BLACKSTONE RIVER BASIN
GRAFTON, MASSACHUSETTS

FISHERVILLE POND DAM
MA 00577

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Copy available to DTIC does not permit fully legible reproduction

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

OCTOBER 1978

Distribution Statement A
Approved for public release
Distribution Unlimited

85 5 28 216
Title: Fisherville Pond Dam
Type: Inspection Report
Performing Org. Report Number:
Performing Organization Name and Address: U.S. Army Corps of Engineers, New England Division
Controlled Office Name and Address: Dept. of the Army, Corps of Engineers, New England Division, Nedded, 424 Trapelo Road, Waltham, MA 02254
Report Date: October 1978
Number of Pages: 56
Abstract:
This 910 ft. long is an earthfill dam with a stone masonry, narrow crested spillway. There were visible signs of seepage at the downstream toe of the dam. It has been placed in the high hazard category. It is recommended that the owner of the dam employ a qualified engineer to evaluate the stability of the dam.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Honorable Edward J. King
Governor of the Commonwealth of Massachusetts
State House
Boston, Massachusetts

Dear Governor King:

I am forwarding for your use a copy of the Fisherville Pond Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. The report is based upon a visual inspection, a review of past performance, and a preliminary hydrological analysis. A brief assessment which emphasizes the inadequacy of the project spillway under test flood conditions is included at the beginning of the report.

The preliminary hydrologic analysis has indicated that the spillway capacity for the Fisherville Pond Dam would likely be exceeded by floods greater than 22 percent of the Probable Maximum Flood (PMF), the test flood for spillway adequacy. Screening criteria for initial review of spillway adequacy specifies that this class of dam, having insufficient spillway capacity to discharge fifty (50) percent of the PMF, should be adjudged as having a seriously inadequate spillway and the dam assessed as unsafe, non-emergency, until more detailed studies prove otherwise or corrective measures are completed.

The classification of "unsafe" applied to a dam because of a seriously inadequate spillway is not meant to indicate the same degree of emergency as would be associated with "unsafe" classification applied for a structural deficiency. It does mean, however, that based on an initial screening and preliminary computations there appears to be a serious deficiency in spillway capacity. This could render the dam unsafe in the event of a severe storm which would likely cause overtopping and possible failure of the dam, significantly increasing the hazard potential for loss of life downstream from the dam.
Honorable Edward J. King

It is recommended that within twelve months from the date of this report the owner of the dam engage the services of a professional or consulting engineer to determine by more sophisticated methods and procedures the magnitude of the spillway deficiency. Based on this determination, appropriate remedial mitigating measures should be designed and completed within 24 months of this date of notification. In the interim a detailed emergency operation plan and warning system should be promptly developed. During periods of unusually heavy precipitation, round-the-clock surveillance should be provided.

I have approved the report and support the findings and recommendations described in Section 7, with qualifications as noted above. I request that you keep me informed of the actions taken to implement these recommendations since this follow-up is an important part of the non-Federal Dam Inspection Program.

A copy of this report has been forwarded to the Department of Environmental Quality Engineering, the cooperating agency for the Commonwealth of Massachusetts. This report has also been furnished to the owner of the project, Kaltsas Brothers, Inc., 120 Main Street, Grafton, Massachusetts 01519.

Copies of this report will be made available to the public, upon request to this office, under the Freedom of Information Act, thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Quality Engineering for the cooperation extended in carrying out this program.

Sincerely yours,

JOHN P. CHANDLER
Colonel, Corps of Engineers
Division Engineer
FISHERVILLE POND DAM
MA 00577

BLACKSTONE RIVER BASIN
GRAFTON, MASSACHUSETTS

PHASE I - INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
NATIONAL DAM INSPECTION PROGRAM

PHASE I INSPECTION REPORT
BRIEF ASSESSMENT

Identification No.: MA00577
Name of Dam: Fisherville Pond
Town: Grafton
County and State: Worcester County, Massachusetts
Stream: Blackstone River
Date of Inspection: September 20, 1978

Fisherville Pond Dam is an earthfill dam with a stone masonry, narrow crested spillway. The dam, which was constructed in about 1882, has a total length of 910 feet, including the embankment, spillway, outlet works, and diversion structure. The embankment has a maximum height of 10 feet and is approximately 650 feet long. The 200-foot long spillway is constructed of granite blocks stepped on the downstream side. There is a low level outlet structure at the east end of the spillway. There is also an abandoned gated diversion structure at the west end of the dam on the Blackstone Canal.

Fisherville Pond Dam was neither designed nor constructed according to current approved state-of-the-art procedures. Based upon the visual inspection at the site, the limited engineering data, and little evidence of operating or maintenance procedures, it was concluded that these are deficiencies that must be corrected to assure the continued performance of this dam. Generally, the dam is considered to be in fair condition. Because of the potential danger to lives and property downstream of Fisherville Pond and according to the Corps of Engineers guidelines for the classification of hazard potential, the dam has been placed in the "high" hazard category.

The following visible signs of distress indicate a potential hazard at the site: seepage at the downstream toe of the dam, lack of adequate riprap.

FISHERVILLE POND DAM
protection on the upstream face of the dam, thick vegetation and trees growing downstream of the dam, debris scattered on the dam, inoperable slide gates on the Blackstone Canal diversion structure, accumulation of debris in the inlet channel for the outlet and diversion structures, and missing or cracking mortar on the stone masonry training walls at the outlet and diversion structures.

Hydraulic analyses indicate that the spillway can discharge a flow of 13,000 cubic feet per second (cfs) at elevation (El) 296.0, which is the average elevation of the crest of the dam. The test flood (full PMF) produces an outflow of 58,800 cfs and would overtop the dam by about 8.2 feet. The spillway can discharge only 22.1 percent of the test flood before the dam is overtopped. In the event of overtopping, complete failure of the dam could occur.

It is recommended that the Owner employ a qualified consultant to evaluate the stability of the dam, evaluate the seepage at the downstream toe of the dam, and conduct a more detailed hydrologic and hydraulic investigation. It is also recommended that the Owner repair the slide gate on the outlet structure, repair gates and gate-operating mechanisms on the diversion structure, clear debris from inlet channels at both the outlet and diversion structures, add riprap to the upstream slope of the dam, remove debris from the dam, and remove all trees and brush from the dam and downstream of the toe of the dam. The Owner should also implement a systematic program of inspection and maintenance.

