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1. INTRODUCTION

Accurate dynamic models are required to establish the dynamic response of
complex satellite structures. Unfortunately, analytical dynamic models of
complex structures agree closely with properly measured mode data only in the
first few modes. The effect of this deficiency can be minimized by using, as
the dynamic model, the measured modes directly. This approach has been used
successfully on numerous satellite programs. Another approach, generally
referred to as system identification, is to adjust the analytical dynamic
model in an attempt to improve correlation between analytical and empirical
modes. A relatively large quantity of work has been published in this field.
However, no procedure developed to date has achieved wide acceptance in the

community.

Numerous goals and approaches to the identification problem are presented
in the literature. For example, Rodden1 published a procedure for estab-
lishing structural influence coefficients from modes of an effectively uncon-
strained structure. Subsequently, Hall,2 using optimization theory, formu-
lated a procedure that established a stiffness matrix such that the resulting
analytical modes matched selected empirical modes in a least squares sense.
The mass matrix was assumed to be exact. A procedure to adjust an analytical
mass matrix, and derive an approximate stiffness matrix, was published by

Berman and Flannelly.3 Ross4 introduced a procedure for deriving both

lRodden, W.P., "A Method for Deriving Structural Influence Coefficients
from Ground Vibration Tests,' AIAA J., Vol. 5, No. 5, May 1967.

2j1a11, B.M., "Linear Estimation of Structural Parameters from Dynamic Test
. Data," AIAA/ASME llth Structures, Structural Dynamics, and Materials
Conference, Denver, Col., 22-24 Apr. 1979.

3Berman, A. and W.G. Flannelly, "Theory of Incomplete Models of Dynamic
Structures,' AIAA J., Vol. 9, No. 8, Aug. 1971.

4Ross, R.G., Jr., "Synthesis of Stiffness and Mass Matrices from Experimental
Vibration Modes,'" SAE paper 710787, Sept. 1971.
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the mass and stiffness matrices from measured natural frequencies and a square

I modal matrix composed of measured modes supplemented by arbitrary linearly -
independent vectors. A similar concept was recently published by Zak,s who
supplements the measured mode data with information from analytically predicted

modes.

. —a

"Iterative procedures that employ statistical parameter estimation to
adjust analytical models have been published by Collins, et 31.6 and Lee and
Hasselman.7 These procedures will preserve the physical configuration of
I the model. However, as demonstrated in Ref. 7, the agreement between the
adjusted model and test data can, for some parameters, be worse than the

agreement prior to adjustment.

Identification procedures based on matrix perturbation theory have been

proposed by Chen and Wada,8 Chen and Garba,9 and Chen, et 31.10 These pro- -]

cedures assume that the analytical model parameters are close to the correct

quantities. This is a relatively severe restriction since, for complex struc- o
I Eures, experience -indicates that at least a few parameters will not satisfy ¥

this requirement.

' 5zak, M., "Discrete Model Improvement by Eigenvector Updating," ASCE J.
Engineering Mechanics, Vol 109, No. 6, Dec. 1983.

6Collins, J.D., et al., '"Statistical Identification of Structures,' AIAA
J., Vol. 12, No. 2, Feb. 1974.

7Lee, L.T. and T.K. Hasselman, "Dynamic Model Verification of Large
Structural Systems,'" SAE paper 781047, Nov. 1978,

8Chen, J.C. and B.K. Wada, "Criteria for Analyses-Test Correlation of
Structural Dynamic Systems,”" J. of Applied Mechanics, June 1975.

9Chen, J.C. and J.A. Garba, "Analytical Model Improvement Using Modal Test
Results,"”" AIAA J., Vol. 18, No. 6, June 1980.

10Chen, J.C., et al., "Direct Structural Parameter Identification by Modal
Test Results," AIAA paper 83-0812, AIAA/ASME/ASCE/AHS 24N Seructures,
Structural Dynamics and Materials Conference, Lake Tahoe, Mev., 2-4 Mav 1983.
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Identification procedures have also been developed using constrained
minimization theory. Baruch and Itzhack introduced formulations to adjust
analytical stiffness11 and flexibilitylz matrices such that the resulting
analytical dynamic model modes are identical to the analytically orthog-
onalized test modes used in the identification. These procedures assume that
the mass matrix is correct, Berman13 introduced a formulation that modifies
the mass matrix and assumes that the measured modes are exact. Subsequently,
Berman and Nagy14 combined the mass matrix adjustmeant procedure of Ref. 13
with the stiffness matrix adjustment procedure of Ref. 1l to establish the
so-called analytical model improvement (AMI) procedure. This procedure will
yield a model whose modes agree exactly with those used in the identifica-
tion. However, as demonstrated in Ref. 10, the analytical mass and stiffness
matrices can he dramatically altered. Particularly troublesome is the modi-
fication of stiffness coefficients from values of zero to large magnitude
nonzero values. Clearly, the introduction of load paths that do not exist in

the actual hardware is undesirable.

