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0.0 Introduction and Overview

This report, in the form of a set of notes, details Honeywell's research

results of the past year in Robust Multivariable Control Theory. These notes

are made up of four major parts. Part 0 gives a review of the required nota-

tion and mathematical background. Part 1 reviews recent results on the

problem of aznalyzig the performance and robustness properties of sys- 3

terns. Part 2 presents the results on sjnthesis which are the highlight of this

report, and Part 3 outlines how the methods of the previous parts apply to

control of large space structures.

In the context of these notes, the words analysis and synthesis have

specific meanings. Analysis is used to describe the process of determining

whether a given system has the desired characteristics. In general. this may

range from the use of mathematical tools to simulation to experimentation.

although analysis is typically applied primarily to describe the former. Syn-

thesis, on the other hand. is the process of finding a particular system com-

ponent to achieve desired characteristics, which are typically expressed in

terms of some analysis tools. Analysis and synthesis are just two aspects of

the more general problem of engineering design.

The results reported in these notes represent a signilcant advancement

in the sta'e-of-the-art of robust multivarlable control design. In addition to

providing specific mathematical results, these notes describe a general

approach to control problems which is intended to provide the foundations

for a new paradigm for control theory broader in scope and content than •

what has been previously available. This paradigm is introduced in Part 1 on

Analysis. An Important aspect of this new paradigm is the treatment It gives

to model uncertainty.

• 0
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Modern Control Theory, the dominant paradigm for the past 20 years,

has its basis in Stochastic Optimal Control and Estimation Theory [LQG]. This

theory essentially restricts model uncertainty to additive noise. The theory

provides a methodology for analyzing the impact of noise on system perfor-

mance and synthesizing to reduce that impact.

The inadequacies of this view of uncertainty became widely accepted in -4

the late 1970's, as robustness to plant uncertainty became a major theme in

the Modern Control Theory community [LUC]. Ironically, this involved a

renewed interest in the Classical Control paradigm ([Bod).[Hor]). which

Modern Control displaced within the theoretical community (if not among

practicing engineers). This new direction provided useful design tools, includ-

ing Singular Value Analysis and Multivariable Loop Shaping

([flSt1JJDoylJ.[DSt2]).

While providing an important perspective, as well as practical tech-

niques. the methods based on singular values still require rather restrictive

assumptions about uncertainty. In particular, plant uncertainty must essen-

tially be modelled as a single "unstructured perturbation."

The Structured Singular Value (SSV). As. was developed several years ago

to correct this deficiency in singular values ([Doy2],[DWS1) In the context of

r the general framework discussed in this memo, the SSV provides a very

powerful mathematical tool for the analysis of complex systems. Indeed, we

believe that this framework together with the SSV and the synthesis tech-

* niques discussed later, has the potential to form the basis for a new para-

digm for control theory. Part 1 of these notes describes the general frame-

work for control system analysis and synthesis which includes all the

viewpoints discussed as special cases. In particular. the assumptions about

p , I1Lq- , I...

• . - . - . - . . . + . . . .. . . * . .. ..
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uncertainty required by each methodology are compared.

In Part 1 it is shown that each analysis methodology boils down to

evaluating .9

I P IvIs a=2,- or 1 (1

for some transfer function P4. Thus when the controller is put back into the

problem. it involves the synthesis problem

min I F(PAK11. for .2.. or(

subject to internal stability of the nominal. Here

F (P.K)=P 1-4- P 1 2K(I-P2K) -P."

The solution of this problem for a=2 and -a is the focus of Part 2 on Syn-

thesis Theory. The solution presented there unifies the two approaches in a

common synthesis framework. The a = 2 case was already known and the

results are simply a new interpretation. The a=- case had been solved only

for special cases where P12 and PX1 are square. Also, the ensting solutions

did not have computational schemes allowing their use on even moderately "

sized problems. These two limitations, especially the former, restricted the

application of the pioneering H. methods to fairly simple problems, such as

sensitivity minimization. The new solution presented in Part 2 eliminates

these two limitations.

Unfortunately, this new solution for the H2 and H. suffers from the

same limitations imposed by restrictive assumptions about uncertainty as do

the underlying analysis methods. While the SSV is a great improvement for •

analysis, synthesis for the a--s case is not yet fully solved. It is shown in Part

1 that us may be obtained by scaling and applying so a reasonable

approach is to "solve" 0
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by iteratively solving for K and D. With either K or D fixed, the global

optimum in the other variable may be found using the u and R. solutions

described in Parts 1 and 2, respectively. Example designs have been done

and this scheme seems to work well. but global convergence is not

guaranteed. In fact, a counterexample has been constructed where (3)

reaches a local minimum which is not global. This is the subject of ongoing

research.

As noted above, the main results of these notes are the synthesis solu- 5
tions of Part 2. particularly for the H. case. This part focuses on the

mathematical problem of finding K C R;" ' l such that

F,(P.K) 1E RR m.'"" (4)

and

II .,iP.Kj (5)

where

LP1 Pal RP,)x F-mm (")

and 7 are given and

F(PK) P11  PIIK(I-P2K)1 P 1. (7)

The important mathematical questions include finding for which 7 solu-

tions exist and then parametrizing all solutions to (4) and (5). The notation 0

used here Is that Rp denotes proper, real-rational and RH. denotes the sub-

set of 1? analytic in the right-half of the complex plane. The above problem

is a natural generalization of the standard (rational) matrix "best approxima-
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tion" or "generalized interpolation" problem. The relationship between (4)-

(5) and these familiar problems will be discussed in Part 2 of these notes

which presents an approach to solving (4)-(5).

A important issue in applying mathematical results of the type

developed in these notes to engineering problems is the ability to generate

algorithms that compute the solutions in a reliable and efficient manner.

These notes pay close attention to this issue by developing the mathematics

in a way that makes algorithm development reasonably straightforward. This

is often done at the expense of elegance. It's worth noting that virtually all

the results in these notes have been implemented in computer software and

that this software is currently being used to do experimental designs for non-

trivial engineering problems. From a practical engineering point of view, the

results have been most encouraging.

The remainder of this part of the notes iimply defines notation and

reviews some of the specialized methods which are standard within the con-

trol theory community but are not typically well-known to mathematicians.
0

!
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0. 1 Definitions and Notation 5

0.1.0 Notation

SYMBOL USAGE

" (t) = -( ). '
dJ

1. (:*y)(t):=]( ),-,-

2. A* = complex-conjugate transpose of complex matrix A

7* = adjoint of operatorr'

1.(t) = unit step function;
1,,6 6(t) unit impulse

s G(s) = two-sided Laplace transform of g (t)

* orthogonal complement

I (A) = largest singular value of matrix A

P I p(A) = spectral radius of matrix A
! --

S "

i " - " . . . ... . . .. .• .. . .. . :' ' " "' " " .. . 'i il i i i ll id ,a~i inIS
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YX= TAT-' , A diag(Z1 ....4)

Then columns of T are (possibly nonunique) eigenvectors of YX correspond-

ing to the eigenvalues IXd. It is shown in Lemma 1 at the end of this section 0

.that YX has real diagonal Jordan form and that A-0. This is a consequence of

Y-O and X O.

Although the eigenvectors are not unique, in the case of a minimal reali- -0

zation they can always be chosen such that

?= TYT' = Z

= ( 1 )'XT'- =

where = diag(al, Z. . a,) and 22 = A. This new realization will be

referred to as a balanced realization (also called internally balanced) (Moo).

Suppose G =W is a balanced realization for G and can be parti-

tioned as

22 A B4

with corresponding partitioning of the balanced gramian E = " Sup-

pose E 1=dag(aj,a 2.... a,.). I2=diag(a, .,a,...2 .  a) and

aj;._C2 ! ' • • >cr~ljat • ;ao Then it is immediate that the truncated

system

is balanced since

• ., .

I - P 0



0.3 Gramians and Inner Transfer Functions 0--

0.3.1 Gramians and Balanced Realizations

.0

Suppose = where A is stable. Define the

conLtroZb it- gr'TLm m Y as

Y e AetBB'eAldt

and the obseruabilitj gramian as

X A IeA,, Ce A.

By considering the corresponding matrix differential equations it is

easily shown that Y and X satisfy the Lyapunov equations

AY- YA'- BB'O

A'X + XA + C"C = 0

Note that Y!O and X*O. Furthermore, the pair (A.B) is controllable iff Y>O

and (CA) is observable if! X>O.

Suppose the state is transformed by nonsingular T to 2 = Tz to yield the

realization O

G with "E 2' I
Then the gramians transform as Y= T' and X = (T-1)XT- . Note that

= T1T27 so the eigenvalues of the product of the grarnians are invariant .

under state transformation.

Consider the similarity transformation T which gives the eigenvector

decompo.ition
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0.2.4 Unear Matrix Equations:

Property 1 : (Soution of Sylvester Equations)

Consider the Sylvester equation

AX-XB=C (2)

where A e W" , B F- IRIK. C £: W 1 4 are given matrices.

Then. there exists a unique solution X F UR"' if and only if

RejX,(A) - Xj(B)] 0. vi = I ........ n and j = ........ .

Remark.

In particular. if B = AF . (1) is called the "Lyapunov Equation" and the

necessary and suficient condition for the existence of unique solution will be

Z that Re[X(A) + Xj(A)] ;A 0. 1 . .= ... n.

Property 2: (Solution of iear Equations)
S Consider the linear equation

AX=B

where A F - . B C IR"  are given matrices.

The following statements are equivalent:

(i) there exists a solution X E Vl"K.

(i!) the coluns ofB C R*Ve (A).

*(iii) rankIA B ]rlkl[AI

(1v) Kir (A") C Ker (Bt ).

S

0 -= %
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G= ZD.

The following lemma characterizes the relationship between zeros of a

transfer function and poles of its inverse.

Lemma Suppose G = with D nonsingular. Then there exists

(s, =o) such that

(A - BD-IC)z s.:, ,Cxo

if there exists uv 00 such that

G(so) . =0

Proof

(if) S

G(s,)u.= 0 implies that G-1(s) has a pole at s . Thus =(s., z.) such

that C.o 0 and

(A-BD-IC)z. = s==

(only iJ')

Set us -D-ICOr0. Then

G(s,)u., = C(s.I-A)-Bu,. Du, = - = 0. •

QED

0

S

0-
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Proof: The right inverse case will be proven and the left inverse case

follows by duality. Suppose DDT = I. Then

ABDtCC BDt
G&'r o A-BDt C -BDt"

C DDtC DDT]

fABD tC BDt
0 A-BDTC -BDt A
C C I

Conjugating the state by ,0 1.j on the left and = on the right

yields

GGt = A-BDTC -BDt

CoroUary 7 Suppose D is a right inverse for D and let

Then

G =DZ.

Corolary 7 Suppose D is a left inverse for D and let

= [zc BDt zj.

Then

9



A -- ,o

2 -

k -eI

4. Output Injection

zA-Bu -B H-

I~~V [ i+][4HCB+HD

I• - .
5. Transpose (Dual)

G G?

Conjugate S

_l - r -C.-

7. Inversion

rABDtCJ -BDt1
Suppose Dt is a right (left) inverse of D. Then = -D C Dt is

a right (left) inverse of G.
* 0

4 0
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0.2.3 Operations on lnear Systems

1. Casmed

1= CDI G, = ""2•

GIG1 = rAIBk, Bl k2t Be

A, C BD,=[ A2 0 Be
=0 A2 B, BICB1 C, 1 B1 Dg

C DIC2 DD,] jDC C1 1D, "O

Note: This realization may not be minimal.

*~ Change at Variab~e.

z "-.2== .'

1/ -. Q=RV

u -a =Pu

[ClBJ " P IT Ojo

jTAT-1 I TBP-'.."
=j'RCT- RDP- 1J .

. tate Feedback

u 112 -



Suppose G(s) is a real-rational transfer matrix which is pr-oper, i.e.. ana-

* lytic at s. Then there exists a state-space model (A.B. C.D) such that

G = . (a) .

*The quadruple (A.BCD) is called a realzation of G. A realization is

mi mial if A has minimal dimension. It is a fact that a realization is minimal

if and only if (A,B) is controllable and (C.A) is observable.

A basic object of study will be the transfer function and it will be

assumed to have a realization. The next section describes standard opera-

tions on linear systems in terms of transfer functions and their realizations.



0.2.2 Transfer Functionis

Consider the linear, time-invariant, ordinary differential equation

described by

j. ;=44~- -'.(1=A= .-"-

where x(t) E R "is the state. u(t) CE R is the input. and y(t) 4E IR li the

output. The A.B. C. and D are appropriately dimensioned real matrices.

Associated with (1) is the convolution equation

Y(t)(g *u)(t)

g(t) =C*-OBJ+(t) D6(t)()

end, upon taking Laplace transforms, the resulting transfer function is

V(s) G(s)-u(s)0

G(s) C(sI-A)''B + D()

To expedite calculations involving transfer functions the notation

C C(sI-A)1'B + D(4

(4)]

will be adopted. Note that [C DI is a real block matrix, not a transfer func-

tion. The product of two transfer functions is, of course, the cascade of the

two systems or just the multiplication of two rational matrices. The conven-

tion will be adopted that the product of a matrix and a transfer function is a

transfer function defned as

,, X11 ,A .- :B.X12

tA similar convention holds for right multiplication by a matrix. e.

Asoitdwt* Si h ovouineuto
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zz (O) Z.

V •

The system, or the pair (C.A). is observable if, for every t1 >Q, the function

Y(t). t [0.t I. uniquely determines the initial state ..

Theorem 1':

The following are equivalent*

(i) (C.A) is observable.

C
CA6
CA2

(ii) The matrix has independent columns.

(iii) The matrix rC" has independent columns for all, in nC.

(iv) The sigenvalues of A+HC can be freely assigned by suitable choice of H.

(y) (A'C) is controllable.

The system, or the pair (CA), is detectable if A+HC is stable for some

H.

Theorem r:

The following are equivalent:

(i) (C.A) is detectable

(ii) The matrix has independent columns for all Re MO.

(iW) (A*. C) is stabilizable.

(v) A',C) iscontollale.9

H. -2 : "
2.: , .
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0.2 Linear Systems

0.2.1 Controllability and Observability

Consider the system

-Az+Bs . z )-. (1) 

The system or the pair (A.B) is controlable if, for each time tj>O and Anal

state zj, there exists a (continuous) input u(0) such that the solution of (1)

satisfies z (t 1) = z

Theorem 1 0

The following are equivalent:

(i) (A.B) is controllable.

(ii) The matrix 1B, AB .... has independent rows.

(iii) The matrix -VJ. B has independent rows for all A in C

(iv) The eigenvalues of A+BF can be freely assigned by suitable choice of F.

The matrix A is said to be stable if all its eigenvalues satisfy ReA<O. The

system, or the pair (AB). is stabilizbLe if there exists an F such that A+BF

is stable.

Theorem 2

The following are equivalent:

(i) (AB) is stabilizable.

* (il) The matrix [-XfB has independent rows for all ReAMO. 0

We will now consider the dual notions of observability and detectability

with the system

* o _

* 0
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* L.(iR,Cm ): Banach space of (essentially) bounded matrix-valued

functions, with norm

" ' ,, := ess sup

*.h H,"j1R,C""): subspace of functions F(s) analytic and bounded in Re s >0.