The above recommendations and remedial measures should be implemented by the Owner within a period of two years of receipt of this Phase I Inspection Report. An alternative to these recommendations would be draining the pond and breaching or removing the dam.

Approved by:

Stephen L. Bishop, P.E.
Vice President
Metcalf & Eddy, Inc.
Massachusetts Registration No. 19703
This Phase I Inspection Report on Fisherville Pond Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

RICHARD F. DOHERTY, MEMBER
Water Control Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

JOSEPH A. MCELROY, CHAIRMAN
Chief, NED Materials Testing Lab.
Foundations & Materials Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
PREFACE

This report is prepared under guidance contained in Recommended Guidelines for Safety Inspection of Dams, for a Phase I Investigation. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D. C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrology and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general conditions and the downstream damage potential.

FISHERVILLE POND DAM
TABLE OF CONTENTS

BRIEF ASSESSMENT

PREFACE

OVERVIEW PHOTO

LOCATION MAP

REPORT

SECTION 1 - PROJECT INFORMATION 1

1.1 General 1
1.2 Description of Project 2
1.3 Pertinent Data 7

SECTION 2 - ENGINEERING DATA 11

2.1 General 11
2.2 Construction Records 11
2.3 Operating Records 11
2.4 Evaluation of Data 11

SECTION 3 - VISUAL INSPECTION 13

3.1 Findings 13
3.2 Evaluation 15

SECTION 4 - OPERATING PROCEDURES 16

4.1 Procedures 16
4.2 Maintenance of Dam 16
4.3 Maintenance of Operating Facilities 16
4.4 Description of Any Warning System in Effect 16
4.5 Evaluation 16

SECTION 5 - HYDRAULIC/HYDROLOGIC 17

5.1 Evaluation of Features 17

FISHERVILLE POND DAM
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>SECTION 6 - STRUCTURAL STABILITY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Evaluation of Structural Stability</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 7 - ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Dam Assessment</td>
<td>20</td>
</tr>
<tr>
<td>7.2 Recommendations</td>
<td>21</td>
</tr>
<tr>
<td>7.3 Remedial Measures</td>
<td>21</td>
</tr>
<tr>
<td>7.4 Alternatives</td>
<td>22</td>
</tr>
</tbody>
</table>

APPENDIXES

- APPENDIX A - PERIODIC INSPECTION CHECKLIST
- APPENDIX B - PLAN OF DAM AND PREVIOUS INSPECTION REPORTS
- APPENDIX C - PHOTOGRAPHS
- APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS
- APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS
1.1 General

a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Metcalf & Eddy, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Massachusetts. Authorization and notice to proceed was issued to Metcalf & Eddy, Inc. under a letter of July 28, 1978, from Ralph T. Garver, Colonel, Corps of Engineers. Contract No. DACW 33-78-C-0306 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) Encourage and assist the States to initiate quickly effective dam safety programs for non-Federal dams.

(3) Update, verify and complete the National Inventory of Dams.
1.2 Description of Project

a. Location. Fisherville Pond Dam is located on the Blackstone River in the Town of Grafton, Worcester County, Massachusetts (see Location Map and Drainage Area Map).

b. Description of Dam and Appurtenances. Fisherville Pond Dam is an earthfill dam constructed in about 1882. A stone cascade spillway is located between the dam and the outlet gate structure on the left abutment. A concrete diversion structure is located on the right abutment of the dam on the Blackstone Canal. The total length of the dam is 910 feet, including the embankment, spillway, outlet, and diversion structures.

The dam is about 650 feet long and a maximum of 10 feet high (see Appendix B, Figure B-1). The elevation of the crest varies from 295.6 to 300.0. The crest width generally varies between 10 to 18 feet. The upstream slopes vary from 3.6:1 to 1.5:1 (horizontal to vertical). Both slopes are covered with brush, grass and small trees. Two observations wells are located on or near the crest of the dam. For most of the length of the upstream toe of the dam, there is a heavy growth of cattails, and some scattered riprap is located along the upstream toe to about 160 feet west of the spillway. There has been some erosion of the upstream and downstream face of the dam adjacent to the west side wall of the spillway. There is a pool of water at the toe of the dam from the east end of the factory building to the dike which parallels the west bank of the Blackstone River. The area downstream of this pool is wet and semi-swampy in nature, covered partially with dumped piles of debris. The ground surface in this area is somewhat soft, as evidenced by deep tire ruts. An 1882 drawing shows a short, 25-foot long stone cutoff wall extending into the dam from the west spillway training wall.

There is a high tension line which crosses the reservoir about 2,000 feet upstream of the dam. Only a small portion of the
reservoir is open water, whereas the remainder is covered with a growth of swampy cattails and is heavily silted.

The spillway is situated near the east abutment of the dam. The spillway is a narrow-crested weir constructed of granite blocks stepped on the downstream side. There is a small bedrock outcrop on the downstream side near the east end of the spillway. The spillway is 200 feet long and about 13 feet high. There are no flashboards on the spillway. The side walls of the spillway are constructed of mortared stone and are 8.7 feet (west side) to 13.0 feet (east side) above the crest. The upstream face of the spillway is shown on drawings (see Figure B-2) as riprap or paving, sloping at 2:1 covering an earth fill.

