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ABSTRACT

2%

majority consensus" algorithm which represents a new
solution to the update synchronization problem for multiple copy
data bases is presented. The algorithm embodies distributed
control and can function effectively in the presence of
communication and data base site outages. The correctness of the
algorithm is demcnstrated and the cost of using it is analyzed.
Several examples that illustrate aspects of the algorithm
operation are included in an appendix..
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1. Introduction

In a computer network environment it is often desirable to
store copies of the same data base at a number of different
network sites. A number of advantages can result from
maintaining such duplicate data bases. Among these advantages
are: increased data accessibility - the data may be accessed
even when some of the sites where it is stored have failed as
long as at least one of the sites is operational; more
responsive data access - data base queries initiated at sites
where the data is stored can be satisfied directly without
incurring network transmission delays and those initiated from
sites "near" the data base sites can be satisfied with less delay
than those "farther" from the data base sites; 1load sharing -
the computational load of responding to gqueries can be
distributed among a number of data base sites rather than

centralized at a single site.

These and other benefits of replicating data must be
balanced against the additional cost and complexities introduced
in doing so. There is, of course, the cost of the extra storage
required for the redundant copies. This paper considers the
problem of maintaining synchronization of multiple copy data
bases in the presence of update activity and presents a solution
to that problem. Other problems (e.g., determining for a given
application the number of copies to maintain and the sites at

which to maintain them; selecting a data base site or sites to
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satisfy a query request when it is initiated) are not considered

in this paper.

The inherent communication delay between sites that maintain
copies of a data base makes it impossible to ensure that all
copies remain identical at all times when update requests are
being processed. The principal goal of an update mechanism is to
guarantee that updates get applied to the data base copies in a

way that preserves the mutual consistency of the collection of

data base copies as well as the internal consistency of each data

base copy. By mutual consistency we mean that all copies
converge to the same state and would be identical should update
activity cease. The notion of internal consistency is somewhat
more difficult to define precisely. It concerns the preservation
of invariant relations that exist among items within a data base.
As such, internal consistency is related to the interpretation or
semantics of items in the data base. Therefore, most of the
responsibility for the internal consistency of a data base must
rest with the application processes which update it. The update
mechanism should incorporate little, if any, knowledge of the
data base semantics. It should, however, operate in a manner
that does not destroy internal data relationships if the
application processes updating the data base act in a way that

preserves them.

An example should serve to clarify the distinction between
the two types of consistency. Consider a simple data base

duplicated at sites A and B that includes data items x, y, and z,
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which all initially have the value 1 in both copies. Further,

assume that the relation

x +y +z=23

must be preserved for the data base. Consider two updates Rl and

R2:

[}
w

each of which, based on the initial data base state, preserves

the relation. If R1 and R2 are both applied, regardless of the

order of application, the internal consistency of the data base
(the relation x+y+z=3) will be destroyed. Hence, (at least) one
of the requests must be rejected in order to preserve the
internal consistency of the data base. Stated somewhat
differently, the update request that gets rejected must be
refused because it is based on information made obsolete (the

initial values of x, y, and z) by the request that gets accepted.

Concurrency control mechanisms designed to maintain internal
consistency for single copy data bases typically use some sort of
mutual exclusion scheme (lock or semaphore discipline) to
guarantee that updates applied are based on current information.
The mutual consistency of the data base would be destroyed, while

its internal consistency would be preserved, if update Rl was

accepted at site A and update R2 was accepted at site B.
- Maintenance of mutual consistency requires all sites to make the

%. same decision for concurrently initiated conflicting updates.
i
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Update mechanisms can be characterized in terms of the
control disciplines they utilize. One class of mechanisms
involves some form of centralized control whereby all update
requests pass through a single central point. At that point the
requests can be validated and then distributed to the various
data base sites for application to the data base copies. A
second, fundamentally different class of update mechanisms embody
distributed control. For this class the responsibility for
validating update requests and applying them to the data base

copies is distributed among the collection of data base sites.

Mechanisms which use centralized control are attractive
because a central control point makes it relatively easy to
detect and resolve conflicts between update requests which, if
left unresolved, could lead to inconsistencies and eventual
divergence of the data base copies. The primary disadvantage of
such mechanisms is that data base update activity must be
suspended whenever the central control point is inaccessible.
Such inaccessiblity could result from failures in the
communications network or at the site where the control point
resides. Because a distributed control update mechanism has no
single point of control, it should, in principle at least, be
possible to construct one capable of processing data base updates
even when one or more of the component sites are inaccessible

(1). The problem here is that it is non-trivial to design a

l. A "distributed" mechanism that comes quickly to mind is one
which locks all copies of the data base for the duration of




»

T B
i . . . N . . . . ST, A
N Y T I D A I P P Yo i VUL U UL I, Ut SO G WP SO, WP U . . G

distributed update control mechanism which operates correctly;
that is, which can resolve conflicting updates in a way that
preserves consistency and is deadlock free. Centralized update
control is adequate for many applications. However, there are
data base applications whose update performance requirements can
be satisfied only by a system which uses distributed update

control.

This paper presents an algorithm for maintaining multiple

copy data bases which uses distributed control. The algorithm
treats all data base sites as more or less equivalent. For

example, an update can be initiated at any site.

The algorithm presented can be characterized as a majority
consensus algorithm. Data base sites vote on the acceptebility

of update requests. For a request to be accept<d and applied to E!

all data base copies only a majority need approve it. The voting
procedure followed by ecach data base site allows it to approve an
update request only if the information upon which the request was
hased 1s valid when it votes. The algorithm employs a
timestamping mechanism used both in the voting procedure and in

the application of accepted updates to the data base copies.

The update algorithm can be demonstrated correct in the

cense that its ~peration is deadlock free and preserves bcth

the update activity. Since such a mechanism regquires every W
data base site to be accessible to process an update, it is )
even more vulnerable tc component outages than one which uses
centralized control.
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internal consistency and mutual consistency of the data base

RARRAS

copies. Although a formal correctness proof of the algorithm is

S

-4

beyond the scope of this paper, strong plausibility arguments for ;;

<
‘I

its correctness are presented.
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An important property of the algorithm is its ability to

-

recover from and function effectively in the presence of T,

FAERL LN - g WPRPL

communication system and data base site failures. For example,

«
)

the algorithm is robust with respect to lost and duplicate

s messages and the temporary inability of data base managing >

N
e 58 Tvlly

T processes to communicate with one another. In addition, it can

.
i

. -
2 e

{a be made resilient to the loss of memory (state information) by

e
ng 4

N

one or more of the data base managing processes. Unlike many

other update algorithms [1,2,3], the robust behavior of the if

v
| RS

majority consensus algorithm does not require the data base

system to detect component malfunctions or outages and to
reconfigure or switch into a special recovery mode of »>peration. i? :

- Rather, its robustness is achieved as a side effect of its normal

- operation.
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= 2. Distributed Data Base Environment ﬁ:
[ -
v ~

. We assume an environment within which copies of a data base RO
®

1

are accessible at a number of data base sites (see Figure 1). It

4.1

is further assumed that the data base copy at each site is o

g
»

'
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accessible only through a data base manager process (DBMP) which
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A resides at that site. Query and update accesses to the data base ﬁii

are initiated by application processes (APs). Each access to the

.I data base is completed by a DBMP acting on behalf of the

initiating AP.

The data base is assumed to consist of a collection of named ;jj
i; elements. For our purposes the nature of such an element is
unimportant. An element could be a record, a field within a
record, a collection of records, or a simple variable as in the -{:
example above. Each named element has a value and a timestamp
associated with it. An element's timestamp represents the time
that the element received its current value. As will be shown, L_g

timestamps are used for update synchronization to perform a SR

.

function similar to that of mutual exclusion locks. Just as lock
granularity is an implementation issue in systems that use locks .

for concurrency control, the granularity of timestamps is an

NN 'Y

issue for systems using majority consensus. For the purpose of

o
s

presenting the majority consensus algorithm it is useful to think
of a timestamp being associated with the smallest separately
modifiable data base element. However, for storage efficiency an

implementer might choose to have collections of related elements

— .

N share timestamps.

o To query the data base an AP sends a query request to a
DBMP. The DBMP acts upon the regquest by querying its copy of the
data base and returning the results to the requesting AP.

s
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The manner in which updates are performed is somewhat more

involved. We assume that, in general, an AP initiates an update

by first performing a computation to generate new values for == ox
certain data base elements using data base values obtained by one
or more queries, and then submitting an update request to a DBMP
which cooperates with the other DBMPs to perform the update. The T
update procedure can be decomposed into the following sequence of
steps:
- Query data base. L
The AP queries the data base to obtain data element values
to use in its update computation. The set of data elements
used by the AP are called the base variables. In addition :
to their values, the DBMP responding to the query also = -

supplies the base variable timestamps stored in its copy of
the data base.

- Compute update.

The AP computes new values for the data elements to be -
updated. The set of data elements to be updated are called - o=
the update variables. The algorithm requires that the
update variables be a subset of the base variables.

- Submit request.

The AP constructs an update request composed of the update _— -
variables with their new values and the base variables with o
their timestamps, and submits it to a DBMP.

- Synchronize update.

The DBMP set cooperates to decide to accept or reject the —
request. Each DBMP participating in the decision executes }
the same voting procedure for the request. The voting

procedure itself involves checking the base variable

timestamps in the update request against the corresponding o
timestamps in the local copy of the data base. This check - -
allows the DBMP to determine whether the base variables have -
been modified since their values were obtained in the query ’
step.

