EAST MACHIAS RIVER BASIN
EAST MACHIAS, MAINE

CHASE MILL DAM
ME-00335

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

MAY 1979

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited
Chase Mill Dam
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

7. AUTHOR(S):
U.S. ARMY CORPS OF ENGINEERS
NEW ENGLAND DIVISION

11. CONTROLLING OFFICE NAME AND ADDRESS
DEPT. OF THE ARMY, CORPS OF ENGINEERS
NEW ENGLAND DIVISION, NEDED
424 TRAPELO ROAD, WALTHAM, MA. 02254

13. SUPPLEMENTARY NOTES
Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)
DAMS, INSPECTION, DAM SAFETY,
East Machias River Basin
East Machias, Maine
Chase Mill Stream

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
The dam is about 10 ft. high and 45 ft. long. The dam is assessed to be in fair condition. It is intermediate in size with a hazard potential classification if low. There are various remedial measures which should be implemented by the owner.
EAST MACHIAS RIVER BASIN
EAST MACHIAS, MAINE

CHASE MILL DAM
ME-00335

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT
ME-00335
CHASE MILL DAM
EAST MACHIAS
WASHINGTON COUNTY, MAINE
CHASE MILL STREAM
November 28, 1978

BRIEF ASSESSMENT

The Chase Mill Dam is a concrete buttress wall structure. The dam is approximately 10 feet high and 45 feet long. It consists of 3 stop log outlets and 3 broad crested weir spillway sections. The spillway sections are approximately 34 feet long, total, and have provisions for stop logs. Only the most northerly section had stop logs in at the time of inspection. Immediately downstream of the dam is a highway bridge with an opening approximately 24 feet wide and 11.5 feet high.

Based on the visual inspection, Chase Mill Dam is assessed to be in fair condition. Major concerns regarding the safety of the dam include: low areas in embankment between the northerly abutment and fishway and leakage through the spillway sections.

Based on size (intermediate) and hazard classification (low), the test flood is 1/2 the probable maximum flood (1/2 PMF). The total project discharge (spillway capacity plus natural outlet flows) with water surface at the top of the dam is about 950 cfs or about 42 percent of the routed test flood. The routed test flood outflow of 2250 cfs would overtop the dam by about 1.5 feet, but the roadway immediately downstream of the dam would not be overtopped.

The following recommendation and items of remedial maintenance, as outlined in Section 7 should be implemented within one year after receipt of this report by the owner. The need and appropriate construction details for a facility to provide access to the stop logs during high flow should be evaluated and developed by a qualified engineer, and implemented as found necessary. The following items of remedial maintenance should also be performed. 1) seal the joint between the Chase Mill Dam...
spillway weir and the sill and abutment; 2) fill and protect against erosion the low areas adjacent to the fishway; 3) provide around-the-clock surveillance during heavy runoff periods; and 4) have inspections of the dam made by a qualified engineer once every 2 years.

EDWARD C. JORDAN CO., INC.

Stanley E. Walker, P.E.
Project Officer
This Phase I Inspection Report on Chase Mill Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

JOSEPH A. MCELROY, MEMBER
Foundation & Materials Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

JOSEPH W. FINEGAN, JR., CHAIRMAN
Chief, Reservoir Control Center
Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTER OF TRANSMITTAL</td>
<td>i</td>
</tr>
<tr>
<td>BRIEF ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>REVIEW BOARD SIGNATURE SHEET</td>
<td>iii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>OVERVIEW PHOTOGRAPH</td>
<td>vii</td>
</tr>
<tr>
<td>LOCATION MAP</td>
<td>viii</td>
</tr>
<tr>
<td>SECTION 1 - PROJECT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>1.1 GENERAL</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 DESCRIPTION OF PROJECT</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3 PERTINENT DATA</td>
<td>1-3</td>
</tr>
<tr>
<td>SECTION 2 - ENGINEERING DATA</td>
<td></td>
</tr>
<tr>
<td>2.1 DESIGN</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 CONSTRUCTION</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 OPERATION</td>
<td>2-1</td>
</tr>
<tr>
<td>2.4 EVALUATION</td>
<td>2-1</td>
</tr>
<tr>
<td>SECTION 3 - VISUAL INSPECTION</td>
<td></td>
</tr>
<tr>
<td>3.1 FINDINGS</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 EVALUATION</td>
<td>3-2</td>
</tr>
<tr>
<td>SECTION 4 - OPERATING PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.1 PROCEDURES</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 MAINTENANCE OF DAM</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 MAINTENANCE OF OPERATING FACILITIES</td>
<td>4-1</td>
</tr>
<tr>
<td>4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT</td>
<td>4-1</td>
</tr>
<tr>
<td>4.5 EVALUATION</td>
<td>4-1</td>
</tr>
<tr>
<td>SECTION 5 - HYDRAULIC/HYDROLOGIC</td>
<td></td>
</tr>
<tr>
<td>5.1 EVALUATION OF FEATURES</td>
<td>5-1</td>
</tr>
</tbody>
</table>

Chase Mill Dam
TABLE OF CONTENTS (Continued)

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY 6-1

SECTION 7 - ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 DAM ASSESSMENT ... 7-1
7.2 RECOMMENDATIONS .. 7-1
7.3 OPERATING AND MAINTENANCE PROCEDURES 7-1
7.4 ALTERNATIVES .. 7-2

APPENDICES

A FIELD INSPECTION NOTES
B ENGINEERING DATA
C PHOTOGRAPHS
D HYDROLOGIC AND HYDRAULIC COMPUTATIONS
E INVENTORY FORMS
SECTION 6

STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations. Based on the visual observations the Chase Mill Dam appears to be in fair condition. Heavy leakage is occurring through the joint between the spillway wall and its foundation sill. The open condition of this joint presents serious concern for the structural integrity of the spillway. Continued flow through this joint will cause further deterioration of the concrete and reinforcing steel, and additional distress.

The other concrete elements of the dam appear to be in good condition. The highway embankment which forms the dike portions of the dam also appears to be in good condition. There are some low areas in the earthfill adjacent to the fishway. Overtopping flow likely occurs through these areas during high run-off periods. However, no serious erosion appears to have occurred.

b. Design and Construction Data. According to an East Machias Selectman, the existing dam originally consisted only of piers constructed to support fish screens. During the late 1950's or early 1960's the concrete spillway wall was installed, replacing the screens, to control Gardner Lake water level. This modification was made to replace the breached former Mill Dam, immediately downstream. No specific data concerning the design or construction was disclosed in this investigation.

c. Operating Records. None available.

d. Post-Construction Changes. See paragraph b. above.

e. Seismic Stability. The dam is located in Seismic Zone 1 and in accordance with recommended Phase 1 guidelines, does not warrant seismic analysis.
maximum flood (PMF) was used in evaluating the dam's spillway capacity. The test flood was calculated to be about 13,000 cfs according to the COE's "Preliminary Guidance for Estimating Probable Maximum Discharges in Phase I Dam Safety Investigations". The test flood analysis is based on stop logs being in place as they were on the day of inspection. The effect of surcharge storage reduces the test flood to 2,250 cfs. The total project discharge (spillway capacity plus natural outlet flows) is about 950 cfs with water level at top of dam which is about 42 percent of the routed test flood (1/2 PMF). The routed test flood outflow would overtop the dam by 1.5 feet.

f. Dam Failure Analysis. To determine the hazard classification for the Chase Mill Dam, the potential impact of a failure of the dam when water surface is at the top of the dam was assessed. The failure analysis relied upon the Corps of Engineers' "rule of thumb" guidelines. The hazard potential was determined by calculating downstream dam failure hydrographs which might result from a breach of a section of the dam spillway.

The flood peak at the dam from failure plus the flow through the westerly natural outlets was computed to be about 1,450 cfs. Under these conditions, it would take the reservoir approximately one month to empty. The flood wave at the dam would be about 7.5 feet high. The wave height at the East Machias Dam, 2.1 miles downstream, would be about 6.0 feet. At both locations the flow would probably remain within the stream banks.

No residences appear to be potentially affected by failure of the dam. The possible damage seems to be limited to the road embankment and bridge just downstream of the dam.