The Blackstone Canal (see Figure B-1) is an open channel that bypasses water from the Blackstone River through the west end of the dam, underneath the factory and beneath Main Street through an arched stone bridge. Downstream of Main Street, the canal is a separate open channel that connects further downstream with the Blackstone River. A gated diversion structure is located on the canal at the west abutment of the dam. The diversion structure is 32.8 feet wide and about 16 feet high. It is covered with a concrete bridge about 10 feet wide. The entire structure is concrete except for the two side walls constructed of mortared stone. There are six handwheel operating mechanisms on the top of the bridge at the upstream side connecting to the wooden slide gates, each 7.5 by 4.5 feet in dimension. There is considerable trash and debris floating on the upstream water surface collecting on the slide gates. The west bank of the canal immediately downstream of the gate structure is covered with rock. Further downstream, in the canal, there are vertical side walls constructed of dry stone masonry which extend downstream to the factory. A footbridge and trash gate made of wooden timbers is located part way between the diversion structure and the factory. A slide gate intake is located on the outside wall of the factory.
The outlet structure for the dam is located at the east end of the spillway (see Figure B-1). It is about 18.6 feet high. The intake consists of two straight vertical stone masonry walls about 4.5 feet thick with mortared joints. The distance between the intake walls is 9.5 feet. The east wall extends a considerable distance downstream of the structure at the east dam abutment. The bottom 7 feet of both downstream training walls is concrete and each is 7 feet long. A concrete walkway 5.5 feet wide extends from wall to wall. A vertical concrete headwall extends from the sidewalk to the top of an opening for a 6-foot by 6-foot wooden slide gate. The headwall is partially recessed on the downstream face. One handwheel operating unit for a rack and pinion gear-raising mechanism is located on the upstream edge of the concrete walkway. The elevation of the bottom of the slide gate is 283.3, about 5.7 feet below the spillway crest. There is some leakage in the top east corner of the slide gate.

The discharge channel for the outlet structure exposes some bedrock outcrops. The channel converges downstream with the Blackstone River channel, forming a small island. The Blackstone River subsequently flows underneath the Main Street bridge located about 700 feet downstream of the dam.

c. Size Classification. Fisherville Pond Dam is classified in the "intermediate" category since it has a maximum height of 10 feet and a maximum storage capacity of 1,360 acre-feet.

d. Hazard Classification. Fisherville Pond is situated in an undeveloped rural area north of the Town of Fisherville in the Town of Grafton. There is a large factory immediately downstream of the dam. Some residential and small commercial buildings are situated near the east side of the Blackstone River along Main Street, less than 10 feet above the elevation of the streambed. In the event of overtopping and complete failure of the dam, more than a few lives could be lost.

FISHERVILLE POND DAM
in the factory downstream of the dam and excessive property damage could occur in the factory and in the downstream areas along Main Street. Accordingly, the dam has been placed in the "high" hazard category.

e. Ownership. The dam is presently owned by Kaltsas Brothers, Inc., 120 Main Street, Grafton, Massachusetts 01519. Mr. James Kaltsas (telephone: 617-757-0264) granted permission to enter the property and inspect the dam. Prior to 1955 the dam was owned by Fisherville Realty Trust.

f. Operator. The only known operators of this dam are personnel of the Duralite Co., Inc. This company leases the factory immediately downstream of the dam as well as the water rights from Kaltsas Brothers, Inc.

g. Purpose of Dam. The earliest records in 1923 indicate the dam provided storage water for a mill at the site. The dam now serves no direct function although indirectly is used for flood control.

h. Design and Construction History. The only plans available for this dam are dated 1882. At that time, the dam was owned by Fisher Manufacturing Co. Ownership was transferred to Fisherville Manufacturing Co. by 1945, then to Fisherville Realty Trust by 1955. Prior to 1963, the dam was the property of Prest Wheel, Inc. By 1968, ownership was transferred to Kaltsas Brothers, Inc. In 1969 ownership was shared by Kaltsas Brothers, Inc, and Prest Wheel Company. The dam is presently owned by Kaltsas Brothers, Inc.

Previous inspection reports indicate no leakage from the dam and reports from 1929 to 1967 reveal the dam was "OK". In 1935, 1945, and 1963, trees and brush on the dam embankment were reported.

The use of 12-inch high flashboards on the spillway was reported in the period of 1939 through 1942. The 1933 inspection report

FISHERVILLE POND DAM
recommended replacement of about 30 feet of
the stepped stone spillway apron that had
washed out. In 1945, these repairs were
made. In 1955 some damage to the east end of
the spillway was observed, but was not
defined due to high water. The 1963 inspec-
tion report recommended patchwork on the
easterly spillway abutment wall and in 1968
remortaring of both walls was recommended.
The spillway and downstream channel was
clogged with debris in 1963, as well as the
intake channel to the outlet structure.

Fisher Manufacturing reportedly complained
about flooding of the mill building immedi-
ately downstream prior to 1855. This would
infer that a dam existed on the site prior to
1882. Along the Blackstone River, reservoir
storage capacities were reportedly diminished
by the rapid accumulation of silt in 1938,
1954 and 1955. There is no mention in the
records of overtopping in 1955, although the
road downstream was reportedly washed out.
Flooding in March, 1968, of the first floor
of the factory building is reported to be the
result of water unable to flow downstream
since the channel and pond bottom below the
bridge on Main Street were silted up. (The
canal gates were wide open.) In early March,
1969, the owner of this dam sent a letter to
the owner of the O'Donnell Dam downstream
requesting that the O'Donnell gates be opened
to prevent flooding at the mill. In latter
March, 1969, 12 inches of water were reported
on the spillway crest during flooding of the
basement in the mill building. An earth dike
was then constructed in April, 1969, along
the banks of the Blackstone River and along
the mill. In May, 1969, officials from the
Town, County, State and Federal government
visited this site as part of a proposed flood
control project. In a 1969 letter to the
Honorable Congressman Harold D. Donahue, a
commission made a number of recommendations
for flood control including dredging of
Fisherville Pond, Farumsville Pond (down-
stream) and the river from the dam down to
the Main Street Bridge, and increasing the
bridge span. (The bridge construction, which

FISHERVILLE POND DAM

6
was completed in 1957, has a clear span of 82 feet.) However, further flooding in the mill was still reported in February, 1970.

A drawing dated 1882 indicated gates on the canal and a new bridge over the canal. In 1922, some cement foundation repairs were made to the canal head gates. An inspection report dated 1963 states that the canal gates were in fair condition and the channel was clogged with debris. According to an inspection report dated 1968, the canal gates were beginning to deteriorate and again the inlet was blocked with debris. A log boom across the gates was recommended to prevent trash accumulation in the gates.

1. Normal Operational Procedures. The outlet gate just east of the spillway is reportedly operable. It is reportedly used every spring and fall to regulate water level to avoid flooding at the mill. The spillway is ungated and has no flashboards.

The six slide gates at the Blackstone Canal diversion structure are inoperable.