P 12 . PHj-: the orthogonal projections from LIILJECm") onto

H.(iIKCm2 ). HC'R, Cm)L respectively.

Prefix R denotes real-rational and the prefix B denotes the unit ball.

The symbol 4 1 1mx ) denotes proper real-rational matrices. Sometimes the

spaces are abbreviated as LQ(JR), etc. or as La, etc. when context determines

* .the arguments.

The Fourier transform yields the following tisometric] isomorphisms:

,(IR. CmI) L H(7R. Cm ")

k12(R Cnxn) Hs(jF. C"')}~

The norms on these spaces are all denoted by I H I
A useful fact is that the norm of a matrix G in L.(jR, C") equals the

norm of the corresponding multiplication operator 7

f -Gf L2(j. C"~) 'L 2(jR CtM)

that is,
* -

I111.=SUP{J'l'G :f cL(jR C I). -

It also equals the norm of the operator restricted to H(jJR, C3 ):



0.1.1 Function Spaces

Continuous time domain

L2(IR.C""): hilbert space of matrix-valued functions on JR with inner

product

<Is> trace(t)g(t)ld±.

R2(IR.C"): subspace of functions zero for t <0.

' H", )- :subspace of functions zero for t>0.

.H and PH: the orthogonal projections from L 2(RC") onto

H2(R "), H2 (R,Cm " )I respectively.

Continuous frequency domain

jR, imaginary axis.

LzUjIRC""): Hilbert space of matrix-valued functions on jR, with inner

product

<FG> : - ace[F )'G(jw)dw.

H2(j1R.CmxI): subspace of functions F(s) analytic in Re s>0 and satisfying

s 0 - • -<

0m
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A111: + EIA11' + BIB1 ' = 0

A1 -. I jj CIC 1  0.

It can also be shown (Silverman and Pernebo) that a minimal realization for

Gr is stable, although in certain (non-generic) cases All may have uncontroll-

able or unobservable jru-axis eigenvalues.

Lemna 1 Product of Positive Semi-Deflnite Matrices is Similar to a Positive

Semi-Deftnite Matrix

Proof: Let X and Y be positive semi-definite. First perform an orthogonal

transformation so that

X A, [o0 A1>O diagonal, Y' Y1 12

By this transformation XY is similar to 0 0 Now

•Al1j AIYI2 ] = [4 o J(AiIIAP A Y2[Af-i cJ

and it is easy to find a matrix Z such that

* [A YIIA ol =r ZJfAIYIIA? APY 1 I a -10o 0 10 1~l 0 0 l0 1

(Z exists because the columns of A Y11 span the columns of AY 12 owing to

the fact that Y is positive semi-dednite). The left hand side of this last equa-

tion is positive semi-defdnite and similar to XY. If XYO it Is possible to find

a matrix 7T, such that

0

. .-. -
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TT1 ABT1  A diag{(..... Xx.0.....0)}

where Xl1) """ '2AK>O.

Q.E.D.

". Now consider two gramians X and Y. Let us suppose XYP"O. so that T,

can be chosen as above: a

7j=fl7 = A = dia.(X1 .  ... 0)1

* where XjX~', ! •' A>O. Under this transformation the gramians become S

Q = TTIX(Trl) ' . R = TI'YTI.

and QR=A. Because Q and R are symmetric, RQ=AV=A=QR and so Q.R and A

commute. Both Q and R must leave the eigenspaces of A invariant and so

are of the form

Q diagQi. Q.Lj
R ding IjI .. .... Q, -, I
R diag{Xii-.

where Qt is a square matrix whose size equals the dimension of the Xj, eigen-

space of A and EF=O where E and F are square matrices the size of the ker- P.

nel of A. Of course. all the Q's are summetric so it is possible to fnd an

orthogonal matrix

W = diag WI. WIA+--

such that W-'Q(W-)' and Wl+4,FW I are diagonal. Note that this same W

gives a diagonal W"RW and leaves A alone.* _S

*• S
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The transformation T7'2= TW diagonalizes both grarnians. It is now obvi-

ous how to construct T3 so that T7"1X(Tj7)' and T7'Y r7 are diagonal and the

controllable and observable portions are equal. -.

A

LJ

* S
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0.3.2 Inner Transfer Functions

Let G = . Then G is inner if G*G=1 and co-inner if GG*=I. Note

that G need not be square. Inner and co-inner are dual notions and are often

called all-pass.

If G E A?'. p>rn is inner then any G1 C is called a comple-

menLary inner factor (CIF) if [G G is square and inner. The dual notion of

complementary co-inner factor is deined in the obvious way.

The following lenma is useful in characterizing inner transfer functions

in terms of a realization.

Lemma 1. Suppose X=X" C R"" such that

) A'X - XA C'C 0

ii) B'X - D'C =0

Then GG =D'D.

Proof: Suppose that i) and ii) hold. Then conjugating the state of

rA o e
G*G =-C'C -Ak 2D

[D'C B' ID'D

by 1 1 on the left and [...J z = 1 0J on the right yields

A 0 B 1
G*G = j-(A' X4 +C'C) -A' -(XB+CD). (1)

C B' D'D

Now, applying i) and ii) yields

GG = 0 -A.
0 B' DDj

* 0
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By duality, we have the following

LeMmna 1 Suppose Y= Yr c IR"'X such that

i) AY + YAT.+BB' 0

ii) CY -DB'=O0

Then GG*=DD'.

These two lemmas immediately lead to one characterization of inner

matrices in terms of their state space representation. Simply add the condi-

tion that D'D=I (DD1=) to Lemma 1 (1') to get G0!l (GG'1I). Further-

more, by adding a few additional assumptions, the conditions in the lemmas

Ibecome necessary as well as sufficient. This leads to the following complete

characterization of stable inner transfer fun~ctions in terms of a minimal

realization.

-Suppose G= C is stable and minimaL Then the gramians X and Y -0

satisfying

AX+ X.+ C'CO (2)

UAY-YAEB'= 0 (3)

exist and are unique.

6 Corollay 1 G is inner iff

i) 8'X -D'C=0

ii) D'D =I
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Corollary 1' G is co-inner i!I

i) CY + DB'= O

i) DD'= 0

Proof Sufficiency of i) and ii) follows immediately from the lemmas. For

necessity, suppose G*0=I. From 1) and 2) this implies that

X+D'C 01 . (4)

D'D = (5)

Since (A.B) is controllable, (4) implies that BX+D'C=O. The co-inner 0

case follows by duality.

This characterization of inner transfer functions is from [AnV] and plays

an important role in the synthesis theory. It allows the construction of inner

transfer functions by solving algebraic equations.

.1 -

* 5



0.4 Inear Fractional Transformations

Suppose P = 2 P2 2 ] A R,. K -W

will adopt the notation

F'(P, K) P11 + P1 2K(I-P22K)-IPZ1  (1)

and

F-(P,A) A PU + P21A(-PIIA)-IPI1  (2)

The linear fractional transformations (LM are illustrated in Fligure 1.

The I denotes that the second argument Is fed back in the lower block. and

the u denotes feedback in the upper block.

An important property of LFTs is that any interconnection of LFTs is

again an LFT. Suppose J 21J2 Then

FI(P.F,(T.Q)) = FI(TQ) (3)

F.(J,.(P,)) = FM(TA) (4)

where

T =1:: TL12

11Pi (I-P22Ji1)-'P2i p12(1Id+p )-r.+ 2P2(-jIP2 tII (5)

Equations (3) and (4) are illustrated in igure 2. Note that if Fj(J.,) is a

parametrization of a controller, F(T,Q) is afne if and only if T22=O. This

type of controller parametrization will play an important role in the syn-.

thesis theory.

o.
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1.1 Introduction

This part of the notes briefty reviews recent results on the problem of -O

analyzing the performance and robustness properties of systems

([fDoy2].[DWS]). The main goal is to motivate from a control theory point of

view the synthesis problems considered in pert 2 of these notes. A secondary

goal is to describe a general approach to control problems which is intended

to provide the foundation for a new paradigm for control theory broader in

scope and content than that provided by Classical or Modern Control Theory.

An important aspect of this new paradigm is the treatment it gives to model

uncertainty.

Modern Control Theory, the dominant paradigm for the past 20 years.

has its basis in Stochastic Optimal Control and Estimation Theory [LQG]. This

theory essentially restricts model uncertainty to additive noise. The theory

provides a methodology for analyzing the impact of noise on system perfor-

rnnce and synthesizing to reduce that impact

The inadequacies of this view of uncertainty became widely accepted in •

the late 1970's, as robustness to plant uncertainty became a major theme in

the Modern Control Theory community [LMC]. Ironically, this involved a

renewed interest in the Classical Control paradigm ([Bod],[Hor]). which

Modern Control displaced within the theoretical community (if not among

practicing engineers). This new direction provided useful design tools, includ-

ing Singular Value Analysis and Multivariable Loop Shaping

([DStl].[Doyl].[DSt2]). O

While providing an important perspective, as well as practical tech-

niques, the methods based on singular values still require rather restrictive

assumptions about uncertainty. In particular, plant uncertainty must



essentially be modelled as a single "unstructured perturbation."

The Structured Singular Value (SSV), was developed several years ago

to correct this deficiency in singular values ([Doy2],[DWS]). In the context of

the general framework discussed in this memo, the SSV provides a very

powerful mathematical tool for the analysis of complex systems. Indeed, we

believe that this framework together with the SSV and the synthesis tech-

niques discussed later, has the potential to form the basis for a new para-

digm for control theory.

The remainder of this part of the notes describes the general framework
S

for control system analysis and synthesis which includes all the viewpoints

discussed as special cases. In particular, the assumptions about uncertainty

required by each methodology are compared. In this context. the words

analysis and synthesis have specific meanings. i

Analysis is used to describe the process of determining whether a given

system has the desired characteristics. In general, this may range from the

use of mathematical tools to simulation to experimentation although

analysis is typically applied primarily to describe the former. SynthesiA on

the other hand. is the process of fnding a particular system component to

achieve desired characteristics, which are typically expressed in terms of

some analysis tools. Analysis and synthesis are just two aspects of the more

general problem of engineering design.

The discussion which follows first considers analysis, then briefly

touches on synthesis. The next part on Synthesis Theory will take up that S

question in more detail.

9
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1.2 Analysis Framework and Background

1.2.1 General Framework

Various modelling assumptions will be considered and the impact of

these assumptions on analysis and synthesis methods will be explored. Con-

sider the diagram in Figure 1. This is the general framework to be con-

sidered. Models of this form are typically constructed from components _0

which also have this form. The nominal model provides the basic intercon-

nection structure between the signals, perturbations and controller, as

shown. It has three inputs and outputs, each consisting of a vector of signals.

As typical examples, consider the following flitering and control prob-

lems. First a simple altering problem is given in the diagram in Figure 2.

This may be rearranged as shown in Figure 3 to fit the general framework. In

order to simplify the diagram, no perturbation was included. A typical con-

trol problem might look like the diagram in Figure 4 where again, for simpli-

city, no perturbations are included. This too can be rearranged to fit the

general framework, although the diagram is complicated.

Any system may be rearranged to fit the form of this general frame-

work. Although the interconnection structure can become quite complicated

for complex systems. many software packages are available which could be

used to generate the interconnection structure from system components.

Note that uncertainty may be modelled in two ways, either as external

inputs or as perturbations to the nominal model. The performance of a sys-

tem is measured in terms of the behavior of the outputs or errors. The •

assumptions which characterize the uncertainty, performance and nominal

model determine the analysis techniques which must be used.

• h " " '" 'tm '- -'m~" . - " - ' - ' ' ' . " ' ' - " "- ''S
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The most fundamental assumption that is made throughout is that the

nominal model is a finite dimensional ordinary differential equation and is

linear and time invariant (LTIODE). The uncertain inputs are assumed to be S

either filtered white noise or weighted L, signals. Performance is measured

as weighted output variance or weighted output LF norm. The perturbations

are assumed to be themselves LTIODE's which are norm-bounded as input-

output operators. Various combinations of these assumptions form the basis

for all the standard linear systems analysis tools.

Given that the nominal model is an LTJODE, the interconnection system

has the form 0

1 PA BI Bz Bs
P 1  2 P C, Dil D 12  D1 3

P = F2 P2 2 P23 = C2 D21 D p D2 (3)

31 P32 -P331 C3 D3 1 D32 DnD

and the total system is a linear fractional transformation on the perturbation

and the controller given by

= . tP

= F(F.(P.A).K) u (2)

Since the focus of the current discussion is on analysis methods, the

controller may be viewed as just another system component and absorbed

into the interconnection structure. Thus the analysis framework reduces to

the diagram ir Figure 5 where

e = F (P()

P4U
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Note that the P's in (2) and (3) are not necessarily the same. Table 1

and the discussion which follows summarize the various assumptions and

resulting analysis and synthesis tools. In each case, stability of the nominal 0

must be evaluated. Since P is assumed to have the. state-space representa-

tion

P11 P12 A B1 B2

P 2 C D11 D12  , (4)
C2 D P D22

this may be done by checking that all eigenvalues of A lie in the open lhp.

There are alternatives to this approach but, for simplicity, it will be assumed

that the nominal plant, with controller is closed loop stable in the sense that

all eigenvalues of A are in the open fhp.

Given nominal stability, the entries in the table may be interpreted as 6

filling in the following general performance/robustness theorem:

General Analysis Theorem (CAT)

Given

Input Assumptions

and

Perturbatioi Assumptions

Then

Performance Specification

if and only if

Analysis Test.
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Consider the system in Fgure 2. Stability and performance analysis of _

this system requires a new matrix function. the structured singular value

(SSW), denoted by AL Before proceeding with Case 3. a digression to discuss/

wilbe taken. For details, see [Doy2].

A

.4

_1



1

1.3 Structured Singlar Values -

1.3.1 Introduction

This chapter considers the problem of stability with structured uncer-

tainty and of performance in the presence of structured uncertainty. Typi-

cally, uncertainty is present throughout a system. Suppose that a system is

built from components which are themselves uncertain and that component :

uncertainty is modelled as norm-bounded perturbations. This situaton can

be rearranged to fit the general framework but the perturbation for the total

system has structure. This can be seen schematically in Figure 1.

Note that the interconnection model P can always be chosen so that A is

block diagonal, and by absorbing any weights, iA , '.<I. The results of Case

2b can be applied in two ways:

1) P11; <1 implies stability, but not conversely. This can be arbitrarily

conservative, in that stable systems can have arbitrarily large P

2) Test for each A, individually. This can be arbitrarily optimistic because

it ignores interaction between the Aj.

The difference between the bounds obtained in 1) and 2) can be arbi-

trarily far apart. Only when they are close can conclusions be made about

the general case with structured uncertainty.

These two limitations of Case 2 (and 1) have motivated much of the

research described in these notes. The result is a new paradigm described in

Case 3. The problem in Case 3 involves exactly that of structured uncer-

tainty.

A
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inputs when A 0 but response when A00 is not known. Only crude bounds

can be obtained with the methods of Case 2.