As can be ascertained from the preceding discussion, a variety of
approaches to the identification problem exist. For example, the st#tistical
parameter estimation procedures assume that the measured modes and mass and
stiffness matrices all contain errors. Some procedures assume that the
measured modes are exact and adjust the mass and stiffness properties. Others
assume the mass matrix to be ekact, orthogonalize the measured modes, and then
adjust the stiffness or flexibility matrix. Apparently, consensus exists only

on the need to adjust analytical stiffness matrices.

llgaruch, M. and I.Y. Bar Itzhack, "Optimal Weighted Orthogonalization of
Measured Modes," AIAA J., Vol. 16, No. 4, Apr. 1978.

128aruch, M., "Optimization Procedure to Correct Stiffness and Flexibility
Matrices Using Vibration Tests," AIAA J., Vol. 16, No. 11, Nov. 1978,

13Berman, A., "Mass Matrix Correction Using an Incomplete Set of Measured
Modes," AIAA J., Vol. 17, No. 10, Oct. 1979.

l4Berman, A. and E.J. Nagy, "Improvement of a Large Analytical Model Using
Test Data," AIAA J., Vol. 21, No. 8, Aug. 1983.
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Analytical dynamic models of complex structures typically involve several

. -j- {) '_‘v N '_

hundred degrees of freedom (dof). However, at best, ouniy a few dozen measured

modes will be available. Thus, the aumber of stiffness coefficients will ]

greatly exceed the number of equations provided by the measured mode data. It i

is reasonable to expect that a more accurate identification will result if the i:

ratio of stiffness coefficients to available equations is reduced. This can :;
.4

be accomplished by supplementing the measured mode data with structural connec-

B
o ad

AL

tivity information. Of course, by doing so, we assume that the connectivity

v

a_a g o

of the analytical model is correct. It is the purpose of this report to

P

L
Ades

describe a procedure that uses, in addition to mode data, structural connec-

tivity information to optimally adjust deficient stiffness matrices.

The stiffness, K, matrix adjustment (KMA) procedure will be developed

using constrained minimization theory. An important part of the development

is the selection of the error function to be minimized. 1In Refs, 1l and 14,

it is suggested that the appropriate error function should involve the mass
weighted difference between the analytical and adjusted stiffness matrix

coefficients. However, in complex spacecraft structures, for example, non-

structural items such as electronic boxes, batteries, and propellant generally L
account for over 80 percent of the total mass. Therefore, it is inappropriate :i
to weigh the stiffness coefficient changes by any function involving the mass tz
matrix. In addition, the error function, as defined in Refs. 1l and 14, can ?:
result in substantially greater percentage changes occurring in stiffness fJ
coefficients with numerically small values than in coefficients with numer- ;ﬂ
ically large values. This bias is difficult to justify. :i
=

Based on the preceding discussion, it must be concluded that the error h

RN
aiaa el ol

function proposed in Refs. 11 and 14 is not suitable for our purposes and,

-

therefore, a new error function must be established. It is proposed that the

appropriate error function be independent of the system mass properties and

stiffness coefficient magnitudes., Furthermore, minimization of the error func- f*
tion should minimize the percentage change to each stiffness coefficient. The 3
optimally adjusted stiffness matrix can then be obtained by minimizing this ﬂt
error function subject to symmetry constraints, connectivity constraints, and ‘i

constraints derived from the system eigenvalue equation.

.- '
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2. THEORETICAL DEVELOPMENT

The preceding discussion indicated that it is reasonable to expect a more
accurate stiffness matrix adjustment to result if, in addition to measured
mode data, structural connectivity information is used. This can be accom-
plished by insisting that all coefficients with values of zero in the original
stiffness matrix also have values of zero in the adjusted stiffness matrix.
Mathematically, this can be achieved by insisting that the adjusted stiffness

matrix [K] be related to the original stiffness matrix [k] by

(K] = [k]o[y] (L)

where [Y] is a matrix to be determined, and the operator ® defines the

following element operations:

K.. = K,. ¥Y.. (2)
1] 1] 13
Therefore, if kij has a value of zero, Kij will also have a value of zero. ®
Since extensive use will be made of the element-by-element (scalar) matrix 3 1

multiplication operator @, its relevant properties are presented in Appendix A.