1.3 Pertinent Data

a. Drainage Area. The drainage area for Fisherville Pond is approximately 85,760 acres (134 square miles). It consists of mostly hilly woodland areas with limited agricultural development, and a large number of towns and cities.

b. Discharge at the Dam Site. Uncontrolled discharge at the dam site flows over the 200-foot long granite stone narrow-crested weir at the east end of the dam into the Blackstone River stream channel. The channel is approximately 220 feet wide at the downstream edge of the spillway, including the outlet channel. The downstream spillway surface is stepped stone masonry except for a bedrock outcrop on the east end of the spillway. There is an island just downstream of this bedrock outcrop. The river channel is relatively clear except for a few overhanging trees and bushes and on the east
side some stone and other debris. The river channel flows underneath a bridge on Main Street about 700 feet downstream of the dam. There has been some minor erosion of the man-made dike along the west bank of the main river channel.

Hydraulic analyses indicate that the spillway can discharge 13,000 cfs at about El 296.0 which is the average elevation of the crest of the dam.

An inflow test flood of 60,000 cfs (the full probable maximum flood) adjusted for surcharge storage results in a maximum discharge of 58,800 cfs. This outflow will overtop the dam by 8.2 feet. There are no records of dam overtopping. However, flooding of the mill immediately downstream of the dam was reported in 1968, 1969 and 1970.

Controlled discharge was formerly through the Blackstone Canal diversion structure slide gates which are closed and no longer operable.

c. Elevation (feet above Mean Sea Level (MSL)).
A benchmark of 289 on the crest of the spillway was estimated from a U.S. Geological Survey topographic map.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Top dam: Main Dam:</td>
<td>295.6 to 300.0</td>
</tr>
<tr>
<td>(2) Test flood pool:</td>
<td>304.2</td>
</tr>
<tr>
<td>(3) Design surcharge (original design): Unknown</td>
<td></td>
</tr>
<tr>
<td>(4) Full flood control pool:</td>
<td>Not applicable (N/A)</td>
</tr>
<tr>
<td>(5) Recreation pool:</td>
<td>N/A</td>
</tr>
<tr>
<td>(6) Spillway crest:</td>
<td>289.0</td>
</tr>
<tr>
<td>(7) Upstream portal invert diversion tunnel:</td>
<td>N/A</td>
</tr>
</tbody>
</table>

FISHERVILLE POND DAM
(8) Stream bed at dam (outlet channel): 283.0

(9) Maximum tailwater: 280.3

d. Reservoir

(1) Length of maximum pool: 4,000 feet
(2) Length of recreation pool: N/A
(3) Length of flood control pool: N/A

e. Storage (acre-feet)

(1) Test flood surcharge (net): 2,800 at El 304.2
(2) Top of dam: 1,360
(3) Flood control pool: N/A
(4) Recreation pool: N/A
(5) Spillway crest: 250

f. Reservoir Surface (acres)

*(1) Top dam: 185
*(2) Maximum pool: 185
(3) Flood-control pool: N/A
(4) Recreation pool: 185
(5) Spillway crest: 185

g. Dam

(1) Type: Main dam: earthfill
(2) Length: Main dam: 650 feet

*Based on the assumption that the surface area will not significantly increase with changes in reservoir elevation from 289 to 304.2

FISHERVILLE POND DAM
(3) Height: Main dam: 10 feet - maximum

(4) Top width: Main dam: 15 feet

(5) Side slopes: Main dam - Upstream: 1.5 to 3.6:1
 Downstream: 1.5 to 2.7:1

(6) Zoning: Unknown

(7) Impervious core: Unknown

(8) Cutoff: Unknown, except for a short stone cutoff wall extending 25 feet from west spillway wall into dam

(9) Grout curtain: Unknown

I. Spillway

(1) Type: Narrow-crested weir - no flashboards

(2) Length of weir: 200 feet

(3) Crest elevation: 289.0

(4) Gates: None

(5) Upstream channel: Stone masonry, and stone masonry wingwalls.

(6) Downstream channel: Downstream face of weir is stepped stone masonry. Below this is a natural stream bed.

J. Regulating Outlets. The low level outlet at the dam is a 6-foot by 6-foot slide gate located at the east end of the spillway. The outlet has a capacity of 300 cfs (2.2 cfs per square mile). This gate reportedly is used every spring and fall. A second outlet consists of six wooden slide gates in the Blackstone Canal diversion structure. Since the six handwheel operating mechanisms are rusted, this outlet is inoperable.
SECTION 2
ENGINEERING DATA

2.1 General. The only plans available for Fisher-ville Pond Dam are 1882 plans of the spillway, dam and canal. There are no specifications or computations available from the Owner, State, or County offices, relative to the design and construction of the dam. The remaining data available for this evaluation were visual observations made during inspection, review of previous inspection reports, and conversations with the Owner, the mill occupant, State and County personnel.

We acknowledge the assistance and cooperation of personnel of the Massachusetts Department of Public Works: Messrs. Willis Regan and Raymond Rochford, and of the Massachusetts Department of Environmental Quality Engineering, Division of Waterways: Messrs. John J. Hannon and Joseph Tagallo.

Also, we acknowledge the cooperation and assistance of personnel from the Worcester County Engineer's Office: Messrs. John O'Toole, Joseph Brazauskas, and Mr. Wallace Lindquist - recently retired from county service.

Mr. James Kaltsas granted permission to enter the property and inspect the dam.

2.2 Construction Records. There are no construction records available.

2.3 Operating Records. No operating records are available for the dam and no daily record is kept of the elevation of the pool or rainfall at the dam site.

2.4 Evaluation

a. Availability. Due to the age of this dam, there is limited engineering data available.

b. Adequacy. The lack of in-depth engineering data did not allow for a definitive review. Therefore the adequacy of this dam could not
be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and engineering judgment.

c. **Validity.** The limited engineering data available is valid for this assessment.
I inspection of the dam was performed on

A copy of the inspection is in Appendix A. Pre-
this dam have been made with floating debris.
A partial listing of in Appendix B.

The dam is in fair condi-
were covered with
in Appendix A. Pre-
the concrete in the outlet w

The concrete is in fair
cracking, except below where the concrete is
The six
cracking, except for a few pieces of the spillway.