An additional limitation of Case 2b is that all plant uncertainty must be

modelled as a single norm-bounded perturbation. Typically, uncertainty is

present throughout a system. Suppose that a system is built from com-

ponents which are themselves uncertain and that component uncertainty is

modelled as norm-bounded perturbations. This situation can be rearranged

to fit the general framework but the perturbation for the total system has

structure. The problem of structured uncertainty is taken up in the next

chapter. 0

0 ~
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feedback problems where both types of uncertainty have significant impacts

on system performance. Case 2 has attracted a great deal of research

interest recently, and is currently a popular new paradigm in the multivari- 0

able control community. Although implicit in the methods of classical con-

trol ([Bod].[Hor]) and some modern work (e.g. Zames' conic sector theory

[Zaml and, more generally, the input-output stability theory of the 1960's

[DeV]), the approach did not gain wide attention until the late '70's.

The current interpretation is a consequence of research done in the late

'70's. ([Doyl],[DSt2J,[LMC]). This interpretation involves singular values as

an analysis method and singular value loop shaping as a synthesis approach. 0

The so-called LQG Loop Transfer Recovery (LQG/LTR) combines the synthesis

methods of Case 1 with the analysis methods of Case 2 to produce a hybrid

synthesis method. This gives an ad hoc approach to Case 2 that can be •

effective for many multivariable problems.

Another approach to synthesis for Case 2 is the so called H. or L./ H.

methods introduced to the control community by Zames [Zam2] and Helton

[Hel), and developed further by many uthers (eg. [FI-:Z]). The L./H.

methods for Case 2 are analogous to the L4/H 2 methods of Case 1 with the

exception that for Case 2 the L. rather than L 2 norm is optimized. The solu-

tion to the general L./ H. problem will be presented in the Synthesis part of •

these notes.

The main objection to Case 2 is the restrictive assumptions about uncer-

tainty (recall this was also the objection to Case 1). Although case 2 allows

both uncertain inputs and perturbations, analysis can be performed for

either individually but not both together. Thus a system can be shown to

remain stable when perturbed and have acceptable response to uncertain

• l- n~,.,.',,. -d - - ,-- ;n "n ,.--. ,,.-n . . t,,,n, .,...,, d -'.
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some additional technical difficulties and is not the focus of these notes.

The following theorem treats internal stability

Theorem 2 F,'(PA) is internally stable for all A BRH.

Note that input-output stability of F.(P.A) is not necessarily the same as

internal stability. In particular, the following statement is not true:

Not-A-Theorem I eI -for all jgI:91 and A r= BRH..

iff flPIjsgl

Coimterexample Suppose IIIj_1but P22 =O.

From now on stability will mean internal stability, but be denoted by

Ile I ~ -in the table. even though this is deftnitely an abuse of notation.
Note that generically this distinction between internal and i-o stability does

not exist.

As in Case 1, it is essential to allow weights on inputs, outputs and per-

turbations. As before, these weights may be absorbed into the nominal

model This allows, without the loss of generality, the use of signals and per- P

turbations which are in unweighted unit balls. Thus implementation of the

analysis tools requires only a method for constructing interconnected sys-

tems and a method for evaluating the appropriate norm. The former applies

to all cases, whereas the latter requires a different norm in each case.

Note that in Case 2 both uncertain inputs and uncertain plants can be

handled with the same analysis tool. This approach is particularly useful for

-. ...... - -

* S

* S i I i , . . . . •



1.2.3 L.. Frequency Domain Methods

Case 2 invoives an ttempt to correct some of the deficiencies of Case 1

by moving to an unknown but bounded (in an L2 sense) framework. This

allows both types of plant uncertainty to be handled in a common framework,

albeit in a limited manner.

Case 2a is an L2 version of Case la. The input is constrained to lie in

" BL2 as a time signal (unit ball in L) and the performance is specified in

terms of the output's L 2 norm. With no perturbation, the analysis test

involves simply the L 2 induced operator norm, Le. L. on the transfer func-

tion P2.

The GAT in this case is

Theorem 1  1ei 2  for alliei i l fr li i 1

Iiff P2 !

Although this theorem is a trivial restatement of the defnition of induced

norm. It means that the analysis test is an exact characterization of the per-

formance requirement. 0

Case 2b is significant departure from the previous three. It involves

maintenance of stability in the presence of perturbations. The block

* diagram for Pu'(P,A) is shown in Figure 1. There are many ways to state the .0

GT for this case, depending on the desired notion of stability and assump-

tions on A. The distinctions are somewhat subtle, but are important from a

theoretical point of view. Nevertheless, they do not significantly impact the

application of the theory.

The As are assumed to be LTIODE's, so that A E RH.. The assumptions

A e Cor A c CH. give the same result. The distributed case. A C H., causes

* 9
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larly critical in feedback systems.
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1.2.2. StochaUe

Case Ina involves unit covariance white noise input with output variance

as the evaluation criteria. Since no perturbation is allowed, the problem

* reduces to the diagram in Figure 1 and E(e re) I JP.I i:. Note that colored

* noise or weighted variance could be used as shown in Figure 2. This reduces

to the general case by absorbing the weights Wf1 and W2 into P22 as

++ I

P2= Wg0WI. In practice, it is essential to use weights to reflect spatial and
frequency variations in inputs. perturbations and output specifications, but

in every case, these weights may be absorbed into nominal model.

*In Case lb the input is an uncertain delta function, which is equivalent

to uncertain initial conditions. The performance specification is the

expected value of the Lzrnorm of the output.

Case 1 forms the foundation of Stochastic Optimal Control Theory. Case

la includes the standard linear stochastic filtering problem and Case lb

includes the standard linear quadratic optimal control problem. These are

combined to obtain the full LQG problem, which is again Case la. These

S

assumptions and resulting analysis methods have been the dominant para-

digm in the control community for over 20 years.

The development of this paradigm has stimulated extensive research

P efforts and been responsible for important technological innovation. particu- .

larly in the area of estimation. The theoretical contributions include a

deeper understanding of linear systems and improved computational

methods for complex systems through state-space techniques. The major

limitation of this theory is the lack of formal treatment of uncertainty in the

plant itself. By allowing only additive noise for uncertainty, the stochastic

theory ignored this important practical issue. Plant uncertainty is particu-

* 6i
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The details of each case will be considered in the following sections.
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1.3.2 SV f r Constant Matrices

The problem is to test for det(I-A) O for sets of A. Two standard

results are

if U(M):51

if p(M).1 where p(M) m ax I

As a generalization, consider a function IA with the properties that

' Iad a j(Af) and

o3) det(I1-M6)~o A da (P2 n UA'<1

if .

Obviously, is a function of M which depends on the struc re of A

To be precise, a multi-index could be constructed which would specify the

structure of { A } and /L would depend on that index. For this informal dis-

* cussion. just keep in mind this fact and assume that a structure is specified.

Clearly ' and p are special cases of 1 for particular structures as indicated

above. Furthermore, for any structure

Sp() e A(M) ! "(m). (4)

Given these bounds, how important is j? The answer can be clearly seen

from the following examples:

" I" " "-" " "' " m. . . "£ 'k mmm mm"m .- m m " m ' ' 'm
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Suppose A = 62 and consider

M = o 11 )= -(M)--1

det(I-MA)1 so A(M)=o

2)~) u4)j p(M)0O V(M)=l

det (I-MA) 61-62 so AM=
2

Thus neither p nor d provide useful bounds even in simple oases. The

only time they do provide reliable bounds is when p"S. Thus better bounds

on A are needed to pursue the problem in Case 3.

For the rest of the discussion fix a structure for the 's as

Z={diag (61-4 . A.)j. (5)

Then
* -0

~s m inj? [()idet (I MA)0]1.9

This expression is little more than a definition of u since the optimize.tion

problem implied by it is nonconvex but it shows that/u exists as desirec. To S

obtain useful properties of A, some additional definitions are needed. Lat

IdQ a (VI { ~U2,e U,) Ut, L4 11 (7)

* = {diaq(diI~d21.....d.I) d, e (B)

where the sets V and D2 match the structure of Z. Note that the k and D

leave a invariant in the sense that 0

* S
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1) a c&, U Ei imply U(A.,) = e(UA) =ZY(.)

2) A1E D Q imply DAD-'=A

From these two properties and the definition above expression for /4 one

immediately obtains

max p(MU) 'M(M)! mif V(DMD-1 )

The first important theorem about j4 is

Theorem 1 max p(IJU) = j4(M)

This theorem expresses / in terms of familiar linear algebraic objects.

Unfortunately, the implied optimization problem is nonconvex so it does not

immediately yield a computational approach. The second important

theorem is

Theorem 2 If n:3 ML(M)= nf U(DMID "1)

This theorem states that if there are 3 or fewer blocks (no restriction

on size), thenu/(M) is just 6 of a block diagonal similarity of M. Furthermore

*(DMD- 1 ) is convex in D so that the infimum can be found by search over

n-1 real parameters.

The theorem is not true for nai4, but it is conjectured that

inf V(DMD-1 ) still provides a reasonably tight bound for 1L. Also, many

problems of interest have 3 or fewer blocks so this provides a reasonable

computational scheme.

Another important aspect of this theorem is that 1 may be viewed as

plus scaling. Thus the general synthesis methods recently developed to

optimize the L. norm (i.e. 1) may be applied, via scalings, to optimize 1L.

This will be discussed more in the syhthesis section. Now back to Case 3.

* V. . .



1.3.3 SY Analysis of Systems

Abuse notation and defne

fjlm = sup (1) -.)

Although is not a norm, this will be convenient. Recall that ik]I
is a function of M which also depends on the assumed structure of the per-

turbations.

Case 3a involves stability in the presence of sruc*tured perturbations

and the result is analogous with Case 2b. In fact. 3a reduces to 2b in the case

that there is a single block in the perturbation. Suppose that A C BRH. and

the A's have the structure A=diag(A,A 2 ..A. b,). The GAT for Case 3a is

Theorem 1 F=(P.A) is internally stable for all struatured A C BRH.

Case 3b puts everything together and is really the payoff for /i analysis. The

problem is to check that Ile 1, i is satisfied for all Iiu1'2s and all struc-

tured perturbations. Recall that from 2a and 2b that both stability with a

single perturbation and performance with L2 inputs involve the same test

using II'I although on different parts ot the system. This means that the

- system in Figure 1 has internal stability and Ilel:i for all fl'Lfl2_-1 and

A=diag(A A.. A,) F BRH= if and only if the system in Figure 2 has

internal stability for all structured A and all A.+ E BRH.. This is exactly

Case 3a with the structure !=di(A,6 .2. .An +,). Using this structure

for 14 yields the following:

* -
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Theorem 2 F.(P.A) is internally stable and f eJ,l S for all

I 1 19 fjand A~ig0142 A.) EBRJf..

This is a remarkably useful theorem. It says that S implies notI I I I
only stability for all structured perturbations but also that 11e 1: 1 for all

H I and all structured perturbations. Furthermore, I JPJ ~> 1 implies

that there exists a u~ with j J !C 1 and a structured A such that either

Sl 12 > 1 or &~ (P,A) is internally unstable. This is the first general result

which guarantees performance for a whole set of plants and gives an exact

(nonconservative) analysis test.
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1.4 A Glimpse at Synthesis

This will be a sketchy outline of the new synthesis results. The details

are somewhat complicated and are treated in Part 2 which is devoted to the

synthesis theory. At this point, we simply want to point out how the analysis •

theory discussed in this part leads naturally to certain synthesis questions.

From the analysis results, we see that each case boils down to evaluating

I Iv I L a=2.- or ui (1)

for some transfer function Pt. Thus when the controller is put back into the

problem, it involves just a simple linear fraction transformation as shown in

.0 the diagram in Figure 1. (Note: the PV's here are not the same as the Pq's

in the previous sections)

Each case then leads to the synthesis problem

0a rninllm~p.K)fl for a=2,-. or,4 (2)0

subject to internal stability of the nominal. Here

F(P.K)=Pll P12K(I-PK)-IP2 .

The solution of this problem for a=2 and - is the focus of Part 2 on Syn-

thesis Theory. The solution presented there unifies the two approaches in a

common synthesis framework. The a = 2 case was already known and the

1 results are simply a new interpretation. The a=- case had been solved only 0

for special cases where P 12 and P21 are square. Also, the existing solutions

did not have computational schemes allowing their use on even moderately

sized problems. These two limitations, especially the former, restricted the

application of the pioneering H. methods to fairly simple problems, such as

sensitivity minimization. The new solution eliminates these two limitations.

*

*



Unfortunately, this new solution for the H2 and H. suffers from the ]
same limitations imposed by restrictive assumptions about uncertainty as do

the underlying analysis methods. While the SSV is a great improvement for

analysis (Case 3). synthesis for the a=u case is not yet fully solved. Recalling

that A may be obtained by scaling and applying , a reasonable approach

is to "solve"

rp~ D~(p-~).' I(3)
by iteratively solving for K and D. With either K or D fixed, the global

optimum in the other variable may be found using the A& and H. solutions

described previously. Example designs have been done and this scheme

seems to work well, but global convergence is not guaranteed. In fact, a

counterexample has been constructed where (3) reaches a local minimum

which is not global.

0. 1
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2.1 Introduction

2.1.1 Overview of Synthesis .0

From the previous part of these notes on analysis, we have seen that the

synthesis problem in each case reduces to finding a controller K which

achieves internal stability and solves

min RFl(P. K)1 a2..orI

where 0

P= [Ii~u Rvl(p14)x(m14mI) . .

and

F(P.K) = P 1  PieK(I-PeK)-P 2, I

We will restrict our attention for now to the a=2 and - cases of (1). ]
Recall that the a=,u case of (1) can be converted to the a=- case by scaling.

The approach of these notes is to develop the a=2 and - cases in a parallel

manner, emphasizing their common features.

We begin by considering the special case of (1) where all matrices are

constants. This is an interesting problem in its own right and manages to

capture the essential features of the general problem. While the a=2 case is

quite straightforward the key step in the solution of (1) for a = m was first

published in 1982 by Davis, Kahan, and Weinberger in their important paper

on norm-preserving dilations [DKW]. The treatment of the constant case in

this chapter is based on this paper.

, • _ _ .• , _. .. .... ,. . ... * 1
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The remainder of this part of the notes involves taking each step of the

solution to (1) for the constant case and generalizing to the case of real-

rational matrices. The difficulty arises from stability/causality considera- S

tions which are not present in the constant matrix case. If the requirement

for internal stability were dropped from the optimization problem in (1) then

it would reduce immediately to the constant case at each frequency. In gen-

eral. however, any K obtained in this way would not be one such that F(P.K)

is stable.

The role of the stability requirement can be seen by considering a spe-

cial case of (1) where P22 = 0 and both P12 and P21 are square and inner. 0

With these assumptions, F(P,K) = P11 + P 12KP2, so internal stability is

equivalent to staibility of K ( K C RH.). Since both a = 2 and - norms are

unitary (Le. inner) invariant.

= -(PK) 1!- A where R = P,2PlP". (2)

Snce the RH. part of R in (2) may be absorbed into K. we see immediately

that our simplified problem reduces to

min 11R + I I a2 or+:, 2'." + K t°  t=2 r -. (3),"

where R E RH.

