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0.0 Introduction and Overview

ﬁ This report, in the form of a set of notes, details Honeywell's research
results of the past year in Robust Multivariable Control Theory. These notes
are made up of four major parts. Part 0 gives a review of the required note-
tion and mathemnatical background. Part 1 reviews recent results on the
l problem of analyzing the performence and robustness properties of sys-

tems. Part 2 presents the results on synthesis which are the highlight of this

report, end Part 3 outlines how the methods of the previous parts apply to

__ control of large space structures.

¢ In the context of these notes, the words analysis and synthesis have
specific meanings. Analysis is used to describe the process of determining
whether a given systern has the desired characteristics. In general, this may
. range from the use of mathematical tools to simulation to experimentation,

although analysis is typically applied primarily to describe the former. Syn- ,I-f_f~:j
thesis, on the other hand, is the process of finding 2 particular system com- '_'_-'

ponent to achieve desired characteristics, which are typically expressed in .

{1

terms of some analysis tools. Analysis and synthesis are just two aspects of
the more general problem of engineering design.

i

The results reported in these notes represent a significant advancement
in the sta.e-of-the-art of robust multivariable control design. In eddition to

providing specific mathematical results, these notes describe a general

PO T U N

approach to control problems which is intended to provide the foundations

[ Se e Cr
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o for a new paradigm for control theory broader in scope and content than

i
‘_lli

what has been previously available. This paradigm is introduced in Part 1 on

o : A

Analysis. An important aspect of this new paradigm is the treatment it gives :'.::t;:::

R
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. to model uncertainty. LA g
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theory essentially restricts model uncertainty to additive noise. The theory

)

- - ) 1
2 )

=

Modern Control Theory, the dominant paradigm for the past 20 yeers, _ 1

has its basis in Stochastic Optirnal Control and Estimation Theory [LQG]. This ___1

).

e .
ISR " SO WA N

provides a methodology for analyzing the impact of noise on system perfor-

mance and synthesizing to reduce that impact.

The inadequacies of this view of uncertainty became widely accepted in

U -

the late 1970's, as robustness to plant uncertainty became a major theme in
the Modern Control Theory community [LMC]. Ironically, this involved a

renewed interest in the Classical Control paradigm ([Bod),[Eor]), which o
Modern Control displaced within the theoretical community (if not among . " 1
practicing engineers). This new direction provided useful design tools, includ- 2:1

ing Singular Value Analysis and Multivariable Loop Shaping R
([DSt1].[Doy1],[DSt2]). )

While providing an important perspective, as well as practical tech-
nigues, the methods based on singular values still reguire rather restrictive
essumptions about uncertainty. In particular, plant uncerteinty must essen- R

tially be modelled as a single "unstructured perturbation.” _'.j-.'.ﬁ

The étructured Singular Value (SSV), 4, was developed several years ago
to correct this deficiency in singular values ([Doy2],[DWS]). In the context of *
the general framework discussed in this memo, the SSV provides a very =
powerful mathemnatical tool for the analysis of complex systems. Indeed, we
believe that this framework together with the SSV and the synthesis tech- o
niques discussed later, has the potential to form the basis for a new para- [

digm for control theory. Part 1 of these notes describes the general frame-

s o

work for control system analysis and synthesis which includes all the

viewpoints discussed as special cases. In particular, the assumnptions about

Sy e
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uncertainty required by each methodology are compared. L g
In Part 1 it is shown that each analysis methodology boils down to

evaluating . .

HP.,,]L a=2,o or K (1)

FPLT I S 3o TRy SO

for some transfer function Py. Thus when the controller is put back into the

problem, it involves the synthesis probjlem
N -
m’%n”n(P.K)“‘ for a=2,=, or u (2)

subject to internal stability of the nominal. Eere

Fi(P.K)=Pyy + Py K(I =PgoK) ™' Py,.
The solution of this problem for a=2 and = is the focus of Part 2 on Syn-

thesis Theory. The solution presented there unifies the two approaches in a

common synthesis framework. The a = 2 case was already known and the
results are simply a new interpretation. The a=« case had been solved only S '_-‘

for special cases where P;; and FPp; are square. Also, the existing solutions

did not bave computational schemes allowing their use on even moderately . ® ’ ;
sized problems. These two limitations, especially the former, restricted the :
application of the pioneering Ha. methods to fairly simple problems, such as - . .

sensitivity minimization. The new solution presented in Part 2 eliminates . X

these two limitations. ]

Unfortunately, this new solution for the H; and A. suffers from the

same limitations imposed by restrictive assumptions about uncertainty as do

P
J PR IINE I

the underlying analysis methods. While the SSV is a great improvement for ) .

s ey

analysis, synthesis for the a=u cese is not yet fully solved. It is shown in Part
1 that 4 may be obtained by scaling and applying }'L”.. so a reasonable

approach is to “solve” R

ek bod 2 4

IURIT W VAN SR, CUUE Vool SO SO IR, S, T




= oAk At St At Bt b S et S b S A G Tl A S M i Y Ml PeliC e e

mip| DR (P.~K)D™ | (3)

by iteratively solving for X and D. With either K or D fixed, the global
optimumn in the other variable may be found using the 4 and H. solutions
described in Parts 1 and 2, respectively. Example designs have been done
and this scheme seems to work well, but global convergence is not
guaranteed. In fact, a counterexample has been constructed where (3)
reaches a local minimum which is not global. This is the subject of ongoing

research.

As noted above, the main results of these notes are the synthesis solu-

tions of Part 2, particularly for the H. case. This part focuses on the

mathematical problem of finding X € R,’; P™ such that

Fi(P.X) € RHA'™ (4)
and
IReo|. =y (5)
where
e negm o
and 7 are given and
Fi(P.K} = Py + PuK(I-PrK) Py, (7)

The important mathernatical questions include finding for which ¥ solu-
tions exist and then parametrizing all solutions to (4) and (5). The notation
used here is that £, denotes proper, real-rational and RH. denotes the sub-
set of R, analytic in the right-half of the complex plane. The above probiem

is a natural generzlization of the standard (rationel) matrix "best approxima-

PV PPy PP O D, W S IO
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tion” or "generalized interpolation” problem. The relationship between (4)-
(5) and these familiar problems will be discussed in Part 2 of these notes

which presents an approach to solving (4)-(5).

A important issue in applying mathematical results of the type
developed in these notes to engineering problems is the ability to generate
algorithms that compute the solutions in a reliable and eflicient manner.
These notes pay close attention to this issue by developing the mathematics
in a way that makes algorithrmn development reasonably straightforward. This
is often done at the expense of elegance. It's worth noting that virtually all
the results in these notes have been implemented in computer software and
that this software is currently being used to do experirnentel designs for non-
trivial engineering problems. From a practical engineering point of view, the

results have been most encouraging.

The remainder of this part of the notes simply defines notation and
reviews some of the specialized methods which are standard within the con-

trol theory community but are not typically well-known to mathematicians.
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0.1 Definitions and Notation ® 1
]
0.1.0 Notation )
! | ——. .4
2 £ .= 8 o
* ! “'(‘)' Et-z(t) :.>~“
: Y »
; 1 (zwy)(t) = [z(t-T)y(Pd~
. ; ‘
: 2. A" = complex-conjugate transpose of complex matrix 4
!i ! 3. 7* = adjoint of operator T’ ®
4 i 14(t) = unit step function;
: .6 | 6(t) = unit impulse
s ' G{s) = two-sided Laplace transform of g(¢) ;
I ' orthogonal complement f o
L4 i B(A) = largest singular value of matrix 4
» P i p{A) = spectral radius of matrix 4
i .
e
®
]
o
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YX = TATY, A= diag(ly....4,)

Then columns of T are (possibly nonunique) eigenvectors of ¥X correspond-
ing to the eigenvalues {A;}. It is shown in Lermma 1 at the end of this section
.that ¥X has real diegonal jordan form and that A=0. This is & consequence of
Y20 and X=0.