To minimize unrealistic changes in stiffness coefficients, the error ;
function to be minimized must be independent of the stiffness coefficient -Qi?
magnitudes (see Appendix B). This can be accomplished by defining the error fj;
function as s

=

®

€= 11[1] - [1]e[Y]!! =)
o

o

n n e

-~ - 2 -4

=3 Y o(r..-1.. ;) (3)
=1 j=1 ¥ nn !,‘,1
where :
I..=1 if k.. #0 e
1) 1) .

L Y

=0 if k.. =0 (4) L
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The adjusted stiffness matrix can now be obtained by estavblishing the [v] i
that minimizes € and satisfies the following constraints: -
e

- [MIe1(w] + ([klely])(o] = [0] (5) ]

‘1

T ]

[yl - [y]" = [o0] (6) -3

where ‘ fi
[M] = system mass matrix (n,n)* Ny

(6] = system mode shapes (n,m) ;I
[wi] = diagonal matrix of circular frequencies squared (m,m) 1

The constraint that the new stiffness matrix be consistent with the mode
shapes and natural frequencies is introduced by Eq. (5). Inherent in this
constraint is the requirement that the mode shapes exhibit the orthogonality

associated with normal modes, i.e.

(61T MI[0) = [1] (7

The requirement that the new stiffness matrix be symmetric is introduced by

Eq. (6).

The method of Lagrange Multipliers15 will be used to incorporate in the

minimization of € the constraints defined by Egs. (5) and (6). We begin by -1
forming the Lagrange Function L E
n m n :3

L=€+ & jgllij < glkig‘ Yie ¢£J> - E -;

n @ 1

+ i{_:l ng uij(Yij - in) (8)

)

w

*Designates dimension of matrix -]

] )
15yadley, G., Nonlinear and Dynamic Programming, Addison-Weslev Publishing N
Company, Inc., Reading, Mass., 1964, -}
-4

10
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vyaere Xij and “ij are the Lagrange Multipliers. The quantity T represents
the first term of Eq. (5), which is not a function of Yij and, therefore,
does not need to be explicitly defined. Proceeding, we take the partial
derivative of L with respect to each Yij' These derivatives are set equal
to zero to obtain a set of nxn equations that the Yij must satisfy for L

to be a minimum. Expressing these equations in matrix notation, we obtain

~2([1) - [y]) + (k1OCIAI[4]D) + [u) = (0] (9)

Equatioans (5), (6), and (9) represent the complete system of equations
needed to determine the unknowns [A)], [u], and [Y]. Since [u] = -[u]T,

(4] can be eliminated by adding Eq. (9) and its transpose

~4((1] = YD + [leCiAl(elT + 10110 = (0] (10) o

Next, we pre-element-by-element multiply Eq. (10) by 1/4{k] and rearrange

terms to obtain

(klelyl = (k] - 1/4 [0JeC[A}(&)" + [a11A)T) (11) 2

where

G
it ,
el A,

(0] = (k][] (12) i

Substituting Eq. (ll) into Eq. (5), we obtain

Alalaialne e m

[a] + {[0JoCIAIT61T)}I4] + {[®]0C[6) (A1) }(4] = (o] (13) o
9
where '-Tj
]
2 :.‘1
ta] = 4CiMllo](w 1 - [k](oD) (14) S
®
Equation (13) can now be used .to establish [A] which, when substituted into o
Lq. (11), yields the desired stiffness matrix [see Eq. (l)]. L
0
3y performing the operations indicated in Eq. (13), and taking advantage }
¢ Ty
oI relationship 5 presented in Appendix A, it can be shown that .9,
¢ .;j-j
11 .
Y
\d

L
R
te
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svmnetric correction matrix orthogonalization procedure described in Ref. 15 will

be used, 1i.e.

= o™ o™y T2 (23)

]

[

where [¢"] are the measured modes and [¢c] are the orthogonalized modes.

Only the first five modes were included in the orthogonalization, whereas all
eight modes contributed in the response calculations. This simulates actual
test conditions where modes that are not measured contaminate the measured
modes. The two orthogonalized modes used in the subsequent stiffness matrix
adjustments are compared in Tahle 9 to the '"test" modes and the true normal

modes.

The adjusted stiffness matrix obtained using the first orthogonalized
"test" mode is presented in Table 10. Comparing these coefficients to the
exact stiffness matrix (Table 1), it can be observed that many of the
"analytical" stiffness matrix coefficients have improved substantially,
particularly the diagonal terms. By comparing the adjusted matrix coef-
ficients to those obtained with a single normal mode (Table 4), it can be
observed that they are comparable. 1In addition, connectivity has been

preserved.

The adjusted stiffness matrix obtained with two orchogon;lized "test"
modes is presented in Table 11, By comparing the adjusted stiffness matrix
coefficients to those in Table 5, we observe comparable improvement to that
obtained with two normal modes. 1In addition, as has been the case for all
test problems, connectivity has been preserved. Thus, with a limited number
of mode shapes, knowledge of the structural connectivity, and a physically
realistic minimization function, it is possible to improve a deficient stiff-

ness matrix.