For the a=2 case we have immediately that the optimal K in (3) is K=0 . _

since L2 is a ubert space and H2 and H are orthogonal subspaces. The

a=- case is a version of the well-known matrix interpolation problem. It is

the matrix generalization of the classical "best approximation" problem of

finding the nearest H. function to a given function in L..-

This best approximation problem has a rich history. The rational matrix

version is as follows: given R E RH (i.e. strictly proper with all poles in the
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open right half plane) find all K E RH.. (if any exist) such that

More general versions drop the rationality assumption. There is a vast litera-

ture on interpolation problems and the related question of best approxima-

tion. Some of the early references can be found in the seminal paper on

"generalized interpolation" by Sarason [Sar]. Alternative treatments include

those by Adamjan, Arov, and Krein ([AAKl)-[AAX3]) and Ball and Helton

[Bal-].

The most recent contribution to the rational matrix best approximation

problem is by Clover. who gives a complete parametrization for all solutions

to (4) in terms of a state-space realization for R [Glo]. Furthermore, a reali-

zation of the parametrization can be computed from the realization of R

using standard real matrix operations. The main goal of this part on syn- 0

thesis is to reduce the problem in (1) to that in (3). The a=2 case is then

trivial, and the a=- case can be solved using Glover's results.

An important feature of the results that follow that achieve the reduc- •

tion of (1) to (3) is that each step can be computed using standard real

matrix operations in terms of a realization of P. This allows the entire solu-

tion scheme to be implemented in software in a reasonably straightforward

manner, which is important if the mathematical results of these notes are to

be applied to engineering problems. The connection of the theory with com-

putation is reinforced throughout by the approach of proving existence parts

of theorems by giving whet amounts to an algorithm for computing a particu- •

lar solution. While this occasionally makes for rather tedious proofs, the fact

that the theorem can be implemented almost directly makes this approach

seem well worth it. It should be noted that each main theorem in this p.-t
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bas beer. implemented and experimental control systems have been

designed using this software. The results to date have been most encourag-

ing.

To see the importance of the stability requirement and the resulting

best approL.mation problem, note that relaxation of the requirement in (3)

that K C RH. to simply requiring that K C R. means that the minimum of 0

in (3) is achieved by letting K = -R. This is essentially what holds for the

constant case. Thus the stability requirement restricts the achievable

optimal in (3). As we shall see, the stability requirement has a similar

impact on the general problem in (1).

S0



Z. .. OcnascanL Matrix Case

In this section, we will consider a special synthesis problem where all

matrices are constants. TIhe constant matrix case will allow us to study theS

synthesis problem i a simplified context, but one which parallels the

rational case.

For constant matrices, the norms reduce to

1P (P)

Note that these definitions are not conventional, but they are convenient in

allowing parallel development of the constant and rational cases.

Consider the constant matrix problem

-here

P P11 P12 E 1p)(IM i ,,j
IL2* P21

and

F, (P,K) = ,I-P2'P2K'21

Assume that Pi*2FP2 > 0 and P21P2* > 0.

The first step is to make the substituti-on ot variables

Q = l) KI.=2)- 2P*) (3)

kUsing the linear 'raztional representation notation,



2.1.5 Rational Matrix Generalization

The steps in the rational case closely parallel the constant case, as

shown in Figure 1. Most of the work in the remaining chapters is devoted to

generalizing these steps from constants to rationals. The source of all the

difficulty in the rational case comes from the requirement for internal stabLl-

ity, or equivalently, causality. Without this the rational case would reduce to

the constant case at each frequency, and could be solved using the results of

the previous two sections.

We will now outline the steps required to solve the rational case and pre-

view the upcoming chapters which complete the details.

1) ParameLrization: Find J so that the substitution K=Fj(J,Q) yields

F(P.K) = FI(P,FI(JQ))

= TI,- TjeT21 (10)

with the additional requirement that T C H- and

FI(PK) internally stable (II)

1ff Q e H...

This parametrizes all stabilizing IKs in terms of a stable Q E H. in addi-

tion to providing an effine parametrization of all stable Fl(P,K). This

so-called "Youla parametrization" [You2] is developed in Chapter 2 on

Stabilization.

A further requirement is that T12 and T2 1 be inner. that is 7'*T1 2 and

Ti =1. Methods for obtaining the particular parametrizations which
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2.1.4 1Agure 1

min F,(P,K) iwhere FI(P.K) = P1 P1 .K(I-P22K)'Pzl

parametrization

K=F&(J,Q) -

mi 7 11 - T12QT 21  where T27 1z 
= I T21 T2* =I

unitary i nariance 0

RI2  RZ,:
0 R~i0

ac2

projection dilation

QI

I K.P F, G Q.0

Y-P0
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Note that Q=-R 1 is one solution to (6) and (8).

4) Recovery of the optimal K: This is obtained by simply computing K

from the formula K=F(J,Q) used in step 1) to parametrize the prob-

lern.

.

0
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= ~] T71 ~](3)

Recall that without loss of generality, we may assume the TI7'= so

that (2) becomes

17 114(4)
[R2 1 1 

-
3) Projection I DUaUon At this point the a=2 and a=- cases differ. For

a=2, the problem reduces, by projection, to

m lin - (5)

which has the unique solution Q=-R 1 .

The a=- case must be treated using the matrix dilation theory of the

previous section. Recall that, in general. the solution is not unique. S

From Theorem 3. 1. all solutions to

I[R 11+Qj for 7~ IR21(5

are of the form

Q =-Rl + Y(9I-R/ 1R 2 1 ) (7)

for some Corollary 3.1 gave the alternative characterization

that

if and only if

j(R,. Q) (9-R 1 R,1)- I. :  i. (9)

It is this latter characterization which will be used in the rational case.



2.1.4 Summary of Constant Problem

The rational matrix problem in equation (1.1) can be solved in a manner

which parallels the treatment of the constan case in the last two sections. S

This generalization is the focus of the next three chapters on synthesis. To

reinforce the similarity between the constant and rational case, we will now

review the key steps from the previous two sections and preview their gen-

eralizations to the rational case.

Consider the diagram in Figure 1. This summarizes the steps in the con-

stant matrix problem (2.1). The main steps are as follows:

i) Parametrization: Make the substitution K=F(J.Q) so that

F(P.K) = F(P.Fj(J,Q))

= F1(T.Q)

7- 1 - 12 QT21 ()

is affine. Additionally, we want 7gTz2= and T21 7T =1.

2) Unitary Invariance: Find TjLand Ts that 1 21%d 0 iTl T1 and 19are square

and unitary.

Pre-and post-multiply by Ti , " and to yield

I +Q R 12 (2)

where S

R = t el R z2
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11 [R2-;-U2Q~f ~ (25)

where R2 = (9I-AA*)-)R-

U2 =(91 -AA)U.

To complete this, simply factor U2 to extract a unitary factor, and apply the

dual of (22)-(26) to (26). Although the formulas get messy, (22) can be

solved in this manner.

In each of these cases, Theorem 2, Theorem 3, their corollaries, and the

solution described above, the general case reduces almost immediately to

application of Theorem 1 or Corollary 1. Thus, when it is convenient, we will

consider (4) rather than (16) and (26) rather than (22). This will simplify the

discussion of the rational case without introducing any loss of generality.

The restriction that y > -, in Corollary 3 and (22)-(26) does introduce 0

some loss of generality. If these alternatives to Theorem 3 are used, it is not

possible to get all solutions for 7 -7,. All solutions arbitrarily close to the

optimal -/ is the best that can be done. The reason for considering this spe- "0

cial case is that (20)-(21) and (22)-(26) have reasonably straighforward gen- .

eralizations to the rational matrix case, whereas (17)-(18) do not. A further

difficulty with the rational case is that, unlike the constant case, it appears

that it is not possible to actually compute -. exactly. This makes our inabil- •

ity to obtain a direct generalization of Theorem 3 seem less critical, at least

with respect to application of this theory. More will be said about this in Sec-

tion 5, but the rational matrix generalization will focus on (22)-(26). 0

0



The following corollary gives an alternative version of Theorem 3.

Corollary 3 For 7 > ,

C (19) -1

IA
iff

7, (20)

where S

Y = B(z-A.A)-.

Z -Y2I- )-JC (21)

There are many alternative characterizations of solutions to (19).

afthough the formulas in (20) and (21) seem to be the simplest.

For the problem in (14). the fonowing equivalences apply for all 7> T, :

R UQV..v(2

iff

R, -iUQ A]V9 7 (24)j

where R-RV and A=RVI!

iff

(-? -A Ri U (25)

(by Corollary 1)

if

0 0
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form of (2-4) for the problem

mi= nn fR + UQ f. (4

where U*U=I and VV=I

Corollary 2

7.=max [I fuIRII . flRVIII (15)

The following theorem pearnetrizes all solutions to (1). The proof is

. omitted (it can be found in [DHK]). but is similar to Theorem 2 and involves

" application of Theorem 1 and 1'.
[0

Theorem 3 Suppose & 70. The solutions X such that

are exactly those of the form

X = -YA*Z + 7 (I-Yr)%W(I-Z*Z) (17)

where W is an arbitrary contraction ( ! I..I) and Y and Z solve the linear

equations

B Y(-?I-A'A). .

C = (71-AA')Z. (15)

I
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Theorem 2

= max c , (13)

Proof: Denote by 5 the right hand side of the equation (13). Clearly, 7/. i

since compressions are norm decreasing. That 7,5 will be shown by using

Theorem 1 and 1'.

From Theorem 1 we have that B=Y(5,?I-A'A))i for some Y such that

1. Similarly. Theorem 1' yields C=("'1I-AA'))XZ for some Z with

Let -YA*Z. Then

BI! !!I..-YA-Z Y(5A1-A*A))ij
[C A!. 7 2(9I-AA*)%Z A

As (?-A*AI[ -AA.) ( ,¢A)] -

Since 0

Thus 5'oso5'7.

This theorem gives one solution to (12) and an expression for 7.. As in

(3), thei may be more than one solution to (12), although Theorem 2 only S

exhibits one. Theorem 3 considers the problem of parametrizing all solu-

tions. The solution . = -YAOZ is the "central" solution analogous to X = 0 in

(3). The next corollary is an alternative statement of Theorem 2 using the

* 0
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Corollary 1: For 7>7o, :(6)

The corresponding dual results are

Theorem 1' For W "

such that

X (9I-AA*)Y (9)

CoroUary 1' For 7>70

* Ik A]l1- , (10)
if

IIjj(-AA)X --C.(U I)

6 •

Now, returning to the problem in (1). let

M7o = rai (A)

The following theorem, usually attributed to Parrott [Par]. will play a central

role in the synthesis theory. The proof is a straightforward application of

Theorem 1 and 1'.

l0

0 0



in (3). it is immediate that 7o--IA' .. The following theorem characterizes all

solutions to (3).

Theorem 1: For ;t y,,.

~ (4)
ff with I .-%i such that

X= Y(721-AA)h (5)

* Proof:

i(ff

X*X -A'A :721

iff

iff

*X = Y(9ZI-A*AM)i for some Y

This theorem implies that, in general, (3) has more than one solution. This is]

in contrast to the a = 2 case. The solution X =0 is the central solution but

others are possible unless A*A -/21. A more restricted version of the

theorem is

. . o _S

* S(Z-') ,
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2.1.3 Matrix Dilation Problems

Consider the optimization problemmin
where X,B,C,A are constant matrices of compatible dimensions. This is a

restatement of (2.7) for the a=- case. The matrix C A] is a dilation of its

submatrices as indicated in the following diagram;

-XB B 1

CA 4- A
d

d {c (2) 

c
[CA] _ [A]

1 01
d

In this diagram, c stands for the 9peration of compression and d stands

for dilation. Compression is always norm decreasing; sometimes dilation

can be made to be norm preserving. Norm preserving dilations are the focus

of this section. which basically follows the development in [DKW] and [Pow].

See [DKW] for additional references on dilation problems.

The simplest matrix dilation problem occurs when solving

mn . (3)

Although (3) is a much simpLifted version of (1). we will see that it contains all

the essential features of the problem. Letting y denote the minimum norm
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and solution of (B) yields a solution of (1) by solving (2) for K. S

The a 2 case can be solved immediately from (8) since

11 Q 1 (1 i fRii+Qf [2 R 1

Thus

end

If1+Q R12~f Rwll210
MQTU!)1 R21  R2111 = 1R2 221

The simplicity of the a=2 case is responsible for much of its appeal

Optimization in this norm reduces to projection since L2 is a Hilbert space.

This holds as well for the rational matrix problem.

0 The a= case is somewhat more complicated since L. is not a Hilbert

space and the minimization in (B) cannot be solved by projection. For-

tunately, L. arises as the space of linear operators on the Hilbert space L,

and (B) can be treated as a dilation problem. The next section focuses on

matrix dilation problems.

0 ' " " l~ l m am m --- ama ... - . . ..
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K F(, Q) (4)

where

J21 J=22= (P, 2 *1P)- -(P21 21)-k2P(1P 1* 2 ,)-M

With this substitution, we haveI
F(P.K) = F (P.F(J.Q))

= ~+ [(P. -Pi Q[(P121 ) )'P2 1]

= Ti + Ti 2QT21 (5)

where the TV. are defined in the obvious way. This parametrization has con-

verted the nonlinear problem in (1) to one affine in the parameter Q. Note

that 7T1
t2T 12 = and T21 T = 1. Thus we can find Tj. and Tjsuch that bothr IT,,1

12 T are squ-are anunitarIy.

Since both a = 2 and - norms are unitary invariant

L2T11 + T12QT2 IIL = # [T12  T I[Q 0 17itlj I

[T1 T4-jT[i

1 , ]Q R12)

= R2  2 (,)

where

I* 11  R 12
1  T 1 1 2  t 1 1 Tj (7)S

R2 R2J = TZ TI. T u*, 2rT,r.J

Thus the problem in (1) reduces to
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achieve this are developed in Chapter 3 on Factorization.

2) Unitary Invariance: Fid TjL end T1 sTht[ 1 zT n ~ r

-. square and inner (also Chapter 3). Then pre- and post-multiply by

IT12 T4 and to yield

fRI1IQ R121

Rai R2 2 (12)

where

R = Tr . T 1

Again, to simplify the presentation suppose that T12T*=0 so that (12)

becomes

(13)

3) Projection / Dilation: At this point the a=2 and a=- cases again differ.

0 For a=2, the problem reduces, by projection, to 0

Qm  j 1 + Q I2  (14)

But since R11 E L.. Q=-RII would not correspond to a stable solution.

The unique solution is yet another projection

Q = P.(R 1  (15)

* where PH3 denotes projection onto H2. When viewed appropriately, these

two projections can be seen as a single projection onto a subspace of

L2 =JIR. dlxm1).

*The a~o case is again treated as a dilation problem. While it is not true S
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in general that

mn R114 I' J R21f (16).QEH. R

it is convenient to use the characterization in Corollary 3.1 and (4.8)-

(4.9). Recall that

R21 for 7 (17)
iff

The key to proceeding in the rational case is to find M E RH.. such that

M - 1 E REH. and M! d=(2 I-R2IR21 ). If we use the symbol (7 2I-R 2*R2 )X

to denote this !. then (18) makes sense in the rational case. Finding M S

involves spectral factorization and is treated in Chapter 3.