Resistance to erosion from overtopping in the area east of the fishway may be considered poor. This area might also be subject to failure. It has been calculated that the roadway which is located about 25 feet downstream of the dam would not be overtopped by the 1/2 PMF.
5.1 EVALUATION OF FEATURES

a. General. The Chase Mill Dam is a concrete buttress wall structure located at the east outlet of Gardner Lake. The dam is about 10 feet high and 45 feet long. The spillway consists of three controlled broad-crested weir sections with two sections having approximately the same crest elevation. There are three stop log outlet sections. See plan and profile drawing in Appendix B for location of individual sections. Stop logs were not being used in spillway sections 1 and 2 at the time of inspection. A natural outlet channel located about 300 feet west of the dam (west outlet #1), is controlled by a 4 foot diameter culvert under the roadway. A second natural outlet channel (west outlet #2), located about 600 feet west of the dam, discharges at flood stages and is also controlled by a 4-foot diameter culvert under the roadway. Flow would overtop the roadway at west outlet #2, but not at west outlet #1. There are no residences or other structures in the immediate area of west outlet #2 that would be affected by roadway overtopping.

b. Design Data. No design hydrologic or hydraulic data were available.

c. Experience Data. No information regarding past overtopping or other notable hydrological events was available.

d. Visual Observations. The outlet of Gardner Lake is hydraulically controlled by the Chase Mill Dam, west outlet #1 and west outlet #2. Leakage from beneath the spillway was estimated to be about 5 cfs. There was an estimated 15 cfs flow in west outlet #1. West outlet #2 discharges when Gardner Lake is at flood stage. At the time of the visual inspection, November 28, 1978, there was no flow at west outlet #2.

e. Test Flood Analysis. The Chase Mill Dam is classified as having a low hazard potential. Based on the Corps of Engineers "Recommended Guidelines for Safety Inspection of Dams," a test flood equal to 1/2 of the probable

5-1
Chase Mill Dam
SECTION 4
OPERATING PROCEDURES

4.1 PROCEDURES

No written operational procedures were disclosed. Chase Mill Dam is the level controlling structure for Gardner Lake. Stop logs are placed or removed from the outlet bays and spillway crest to adjust the lake levels.

4.2 MAINTENANCE OF DAM

Chase Mill Dam is maintained by the Town of East Machias. It appears that the dam has received little maintenance in recent years.

4.3 MAINTENANCE OF OPERATING FACILITIES

The spillway stop logs are generally in fair condition. There appears to be no scheduled maintenance program for the dam.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT

No warning system is known to be in effect.

4.5 EVALUATION

The Chase Mill Dam operating facilities are generally in fair condition. Maintenance is sporadic and inadequate. It appears that removal of the stop logs would be very difficult during high flow conditions. No formal warning system for either highwater or structural distress is in effect at the dam.
leakage occurring through the joint between the spill-
way wall and the foundation sill. Erosion of the
concrete in this joint is likely occurring and the
leakage will likely become progressively worse. As
outlined in Section 7, rehabilitative construction and
maintenance is necessary to assure the long-term safety
of the structure.
(2) Hydraulics - At the time of visual inspection November 28, 1978, the lake surface was approximately elev. 65.3, about 1.7 feet below the spillway crest. There are three stop log bays which form control outlets for the dam. The north portion of the spillway was also furnished with stop logs. All stop logs have to be manually removed. Although spillway sections #1 and #2 were not provided with stop logs, supports and slots were provided for the installation of stop logs.

Flow was occurring through the fishway and center stop log bay. This bay had a lower crest elevation due to stop log removal. Flow was occurring through leaks in the dam at a rate of about 5 cfs. West outlet #1 was also flowing. There was no flow in west outlet #2.

c. Appurtenant Structures. The concrete fishway, located at the north end of the dam, appears to be in good condition. The embankment areas adjacent to the fishway are low and appear to be overtopped during high flow periods. However, there appeared to be no serious erosion.

d. Reservoir Area. Gardner Lake, which is about 5250 acres, forms the reservoir for Chase Mill Dam. The lake has a forested shoreline, as shown in Photograph 2. There are several cottages and year round residences on the lake. The potential for slope failure above the dam appears minimal.

e. Downstream Channel. The channels below the dam and the two west outlets are narrow and slope at about 3.5 percent. The three channels join about 1/4 mile downstream of the dam. The streambeds are composed primarily of gravel and cobbles. The channel below the dam is constricted by a bridge, located about 25 feet downstream, as shown in the overview photograph. The bridge opening measures approximately 24 feet wide by 11.5 feet high. When the water surface reaches elevation 71.0, about 1.5 feet above top of dam, the bridge opening becomes the hydraulic control. The road surface elevation at the bridge is 73.8 (MSL).

3.2 EVALUATION

Based on the visual inspection findings, the Chase Mill Dam appears to be in fair condition. There is heavy
SECTION 3
VISUAL INSPECTION

3.1 FINDINGS

a. General. The Chase Mill Dam is a concrete buttress-wall structure. It is located at the outlet of Gardner Lake and is apparently used for maintaining the water level in Gardner Lake for recreational purposes. The dam closes the major outlet from Gardner Lake, however, two smaller outlets, west outlets #1 and #2, are located 300 feet and 600 feet west of the dam, respectively.

b. Dam.
(1) Structural - the dam consists of a concrete structure forming the spillways and control outlets and a road embankment which forms the embankment of the dam. The road is located just downstream of the concrete section and follows the shoreline of Gardner Lake. See Appendix A, B, and C for detail inspection notes, sketches of the structure, and photographs. The inspection resulted in the following major findings:

(a) Major leakage is occurring through the joint between the spillway weir and the foundation sill. See Photographs 3 and 4. This leakage is apparently coming through the joint directly from the upstream face of the dam.

(b) The concrete surfaces on the structure are in generally good condition with very little spalling or erosion.

(c) There are low areas in the embankment fill adjacent to the fishway. It appears that these areas are overtopped during high flow conditions. The low area east of the fishway does not appear to be subject to erosion due to the presence of bedrock. However, the low area west of the fishway and at the toe of the highway fill appears to be subject to erosion although no serious erosion has occurred.

(d) It appears that removal of the stop logs would be very difficult during high flow conditions.
SECTION 2
ENGINEERING DATA

2.1 DESIGN

No design data were available for the Chase Mill Dam.

2.2 CONSTRUCTION

No engineering data were available regarding construction of the Chase Mill Dam.

2.3 OPERATION

No engineering operational data were available.

2.4 EVALUATION

a. Availability. There are no engineering data or plans available that would be useful in evaluating the integrity of Chase Mill Dam.

b. Adequacy. The lack of engineering data did not allow for a definitive review. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection and engineering judgment.

c. Validity. Not applicable.
approximately the same crest elevation (see plan-profile drawing in Appendix B for location of individual sections.

Length - Section #1 - 18.5 feet
 Section #2 - 9.7 feet
 Section #3 - 6.1 feet

Crest Elevation - Section #1 - 67.0 (MSL)
 Section #2 - 67.0 (MSL)
 Section #3 - 65.5 (MSL)

Gates - None.

Upstream Channel - The approach channel to the spillway is clear and unobstructed.

Downstream Channel - The channels below the dam and the two west outlets are narrow and slope at about 3.5 percent. The three channels join about 1/4 mile downstream of the dam. The streambeds are composed primarily of gravel and cobbles. The channel below the dam, as shown in the overview photograph, is constricted by a bridge, located about 25 feet downstream of the dam. The bridge has an opening approximately 24 feet wide by 11.5 feet high. When the water surface reaches elevation 71.0, about 1.5 feet above top of dam, the bridge channel opening becomes the hydraulic control.

j. Regulating Outlets.

(1) Inverts: Stop Log Bay #1 - 60.5 (MSL)
 Stop Log Bay #2 - 62.0 (MSL)
 Stop Log Bay #3 - 62.0 (MSL)

(2) Size: Stop Log Bay #1 - 4 feet wide
 Stop Log Bay #2 - 4 feet wide
 Stop Log Bay #3 - 3 feet wide

(3) Description - Stop log bays

(4) Control Mechanism - None.
ITEM (ACRE-FEET)

Normal Water Surface Pool (Elev. 67) 27,500
Top of Dam 41,300
Test Flood (1/2 PMF) 49,200

f. Reservoir Surface Area

ITEM (ACRES)

Recreation Pool 5,250
Flood Control Pool N/A
Spillway Crest Pool 5,250
Test Flood (1/2 PMF) Pool 6,150
Top of Dam 5,800

g. Dam

Type - The dam is a concrete buttress wall structure.

Length - The length between abutments is about 45 feet.

Height - 10 feet from top of dam to stream bed.

Top Width - Approximately 1 foot at spillway crest.

Side Slopes - see plan and cross-sections in Appendix B-1.

Zoning - Not applicable.