The stonework of the

spillway sidewalks is

silted with vines and brush.
channel is relatively

vegetation. There are a

The outlet structure a

structure including the

structure including the

The second outlet which

Canal is in poor con-

The concrete is in fair
cracking, except below where the concrete is

The six

cracking, except for a few pieces of the spillway.

The stonework of the

spillway sidewalks is

silted with vines and brush.
channel is relatively

vegetation. There are a

The reservoir Area. Fish

in mostly an undeveloped area north of the Town
high tension power line north of the dam about
Quinsigamond River flow through or under-
the stream face and six run
channel is relatively

rocks on the west bank.

FISHERVILLE POND DAM
west end of the pond. There is considerable meandering of the Quinsigamond River in the pond which is mostly covered with a heavy growth of cattails.

e. **Downstream Channel.** The discharge from the spillway flows down the Blackstone River. About 700 feet downstream of the dam, the river crosses under a bridge on Main Street. About 700 feet downstream of the bridge, the Blackstone Canal joins the Blackstone River.

3.2 **Evaluation.** The above findings indicate that the dam has several areas of distress that require attention. It is evident that the dam is not adequately maintained and that deterioration will continue unless action is taken. Recommended measures to improve these conditions are included in Section 7.
SECTION 4
OPERATING PROCEDURES

4.1 Procedures. There are no formal operating procedures at Fisherville Pond Dam.

4.2 Maintenance of Dam. There is no systematic maintenance program at the dam.

4.3 Maintenance of Operating Facilities. The outlet gate is generally closed although it is reportedly opened every spring and fall. Flow over the spillway is uncontrolled. The six outlet gates on the Blackstone Canal diversion are inoperable.

4.4 Description of Any Warning System in Effect. There is no warning system in effect at this dam.

4.5 Evaluation Fisherville Pond Dam is in fair condition and has been placed in the "high" hazard category because of the possible danger to life and property downstream. For this reason, it is important that procedures for operation, maintenance and emergencies be implemented as recommended in Section 7.
SECTION 5
HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design Data. The probable maximum flood (PMF) rate was determined to be 450 cfs per square mile. This calculation is based on an average drainage area slope of 0.9 percent, the pond-plus-swamp area to drainage area ratio of 5.1 percent, and the U.S. Army Corps of Engineers' Flow Rates (dated December 1977). Applying the full PMF rate to the 134 square miles of drainage area results in a calculated peak flood flow of 60,000 cfs as the inflow test flood. By adjusting the inflow test flood for surcharge storage, the maximum discharge rate was established as 58,800 cfs (439 cfs per square mile) with the water surface at El 304.2. Flow over the crest of the dam is predicted to be 17,800 cfs, and flow through the spillway would be 41,000 cfs. The maximum head on the dam would be 8.2 feet with a discharge of 59.87 cfs per foot of width. Depth at critical flow would be 4.80 feet with a velocity of 12.50 feet per second.

Hydraulic analyses indicate that the spillway can discharge an estimated 13,000 cfs when the water surface is at El 296.0, which is the average elevation of the crest of the dam. The spillway can discharge only 22.1 percent of the test outflow before the dam is overtopped.

b. Experience Data. Hydraulic records are not available for this dam. There is no documentation of overtopping of this dam.

U.S. Geological Survey water resources data for the Blackstone River Gaging Station downstream of the dam were reviewed. Although extreme discharges were recorded, their effects on the dam were not significant.

c. Visual Observations. Discharge from Fisher-ville Pond is over the spillway located on FISHERVILLE POND DAM
the east end of the dam. The spillway is a 200-foot long narrow-crested weir.

The stepped stone masonry spillway is in good to fair condition; some of the mortar on the two sidewalls is cracked or missing. The east end of the spillway is 0.1 foot lower than the west end. At the time of the inspection, the water level in the reservoir was almost 0.2 feet above the crest of the spillway. Therefore, most of the spillway was not visible.

d. Overtopping Potential. Overtopping of the dam by about 8.2 feet is expected under the test flood outflow of 58,800 cfs. In the event of overtopping, complete failure of the dam and spillway could occur.

Failure of the dam only would produce a peak discharge of 7,000 cfs and, combined with the spillway discharge of 13,000 cfs, results in a total peak flow of 20,000 cfs. The depth of flow in the stream channel downstream of the dam prior to dam failure would be about 7.1 feet. Subsequent to dam failure, the depth of flow would increase 1.9 feet for a total depth of 9 feet. The impact of the dam failure on downstream properties along Main Street would be increased flooding and additional property damage. The most severe impact of dam failure would be on the factory buildings immediately downstream of the dam. The failure wave could severely damage buildings and cause the loss of many lives depending on where the break occurred.
6.1 Evaluation of Structural Stability

a. Visual Observations. The evaluation of the structural stability of the dam is based on the visual inspection conducted on September 20, 1978. As discussed in Section 3, Visual Inspection, the dam appears to be in fine condition. It is recommended that a more detailed investigation be initiated to evaluate the stability of the dam and spillway and the seepage at the downstream toe of the dam.

b. Design and Construction Data. There is one plan (Figure B-2) available for this dam. This plan shows a homogeneous dam with a short cutoff stone wall extending 25 feet into the dam from the west spillway training wall. Information on the type, shear strength, and permeability of the soil and/or rock materials is nonexistent.

c. Operating Records. With the exception of two plugged and inoperable observation wells, one located on the crest of the dam and the other near the downstream toe, there is no evidence that instrumentation of any type was ever installed in Fisherville Pond Dam. The performance of the spillway and dam under prior loading can only be inferred from physical evidence at the site.

d. Post-Construction Changes. The only recorded changes after 1882 were repairs undertaken by the Owner in 1945. At that time, washed-out portions of the stepped stone spillway were replaced. However Figure B-2 shows two 4-foot by 6-foot slide gates as the outlet in the east abutment. At the present time, there is one 6-foot by 6-foot slide gate.

e. Seismic Stability. The dam is located in Seismic Zone No. 2 and in accordance with Phase I "Recommended Guidelines" does not warrant seismic analyses.
SECTION 7
ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. Built in 1882, Fisherville Pond Dam was neither designed nor constructed according to current approved state-of-the-art procedures. Based on the visual inspection of the site, the limited engineering data, and no evidence of operation or maintenance, there are areas of concern which must be corrected to assure the continued performance of this dam. Generally, the dam is considered to be in fair condition. The principal areas of concern are: seepage at the downstream toe of the dam; lack of adequate riprap protection on the upstream face of the dam; erosion caused by surface runoff at the downstream slope and next to the west spillway training wall; thick vegetation and brush on the upstream and downstream slopes of the dam.