——
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- Apply Update.

If the request is accepted, each DBMP applies the updat
its copy of the data base.

- Notify AP.

A DBMP informs the AP how the request was resolved. If

was rejected, the AP may resubmit it by repeating this

sequence of steps.

This update procedure involves two sorts of interproces
communication. Communication between APs and DBMPs occurs t
initiate updates and report their outcome. The second kind
communication occurs between DBMPs as they work to reach a

consensus on the outcome of update requests and to ensure th

updates accepted get applied to all data base copies.

For purposes of this paper we assume the existence of a
suitable interprocess communication facility. We further as
that the communication system is reliable in the sense that
delivery of interprocess messages is guaranteed even if the
receiving process is inaccessible when the sending process
initiates a message transmission. Implementation of such a
facility usually involves persistence until receipt of a pos
acknowledgement indicating that the message was successfully

delivered (2).

2. The "network mail" facility of the ARPANET (4] incorporat
such a reliable transmission mechanism which ensures that
network mail is always eventually delivered. The details
how such mechanisms can be implemented, though important,
not be discussed further here.
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3. The Majority Consensus Algorithm

La b e

The majority consensus algorithm consists of five rules:

. DBMP/DBMP Communication Rule.

This rule defines the communication patterns used by the
DBMP set as it cooperates to arrive at a consensus on update
requests. Possible communication patterns include daisy
chaining, daisy chaining with timeouts and retransmission
(see below), and broadcasting.

. Voting Rule.

This is the rule followed by each DBMP when it considers an
update request. Details of the voting rule are sensitive to
the DBMP/DBMP communication rule.

. Request Resolution Rule.

After DBMP voting this rule is applied to determine the
outcome of the voting. 1Its details depend upon the -
particular DBMP/DBMP communication rule used. -

. Update Application Rule.

Teg T

This rule governs the way updates are entered into the data -~ e
base copies. When a DBMP learns that an update request has h
been accepted, it uses the update application rule to ~i
perform the update on its data base copy. AR

“

. Timestamp Generation Rule. 3
= 7

A timestamp is generated and assigned to each update request v ﬂ
initiated by an AP. When an accepted update is applied to a .

data base copy, values for the data elements which are NN
update variables are modified as specified and the ;
timestamps in the data base copy for the modified data base

elements are set to the timestamp assigned to the update. -

[N B e

The rest of this section describes these rules in more detail.
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3.1 DBMP/DBMP Communication Rule

Update requests made by APs must be communicated among the

DBMPs for voting and DBMP votes must be communicated to be

tallied. Two possible communication disciplines are (see Figure .
2): S
- Broadcast. S

The DBMP receiving an AP update request broadcasts it to the
other DBMPs for voting. After voting the DBMPs return their ;
votes to the original DBMP (and perhaps to each other if
highly failure tolerant operation is required) for request
resolution.

- Daisy Chain.

The DBMP receiving the request votes and forwards the
request along with its vote to another DBMP. That DBMP, in
turn, votes and forwards the request and the votes along to
another DBMP that hasn't voted yet. This procedure
continues until the request is resolved.

Use of a broadcast discipline allows requests to be resolved .9
with minimal delay at the possible expense of extra messages (3). :
Da:sy chaining results in resolution with the minimum number of
messages at the expense of relatively high delay. 1In practice
the choice of a communication discipline should be based upon

performance requirements for the data base system as well as the

characteristics of the underlying communication system.

The details of the voting and regquest resolution rules are

N
N

sensitive to the DBMP/DBMP communication rule and are presented

.- below assuming deisy chaining and the following variant of it

|- -
L]
. _' .
U
.'.;
. 4-'.‘]‘

;uf 3. Since only a majority consensus is required any messages to
g ) solicit and tally votes in excess of the majority are extra.
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which is introduced as a means for increasing the robustness of

the algorithm.

With pure daisy chaining, progress toward the resolution of

an update request can temporarily cease only if:

. a DBMP trying to forward an unresolved request is unable
to find another DBMP that is accessible and has not yet
voted on the request.

. a DBMP trying to forward an unresolved request crashes
before forwarding the request.

In first case there is little to be done until a DBMP that has
not already voted becomes accessible. We assume that the sending

DBMP is persistent and will forward the request when a non-voting

DBMP becomes accessible.

Timeouts can be used to detect and recover from failures of
the second type. A DBMP which has voted and forwarded an
unresolved update request could time the request out and if it
does not learn that the request has been resolved within the
timeout period, it could act to help the request progress further

toward resolution.

A procedure that a DBMP can use when a request has been
timed out is to check with the DBMP (X) to which it forwarded the
request. If it cannot communicate with X, then it should attempt
to forward the update request to some other DBMP that, to its
knowledge, has not yet voted. 1If X is up and knows about the
request, the checking DBMP need only reactivate the request

timeout since it can assume that X is using the same procedure to

........
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o
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ensure that the request proceeds toward resolution (4).

This procedure is analogous to the "timeout and retransmit"
procedures used in many network communication protocols [6]. It
contributes to the robustness of the data base update algorithm
by insuring that the system of DBMPs works toward the resolution
of an update request as long as at least one DBMP which knows

about the request is functioning.

3.2 DBMP Voting Rule

The voting rule is the basis for concurrency control.
Together with the request resolution rule it insures that mutual
exclusion is achieved for possibly conflicting concurrent
updates. Two requests are said to conflict if the inte}section
of the base variables of one request and the update variables of

the other request is not empty.

The basic idea of the voting rule is simple. When
considering an update request a DBMP checks to determine whether
any of its base variables have been modified since the request
was constructed by the initiating AP. If none have been changed,
then so far as the DBMP can determine, the premises upon which

the update is based remain valid since no conflicting updates

4. A DBMP might choose the timeout period to be a function of the
number of votes a request has accumulated to account for the
fact that, in most cases, it will take a request with few
votes relatively longer to be resolved than one with many
votes.
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have been accepted since the request was initiated or are
currently in progress (see below). Consequently, the DBMP may
vote (OK) to accept the request. If any base variable has been
modified, then the premises are no longer valid and the DBMP must
vote (REJ) to reject the request. The currency of the request
base variables is checked by comparing their timestamps, which
are supplied as part of the request, with the corresponding
timestamps stored in the DBMP's data base copy. Between the time
a DBMP votes on a request and the request is resolved, the

request is said to be pending at that DBMP.

Two factors contribute to complicate the voting rule
somewhat. First, from time to time a DBMP must consider a
request that conflicts with a pending request. This typically
occurs when two APs concurrently initiate conflicting requests.
Even if the base variables of the second request are current, the
DBMP is not free to vote OK since the pending request may be
accepted and render the base variables for the second request
obsolete. One possibility would be for the DBMP to defer voting
on the second request until the pending conflicting request is
resolved. The problem with deferring in this way is that it
introduces the second complicating factor: the possibility of
deadlock. For example, for two requests initiated at different
DBMPs in a two DBMP system, voting on each could be deferred at

one of the DBMPs pending resolution of the other.

The solution to this problem as embodied in the voting rules

stated below is to introduce a new vote. A PASS vote is made
- 14 -
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when it is necessary to signal other DBMPs that a potential
deadlock situation exists with respect to the request in
question. When voting on a request that conflicts with a pending
request, a DBMP must either vote PASS or defer voting until the
conflicting request is resolved. The choice made by the DBMP
depends upon the relation of the requests in question to one
another. The rule as stated below uses a priority scheme: each
request is assigned a priority and the priority of conflicting
requests are compared when the DBMP votes. A simple priority
scheme is used where the priority of a request is the timestamp
assigned to it. Timestamps produced by the timestamp generation

rule will be shown in Section 3.5 to be unique.

The DBMP voting rule can now be stated:

Compare the timestamps for the regquest base variables with
the corresponding timestamps in the local data base copy.

Vote REJ if any base variable is obsolete;

Vote OK if each base variable is current and the request
doesn't conflict with any pending requests;

Vote PASS if each base variable is current but the request QQifﬁ
conflicts with a pending request of higher priority. S

Otherwise, defer voting and remember the request for later
reconsideration.

Voting will he deferred if the request conflicts with a pending

request of lower priority or if any base variable is more current

'
L}
]

than the corresponding data element in the data base. Some
request base variables could be more current if the update

request was initiated at a DBMP which had previously applied an
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update that changed them and about which the voting DBMP has not e
yet learned. -
: : L . -4
If the timeout and retransmit communication discipline is .
used, it is possible for a DBMP to be asked to vote on a regquest
for which it has already voted. A DBMP is forbidden from
= |
changing its vote in such a case. e
3.3 Request Resolution Rule
After voting a DBMP uses the request resolution rule to
check whether its vote resolved the request. The basic idea is E;
that the request should be accepted if a majority of the DBMPs )
have voted OK. The important property of majority consensus is B
that the intersection of any two majorities has at least one DBMP Lo
9
in common (5). This means that for any two requests that are
accepted at least one DBMP voted OK for both. ;&
The DBMP request resolution rule for daisy chaining has two ;2
L
parts:
: v
1., After voting on a request (R): -
a. if the vote was OK and a majority consensus exists: -
accept R and notify all DBMPs and the AP that R was e
accepted.
5. A natural way to define majority subsets for an N DBMP set is
any collection of N/2+1 DBMPs. Other groups of majority
subsets are possible, however. The only requirement is that
any two have a non-empty intersection. It might be
advantageous to include a particular DBMP in most or every o
majority subset if, for example, it was resident on a very i
fast or highly reliable system. --
- 16 -
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o b. if the vote was REJ:

o reject R and notify all DBMPs and the AP that R was
rejected.