16Targoff, W. P., "Orthogonality Check and Corre tion of Measured Modes,"
ATIAA J., Vol., 14, No. 2, Feb. 1976.
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Generalized Mass

Matrix--Simulated Test Modes
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1.00 0.07
1.00

SYM
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0.07
0.07
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0.05
0.08
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Table 7.

Comparison of Natural Frequencies

Natural Frequencies (rad/sec)

Corrupted Stiffness

Adjusted Stiffness Matrix

Exact Stiffness

Matrix Matrix
1 Mode 2 Modes 3 Modes
24.769 30.665% 30.665% 30.665% 30.665
38.776 31.737 31.711* 31.711% 31.711
38.859 31.850 31.763 31.763% 31.7863
31.529 33.694 32.362 32.362 32.362
41.783 37.317 34.194 34.193 34.193
42.015 39.443 35.561 35.560 35.560
44.811 41.393 38.789 38.789 38.789
54.841 50.590 46.412 41.888 41.888

* Modes used to adjust corrupted stiffness matrix
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Table 6. Adjusted-Stiffness Matrix Ccefficients--Three Normal Modes

1 2 3 4 5 6 7 8
1 1.5 -1.5 0.0 0.0 0.0 0.0 0.0 0.0
2 1011.5 -10.0 0.0 0.0 0.0 0.0 0.0
3 1110.0 0.0 -100.0 0.0 0.0 0.0
4 1100.0 -100.0 -100.0 0.0 0.0
S SYM 1100.0 0.0 0.0 0.0
6 1112.0 -10.0 -2,0
7 1011.5 -1.5
8 3.5
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The stiffness matrix coefficients identified with three normal modes are
presented in Table 6., By comparing these coefficients to the exact values
preseated in Table 1, it can be observed that they are identical. Thus, with
a subset of the system normal modes, and knowledge of the structure's con-

nectivity, the exact stiffness matrix coefficients have been identified.

The natural frequencies associated with each of the adjusted stiffness
matrices are compared in Table 7 to the exact values. The correspondence
between mode shapes, and associated frequencies, was éstabliéhed by performing
a cross~-orthogonality check between the true normal modes and the modes asso-
ciated with each of the adjusted stiffness matrices. As can be ascertained
from the table, the natural frequencies of the modes used in the identifica-
tion are reproduced exactly by the adjusted model. A comparison of corres-
ponding mode_shapes also showed exact agreement. Furthermore, for the one-
and two-mode cases, the modes and frequencies that were not used in the identi-
fication also are in closer agreement with the true values. The three-mode

case, as expected, provides exact agreement in all modes.

To be of practical use, the KMA procedure must yield reasonable results
when imperfect test~derived modes are used. To study the procedure's sen-
sitivity to imperfect data, the applicable test cases were repeated using
simulated test modes. The test modes were obtained by-establishing the closed
form quadrature response of the structure to multiple sinusoidally varving
forces (A critical damping ratio of 0.0l was assigned each mode.). The
multiple force levels were adjusted to obtained "measured" modes whose mutual
contamination did not exceed approximately 10 percent. The unit-normalized
generalized mass matrix for the first five modes is presented in Table 8. The
level of contamination is what can be expected from a properly performed mode

survey test of a complex structure.

Before proceeding with the identification, it is necessary for the "test"

modes to be analytically orthogonalized. For the purposes of this study, the




Table 4., Adjusted Stiffness Matrix Coefficients--One Normal Mode

1 2 3 4 5 6 7 8
1 1.7 -2.1 0.0 0.0 0.0 0.0 0.0 0.0
2 1013.5 -10.1 0.0 0.0 0.0 0.0 0.0
3 1275.8 0.0 -198.6 0.0 0.0 0.0
4 1237.4 -178.6 -198.5 0.0 0.0
5 1237.5 0.0 0.0 0.0
6 1279.7 -10.1 -4,1
7 1016.1 -2.0
8 5.1
Table 5. Adjusted Stiffness Matrix Coefficients--Two Normal Modes

1 2 3 4 5 6 7 8

1 1.5 ~1.5 0.0 0.0 0.0 0.0 0.0 0.0
2 1011.5 -10.0 0.0 0.0 0.0 0.0 0.0
3 1110.0 0.0 -100.0 0.0 0.0 0.0
4 1100.0 -100.0 -100.0 0.0 0.0
5 SYM 1100.0 0.0 0.0 0.0
6 1113.2 -9.0 -3.0
7 1012.4 -2.3
8 4.3
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Initially, it appears that all 16 stiffness coefficients can be identified

from two normal modes. However, as illustrated in Fig. 1, dof 6, 7, and 8
involve a load path indeterminacy of three. Thus, to obtain exact ideati-
fication, three normal modes are needed. If less tﬁan three normal modes are
used, an adjusted stiffness matrix will be obtained that minimizes the error
function [Eq. (3)] and satisfies the symmetry [Eq. (6)], eigenproblem

[Eq. (5)], and connectivity [Eq. (1)) constraints. To demounstrate this, the
"analytical" stiffness matrix was first adjusted using only one, then two, and

finally three normal modes.