Although the eigenvectors are not unigue, in the case of a minimal reali-

zation they can always be chosen such that
Y=T1Yrm =5,
X=(rYyxri=g,
where I =diag{0,,05 ....0,) and Z2=A This new realization will be
referred to as a balanced realization (also called internally balanced) [Moo].
Suppose G = [‘5'{%] is a balanced realization for G and can be parti-

tioned as

]
1 0
with corresponding partitioning of the balanced gramian T = [L; Ez] . Sup-

pose L,=diag(0,.02....6,), L2=dieg(Gp41,0ps2. . . . . Cp) and

G=0o® * *  2CpDCry20p422  ° ° ROy. Then it is immediate that the truncated
system
nEA
G = [c,|D]

is balanced since

[ WP P W P
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0.3 Gramians and Inner Transfer Functions

0.3.1 Gramians and Balanced Realizations

AR
Suppose G= [é_,D—] where A is stable. Define the

controllability gramian Y as
Y & [e®BBeAtat
()
and the observability gramian as

X & fertcce®dr.
(]
By considering the corresponding matrix differential equations it is
easily shown that Y and X satisfy the Lyapunov equations
AY - Y4’ = BB' =0
AX+ XA +0CC=0

Note that Y20 and X=0. Furthermore, the pair (4,2) is controllable i ¥>0
end (C,A) is observable iff X>0.

Suppose the state is transformed by nonsingular T to £=7= to yieid the

alel 8l lmar s
G= o33 with aD=lCT“ Dl

Then the gramians transform as ¥ = TYT" and X = (T-1)'XT-!. Note that

realization

YX = TYXT" s0 the eigenvalues of the product of the gramians are invariant

under state transformation.

Consider the similarity transformation T which gives the eigenvector

decomposition




e——

0.2.4 Linear Matrix Equations :

Property 1: (Solution of Sylvester Equations)
Consider the Sylvester equetion
AX + XB=C (v
where 4 € R™, B € R™™, C € R™™ are given matrices.

Then, there exists a unique solution X € R*™™ if and only if
Re[M(A) = M(B)I#0, Wwi=1t...,n and §=1i....m,

Remark :
In particular, it B = 47, (1) is called the "Lyapunov Equation” and the
necessary and sufficient condition for the existence of unique solution will be

that Re[M(4) + M(4)]» 0, ¥ij =1.....n.

Property 2: (Solution of Linear Equations)
Consider the linear equation

AX=P5
where A € R™™®, B € R are given matrices.

The following statements are equivaient :
(i) there exists a solution X € R™™,
(ii) the columns of B € Range(4).
(i) rank (4 B | = ronk [4].

(iv) Ker (4T) c Ker (BT).

o




X e T AR TR T ST T e T R N LR A it Y e Y e S W Pl el i Al i Aed CE A SN S i e A - .—..‘
T
- ® .
e
S
o
4 o .
GG = zD. ]
]
The following lemma characterizes the relationship between zeros of a e
transfer function and poles of its inverse.
18 . . o
8 lemma Suppose G = =Tp| with D nonsingular. Then there exists ! :
(55, z,) such that 1
(A - BD'C)z, = 5,2, , Cx,»0 j
r
iff there exists u, #0 such that ®
Glso ) =0
Proof
Gr)

G(s,)u, = 0 implies that G"!(s) has a pole at s,. Thus =(s,. z,) such
that Oz, 20 and

(A=BD™'C)z, = 8,2,

(omy if)
=
Set uy, = =D™1Cr, #0. Then
Cls, Yuy = C(s,1-A)"1Buy ~ Duy = Czy=C=, = 0. ®
.
)
g ‘J
2
A
g

o
3




G m m e Ee ARt T ey e e e e gy Y W T T TR R e e g - CRAPA A B St e St AR A S

;i ] ]

) - - @
i 3 - -
. ]

Proof: The right inverse case will be proven and the left inverse case

follows by duality. Suppose DD' = /. Then ]
- —

@
h 4 BDtC ‘ Bot RN
GG = |0 A-BD'C|~-BD" C

C bpptc | DDt
4 BD'C | BD' o
l = |0 A-BD'C|-BD' 8
c c I ]
_ 1 1™ I -A

Conjugating the state by |5 ;| ontheleft and |5 ;4 = ;| on the right E

] ®
yields 1
4
0 . 0 -
GG' = [0 A~BD'C|-BD" B
iC o | 7 1
i .
A = ‘
R

u Corollary 7 Suppose D'is a right inverse for D and let ®
2 4
~ _ WA=8D'C|-B ]
C=[IDc [Z] -]
Then ]
) o
Gé = DZ X
o
r Corollary 7  Suppose D'is a left inverse for D and let ‘ 1
=

2= -BD'C|-BD*

= zC 4 N
L

) Then ®
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4. Output Injection

Z=Az - Bu - 2=z4%8~Bu-<+Hy

T gy

5. Transpose (Dual)

¢ - Gt
[A Bl [AT cT]
t3 - s

6. Conjugate

G -» G

B] _AT _Cf
cip| = |87 | DT

7. Inversion

[4-BDtC

v T AT UL et et g et s Gt Ak oA ek aaas LA it ACE de e ahes A0 e a0 Sne e areare et ot SR sl sAR SR SES f?~'?"'—-'T

~BD'

Y

"

9

. i
L

]

Suppose D' is a right (left) inverse of D. Then G' =

aright (left) inverse of G.

D¢

Y
T ]
- ..a
2

B
p
4
4
]
4
ER——
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0.2.3 Operations on Linear Systems ]

1A, : BJ 2 Bz - . "
= o] - [, L

oo -] +)

€1 | D) [Ce| D2
A; B, C, B, ]

mm‘[;,o
=10 4, 32|= 102 A, |B1D,

%) Dxcz‘D:D:J lpxcz CxlD,Dg] ‘o ?

Note: This realization may not be minimal.

TR T I
Lttt
U M M NI

2 Change of Variables - :'f:'.:

T E=Dx s
y > 9=HRy 3"
u = 2=p,u )

algl  [alg] Irollajglfr o R
cio) * |l 'onk 0o P L

_ |7aT| TBP
= [reT1[RDP!

u-’a‘-rh

3. State Feedback

i. . - — e aa e R T I AP




Suppose G(s) is a real-rational transfer matrix which is proper, i.e., ane-

lytic at s ==, Then there exists a state-space model (4,5,C.D) such that

G = H‘g] (B)

The quadruple (4.5.C.D) is called a realization of G. A realization is
minimal if A has minimal dimension. It is a fact that a realization is minimal
if and only if (4,8) is controllable and (C.4) is observable.

A basic object of study will be the transfer function and it will be
assurned to have a realization. The next section describes standard opera-

tions on linear systems in terms of transfer functions and their realizations.

L, SORE W A Y

[ ]
RS
L4
»
4
-
- 4

®
]
T
.
-
| 1

R N

1
»

[
.
PR AP

t

Tt

,‘ ST B . S e
AR o we .
\ . . ‘ P

[P L ,

S .
O

. St . . " N
. N .
PO ) L Y

::‘ _.'_"

i te e e Y )

A
1oty ly e

. L
L A
PR G L e

RIS R

EPEIOUY YV




e B B ih Sl e At Salt Anie Al G Bl idic SadiAnf M R g arul AL N It e Sad Sl S Sl st RO D aAC A A A A N 2 e e e -‘
- -
r . »
b AR ¥
}_‘ - - - e
- RO
2 gEabs
p - o
L! 0.2.2 Transfer Functions -‘—.——]
" . . 1
X 1
: R
- Consider the linear, time-invariant, ordinary diflerential equation 1
- -
described by ,. -
z=4 - Bu (1) | 1
where z(t) € R ™ is the state, u{t) € R ™ is the input, and y(¢) € R ? is the o
output. The 4,5,C, and D are appropriately dimensioned real matrices. ‘ Y
Associated with (1) is the convolution equation -]
e
y(t) = (g ou)(t) ‘e
g(t) = Ce#B1,(t) + Db(t) @ s
and, upon taking Laplace transforms, the resulting transfer function is R ',-’.:_ff_'?
yls) = Gls)uls) ~
G(s) = C(s/-A)"'B + D (3) T

To expedite calculations involving transfer functions the notation

°
B SEOR
[%"'5]4 C(sI-A)'B + D (4) R f
‘.:.: ]
A B| . R
will be adopted. Note that cplise real block matrix, not a transfer func- U
L
-0
tion. The product of two transfer functions is, of course, the cascade of the
two systems or just the multiplication of two rational matrices. The conven-
tion will be adopted that the product of a matrix and a transfer function is a . 4
transfer function defined as e
[iu sz][A IB] ‘ X114 + X12ClX1, B "-’szD] (5) o
2 Xe)[CID Xa14 + Xg2C| X0, B = X2 D)’ ' ]
1

A similar convention hoids for right multiplication by a matrix. ]
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y = Ce

The system, or the pair (C,4), is observable if, for every £,>0, the function o .-

y(t), t € [O.t x]- uniquely determines the initial state =,.