!: c. if the vote was PASS and a majority consensus is no

longer possible:
reject R and notify all DBMPs and the AP that R was

if rejected.
d. otherwise, forward R and the votes accumulated so far :f::
- to a DBMP that has not voted on it. e

2. After learning that a request (R) has been resolved: jff‘

a. if R was accepted: T
i. Apply R to the local copy of the data base using
the update application rule.
ii. Reject conflicting requests that were deferred
because of R.

b. if R was rejected: ]
Use the voting rule to reconsider conflicting requests 9
that were deferred because of R. 'fg?

.

e

Part l.c of the rule prevents deadlocks. Recall that a DBMP

votes PASS only when the request base variables conflict with

| §

those of another pending request in order to inform other DBMPs

’
1

L

~ that a potential deadlock situation with respect to the request .
-
MESE

!D exists. The request in question can continue to be considered by ';
- ==

other DBMPs until sufficient PASS votes accumulate to prevent a

-
h

o majority consensus. If this condition occurs, the DBMP detecting
it must reject the request. 1In effect, this condition represents L’d
a consensus among the DBMPs that the request should be rejected X

- to prevent a possible deadlock. To see the kind of situation

rule l.c prevents, consider a 2N DBMP system for which two
conflicting update requests are initiated at different DBMPs.
Each request could progress to the point where each has N OK

le votes. Without a rule such as the PASS rejection rule, neither

PRI S S . ST P L, S U PR Y PRI W PO T W Y Al




could achieve a majority consensus and a deadlock would result.

Note that for the daisy chain communication discipline a
single dissenting vote is sufficient to cause a request to be
rejected. If daisy chaining with timeout and retransmit is used,
the interpretation of a REJ vote must be weakened as follows:

l.b. if the vote was REJ and a majority consensus is no

longer possible:

reject R and notify all DBMPs and the AP that R was

rejected.
The reason for weakening REJ is to prevent the DBMP set from both
accepting and rejecting the same request. With pure daisy
chaining a strong REJ (veto) works because a request follows a
single path through the DBMP set as it proceeds toward resolution
and only one DBMP, the last one that votes, decides the fate of
the request. If daisy chaining with time out and retransmission
is used it is possible for the request's path to branch into
several paths, possibly allowing several DBMPs to decide the fate
of the request. Weakening the REJ vote ensures that each DBMP

makes the same decision.

3.4 Update Application Rule

Due to the way updates are accepted by and communicated
among the DBMP set it is possible for notification of the
acceptance of an update (Rl) to arrive at some DBMP after
notification of the acceptance of a later update (R2) which

obsoletes RI1,

- 18 -
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For example, consider a 3 DBMP system where DBMP 3 is down
when Rl and R2 are accepted. Further, suppose that Rl was
initiated by an AP at DBMP 1 and accepted at DBMP 2, and that R2
was later initiated at DBMP 2 and accepted at DBMP 1. Now,
assume that when DBMP 3 comes up DBMP 2 is down. DBMP 3 will
receive notification of R2's acceptance from DBMP 1; sometime
later, when DBMP 2 comes up, DBMP 3 will receive notification of
Rl's acceptance from DBMP 2. It is important that any data
elements updated by both Rl and R2 have the values assigned by R2

after DBMP 3 has applied both updates.

The update application rule ensures that accepted updates

are "properly sequenced" as they are incorporated into the data

base copies:

To apply an update (R) to a variable (v) in a data base
copy, compare the timestamp of R (T) with tne timestamp of
the variable in the data base (Tv):

If Tv < T, modify v and set Tv to T; otherwise, omit the
update to v since it is obsolete.

For updates with more than a single update variable it may be the

case that some of the assignments to data elements are performed

P

and others are omitted as obsolete.

Mo |

3.5 Timestamp Generation Rule.

Timestamps are used in two ways. They are used in the
voting rule to determine the currency of update request base
i‘ variabtles and they are used in the update application rule to

|

guarantee that recent updates supersede older ones. In both
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cases timestamps are used as sequence numbers for ordering events :ﬁ
(e.g., conflicting update requests) with respect to one another

(6).

The properties that the timestamps used in this way should EJ
have are:

Uniqueness.
No two update requests should have the same timestamp.

Monotonicity. -
Successively generated timestamps should increase.

All timestamps in the DBMP system ultimately come from

1

update requests. The question of when and by whom the requests
should be timestamped arises. There seem to be only two logical

choices:

ol

. By the initiating DBMP at the time the update is received
from an AP; or

. By the accepting DBMP at the time the update is accepted.

The timeout and retransmit communication discipline makes it -
possible for a given request to be accepted by more than a single
DBMP. Therefore, to ensure a single, unique timestamp, requests

p

b’

r

h-

[

ig are timestamped by the DBMP with which the request is initiated.

-i; It is assumed that each DBMP has access to a local,

pzf monotonically increasing clock, but that there is no common clock

6. For purposes of the algorithm, sequence numbers would suffice.

However, we shall continue to use timestamps rather than
o sequence numbers because of their simple intuitive appeal and o
L@ because the date and time information they carry to support K
- event ordering is useful in its own right.

O - 20 -
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accessible to all DBMPs. A timestamp generated by a DBMP i is a
pair (T,i) where T is the time obtained from the local DBMP
clock. T is called the c-part (for clock) of the timestamp and i
the d-part (for DBMP) of the timestamp.

Equality, greater than and less than for timestamps can be
defined as follows.

Let Tl = (Cl,dl) and T2 = (C2,d2).
Equality (=): T1 = T2 if and only if C1 = C2 and 41 = 42.

Greater Than: (D) Tl >/T2 if and only if €l > C2 or Cl = C2
and ‘di- > da2.

Less Than (<) Ti < T2 if and only if €l < C2 or €l-= €2
and dl < d2.
It is not difficult to ensure that timestamps are unigue. A DBMP
need only take care to never assign the same c-part to timestamps

for different update requests.

The possibility that the local DBMP clocks are skewed with
respect to one another or run at different rates could lead to
certain anomalous behavior [5]. 1In terms of the example in
Section 3.4, anomalous behavior would result if the timestamp
generated by DBMP 1 for Rl is more recent than that generated for
R2 by DBMP 2; the anomaly here would be that R1l, the earlier
update, would be retained in the data base. We shall call such

an occurrence a sequencing anomaly. 1f permitted to occur

sequencing anomalies could destroy the internal consistency of
the data base. For example, consider a data base with the
internal consistency requirement that x+y+z=3 for which initially

x=2, y=0, and z=1 where
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Each update preserves the internal consistency requirement.
However, if a sequencing anomaly were to occur the internal
consistency requirement would be violated after Rl and R2 were

applied since x+y+z=2.

The timestamp generation rule used by a DBMP i1 to assign a

timestamp to a request R is:

Let
T =1+ max (time, max ({Tb}})

where "time" is the time obtained by DBMP i from its local
clock and the {Tb} are the c-parts of the timestamps for R's
base variables.
The timestamp for R is (T,1i).
To ensure that its local clock increases and that it never
regenerates the same timestamp, DBMP i also resets its local
clock to T.

It will be shown in Section 4 that this rule prevents the

occurrence of sequencing anomalies.

3.6 Discussion

Several observations can be made regarding the robustness of

the majority consensus algorithm. Only a majority of the DBMPs

3 or fewer (in the case of a rejection for pure daisy chaining) are
{ necessary for an update request to be resolved. Therefore, the
1 data base can undergo modification when some of the DBMPs are

inaccessible. Furthermore, the DBMPs necessary for a majority

- 22 -
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consensus need not be simultaneously available. Since the
algorithm involves only pairwise interactions among DBMPs, an
update request can advance toward resolution when only two DBMPs

are up.

It is not necessary for the DBMP where a request is
initiated to remain up for the request to be resolved. The
initiating DBMP need only remain active sufficiently long to vote
on the request and forward it to another DBMP. The requesting AP
is notified by the DBMP that detects resolution of the request,

rather than by the initiating DBMP.

The timeout and retransmit discipline provides an additional
degree of robustness. This additional robustness comes at an
easily identifiable cost: the meaning of the REJ vote must be
weakened to achieve it. As a consequence more votes, and
therefore additional delay and messages, are required to reject

an update.

A side effect of retransmission is that a DBMP may be asked
to consider a given update request more than once. This is
analogous to the receipt of duplicate messages in a communication
system which uses retransmission. Duplicate requests represent
no problem as long as DBMPs can detect them and do not change

their votes.

When voting on an update request, a DBMP must be able to
determine whether it has previously voted on the request.

Similarly, in order to be able to "garbage collect" storage used
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for maintaining state information for pending requests, when
informed of the resolution of a request, a DBMP must be able to

determine whether it has any record of the request (7).

It follows that update requests must be uniquely identified
within the set of DBMPs. We note that the update timestamp
generated by the initiating DBMP for a request is unique and,

therefore, is adequate to serve as a unique request identifier.

The APPENDIX to this paper presents several examples which
illustrate how update requests submitted to a DBMP set proceed
toward resolution under the communication, voting, and request

resolution rules presented in the previous sections.

