + 1.1 \]

DB
Compute Volume of Storage in Reservoirs

<table>
<thead>
<tr>
<th>Unit</th>
<th>Area %</th>
<th>ΔH</th>
<th>Δ VOL Acre-ft</th>
<th>Total VOL Acre-ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>6.0</td>
<td>3</td>
<td>21.6</td>
<td>21.6</td>
</tr>
<tr>
<td>352</td>
<td>7.1</td>
<td>3</td>
<td>22.8</td>
<td>44.4</td>
</tr>
<tr>
<td>366</td>
<td>9.3</td>
<td>3</td>
<td>25.6</td>
<td>70.0</td>
</tr>
<tr>
<td>392</td>
<td>10.6</td>
<td>3</td>
<td>30.8</td>
<td>100.0</td>
</tr>
<tr>
<td>342</td>
<td>12.7</td>
<td>3</td>
<td>35.6</td>
<td>106.6</td>
</tr>
<tr>
<td>315</td>
<td>17.0</td>
<td>3</td>
<td>45.3</td>
<td>151.3</td>
</tr>
<tr>
<td>N.A.</td>
<td>20.4</td>
<td>3</td>
<td>56.8</td>
<td>215.7</td>
</tr>
<tr>
<td>321</td>
<td>22.4</td>
<td>3</td>
<td>63.7</td>
<td>281.4</td>
</tr>
<tr>
<td>270</td>
<td>45.6</td>
<td>4</td>
<td>283.4</td>
<td>570.2</td>
</tr>
</tbody>
</table>
Flood Hydrograph for PEPF

<table>
<thead>
<tr>
<th>TIME (HOURS)</th>
<th>RAINFALL (IN.)</th>
<th>QF (CFS)</th>
<th>BEGIN TIME</th>
<th>PEAK TIME</th>
<th>END TIME</th>
<th>(T_E = T_P + 1.67 T_P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.83</td>
<td>263</td>
<td>0</td>
<td>1.8</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>2.24</td>
<td>304</td>
<td>1.0</td>
<td>3.8</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.82</td>
<td>379</td>
<td>2.0</td>
<td>3.8</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>3.14</td>
<td>460</td>
<td>2.0</td>
<td>4.6</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>3.68</td>
<td>554</td>
<td>4.0</td>
<td>5.8</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>4.07</td>
<td>278</td>
<td>5.0</td>
<td>6.8</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>5.83</td>
<td>320</td>
<td>6.0</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(Q = 454 \times (S)^2 \)

- Distribution of Maximum Closing Speed
- \(S \) in percent or number amount + 100

D-3
Drainage Area = 41.82 Acres = 0.50 sq mi
Spillway Crest Elev. = 321 ft

Compute Tps 2 tributaries to Reservoir

1. L = 4600' H = 375 - 221 = 54' S = 0.012 S = 64 ft/ft

2. L = 3400' H = 425 - 321 = 104' S = 0.031 S = 64 ft/ft

Ave = 4000' = 0.76 mi

\[\text{Lag} = K \left(\frac{L \times H}{V^2} \right)^{3/2} = K \left(\frac{1.24 \times 76}{30^2} \right)^{3/2} = 0.45K \]

Use Chart 2: K = 25 to 50, use K = 40

\[\text{Lag} = 0.48K = 0.48(40) = 1.92 \text{ ft} \]

\[\text{Caly} D = 1.92 \]

\[\text{Tps} = \text{Lag} + D/2 = 1.92 + 0.91 = 2.83 \text{ ft} \]

Critical Velocity: \(v = \frac{4600}{2000 \times 19} = 0.35 \text{ ft/s} \)

Find Peak, \(q_p = \frac{434.4Q}{19} = 434(19) \times \frac{1}{1.8} = 1.34 	ext{ cfs} \)

\(RMP = \text{Reservoir Max. Pump} (64000) \)

\[= 24' \times (1.8) = 19.2'' \text{ for R.I.} \]

\[= 18.8'' \text{ considering infiltration} \]