Impervious Core - Not applicable.

Cutoff - Concrete sill placed on bedrock or into streambed.

Grout Curtain - None.

h. Diversion and Regulating Tunnel. Not applicable.

i. Spillway

Type - The spillway consists of three controlled broad-crested weir sections with two sections having
(1) Outlet Works - The outlet works consist of three stop log sections. No facility is provided for removal of stop logs during periods of high flow.

(2) The maximum flood at the damsite is unknown.

(3) Ungated spillway capacity with water surface at the top of the dam is about 550 cfs.

(4) Westerly outlets #1 and #2 total capacity with water surface at top of the dam is about 400 cfs.

(5) Gated spillway capacity is not applicable.

(6) Total project discharge at test flood (1/2 PMF) elevation of 70.8 is 2250 cfs.

c. Elevation. The survey datum was converted to MSL datum by assuming that the spillway crest is equal to elevation 67 (normal water surface elevation for Gardner Lake), as shown on the U.S.G.S. map of Gardner Lake, Maine quadrangle.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ELEVATION (FEET ABOVE MSL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of dam</td>
<td>69.5</td>
</tr>
<tr>
<td>Top of road</td>
<td>Varies from 73.8 immediately downstream of dam to 62+ at west outlet #2</td>
</tr>
<tr>
<td>Test flood (1/2 PMF) pool</td>
<td>70.8</td>
</tr>
<tr>
<td>Full flood control pool</td>
<td>N/A</td>
</tr>
<tr>
<td>Recreation pool</td>
<td>67.0</td>
</tr>
<tr>
<td>West outlet #1 invert</td>
<td>69.0</td>
</tr>
<tr>
<td>West outlet #2 invert</td>
<td>61.8</td>
</tr>
<tr>
<td>Streambed at centerline of dam</td>
<td>60.5</td>
</tr>
<tr>
<td>Maximum tailwater</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

d. Reservoir Reach

<table>
<thead>
<tr>
<th>ITEM</th>
<th>LENGTH (MILES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Pool</td>
<td>8.3</td>
</tr>
<tr>
<td>Recreation Pool</td>
<td>8.3</td>
</tr>
<tr>
<td>Flood Control Pool</td>
<td>N/A</td>
</tr>
</tbody>
</table>

e. Reservoir Storage Capacity

Chase Mill Dam
f. Operator.

None

g. Purpose of Dam. The dam is presently being used to control the water level at Gardner Lake for recreational purposes.

h. Design and Construction History. Very little design and construction data pertinent to this dam was available. According to an East Machias selectman the dam piers were constructed before 1934 for the purpose of supporting fish screens. However, in the late 1950's or early 1960's the Gardner Lake Club had the concrete spillway wall installed to control the water level at Gardner Lake after the breaching of the old Mill Dam immediately downstream.

i. Normal Operating Procedures. The Chase Mill Dam has no formal operating and maintenance program. Stop logs are manually added or removed as required to achieve the desired water elevation in Gardner Lake.

1.3 PERTINENT DATA

a. Drainage Areas. The drainage area above Chase Mill Dam is about 53 square miles. The watershed is primarily gently sloping forested terrain. Gardner Lake, which is impounded by Chase Mill Dam, has an area of about 8.2 square miles (5250 acres), which is approximately 15.6 percent of the drainage area.

b. Discharge at Damsite. No record of high water was available. Chase Mill Dam hydraulically controls the east outlet of Gardner Lake. West outlet #1 located about 300 feet west of the dam, is controlled by a 4 foot diameter culvert under the roadway. Discharge through this culvert is insignificant when compared to total project discharges. About 600 feet west of the dam is another natural outlet, west outlet #2, also controlled by a 48 inch diameter culvert under the roadway, that aids in the passage of flood flows when the water surface is above the top of the dam. The following are pertinent discharges for Chase Mill Dam:
b. Description of Dam and Appurtenances. Chase Mill Dam is a concrete buttress wall structure. It is approximately 10 feet high and is about 45 feet long. The spillway consists of three controlled broad-crested weir sections with two sections having approximately the same concrete crest elevation. There are three deep stop log outlet sections. See plan-profile sketch in Appendix B for location of individual sections. Stop logs were not being used in spillway sections 1 and 2 at the time of inspection.

Appurtenant to the north end of the dam is a dentated fishway. The embankment fill adjacent to the fishway is low in several areas and appears to be overtopped during heavy flow periods.

C. Size Classification. The Chase Mill Dam is classified as an intermediate size dam. It has a storage capacity of about 43,000 acre-feet and a height of approximately 10 feet. According to the Corps of Engineers "Recommended Guidelines for Safety Inspection of Dams," a dam with storage capacity greater than 1000 acre-feet but less than 50,000 acre-feet or a height greater than 40 feet but less than 100 feet is classified as an intermediate size dam.

d. Hazard Classification. The Chase Mill Dam is classified as having a low hazard potential. The peak flow from the hypothetical failure of the dam was estimated to be about 1450 cfs based on guideline procedures provided by the Corps of Engineers. Flood waters would likely be completely contained within the downstream river channel. It appears that no inhabitable structures would be damaged.

e. Ownership.

Current: Town of East Machias
 City Hall
 East Machias, Maine

Contact: Mariner Dennison
 East Machias Selectman
 (603-255-8598)
1.1 GENERAL

a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Edward C. Jordan Co., Inc. has been retained by the New England Division to inspect and report on selected dams in the states of Maine and New Hampshire. Authorization and notice to proceed were issued to Edward C. Jordan Co., Inc. under a letter of December 1, 1978 from Max B. Scheider, Colonel, Corps of Engineers. Contract No. DACW33-79-C-0017 has been assigned by the Corps of Engineers for this work.

b. Purpose.

(1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) To encourage and prepare the states to initiate effective dam safety programs for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.

1.2 DESCRIPTION OF PROJECT

a. Location. The Chase Mill Dam is located at the outlet of Gardner Lake in the Town of East Machias, Maine, N44°-45.3', W 67°-21.7'.
SECTION 7
ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Condition. Based on the visual inspection and the apparent performance history of the Chase Mill Dam, it is assessed to be in fair condition. The test flood is 1/2 the probable maximum flood (1/2 PMF). The total project discharge including the capacity of the natural outlets is about 42% of the routed test flood. The inspection of the project resulted in the following major concerns:

(1) Heavy leakage is occurring through the junction of the spillway and foundation sill.

(2) The embankment adjacent to the fishway is low and subject to erosion from overtopping.

(3) It appears that removal of the stop logs would be very difficult during high flow conditions.

b. Adequacy of Information. The information available is such that the assessment of the condition of the dam must be based primarily on the visual inspection and engineering judgment.

c. Urgency. The recommendations and remedial measures outlined in 7.2 and 7.3 below should be implemented within 12 months after receipt of this report by the owner.

d. Need for Additional Investigation. Additional investigation is not considered necessary for the current assessment.

7.2 RECOMMENDATIONS

The need and appropriate construction details for a facility to provide access to the stop logs during high flow should be evaluated and developed by a qualified engineer and implemented as found necessary.

7.3 OPERATING AND MAINTENANCE PROCEDURES

A program of regular inspection and maintenance of the dam should be implemented and recorded. It should include the following specific maintenance and operating procedures:
1. Seal the joint at the junction of the spillway weir and the sill and the spillway weir and abutment to curtail leakage.

2. Fill the low portion of the embankment adjacent to the fishway to a grade at least two feet above the elevation of the northerly abutment and provide an erosion resistant surface.