4. Why the Algorithm Works

The way the voting, request resolution and update
application rules make use of the properties of majority subsets

and timestamps is the basis for the majority consensus algorithm.

The mutual exclusion necessary to make preservation of
internal consistency possible is accomplished through the voting
and request resolution rules which constrain individual DBMP

behavior with respect to conflicting update requests. 1In

7. A DBMP may "discard" an accepted update request after it has
entered the update into its data base copy. DBMPs also
"discard" rejected requests. This paper does not discuss how
a DBMP can tell when it is safe to discard a request;
however, it is not difficult to devise methods for doing so.
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particular, concurrency control is achieved as a consequence of
the resolution rule that ensures that the consenting majority
subsets for any two accepted requests have at least one DBMP in
common, and the voting rule that prevents a given DBMP from

consenting {(voting OK) to two conflicting concurrent update

requests. . 1
The update application rule guarantees that the data base :
copies are mutually consistent by ensuring that recent updates i:jif
supersede older ones. In effect it enables each DBMP to -'5t?
reconstruct and act upon the same sequence of update events ; 9iﬁ
regardless of the order in which different DBMPs learn of ;;;;:

different updates.

A formal proof of the correctness of the algorithm is beyond

the scope of this paper. However, the rest of this section
informally argues for its correctness. In particular, to

establish the correctness of the algorithm we claim that:

1. An update request R is either accepted or rejected by the
DBMP set but not both.

2. The algorithm is deadlock free,

3. All copies of the data base converge to the same value.
F- 4. The algorithm implements mutual exclusion for accepted
: updates, and therefore acts in a way that preserves

internal data base consistency.

5. Seguencing anomalies canrot occur.
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Claim 1l: An update request R is either accepted or rejected by
- the DBMP set but not both.

Argument:

Case A (pure daisy chaining - strong REJ):
R follows a non-branching sequential path through the DBMP set. e
After voting on R, each DBMP along the path applies the request R
resolution rule to R before forwarding it to another DBMP. If
R is resolved the path is terminated. Thus the resolution
decision for R is made by a single DBMP which is constrained by

the request resolution rule to either accept or reject R.

Case B (daisy chaining with timeout and retransmit - weak REJ):
Because R may follow a branching path through the DBMP set a
weak REJ is used to ensure that if several DBMPs make the
resolution decision for R each makes the same decision. Assume
R is both accepted and rejected. To be accepted the request
resolution rule requires that a majority of DBMPs voted OK on
R; to be rejected it requires that enough DBMPs voted PASS or
REJ on R to prevent a majority consensus. This can only occur o
if some DBMP voted both OK and PASS/REJ. But the voting rule
prohibits this. Therefore R cannot be both accepted and g
rejected.

!2 Claim 2: An update request R will be resolved by the DBMP set in

- finite time if given any pair of DBMPs in the set, they

are capable of interacting with one another in a finite

o time. It follows therefore that the DBMP set is
o deadlock free.
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Argument (for daisy chaining):

Let R be initiated at DBMP I. I has 4 options with respect to

R:

1. it can vote REJ on R, ]
2. it can vote OK on R; IR
3. it can vote PASS on R; or ]
4. it can defer voting on R. ;i;u

If DBMP I votes REJ, R is resolved in finite time. Consider A

cases (2) and (3). After voting, I can forward R to another

DBMP J that has not voted on R. The premise assures that this . 4!1
is done in finite time. ;i
DBMP J has the same 4 options with respect to R. If it rejects ;4ﬁf:
R, R is resolved in finite time. If it votes OK or PASS and Tf#?
there are insufficient votes to resolve R, J will forward R to ;.,;ﬁ
another DBMP K that has not yet voted on R, thereby, in finite *;zj

time, advancing R one step closer toward resolution. Since
there are at most N (= number of DBMPs) such steps required to
resolve R, it suffices to show that each step requires only

finite time.

The only case that is potentially troublesome is when a DBMP

= defers voting. A DBMP will defer voting only if R conflicts
2
' with a pending request of lower priority or if the timestamps
Ef for R's base variables are too current. If it can be shown
that voting on R cannot be deferred indefinitely, then R will
=
;* either be resolved or advanced one step further toward
i resolution by the DBMP in finite time.
¢ ;. 2
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There can be at most only a finite number of requests with
priority less than R's. This is so since a request's priority
is its timestamp, and due to the way timestamps are generated,
there can be at most a finite number of requests with
timestamps less than R's. Consider first the case in which
there is a request corresponding to every possible tisestamp
less than R's. Number this finite set of requests Ll1l,...,LN in
order of increasing timestamp and priority. The lowest
priority request L1 will be resolved by the DBMP set in finite
time since the voting rule prevents it from being deferred by
any DBMP. Next consider L2. If L2 had been deferred at some
DBMP J, it could have been only because it conflicted with L1
or its base variables were too current. The base variables can
be too current only if L2 was initiated at a site that had
already applied L1. 1In either case, J will learn in finite
time that L1 was resolved. It will then reconsider L2 which
since it is now the lowest priority request will be resolved in
finite time. By similar reasoning it follows that each of the
Li will be resolved in finite time. MAfter LN is resolved, R
will be the lowest priority request and voting on it can no
longer be deferred at any DBMP. Now, any particular case will
involve only requests corresponding to some subset of all the
timestamps less than R's. The above argument, somewhat
simplified since there are fewer requests to consider, remains

valid. This establishes Claim 2 for pure daisy chaining.
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Because REJ and PASS votes are equivalent for daisy chaining
with timeout and retransmission, the argument for that

communication discipline is similar but slightly shorter.

A guaranteed finite time for pairwise DBMP communication is
necessary because at any given time communication between a given
pair of DBMPs may not be possible due to network or host
failures. It is possible for failures and recoverie: to occur in

a way that prevents a request from ever being resolved. For

example, a two DBMP system in which the DBMPs are never up at the
same time can never accept requests since the two DBMPs never

interact. 1In practice, such failure and recovery patterns are ;;;Lq
extremely unlikely. Therefore, the finite time condition for
pairwise DBMP communication is a reasonable assumption for a real N

set of DBMPs,

Claim 3: All copies of the data base converge to the same value.

Argument:

When a DBMP accepts an update it is obligated by the regquest
resolution rule to notify every other DBMP. The update
application rule ensures that the value for each data element
in a data base cépy is the value assigned by the accepted
update with the most recent timestamp known to the DBMP. The
reliable communication mechanism (assumed in Section 2)

guarantees that all accepted updates eventually become known to

all DBMPs.
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Next, we wish to show that the algorithm implements mutual
exclusion for accepted updates. To do this we must be more

precise about what we mean.

First, consider a DBMP set for which all data base copies
are initially identical and assume that the set accepts the

updates R1,R2,...,RN. Next, consider a single centralized data
base which is initially identical to the DBMP data base copies.

Assume that the transaction sequence:

L Wl UL LW2UL ... L WNUL

is run against this data base, where L and UL are operations
which set and clear a lock that controls access to the data base
and Wi is an update transaction which first reads the base
variables (Bj) of some Rj, next computes new values for the
update variables (Uj) of Rj using the algorithm used by the AP

that submitted Rj, and then updates the Uj.

Claim 4: Given a set of updates, Rl,...,RN, accepted by a DBMP

set, it is possible to construct a sequence

L WL ULLW2UL ... L WN UL

where each Wi=Rj and Wi¥Wk for i#¥k such that the values
assigned by the Wi in the single copy data base system

are identical to the values assigned by the
corresponding Rj in the DBMP system.

When transaction Wj is performed on the single copy data
base all previnus Wi (i<j) have been performed. In particular,
any base variables of Wj assigned values by previous Wi's have

been updated since all Wi's have been completely processed. The
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analogous situation for the DBMP set is not necessarily true.
That is, when the base variables at some DBMP X were read to
initiate Rj, it is not necessarily true that all previous Ri

which updated them had been applied to X's data base copy.

It follows from Claim 4 that the effect of operating the
majority consensus algorithm for a set of updates on the data
base copies is equivalent to the effect of operating a locking
algorithm for the same set of updates on a single copy data base. e
That is, the effect on the data base copies of any set of updates
accepted by the DBMP set is equivalent to applying the updates
serially in a non-interleaved fashion to a single copy data base. ;i;;ﬁ
Since serial application using a locking discipline implements

mutual exclusion, it follows that the majority consensus

algorithm implements mutual exclusion for accepted updates.

Furthermore, since the total set of updates accepted by the

majority consensus algorithm is serializable [8], if APs initiate

r only updates that preserve the internal consistency of the data

base, the DBMP set will operate to preserve that consistency (8).