Hydraulic analyses indicate that the existing spillway without flashboards can discharge a flow of 13,000 cfs when the water level in the pond is at El 296.0, which is the average elevation of the crest of the dam. The spillway can discharge only 22.1 percent of the test flood before the dam is overtopped. An outflow test flood of 58,800 cfs will overtop the dam by 8.2 feet.

The limited information available indicates flooding of the mill occurred prior to 1855 and in 1968, 1969 and 1970.

b. Adequacy. The lack of in-depth engineering data did not allow for a definitive review. Therefore the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and engineering judgment.
c. Urgency. The recommendations and remedial measures outlined below should be implemented by the Owner within two years after receipt of this Phase I Inspection Report.

d. Need for Additional Investigations. Additional investigations to further assess the adequacy of the dam and spillway are outlined below in Section 7.2, Recommendations.

7.2 Recommendations. In view of the concerns over the continued performance of the dam and spillway, it is recommended that the Owner employ a qualified consultant to:

a. evaluate the stability of the dam

b. evaluate the seepage at the downstream toe of the dam

c. conduct a more detailed hydrologic and hydraulic investigation of the site to design an adequate spillway and/or to increase the storage/discharge facilities at the site. The study should include the effect of downstream conditions.

The recommendations on repairs and maintenance procedures are outlined below under Section 7.3, Remedial Measures.

7.3 Remedial Measures

a. Operating and Maintenance Procedures. The dam is not adequately maintained. It is recommended that the Owner accomplish the following:

(1) repair the slide gate at the outlet structure to prevent leakage and deterioration

(2) remove the debris clogging the inlet channels for the outlet, and provide a log boom and/or trash rack

(3) add riprap on the upstream face of the dam

FISHERVILLE POND DAM
(4) remove all debris, trees and brush from the crest, upstream and downstream face of the dam

(5) fill in the animal burrows on the crest

(6) remove all trees and brush downstream of the dam to expose the seepage area, and remove the scattered piles of debris in the downstream area

(7) clear all debris from the outlet channel

(8) repair the cracked or missing mortar on the spillway and outlet training walls

(9) remove all brush and vegetation from the spillway east training wall

(10) fill in the eroded slope of the dam adjacent to the west training wall of the spillway

(11) institute a definite plan for surveillance and a warning system during periods of unusually heavy rains and/or runoff. The warning system should be coordinated with upstream reservoirs in the watershed, because flooding or failure of the upper dams will have a severe effect on Fisherville Pond

(12) implement a systematic program of maintenance inspections. As a minimum, the inspection program should consist of a monthly inspection of the dam and appurtenances and be supplemented by additional inspections during and after severe storms. All repairs and maintenance should be undertaken in compliance with all applicable State regulations

(13) technical inspections of this dam should be conducted on an annual basis.

7.4 Alternatives. An alternative to implementing the recommendations and the maintenance procedures itemized above would be draining the pond and breaching or removing the dam.
APPENDIX A

PERIODIC INSPECTION CHECKLIST

FISHERVILLE POND DAM
PERIODIC INSPECTION

PARTY ORGANIZATION

PROJECT: Fisherville Pond

DATE: Sept. 29, 1977

TIME: 8:00 A.M.

WEATHER: Clear, 70°F

W.S. ELEV: 289.1

Assumed benchmark: Elevating 289, crest of spillway

PARTY:

1. Edward Greco
2. Carol Sweet
3. Lyle Branagan
4. David Cole
5. Frank Sviokla
6. Warren Diesl
7.
8.
9.
10.

PROJECT FEATURE

1. Dam
2. Spillway

INSPECTED BY:

Edward Greco
Lyle Branagan

REMARKS:

A-175
PERIODIC INSPECTION CHECK LIST

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam Embankment</td>
<td>Earth Dam - Footpath on crest changes to dirt road in rt. abut. area - Fence on top of D/S-Face</td>
</tr>
<tr>
<td>Test Elevation</td>
<td>289.1</td>
</tr>
<tr>
<td>Trench Excavation to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Tracks</td>
<td>Heavy vegetation on U/S & D/S slopes</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>N/A</td>
</tr>
<tr>
<td>Movement in Settlement of Crest</td>
<td>Irregular Crest</td>
</tr>
<tr>
<td>Natural Movement</td>
<td>None visible. Heavy Vegetation.</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Relatively flat</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Relatively straight - Bends in right abutment</td>
</tr>
<tr>
<td>Location at Abutment and Bat Inlet Structures</td>
<td>Left abutment ties into spillway Right abutment is intake structure</td>
</tr>
<tr>
<td>Observations of Movement of Structural Items on Slopes</td>
<td>Bldg. near D/S toe - 200' West of spillway</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>Debris, Large animal hole - 1' dia. & 3' deep on main dam</td>
</tr>
<tr>
<td>Flooding or Erosion of Slopes or Abutments</td>
<td>Erosion on U/S & D/S</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>None visible.</td>
</tr>
<tr>
<td>Radial Movement or Tracking at or near Ties</td>
<td>None visible.</td>
</tr>
<tr>
<td>Inclined Embankment or Downstream Shoulder</td>
<td>40' to 170' West of spillway & D/S toe water ponding</td>
</tr>
<tr>
<td>Filling on Build</td>
<td>None visible.</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>None visible.</td>
</tr>
<tr>
<td>Field Irrigation</td>
<td>None visible.</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>7 - Dis. Wells</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECK LIST