Given M E RH. with the desired properties. (16) reduces to

IG + ~.~1(9

where G=RIM-1 E RH. and = QM- I. Solving (19) for Q C RH. solves

(1b) for Q E RH. Note that Q= M is in RH. if is, since M C RH. by

construction.

The ftnal step in the rational case then involves solving (19) for { RH..

Thi.s is the standard mathematical problem of approximating an L.

matrix by an H. matrix The approach which fits most naturally with the

methods of these notes is due to Glover [Glo].

Glover gives an explicit parametrization of all solutions to (19) in terms

of a realization of G. When combined with the steps developed in these
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notes which reduce

to~~ (17) (nd thn(9)) (20)

to (17) and then k1g), this yields a parametrization of all K's which

achieve internal stability and satisfy (20). The remainder of these notes

is concerned with developing the mathematics to carry out the steps

outlined above.

4) Recovery of the optimal K Just as in the constant case K' =F (1, Q.p,).

This 4, will stabilize F(P,K.:) since the parametrization in Step 1)

insured that Q stable lead to internal stability of Fj(P,K)=Fj(P,Fs(J,Q)). p

Note that although restricting to the special case of (13) from (12) intro-

duces no loss of generality, it may be possible that (18) does not hold. Let

in

*1 5L. (22)

Then, it is possible that 7, = 5. In that case, the algorithm described above

cannot be used to obtain all solutions such that

[ R ii-l " 
, (23)

since (17) is not equivalent to (19). It is possible to find all solutions for any','

arbitrarily close to 7,.

A more fundamental difficulty with the algorithm outlined above is that

it gives no simple way of determining 7,, so that the algorithm must be

iterated on with a search on y, It seems that the best that can be expected

is to get arbitrarily close to 7,. In view of this, the special case when 7 = t /

0 S
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would seem not to be of particular importance.

The question naturally arises whether the inability to compute 7. IS

intrinsic or simply an artifice of the chosen methodology. This cannot be

fully resolved in these notes, but there is some evidence to suggest that com-

putation of -Y is a fundamentally difficult problem. In particular, it can be

shown that -7. is equal to the norm of the operator

HiR 1

R2  J Pro,: L2 -I Le 6 Le. (24)

This implies that 7 can be found as the solution of an eigenvalue problem,

but of a matrix (or operator) which is infinite rank. Thus again, from this

point of view, 7 can be computed only to within an arbitrarily small accu-

racy, but not exactly. It is clear that this issue needs more research.

The remainder of these notes completes the details of the solution out-

lined in steps 1)-4) above. This provides a general solution to the H, optimal

control problem modulo the above remarks.

I -0i

i ) ."  : -:! i i , .. ". 1"
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2.1.5 Figure 1

min {IF(P.A in ternalstabuity}K P"
par metrization

K=Ft(LTQ)

jmin ''T11 4- Tt2QT2x I where T&T,2 I TzT7'lI

unitary invariance

rn -Q R21 1
QeH. IrR12 I'2211

projection dilation

projection dilation

K S

I K,~= 1 (JQo



2.2 Stabilization

.2.1 Introduction
.0

This chapter considers the problem of finding a parametrization of all

controllers K E 4r"2 which achieve internal stability of

F,(P,K) =P1, - Pj 2K(!-PMK)-1 P2 , (1)

where

P P P 12j R,,P+PZ)xImI+'M) Rptxm"  (2)
P = P , - C

The notion of internal stability for (1) is considered in Section 2, where the •

appropriate deflnitions and properties are developed. The treatment here is

in the spirit of [DeC] and [Per].

The approach taken in the rest of this chapter is to find J so that the

substitution K=F (J, Q) yields

F,(P.K) = F,(PF(J.Q))

= F,(T,Q)

= TI, T12QT21  (3)

with the additional property that T C H. and

F(PK) internally stable (4)

iff Q CH..

This approach parametrizes all stabilizing Ks in terms of a stable

Q C H. in addition to providing an affine parametrization of all stable

FI(P,K). This so-called 'Toula parametrization" [You2] is developed in Sec-

tion 3 on Parametrization of All Stabilizing Controllers. Section 3 puts the

algebraic methods of stabilization as expounded by Desoer and co-authors

[DML] in the context of the linear fractional transformations used in these S

F I.
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notes.

There are two main approaches to constructing stabilizing controllers of

linear systems. the Youla parametrization and state-space methods using

observers and state feedback([KBF],[Lue)). Each is well-known within the

control theory community and each has its advantages. As indicated above.

E the Youla parametrization yields aU stabilizing controllers as well as a con-

venient affine parametrization of the closed-loop system. Unfortunately, the

standard algebraic treatment of this subject gives no reliable scheme to

compute the coefficients of the parametrization. Observer-based stabilizing

controllers, on the other hand, are easily constructed in terms of a realiza-

tion of P using a variety of state-space computation schemes.

Section 4 shows that these two methods of stabilization are actually

equivalent in a very direct way. This allows for the Youla parametrization to0

be constructed using the standard state-space computations of observer-

based stabilization methods, providing explicit realizations of the desired rT

in (3) in terms of a realization of P. Section 5 puts all of the results of the

preceding sections together to construct the desired affine parametrization

of the closed loop system.

It should be noted that many of the results on the connections between

the algebraic and observer-based stabilization methods were discovered

independently by Nett and coauthors [Nei]. Also, many of these results were

known within the "systems over rings" community [lQha]. What is clearly ori-

ginal to these notes is the complete equivalence of the two stabilization

methods (Section 4, Theorem 2) and the parametrization in terms of the gen-

eral framework using linear fractional transformations (Section 5).

Never-theless, this material is not the main focus of these notes but is 0

4 I
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presented in detail so that it may be used in developing the factorization

methods of the next chapter. -S

I!
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2.2.2 Internal Stability

In this section P and K are fixed proper transfer matrices. The block

diagram of Figure 1 represents the two equations

[ U =Ky

Partition P accordingly:

11 P 12  ( )

It is convenient to introduce two fictitious external signals, w, and u02, as in

Figure la.

Suppose the signals v ,w 1 , and w2 are specified and that u in Fgure la is

well-defined. Then so are e and y. Thus it makes sense to define the system

I V 1

in Figure la to be weU -posed provided the transfer matrix from to Ut

exists and is proper.

Lamia 1. The system is well-posed if and only if

I - K(=)Pzn(m) is invertible. (3)

Proof. Figure la implies the equations

U = w1  Y- KUw2

Y = P 2 v I P22U-

and these in turn imply that
S

(I-KP)u w, + KP2 1a, + KW2.

Thus weUl-posedness is equivalent to the condition that (I-K)-l exists and is

proper.

S

• • _ , .' , , , " , . , " -- , .. t ~ , .- ... -- - -., -.' -,. .-- , ,., -. -., ,,
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It is straightforward to show that (3) is equivalent to either of the follow-

ing two conditions:

-P2(=) ] is invertible; (4)

I - P22(-)K(") is invertible. (5)

The well-posedness condition is simple to state in terms of state-space

realizations. Introduce minimal realizations of P and K:

P = C1 D1, D1 2  (S)
C2 . D2 D ]

K= 4,] (7

Note that the partition in (6) corresponds to that in (2), i.e.,

Then Pu(ab)=Dzz and K(-)=DV, so for example, from (4) well-posedness is

equivalent to the condition that

-D2 is invertible. (9)

Well-posedness will be assumed for the rest of this section. Let . and .

denote the state vectors for P and K respectively, and write the system

equations in Fligure 1 with v set to zero end e ignored.

= Ax B 2u (lo,)

= C2z - D22u (10b)



3

= .~ +(l0c)

U by. (10d)

The system of Figure I is internally stable provided the origin (x,2) = (0,0)

is asymptotically stable. To get a concrete characterization of internal sta-

bility, solve equations (lob) and (lOd) for u and y:
0

(Note that the inverse exists from (9)). Now substitute this into (10a) and

(10c) to get 6

where S' oJ

Thus internal stability is equivalent to the condition that A has all its eigen-

values in the open left half-plane.

It is routine to verify that the above defnition of internal stability

depends only on P and K. not specific realizations of them. The following

result is standard.

Lemma Z Consider a minimal realization of P as in (6). There exists a

proper K achieving internal stability iff (A,B 2) is stabilizable and (C2 .4) is

detectable. S

The latter stabilizability and detectability conditions are ;sUm7ed

throughout the remainder of this chapter. Since

S

SI
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4

e-uations (10) constitute a state-space representation of the system in Fig-

ure 2. Although the realization in (11) is not necessarily minimal, it is stabil-

izable and detectable, and these are enough to yield the following result.

Lemma 3. The system in Fligure 1 is internally stable iff the one in Figure 2

is.

The next section contains a parametrization of all Ks which achieve

internal stability for the system in Figure 2. To simplify notation, define -

G := P2, B := B2 , C:= C2, D := D22.

Then (A,B) is stabilizable, (C,A) is detectable, and the system under study is

that in Figure 3.

The above notion of internal stability is defined in terms of state-space

realizations of G and K. It is important and useful to characterize internal

stability from an input/output point of view. For this, consider the feedback •

system in Figure 4. This system is described by:

fiG ~].(10)
2S

Now it is intuitively clear that if the system in Figure 4 is internally stable

then for all bounded inputs (v 1,v2), the outputs (e ,e2) are also bounded. The

following lernma shows that this idea lends to an input/output characteriza-

tion of internal stability. "1

Lemma 4. The system in Figure 4 is internally stable if and only if (I-GK)

is invertible and the transfer matrix S

S
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I I 4 1 (I-GK)G-' K(I-GK)-l
I- J [(I-GK)-'G (I-GK)- (ii)

between (v1 ,v2) and (el,e 2 ) belongs to RH..

Proof. As above let (A.B.CD) and (.,,) be stabilizable and detect-

able realizations of G and K respectively. Then the state-space equations for

the system in Figure 4 are:

= [ sl" [oHl
9 1 = V I  Y2, e2 = + yl.:1

The last two equations can be rewritten as

j-D '1k21 = [C o1.

Now suppose that this system is internaly stable. Then (7) implies that

(I-DD) = (I-GK)(-) is invertible. Hence (I-GK) is invertible. Further,

since the eigenvalues of

Aol ~ o:
A' 0 ~i-D I Ic 0]

are in the open left hall plane, it follows that the transfer matrix in (10) from

(V ,V 2 ) to (e ,e2 ) is in RH..

Conversely. supppose that (I-GK) is invertible and the transfer matrix

in (10) is in RH.. Then, in particular, (I-GK)- ' is proper which implies that

(1-GK)(-) = (:-DD) is invertible. Therefore



6

D I

is nonsingular. Now routine transfer function calculations give, S[D( r+P] L [- 1 sI-) - Bfl -]

Since the transfer matrix from (v1 ,v2 ) to (el,e 2) belongs to RH. it follows S

that

o](l A , -oN

belongs to RH.. F"inally, since (A,B,C) and ( are stabilizable and

detectable, it follows that the eigenvalues of A are in the open left half plane.

We note that to check internal stability it is necessary (and sufcient) to

check that each of the four transfer matrices in (II) are in RH.. it is not

difficult to construct examples of G and K such that any three of the four

transfer matrices in (II) are in RH. while the fourth one is unstable. S

0
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2.3 Parametrization of All Stabiizing Controllers

Two matrices N,M C RH. with the same number of columns are

right -coprimne if the combined matrix jJhas aleft inverse in RH,. That is,

there exists X,Y E RH. such that XII + ,Y=I. This is often called a

Bezout or Diophantine equation. An alternative definition is that two

matrices in RH. are right-coprime if every common right divisor in RH.. is

invertible in RE.. This can be shown to be equivalent to the above definition

in terms of a left inverse, but we will not use this fact.

It is a fact that every G C R., (proper, real-rational) has a right-coprime

factorization 0= N 1 where NM 1 RH. are right coprime. Similarly,

there exist left coprime factorizations (lcf), defined in the obvious way by

duality. The proof of the existence of such coprime factorizations will be

given in the next section with explicit realizations for the factorizations. In

this section. we will see how these factorizations can be used to obtain a

parametrization of all stabilizing controllers.

Begin with rcfs and let s of G and K in Figure 4:

G = N- 1  17(-)

K = r-=1 " (2)

Lm a 1. Consider the system in Figure 4. The following conditions are

equivalent:

1. The feedback system is internally stable.

2. is invertible in RH..

3. is invertible in RH..

Proof: As we saw in Lemma 2.3 of the last section, internal stability is

* S



equivalent to the condition that

* or, e quivalently.

* ~ £RH.. (3) 7L
Now

I [z II"' oil
so that

[GI -[ 0 I][NV]

Since the matrices

ire right-coprime, (3) holds iff

This proves the equivalence of conditions 1 and 2. The equivalence of 1 and 3

is proved similarly.
* 0

QED

We shall see in the next section how to find explicit realizations for

NM m, 7 R U., V., V7.. V.and such that (1) holds and

*2
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i N .0

The above lemma says that .

then qualifies a particular controller achieving internal stability. All stabiliz-

ing controllers can be expressed in terms of KO and a parameter Q, as shown

in the following:

Theorem 1. The set of all proper controllers achieving internal stability is

parametrized by the formula .

K = .+VQ(14.v, 1 NQ) 1v-, 6

where Q ranges over RH. such that (I - 1-Q)(-) is invertible.

Proof: Assume K has the form indicated.

Define

U* U, + MQ, VA V +NQ

i7 r7 ~ ~i.i(.~+ I7)r U,. +

- [ 1 !N-[ -R I[ N

0 • from (5) 0

-I (7)

S S

- 001
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Thus K achieves internal stability by lemma 1.

Conversely, suppose K Is proper and It achieves internal stability. Intro-
AD.

duce ref and lef of K as in (2).

Then by lemma 1. Z .2V - U is invertible in RH. Defne Q by the

equation

U, + fQ = Z , (5)

so

Q -'(UZ-1 - U) (9)

Then

v NQ = V . .Nm-(Uz - l U.)

- V. -'1(uz- - u.) from (1)

= M("' V. -iU. 7 1UZ-)
= /-+(1 + ,UZ-1) from( ()

1 7-1(z + RIzU)Z

-'7-  (10)

Thus,

K U @

= (u+AUQ)(V. +NQ)-.

UAv. + (Ml - U.V.N)Q(I+ v-'vQ) ' (1.)..

from (prelim?). Then. since o I

(JI - U. V;-.N) = (Ml - J.1.V) = M'(V.M - .x) =

we have that

0 7
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5.0

K -U Vu + V;1 Q(1 + V-NQ)- V9- 1. (12)

To see that Q belongs to RH.., observe first from (9) and (10) that MQ

and NQ both do. Right-coprimeness of N and M then implies that Q 1 RH.