D2
The entire area above dam

Parameter No. 391-16
Index 2.9
\(D = 19 \) ft

\[
\begin{align*}
\text{H} & = 19.85 \\
\text{L} & = 19.97 \\
\text{Ave. Reading} & = 3.475 \text{ sq in} \\
\text{Check Reading} & = 3.47 \text{ sq in}
\end{align*}
\]

\[
(19.85)^2 = (20)^2 = \frac{42,000 \times 10^2}{4,350} = 91.83 \text{ Acres}
\]

\[
319.1 \times 39.85 = 12.50 \frac{\text{Acre}}{mi}
\]

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS
9. Seepage at outlet pipe & headwall

10. Seepage at outlet pipe & headwall
7. View of inoperable gate stem inside gatehouse.

8. View of gatehouse from crest of dam.
5. View of spillway channel from downstream.

6. View of downstream spillway channel.
DA = 0.60 mi²
Size Classification = Small
Hazard Classification = High
Inception Flood = 1/2 PMF to PMF

Pick off PMF from Inflow Hydrograph = 1490 cfs

STEP 1: Peak Inflow = 1490 cfs

STEP 2a: Surcharge Height, Rating Curve = 325.5 ft

STEP 2b: Vol of Surcharge = 405 - 281 = 124 Ac ft

\[
\frac{1.39 \times 10^6 \text{ cu ft}}{\text{acre}} \times 4.05 \times 10^4 \text{ ft}^3 = 6.05 \times 10^6 \text{ ft}^3
\]

\[
\left(6.05 \times 10^6 \text{ ft}^3\right) \left(\frac{1}{50 \text{ mi}^2}\right) \times \frac{1 \text{ ft}^3}{(6.6 \text{ ft})^2} = \frac{12.5 \times 12^2}{27.5 \times 34 \times 10^4} = 0.42 \text{ ft} = 0.42 \text{ ft} \times 12 \text{ in/ft} = 5.04 \text{ in}
\]

STEP 2c

\[Q_{P2} = Q_{P1} \times \left(1 - \frac{S_{P2}}{194}\right)\]

\[Q_{P2} = 1490 \times \left(1 - \frac{5.04}{194}\right) = 1490 \times (1 - 0.0272)\]

\[Q_{P2} = 1084 \text{ cfs}\]

STEP 3: Surcharge Height for \(Q_{P2} = 325.5 \text{ ft}\)

Vol of Surcharge = 405 - 281 = 124 = 5.40 \times 10^6 \text{ ft}^3

\[
\left(5.40 \times 10^6 \text{ ft}^3\right) \left(\frac{1}{50 \text{ mi}^2}\right) \times \frac{1 \text{ ft}^3}{(6.6 \text{ ft})^2} = \frac{10.8 \times 10^6}{27.5 \times 34 \times 10^4} = 0.387 \text{ ft} = 4.65 \text{ in}\]

D-11
Step 2a:

Store 4 = 5.16 ft

Store 2 = 4.85 ft

Average = 4.96 ft

\[
0.41 \times \frac{5.16 \text{ ft}^2}{1 \text{ ft}^2} = 5.12 \times 10^2 \text{ ft}^2
\]

\[
\frac{5.72 \times 10^2 \text{ ft}^2}{4.41 \times 10^2 \text{ ft}^2} = 1.31 \text{ acre-ft}
\]

\[
1.31 + 28(=41.6)
\]

Refer to Storage vs Elevation Curve,

4.12 Acre-ft results, ELEV = 325.6

Refer to ELEV vs Discharge Curve,

ELEV 325.6 = 1120 cfs

ELEV = 4.6 above Spillway

Spillway inadequate to handle PME

Overtopping

Check with \(\times \) PME = 745 cfs

Step 2b: Surchanne Height, RMR = 0.78 ft

Step 2b: Vol. of Contaminant = 408 - 23.1 = 127 Acre-ft

\[
(1.27 \times 10^2 \text{ Acre-ft}) \div \frac{4.25 \times 10^2 \text{ ft}^2}{\text{ Acre-ft}} = 5.63 \times 10^2 \text{ ft}^2
\]

\[
(1.03 \times 10^5 \text{ ft}^3) \div \frac{1 \text{ ft}^3}{13 \text{ ft}^3} = 1.29 \times 10^3 \text{ ft}^2
\]

\[
1.31 \times 10^2 \text{ ft}^2 = 0.28 \text{ ft} = 4.5^2 \text{ in.}
\]