3. Provide around-the-clock surveillance during periods of anticipated high runoff.

4. Have inspections of the dam made by qualified engineers once every 2 years.

7.4 ALTERNATIVES

An alternative to repair of the facility would be its removal.
APPENDIX A

VISUAL INSPECTION CHECK LIST

AND

SUPPLEMENTARY INSPECTION NOTES
VISUAL INSPECTION CHECKLIST
PARTY ORGANIZATION

PROJECT _____ Chase Mill Dam_________ DATE _____11/28/78_____
TIME _____ AM ____________
WEATHER ______ Snow, freezing rain __________
W.S. ELEV. ______ 65.7 U.S. 60.5+ DN.S. __________

PARTY:
1. Stephen Cole ___________________________ 6. __________________________
2. Brian Bisson ____________________________ 7. __________________________
3. Scott Decker ____________________________ 8. _____________________________
4. John Kimble _____________________________ 9. ____________________________
5. Charles Goodwin _________________________ 10. ___________________________

PROJECT FEATURE ______ INSPECTED BY _______ REMARKS
1. Geotechnical ______ Cole __________________
2. Structural ______ Cole, Decker _____________
3. Civil ________ Decker ___________________
4. Hydraulics/Hydrology ______ Bisson __________
5. Photography ______ Bisson, Decker ________
6. Survey ________ Kimble, Goodwin __________
 Review Inspection __________ S. Walker, C. Horstmann __________
12/14/78 _______ No significant differences observed from previous in-
 spection. __________________________

NOTE: See Supplementary Inspection Notes Following Checklist

A-1

Chase Mill Dam
INSPECTION CHECKLIST

PROJECT | Chase Mill Dam | **DATE** | 11/28/78
PROJECT FEATURE | Embankment | **NAME** | Cole
DISCIPLINE | Geotechnical | **NAME** |

AREA EVALUATED

<table>
<thead>
<tr>
<th>DAM EMBANKMENT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Elevation</td>
<td>69.5+ MSL</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>67+ MSL</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>N/A</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>None</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Low areas near fishway</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Okay</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Low near fishway, no seepage apparent</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>None</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>None</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td>Erosion has occurred near spillway</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Turf</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITIONS</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>DAM EMBANKMENT (cont.)</td>
<td></td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>None</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>None</td>
</tr>
<tr>
<td>Piping or Boils</td>
<td>None</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>None</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>None</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>None</td>
</tr>
</tbody>
</table>

A-3

Chase Mill Dam
INSPECTION CHECKLIST

PROJECT Chase Mill Dam

DATE 11/28/78

PROJECT FEATURE Intake Channel Structure

NAME Cole, Decker

DISCIPLINE Structural, Geotechnical

Hydrology/Hydraulics

NAME Bisson

AREA EVALUATED

CONDITION

OUTLET WORKS - INTAKE CHANNEL AND
INTAKE STRUCTURE

a. Approach Channel

Slope Conditions Natural shore of lake

Bottom Conditions Gravel, sand, clean

Rock Slides or Falls None

Log Boom None

Debris None

Condition of Concrete Lining None

Drains or Weep Holes None

b. Intake Structure

Condition of Concrete Good

Stop Logs and Slots Good, some leakage around stop logs

Chase Mill Dam
INSPECTION CHECKLIST

PROJECT Chase Mill Dam
DATE 11/28/78

PROJECT FEATURE Control Tower
NAME Cole, Decker

DISCIPLINE Structural, Hydraulics/Hydrology
NAME Bisson

AREA EVALUATED	CONDITION

OUTLET WORKS - CONTROL TOWER

a. Concrete and Structural

General Condition
Condition of Joints
Spalling
Visible Reinforcing
Rusting or Staining of Concrete NOT APPLICABLE
Any Seepage or Efflorescence
Joint Alignment
Unusual Seepage or Leaks in Gate Chamber
Cracks
Rusting or Corrosion of Steel

b. Mechanical and Electrical

Air Vents
Float Wells
Gate Hoist
Elevator

Chase Mill Dam
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - CONTROL TOWER (cont.)</td>
<td></td>
</tr>
<tr>
<td>Hydraulic System</td>
<td></td>
</tr>
<tr>
<td>Service Gates</td>
<td></td>
</tr>
<tr>
<td>Emergency Gates</td>
<td></td>
</tr>
<tr>
<td>Lightning Protection System</td>
<td></td>
</tr>
<tr>
<td>Emergency Power System</td>
<td></td>
</tr>
<tr>
<td>Wiring and Lighting System</td>
<td></td>
</tr>
</tbody>
</table>
OUTLET WORKS - TRANSITION AND CONDUIT

<table>
<thead>
<tr>
<th>Area Evaluated</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Condition of Concrete</td>
<td>Good</td>
</tr>
<tr>
<td>Rust or Staining on Concrete</td>
<td>None</td>
</tr>
<tr>
<td>Spalling</td>
<td>None</td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td>Minor erosion</td>
</tr>
<tr>
<td>Cracking</td>
<td>None</td>
</tr>
<tr>
<td>Alignment of Monoliths</td>
<td>N/A</td>
</tr>
<tr>
<td>Alignment of Joints</td>
<td>Good</td>
</tr>
<tr>
<td>Numbering of Monoliths</td>
<td>N/A</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Structure</td>
<td>General Condition of Concrete: Good</td>
</tr>
<tr>
<td>Channel</td>
<td>Rust or Staining: None</td>
</tr>
<tr>
<td></td>
<td>Spalling: None</td>
</tr>
<tr>
<td></td>
<td>Erosion or Cavitation: Minor erosion</td>
</tr>
<tr>
<td></td>
<td>Visible Reinforcing: None</td>
</tr>
<tr>
<td></td>
<td>Any Seepage or Efflorescence: None</td>
</tr>
<tr>
<td></td>
<td>Condition at Joints: Good</td>
</tr>
<tr>
<td></td>
<td>Drain holes: None</td>
</tr>
<tr>
<td></td>
<td>Channel</td>
</tr>
<tr>
<td></td>
<td>Loose Rock or Trees Overhanging Channel: None</td>
</tr>
<tr>
<td></td>
<td>Condition of Discharge Channel: Bridge, restriction immediately downstream</td>
</tr>
</tbody>
</table>

DATE: 11/28/78

PROJECT: Chase Mill Dam

NAME: Cole, Decker

DISCIPLINE: Geotechnical, Structural

NAME: Bisson

A-8

Chase Mill Dam
INSPECTION CHECKLIST

PROJECT Chase Mill Dam
DATE 11/28/78

PROJECT FEATURE Spillway
NAME Cole, Decker

DISCIPLINE Structural, Hydraulics/Hydrology NAME Bisson

AREA EVALUATED CONDITIONS

OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS

a. Approach Channel
 General Condition Good
 Loose Rock Overhanging Channel None
 Trees Overhanging Channel None
 Floor of Approach Channel Gravel, sand, good

b. Weir and Training Walls
 General Condition of Concrete Fair
 Rust or Staining None
 Spalling Downstream face of weir, south end
 Any Visible Reinforcing None
 Any Seepage or Efflorescence Heavy leakage near bottom of weir at joint to sill
 Drain Holes None

c. Discharge Channel
 General Condition Good, sewer near bridge
 Loose Rock Overhanging Channel None
 Trees Overhanging Channel None
 Floor of Channel Gravel, cobbles
 Other Obstructions Bridge immediately downstream
INSPECTION CHECKLIST

PROJECT Chase Mill Dam
DATE 11/28/78

PROJECT FEATURE Service Bridge
NAME Decker

DISCIPLINE Civil
NAME

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SERVICE BRIDGE</td>
<td></td>
</tr>
<tr>
<td>a. Superstructure</td>
<td></td>
</tr>
<tr>
<td>Bearings</td>
<td></td>
</tr>
<tr>
<td>Anchor Bolts</td>
<td></td>
</tr>
<tr>
<td>Bridge Seat</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Members</td>
<td></td>
</tr>
<tr>
<td>Under Side of Deck</td>
<td></td>
</tr>
<tr>
<td>Secondary Bracing</td>
<td>NOT APPLICABLE</td>
</tr>
<tr>
<td>Deck</td>
<td></td>
</tr>
<tr>
<td>Drainage System</td>
<td></td>
</tr>
<tr>
<td>Railings</td>
<td></td>
</tr>
<tr>
<td>Expansion Joints</td>
<td></td>
</tr>
<tr>
<td>Paint</td>
<td></td>
</tr>
<tr>
<td>b. Abutment & Piers</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Alignment of Abutment</td>
<td></td>
</tr>
<tr>
<td>Approach to Bridge</td>
<td></td>
</tr>
<tr>
<td>Condition of Seat & Backwall</td>
<td></td>
</tr>
</tbody>
</table>

A-10
Chase Mill Dam
APPENDIX A
SUPPLEMENTARY INSPECTION NOTES

1. CONCRETE STRUCTURES IN GENERAL

a. Concrete Surfaces.

The concrete surfaces of Chase Mill Dam were found to be in generally good condition. Some very minor erosion and spalling was noticed. There appeared to be no exposed reinforcing steel or staining of concrete.

b. Structural Cracking

No structural cracks were observed in any portions of the dam structure.

c. Movement, Horizontal and Vertical Alignment

The horizontal and vertical alignment of the concrete portions of the dam appear to be true to line and grade, with no apparent movement.

d. Junctions

The junctions of the concrete portions of the dam with the abutments appear to be in good condition.

e. Drains

No drains were observed to be located in the dam structure itself, however, drains were observed in the wing walls of the bridge immediately downstream from the dam. The drains beneath the bridge appear clear and some flow was observed in several of the drains.

f. Water Passages

The concrete surfaces of the stop log spillway were found to be in good condition with no evidence of erosion or cavitation. Some leakage was observed around the stop logs.