The adjusted stiffness matrix obtained using one normal mode is presented
in Table 4. Comparing this matrix to the exact stiffness matrix, shown in
Table 1, we observe that many of the '"analytical" stiffness matrix coefficients
have significantly approached the true values., 1In addition, connectivity has

been preserved.

The adjusted stiffness matrix obtained using the first two normal modes of
the structure is presented in Table 5. Again, connectivity has been preserved.
In éddition, the load path stiffnesses associated with dof 1 through 5 are in
exact agreement with the coefficients presented in Table 1. Furthermore, the

terms associated with dof 6 and 7 have also improved substantially.

This two-mode case illustrates an interesting feature of the KMA procedure.
The procedure will identify exactly those stiffness coefficients associated
with the part of the structure for which the load path indeterminacy does not
exceed the number of modes used. The stiffness coefficients associated with
the part of the structure whose redundancy exceeds the number of modes used
will be adjusted to minimize the error function of Eq. (3) and satisfy the

connectivity, eigenproblem, and symmetry constraints [Eqs. (1), (5), and (6)].

As discussed previously, three normal modes would provide the needed
conditions to identify the stiffness matrix coefficients exactlv. Note that
regardless of whether three, four, or all eight modes are used, [a] + [B]
will yield only 16 nonzero eigenvalues, and the resulting stiffness matrices

will all be identical.

19

v
.
Lol

. . ."‘-" -.' -._ ;1.1:' A“.,“.." .. ‘~‘ .
PP P

\.t"_.‘ .




e g T B vt P aMICH I Lt b ol o pan fee gt et et B RARCE R SARABARLRARE A
4

-

."-

‘r.‘

L

"~

Table 3. Test Structure Corrupted Stiffness Matrix Coefficients -

2.0 =2.0 0.0 0.0 0.0 0.0 0.0 0.0
1512.0 -10.0 0.0 0.0 0.0 0.0 0.0
1710.0 0.0 -200.0 0.0 0.0 0.0

850.0 -200.0 -200.0 0.0 0.0

850.0 0.0 0.0 0.0

ST™ 1714.0 -10.0 -4.0

1512.0 =2.0
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Table 1. Test Structure Stiffness Matrix Coefficieats

1 2 3 4 5 6 7 8
1 1.5 -1.5 0.0 0.0 0.0 0.0 0.0 0.0
2 1011.5  -10.0 0.0 0.0 0.0 0.0 0.0
3 1110.0 0.0 =-100.0 0.0 0.0 0.0
4 1100.0 -100.0 -100.0 0.0 0.0
5 SYM 1100.0 0.0 0.0 0.0 D
6 1112.0  -10.0 -2.0 |
7 1011.5 -1.5 T
8 3.5 -
»

Table 2, Test Structure Mass Matrix Coefficieats

- 1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8
l‘.

. 0.001 1.0 1.0 1.0 1.0 1.0 1.0 0.002
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Fig. 1. Analytical Test Structure
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: 3. DEMONSTRATION OF PROCEDURE

The KMA procedure will be demonstrated by numerical simulation of a test
problem. The procedure will be used to adjust the corrupted stiffness matrix
of an 8 dof analytical structure. The adjustments will first be performed
using the normal modes of the system. The problem will then be repeated using

simulated test modes.

A schematic representation of the structure is shown in Fig. 1, where the
squares represent dof and the springs represent load paths. The stiffness
matrix of the structure is presented in Table 1, and the diagonal terms of the
diagonal mass matrix are shown in Table 2. This structure represents a severe
test case because of the large relative differences in the magnitudes of some
of the stiffness matrix coefficients. 1In addition, all eight natural frequen-
cies are within 27 percent of each other, and the first four natural frequen- )

cies are within 5 percent of each other.

The stiffness matrix that represents the best "analytical" model of the
structure is presented in Table 3. ' This matrix was obtained by modifying the
stiffness matrix coefficients of Table 1. Some values were increased by a
maximum of 100 percent, others were not changed, and two diagonal terms were
decreased by nearly 30 percent. Comparing the two matrices, it can be
observed that the "analytical" stiffness matrix does not resemble the true

stiffness matrix, except for connectivity.