8. Since updates are applied in the order in which notification
F of their acceptance arrives at a DBMP, it is possible that
. some DBMP X will apply them in a different order than they
were accepted. Consequently, it is possible for the internal
- consistency of the data base copy at X to be temporarily
destroyed. However, the consistency will be restored when the
"missing" updates are applied at X. Furthermore, it can be
shown that any updates initiated at X that are based on the
inconsistent data will be rejected by t'.2 DBMP set. If an
application requires that such temporary inconsistencies never
occur, it is possible to reformulate the update application
rule such that an update will be applied to a data base copy
only after all previously accepted updates have been applied.
Implementation of such a modified update application rule
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An induction argument will be used to show that a segquence of

il

the accepted updates can be generated such that each Ri in the
sequence was initiated at a DBMP that had applied (at least the
most recent of) all Rk preceding it in the sequence that

updated its base variables. More specifically, let Tj be the -

timestamp generated for Rj and Tvj be the timestamp for v in -

Bj; we wish to generate a sequence with the property that for
each Ri in it, Tvi>Tk for all Rk that precede Ri for which v is <
in Bi and in Uk, and Ti>Tvk for all Rk which precede Ri for
which v is in Ui and in Bk. Such a sequence of all the %4

accepted updates satisfies the claim since any update Rk that

PR VT RN BT S

assigned values to the base variables that are read by another

update Ri precedes Ri in the sequence, and any Ri that will -

g
b |
assign, but has not yet assigned, values to the basc variables 5
that are read by another update Rk follows Rk in the seguence. ::
Therefore, the values assigned by any Ri are identical to those 1 4
e
it would assign if all updates that precede it in the sequence - 3
]
were run in a non-interleaved fashion against a single copy i
date base. .1
—
The procedure for generating the sequence will be to start with i
o Rl to make a sequence of length 1 with the property; and then e ]
. [ ]
SN to iteratively consider each Rl and order it with respect to o
L the previously ordered Rl,...,Rl1-1 to generate a sequence of
6' requires more communication among the DBMPs regarding updates ~i 9
o that have been accepted. .
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length 1 with the desired property. Generation of a seguence
that satisfies the claim will be complete when the final

request is added to the sequence.

Before proceeding we need to introduce the notions of
acceptance set and time of acceptance and to establish a result
concerning the relation between the time of acceptance for
requests and the positions they may occupy relative to one

another in a sequence with the desired property.

We define the resolution set for a request to be the set of

DBMPs whose votes contributed to the resolution of the request.

The resolving DBMP for a resolution set is the DBMP that

accepted or rejected the request. The time of resolution for a

resolution set is the time at which the resolving DBMP resolved

the request;
Tres = ( max (time, C(T)+1), r )

Where time = the time obtained by the resolving DBMP from its
local clock, C(T) is the c-part of the request timestamp, and r
is the resolving DBMP. Notice that for daisy chaining with
timeout and retransmit a request may have more than one

resolution set.

We define the time of acceptance for an accepted request to be

its minimum time of resolution:

Ta = min ( {Tres} ),
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the acceptance set for a request to be the resolution set

corresponding to its time of acceptance, and the accepting DBMP

to be the resolving DBMP for its acceptance set. Even with a e
timeout and retransmit discipline an accepted request has a

single acceptance set and time of acceptance.

Next we define a constraint concerning where conflicting
updates may appear relative to one another in a sequence. Ri

must precede Rj with respect to v if either:

Pl. v is in Ui and in Bj and Tvj>Ti (i.e., Ri modified a base
variable of Rj before Rj read it); or o

.
Y]
aliiaies

P2. v is in Bi and in Uj and Tvi<Tj (i.e., Rj modified a base
variable of Ri after Ri read it).

Result: If Ri must precede Rj with respect to some v then Ri
was accepted before Rj.

AL s g 2

A

Argument for Result:

By the request resolution rule there must be a DBMP X in the

T A P )

acceptance set of Ri and Rj that voted OK for both requests.

Suppose X voted first on Ri.

gy ] N
LT “-‘, - e e e e
. Dt s e

)

In this case the voting rule prevents X from voting GK on Rj

until Ri is resolved (since Ri and Kj conflict). Therefore

ot e
v e S

Ri was accepted before X voted on Rj and hence before Rj was

wvwvrTr v
e

accepted.

i
oo

Suppose X voted first on Rj.
In the following, let Tvdbi be the timestamp for v in X's
e copy of the data base when X votes for Ri. As above the
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voting rules prevent X from voting OK on Ri until Rj is fjf
accepted and Rj's results are in X's datz base copy. Since
Ri must precede Rj with respect to v, either Pl or P2 must be AR

the case.

Suppose Pl (Tvj>Ti).

Tvdbi>Tvj since, when X voted OK on Rj, Tvdbj=Tvj (v is in e
Bj) and the update application rule prevents the timestamp ;Q;
for v in X's data base from decreasing. Since Tvj>Ti, it
follows that Tvdbi>Ti. By the timestamp generation rule : j
Ti>Tvi. Therefore Tvdbi>Tvi (v is in Ui and hence Bi) which ‘
requires X to vote REJ on Ri. Hence if X voted first on Rj, e

Pl could not be the case.

Since Rj
(v is in
requires

P2 could

Suppose P2

(Tvi<Tj).
must have been applied when X votes on Ri, Tvdbi)>Tj
Uj). Since Tj>Tvi,

it follows that Tvdbi>Tvi. This

X to vote REJ on Ri.

Hence if X voted first on Rj,

not be the case either.

Therefore X could not have

voted first on Rj.

SR
This establishes the result. v
]

Now we can proceed with the construction of a sequence for '-}Qﬂ

Claim 4.

i=1.

Select Rl to form a sequence of length 1. This sequence has

3

the desired property since it contains only a single element.

2 - 35 -
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induction step.

Assume any 1l-1 of the requests, Rl,...,Rl-1, can be arranged in

a sequence Sl-1:
S1=1: "Rp w.s “Rq

with the desired property. The induction step is to show that
Rl can be added to S1-1 to form a new sequence with the desired

property.

Step 1l:

Identify the Ri nearest the end of S1-1 for which there is a v
in Bl and in Ui and Tvl<Ti or a v in Ul and in Bi and Tvi>Tl.
If there is no such Ri, then the new sequence is S1 = S1-1 Rl .
If there is, set Rx to be Ri. By the result above, Rl was

accepted before Rx since Rl must precede Rx with respect to v.

Step 2:

Identify the Ri nearest the end of S1-1 for which there is a v

such that Rx must precede Ri with respect to v. If there is no
such Ri, begin Step 3. If there is, by the result above Rx was
accepted before Ri. Set Rx to this Ri. Rl was accepted before
this new Rx, since it was accepted before the old Rx which was

accepted before the new Rx. Repeat this step.

Step 3:
There is no Ri following Rx in S1-1 for which there is a v such
that Rx must precede Ri with respect to v. Since Rx updates no

variables that are base variables of any Ri following it in
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S1-1 and no Ri following Rx in S1-1 updates any base variab:

of Rx, Rx can be moved to the end of Sl1-1:

sl-1: Rp ... Rg Rx

Step 4:

Form S1 S1-1 Rl:

Sl: Rp ... Rg Rx Rl.

We know from the way Rx was found that Rl was accepted befo:
Rx. 1If we can show that Rx and Rl may (or must) be

interchanged, we will establish Claim 4 since we will have

Sl: Rp ... Rg Rl Rx

and by the induction assumption any collection of 1-1 updat«
and in particular Rp ... Rq Rl , can be arranged in a sequel

with the desired property.

There are three cases to consider:

i. there is a v in Ul and Bx;
ii. there is a v in Bl and Ux;
iii. neither (i) or (ii).

If (iii) is the case then Rl and Rx may be interchanged in

since they do not conflict.

Suppose (1i).
Consider the site Y in the acceptance sets of Rl and Rx whiq

voted OK on both requests. If Y voted first on Rl, then Rl

L'_LLL;L:‘&Ah_;‘_kL‘_L‘L.;L-_LLL‘,;kLLl_‘,;k;,LL 47 m tala . m®an . al b R Y - - a - m_w . a m
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results are in Y's data base when it votes on Rx. To vote OK éi
on k¥, Tvx must be >Tl for all v in Ul and Bx. Therefore Rl -
must precede Rx in the sequence and should be interchanged with Eé
it. Now suppose Y voted first on Rx. Rx's results must have ;?
been in Y's data base when it voted on Rl. This could only .
occur if Rx was accepted before Rl which was not the case. ?3
Therefore if (i), Rl and Rx must be interchanged. =
Suppose (ii). B3
Consider Y. From above we know that Y voted on Rl first. When i
Y voted on Rl, Tvl=Tvdbl. When it later voted on Rx, TR
Tvx=Tvdbx>Tvdbl=Tvl since the update application rule ensures =
that Tvdb can never decrease. (Since v 'is in Ux, it is also in ,ﬁi
Bx.) By the timestamp generation rule Tx>Tvx from which it ;k
follows that Tx>Tvl. Therefore Rx must follow Rl in the ii
sequence and should be interchanged with it. o

g

Claim 5: The timestamp generation rule prevents the occurrence
" of sequencing anomalies. ;%
Argument: e

B
Let A and B be two update requests. Assume that first A is -—
requested and accepted by the DBMP set and then B is requested b
and accepted. To show that sequencing anomalies can not occur gi
we must show that the value of any data base element which is iz
an update variable of A and B will be specified by B. That is, ﬁ%
we wish to show for the timestamps, Ta and Tb, generated for A o
and B: ti
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Tb > Ta.

Recall that the update variables for a request are a subset of
the base variables. Therefore since A and B have update
variables in common, there must be a variable v that is a base
variable of B and an update variable of A. Since B is
initiated after A was accepted, B must have been initiated at a
DBMP X that had already applied A; otherwise, the timestamp of
v in request B would be obsolete, leading to B's eventual
rejection. When B was initiated at X the timestamp of v in X's
copy of the data base must have been at least Ta. The
timestamp generation rule guarantees that Tb is at least

Ta + 1. Therefore Tb > Ta.