Chase Mill Dam
APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

Hydrologic computations pertinent to this investigation are attached. The following drainage area map shows the watershed at Chase Mill Dam.
APPENDIX C

PHOTOGRAPHS

The following are photographs referenced in this report. See Sheet B-1 for photograph locations and orientations.

C-1

Chase Mill Dam
SECTION C
APPENDIX B-1

GENERAL PROJECT DATA

The following plan, profile and cross-sections of Chase Mill Dam were developed from a limited stadia survey performed during visual inspection, field notes taken by inspection team members, and photographs taken during the visual inspection. The survey was referenced to an arbitrary local datum. Approximate U.S.G.S. elevations were obtained by noting the dam's location on the U.S. Geologic Survey Gardner Lake, Maine quadrangle and assuming that the spillway crest is equal to normal water surface of Gardner Lake of approximate elevation 67 (MSL).
APPENDIX B

ENGINEERING DATA

This appendix lists the engineering data collected either from project records or other sources of data developed as a result of the visual inspection. The contents of this appendix are listed below.

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>General Project Data</td>
</tr>
</tbody>
</table>

B-1
Chase Mill Dam
c. Conduits, Sluices and Water Passages

The surfaces of the concrete adjacent to the controlled outlet works appear to be in good condition with no cracks or spalling. Some very minor concrete surface erosion has occurred in and around the fishway.

d. Stilling Basin

The stilling basin is formed by the stream channel below the dam. No serious erosion or scour has occurred.

e. Approach and Outlet Channels

The approach channel was found to be clear and unobstructed. The outlet channel is somewhat restricted by a bridge located immediately downstream from the dam. No debris or major obstructions were observed in the outlet channel.

f. Drawdown Facilities

The three stop log outlets form the drawdown facility for the dam which could be used to lower the reservoir level during low runoff periods for maintenance on the dam.

5. SAFETY AND PERFORMANCE INSTRUMENTATION

Not applicable.

6. RESERVOIR

a. Shoreline

No major active or inactive landslide areas on Gardner Lake were observed.

b. Maintenance

Based on visual observations it appears that maintenance is done to the dam on an as-needed basis. However, no regular maintenance program is in effect. The condition of the dam was found to be in generally good repair, however, some major leakage is occurring between the sill and the upper face of the spillway section of the dam which presently needs maintenance and apparently has not been tended to.
b. Unlined Saddle Spillways

Unlined saddle spillways are located around the fishway section. The embankment area on the north sides of the spillway is low and appears to be overtopped frequently. The area is riprapped and little erosion has occurred. There is also an unlined spillway located approximately 300 feet to the west of the dam where a second outlet (west outlet #1) from Gardner Lake exists. There is no dam in this area and water flows through a culvert beneath the road. Substantial flow occurs in the channel even when water level is below the top of the dam spillway, however, no serious erosion has occurred. A third natural swale outlet from the lake (west outlet #2) is located about 600 feet west of the Dam. Flow apparently occurs in this outlet only when the lake level is very high.

c. Approach and Outlet Channels

The spillway approach channel is a cove of Gardner Lake. The approach channel is clear and unobstructed. The outlet channel is restricted by a bridge located immediately downstream of the dam.

d. Stilling Basin

The stilling basin below the spillway is the stream channel. No serious erosion or scour has occurred immediately downstream of the dam.

4. Outlet Works

The outlet works at the Chase Mill Dam consists of a stop log outlet.

a. Intake Structure

The intake end of the inlet works consists of concrete piers which form walls for the stop log bay. The approach appears to be clear and unobstructed.

b. Operating and Emergency Control Gates

The stop log slots appear to be in good condition. Stop logs would have to be removed manually since there is no mechanical equipment for hoisting.
embankment material between the concrete abutment and
fishway and west of the fishway.

a. Settlement

No evidence of settlement of the embankment materials
in the dam were observed.

b. Slope Stability

The slopes of the embankment areas are very flat
and there appear to be no problems with stability.

c. Seepage

None

d. Drainage Systems

None were observed.

e. Slope Protection

South of the south wing wall there is no upstream
slope protection, however, there are no signs of
erosion. There is no evidence of erosion between
the north abutment and the fishway where riprap has
been placed or along the flat slopes of the beach
area north of the fishway.

3. SPILLWAY STRUCTURES

The spillway consists of three controlled broad-crested
weir sections with two sections approximately the same
concrete crest elevation. There are three deep stop log
outlet sections. See plan-profile drawing in Appendix B
for location of individual sections. Stop logs were not
being used in spillway sections 1 and 2 at the time of
inspection.

a. Control Gates and Operating Machinery

The only control facility at the Chase Mill Dam are
the stop log sections. These stop logs could be
removed manually as necessary. However, no facility
is provided for removal of stop logs during high
flow periods. There are no other gateworks at the
dam.
g. Seepage or Leakage

No leakage was observed at the junction between concrete bedrock in the north portion of the dam, or along the toe of the downstream face. However, a large amount of leakage is occurring through the joint between the dam foundation sill and the spillway wall. It appears that this joint is open and water is piping directly from the upstream face through to the downstream face. This leakage was estimated to be in excess of 2 cfs west of the center piers and in excess of 1/2 cfs in the easterly portion of the dam.

h. Monolith Joints and Construction Joints

Vertical joints in the dam appear to be in good condition, however, the horizontal joints between the concrete foundation sill and the vertical spillway face appear to be open. A large amount of leakage is occurring through this joint. The joint between the southerly wall of the stop log outlet section #1 and the spillway section #1 also is leaking, however, the joint appears to be relatively tight.

i. Foundation

The dam appears to be founded on bedrock. Bedrock is exposed at the north abutment. No foundation stress or evidence of undermining at the downstream toe was observed.

j. Abutments

The north abutment appears to be in good condition with good construction joints and a good bond between the concrete and bedrock foundation. The south abutment which is directly attached to the south wing wall of the downstream bridge shows no signs of distress.

2. EMBANKMENT STRUCTURES

The configuration of the dam is such that the roadway fill, for the road just west of the dam, comprises the embankment portions of the dam. At the south end of the dam the natural ground appears to rise sharply from the concrete abutment which minimizes the amount of embankment. On the north end there appears to be some
<table>
<thead>
<tr>
<th>ITEM</th>
<th>AREA Measured From USGS Quads</th>
<th>AREA m^2</th>
<th>AREA Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.A. @ Chase Mills Dam</td>
<td>52.5</td>
<td>52.5</td>
<td>3360.0</td>
</tr>
<tr>
<td>Gardner Lake @ EL 6'7</td>
<td>6.2</td>
<td>6.2</td>
<td>52.48</td>
</tr>
<tr>
<td>Gardner Lake @ EL 80</td>
<td>13.8</td>
<td>13.8</td>
<td>883.2</td>
</tr>
<tr>
<td>E. Machais Reservoir @ Normal</td>
<td>0.22</td>
<td>0.22</td>
<td>1.41</td>
</tr>
<tr>
<td>E. Machais Reservoir @ EL 40</td>
<td>0.47</td>
<td>0.47</td>
<td>3.01</td>
</tr>
</tbody>
</table>

USGS MSL DATUM EL 67' = SURVEY DATUM EL 97.5'

FROM COE INVENTORY OF DAMS:

Normal Impounding Capacity = 27500 Ac.-Ft
Maximum "" = 32900 Ac.-Ft

NORMAL CAPACITY CALCULATED:

\[52.48 \times 5 = 262.4 \text{Ac.-Ft} = 27500 \text{Ac.-Ft} \text{ OK} \]

MAXIMUM CAPACITY (AT TOP OF DAM):

\[27500 + 2.5 \times 52.4 \times 5 = 41310 \text{Ac.-Ft} \text{ USE FOR MAX CAPACITY} \]

D-3

Chase Mill Dam
<table>
<thead>
<tr>
<th>WEIR DESIGNATION</th>
<th>SURVEY DATUM ELEV</th>
<th>MSL DATUM ELEV</th>
<th>LENGTH</th>
<th>C</th>
<th>Varies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spillway</td>
<td>97.5</td>
<td>67.0</td>
<td>41.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top of Dam</td>
<td>100.0</td>
<td>70.0</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Structure (w/stoplogs in place)</td>
<td>96.4</td>
<td>65.9</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Roadway</td>
<td>104.3</td>
<td>73.8</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lengths are Effective Lengths