Before proceeding with the matrix adjustment, the number of independeant
coefficients in the "analytical" stiffness matrix will be established. As
discussed previously, this can be accomplished by adding the number of
diagonal terms in the matrix and the number of nonzero coefficients on one

side of the diagonal. For the test problem, 16 independent terms are obtained.
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WITEY = Tclal + (81 [v){p}
= (Q]{p} (21)

[
where [R] is a diagonal matrix whose diagonal terms are the nonzero eigen- ?f
values of [a] + [B]. Using Eq. (21) to solve for {p} and substituting into ii
Eq. (20), we finally obtain ;;
3 o= e w @) (22) B
We can now construct [A] [see Eq. (17)] and establish [K] using Eqs. (1l1) :j
i |

and (1). )
The transformation defined by Eq. (20) yields a solution {Eq. (22)] that g

is applicable when the number of constraints defined by Eq. (5) exceeds the
number of independent stiffness coefficients available for adjustment. If
normal modes ;re used, the constraints will be consistent with each other and
the true properties of the structure. Thus, the inclusion of additional modes,

past a certain threshold, will not alter the identified stiffness coefficients.

This will not be the case if imperfect test modes are used. Because of

measurement error, empirical modes will not necessarily he perfectly con- "
sistent with each other and the true properties of the structure. However, )
Eq. (22) will still provide a solution. Discussion of this feature is beyond i:
the intended scope of this presentation. For the purposes of the preseat dis- B
cussion, if we are dealing with test modes, we shall restrict our attention to S
the classical constrained minimization problem in which the number of con- :
straints does not exceed the number of coefficients available for adjustment. =
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where if

[H]ij

- 3 T
- {¢}j{DJ}i

=

* {¢$}. = jth column of [¢]T ol
g ; ]
3 1}, = i™ column of (617(7] =
- '-}
j Equation (15) can now be used to establish {X}. Note that the rank of i“
[a] + [B] will not exceed a number equal to the number of diagonal terms in [k] ;1

F plus all the nonzero coefficients on one side of the diagonal. The exact rank ;
b of {a] + [B] will depend on the structural connectivity and the number of inde- s
e

pendent constraints defined by Eq. (5). For many problems of practical interest, i‘

(a] + [B] will be singular. In addition, [@] and [B] are symmetric and ii

[a] + [B] is indefinite; i.e., the eigeanvalues of [a] + [B] can be negative, ty

.. F
zero, and/or positive. Es
\1

Equation (15) can be solved by first defining the following transformation:

Lo n
PP

{x} = [vl{p} (20)

Ji-

e e
e ta e acad

where the columns of [Y] are the eigenvectors associated with the nonzero eigen-

values of [a] + [B]. Substituting Eq. (20) into Eq. (15) and premultiplying by

1

[w]T, we obtain
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(A} = (la] + [BD{R} ' (15)

where the elements of [A] and [A] have been written as column vectors {A}

and {X}, respectively. For example

( )
A
A1
Au A _ A1
(a] = Ay Ayl — {a} = 3 A, (16)
Aq)  Ag A3y
L A3y
)
and
( h
)\11
x12
MM ) A1
[A] = AZl A22 — {3} = A« XZZ b (17)
}‘31 A32 >‘31
A32
L J
With {a} and {A} defined by Eqs. (16) and (17), it can be shown that [a]
and [B] are as follows:
lo Lo lo 1ol
PR I N I R Y I
T T R T L
L] I | L] I | I .
: [ | R | |
: (a] =} ~-=-=l-==] == ~|- -5 | = = =}=- - - (18)
: o | o | | {G71 | | o
5 R e B e B R R
i : | | ! | °. [
RN R N DRI SRR S
o{o:...lo: :[G“l

where [61] = -[¢]T[¢1][¢I and (¢1I is a diagonal matrix whose diagonal terms

are the ith row of [$®] [see Eq. (12)]}, and
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Table 9. Comparison of Mode Shapes

:'j_'i

:j-‘;

:-. "rest'" Mode Shapes Orthogonalized "Test" Normal Mode

. Mode Shapes Shapes

- 0.029 0.112 0.144

' ® 0.015 0.042 0.054

- 0.374 0.356 0.360

. 0.595 0.609 0.606

f {oh 0.604 0.600 0.605

- 0.356 0.365 0.362

r 0.117 0.076 0.062

‘ 0.551 0.522 0.505
2.753 2.774 2.776
0.909 0.917 0.915
0.098 0.138 0.127
-0.080 . -0.078 -0.088

m {9}, ©0.027 0.050 0.041

= -0.127 -0.123 -0.124

-~ -0.365 -0.330 -0.337

= -0.539 -0.498 -0.506
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Table 10. Adjusted Stiffness Matrix Coefficients--One "Test' Mode