D-12
STEP 2c

\[Q_{pf2} = Q_{pf1} \times \left(1 - \frac{4,59}{9.5}\right) \]

\[Q_{pf1} = 745 \times \left(1 - \frac{4.59}{9.5}\right) = 745 \times (1 - 0.483) \]

\[Q_{pf2} = 385 \text{ cfs} \]

STEP 2d: Compute height for \(Q_{pf2} = 384.95 \)

\[V_c = 392.94 \text{ ft}^3 = 111 = 4.83 \times 10^6 \text{ ft}^3 \]

\[(4.83 \times 10^6 \text{ ft}^3) \times \frac{1}{450 \text{ mi}^2} \times \frac{1}{(1.25 \text{ ft}^2) / \text{ft}} = \]

\[6.66 \times 10^{-6} \text{ ft} = 0.35 \text{ ft} = 4.24 \text{ INCHES OF RUNOFF} \]

STEP 2d

\[\text{Stor. 1} = 4.59 \text{ " Runoff} \]

\[\text{Stor. 2} = 4.24 \text{ " Runoff} \]

\[\text{Ave} = 4.42 \text{ " } = 0.37 \text{ ft} \]

\[0.37 \text{ ft} \times \frac{2,520 \text{ mi}^2}{1 \text{ ft}} \times \frac{(1.25 \text{ ft}^2)}{\text{mi}^2} = 5.16 \times 10^6 = 118 \text{ ACRE-FT} \]

Refer to Storage vs Elev Curve

399 ACRE-FT REQUIRES ELEV = 325.2

Refer to Elev vs Discharge Curve

ELEV = 325.2 = 610 cfs

ELEV = 4.2 ft ABOVE SPILLWAY

SPILLWAY INADEQUATE TO HANDLE \(\frac{1}{2} \) PMF
Step 1: Use top of dam as pool elev at time of failure: ELEV = 234.2

Storage at time of failure = 364 acre-ft

Step 2: \[Q_{pi} = \frac{8}{27} W_o \sqrt{\frac{y_o}{y_f}} \] \[Q_{pi} = 1.48 \ W_o \sqrt{y_o} \]

\[W_o = \frac{1}{2} (140 - 59.7) \ y_o = 25 \]

\[Q_{pi} = 1.65 \ \sqrt{y_o} \]

\[Q_{pi} = 11,760 \ cfs \]

Step 3 Stage discharges at breached dam at lower Sprague reservation (critical flow)

<table>
<thead>
<tr>
<th>ELEV</th>
<th>DISCH</th>
<th>AREA</th>
<th>Qo</th>
<th>Vs</th>
<th>Vc</th>
<th>Hc</th>
<th>dH/cu</th>
<th>Rec W.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>15.2</td>
<td>15.2</td>
<td>405</td>
<td>646</td>
<td>625</td>
<td>2.75</td>
<td>242.45</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>30.3</td>
<td>10.7</td>
<td>597</td>
<td>522</td>
<td>165</td>
<td>4.05</td>
<td>242.33</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>519.4</td>
<td>14.9</td>
<td>159.1</td>
<td>9.13</td>
<td>1.95</td>
<td>5.23</td>
<td>244.61</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>71.1</td>
<td>240.6</td>
<td>127.9</td>
<td>9.89</td>
<td>11.2</td>
<td>6.01</td>
<td>245.91</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>71.6</td>
<td>240.7</td>
<td>127.9</td>
<td>9.89</td>
<td>11.2</td>
<td>6.01</td>
<td>245.91</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>71.6</td>
<td>240.7</td>
<td>127.9</td>
<td>9.89</td>
<td>11.2</td>
<td>6.01</td>
<td>245.91</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>71.6</td>
<td>240.7</td>
<td>127.9</td>
<td>9.89</td>
<td>11.2</td>
<td>6.01</td>
<td>245.91</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>71.6</td>
<td>240.7</td>
<td>127.9</td>
<td>9.89</td>
<td>11.2</td>
<td>6.01</td>
<td>245.91</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>71.6</td>
<td>240.7</td>
<td>127.9</td>
<td>9.89</td>
<td>11.2</td>
<td>6.01</td>
<td>245.91</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>71.6</td>
<td>240.7</td>
<td>127.9</td>
<td>9.89</td>
<td>11.2</td>
<td>6.01</td>
<td>245.91</td>
<td></td>
</tr>
</tbody>
</table>