Theorem 1°:
The following are egquivalent:

(i) (C.A) is observable.

C R

CA .o

mz
(i) The matrix| | basindependent columns.

A A
(iii) The matrix c ] has independent columns for all A in C. ‘
{iv) The eigenvalues of A+HC can be freely assigned by suitable choice of H.

(v) (A4'.C) iscontroliable. ®

The system, or the pair (C.A), is detectable if A+HC is stable for some
H.

r'. Theorem 2°: 5 _-. -
1 RO
&-f The following are equivalent: : i
- T
. (i) (C.A) is detectable Tl
. °
. - -7
E (ii) The matrix [A c j has independent columns for all Re A=0. woT
! -
1 . -.
2 (ili) (AC) is stabilizable. R
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0.2 Linear Systems

0.2.1 Controllability and Observability

Consider the system

z=Az+Bu , z(0)=0. (1)

~

The system or the pair (4.3) is controllable if, for each time £,>0 and final
state z,, there exists a (continuous) input u(¢) such that the solution of (1)

satisfies z(¢,) = z2,.
Theorem 1
The following are equivelent:
(i) (A.B)is controliable.
(ii) The matrix {B , AB, A*B ] bas independent rows,
(iii) The matrix [A-)J . EI has independent rows for all Ain €

(iv) The eigenvalues of A+5F can be freely assigned by suitable choice of F.

The matrix 4 is said to be sfable if all its eigenvelues satisfy ReA<0. The
system, or the pair (4,5), is stabilizable if there exists an F such that A+ BF
is stable,

Theorem 2
The following are equivalent:
(i) (A,B)is stabilizable.
(ii) The matrix [A-—AI ,B] hes independent rows for all ReAx0.

We will now consider the dual notions of observability and detectability
with the system
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L.JR,C™™). Banach space of (essentially) bounded matrix-valued

functions, with norm
”.Fl z- := ess sup B[F(j o)]. .

H.RC™™): subspace of functions F(s) analytic and bounded in Re s>0.

Pu,.Pyy:  the orthogonal projections from L(JR.C™™) onto a

Ho(JR.C™™), Hy(j R,C™™ ) respectively.

P

Prefix R denotes real-rational and the prefix B denotes the unit ball.

A e, duae o

The symbol R{™™) denotes proper real-rational matrices. Sometimes the

- spaces are abbreviated as La(IR), etec. or as Lj, etc. when context determines
the arguments.
The Fourier transform yields the following [isometric] isomorphisms: !
Le(IR, C™*) 2 LR, C™*)
Ha(R, C™*) 2 H(JR, C™™) ~
Hy(R, C™™)LE Ho( R, C™)L .
The norms on these spaces are all denoted by “-”, :
A useful fact is that the porm of a matrix G in L.(§ R, C™"*) equals the
norm of the corresponding multiplication cperator -.
I 2 Gf 1 LR, C™) = LR, C™);
that is, .
' e
- Hagll . R’ oy ||l .
G|jw = sUp “Gf j: J €Lg(]]R. ) If Igsl .
It also equals the norm of the operator restricted to H;(J R, C™): :f_"_
e
K ;
\
® ]
!
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0.1.1 Function Spaces

Continuous time domain

L{(R.C™*):. Eilbert space of matrix-valued functions on IR, with inner

product
<f.9>:= itrace[j {t)*g(t )]d.t.
H(IR,C™™): subspace of functions zero for ¢ <0.
Hy(R,C™™ )M :  subspace of functions zero for ¢ >0.

Py, and Py ;  the orthogonal projections from La(R,C™*") onto

HyR.C™™), Hy(R,C™™ )M respectively.

Continuous frequency domain

, jR  imaginary axis.

LA R,C™*"): Hilbert space of matrix-valued functions on j IR, with inner
product

<F,G>:= -ilﬁ—:/;trace[!"(jv)'G(j o)]do.
Ha(JIR,C™*):. subspace of functions F(s) analytic in Re >0 and satistying

s;’l;zg:/.'tracell’(a +Jw)° F(o+s n)]dv <
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.Auzl - E]Au' -~ B]Bl' =0
AnTy + Di4n = GG =0

It can also be shown (Silverman and Pernebo) that a minimal realization for
G- is stable, although in certain (non-generic) cases A4;; may have uncontroll-

able or unobservable jw-axis eigenvalues.

Lemma 1l Product of Positive Semni-Definite Matrices is Similar to a Positive
Semi-Definite Matrix

Proof: Let X and Y be positive semi-definite. First perform an crthogonal .

transformation so that

A

0
X - [0 0| MAi>0 diagonal, ¥ -

Yi sz} 0
Yie' Yoo | %

: . s MYu MY ]
By this transformation XY is similar to | 4 o | Now

B ey

and it is easy to find & matrix Z such that

[A#}S,A}* g] i [é ﬂ[:\i’}gm?‘ A?;’xz][é —Iz]

t - (Z exists because the columns of A{lY;; span the columns of AfY;, owing to

- the fact that Y is positive semi-definite). The left hand side of this last equa-
[ ]

{ : tion is positive semi-definite and similar to XY. If XY#0 it is possible to find

- a matrix T, such that !
{

P
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TTABT, = A = diag{()\,. oo A0,...,0)

where A=A -+ - BAg>0.

@t

Q.E.D.

Now consider two gramieans X and Y. Let us suppose XY#0, so that T,

can be chosen as above: !
TOXYT, = A = dieg{(A,. . .. .Ax.o.....O)}
where AxAg> - * - 2Ag>0. Under this transformation the gramians become ;
Q@ = TIX(T'Y. R = Ty¥T,,
and QR=A. Because @ and R are symmetric, R@=A'=A=@R and so Q.R and A
commute. Both @ and &£ must leave the eigenspaces of A invariant and so .
are of the form _‘iA
Q=d158{91-----01-5} 5
]
R = diag{}\,l f”.....)\j‘q".F} .,l-‘
where & is a square matrix whose size equals the dimension of the A; eigen-
space of A and EF=0 where £ and £ are square matrices the size of the ker- LA
[ ~
[ nel of A Of course, all the &'s are summetric so it is possible to find an oy
E:' - orthogonal matrix ; :
. e
3 A = dlag {Wl ..... Wl' Wl#l} -
such that W-1Q(W=!) and W;,,'FW,,, are diagonal. Note that this sarne ¥
& | gives a diagonal #'R¥ and leaves A alone.
[ A J
.
® °
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The transformation 7p=7,/ diagonalizes both gramians. It is now obvi-
ous how to construct T3 so that T3'X(7s!) end Ty Y75 are diagonal and the

controllable and observable portions are equal. -@
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0.3.2 lnner Transfer Functions

gl
Let G = [2. DJ' Then G is inner if G*G=/ and co-inner if GG*=/. Note

that G need not be square. Inner and co-inner are dual notions and are often

called all-pass.