PROJECT Fisherville Pond

DIVERSION STRUCTURE

LOCATION to Mill - Blackstone

DATE September 20, 1978

NAME Edward Greco

NAME Carol Sweet

<table>
<thead>
<tr>
<th>FEATURE EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTAKE WORKS - INTAKE CHANNEL AND TRAINING WALLS - DIVERSION CANAL</td>
<td>Natural Earth Channel - Stone Training Walls - Diversion Canal</td>
</tr>
<tr>
<td>Approach Channel</td>
<td>Flat - Silted Up</td>
</tr>
<tr>
<td>Slope Conditions</td>
<td>Silt - Heavy Debris</td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td>None</td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td>None</td>
</tr>
<tr>
<td>Log Boom</td>
<td>None</td>
</tr>
<tr>
<td>Debris</td>
<td>Heavy Accumulation</td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td>None</td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td>None</td>
</tr>
<tr>
<td>Condition of Concrete - Cracked</td>
<td>Cracked - Fair - Minor Erosion</td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td>Slide Gates - Severe leakage through slide gates - heavy accumulation of debris at inlet & outlet of slide gates. Gates are inoperable - Rusted - debris accumulated on U/S face of gates</td>
</tr>
</tbody>
</table>

Downstream Channel - Earth Channel

1. Rock fill on west slope.

2. Channel to Stone Walled Channel - with walkway & wooden track gate. Thereafter to gate under building.

DATE: September 20, 1978

NAME: Edward Greco

NAME: Carol Sweet

CONDITION:

Good to fair

Slide Gate Mechanism

None

None

None - except through wooden slide gate

None

Bedrock Outcrops in D/S Channel

Small trees

Rock & Stone Accumulation - Fair

Some debris

GOOD CONDITIONS

1.5' 4.5'

CONCRETE

STONE MASONRY w/MORTAR JOINTS

PERIODIC INSPECTION CHECK LIST

PROJECT: Fisherville Pond

PROJECT FEATURE: Spillway

DISCIPLINE: Geotechnical

AREA EVALUATED

OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS

a. Approach Channel

General Condition

Loose Rock Overhanging Channel

Trees Overhanging Channel

Floor of Approach Channel

b. Weir and Training Walls

General Condition of Concrete

Rust or Staining

Spalling

Any Visible Reinforcing

Any Seepage or Efflorescence

Drain Holes

c. Discharge Channel

General Condition

Loose Rock Overhanging Channel

Trees Overhanging Channel

Floor of Channel

Other Obstructions

Earth Dike along right side of channel extends from spillway to bridge, vegetative cover - slight erosion.
APPENDIX B

PLAN OF DAM AND PREVIOUS INSPECTION REPORTS

Figure B-1, Plan of Dam and Sections
Figure B-2, Plan of Dam dated 1882
Previous Inspections (partial listing)

FISHERVILLE POND DAM
<table>
<thead>
<tr>
<th>Description of Dam</th>
<th>Description of Reservoir & Watershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Name of Main Stream: Blackstone River</td>
</tr>
<tr>
<td>Length</td>
<td>"" "" any other Streams</td>
</tr>
<tr>
<td>Height</td>
<td>Length of Watershed</td>
</tr>
<tr>
<td>Thickness top</td>
<td>Width "" ""</td>
</tr>
<tr>
<td>"" bottom</td>
<td>Is Watershed Cultivated</td>
</tr>
<tr>
<td>Downstream Slope</td>
<td>Percent In Forests</td>
</tr>
<tr>
<td>Upstream ""</td>
<td>Steepness of Slope</td>
</tr>
<tr>
<td>Length of Spillway</td>
<td>Kind of Soil</td>
</tr>
<tr>
<td>Size of Gates</td>
<td>No. of Acres in Watershed</td>
</tr>
<tr>
<td>Location of Gates</td>
<td>"" "" Reservoir</td>
</tr>
<tr>
<td>Flashboards used</td>
<td>Length of Reservoir</td>
</tr>
<tr>
<td>None</td>
<td>Width "" ""</td>
</tr>
<tr>
<td>Width: Flashboards</td>
<td>Max Flow Cu. Ft per Sec.</td>
</tr>
<tr>
<td>or Gates</td>
<td>Head or Flashboards-Low Water</td>
</tr>
<tr>
<td>Dam designed by</td>
<td>"" "" "" High ""</td>
</tr>
<tr>
<td>"" constructed by</td>
<td>GENERAL REMARKS</td>
</tr>
<tr>
<td>Year constructed</td>
<td>For Fishervill Mfg Co: Grafton</td>
</tr>
</tbody>
</table>

GENERAL REMARKS

S.C. Heald, C.E. Worcester
Approved: July 11, 1882.

Owner: Kaltas Bros., Inc
120 Main St, Grafton

PREVIOUS INSPECTIONS (PARTIAL LISTING)

COPY OF INSPECTION CARD ON FILE AT THE MASSACHUSETTS
DEPARTMENT OF PUBLIC WORKS, DISTRICT OFFICE, WORCESTER.
APPENDIX C

PHOTOGRAPHS

FISHERVILLE POND DAM
NO. 1 VIEW OF SPILLWAY

NO. 2 VIEW OF DOWNSTREAM FACE OF DAM
NO. 3 VIEW OF SEEPAE AT TOE OF DAM

NO. 4 VIEW OF DOWNSTREAM FACE OF ABANDONED DIVERSION STRUCTURE
NO. 5 VIEW OF HEADWALL AND OPERATING MECHANISM OF OUTLET WORKS

NO. 6 VIEW OF DOWNSTREAM FACE OF OUTLET WORKS
NO. 7 VIEW OF BLACKSTONE RIVER DOWNSTREAM OF SPILLWAY

NO. 8 VIEW OF MAIN STREET BRIDGE OVER BLACKSTONE RIVER
APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

FISHERVILLE POND DAM
DAM DRAWDOWN RATINGS (cont.)