Finally, since V and Z evaluated at s=- are both invertible, so is

V. NQ, from (10). hence so is I + V;NQ.

Define the rational matrix

and consider a controller K given by formula (6). Then the oontroller equa-

tion

-6 P;iQ(J V-1NQ)-1 V1]Y

is equivalent to the triple of equationsU1 V.- ly --- _-'N-

Vi = Q'

The block diagram corresponding to this triple is in Figure 5. We con- S

clude that every stabilizing controller can be represented as K -F (J, Q), as

in Figure 5. for some parameter Q. which is constrained only to be stable and

proper and to make K proper.

The next sectiongives an explicit state-space realization of one choice of

the Interconnection matrix I.

* S

* S 1

• -. :::::.)::' . . ... . .. : .. ... . . .. . . .... . . . . . . . . - ...
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2.2.4 RallUtIon ofi:

Recall from Section 2 that we have

where (A.B) is stabilizable and (CA) is detectable. To obtain a right-

coprime factorization of G. choose a matrix F such that A+BF is stable.

Lemmna L A stabilizing state feedback F yields ref G NU -1 where a

+BPI
JC+DFIDJ

Proof: That G NM- follows from:

fBFJE
A+B (cascade of two systems)

JA+BF BF B
0 A 101 (by change of basis in the state-space)

IC+DF DFI.j

- jC+Dfibj (deletion of uncontrolable part)

N.9

That N and At are right-coprime will follow from (3) below.

QED

Note that for any nonsingular Z

: F Z+D DZI "(1a)

[* .0

--------------------------------------------
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is also a realization of an ref of G.

Byduality, to get a left-coprime factorization of G, take H such that

A A+HC is stable.

Lemama 1'. A stabilizing output Injection H yields lef G=M 1 Nl where

[NJ: [C jff Df (2) a

- Thenextstepistospecify U., V. r,. to satisfy

j M [N°V. (3

The Idea behind the choice of these matrices is as follows. Using

K observer theory. find a controller K. achieving internal stability. Perform

factorizations

analogous to the ones just performed aon . Then Lemma 3.1 implies that the

left-hand side .of (3) must be Invertible in RH.. We shall see that. in fact, (3)

is satisfled.

J4 +[4B H c HDh~ I (.)

Thene stons fo sei.

- . 1

....
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2:=A + BF +HC + HDF , :-H
:F ,/:0 .

C= + DFR: -(B + HD). -

Following (1) and (2), define

. p 1C F .(5)

U +.b. I=I I

Using the above definitions we have that

U] +B1VO IFI1 0. (8)
1C4DFD I

TjV..fl up1 HCI-(B.'HD) HI

N CI -D r

and the following theorem holds.

Theorem Z

Equation (3) is satisfied.

Proof: Verification of (3) is immediate using (7). (8), and the inversion for-

mula for systems (prelim).

A realization of J is now immediate. Substitution of (1). (4). (5).

and (6) into (3.13) leads after simplification to

0BF4HCIHDF -H B+H.Dj,=r F 0 1

-(C+DF) I -DI (9)

Let's recap. We began with the (stabilizable and detectable) realization
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G =.

We chose F and H so that A+BF and A+HC were stable. Dedne J by (9). 0

Then the proper K's achieving internal stability are precisely those

representable as in fligure 5, where Q e RH.. and

I + DOQ(-) is invertible

(The last condition is equivalent to the one

( + Vo-NQ)(s) is invertible
which is required as per Theorem 1).

This representation result has an Interesting interpretation every

internal stabilization amounts to adding stable dynamics to the plant and

then stabilizing the extended plant by means of an observer. The precise

statement is as follows; for simplicity of the formulas, only the case of 0

strictly proper G and K is treated.

Theorem Z

Assume G and K are strictly proper and the system in Figure 3 is inter- 0

nally stable. Then G can be embedded in a system

where

and A is stable, such that K has the form

+B. F.H.C, -H.
F ' (.-)

where A . B. F. and A. + H. C are stable. 7



5

Proof. K is representable as in Figure 5 for some Q in RH.. For K to be

strictly proper. so must Q be (see (3.6)). Take a minimal realization of Q:

Since Q E RH. A is stable. Let x and z. denote state vectors for J and Q

respectively, and write the equations for the system in Figure 5: Alt

= (A + BF + HC)z + By,

uo = F + V,

U, = V,=

is Axz8 + Bsu1

These equations yield

-:= (A, ." B,.F, - HC,)z, - Hv -

U =F
where

S

=,:= .F: C. H: ,??

and A, B.. C, are as in (o).

QED-.

S .

S'

S



aa5 ClowedAop Transfer Matrix

Theorem 1 provides a parametrization, in terms of Q, of all proper Ks

which achieve internal stability in Figure 1. The goal in this section is to

express the transfer matrix from v to e in terms of Q.

A :tabilizing K is representable as in Figure 5. Substitution of the block

diagram in Figure 5 into that in Figure 1 leads to the one in Figure 8. Elimi-

nation of the signals u and V leads to Figure 7 for a suitable transfer matrix _0

T. Thus all closed-loop transfer matrices are representable as in Figure 7. It

remains to give a realization of T.

We must irst put back the original notation which was simplifed at the 0

end of Section 2. Let

fA Bi B2

P c D11 D12 (1
rc2 ID21 D2 1

be a minimal realization of P, and choose F and H so that A+B 2F and :

A+HC2 are stable.
S

IAmma 4.

A+B2F -B 2F B, B21
0 A+HC2 Bt+HDzi 0 "2

T' = C1 -D11F -D 12F D11  D12 (2

0 Ct DR, 02-1

Proof. With the original notation we have from (..4.9) that

A BF+HC+HD22FI-H B2+HD(_

IT F 1 1 (3)0-(C2 -D22F) I -D22J

Partition J" and r accordingly.
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J"[/21 J22

ki11 T1210
T 17 T 221-

The equations governing the system in Figure 6 are

'h eqain ,,1rin 0h syt2j Pgr ae-i

[.: I = ,p1  I.

while those for Figure 7 are S

= iT  12 2~u] l

Therefore

fTl T12
1  IP1 0 1 [pl o 1 -j Fo

The strategy now is to use the representations (1) and (3) in (4) to obtain (2).

The algebra is long and tedious, but straightforward, so the details are omit-

ted.

Partition T according to (2):
f7", T12, .0

S= in,, 'r1

Ex!Icitly. we have

'A+B 2P -B 2F BI
T =l 0 A+HC2 JBI+HD2 1 (5a)

[CI- D12F -Dl2F I DI,

S
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state feedback. Using the notation

li +BF E;
N = [CID] - C+DF 0Z (8)

we will use (1)-(3) to get N inner end A+BF stable. From (2) we have that

Z=R-iU where R=D'D>o and U is any orthogonal matrix. Take U=. Equa-

Lion (1) implies that
S

R-%B'X- R-tD'(C+DF) =0

so solving for F yields

F = -R-(B'X + D'C) (9)

Then equation (3) yields

0 = X -' - 'e '

= (A+BF)'X - X(A+BF) ; (C+DF)'(C+DF) 0

= (A -BR-1 D C-BR 'BX)'X -X(A -BR- 1DC-BR 'B'X)

+ (C-DR-IB'X-DR-ID'C)'(C-DR"9B'X-DR-ID'C)

= (A-BR-ID'C)'X + X(A-BR-ID'C) - XBR-IB'X + CDDIJC (10)

since DjD! = I-DR-ID'. Thus X=Ric [A], where

-BR-'D'C -BR- 1
B', 11

Ag = -C'DLDIC -(A-BR-'C) J (11)

That X=Ric (All) exists such that A +BF is stable follows from Theorem

2.1 as follows. Let

P = GQ G

[B(s-D''IjC D'DCC CDJ[I-A'J (12)

That 7 = GG > 0 is true by assumption. To satisfy Theorem 2.1 we must

have (A , B) stabilizable and (P. A) detectable, but this is immediate since •

'. . . .t _ , . .. . . . • . . .. . - _ : - S



2

and Z can be any nonsingulw- matrix. To obtain a rcf with N inner, we sim-

ply need to use equations (1)-(4) to solve for F and Z. This yields the follow-

ing theorem: r

Theorem 1:

Assume p m. Then, there exists a r cf G NM- 1 with N inner if and

only if G"G > 0 on the jw-axis, including at -. This factorization is unique up

to a constant unitary multiple.

A particular realization for the factorization is

A +BF BR - 1

I= F IR ji RH-+P)x- (5)
C+DF DR-N

where

R =D'D > 0

F = -R-(B'X--D'C) ()
and

x = Iac [CD.LDC -(A-BR'D C)J 0 (7)

[Proof]:

(only if): .

Suppose G = NM-I is a rcf and N'N=I. Then

GG = (NIM-)*(N! - ) = (M-)'M-1 > 0 on the jw-axs since M 1 RHI

The if part will be proven by showing that (1)-(4) lead directly to the

above realization of the rcf of G with inner numerator. That G = NM-1 is an

rcf follows imnediately from (4) once it is established that F is a stabilizing

S



23.4 Inner-Outer and Spectal Factorization:

In this section. the special form of coprirne factorizations required to

reduce the general H. optimal control problem to a best approximation -O

problem will be developed. In particular, explicit realizations are given for

coprime factorizations G = NM- 1 with inner numerator N (Theorem 1) and

inner denominator M (Theorem 3); and for the complementary inner factor

NLwhich completes the inner numerator to make N4 square and inner

(Theorem 2). The theorems will be stated for right coprime factorizations

(rcf) with the duals for 1cf's following just as for the general case of

coprime factorization developed earlier.

For the following theorems, it is assumed that = Rn"' and

the realization is minimal. We will denote by RO (R;eO) the symmetric

matrix such that ORI = R and use "Di' for any orthogonal complement of

D so that [DR -1 D4 (with R=D'D) is square and orthogonal.

Recall from Corollary 0.3.3.1 that N = is inner if and only if

i) B'X + Dt 0 1

ii) D'B =' (2)

where the observability gramian X solves 77
'X + A + Z-t =0 (3)

From Lemma 2.4.1 a stabilizing state feedback F yields rcf G=NM -1  t

where

[ fi (4)LC+DFIDZI"•

• "
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Remark:

The unique stabilizing solution of Theorem 1 will be denoted by Ric (Ay).

Note that this theorem is more general than Theorem 2.1 from the previous

section since no detectability assumptions are made. The following theorem

will play an important role in the next section in obtaining complementary

inner factors.

Theorem 2:

If Q HH 2: 0 in (AM and X is its solution, then Ker(X) C Ker(H).

II

-122 I
| I

I



U -S

2

E-W -W.
_E"X+XE'-X#X+Q) E-X

0 -(E-)TI"

This puts A& in block upper triangular form and clearly exhibits a particular

partitioning of the eigenvalues of AH with respect to the imaginary axis. For

example, if E-WX has all its eigenvalues in C_, then -(E-X) r has all its

poles in C.. Thus, the solution of ARE which stabilizes E- WX yield a decom-
position of Am into stable and unstable parts.

This section will explore the conditions under which the desired solution

of ARE exists. There is a considerable literature addressing the theory of

ARE (eg. [And]. [Cop], [Kuc], [Mat], [Mol], [Pot], [WU]). and it is not the pur- 0

pose of these notes to give a detailed treatment of this subject. We will sim-

ply review the results which are relevant to the factorization theorems in this

report.

Now, we are going to state the main theorem of this section which gives

the necessary and sufficient conditions for the existence of a unique stabiliz-

Ing solution of (AM. Without loss of generality, we will assume that

Yf=GG t .9

Thorm 1

The stabilizability of (E.G) and Re(X(A)] i 0 ( i = 1,2...... 2n) Is

necessary as well as sufficient for the existence of a unique stabilizing solu-

tion of (AM.

S S



Z.3a Solutiou of the Algebraic 1lccatL Equatioun:

Consider once again the Algebraic Riccati Equation.

Erx + XE - X + Q 0 (ARE) -5.

where

E., rL Ef"K", W W T :O0and Q QF

with the associated Hamiltonian matrix

AY -Q -E] (Hamiltonian)

Our main interest is to find the unique real symmetric stabilizing solution

such that the matrix (E - WX) is asymptotically stable. For simplicity we

will use "solution" of the ARE to mean a real symmetric one. The ARE con-

sidered here is more general than the ARE which arises in linear quadratic

optimal control and Kalman-Bucy Mtering theory in that there is no assump-

tion on the defniteness of the matrix Q.

An important property of the Hamiltonian matrix AN is that the distribu-

tion of its eigenvalues (denoted as A(A,)) is symmetric with respect to both

the real and imaginary axes. Le.. If X C A(A,) with multiplicity k. so is

-. and -3. Therefore. A can be partitioned as A, and A so that -

X c A, with multiplicity k implies that X rL A1 and -x ,-X c A2 all with

the same multiplicity.

One connection between the ARE and A11 can be seen by assuming that X

1 0
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The next section focuses on the solution of the Riccati equation.

pp.L
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L - then from (4) and (5)

(jw9,I -A)x 1 =0 (7) A

j . + A')z 2 = Pv (8)

Since (7) implies :l*(jcj.I+A')=0, from (8) we have zi"Pxl=O. This implies.

along with (7) that (P,A) is not detectable. Hence tzi$0. Now Lemma

* 0.Z3.8 implies that there eists u, 1*0 such that !'(j rj)u, =0. This contradicts

the hypothesis that P(j v) >0. Hence (a) (. c).

(b) -~(a) Suppose BX=X such that E-BR1 B'X A A-BR 1I(S' + 2X) is

stable. Let F= -R 1I(S'+ +BX) and

It is easily verifled by use of the Riccati equation for X and routine algebra

that I' M*RV so

Now

JO SoW'- C RH.. Thus-1 1 C RL.andforalrsgug

P- 1(~) =M-'(jw)R(M'(-jr))-I 0

Hence !'jw) > 0 and (b) -. (a).

* (a) -. (b) This is pert of Theorem 3.1 in the next section.

QED
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c) The Hamiltonian matrix

A-BR-1 3 -BR-1 B' .

Ajro -P ."

A+SR-S' -(A -BR- 1 S

has no je.i-axis eigenvalues.

Corollary 1 If the conditions in Theorem 1 are satisfed then SM 1E RV

such that 14-1 C RH. and

r =M*RM.

-- 0.* A~~¢ patiul eFalition o one i uh i

where F= - R-(S'-+ .X).

Proof: (a)-'(c) Let
A kB

I'(a) [c7o I -P-A' (2)
LS B' RJ

Then A1  A-ax Suppose A11 has an eigenvalue on the je3-axs. Then

Se.. z such that

A11: j we ze (3)

or

whereF= -- ER-z('(z1 *BX)) (4)

(jw.I+A')z2 =-(P-SR-'S)+SR'B (5)

Suppose

0 =S. B-..

* 5



Z3.2 Rccat. Equations and Factorizations

Consider the Algebraic Riccati Equation.