It G € RP™, p>m is inner then any G| € R{P~™"™ is called e comple-
mentary inner factor (CIF) if [G G.l] is square and inner. The dual notion of
complementary co-inner factor is defined in the obvious way.

The following lemnma is useful in characterizing inner transfer functions

in terms of a realization.

Lemma 1. Suppose = X=X € R"™ such that
i)y AX-X4+-CC=0
i)y BX + DC=0

Then G*G = D'D.

Prool: Suppose that i) and ii) hold. Then conjugating the state of

G*'G =
I 0 1ot |ro o
by -x 1|on the left and -x1n = 7| on the right yields
A 0 B
G*G = —(A'X+XA+C'C) =-A'|=(XB+CD)|. (1)
B'X+DC g DD

Now, applying i) and ii) yields

. ol .
P SN PI P, Y S .
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By duality, we have the following RS
Lemma 1° Suppose 2Y=Y € R*™ such that - ':
i) AY + YAT + BB'=0 .__I-.j"h

' N ]
iil) CY « DB’ =0 1

Then GG*=DD'.

These two lemmas immediately lead to one characterization of inner

matrices in terms of their state space representation. Simply add the condi-
tion that D'D=] (DD'=I) to lemma 1 (1’) to get G*G=/ (GG*=/). Further-
more, by adding & few additional assumptions, the conditions in the lemmas
become necessary as well as sufficient. This leads to the foliowing complete
characterization of stable inner transfer fur.ctions in terms of a minimal

realization.

[
Suppose G= ClD| is stable and minimal. Then the gramians X and Y

satisfying
AX+ X4+ CC=0 (2)
AY - YA' - BB'=0 (3)

exist and are unique.

Corollary 1 G is inner ift
i)y BX+-DC=0
i) DD=/




Corollary 1' G is co-inner iff
i) CY+DB'=0
ii) DD =17

Proof Sufficiency of i) and ii) follows immediately from the lemmaes. For
necessity, suppose G*G=/. From 1) and 2) this implies that

A B
X+D'C o] =0 )
DD =1 (s)
Since (4,B) is controllable, (4) implies that B'X+D'C=0. The co-inner
case follows by duality.

This characterization of inner transfer functions is from [AnV] and plays
an important role in the synthesis theory. It aliows the construction of inner

transfer functions by solving algebraic equations.

T T TS P e S et I Shon it T UM A e eI A S P AR i A A A Al Nl St S A SEA SR S VA R i mAGL

IR

* -
Y PR

.
| SO SN S

. .o
‘ P PP O P POy

PN
S
La'a .,

A

Y

v ‘. o)
(R Oy PP E W Ui P

VIS ¥ o T e |

—

.
P

[



P " T ra—, e - e Shan ee B

L
o
.
)
_o
0.4 Linear Fractional Transformations ]
{
]
P pm] (P +pix(m, +m,) m
- PP N
SupposeP—Lz‘PzzER,’ FRTTY . A€ Ry, KERTE We e
will adopt the notation B ::" :
Fi(P.K) & Py, + PypK(I=PeaK)™ Py (1) i
and L ] ;
1
Fu(P.8) & Pz + Ppd(I=Pb) 1Py @ ]
The linear fractional transformetions (LFT) are illustrated in Figure 1. _‘
The ! denotes that the second argument is fed back in the lower block, and o 1
the u denotes feedback in the upper biock. - ]
An important property of LFT's is that any interconnection of LFT's is ]
R
. LFT. S J_[‘,llJlZ]Th ° )
2 again an LFT. Suppose J = l"ll Joo| Then ’
- F(P.F(7.Q) = F(T.Q) (3) ]
? Fu(/.Fu(P.8)) = Fu(T.0) (4) o
e
§ where y
}
4
[ _{Tu The -
; Tor Te: ]
- - L
- _[PuPutii-Pad )Py Prli-TuP) Ve | ) =% 1
- Jer(/ =Pzl )" Py Jea+ J21Poall =7 11 Paa) ™V e ]
2 R
5 . .
Equations (3) and (4) are illustrated in Figure 2. Note that if F;(/,Q) is a SR
q parametrization of a controller, F;(7,Q) is affine if and only if 72,=0. This e
3 . 4
f type of controller parametrization will play an important role in the syn- -jfi
! thesis theory. ..:
L o
L
¢ T
‘. “
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Part 1. Analysis

1. Introduction

®

B /]
ans Ao he ha

2. Analysis Framework and Background
1. General Framework
. 2. Stochastic
I 3. L. Frequency Domain Methods

3. Structured Singular Values

A e
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e [
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1. Introduction :
2. SSV for Constant Matrix f
3. SSV Analysis of Systems 4

4. AGlimpse at Synthesis ]
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1.1 Introduction

This part of the notes briefly reviews recent results on the problem of
analyzing the performance and robustness properties of systems
({Doy2].[DWS]). The main goal is to motivate from a control theory point of
view the synthesis probl.erns considered in part 2 of these notes. A secondary
goal is to describe a general approach to control problems which is intended
to provide the foundation for a new paradigm for control theory broader in
scope and content than that provided by Classical or Modern Control Theory.
An important aspect of this new paradigm is the treatment it gives to model
uncertainty. .

Modern Control Theory, the dominant paradigm for the past 20 years,
has its basis in Stochastic Optimal Control and Estimation Theory [LQG]. This
theory essentially restricts model uncertainty to additive noise. The theory
provides a methodology for analyzing the impact of noise on system perfor-

mance and synthesizing to reduce that impact.

The inadequacies of this view of uncertainty became widely accepted in

the late 1870's, as robustness to plant uncertainty became a major theme in

the Modern Control Theory community [LMC]. Ironically, this involved a
renewed interest in the Classical Control paradigm ([Bod),[Eor]). which
Modern Control displaced within the theoretical community (if not among
practicing engineers). This new direction provided useful design tools, includ-
ing Singular Value Analysis and Multivariable Loop Shaping
([Dst1].[Doy1).[DSt2]).

While providing an important perspective, as well as practical tech-

niques, the methods besed on singular values still require rather restrictive

essumptions about uncerteinty. In particular, plant uncertainty must

. “4
b s e %'J—
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essentially be modelled as a single "unstructured perturbation.” ]
The Structured Singular Vaiue (SSV), u, was developed several years ago o _
to correct this deficiency in singular velues ([Doy2],[DWS]). In the context of . .
the general fremework discussed in this memo, the SSV provides a very .
powerful methematical tool for the analysis of complex systems. Indeed, we
believe that this framework togsther with the SSV and the synthesis tech- »
niques discussed later, has the potentizl to form the basis for a new para- ]
digm for contro! theory. ]
The remeainder of this part of the notes describes the general framework )
for control system analysis and synthesis which inciudes all the viewpoints * R
discussed as special cases. In particular, the assumptions about uncertainty
reguired by each methodology are compared. In this context, the words .
analysis and synthesis have specific meanings. ° j
Analysis is used to describe the process of determining whether a given :
systern has the desired characteristics. In general, this may range from the —
use of mathematical tools to simulation to experimentation, although ®
enalysis is typically applied primerily to describe the former. Synthesis, on ‘ )
the other hand, is the process of finding a particular system component to '
echieve desired characteristics, which are typically expressed in terms of ]
some analysis tools. Analysis and synthesis are just two aspects of the more o ]
general problem of engineering design. ' 1
The discussion which follows first considers analysis, then briefly - 1
touches on synthesis. The next part on Synthesis Theory will take up that O:
question in more detail.
.
K
;
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1.2 Analysis Framework and Background ]

1.2.1 General Framework

Various modelling assumptions will be considered and the impact of
these assumptions on znalysis and synthesis methods will be explored. Con-
sider the diagram in Figure 1. This is the general framework to be con-
sidered. Models of this form are typically constructed from components
which also have this form. The nominal model provides the basic intercon-
nection structure between the signals, perturbations and controller, as

shown. It has three inputs and outputs, each consisting of a vector of signals.