Claim 5 means that it is possible for a DBMP set to properly
sequence conflicting update events without requiring that the
local DBMP clocks used in the generation of update timestamps be
synchronized. A local DBMP clock can run at a different rate
than other DBMP clocks; it can even run at a variable rate, or
not run at all. Claim 5 is an important result because it is

difficult to synchronize clocks in a distributed environment.

We note that it does not follow from this result that any
two events initiated at different DBMPs in a system with
asynchronous DBMP clocks can be properly sequenced. It only
ensures that events with something in common (i.e., those that
conflict with one another) can be sequenced. The ability of the

algorithm to properly sequence updates that modify the same
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variable or sets of variables is a consequence of the requirement

that the update variables be a subset of the base variables. 1In

intuitive terms, the variables in common between conflicting
updates are the handles which enable the voting DBMPs to properly
sequence seemingly asynchronous events. The reader interested in
more on the subject of event ordering and clock synchronization

i1s referred to {7].

5. Cost of the Algorithm

It is possible to identify the following costs which are

incurred as a result of using

. Communication. A number

exchanged to accomplish
. Computation. Values for
computed.

the majority consensus algorithm:

of interprccess messages must be
an update.

the update variables must be

The race resolution mechanism occasionly

requires that an update request be rejected. If the i
requesting AP wishes to accomplish an update that has been ™ h
rejected, the AP must, in general, first recompute it and N
then resubmit it as another request. -
Delay. It takes some time for the DBMP set to resolve an j]
update request. i
Storage. While a request is being resolved, DBMPs where it -
is pending must maintain a record of it until it is =T
resolved and they can safely discard it. 9
R

ey

- 3

1his section examines th¢ communication and computation costs

Y

imposed by the algorithm. A pure daisy chaining communication

« ae

discipline 1is assumed.
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}ﬂ Consider an n DBMP system. The number of messages required
to accomplish an update under best case conditions (i.e., no
K conflicts with other update requests, no DBMP failures) is: :
- - 3 To initiate the update - lf
}i (AP<->DBMP messages to request variables, R
transmit variables, request update) ~ -
+ n/2 To achieve a consensus
F. (inter-DBMP messages);
+ n-1 To notify the DBMP set of acceptance
(inter-DBMP messages);
P- + 1 To notify AP of acceptance e
- (DBMP->AP message) g
.=
k or n + (n/2) + 3 messages. 'lli
o
If there are conflicts, the votes of more than n/2 DBMPs may fii}
be required to resolve a request. Each additional DBMP vote ;QVE
requires an additional message. In the worst case, every DBMP :f??;
would have to vote before a request could be accepted. This :;Q;
would require n-1 inter-DBMP messages. Therefore, in the worst fi$ﬂi

case, a request would regquire 2n + 2 messages to be accepted. ﬁ{,i:

If a timeout and retransmit discipline is being used and if

y a DBMP that has voted on a request fails before it can forward
the request, additional messages may be generated by the request

Ef timeout mechanism.

The best case figure of n + (n/2) + 3 compares favorably

with other techniques one might consider for managing

r- distributed, redundant data bases.

Y' An update algorithm is described in [5] which guarantees
[

mutual consistency but can not ensure internal consistency of e
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data base copies. The number of messages required by that

mechanism to accomplish an update is:

3 For an AP to initiate an update;
+ 1 For the initiating DBMP to acknowledge
the update;
+ n-1 To communicate the update to the other DBMPs

or n + 3 messages. The difference of (n/2) is exactly the
number of messages required to reach a majority consensus and can

be regarded as the cost of insuring internal consistency.

It is interesting to note that update algorithms which use
centralized control also require n + 3 interprocess messages. To
see this assume that the central control point resides in one of
the DBMPs. As in the distributed control algorithm, an AP and
the central DBMP must exchange 3 messages to initiate the update;
n-1 messages are required to distribute the update to the other
DBMPs; and 1 message is required to inform the AP that the

update has occurred.

It is possible to imagine algorithms that involve locking
each copy of the data base for the duration of the activity
required to process an update. We consider such a mechanism only
for purposes of comparison: it is clearly less robust with
respect to component failures and outages than the majority
consensus mechanism; furthermore, it may be very difficult to
specify such a locking algorithm that is deadlock free. The
number of messages required by a locking algorithm to accomplish

an update would be:

Lgts et e e o e e e e s e T T .
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To lock each copy of the data base;
To obtain the base variables;

+ n To perform the update and unlock
the data base copies

+
=3

or 2n + 1 messages. Thus, even in the worst case (2n + 2) the
majority consensus algorithm compares well with a simple

lock-update-unlock scheme.

The cost of accomplishing an update includes both
computation and communication costs. Let C be the cost of
computing an update and M be the cost of transmitting a single

message; for simplicity, assume that all messages cost the same.

Using the results from above, the cost, C#, of an update

that is accomplished without rejection is
C + (n+tn/2+3)M < C@ < C + 2(n+l)M,
If we define

COmin
COmax

+ (n+n/2+3)M
+ 2(n+l)M

C
C
then the bounds on the cost, Cl, of an update that is

accomplished with a single rejection and resubmission can be

shown to be:
Clmin + C + 2M < Cl1l < Chmax + C + 2nM

Intuitively, these bounds can be explained as follows. In the
best case, the first update request will be rejected by the
initiating DBMP; the 2M accounts for the messages from the DBMP

to the AP to reject the request and the message from the AP to

- 43 -
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the DBMP to resubmit the update (9); C represents the cost of
recomputing the update. 1In the worst case, all DBMPs must vote
before the first update request is rejected, requiring n-1
inter-DBMP messages and an additional n-1 inter-DBMP messages by
the rejecting DBMP to communicate the rejection to the other

DBMPs.,

In general, it can be shown that the cost, Ck, of an update
that is rejected and resubmitted to the DBMP set k times before

it is accomplished is:

COmin + k(C + 2M) < Ck < C@max + k(C + 2nM)

6. The Problem of Memory Loss

Correct operation of the majority consensus algorithm
requires that information regarding the state of the data base
system is never lost by any DBMP. We assume that anything worth
remembering by a DBMP, such as the data base itself and
unresolved update requests, is maintained by the DBMP on a
non-volatile storage medium, such as disk, which normally

survives host system failures. We further assume that the DBMP

9. This assumes the message to notify the AP that the reguest has
been rejected includes the current values and timestamps for
the base variables; this enables the AP to resubmit the
update without re-reguesting the base variables. If the
rejection is to prevent a possible deadlock, the values and
timestamps returned may not be current.
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can determine when data being moved from volatile (e.g., core)

non-volatile storage has been competely copied to the

{

i
E

non-volatile medium.

A DBMP is said to have "lost memory” if it has forgotten

updates which have been accepted or if it has forgotten how it

has voted on currently unresolved update requests. A DBMP memory

medium used by the DBMP is destroyed.

;

$

3

E loss would occur if the information on the non-volatile storage
L If a DBMP that has lost memory is permitted to vote on
L update requests, that DBMP could cause the majority consensus
‘ algorithm to malfunction. This could happen if: (1) the DBMP Tf;ﬁﬁ
&; votes OK for a request which conflicts with accepted updates it
b has forgotten, thereby possibly enabling the request, which

; should be rejected, to achieve a majority consensus; or, (2)

g when asked to vote on an unresolved request it has previously

- voted on and forgotten, the DBMP votes differently (e.g., votes
F OK rather than PASS), thereby possibly causing the request to be

F both accepted and rejected.
.

By itself, a DBMP has no way of determining whether it has
k lost memory. We assume that memory loss occurs as the result of

Pj some catastrophic event at the data base site and that in such a

case the information critical to DBMP operation is restored by a
- human operator from a backup copy which is possibly out of date.
The backup copy would typically be archived on magnetic tape. We

4 assume that whenever the information is backed up in this way, - g,
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the DBMP is restarted and signalled that a memory loss has
occurred. In addition, we assume the DBMP can determine the
point of memory loss. That is, we assume that the DBMP keeps a
record of timestamps for recent significant events, such as the
last update accepted at each other DBMP, on the non-volatile
storage medium and that this record is archived along with the

data base and also restored after a memory loss occurs.

When a DBMP restarts after a memory loss, it must follow a
memory recovery procedure before it can safely vote on update
requests. In order to become a voting member of the DBMP set, a
DBMP that has lost memory must:

. Recover all updates which the set of DBMPs has accepted

since the point of its memory loss (and which have not

been forgotten by the entire set of DBMPs);

. Recover all unresolved update regquests which it has voted
on since the point of its memory loss.

It can be shown that, in general, a DBMP with memory loss
must interact with every other DBMP in order to guarantee
recovery of all the information it has lost. Furthermore, it can
be shown that a recovery scheme which involves only a simple
interaction with each other DBMP, in which such information is
requested and transmitted, is insufficient to recover all the

lost information (10).

1¢. while one DBMP is attempting to recover memory, it is
possible for the other DBMPs to experience memory loss and
engage in memory recovery in pathological patterns which would
enable unresolved update requests voted on by the original
DBMP to remain active in the DBMP set but unrecoverable by any
simple one pass procedure.
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Below we present a two pass memory recovery procedure which
involves only pairwise interactions among DBMPs. We assert that
this memory recovery procedure works correctly when one, several
or all DBMPs have lost memory. However, it is beyond the scope

of this paper to prove its correctness.