5-40

HANDBOOK OF HYDRAULICS

KING & BRATER

Table 5-3. Values of C in the Formula \(Q = CLH^4 \) for Broad-crested Weirs

<table>
<thead>
<tr>
<th>Measured head in feet</th>
<th>Breadth of crest of weir in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.30</td>
</tr>
<tr>
<td>0.6</td>
<td>0.49</td>
</tr>
<tr>
<td>0.8</td>
<td>0.56</td>
</tr>
<tr>
<td>1.0</td>
<td>0.64</td>
</tr>
<tr>
<td>1.3</td>
<td>0.84</td>
</tr>
<tr>
<td>1.5</td>
<td>1.06</td>
</tr>
<tr>
<td>1.8</td>
<td>1.32</td>
</tr>
<tr>
<td>2.0</td>
<td>1.66</td>
</tr>
<tr>
<td>2.5</td>
<td>2.03</td>
</tr>
<tr>
<td>3.0</td>
<td>2.46</td>
</tr>
<tr>
<td>3.5</td>
<td>3.01</td>
</tr>
<tr>
<td>4.0</td>
<td>3.62</td>
</tr>
<tr>
<td>4.5</td>
<td>4.34</td>
</tr>
<tr>
<td>5.0</td>
<td>5.20</td>
</tr>
<tr>
<td>5.5</td>
<td>6.18</td>
</tr>
<tr>
<td>6.0</td>
<td>7.25</td>
</tr>
<tr>
<td>6.5</td>
<td>8.47</td>
</tr>
</tbody>
</table>

Chase Mill Dam
<table>
<thead>
<tr>
<th>SURVEY DATUM ELEV.</th>
<th>HEIGHT ABOVE MSL</th>
<th>L = 41.6' SPILLWAY Q, CFS</th>
<th>L = 21.0' TOP OF DAM Q, CFS</th>
<th>L = 4.0' SPILLWAY GATE Q, CFS</th>
<th>TOTAL DAM FLOW Q, CFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>98</td>
<td>68</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>69</td>
<td>250</td>
<td>-</td>
<td>-</td>
<td>56</td>
</tr>
<tr>
<td>102</td>
<td>71</td>
<td>546</td>
<td>55</td>
<td>91</td>
<td>637</td>
</tr>
<tr>
<td>104</td>
<td>72</td>
<td>904</td>
<td>131</td>
<td>157</td>
<td>131</td>
</tr>
<tr>
<td>106</td>
<td>73</td>
<td>131</td>
<td>176</td>
<td>176</td>
<td>165*</td>
</tr>
<tr>
<td>108</td>
<td>74</td>
<td>178</td>
<td>225</td>
<td>176</td>
<td>229*</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Bridge Opening Hydraulically controls

\[Q = CLH^{3/2} \]

D-5

Chase Mill Dam
- **Flow through culverts insignificant.**

- **Weir flow would occur in the area of the bridge (just downstream of the dam) at high stages.**

- **Overland flow would occur at west outlet #1 & #2 at high stages.**

D-6

Chase Mill Dam
<table>
<thead>
<tr>
<th>SURVEY DATUM ELEV</th>
<th>MSL DATUM ELEV</th>
<th>G=4.47</th>
<th>HIGH BRIDGE RESERVOIR FLOW</th>
<th>BRIDGE WEIR FLOW</th>
<th>OVERLAND FLOW</th>
<th>TOTAL PROJECT FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>65.5</td>
<td>6</td>
<td>69</td>
<td>104</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>98</td>
<td>67.5</td>
<td>306</td>
<td>1090</td>
<td>315</td>
<td>479</td>
<td>952</td>
</tr>
<tr>
<td>100</td>
<td>69.5</td>
<td>637</td>
<td>261</td>
<td>1678</td>
<td>2019</td>
<td>2019</td>
</tr>
<tr>
<td>102</td>
<td>71.5</td>
<td>1124</td>
<td>1947</td>
<td>2651</td>
<td>2802</td>
<td>4628</td>
</tr>
<tr>
<td>104</td>
<td>73.5</td>
<td>2513</td>
<td>3987</td>
<td>3987</td>
<td>6500</td>
<td>6500</td>
</tr>
<tr>
<td>106</td>
<td>75.5</td>
<td>152</td>
<td>5607</td>
<td>5607</td>
<td>8272</td>
<td>8272</td>
</tr>
<tr>
<td>108</td>
<td>77.5</td>
<td>574</td>
<td>535</td>
<td>535</td>
<td>9624</td>
<td>9624</td>
</tr>
<tr>
<td>110</td>
<td>79.5</td>
<td>1154</td>
<td>1709</td>
<td>1709</td>
<td>15376</td>
<td>15376</td>
</tr>
<tr>
<td>112</td>
<td>81.5</td>
<td>1850</td>
<td>18088</td>
<td>18088</td>
<td>22451</td>
<td>22451</td>
</tr>
<tr>
<td>114</td>
<td>83.5</td>
<td>25610</td>
<td>30772</td>
<td>30772</td>
<td>25610</td>
<td>25610</td>
</tr>
</tbody>
</table>

* Dam controls until bridge opening becomes submerged at 101.5, then pressure/flow results at elev > 71.0.

BRIDGE AREA = 283 SQ FT

Chase Mill Dam
Chase Mill Dam
<table>
<thead>
<tr>
<th>MSL Datum</th>
<th>Survey Datum ELEV</th>
<th>Head Above Spillway Crest, ft</th>
<th>Area Acres</th>
<th>Storage Ac-Ft</th>
<th>Discharge CFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.5</td>
<td>96</td>
<td>0.5</td>
<td>5248</td>
<td>27500</td>
<td>69</td>
</tr>
<tr>
<td>67.5</td>
<td>98</td>
<td>0.5</td>
<td>5524</td>
<td>35579</td>
<td>410</td>
</tr>
<tr>
<td>69.5</td>
<td>100</td>
<td>2.5</td>
<td>5799</td>
<td>41310</td>
<td>952</td>
</tr>
<tr>
<td>71.5</td>
<td>102</td>
<td>4.5</td>
<td>6075</td>
<td>53598</td>
<td>2019</td>
</tr>
<tr>
<td>73.5</td>
<td>104</td>
<td>6.5</td>
<td>6351</td>
<td>60153</td>
<td>2802</td>
</tr>
<tr>
<td>75.5</td>
<td>106</td>
<td>8.5</td>
<td>6626</td>
<td>66987</td>
<td>6500</td>
</tr>
<tr>
<td>77.5</td>
<td>108</td>
<td>10.5</td>
<td>7178</td>
<td>74098</td>
<td>8272</td>
</tr>
<tr>
<td>79.5</td>
<td>110</td>
<td>12.5</td>
<td>7454</td>
<td>81484</td>
<td>9624</td>
</tr>
<tr>
<td>81.5</td>
<td>112</td>
<td>14.5</td>
<td>7729</td>
<td>89141</td>
<td>15376</td>
</tr>
</tbody>
</table>

For Storage Above Spillway Crest Subtracted 27500 Ac-Ft.