As typical examples, consider the fouoﬁing filtering and control prob-
lems. First, a simple filtering problem is given in the diagram in Figure 2.
This may be rearranged as shown in Figure 3 to fit the general framework. In
crder to simplify the diagram, no perturbation was included. A typical con-
trol problem rnight look like the diagram in Figure 4 where again, for simpli-
city, no perturbations are included. This too can be rearranged to fit the

general framework, although the diagram is complicated.

Any system may be rearranged to fit the form of this general frame-
work. Although the interconnection structure can become quite complicated
for complex systems, many software packages are available which could be

used to generate the interconnection structure from system components.

Note that uncertainty may be modelled in two ways, either as external
inputs or as perturbations to the nominal model. The performance of a sys-
temn is measured in terms of the behavior of the outputs or errors. The
assumptions which characterize the uncertainty, performance and nominal

model determine the analysis techniques which must be used,

P r o c
s S ! L
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The most fundamental essumption that is made throughout is that the
nominal model is a finite dimensional ordinary differential equation and is
linear and time invariant (LTIODE). The uncertain inputs are assumed to be
either filtered white noise or weighted L, signals. Performance is measured
as weighted output variance or weighted output .; norm. The perturbations
are assumed to be themselves LTIODE's which are norm-bounded as input-
output operators. Various combinations of these assumptions form the basis

for all the standard linear systems analysis tools.

Given that the nominal model is an LTIODE, the interconnection system

has the form

1418 B: 5
Py Pra Pis Ci| D1y D2 Dy
P = |Ppy Pp Ppa = Ca|Dgy Dga Do W

s1 Psz Paa Cs|Ds; Dsz Dss

and the total system is a linear fractional transformation on the perturbation

and the controller given by

e F.(F; (P-K)'A) u

Fi(F(P.A)K)u (2)

Since the focus of the current discussion is on analysis methods, the

controller may be viewed as just another system component and absorbed
into the interconnection structure. Thus the analysis framework reduces to
the diagram ir Figure 5 where

Fu(P.A)u

[Pzz - PalA(I‘PnA)-lPIZ} u (3)
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Note that the P's in (2) and (3) are not necessarily the same. Table 1
and the discussion which follows summarize the various assumptions and
resulting analysis and synthesis tools. In each case, stability of the nominal
must be evaluzted. Since P is assumed to have the state-space repreéenta-

tion

. (4)

this may be done by checking that all eigenvalues of 4 lie in the open lhp.
There are alternatives to this approach but, for simplicity, it will be assumed
that the nominal plant, with controller is closed loop stable in the sense that

all eigenvalues of A are in the open lhp.

Given nominal stability, the entries in the table may be interpreted as

filling in the following general performance /robustness theorem:

General Analysis Theoremm (GAT)

Given
Input Assumptions
end
Perturbation Assumptions
Then
Performance Specification
if and only if

Myﬁs Test.
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Consider the system in Figure 2. Stability and performance analysis of b
this system requires a new matrix function, the structured singular value :

(SSV). denoted by u. Before proceeding with Case 3, a digression to discuss u ) j

will be taken. For details, see [Doy2]. .
1
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1.3 Structured Singuiar Vaiues

1.3.1 Introduction

This chapter considers the problem of stability with structured uncer-
tainty anéd of performance in the presence of structured uncertainty. Typi-

cally, uncertainty is present throughout & system. Suppose that a system is

At

built from components which are themseives uncertein and that component
uncertainty is modelled as norm-bounded perturbations. This situaton can
be rearranged to fit the general framework but the perturbation for the total 1

system has structure. This can be seen schematically in Figure 1. ® |

Note that the interconnection model P can always be chosen so that A is -
T o
biock diagonal, and by absorbing any weights, .}A;;.<1. The results of Case

2b can be applied in two ways: - ]

1) ?EP;;;T_SI implies stability, but nat conversely. This can be arbitx"arily

conservative, in that stable systems can have arbitrarily large i Pu E'

o’

2) Test for each 4 individually. This can be arbitrarily optimistic because e
it ignores interaction between the A;.
The difference between the bounds obtained in 1) and 2) can be arbi-

trarily far apart. Only when they are close can conclusions be made about

the general case with structured uncertainty. ]

These two limitations of Case 2 (and 1) have motivated much of the C X

research described in these notes. The result is a new paradigm described in

4
Case 3. The problem in Case 3 involves exactly that of structured uncer- »
tainty. 1
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inputs when A = 0 but response when A#0 is not known. Only crude bounds
can be obtained with the methods of Case 2.
An additional limitation of Case 2b is that all plant uncertainty must be e 4
-1

modelled as & single norm-bounded perturbation. Typically, uncertainty is

present throughout & system. Suppose that a system is built from com-

ponents which are themselves uncertain and that component uncertainty is

modelled as norm-bounded perturbetions. This situation can be rearranged

to fit the general framework but the perturbation for the total system has

structure. The problem of structured uncertainty is taken up in the next i
@

chapter.

@
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fesdback problemns where both types of uncertainty have significant impacts

on system performance. Case 2 has attracted a great deal of research

Aa 4 4

interest recently, and is currently a popular new paradigm in the multivari- L
able control cornmunity. Although implicit in the methods of classical con-

trol ([Bod},[Eor]) and some modern work (e.g. Zames' conic sector theory

[Zamn1] and, more generally, the input-output stability theory of the 1960's )
[DeV]), the approach did not gain wide attention until the late '70's.

The current interpretation is a consequence of research done in the late
'70's. ([Doy1],[DSt2],[LMC]). This interpretation involves singular values as
an analysis method and singular value loop shaping as a synthesis approach. 1
The so-called LQG Loop Transfer Recovery (LQG/LTR) combines the synthesis
methods of Case 1 with the analysis methods of Case 2 to produce a hybrid
synthesis method. This gives an ad hoc approach to Case 2 that can be

effective for many multivariable problems. 1

Another approach to synthesis for Case 2 is the so called #, or Lo/ H.
methods introduced to the control community by Zames [Zam2] and Kelton 1
[Hel], and developed further by many uthers (eg. [(FEZ]). The Lo/ Ha 3
methods for Case 2 are analogous to the Ly/ H; methods of Case 1 with the

exception that for Case 2 the L. rather than L; norm is optimized. The solu-

@
P W S Y IS NY wt

] tion to the general L./ Ha. problem will be presented in the Synthesis part of

these notes.

The main objection to Case 2 is the restrictive assumptions about uncer-

ied

tain"cy (recall this was also the objection to Case 1). Although case 2 allows

bl

both uncertain inputs and perturbations, analysis can be performed for
either individuelly but not both together. Thus a system can be shown to

remain stable when perturbed and have acceptable response to uncertain
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turbations which are in unweighted unit balls. Thus implementation of the
s analysis tools requires only a method for constructing interconnected sys-
) ° tems and a method for evaluating the appropriate norm. The former applies »
to all cases, whereas the latter requires a different norm in each case. r
Note that in Case 2 both uncertain inputs and uncertain plants can be
handled with the same analysis tool. This approach is particularly useful for .
2
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some additiona! technical difficulties and is not the focus of these notes.

The following theorem treats internal stability

Theorem 2 F,'(P.A) isinternally stable for all A € BRH. T

i HP,,H_ﬂ

Note that input-output stability of F,(P.A) is not necessarily the same as
internal stability. In particular, the following statement is not true:

Not~A-Theorem ”3“3<'° for all ”u“gl and A € BRH. ’ 1

@ frul e

Counterexample Suppose ”Pu]!_>1 but Py, =0. _‘
»

D

From now on stability will mean internal stability, but be denoted by
He“z <= in the table, even though this is definitely an abuse of notation. IR

Note that genericelly this distinction between internal and i-o stability does
no! exist.

As in Case 1, it is essential to allow weights on inputs, outputs and per-
turbations. As before, these weights may be ebsorbed into the nominal o
model. This allows, without the loss of generality, the use of signals and per- ]
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1.2.3 L. Frequency Domain Methods

Case 2 inveives an attempt to correct some of the deficiencies of Case 1
by moving to an unknown but bounded (in an L, sense) framework. This
allows both types of plant uncertainty to be handled in & common framework,

albeit in a limited manner.