Let M be the DBMP with memory loss. On the first pass M
informs each other DBMP that it is trying to recover from a
memory loss. When a DBMP is so informed, it must acknowledge,
and in addition, temporarily stop forwarding to other DBMPs

unresolved requests that have been voted on by M (11).

On the second pass, M requests from each other DBMP, in
turn, information concerning updates accepted since the point of
M's memory loss and unresolved update requests voted on by M.
After it supplies M such information, a DBMP may resume

forwarding unresolved requests that M has voted on.

If on the second pass M encounters a DBMP that is unaware
that M is engaged in the memory recovery procedure, that DBMP has
also lost memory (since M's first pass). Should M encounter such
a DBMP, it must abort the second pass of the procedure. 1In such
a case, to proceed with its memory recovery M must repeat the
first pass of the procedure, after which it may restart the
second pass. When M successfully completes the second pass, it

can participate as a voting member of the DBMP set.

11. This temporary freezing of data base activity with respect to
these unresolved requests prevents the pathological behavior
mentioned in the previous footnote.
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7. Concluding Remarks

This paper has presented a "majority consensus" algorithm
which represents a new solution to the update synchronization
problem for multiple copy data bases. Because the responsibility
for performing an update is distributed among the collection of
processes that manage data base copies rather than centralized in
a single process, the algorithm can function effectively (i.e.,
process updates) in the presence of communication and data base

site outages.

Analysis of the communication and computation costs incurred
by the majority consensus algorithm to accomplish an update (when
it is unnecessary to reject and resubmit it) shows these ccsts
are not significantly greater than for other more centralized
approaches. When the pattern of update activity is such that
conflicting update requests occur, these costs increase because
more votes are required to resolve requests and because rejected

update reguests must be resubmitted.

In addition to communication and computation costs, the
algorithm imposes a significant short term storage requirement
upon the data base sites since each site must remember the state
of a pending update request until the request is resolved. The
short term storage required for any application will depend upon
the expected patterns of update activity. 1In practice, the
dominant cost associated with use of the algorithm is likely to

be that incurred to satisfy this short term memory requirement.
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A multiple copy data base is one particular type of
distributed data base. Another type is one which consists of
distributed, non-overlapping segments; that is, a data base
which is a collection of smaller data base segments each of which
is singly maintained at a (possibly) different site (12).
Although the data itself is not redundantly stored for this type
of distributed data base, in some applications it may be
desirable to maintain multiple copies of the catalogues for such
a segmented data base. For these applications the majority
consensus algorithm could be used to handle updates to the data

base catalogue.

A number of interesting questions regarding the use of
multiple copy data bases, in general, and the use of the majority
consensus algorithm, in particular, remain to be answered. These
guestions include:

. How should application processes be programmed to deal with
the fact that data found in any given data base copy may
not be the most current? In some cases it may not be
critical that the data is not current. If it is critical,
how can a process locate the most current data?

. How will the algorithm perform under various patterns of
update activity and various patterns of communication
system and site outages? For example, given particular
activity and outage patterns, what is the probability that
an update will be accepted the first time it is submitted;
what is the expected number of DBMPs that must vote for an
update request to be resolved?

12. These two types represent extremes. Some applications may
call for "intermediate" types; for example, a data base
comprised of a collection of smaller segments some, but not
all, of which are redundantly maintained.
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. In practice, use of the memory recovery procedure sketched
in Section 6 could be expensive in terms of the storage
required to maintain update history information at each
DBMP site. What strategies can be used to minimize the _
extent of the history information that is maintained at
each site? The memory recovery procedure that was
presented is interesting in that, like the majority
consensus algorithm, it can be made extremely robust
because it incorporates distributed control. However,
since memory loss by a DBMP is likely to be a rare
occurrence (relative to communication system and site
failures), a simpler, centralized recovery procedure may
be adequate in most situations.

Acknowledgements

Paul Johnson and Harry Forsdick contributed to the
formulation of the ideas in this paper. 1In addition,
conversations with Rick Schantz, Vera Koetelboeter, Ray

Tomlinson, and Maurice Maybury were helpful.

References

(1! R.M. Shapiro and R.E. Millstein, "The NSW Reliability Plan",
Massachusetts Computer Associates, Inc. Report No,
CA-7701-1411, June 1977. —_—

[2] J.B. Rothnie, N. Goodman and P.A. Bernstein, "The Redundant
Update Methodology of SDD-1: A System for Distributed LCata
Bases (The Fully Redundant Case)", Computer Corporation of :
America, Technical Report No. CCA-77-82, June 1977. ay

(3] P.A. Alsberg and J.L. Day, "A Principle for Resilient
Sharing of Distributed Resources", report from Center for
Advanced Computation, University of Illinois at
Urbana-Champaign, Urbana, Ill., 1976.

(4] D.A. Henderson Jr. and T.H. Myer, "Issues in Message s
Technology", Proceedings Fifth Data Communication Symposium,
Snowbird Utah, Sept 1977.
- 5¢ -~
-
L A R UL RN

sl o et e ek el PPN . . : e [ PSR VT ST VT S W Ve U AU S

P
DRI

s
l_‘AA__.“J.‘JA<’ -

l_ "A'.." )

el

il

ad il

e




r-. it S i

Y

Je

[6]

(7]

(8]

t o C B
S . NEAND

EIA Bl i S St W S A Sl Ml S A A S B+ Al B S S Aruh St S ST atet ervi s s SR SSWE aoe S/ duicat- v

P. Johnson and R. Thomas, The Maintenance of Duplicate
Bases, ARPA Network Working Group Request for Comments
#677, Network Information Center (NIC) Document #31507
January 1975,

V. Cerf and R. Kahn, A Protocol for Packet Network
Interconnection, IEEE Transactions on Communications,
Comm-22, No. 5, May 1974, pp. 637-648.

L. Lamport, Time, Clocks and the Ordering of Events in
Distributed System, Massachusetts Computer Associates

# CA-7603-2911, March 1976; also submitted to Communic
of the ACM.

K.P. Eswaren, J.N, Gray, R.A. Lorie, and I.L. Traigen,
Noticns of Consistency and Predicate Locks in a Data B
System", Communications of the ACM, Vol. 19, No. 11,
November 1976,




> S St S S e e e d S el 3 L B B iRt I 0 5 B i e e bl e Se T A W W Wi ek it e vl wah sel Aele Sadl Sl Ade R IRTLEER S

.............................

DATA DATA DATA
BASE BASE ¢ BASE
COoPY COPY COPY
1 2 N
[ )

DBMP see

UPDATE

® & 0

—
Figqure 1
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Figure 2

Possible DBMP/DBMP communication patterns include:
(a) broadcasting, (b) daisy chaining, and (c) daisy
chaining with timeout and retransmission.
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APPENDIX

This appendix includes a number of examples chosen to

DOORE Nl OLART g G

illustrate various aspects of the update algorithm. Before

s

presenting them it is necessary to specify in some detail the

-
NP

messages exchanged among APs and DBMPs. The following messages

are used in the examples:

R
AR AL & ¢

DBMP <-> AP messages: L

RV
VAR
RU
67:)
UR

Reqguest Variable values and timestamps (AP to DBMP).
VARiables and timestamps (DBMP to AP).

Request Update (AP to DBMP). ]
Update Accepted (DBMP to AP). :
Update Rejected (DBMP to AP). !4

Inter-DBMP messages:

v .
et

RC
DO

Request Consensus on specified update request.

The specified update request has been accepted; enter
it into your copy of the data base.

The specified update request has been REJected.

)

REJ

ol R

For each of the examples that follow a number of different

O

sequences of events are possible; only one sequence is presented

54 ATTEREEIE I
LR T .
g

N for each example. The following notation is used in the

s
‘. i,

Bk A s

examples:

PR
LR o 4

1
"

—
I P

-
BOAA SR N

. X=>Y:Z represents transmission of message Z to process Y by
A procecss X.
o . [A/ B / C] indicates the event sequence in which event A
is followed by event B which is followed by event C.

b, - . [ A & B ] indicates that events A and B occur concurrently.
£~ o . The update request status "--" indicates that the update .

: request is currently unknown at the DBMP in question. The ]
i status "XX" indicates that the DBMP in question is down. :
‘ . ok@l2 (pa€@l2, rj@l2) means that DBMPs 1 and 2 have voted OK
: (PASS, REJ) on the request. Similarly do@2 (rej@2) means

that DBMP 2 accepted (rejected) the update request.

. DONE means that the DBMP has performed the update.
t { . REJD means that the DBMP considers the request as rejected.

Py i

PR T
ISP LA
e e
s e e e T
bt k.
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R

"*" jndicates that the DBMP is actively trying to forward e
information regarding the request; *ok means that it is T
trying to forward an RC message; *DONE means that it is
trying to complete sending DO messages; *REJD means that
it is trying to complete sending REJ messages.

L

The first three examples assume pure daisy chain communication.
The fourth example uses daisy chaining with timeout and

retransmit.

Example 4 1: Normal update with no conflict.

Consider 3 DBMPs which manage a data base which includes a

variable x. Assume that an AP wishes to do the update: 73

..
. .
. f

4 .

L ’ [
[P VRPIR S PRSI

AL"

Further, suppose that x is current in all copies of the data Ti

. o e @

base, and that its value is 3. Let the update requested be

called A. A has a single base variable, x, and a single update

variable, x. If accepted, A will change the value of x to 4.