1 2 3 4 5 6 7 3
1 1.7 -2.1 0.0 0.0 0.0 0.0 0.0 0.9
2 1030.4 -10.1 0.0 0.0 0.0 0.0 0.0
3 1276.6 ‘0.0 -198.6 0.0 0.0 0.0
4 1235.2 -178.6 -198.5 0.0 0.0
5 SYM 1239.3 0.0 0.0 0.0
) 1279.8 -10.0 ~-4,1
7 1002.1 -2.0
8 5.1
Table 11. Adjusted Stiffness Matrix Coefficients--Two "Test" Modes

1 2 3 4 5 6 7 8

1 | 1.5 -l.4 0.0 0.0 0.0 0.0 0.0 0.0
2 1010.9 -8.0 0.0 0.0 0.0 0.0 0.0
3 1091.0 0.0 -88.8 0.0 0.0 0.0
4 1098.1 -99.6 ~99.6 0.0 0.0
5 SYM 1094.0 0.0 0.0 0.0
6 1113.5 -11.9 -3.1
7 1013.6 =2.4
8 4.4
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4. SUMMARY

A procedure has been introduced that uses, in addition to mode data,
structural connectivity information to optimally adjust deficient stiffness
matrices. The procedure was developed using constrained minimization theory.
The minimization error function was formulated such that the resulting changes
to stiffness coefficients are a minimum. The resulting procedure retains
the physical configuration of the analytical model, and the adjusted model

exactly reproduces the modes used in the identification.

The stiffness matrix adjustment (KMA) procedure was demonstrated by
numerical simulation of a test problem. The procedure was used to adjust the
corrupted stiffness matrix of an 8 dof analytical structure. The adjustments
‘were first performed using the system normal modes, of which only three were
needed for exact identification. The test problem was then repeated, using

simulated test modes, with excellent results.
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APPENDIX A

.
1 -

-9

PROPERTIES OF ELEMENT-BY-ELEMENT -

MATRIX MULTIPLICATION OPERATOR -3

.

The derivation of the KMA procedure used an element-by-element matrix ff

multiplication operator, ®. Relevant properties of the operator are preseated

below:

A-1. [c] = [a]olb]

defines c.. = a..b..
1] 1] 1]

e U N MY S

s

A-2. (c] = [d](lale[b])

e
¥l BRI
AN el S,

implies ¢ ; = z;ldik(akjbkj) s

A-3. [a]e[b] = [ble[a]

A-b. {ta1(falebN I = (1a1%ol61T) 1417

n -~ -~
A-5. alolb] = 3 (al;lb];

nxn nxn i=1

and

K = bjk for L = k

Lo 8 ]

a . = a. for L = j

——d

=0 for & # j =0 for £ # k

)

=

=
‘

0
v
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APPENDIX B

ADJUSTMENT PROCEDURE WITH STIFFNESS
COEFFICIENT MAGNITUDE WEIGHING

In the theoretical development of the KMA procedure, it was asserted
that, to minimize unrealistic changes in stiffness coefficients, the error
function must be independent of the stiffness coefficient magnitudes. This

was accomplished by defining the error function € as
€ = 1] - (1] @ [Y]n (B-1)

where [I] was obtained by replacing the nonzero coefficients of [k] with 1.0s.

It is a relatively simple task to explore the impact of incorporating,
in the error function, the stiffness coefficient magnitudes. This can be

accomplished by redefining the error function as

e = I{k] - [k] o [v]H

n Q 2
= 2%. 2 Gy = kgl g5 (B-2)
i=1 j=1

The symmetry and eigenproblem constraints are introduced in the minimization

of the above error function, as before, using Lagrange Multipliers, to obtain
-2([k]olk] - [k]o[k]oly]) + [k]@([ll[¢]T) + (] = [0] (B-3)
We eliminate [u] by adding Eq. (B-3) and its transpose

-4((k]olk] - [k]o(klolyl) + [k]oC({AIL®)T+ (411D = (o] (B-4)

Proceeding, we define a matrix [k] such that

k.. = 1/k. . if k.. #0 (B-5)
1] 1) 1]
=0 if k., =0
ij
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Next, we pre-element-by-element multiply Eq. (B=4) by 1/4 [k] and rearrange

terms to obtain

kloly] = [k] - 1/4 [T)e([AI[o]" + [61(A)T) (3-6)

where all terms are as defined in Section 2,

Comparing Eq. (B-6) to Eq. (l1), we note that they are identical except
that [I] has replaced [$]. Therefore, the solution as defined by Eq. (22)

is applicable, and the only needed change is the substitution of [I] for [¢].