A) GATE ON SIDE OF SPILLWAY

6' W x 6' D, INV = 783.3

REF AS CURVE V/N EXIT CONT. (REF CHOW, P.28)

H/D 10 1.25 1.5 2.0 3.0 4.0
Q (cfs) 270 335 420 510 720 810
POND ELS 29.3 29.8 29.3 28.3 30.3 30.7

B) GATES IN BLACKSTONE CANAL

6 @ 4.5' W x 7.5' D, INV = 783.1

H/D 1.0 1.25 1.5 2.0 3.0
Q (cfs) 1755 2295 2700 3375 4320
POND ELS 290.6 292.5 294.4 298.1 305.6

C) TYP TO LOWER POND ONE FOOT WHEN AT ELEVATION 290

USING GATE ON SIDE OF SPILLWAY (ASSUME Q_{out} = 200 cfs)

\[T = \frac{1.25}{200} \text{ (hrs)} \]

MIN = 0.006 HR

T = 0.006 HR
Hydraulic Tables - Williams & Hazen

1. Use Tables up to H = 6', use linear
2. K = 0.05
3. 5 H' 5

293 294 295 296 297 298
5460 7740 10300 13800 15800 16600
302 303 304 305
3200 36700 40700 44800

Of dam long - However, due to bldg restric use L = 300'

765 H' 2' CREST @ FL 296'

302 303 304 305
1200 14200 17300 20700
3200 36700 40700 44800
44000 50900 58000 65500

I. Test Flood 100 year storm

1. Total Drainage Area -

2. Pond(s) Area:

3. Pond & Swamps:

4. Using C. of E Curve: For 1

5. Test Flood Inflow =

6. Pond Storage

7. Storage Functions:

8. Storage Function:\n
RESULTS

Peak outflow from test flood is 58,300 cfs
with pond elevation 304

Max flow over crest = 2.85 \times (304 - 286)^{1.5} = 59.9 \text{ ft}^3

\[V_c = \left(\frac{59.9}{32.2} \right)^{1/3} = 4.8 \text{ ft} \]

\[V_c = \frac{59.9}{4.9} = 12.5 \text{ fps} \]

DAM FAILURE

Pond elevation = 296

Top el = 286

\(y_o = 10' \)

\(101.1 \text{ ft} = \text{ subject to breach} = 322' \text{ (mid hill of dam)} \)

\[W_o = 400 \times 322 = 129' \]

\[Q_p = \frac{168 W_o / y_o}{1.5} = \frac{168 / 289}{(10)^{1.5}} = 7,000 \text{ cfs} \]

\[\text{Add spillway} \]

\[\text{Total } \]

STORAGE VOLUME RELIEF:

Storage above el 240

\[\frac{(296 - 240)}{185} = 1,110 \text{ kcf} \]

Storage below el 290

\[\frac{(296 - 286)}{23} = 250 \text{ kcf} \]

Total storage

\[= 1,360 \text{ kcf} \]

\[\frac{1,360}{3600 / 12} \times 20,000 \]

\[= 1.6 \text{ hrs (omits continuing inflow to pond)} \]
DAM FAILURE (CONT.)

\[\begin{align*}
A &= 200y + 6.75y^2 \\
P &= 200 + 13.7y
\end{align*} \]

\[
\begin{array}{c|c|c|c|c|c}
Y & E & K & \frac{K}{(100)} & V & \text{RIVER ELEV. (AT WKT. & SPILL)} \\
\hline
2 & 457 & 1.87 & 1457 & 279.6 \\
3 & 461 & 2.74 & 2908 & 280.6 \\
4 & 409 & 3.57 & 4768 & 284.6 \\
5 & 1169 & 4.35 & 7014 & 282.6 \\
6 & 1443 & 5.15 & 9674 & 282.6 \\
7 & 1731 & 5.85 & 12630 & 7.3 \\
8 & 2122 & 6.60 & 16072 & 7.9 \\
9 & 2347 & 7.29 & 19851 & 8.5 \\
10 & 2675 & 9.25 & 33411 & 9.9 \\
12 & 3372 & 9.25 & 33411 & 9.9 \\
14 & 4123 & 11.76 & 57275 & 11.6 \\
16 & 4988 & 11.76 & 57275 & 11.6 \\
17 & 5351 & 12.36 & 64307 & 12.0 \\
\end{array}
\]

\[
\begin{align*}
\text{RIVER ELEV.} &= 700' \\
\text{ELEV.} &= 85.72 \\
\text{TF. OUTFLOW} &= 16371 \text{ cfs} \\
\text{TF. ELEV.} &= 765.72 \\
\text{DAM FAILURE} &= y = 9', V = 5.14 \text{ ft}
\end{align*} \]
INVENTORY OF DAMS IN THE UNITED STATES

<table>
<thead>
<tr>
<th>NAME</th>
<th>FISHERVILLE POND DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>POPULAR NAME</td>
<td>FISHERVILLE POND</td>
</tr>
<tr>
<td>REGION</td>
<td>01 FOR BLACKSTUMP RIVER</td>
</tr>
<tr>
<td>CITY-TOWN-VILLAGE</td>
<td>GRAFTON</td>
</tr>
<tr>
<td>DIST FROM DAM</td>
<td>0</td>
</tr>
<tr>
<td>POPULATION</td>
<td>10630</td>
</tr>
<tr>
<td>TYPE OF DAM</td>
<td>MUNICIPAL LNG 5</td>
</tr>
<tr>
<td>YEAR COMPLETED</td>
<td>1982</td>
</tr>
<tr>
<td>PURPOSES</td>
<td>20</td>
</tr>
<tr>
<td>MAXIMUM HYDROGEOGRAPHIC AREA (ACRES)</td>
<td>0</td>
</tr>
<tr>
<td>IMPOUNDING CAPACITIES</td>
<td>1800</td>
</tr>
<tr>
<td>DIST DOWN FEDERAL PROJECT</td>
<td>NED</td>
</tr>
<tr>
<td>NAVIGATIONLOCKS</td>
<td>N</td>
</tr>
<tr>
<td>OWNER</td>
<td>IATAS HUTHERS INC</td>
</tr>
<tr>
<td>ENGINEERING BY</td>
<td>S.C. HEALD</td>
</tr>
<tr>
<td>CONSTRUCTION BY</td>
<td>UNKNOWN</td>
</tr>
<tr>
<td>REGULATORY AGENCY</td>
<td>NONE</td>
</tr>
<tr>
<td>DESIGN</td>
<td>NONE</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td>NONE</td>
</tr>
<tr>
<td>OPERATION</td>
<td>NONE</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>NONE</td>
</tr>
<tr>
<td>INSPECTION BY</td>
<td>WETCALF AND EDNY INC</td>
</tr>
<tr>
<td>INSPECTION DATE</td>
<td>20SEP78</td>
</tr>
<tr>
<td>AUTHORITY FOR INSPECTION</td>
<td>PUBLIC LAW 92-307</td>
</tr>
</tbody>
</table>

Remarks:

<table>
<thead>
<tr>
<th>Remarks</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
END

FILMED

8-85

DTIC