\[Q = \sqrt{\frac{A}{2}} \]
At $Q_{F1} = 11,740 \text{ m}^3/\text{s} \quad H = 12.2 \text{ ft} \quad E_{\text{lev}} = 250.2$

$\text{Recess between lower Sprague & stillwater Reservoir}$

$Q = \frac{142.6}{12\sqrt{S_{1/2}}}$

$S = \frac{1}{\sqrt{R}}$

$Q = 2.77 \text{ m}^3/\text{s}$

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>With channel</th>
<th>Δ_1 in</th>
<th>Δ_2 in</th>
<th>Δ_3 in</th>
<th>Δ_4 in</th>
<th>R</th>
<th>R_2</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>418</td>
<td>428</td>
<td>125.6</td>
<td>3.49</td>
<td>2.30</td>
<td>2790</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>812</td>
<td>1250</td>
<td>20.1</td>
<td>6.21</td>
<td>3.28</td>
<td>11,782</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>275</td>
<td>163</td>
<td>2473</td>
<td>276.3</td>
<td>8.12</td>
<td>4.30</td>
<td>29,237</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>162.5</td>
<td>360</td>
<td>748</td>
<td>162.4</td>
<td>4.13</td>
<td>2.88</td>
<td>6236</td>
<td></td>
</tr>
</tbody>
</table>

D-15

Estimate Rough Draft for Rough #1 Area

- **Stage 10 ft:** Area = 1224 ft², 135 ft³/ft²
- **Stage 15 ft:** Area = 1354 ft², 135 ft³/ft²
- **Stage 20 ft:** Area = 1484 ft², 135 ft³/ft²

Area = \(\frac{1}{2} \times \text{Height} \times \text{Width} \)

Qp2 at 20 ft = \(\frac{135 \times 1484}{2} \) = 102,479 ft³

Vp2 at 20 ft = \(\frac{102,479}{20} \) = 5,124 ft³

Qp2 at 25 ft = \(\frac{135 \times 1354}{2} \) = 96,465 ft³

Vp2 at 25 ft = \(\frac{96,465}{25} \) = 3,858 ft³
Estimate realistic outflow for reach 42 below
lower Strange outlet
Reach length = 3000 ft
Qp1 = Qinflow = 8467 cfs
Stage = 7.9 ft Area = 862 = 59 acres

\[Q_{p2} (\text{trial}) = 8467 \left(1 - \frac{59}{564}\right) = 8467 \left(\frac{838}{564}\right) \]
\[Q_{p2} (\text{trial}) = 7095 \text{ cfs} \]
Stage = 6.9 ft Area = 703 = 46.1 acres

\[V_{ave} = \frac{59 + 46}{2} = 54 \]

\[Q_{p2} = 8467 \left(1 - \frac{54}{264}\right) = 8467 \left(\frac{852}{264}\right) \]

\[Q_{p2} = 7214 \]
Stage = 8.0 ft
APPENDIX E

INFORMATION AS CONTAINED IN THE
NATIONAL INVENTORY OF DAMS