The table below illustrates the sequence of events that
occur and how the status of the request A as seen by each DBMP

evolves as the DBMPs work to accomplish the update.

- DBMP-1 DBMP-2 DBMP-3

Status
of:

A - - -

o
e [ AP->1:RV(x) / 1->AP:VAR(x) / AP->1:RU(A) / 1 votes OK ]

. [ T S DRI - .-
«* v Pl SO
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A *ok@l - --
[ 1->2:RC(A) / 2 votes OK ]

A ok@l *ok@l2 --
[ 2 accepts A / 2->1:DO(A) / 2->AP:UA(A) ]

A DONE *DONE -
do@2 do@2

[ 2->3:DO(A) ]

A DONE DONE DONE
do@2 do@2 do@2

[ 1,2,3 discard request A ]

Example # 2: Concurrent Conflicting Updates.

This is the example from Section 1. There are 3 DBMPs which
manage a data base that includes variables x, y and z. Assume
all data bases are current and x=y=z=1 in all copies of the data

base. Assume that APl initiates update A and that AP2 initiates

update B:
A: x := -1, y := 3
B: y := -1, z := 3.

The base variables of A are x,y,z and the update variables are
X,y; B's base variables are x,y,z also, and its update variables

are y,zZ. A and B conflict.

In the following, A is accepted causing B to be rejected.
AP2 then chooses to re-initiate its update (called B' to
distinguish it from the AP2's original request) which is then
accepted. We assume that the priority of reguest A is greater

than that of B.
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A
N DBMP-1 DBMP-2 DBMP-3
2
£ Status
of:
A -- -- -~
B - — -
- [ AP1->1:RV(xyz) & AP2->3:RV(xyz) / 1->AP1:VAR(xyz) & 3->AP2:VAR(xyz) / |
ac AP1->1:RU(A) & AP2->3:RU(B) / 1 votes A-OK & 3 votes B-OK ] T
" A *okel -- -- Lo
; B -- -- *0k@3 o
- [ 1->2:RC(A) & 3->1:RC(B) / 2 votes A-OK & 1 votes B-PASS ] : E
A ok@l *0k@12 -- T
B *ok@3pa€l -- ok@3 RN
[ 2 accepts A & 1->2:RC(B) / 2->AP1:UA(A) & 2->1:DO(A) & 2 rejects B ] = 1
—
e A DONE *DONE -- T
: do@2 do@2 -- )
A B ok@3padl *REJD ok@3 oy
- rej@2 RS
. [ 2->3:DO(A) & 2->1,3:REJ(B) & 2->AP2:UR(B) ] s i—i
4
. R
::~ a DONE DONE DONE -]
o do@2 do@2 do@2 S
N B REJD REJD REJD s
rej@2 rej@2 rej@2 ,_J
y
[ 1,2,3 discard A and B ] — '.“
AN .‘:.
. A -- -~ -- R
: B -- - -- T
i [ AP2->2:RV (xyz) / 2->AP2:VAR(xyz) / AP2->2:RU(B') / 2 votes B'-OK ] f:
B -- *ok @2 --
= [ 2->3:RC(B') / 3 votes B'-OK / 3 accepts B' / ... etc. ]
: g
)
! Example # 3: Deadlock Avoidance. I:::
.
Assume 3 DBMPs which manage a data base which includes the - ["
5 variables x, y, and z. Assume that all copies of the data base . -::1
RO
2 A-4 L
¢ —
. :_;:
e e T e T L T e I e e e e e T T
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are current and that x=1, y=2, and z=3. Assume that 3

application programs attempt the updates:

[-',-4
ala ale

A: X := y*z (by AP1) )
. B: y := z + x (by AP2) ]
C: z := x -y (by AP3)

I'. L e
.t PR
P S i )

Update A would change x to 6; B would change y to 4; C would

1: change Z to -1. The base variables of all 3 requests are x,y,z; %ﬁ
i the update variables are such that each request conflicts with E%
éﬁ each of the others. 1In the following scenario the DBMPs act ii

first to reject C in order to prevent a possible deadlock, next Li

to accept B, and finally, to reject A because it conflicts with

—
1,'1'-'}-" ,’I.Lr. .. } ."'.I. ‘v

- B.
o DBMP-1 DBMP-2 DBMP-3
S Status -
W of: 4
(] )
- A -- - - ]
, A = - - ‘
c - - - ,
[ ... AP1->1:RU(A) & AP2->2:RU(B) & AP3->3:RU(C) /
1,2,3 vote OK on A,B,C ] Qﬁ
<
A *ok@l - - o
B -- *ok@2 -- -
C ~- -- *ok@3
]
[ 1->2:RC(A) & 2->3:RC(B) & 3->1:RC(C) / L,
2 defers A & 3 defers B & 1 votes C-PASS | -
A ok@l DEFR, 0k@1 -- -
B -- ok@2 DEFR,0k@2 =
C *ok@3pa@l -- ok@3 ;J
[ 1->2:RC(C) / 2 votes C-PASS / 2 rejects C ] ?;
A ok@l DEFR,0k@l - )
B -- ok@2 DEFR,0k@2 e
C ok@3pa@l *REJD ok@3 »-4
reje2 l?
)
)
A-5 o
o
b,
. \‘ SRS I . ..\. -\.‘. """"""" S TR B T T T N T e e
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6
[ 2->1,3:REJ(C) & 2->AP3:UR(C) / 3 votes B-OK / 3 accepts B ] o
a ok@l DEFR, ok g1 -- T
B -- ok@2 *DONE .
do@3 ‘ij
C REJD REJD REJD -
rej@2 rej@2 rej@2 I
|
[ 3->1,2:DO(B) & 3->AP2:UA(B) / 1,2,3 discard C & 1,2 reject A ] g
i
i
A *REJD *REJD -- l
rejel rej@2 N
B DONE DONE DONE f
do@3 do@3 do@3 ;
C -- -- -- :
{ 1,2,3 discard B / 1->2,3:REJ(A) & 1->APl:UR(A) &
2->1,3:REJ(A) & 2->AP1:UR(A,xyz) |
A REJD REJD REJD
rej@lz2 rejel2 rejelz .
B - == == e
C ~- - - —.
[ 1,2,3 discard A ]
L ]
Example # 4: Updating in the Presence of DBMP Crashes. -
For this example assume a 5 DBMP system and that all data =
base copies are current. Further assume that DBMPs 4 and 5 are K |
initially down and that when DBMPs crash and later come up they |
do so without loss of memory. Suppose that conflicting updates A
_ and B are initiated at DBMPs 1 and 3 respectively. The following —
;ff illustrates a scenario in which various DBMPs crash and return as ~
Ej} the set of DBMPs act to accept B and reject A.
w'; P,
E?‘
b
p -
= N
» s
.
» A-6
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DBMP-1 DBMP-2 DBMP-3 DBMP-4 DBMP-5

Status

of:

A -- - - XX XX
B - - -- XX XX

[ AP1->1:RU(A) & AP2->3:RU(B) / 1,3 vote OK on A,B ]

A *okel -- - XX XX
B -- -- *ok@3 XX XX

[ 3->1:RC(B} / 1 votes B-PASS / 1->2:RC(B) / 2 votes B-OK /
1->2:RC(A) / 2 defers A ]

ok@l DEFR,0k@1l - XX XX
ok@3pagl *ok@23pa@l ok@3 XX XX

w >

[ 2 crashes / 1 times out A |}

*ok@l XX -- XX XX
ok@3pad@l XX ok@3 XX XX

W 3>

[ 1->3:RC(A) / 3 defers A / 4,5 up / 3 times out B ]

A ok@l XX DEFR,oke@l - -
B ok@3pael XX *ok@3 - -

{ 3->4:RC(B) / 4 votes B-0OK ]

*e
'

o
L

. A okel XX DEFR,0k@el  -- --
B ok@3pael XX okg@3 *ok@34 --

E; [ 3,4 crash / 1 times out A ]

i A *ok@l XX XX XX --

= B ok@3pael XX XX XX --

[ 1->5:RC(A) / 5 votes A-OK / 2,3,4 up |

ok@l DEFR,ok@l DEFR,o0k@l -- *ok@l5
ok@3pa@l *ok@23pa@l ok@3 *ok@34 --

.
w >

L
I Y I
PG )

[ Note that B has been resolved but that no single DBMP is
aware of that yet.
5->4:RC(A) & 4~>5:RC(B) / 4 defers A & 5 votes B-PASS ]

A ok@l DEFR,0k@1 DEFR,0k@l DEFR,0k@15 ok@1l5
B ok@3pa@l *ok@23pa@l ok@3 ok@34 *ok@34pa@s

[ 2->5:RC(B) / 5 accepts B / 5->1,2,3,4:D0(B) & 5->AP2:UA(B) /
2,3,4 vote A-REJ ]
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A ok@l *ri@20k@l  *rj@3ok@l  *rje4ok@l5 okels o
B DONE DONE DONE DONE DONE RO
do@5 do@s do@5 do@5 do@5 R

[ 2->3:RC(A) & 3->4:RC(A) & 4->3:RC(A) / T
3 notices rj@234 for A and rejects A ] AN

At

A ok@l rje2okel *REJD rj@34ok@l5 okel5
rej@3

B DONE DONE DONE DONE DONE

do@5 do@5 do@5 do@5 do@5 >

AR

it
dbanalli.

( 3->1,2,4,5:REJ(A) / 1,2,3,4,5 discard A,B ]
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