Case 2a is an Ly version of Case la. The i.nput is constrained to lie in
BLp as a time signal (unit ball in Lg) and the performance is specified in
terms of the output's L; norm. With no perturbation, the analysis test
involves simply the Lz induced operator norm, i.e. L. on the transfer func-
tion Pge.

The GAT in this case is

PR

H [
Theorem 1 .Ee};zsl for all !{‘U-f}z$1

iff jipzzjé_sl

Although this theorem is a trivial restatement of the definition of induced
norm, it means that the analysis test is an exact characterization of the per-

formance requirement.

Case 2b is significant departure from the previous three. It involves
maintenance of stability in the presence of perturbations. The block
diagram for F,'(P,d) is shown in Figure 1. There are many ways to state the
GAT for this case, depending on the desired notion of stability and assump-
tions on A. The distinctions are somewhat subtle, but are important from a
theoretical point of view, Nevertheless, they do not significantly impact the
application of the theory.

The A's are assumed to be LTIODE's, so that A € RH.. The assumptions

A€ Cor A € CH,, give the same result. The distributed case, 4 € H., causes
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1.2.2. Stochastic
Case 1a involves unit covariance white noise input with output variance
as the evaluation criterie. Since no perturbation is allowed, the problem

2
reduces to the diagram in Figure 1 and E(eTe) = [|Pz|| . Note that colored
2

noise or weighted variance could be used as shown in Figure 2. This reduces ;:f
to the general case by absorbing the weights W, and ¥, into P, as
Pz = WeGWF,. In practice, it is essential to use weights to reflect spatial and
frequency variations in inputs, perturbations and output specifications, but

in every case, these weights may be absorbed into nominal model.

In Case 1b the input is an uncertain delta function, which is equivalent
to uncertain initial! conditions. The performance specification is the

expected value of the Le-norm of the output.

Case 1 forms the foundation of Stochastic Optimal Control Theory. Case

12 includes the standard linear stochastic flltering problem and Case 1b

]

inciudes the standard linear quadratic optimal control problem. These are S
combined to obtain the full LQG problem, which is again Case ia. These o

essumptions and resulting analysis methods have been the dominant para- ® i
digrn in the control community for over 20 years.
The development of this paradigm has stimulated extensive research 1
efforts and been responsible for important technological innovation, particu- . ‘
larly in the area of estimation. The theoretical contributions include a | 2
deeper understanding of linear systems and improved computational o -
methods for complex systems through state-space techniques. The major P e
limitation of this theory is the lack of formal treatment of uncertainty in the '
plant itself. By allowing only additive noise for uncerteainty, the stochastic )
theory ignored this important practical issue. Plant uncertainty is particu- ‘
° .
L .
° L
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s . . - ) - \ -;f S




® o ® ... @ ‘e ° o °
p ' BN i [ t o f o I ’ .
s
.
z
]
[
3
g
g v="]ld|| ag
g -‘suoljeqaniiad (Y9 2giy)Beip 1 wu__w__ 1 wu_ 3_ qe

painjonans  {Yjim  eauews siIsayu xm.. "
] -J0)1ad isnqoa pue L)jiq : =V
| e e ] | o A | Al | g |
wx N
“ v>||o] =>4 | el | e
' 15 v__ i __ R

‘sjuawaimbai <y uop)

gys jonjuod jowndo ao) [ -ezpupdg

sonbiuyoay mou Juipnpouy | '‘SBuideyg  door 0=V _wu:w— —“a_i vz
- salaju amaual 1uad enjup Jemduy -

1 ug p W33 1A ey S s __aal__ vz
ﬁ. 1s 1=@ntn)g | o
. 0=V ‘n=n
: ‘stsoyjuls 10 jdoH a1 G__u__vmN ()¢

sisfjeur ur suonjequnyaad | -aauay (OBY1) 1 wm__unl__kﬁm 1S5 (t~-297 = -

mojje jou s30@ 5,02, pue | ‘josjuo)) jeumy

8,00 W wdipeaed Jueunonog | -dg  anseyoLolg u ACEA 1)2)d Irb&ﬂcgv.ﬂ

! uondumssy suoneoyoadg | suopdumssy o897
] uojeqInaaj SOURULIOJI3 | induj
] U0 POTION =oL ose) .
sisafjuig sjafjeay

g
f
b
VB TPPIOVIhATTTRTTR - SOOIUL .. RO . ST T




C

vy

Y Y VY T T T

—

------

CO!ﬂfP\ A"s’._”‘pau(.t
InpvT
¢ '

F,an'l’
méasvremeat —}
Aoise
¥ %—’ Erron

————1(ontrolly ria— ]

4

Command

F;'gufﬁ 4,

Fl'sufc 5.




I

W‘v.v,'_""—v'w‘- vl<rf.r,‘r'
‘ Lty
.

.,,..“

" 'T"‘r’T

Ty

!

Hese

At Aol e dang - 2 4

VRN WS O

The details of each case will be considered in the following sections.
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1,3.2 SSV for Constant Matrices

The problem is to test for det(/-MA)#0 for sets of A. Two standard

results are
1) det(J-MA)%0 v AE[A ',v(A)q}

it wM)s<1i

2) det(J-MA)%0 v Ae{u]xec. [xi<1}

i p(H)s1 where p(H) = max ()]

As a generalization, consider a function u with the properties that
w(ald)= o [u(H) and

3) det(/-MA)*0 WV Ac {dia.g(A,.Az, . .A,.)iv(Ai) < 1}
if u(f =1

Obviously, u is a function of # which depends on the structure of [ A ]
To be precise, a multi-index could be constructed which would specify the
structure of { A } and 4 would depend on that index. For this informal dis-

cussion, just keep in mind this fact and assume that & structure is specified.
Cleerly ¢ and p are special cases of u for particular structures as indicated

above. Furthermore, for any structure

p(M) = (M) < B(H). (4)
Given these bounds, how important is u? The answer can be clearly seen

from the following examples:

‘a
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Suppose 4 = |, 62 and consider

]
1) y:[g é] p(H)=0 B(H)=1

det(/-MA)=1 so wu{M)=0

2) 14=[:§é o(H)=0 B(M)=1

8,~82

det(/-H8) =1 + ==

so u(M)=1

Thus neither p nor ¢ provide useful bounds even in simple cases. The
only time they do provide reliable bounds is when p»%. Thus better bounds

on u are needed to pursue the problem in Case 3.

For the rest of the discussion fix a structure for the 4's as

X:{dia.g (8,02, . . . .A,)}. (5

Then

-1
/.L(M)={£n€i£x: [B‘(A) }det (I-MA)=0}} . (8)

This expression is little more than a definition of u since the optimizetion
problem implied by it is nonconvex, but it shows that u exists as desirec. To

obtain useful properties of u, some additionel definitions are needed. let

.g {dag(b’], Uz ..... Uﬂ) i (]‘.U‘ =I] (7)

D [ﬁag(d,].dgl....,d,.l) & m+} (8)

where the sets [’ and D match the structure of X. Note thet the [V and 2

leave X invariant in the sense that
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1) AeX, UelU imply (AU) = 3(UA) = 3(4)
2) AeX DeD imply DAD'=A

From these two properties and the definition above expression for u, one
immediately obtains

: -1
max p(MU) < w(H) s puéfn HDMD™Y)

The first important theorem about u is
Theorem 1 may p{HU) = u(H)

This theorem expresses u in terms of familiar linear aigebraic objects.
Unfortunately, the implied optimization problem is nonconvex so it does not
immediately yield a computational approach. The second important

theorem is
Theorem 2 If n<3 y(M)=Diréfn 3(DMD™Y)

This theorem states that if there are 3 or fewer blocks { no restriction
on size), then u(M) is just & of a block diagonal similarity of X. Furthermore
®(DMD™Y is convex in D so that the inflmum can be found by search over

n -1 real parameters.