D-9
Chase Mill Dam
According to "PRELIMINARY GUIDANCE FOR ESTIMATING MAX PROBABLE DISCHARGE" by COE:

For Flat D.A. = 52.5 sq mi, $Q = 500 \text{cfs}$

$Q = 500 (52.5) = 26,250 \text{cfs} = PMF$

$13,125 \text{cfs} = \frac{1}{2} PMF$

ESTIMATING EFFECT OF SURCHARGE STORAGE:

$Q_{p2} = Q_{p1} \times \left(1 - \frac{\text{STOR}_2}{\text{Runoff}}\right)$

$PMF \text{ Runoff} = 19" ; \frac{1}{2} PMF \text{ Runoff} = 9.5"$

1) PMF
 a) Elev. to pass $Q_{p1} (PMF) = 108.5$

 $\text{STOR}_1 = 108.5 \times 28 - 27500 = 73,328 \text{cu-ft}$

 $\text{or } \frac{73,328}{33,600} \times 12 \text{in} = 26.19"$

 $Q_{p2} = 26,250 \left(1 - \frac{26.19}{19}\right) = 0$

 b) Elev. to pass $Q_{p2} = 97.5$

 $\text{STOR}_2 = 0$

 $\text{STOR}_{\text{ave}} = 13.1"$

D-10

Chase Hill Dam
\[Q_{p3} = 26250 \left(1 - \frac{13.1}{19} \right) = 8151 \]

(c) Elev to pass \(Q_{p3} = 104.9 \)

\[STOR_3 = 73614 - 27500 = 46114 \text{ Ac.-Ft} \]

or \[\frac{46114}{33600} \times 12 = 16.47" \]

\[STOR_{AVE} = \frac{16.47 + 13.1}{2} = 14.78" \]

\[Q_{p4} = 26250 \left(1 - \frac{14.78}{19} \right) = 5824 \]

(d) Elev. to pass \(Q_{p4} = 103.6' \)

\[STOR_4 = 64519 - 27500 = 37019 \text{ Ac.-Ft} \]

or \[\frac{37019}{33600} \times 12 = 13.22" \]

\[STOR_{AVE} = \frac{14.78 + 13.22}{2} = 14.00" \]

\[Q_{p5} = 26250 \left(1 - \frac{14}{19} \right) = 69.08 \]

(e) Elev. to pass \(Q_{p5} = 104.2' \)

\[STOR_5 = 68624 - 27500 = 41124 \]

or \[\frac{41124}{33600} \times 12 = 14.69" \]

\[STOR_{AVE} = \frac{14.00 + 14.69}{2} = 14.34" \]

D-11

Chase Mill Dam
\[
Q_{p6} = 26,250 \left(1 - \frac{14.54}{19}\right) = 6433 \text{ cfs}
\]

(f) Elev. to pass \(Q_{p6} = 104.0'\)

Top of Road at Dam is 104.3' at Lowest Point.

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>PMF & (\frac{1}{2} \text{PMF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP BY</td>
<td>BTB</td>
</tr>
<tr>
<td>CHK BY</td>
<td>JJD</td>
</tr>
<tr>
<td>JOB NO.</td>
<td>20799 17</td>
</tr>
<tr>
<td>DATE</td>
<td>2-13-79</td>
</tr>
</tbody>
</table>

2) \(\frac{1}{2} \text{PMF}\)

a) Elev. to pass \(Q_{p2} (\frac{1}{2} \text{PMF}) = 106.6'\)

\[
\text{STOR}_1 = 86144 - 27500 = 58644 \text{ Ac.-Ft}
\]

or \(\frac{58644}{33600} \times 12 = 20.94''\)

\[Q_{p2} = 13125 \left(1 - \frac{20.94}{9.5}\right) = 0\]

b) Elev. to pass \(Q_{p2} = 97.5\)

\[\text{STOR}_2 = 0\]

\[\text{STOR}_{AVE} = 10.47''\]

\[Q_{p3} = 13125 \left(1 - \frac{10.47}{9.5}\right) = 0\]

c) Elev. to pass \(Q_{p3} = 97.5\)

\[\text{STOR}_3 = 0\]

\[\text{STOR}_{AVE} = 5.24''\]

\[Q_{p4} = 13125 \left(1 - \frac{5.24}{9.5}\right) = 5872 \text{ cfs}\]

D-12

Chase Mill Dam
d) Elev. to pass \(Q_{p4} = 103.7 \)

\[
\text{STOR}_4 = 64767 - 27500 = 37267 \text{Ac}-\text{ft}
\]

or \(\frac{37267}{33600} \times 12 = 13.31" \)

\[
\text{STOR}\text{AVE} = \frac{13.31 + 5.24}{2} = 9.27"\]

\[
Q_{p5} = 13125 \left(1 - \frac{9.27}{9.5} \right) = 311 \text{ cfs}
\]

e) Elev. to pass \(Q_{p5} = 98.7 \)

\[
\text{STOR}_5 = 33234 - 27500 = 5734 \text{Ac}-\text{ft}
\]

or \(\frac{5734}{33600} \times 12 = 2.05" \)

\[
\text{STOR}\text{AVE} = \frac{2.05 + 9.27}{2} = 5.66"\]

\[
Q_{p6} = 13125 \left(1 - \frac{5.66}{9.5} \right) = 530.7 \text{ cfs}
\]

f) Elev. to pass \(Q_{p6} = 103.4 \)

\[
\text{STOR}_6 = 62631 - 27500 = 35131 \text{Ac}-\text{ft}
\]

or \(\frac{35131}{33600} \times 12 = 12.55" \)

\[
\text{STOR}\text{AVE} = \frac{12.55 + 5.66}{2} = 9.10"\]

D-13

Chase Mill Dam
\[Q_{p7} = 13125 \left(1 - \frac{9.10}{7.5}\right) = 548 \text{ cfs} \]

\[g) \text{ Elev. to pass } Q_{p7} = 99.3' \]
\[\text{STOR}_7 = 37037 - 27500 = 9537 \text{ Ac-ft} \]
\[\text{or } \frac{9537}{33600} \times 12 = 3.41'' \]
\[\text{STOR}_{AVE} = \frac{3.41 + 9.10}{2} = 6.25'' \]
\[Q_{p8} = 13125 \left(1 - \frac{6.25}{7.5}\right) = 4476 \text{ cfs} \]

\[h) \text{ Elev. to pass } Q_{p8} = 102.9' \]
\[\text{STOR}_8 = 59643 - 27500 = 32143 \text{ Ac-ft} \]
\[\text{or } \frac{32143}{33600} \times 12 = 11.48'' \]
\[\text{STOR}_{AVE} = \frac{11.48 + 6.25}{2} = 8.86'' \]
\[Q_{p9} = 13125 \left(1 - \frac{8.86}{9.5}\right) = 878 \text{ cfs} \]

\[i) \text{ Elev. to pass } Q_{p9} = 99.9' \]
\[\text{STOR}_9 = 40523 - 27500 = 13023 \text{ Ac-ft} \]
\[\text{or } \frac{13023}{33600} \times 12 = 4.65'' \]
\[\text{STOR}_{AVE} = \frac{4.65 + 6.75}{2} = 6.75'' \]

D-14

Chase Mill Dam
\[Q_{p10} = 13125 \left(1 - \frac{6.75}{9.5}\right) = 3792 \]

1) Elev. to pass \(Q_{p10} = 102.5 \)

\[\text{STOR}_{10} = 57151 - 27500 = 29651 \text{ A} - \text{Ft} \]

or \(\frac{29651}{33600} \times 12 = 10.59'' \)

\[\text{STOR AVE} = \frac{10.59 + 6.75}{2} = 8.67'' \]

\[Q_{p11} = 13125 \left(1 - \frac{6.75}{9.5}\right) = 1147 \text{ CFS} \]

2) Elev. to pass \(Q_{p11} = 100.2' \)

\[\text{STOR}_{11} = 42407 - 27500 = 14907 \text{ A} - \text{Ft} \]

or \(\frac{14907}{33600} \times 12 = 5.32'' \)

\[\text{STOR AVE} = \frac{5.32 + 8.67}{2} = 7.00'' \]

\[Q_{p12} = 13125 \left(1 - \frac{7.00}{9.5}\right) = 3461 \text{ CFS} \]

3) Elev. to pass \(Q_{p12} = 102.4' \)

\[\text{STOR}_{12} = 55963 - 27500 = 28463 \text{ A} - \text{Ft} \]

or \(\frac{28463}{33600} \times 12 = 10.17'' \)

\[\text{STOR AVE} = \frac{10.17 + 7.00}{2} = 8.58'' \]

D-15

Chase Mill Dam
\[Q_{13} = 13125 \left(1 - \frac{8.56}{9.5} \right) = 1267 \]

m) Elev. to pass \(Q_{13} = 100.3 \)

\[\text{STOR}_{13} = 43085 - 27500 = 15585 \text{ ft}^3 \]

or \(\frac{15585 \times 12}{33600} = 5.57'' \)

\[\text{STOR}_{AVE} = \frac{5.57 + 7.58}{2} = 6.58'' \]

\[Q_{14} = 13125 \left(1 - \frac{7.58}{9.5} \right) = 3353 \text{ cfs} \]

m) Elev. to pass \(Q_{14} = 102.3 \)

Elev. to pass \(\frac{1}{2} \text{PMF} = \frac{100.3 + 102.3}{2} = 101.3' \)

Flow = 2254 cfs

Both the \(\frac{1}{2} \text{PMF} \& \text{PMF} \) flood stage at the dam is below the bridge roadway just downstream of the dam. However, the roadway at west outlet #2 would be inundated by both the \(\frac{1}{2} \text{PMF} \& \text{PMF} \).