EX. XE- XWX + 0= (ARE)

where

E,f,Q W= 'O and =Q

with the associated Hamiltonian matrix

AN _ -(Hamiltonian)

The following theorem and corollary characterizes the relationship

between spectral factorization. Riccati equations. and decomposition of Ham-

itonians. .
* "o .4

Theorem 1 Let A.B,P,SR be matrices of compatible dimensions such that

P=P'. R=R'>O. with (A.B) stabilizable and (PA) detectable. Then the fol-

lowing statements are equivalent. •

a) The parahermitlan rational matrix

satisfies

Q" )>0 forall 0O S .i-

b) For E=A-2R-S', WB=R-IB ' and Q=P-SR-'S. there exists a unique .

real X=X' such that

E X -XE - XW Q = 0

and E-2R-IB'X is stable.

,' .-. - , . ...0.: : , : . , . . •. . - , . --: -: ..- , : -
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The key idea behind the factorizationa in this chapter is the connection

between inner functions. Riccati equations, and spectral factorization.

Indeed, the factorization (-?r-G*0) is just a special case of spectral factori-

zation ([You),[AndJ). Sections 2 and 3 develop the fundamental properties

about Riccati equations that will be needed in Section 4 to construct the

desired factorizations. The material in Sections 2 and 3 Is for the most part

well-known within the control theory community ([And],[Cop].

[Kuc],[.Mat],[Mol],[Pot].[WU]), although Theorem 1 of Section 2 is apparently

a somewhat novel description of the connection between spectral factoriza-

tion. Riccati equations. and decomposition of Hamiltonians.

Section 4 shows that coprime factorizations with inner numerator and

complementary inner factors both involve using a state feedback or output

injection matrix based on a Riccati solution. This provides a reliable compu- S

tational method based on standard approaches to finding solutions of Riccati

equations ([Pot],[Lau)). Section 5 completes the solution to the H. optimal

control problem by completing the parametrization of the optimal controller

using the factorizations developed in Section 4.

°* ,

* 0
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23 Factorizatlon

2.3.1 Introduction to Factorization

* -. The last chapter developed methods for inding I's so that the substitu- _

tion K=F,(,Q) yields

7,(P..) -- F5 ,F.,Q.))
-- 7,(T.)

with the additional requirement that T E H. and

FI(P,() internally stable (2)

1ff Q £H..

This parametrizes all stabilizing K's in terms of a stable Q 4 H. in addi-

tion to providing an affLne parametrization of all stable F(P.K). The actual

structure of stabilizing parametrizations I was in terms of an observer-based

compensator. The stabilizing state feedback and output injections of the

observer-based compensator were shown to provide coprime factorizations of O0

P and solve the Bezout identities necessary to provide the parametrization

of all stabilizing controllers.

In this chapter, the requirement is added that T2 and Tel be inner, that

is T&,T12 1= and TZi Tre1. In addition, we ind TLand Tlso that [Ta T and

" .+ 1i are square and inner. This provides the necessary factorizations to

S complete step 2) in Section 2.1.5 on the Rational Marrix Generalization. The

. fAnal missing step in completing the solution in the rational case is to'fnd

M CRH. for a given G IERL.. with IflcflI- < y such that M-1 C RH. and

* MMm(C9I-G*G). The symbol (7?I-GG)h is used to denote this M.

* 1
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C 3

= A+B2F B 1 (Sb)
C ID +D2,11

T21 = C E "D2 1  (5c)

In Fgure 7 the governing equations are therefore

* = 'l+ '=U

U= T21t

so that

* = (T11 + TjQTz,)gu.

In summary, we have

Theorem 3. The set of all closed-loop transfer matrices from v to a achiev-

able by an internally stabilizing proper controller is equal to

* (TI, + T12QTz11  Q E RHB. I + D22Q(a.) invertible}

The important points to note are that the closed-loop transfer matrix is

simply an aine fmction of the controller parameter matrix Q and that the

coefficient matrices Tfj have very simple realizations, namely, as in (5).

0m

0
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the realization for G was assumed minimal. Thus. Theorem 2.1 ensures that

X = Rc (Ali) exists su.ch that A +EF is stable.

The uniqueness of the factorization follows from coprimeness and N

inner. Suppose that G = N1MT1 = N2Mj1 are two right coprime factoriza-

tions and that both numerators are inner. By coprimeness, these two factor-

izations are unique up to a right multiple which is a unit in RH-"'. That is.

there exists a unit G 4 RHZ'Mm . such that 9 = .Clearly, 9 is inner

since 9*9 = 9*NNIG = N2*N2 =!. The only inner units in RH. are constant

0 matrices, and thus the desired uniqueness property is established. Note that

the nonuniqueness is contained entirely in the choice of a particular square

root of R.

Q.E.D.

In a similar manner equations (1)-(3) can be used to obtain the comple-

mentary inner factor (CMh in the following theorem.

Theorem 2:

l p > m in Theorem 1, then there exists a OF able RH.'(') such

that the matrix [N N is square and inner. A particular realization is

N rc+F D where X and F are from Theorem l and XT is the

pseudo-inverse of X o

[Proof]:

* 4
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C5.

The proof consists of verifying directly that [N t is inner using the

above realization for Njand the realization for N from Theorem 1. Using the ---

notation

N +BFBR-I -X C'D (13)

[N [1 J C+DFIDR~ D
and the fact that Ker(X) C Jer(DIC) (Theorem 3.2), equations ()-(3) follow

immediately. ThusN NJ is inner.

Theorem 3:

There exists a rcf G = N1 - 1 such that V , RH !x is inner if and only

if G has no poles on the . r.-axis. A particular realization is

k+BF,-.= F ID I .E .R',") (14) :::
[C+DFI_-

where •

F= -B'X (15)

and

X=R:c .0 (is) 0

[Proof]:

The proof is essentially the same as for Theorem 1. The details are

straightforward and are omitted.

* S



In the following theorem, we may assume that G(s) is stable without loss

of generality. Any G C RL. may be factored using the dual of Theorem 3 to

obtain a stable numerator R such that NN G GG.

Theorem 4: (Spectral Factorization)

Assume (s) 1 RH..P " ' and 7 > IIG(s)iI-. Then. there exists a -

M C RH.xlI with stable inverse such that OM =* - G*G with

M=[,"R& RJ

where

R =I - D'D > 0

KC = -R-(B'X - D'C)

A+BR-1 D'C -BR-IB' 0
X = c c(+DR'D)C -(A+BR'DC)

[Pro&]:

* Let

* r = - 00 [a'(sz-A -4[CC -CD1,(s1-AY1'BIr 71 GG j'(-sj A') ' Dc R I[
where R =-?1-D'D.

Slnce 7> IGJf. I (jc)>0. The minimality of the realization of G(s)

guarantees that (A , B) is controllable and (-CC. A) is observable. Thus. -

from Corollary 2.1, there exists M(s) e 1r'N such that r = M*M and a par-

ticular realization is

where

..... ._ . -.-



C 7 .

; = -R-I(BX-DC)

and

A4BR 1 DIC -BR-'BI
X - C lc(I+DR-'D')C -(A+BR-ID, C), .

Since G is stable, we conclude that M C RH.nxi.

Q.E.D.

Remarki:

(1) The minimality condition in Theorem 3 can be weakened to (A,B)

stabUizable and A has no eigenvalues on the J&.-axis and the

theorem still holds.

(2) If G e RHJ2 ' in Theorem 1, then M is a unit in RH. and M- 1 is

"outer". In this case, G = N(M - 1) is called "'uer-outer factoriza-

tion" (101).

(3) Dual results for all factorizations can be obtained when p : in. In

these factorizations, output injection using the dual Riccati solution

replaces state feedback to obtain corresponding left factorizations.

(4) The symbol (9I - G'G)X will be used to denote the M in Theorem

4.

-7•
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C ..0
2.3.5 Parametrizing the Optimal Controller

This section combines the results of Youla's parametrization and the

coprime factorization to parameterize all stabilizing controllers in a way that .

is convenient for solving optimal Lg and L. control problems. This completes

the rational generalization of the constant matrix case as outlined in Section

2.1.5. The only remaining step is a standard -/, approximation problem. -t
Let

I~t

P= .: PJ = C1 ' 1 1 D 1' (1)
CD2 1 DJ

Suppose that neither P12 nor P21 has transmission zeros on the jc.-axis

(including ) and, without loss of generality. D 12FD 1 2 = I and D21D21
7 = I.

Under these assumptions, let Dj , (D1  and .,= (D:1)i that is, [D12 D-

and [D2 1
" D2L are orthogonal matrices. Then, factor P as before with F

and H given as follows:

F = -(DlgrC 1 + BJrX)

A-B 2 D,2 C, -BBT~ I
X = RI c C ~t DjDjT Ci -(A,BDmjC 1 )rJ (2)

and

H = -(BD 7 + yc.t )
(A -E1 Dg21 C)T  -CuT C, 1 (7

Y = R B, -B_.~ffD 1  -(A -BED 1 •C2)-

Then. N12*NI2 = I and t, 1 N21 = I. Also, let Njand 3.tbe CIF's so that

IN A + 

.F 

B2 -XC
=C 1 +D1 ,F .D13 D I



2

1A -HCg IB1 HD21
1

N C2 l (4)

L'etting

A+B 2F -B 2F B, B2

ItlN12 0 A-HCg B 1+HD2 , 05T a Cl +V sDJ2 -D1 1P' Dit D1 (5
0 Ca D21  0

reduces

* mi II I F, (P.XK) I L I F1 P. K)stable 6

to

m , (T. Q)Ha

* mnj{ (All)1 + NV2QNI1  (7)

The optimal K may be recovered from Q.
'S

Because both the I" flu and I1 I.- norms are unitary invariant. an alter-

native expression is possible. For any Q RH a ( a i 2, a), we have

[~'. N] (NV 11  Nis ati

[ 12"(NA~) I1 j, Q N a (NV) 11 RI I
= LN(NV) 1JJ." N:(NV)fNtj I.:

- [R., N a (8)

* 0
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11 1 2 1 12
where rR 22 Nj (NV~l h 1 iNj

The a = 2 case is particularly simple and it possible to get explicit for-

mules for the optimal controller. Since[Ri-WQ Rim] 0 ~~4QI R1,] :r
i Q 2R Q21i(' 10)

the optimal Q is seen immediately to be

To obtain an explicit expression for Q,, we need to compute R.

Note that (N-Y)I 1 = [N1 N1 1 Fl It is convenient to compute

la 1:jV,

1 N 1 2 ] ~ N1 1 [N.'N 1 U(12)
1112 N! 0

and

-j rvilr~. *(13)0

separately.

Qaim 1'

- ( A + B 2 ) ( C ' D 2 F ) I D 1 1  X B l0

N 1 -11 -B Dig T 
1

'.(1 4)

(Proof]:

.... "

* 
o

* 
0
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A+BaF 0 B,
= (C + D12F)T(C1 +DlaF) -( -BF T -(C1  DieF)'"D11

N J1 1 1 D1 2(C + D12F) B2T DI D I,
DfC,-Df C1Xt  DID11I

conjugating the states by 1 xJ.we have.-

A +B2 F 0B,

o2 -(A +B2F)F -%C+D1 2 F)7 D1 1-XB1

D4x1(CI + D]I=FD 2 aC Bar Dl-rDT

oDC~ DeI 1

Claim 2: 
-

f ~~ -(A HC2)T  -C2T rBDIT
I~uJ t~ J~j= B1  D2)T D212" O.C 15

(Proof]: F

'w:I 0 -(A + HC2)F T rB 1 :~

0 4 -(B +HD g1)T  Dal7  
1

conjugating by [

c +aim . 0 0 0

Y 011
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Q.E.D.

Putting these results together yields -.

[2i [N 11 N12j[I[p1 :1()
-(A +B2F)7 (C1 +D 12F)FD1 -rX81 0 [-(A +HC2)T I- C2

T YrB1 Di
- B27 DiarD1 1  I I(Bl+HD~tl)lID21' .3.
DZ C1 Xt  D.DI 0[ -FY o o

Note that this is the cascade of two systems with all of their poles in C.

Thus, projection onto H2 C leaves only the constant term. Therefore, in

the L case:

Theorem:

= D12rD D2 I "  (17)

The a- case is somewhat more complicated but can quickly be

reduced to a standard matrix best approximation problem. Suppose that 0

from (8) we want to find all Q E RH. such that

T n+ Q Rig]

From Chapter 2.1 we Ikmow that (18) may be reduced without loss of general-

ity to

S1R 1 1 :97 for (19)
-I g ] R1 1

Recall that

s7 for 7> (20)

T i210

* 0



* -0

jjRQ)'2 12,20Jj (21)

lbG + 11- S (22)
where G=RIIM- C RH. and =QM-Q . Solving (22) for I E RH. solves (20)

for Q 1 RH.. Note that Q=OM is in RH. if 0 is, since M e RH. by construc-

tion.

The final step in the rational case then involves solving (22) for C RH..

This is a standard mathematical problem of approximating an L. matrix by

an H. matrix 0

* S

* SI



1 0.
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3.1 IM Control Perspective

This part will outline the main issues involved in applying the methods of -.

the previous parts to large space structure ( LSS ) control problems. The

most fundamental issue is how the performance specifications and uncer-

tainty can be put into the general framework developed in Part 1. For the

most part LSS control problems involve the usual problems of providing

tracking and disturbance rejection in the presence of plant uncertainty and

noise.

A significant distinguishing feature of LSS control seems to be that there 0

is a great deal of structure associated with the plant uncertainty. On the one

hand. thiz suggests that the methods of the previous sections. which focus

attention on structured uncertainty, are uniquely suited to handle LSS con- --

trol prob.ems. On the other hand. it will require significant application-

specific modeling and analysis to exploit the known structural properties of

LSS uncertainty.

The remainder of this section will outline the main issues in control of

LSS's. wiLn emphasis on those associated with large antennas. The discussion

will be kept as elementary as possible, and will avoid the use of the more

advanced of the mathematical techniques developed in the previous parts of

these notes. With this as a foundation, the next section will discuss specific

modelng issues and how they relate to the methods of the rest of these

notes.

Fror. a controls perspective, the problem is to achieve the specified

mission performance from an incompletely known spacecraft in the face of

uncertain disturbances. Such a problem invariably requires the use of feed-

back. Be-:ause the effect of feedback is critical to spacecraft performance a

S
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review of the feedback fundamentals relevant to this problem is in order. By

examin~ng the properties of feedback in a general setting, without regard to

the technique used to generate the feedback law, fundamental relationships

between performance, robustness and feedback control loop properties

become evident. This will make it easier to appreciate the role that the

specific methods developed in the preceding sections can play in analysis 0

and synthesis of controllers for large space structures.

Feedback Improves Performnce

A typical feedback situation for a space pointing mission is shown in Fig. 0

3-1. Here we have disturbances acting on a structure to upset the primary

goal of the mission, namely to keep line-of-sight (LOS) errors smaller than a

specified level, ,

LOS - LOS, !.

It ;s assumed that measurements of LOS are imperfect due to sensor

dynamics, sensor noise and (possibly) the need to infer LOS from related

measurements. In typical feedback fashion, the sensed response is com-

pared to the desired or commanded value and the error used by a controller

to generate a control signal to drive the actuators on the structure.

Each of the elements of this loop can be represented by its transfer

function (TF' relating the Laplace transform of the response to the Laplace

transform of the forcing function. The error response of the structure to 0

commands, LOSe disturbances, D, and sensor noise, N, can then be

developed by standard feedback equation manipulation. Letting

'For umplicly of e~oeit.ton in -rts sacton. we -.se the term 2ne-of-,ight (LOS) genetcaZy
to refer to a. ecn.roled vi"-iab:es of imterest - LOS, waveront, etc.