The analytical test structure corrupted stiffness matrix (Table 3) was
adjusted using one and then two normal modes. As with the KMA procedure,
three modes provide exact identification, and both formulations yield exact
agreement for coefficients defined by constraints only. The adjusted matrix
coefficient, presented in Table B-1 (one mode) and Table B-2 (two modes) can
be compared to the corresponding values obtained with the KMA procedure
(Tables 4 and 5) and to the exact values (Table 1). As can he ascertained,
the coefficients identified with the KMA procedure are in considerably better
agreement with the exact values than the coefficients obtained using the error

function defined by Eq. (B-2).

Particularly troublesome, with the error function defined by Eq. (B-2),
are the large changes that occur in stiffness coefficients with small relative
numerical values. For example, the diagonal term associated with dof 8 was
modified from a value of 6.0 (Table 3) to a valﬁe of 116 [Table (B-2)]. This
should be compared to the adjustment made by the KMA procedure which changed
the coefficient from the value of 6.0 to a value of 4.3, The true value for

this particular coefficient is 3.5 (Table 1).

The poor performance of the error function defined by Eq. (B-2) is due
to the inclusion of the stiffness cpoefficient magnitudes. The minimization of
an error function, such as defined by Eq. (B-2), will result in small per-
centage changes to large magnitude coefficients and relatively large percent-
age changes to small magnitude coefficients. Therefore, to minimize unreal-
istic changes in stiffness coefficients, the error function should be inde-

pendent of the stiffness coefficient magnitudes.
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Table B-1l. Adjusted Stiffness Matrix Coefficients--One Normal Mode

g

1 2 3 4 5 6 7 8 "]

g

1 8.4  =20.0 0.0 0.0 0.0 0.0 0.0 0.0 4

2 1479.0  -=75.0 0.0 0.0 0.0 0.0 0.0 J

3 1484.3 0.0 -316.8 0.0 0.0 0.0 ;

4 1071.7 33.5 -275.4 0.0 0.0 -]

5 1095.2 0.0 0.0 0.0 -

6 1564.4  -49.7 -97.1 -

7 1503.4 -33.0 .

8 75.6 g

K

R

K

N

Table B-2., Adjusted Stiffness Matrix Coefficients--Two Normal Modes ,_1

>4

1 2 3 4 5 6 7 8 5

-]

1 1.5 -1.5 0.0 0.0 0.0 0.0 0.0 0.0 ) 7]

2 1011.5  =-10.0 0.0 0.0 0.0 0.0 0.0 X

3 1110.0 0.0 -100.0 0.0 0.0 0.0 X

4 1100.0 -100.0 ~-100.0 0.0 0.0 g
5 SYM 1100.0 0.0 0.0 0.0
6 1278.0  135.0 -139.0
7 1137.0 -121.0
8 116.0
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(A)

{a}

(6]
[H].
(1]
(1]
(x]
i
(]

ij

A..
1}

BN - . oa L.
PP R S Y W PR S

NOMENCLATURE

see Eq. (14)

vector éf [A] elements [see Eq. (16)]
defined by Eq. (18)

defined by Eq. (19)
ith column of [¢]T [¢J]

matrix of stiffness matrix adjustment coefficients

element ij of [y]

2
(4] (6] (]
error function

submatrix i of [a]

submatrix ij of [B]
identity matrix

see Eq. (4)
analytical stiffness matrix

element ij of {k]

adjusted analytical stiffness matrix

element ij of [K]

Lagrange function

Lagrange Multiplier
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NOMENCLATURE (Continued) -4
. :“J
.9
N
[A] matrix of Lagrange Multipliers Aij .
>
{x} vector of [A] elements [see Eq. (17)] ?ﬁ
M) mass matrix .A
M 5 Lagrange Multiplier ]
g
(u] Matrix of Lagrange Multipliers uij B
) element-by-element matrix multiplicatioun operator R
{p} transformed {A} [see Eq. (20)]
{o] matrix of normal mode vectors "
{¢}i i*™™ normal mode vector 5
Y
- .th : .
{¢}j Jt column of [d)]T "]
¢ij elemeat ij of (¢] *
T
[o™] matrix Of measured mode vectors ' —
[¢c] matrix of analytically orthogonalized measured mode vectors ﬁ
4
. 94
($) (k] ® [k] 2]
i . . . .th 5
(9] diagonal matrix whose diagonal elements are the i row of [9¢] K
(y] eigenvectors of [a] + [B] associated with [Q] &
[wﬁ] diagonal matrix of circular frequencies squared o
. Fi
{Q] nonzero eigenvalues of [a] + [B] S
(0] null matrix
B
g
[y »']
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