The theorem is not true for nx4, but it is conjectured that

Dir:lfn @(DMD™!) still provides a reasonably tight bound for u. Also, many

problems of interest bave 3 or fewer blocks so this provides a reasonable

computational scheme.

Another important aspect of this theorem is that 4 may be viewed as &
plus scaling. Thus the general synthesis methods recently developed to
optimize the L. norm (i.e. 2) may be applied. via scalings, to optimize w.
This will be discussed more in the syhthesis section. Now back to Case 3.
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1.3.3 SSV Analysis of Systems

Abuse notation and define

HH]L = sup u(M(j»)). (1)
Although IHL is not a norm, this will be convenient. Recall that ”HIL
is a function of M which also depends on the essumed structure of the per-

turbations.

Case 3a involves stability in the presence of structured perturbations
and the result is analogous with Cese 2b. In fact, 3a reduces to 2b in the case
that there is a single block in the perturbation. Suppose that A € FRHA,, and
the A's have the structure A=diag (A;,A2,44. . . . . 8,). The GAT for Case 3a is

Theorem 1  F,(P,A) isinternally stable for all structured A € BRH.

el =

Case 3b puts everything together and is really the payofl for u analysis. The
problem is to check that ”e“z <1 is satisfled for all ”u”z =<1 and all struc-
tured perturbations. Recall that from 2a and 2b that both stability with a
single perturbation and performance with L; inputs involve the same test
using H-H.. although on different parts of the system. This means that the
systern in Figure 1 has internal stability and “3”251 for all Hu”z <] and
A=diag (Ay.8z. . . . .On) € BRH. if and only if the system in Figure 2 has
internal stability for all structured A and all 4n4; € BRH.. This is exactly
Case 3a with the structure A=diag (8,82, . . . . Bp.Bp4y). Using this structure

for u yields the following:
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Theorem 2 F,(P,A) is internally stable and He”2 <1 for all
H""stl and A=diag (A&, . . . .A,) € BRH.

el

This is & remarkably useful theorem. It says that ”.F”,,s 1 implies not
only stability for all structured perturbations but also that “e”gs 1 for all
’Mth 1 and all structured perturbations. Furthermore, ”P”,, > 1 implies
that there exists a u with “'u“zs 1 and a structured A such that either
HE”z > 1 or F,(P.4) is internally unstable. This is the first general result
which guarantees performance for a whole sef of plants and gives an exact

(nonconservative) analysis test.
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1.4 AGlimpse at Synthesis j
This will be a sketchy outline of the new synthesis results. The details y
LN
are somewhat complicated and are treated in Part 2 which is devoted to the ]
synthesis theory. At this point, we simply want to point out how the analysis ® I
theory discussed in this part leads naturally to certain synthesis questions. 4
g
From the analysis results, we see that each case boils down to evaluating o
3
[ o .|
9
4
for some transfer function Py. Thus when the controller is put back into the )
4
problem, it involves just a simple linear fraction transformation as shown in )
the diagram in Figure 1. (Note: the Py's here are not the same as the Py's * 1
in the previous sections) y
Each case then leads to the synthesis problem ’ ‘ ‘
. 1l - L
min F;(P.K)“‘ for a=2,=, or 4 (2) R
subject to internal stability of the nominal. Here
WP, K)=P;y + PyaK (I ~PgaK) ™' Py, -.’ :
The solution of this problem for a=2 and = is the focus of Part 2 on Syn- o 1
! thesis Theory. The solution presented there unifies the two approaches in a 1
p. . h
; common synthesis framework. The a = 2 case was already known and the -]
L. results are simply a new interpretation. The a== case had been solved only @ 4
r for special cases where P;, and P;, are square. Also, the existing solutions p
3 did not have computational schemes allowing their use on even moderately h
E -' sized problems. These two limitations, especially the former, restricted the . 4
L .Y
g : application of the pioneering H. methods to fairly simple problems, such as B
sensitivity minimization. The new solution eliminates these two limitations. ) . ;;f
i o
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;_ 1
® ]
!
- .
L:".,-- atla . .m’ al PN D, PR U Ry Sy N - PP P




.
®
!
'
@
Nl .

’
R )
o

1
@
u_n

analysis (Case 3), synthesis for the a=u case is not yet fully solved. Recalling

Unfortunately, this new solution for the H; and A. suflers from the 1
same limitations imposed by restrictive assumptions about uncertainty as do h }
i the underlying analysis methods. While the SSV is a great improvement for -

that u may be obtained by scaling and applying lH }.. a reasonabie approach

N
’ is to "solve” .j
f 'y
pip ' ‘DF’(P.-K)D" l L (3) o]
by iteratively solving for K and D. With either K or U fixed, the giobal | 1
° optimum in the other variable may be found using the u and H. solutions ‘o ,
described previously. Example designs have been done and this scheme - . ]
seems to work well, but global convergence is not guaranteed. In fact, a o
counterexample has been constructed where (3) reaches a local minimum :
. 1
which is not global. . o 4
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Part 2. Synthesis Theory

1. Introduction

Overview of Synthesis
Constant Matrix Case

Matrix Dilation Problems
Summary of Constant Problem
Rational Matrix Generalization

LR S

2. Stabilization

Introduction

Internal Stability

Parametrization of All Stabilizing Controllers as X=F(/,Q)
Realization of J

Closed-Loop Transfer Matrix

1Al S XA R e

3. Factorization

1. Introduction

2. Riccati Equations and Factorizations

3. Solution of the Algebraic Riccati Equation
4. Inner-Outer and Spectra] Factorizations
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2.1 Introduction

2.1.1 Overview of Synthesis

From the previous part of these notes on analysis, we bave seen that the
synthesis problem in each case reduces to finding a controller X which

achieves internal stability and solves

i ” g =2 o0 '
KEHRI,:?“‘: “F‘(P'X)llﬂ a=z, s Or U (1)
where
Py Pl (py+ppix(m +my)
=[P21Pa€RP’!Mlm"PG€R“kW
and

F(P.K) = Py + PK(I-PgK)™'Py

We will restrict our attention for now to the a=2 and = cases of (1).
Recall that the a=yu case of (1) can be converted to the a== case by scaling.
The approach of these notes is to develop the a=2 and = cases in a parallel

manner, emphasizing their common features.

We begin by considering the special case of (1) where all matrices are
constants. This is an interesting problem in its own right and manages to
capture the essential features of the general problem. While the a=2 case is
quite straightforward, the key step in the solution of (1) for a = = was first
published in 1982 by Davis, Kahan, and Weinberger in their important paper
on norm-preserving dilations [DKW]. The treatment of the constant case in

* this chapter is based on this paper.
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The remainder of this part of the notes involves taking each step of the
solution to (1) for the constant case and generalizing to the case of real-
rational matrices. The difficulty arises from stability/causality considera-
tions which are not present in the constant matrix case. If the requirement
for internal stability were dropped from the optimization problem in (1) then
it would reduce immediately to the constant case at each frequency. In gen-
eral, however, any X obtained in this way would not be cne such that F(P.K)

is stable,

The role of the stability requirement can be seen by considering a spe-
cial case of (1) where Pp; = 0 and both Pjp and P, are square and inner.
With these assumptions, Fj(P,K) = P,, + P;2KP3, so internal stability is
equivalent to stability of K ( K € RH.). Since both a = 2 and = norms are
unitary (i.e. inner) invariant,

.ol = iR = Kia where R = P*Py,Pay" (@)
Since the RH. part of R in (2) may be absorbed into X, we see immediately

that our simplified problem reduces to

. [
g, ||+ Kl aezor (3)

woere R € RH¢-

For the a=2 case we have immediately that the optimal X in (3) is X=0,
since Ly is a Hilbert space and H; and H# are orthogonal subspaces. The
a== case is a2 version of the well-known matrix interpolation problem. It is
the matrix generalization of the classical "best approximation” problem of

finding the nearest H. function to a given function in L.