D-16

Chase Mill Dam
Likely Location for Failure:

Either of 2 spillways; use longest spillway section (same likelihood of failure for either)

\(Q_p^1 = \frac{\pi}{27} W_b \sqrt{g} V_b \)

\(\frac{1}{2} Q_p T = 12.15 \)

\(Q_p^2 = \frac{\pi}{27} (23.1) \sqrt{g} (7.5)^{\frac{3}{2}} = 798 \text{ cfs} \)

Flow through West Outlet #2

@ El 69.5' = 315 cfs

Remainder of Dam Flow = 334 cfs

Total \(Q_p^1 = 1447 \text{ cfs} \) @ confluence of Chase Mills Stream, East & West Channels

\(T = \frac{12.15}{\frac{1}{2} Q_p} = \frac{12.15 (41310)}{\frac{1}{2} (1447)} = 691 \text{ hrs} \)

\(T = 1 \text{ month} \)

D-17 Chase Mill Dam
5 Bays that pass flow.

Slope \(\frac{38-20}{3.6 \times 5280} = 0.00095 \)

\[Q = \frac{1.45}{m} AR^{2/3} S^{1/2} \]

<table>
<thead>
<tr>
<th>ELEV</th>
<th>CHANNEL FLOW cfs</th>
<th>TOTAL FLOW cfs</th>
<th>AREA Acres</th>
<th>STORAGE Acre-ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>79</td>
<td>79</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>245</td>
<td>56</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>474</td>
<td>474</td>
<td>85</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>753</td>
<td>753</td>
<td>113</td>
<td>452</td>
</tr>
<tr>
<td>2.5</td>
<td>1074</td>
<td>1074</td>
<td>141</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>1428</td>
<td>1428</td>
<td>152</td>
<td>912</td>
</tr>
<tr>
<td></td>
<td>1814</td>
<td>1814</td>
<td>162</td>
<td>1134</td>
</tr>
<tr>
<td></td>
<td>2238</td>
<td>2238</td>
<td>173</td>
<td>1384</td>
</tr>
<tr>
<td>3.0</td>
<td>2684</td>
<td>2684</td>
<td>184</td>
<td>1656</td>
</tr>
<tr>
<td></td>
<td>3150</td>
<td>3150</td>
<td>194</td>
<td>1940</td>
</tr>
<tr>
<td></td>
<td>3694</td>
<td>3694</td>
<td>205</td>
<td>2255</td>
</tr>
<tr>
<td></td>
<td>4270</td>
<td>4270</td>
<td>216</td>
<td>2592</td>
</tr>
<tr>
<td></td>
<td>4876</td>
<td>4876</td>
<td>226</td>
<td>2938</td>
</tr>
<tr>
<td></td>
<td>5521</td>
<td>5521</td>
<td>237</td>
<td>3181</td>
</tr>
<tr>
<td>3.5</td>
<td>6172</td>
<td>6493</td>
<td>248</td>
<td>3720</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
<td>301</td>
<td></td>
</tr>
</tbody>
</table>

D-18

Chase Mill Dam
PROJECT
RATING CURVE

AT E. MACHAIS DAM

COMP BY

JOB NO. 2074917

CHK BY

DATE 2-13-79

<table>
<thead>
<tr>
<th>ELEV</th>
<th>Channel Area</th>
<th>Channel $R^2/3$</th>
<th>Overbank Area</th>
<th>Overbank $R^2/3$</th>
<th>Total Q, cfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-</td>
<td>0.98</td>
<td>-</td>
<td>-</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>1.53</td>
<td>-</td>
<td>-</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>1.97</td>
<td>-</td>
<td>-</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>2.35</td>
<td>-</td>
<td>-</td>
<td>753</td>
</tr>
<tr>
<td>25</td>
<td>350</td>
<td>2.68</td>
<td>-</td>
<td>-</td>
<td>1074</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>2.97</td>
<td>-</td>
<td>-</td>
<td>1428</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>3.24</td>
<td>-</td>
<td>-</td>
<td>1816</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>3.49</td>
<td>-</td>
<td>-</td>
<td>2238</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>3.72</td>
<td>-</td>
<td>-</td>
<td>2684</td>
</tr>
<tr>
<td>30</td>
<td>700</td>
<td>3.93</td>
<td>-</td>
<td>-</td>
<td>3150</td>
</tr>
<tr>
<td></td>
<td>770</td>
<td>4.19</td>
<td>1.0</td>
<td>0.63</td>
<td>3698</td>
</tr>
<tr>
<td></td>
<td>840</td>
<td>4.44</td>
<td>4.0</td>
<td>1.00</td>
<td>4296</td>
</tr>
<tr>
<td></td>
<td>910</td>
<td>4.68</td>
<td>9.0</td>
<td>1.31</td>
<td>4953</td>
</tr>
<tr>
<td></td>
<td>980</td>
<td>4.92</td>
<td>16.0</td>
<td>1.59</td>
<td>5687</td>
</tr>
<tr>
<td>35</td>
<td>1050</td>
<td>5.15</td>
<td>25.0</td>
<td>2.08</td>
<td>6493</td>
</tr>
<tr>
<td></td>
<td>1120</td>
<td>5.37</td>
<td>36.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1190</td>
<td>5.60</td>
<td>49.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[Q = \frac{1.436}{A} R^{2/3} S^{1/2} \]
\[Q_{p1} = 1447 \text{ cfs} \]
\[S = 41310 \]

\[Q_{p2} \text{ (TRIAL)} = Q_{p1} \left(1 - \frac{V_1}{S}\right) \]

\[Q_{p2} \text{ (TRIAL)} = 1447 \left(1 - \frac{912}{41310}\right) = 1415 \text{ cfs} \]

No significant routing effect.

Floor stage @ NEL 26' @ E Machais Dam.

\(\text{\# flow retained within river banks} \)

No damage in Village of E. Machais.
According to "RECOMMENDED GUIDELINES FOR SAFETY INSPECTION OF DAMS":

Chase Mills Dam is an Intermediate sized dam:
- Storage = 41300 Ac-ft
- Height = 9.0'

From Guidelines → Storage ≥ 10000 < 50000
or Height ≥ 140' < 200'

Hazard Potential Classification:
- Low

Recommended Spillway design flood is 100yr to 1/3 PMF
- USE 1/2 PMF

Routed 1/2 PMF = 2250 CFS @ EL 101.3
(SURVEY DATUM)

Total Project capacity at EL 100
(Top of Dam) = 950
Spillway Capacity = 42% of 1/2 PMF

D-21
Chase Mill Dam
APPENDIX E

Information as Contained in the National Inventory of Dams

E-1

Chase Mill Dam
INVENTORY OF DAMS IN THE UNITED STATES

| STATE | IDENTITY NUMBER | DIVISION | STATE COUNTY | STATE COUNTY CODE | NAME | LATTITUDE DEGREES | LATTITUDE MINUTES | LATTITUDE SECONDS | LONGITUDE DEGREES | LONGITUDE MINUTES | LONGITUDE SECONDS | REPORT DATE DAY | REPORT DATE MONTH | REPORT DATE YEAR |
|-------|-----------------|----------|--------------|------------------|------|-------------------|------------------|------------------|------------------|-----------------|------------------|-----------------|----------------|------------------|-----------------|
| ME | 339 | NED | ME 026 02 | | CHAGE MILL DAM | 4445.3 | 6721.7 | 01 JUN 79 |

POPULAR NAME
GARDNER LAKE

REGION BASKET
01 01 CHAGE MILL STREAM

RIVER OR STREAM
EAST MACHIAS

NEAREST DOWNSTREAM CITY–TOWN–VILLAGE

DIST FROM DAM (Miles)
1

POPULATION
1100

TYPE OF DAM
CTOT

YEAR COMPLETED
1936

PURPOSES
R

HYDRAULIC DATA
9

IMPOUNDING CAPACITIES
41300

TOTAL
27500

DIST OWN FED R PRV/FED
N

A VER/DATE
N

REMARKS
21-BUTTRESS 22-PRIOR TO

OWNER
TOWN OF EAST MACHIAS

OWNER ENGINEERING BY CONSTRUCTION BY

REGULATORY AGENCY

DESIGN CONSTRUCTION OPERATION MAINTENANCE

INSPECTION BY
EDWARD C JORDAN CO INC

INSPECTION DATE
28 NOV 78

AUTHORITY FOR INSPECTION
PUBLIC LAW 92-367 8 AUG 1972

REMARKS