0
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D.= D= disturbance as seen at the output LOS in the absence of

feedback

L = KGT = feedback loop transfer function (i.e., transmission around

the feedback loop)

and AT = - = LOS sensor uncertainty

we get

(LOS - LOS.) = (D ( - LOSA) - T

This equation relates system performance to each error source. Its

various terms can be interpreted in many ways, such as amplitudes of sine

waves or as signals in LZ. In either case, four innediate consequences can

be se!en:

Consequence No. 1 -The loop transfer function must be

large to achieve small errors. This follows from the frst

term on the right hand side of the error equation. In fact.

in order to meet our specified error level, we must have

cl+ 1.'L>1D. -LOS.0

Thus, at those frequencies where either the disturbance

responses or the commands are large compared with c, we

require !L! >> 1.

Cnsequence No. 2 -Sensor noise must be small enough.

This follows from the second term, which requires that S
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seem to be two obvious alternatives to this direct approach. The most desir-

able method would be to actually check for the robustness with respect to

the real parameter variations along with those modelled as complex. This

clearly involves a generalization of the existing SSW and no reliable method

exists for computing such an object in any but the most simple cases.

A more promising alternative, at least in the near term. seems to be to

replace the effect of the real parameter variation with a complex one. That

is, instead of using the same linear fractional transformation on the A and

simply replacing the real parts of A with complex perturbations, the linear

fractional transformation is changed as well so that the set of plants

described by the new representation closely matches the original set of

plants. Preliminary investigations of this approach appear promising. but no

systematic procedure has been developed for achieving this model

simplification.

Both of these approaches to the real parameter robustness problem

have been investigated and will continue to be important research directions.

The results available to date are rather fragmented and incomplete. While

we have had remarkable success in applying the SSV to several example

problems (including the space shuttle) involving real parameter variations,

the details of the techniques were somewhat problem-specific. It is expected

that a more coherent view of the real perturbation problem will emerge in

the next year.
,!
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noise model, can be rearranged to fit the general framework of Part I, shown

in Figure 13. The major sources of uncertainty in this model are summarized

in Tables 1.2 and 3. In these tables "external" and "internal" are used to -

describe disturbances that are generated physically either outside or inside,

respectively, of the spacecraft. In the sense of Part I, all these disturbances

are external.

It is clear that the model depicted in Fig. 13 will have a great deal of

structure; the A will have many blocks. Thus, the methods of Part I using the

SSV are clearly going to play a critical role in the analysis and synthesis of

controllers for LSS's. It is unlikely that it will be possible to reliably handle 0

the inherent uncertainties of LSS control using the paradigm of either sto-

chastic optimal control or standard robust multivariable control theory

based on singular values.

On the other hand, the application of SSV techniques to LSS control

appears to be a challenging problem. The large number of blocks in a rea-

sonable perturbation model of a LSS will stress the current experimental

software, so improvements in computation and approximation methods

would be desirable. Another critical issue is that a naive application of the

SSV to Fig. 13 for large space structures could result in very pessimistic

results. The reason for this is that the natural way to represent uncertain

structural mass, stiffness, and damping characteristics is with reaL parame-

ter variations. Thus, many of the blocks in Fig. 13 would be real, and applica-

tion of the SSV would actually involve checking robustness characteristics

with respect to complex variations.

Simply replacing real perturbations with complex ones of the same mag-

nitude would typically be very conservative in LSS control problems. There

-S
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"pseudo" truth model, which we recommend, is to introduce perturbations of

appropriate magnitude in all uncertain parameters of the evaluation model.
.,

Disturbance/ Command Models-The most critical disturbances for control-

ling large space antennas are likely to be high-frequency vibrations due to

CMGs and other rotating machinery, plus distributed forces/torques due to
4

this same equipment, coolant turbulence. etc. These may be approximated

as (1) discrete-frequency components, provided a sufficient number of har-

monics are included and uncertainty in Zach of the frequencies is accounted

for and (2) broadband disturbances. These latter disturbances will likely be

dominated by the large command requirements for slew maneuvers.

Bandwidth of these command requirements will be minimized by the use of

appropriate command shaping where applicable. Although the numbers will

change. the general characteristics of these disturbances is illustrated in the

plot of Fig. 3-10.

Sensor/Actuator ModeLs-iUnear models for sensors and actuators will S

include all relevant dynamics for frequencies out to roughly a decade beyond

the desired control loop gain crossover. The effects of unmodeled high-

frequency dynamics and any signifiant nonlinearities can be approximated

using the frequency-dependent multiplicative uncertainties illustrated in Fig.

3-1 and 3-12.

Anlysis Issues

Figures 3-9. 3-11, and 3-12 can be combined to obtain the desired nomi-

nal plus perturbation model of the LSS that is required to use the analysis

tools of Part I. This perturbation model, together with a disturbance and

.,
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G(jc.) O E g,(s)ctbt

where
re 0

gt S2+2 ttS+fjt

This model, as usual, admits a state-space representation of the form

= Ax + Bus

= + Du

where

A = diag _K4 -2¢,1

B col {b~

C row 0-.

D =0

Because the truth model is not available to the designer, control designs I

developed using the design model can only be directly verified using the

evaluation model, which accounts only for the known (but largely unstruc-

tured) errors, AG.(j). Thus he must "design" to accommodate both these

known errors as well as unknown errors, which include both structured

errors (AA. AB, AC) and largely unstructured errors. ACGi(L). It is, of

course, possible to define a "pseudo" truth model by deliberately introducing

perturbations in the structural data used to define the finite-element evalua-

tion model, as was done for some of the ACOSS studies. This approach, unfor-

tunately, is prone to making the same approximation errors in the "pseudo"

truth model as exist in the evaluation model. A safer approach to defining a 0

* S
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finite-element modeling technique (e.g.. NASTRAIN). It has the form

G.(s) E g,"(s)ctb -.

where

g.4(s) S + 2es

Note that this model differs from the truth model in two respects. First, it is

of lower (finite) order. This difference can generally be approximated as a

bounded frequency-dependent multiplicative error, AG,. which is reflected ---

either to the input or output (as illustrated in Fig. 3-9) of the system. The

second difference is a more systematic one - the model parameters are

different. This is due to a number of factors - poorly known structural pro-

perties. too coarse a ftnite-element grid. nonlinearities. etc. Such errors are

highly structured and generally cannot be reflected to either the input or

output of the system, without substantially increasing the corresponding

bounds for these errors.

Thd third model, or design model, is a lower-order approximation to the

evaluation model. which is used for control design. It is derived from the

evaluation model by means to be described shortly. Since it is used for con- 0 0

trol design, it should not differ greatly from the evaluation model, except at

high frequencies well beyond desired control loop gain crossover. These

4 differences can generally be represented by the bounded frequency-

dependent multiplicative error. AG,, illustrated in Fig. 3-9. Depending on

control requirements, this model may sometimes differ also at low fre-

quency. The design model has the general form

• S
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3.2 Modeling and Analysis Issues

We next examine models and model uncertainty for critical elements of the 0

control design problem, and to see how the LSS control problem fits into the

framework of Part .

Modul Dafnition

Spacecraft Models-To properly motivate the issue of model error, we deine

three spacecraft models, which are illustrated in F g. 3-9. The first model, or

tth mol is supplied by "Mother Nature." It is an indnite-dimensional

model which can be represented in the form (assuming either position or

attitude outputs ond force or torque inputs)

G(s) - t tg(s)ceb"

where

g.t(s) =2 .

Here wK and Ct denote frequency'and damping for the Of mode while bu and

etc denote input and output influence coefficient vectors for all relevant input

and output nodes. L.ne-of-sight and wavefront errors can also be expressed

in this same form by appropriate definition of the c's. as can disturbance

inputs by appropriate defdnition of the bst's. Rate and acceleration outputs

can be handled by introducing s and st numerator terms to the gg's. 7 0

The second model, or evaluation mode is a high-order finite-dimensional

approximation to the truth model, which is typically derived from some

~~. .o
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Note that the plot in Fig. 3-7 provides explicit requirements for

vibration control For example, the important controlled modes

are identified as those above the c-line. Also, the amount of damp- ,

ing each controlled mode requires is clearly shown. Finally, the

effect and adequacy of any structural solutions, such as stiffening.

can be clearly assessed.

Class IV- Integrated P Wihg and Ruration Control-As the c-line

moves still lower, it eventually lies below the average response of

the flexible structure. Damping augmentation alone is no longer 9

sufficient. In fact, the LOS pointing controller must now of neces-

sity provide active feedback control in the flexible frequency region

as shown in Fig. 3-8. The significant feature of this problem is that

the LOS itself must now be measured accurately (or inferred from

related measurements) up to very high frequency.

Applicability to Large Space Antenna

In view of the inevitable overlap between structural mode frequencies and

control bandwidth required to meet line-of-sight and antenna surface shape

control requirements in the face of high frequency vibration disturbances

and high-bandwidth slewing command requirements, the large space antenna

control problem falls into Class IV. Thus we now examine modeling and con-

trol design issues that are relevant to this class of problems.

* '
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increase, we find that some high-frequency modes exceed the c-

line. This is illustrated in Fig. 3-8. If high frequency disturbances71
are generated internally, however, it is often possible to isolate .

them (e.g.. shock-mounted CM~s). T"his decreases Do and

reduces the problem to Class I, for which solutions are known.

•- |

Ctass INl: Attitude Control uwith Isolation and Wibrtion Control-

There are limits. however, to how much isolation can be provided.

One of the major limitations, for example, occurs when the LOS con-

troller must act through the isolator to point the payload (as was-

true for the ACOSS II model). Rigid body stability requirements

then impose a lower limit on isolation frequency. For example.

assume we can tolerate no more then 45 degrees of phase shift

from the isolator at the LOS controller crossover frequency. we.

Furthermore, assume we wish to use a passive second-order isola-

tor. Then the Bode gain/phase relations require that

40

where a is the Lowest permissible frequency of the isolator. Simi-

lar calculations can be made for other situations such as active iso-

lation or higher-order passive isolation. -

Thus, as disturbances increase or specifications get tighter, we

must eventually face feedback control of flexible modes. This is2

illustrated in Fig. 3-7. If only resonant peaks lie above the "-line, it

is sufficient to smooth the disturbance response to more closely fol- .

low the average, shown dotted in Fig. 3-7 to return to the conven-

tional problem This is exactly what vibration damping does.

4 0
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Note that 1 and 2 together allow for a-priori assessment of component

bandwidths in terms of mission specs (c) and disturbance environments

ID. - LOS. 1) aone. .0

The concepts discussed above apply to flexible spacecraft as well as rigid. We

merely include the effects of flexibility in calculating the open loop distur-
0

bance responses. Figure 3-4 is an example. Again, the c-line is introduced to

determine the frequencies where feedback control is necessary. Now, how-

ever, we also introduce a second line, a vertical line at c. = .l, which serves

to partition the frequency range into rigid and flexible. Together these two S

lines serve to categorize the control problem.

Control aasses

The control problem can be categorized according to where the c-line and

the first flexible mode flex-line occur relative to the disturbance responses.

These categories describe classes of pointing control problems with different

degrees-of-difficulty and different solution approaches. Note tht these

classes are unrelated to those of Part 1.

Class I: Conention Atttude CbntroL-When all disturbance Urn- S

its to the right of the flex-line remain below the c-line (as illustrated

in Fig. 3-5), no feedback control of the flexible modes is required.

We then have a conventional rigid-body design problem which is

routinely solved on current generation spacecraft.

Class I: Attitude Confrot u th IsoLation-If either the LOS

specification gets tighter (t-line decreases) or the disturbances

._.4+ . 5 .. . .. +.
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is best understood graphically by plotting the right hand side. Dc, LOSj

of Equation (1). Such a plot is shown for a rigid spacecraft and for typical

disturbances in Fig. 3-2 on a log-log scale. For example, solar torques cause

open-loop LOS deflections near the orbital frequency. CMG rotor imbalances

cause LOS errors at higher frequencies. All such disturbances can be pulled

together on the same plot according to their effect on the LOS output (Le.,

ID 1). In addition, the command spectra can be included as the transform

of the desired response to LOS commands. Together these terms give

ID. -LOS. 11.

Superimposed on Figure 3-2 is an s-Line which deines the allowable

error. Consequence No. 1 can be used to determine the requirements on L

In particular, for those parts of the figure which lie below the s-line, no feed-

back is required, Le., I L << 1 j at those frequencies. H-owever, for those

parts which lie above the line, we require .a.. L > 1 in order to ensure

- ireduction of errors to the s-level in the closed loop.

These observations suggest that Fig. 3-2 can be used to graphically deter-

mine the suitability of any 1, and thus of any compensator K. by directly

sketching s e. 1+L J. Such a plot is shown as Fig. 3-3. We observe that:

1. It is desirable to have the c.a 1+L Ui-e follow as closely as possible to

the disturbance limits. This minimizes control authority.

2. The point where cS. 1 1+L = is the crossover .frequency. w.. All

hardware components involved in this loop must have bandwidths higher

than this frequency.

0 40
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In the minds of most engineers, these fundamental consequences of feedback

are associated with the classical single-input single-output feedback theory.

It is clear from Part 1 of these notes that they are equally true for more 0

complex multi-input multi-output situations. In fact. this has been made

clear by much earlier research at Honeywell on extensions of classical con-

cepts to multivariable problems using singular values. This corresponds to

the case 2 framework described in Part 1. Using this framework , Conse-

quences No. 1 through No. 4 can be restated for the multivariable case as fol-

lows:

1. caI I+L}> JD. -LOSj

2. 7T-,V

3. 'a T-IAT < ..-
3..

fLOS.

4. 1 + L > ' AL

Here V and }j are the maximum and minimum singular values of the

indicated matrices and L represents the magnitude (norm) of the indi-

cated vector. Z P can be interpreted as the maximum gain which the .+

matrix can produce (at a frequency) and .Z can similarly be interpreted as

the minimum gain. This point of view is discussed in more detail in [DSt2].

Graphcal Interpretation

There is no need to delve into the intricacies of matrix theory in order to

understand the fundmentals of feedback. Consequence No. 1, for example,

* .
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< t whenever L >> 1

Consequence No. 3 -Sensor uncertainties (errors in T)

must be small enough. This also follows from the second

term, which requires that

AT < __- whenever LI 1

This result specifies the uncertainty which can be

tolerated in the LOS derivation at each frequency. In

essence, it establishes requirements for alignment and

calibration of the LOS reference system.

U Consequerce No. 4 -Model uncertainties (errors in L)

.* must be small enough. This follows from both terms. Let-

ting errors in L be AL, these terms require that

1 + L + AL .dO

for all frequencies and all AL. One way to ensure that this

is true is to require

AL < L

for all frequencies and all AL.

0 This is a statement of the robustness requirement of feed-

back systems and quantifies the amount of uncertainty

which can be tolerated without loss of stability.

0 MWuLi-lnputs and Mu!i-Otputs
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