This best approximation problem has a rich history. The rational matrix

version is as follows: given R € RK# (i.e. strictly proper with all poles in the




open right half plane) find all X € RH,, (if any exist) such that

'.R - K“.S'] (4)

i
i

More general versions drop the rationality assumption. There is a vast litera-

ture on interpclation problems and the related guestion of best approxime-
tion. Some of the early references can be found in the seminal paper on
"“generalized interpolation” by Sarason [Sar]. Alternative treatments inciude
those by Adamjan, Arov, and Krein ([AAK1}-[AAX3]) and Ball and Helton
[BakE].

The most recent contribution to the rational matrix best approximation
problem is by Glover, who gives a complete parametrization for all solutions
to (4) in terms of a state-space realization for R [Glo]. Furthermore, a reali-
zation of the parametrization can be computed from the realization of R
using standard real meatrix operations. The main goal of this part on syn-
thesis is to reduce the problem in (1) to that in (3). The a=2 case is then

trivial, and the a== case can be solved using Glover's resuits.

An important feature of the results that follow that achieve the reduc-
tion of (1) to (3) is that each step can be computed using standard real
matrix operations in terms of a realization of P. This allows the entire solu-
tion scheme to be implemented in software in & reascnably straightforward
manner, which is important if the mathematical results of these notes are to
be applied to engineering problems. The connection of the theory with com-
putation is reinforced throughout by the approach of proving existence parts
of theorems by giving what amounts to an algorithm for computing a particu-
lar solution. While this occasionally makes for rather tedious proofs, the fact
that the theorem can be implemented almost directly maikes this approach

seemn well worth it. It should be noted that each main theorem in this pa—t
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bes beern implemented and expex"imental control systems have been
designed using this software. The results to date have been most encourag-
ing.

To see the importance of the stability requirement and the resulting
best approximation problem, note that relaxation of the requirement in (3)
that X € RA. to simply requiring that X € B, means that the minimum of 0
in (3) is achieved by letting X' = —R. This is essentially what holds for the
constant case. Thus the stability requirement restricts the achievable
optimal in (3). As we shall see, the stabili‘y requirement has a similar

impact on the general problem in (1).
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. 1.2 Ccnstant datrix Case

In this section, we will consider a special synthesis probiem where all
matrices are constants. The constant matrix case will allow us to study the
synthesis problem in a simplified context, but one which parallels the

rational case.
For constant matrices, the norms reduce to

[P i.=3(P)
R YH
P a=(Tr(PP))

Note that these definitions are not conventional, but they are convenient in

allowing paralle] development of the constant and rational cases.

Consider the constant matrix problem

Ksndl’L:;“z CRER =2= (1)
wnere
Py Pz

} c ép1+pz)x(ml+m,}' P‘_j c e(xmj'
i

£ =P P
and

Fi(P.K) = P\, ~ P\2K{I~P2K) ' Pz,
Assume that PP, > 0 and Py, P > 0.

The first step is {0 make the substitution of variables

- -

K= I+Pn@)™, 3= (PhPr) *9(PyP4)H @
50

Q = (PRP M K(I=PuK) Py PA R (3)
Using the linear fracticnal representation notation,

PP UPCRP T W, ¥ a a o A P o ol P

L W LT w e —w w T = weeweiw w wowo e Cw we e Cw - w - W W r e w | w

o

o .
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2.1.5 Rational Matrix Generalization

The steps in tke ralional case closely parallel the constant case, as
shown in Figure 1. Most of the work in the remaining chapters is devoted to
generalizing these steps from constants to rationals. The source of all the
difficulty in the rational case comes from the requirement for internal stabil-
ity, or equivalently, causality. Without this the rational case would reduce to
the constant case at each freguency, and could be solved using the results of

the previous two sections.

We will now outline the steps reguired to solve the raticnal case and pre-

view the upcoming chapters which complete the details.
1) Parametrization: Find J so that the substitution K=F,(/, @) yields

Fi{P.K)

F{(P.Fi(/.@))
FI(T-Q)
Ty + Ta@T2 (10)

with the additional requirement that T’ € A, and

F;(P.K) internally stable (11)
if @ € Ha.

This parametrizes all stabilizing X's in terms of e stable @ € F. in addi-
tion to providing an effine parametrization of all stable F{£,X). This
so-called "Youla parametrization” [You2] is developed in Chapter 2 on

Stabilization.

A further requirement is that T,z and Ty, be inner, that is 757 .=/ and

T2:T2yv=]. Metkods for obtaining the particular parametrizations which

R |

S
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2.1.4 Figure 1

min [FU(P.K)|,, where F(P.K)= Py - PuK(I-Puk) Py

parametrization

K=F(J.Q)
'

T | -
min 'Tu - Ti@Tw |, where TRTw=l TuTh =1

unitary inverience

{IRu=Q Ball
T® . Rz Rz,
a=2 a=w
projection dilation
B
min 6-2l
1 4
Qopt
1 qugzﬂ(sLQopt)
Kept

v

A b adihin.

s

ok

semdande e

Lot
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Note that @==R), is one solution to (8) and (8).

Recovery of the optimal X: This is obtained by simply computing X
from the formula XK=F;(/,Q) used in step 1) to parametrize the prob-

lem.
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[r=] o

Recall that without loss of generality, we may assume the T“ff=0 SO

u"'Q]
ﬂm | 0

Projection / Dilation: At this point the a=2 and a== cases differ. For

that (2) becomes

a=2, the problem reduces, by projection, to
i [ - el ®
which has the unique solution @=-R,,.

The a=«= case must be treated using the matrix dilation theory of the
previous section. Recall that, in general, tbe solution is not unique.

From Theorem 3.1, all solutions to

IRy +@
‘ |
! 6
HFRE! _S7 for y= “.Rz,!'. (8)
are of the form
Q@ = =Ry + Y(PI-R{RaM )

P AL
for some Ii}"i’- < 1. Corollary 3.1 gave the alternative characterization

]l

!i(R!l+O)(72!_Rz.1R21)-”:1- < 1 (9)

that

"l er tor 2> ol ®

if and only if

It is this latter characterization which will be used in the rational case.
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2.1.4 Summary of Constant Problem

e e  m ey <y camhmr e .
TN T T T d LRI .

The rational matrix problem in equation (1.1) can be solved in a manner

which parallels the treatment of the constant case in the last two sections.

This generalization is the focus of the next three chapters on synthesis. To

reinforce the similarity between the constant and rational case, we will now

review the key steps from the previous two sections and preview their gen-

eralizations to the rational case.

Consider the diagram in Figure 1. This summarizes the steps in the con-

stant matrix problem (2.1). The main steps are &s follows:

1) Parametrization: Make the substitution K=F;(/,@) so that

F(P.K) = R(P.F(J.Q))
F(T.Q)

Ty = T12@QT2

is affine. Additionally, we want T2T2=/ and T, T3 =/.

~ Te
2) Unitary Invariance: Find Tjand 7 so that [T,z T_!} and [7‘1

and unitary.

{Tal®
Pre- and post-multiply by [Tlg T_,}' and [ﬁ] to yield

R2y  Re

Ry +@Q R:z}

where

R = Lﬁi"“ szl
T |Rey Rz

P G W W . U e NP G GLD S S|

(1)

are square

()

-

ravey e |




| {re- o] < @
where Ry = (Y7 -AA%) kR,
Uz = (P —A4%)HU.

To complete this, simply factor U; to extract a unitary factor, and apply the
dual of (22)-(28) to (28). Altbough the formulas get messy, (22) can be

solved in this manner.

In each of these cases, Theorem 2, Theorem 3, their corollaries, and the
solution described above, the general case reduces almost immediately to
application of Theorem 1 or Corollary 1. Thus, when it is convenient, we will
consider (4) rather than (16) and (26) rather than (22). This will simplify the

discussion of the rational case without introducing any loss of generality.

The restriction that ¥ > ¥, in Corollary 3 and (22)-(26) does introduce
some loss of generality. If these alternatives to Theorem 3 are used, it is not
possible to get all solutions for ¥ = 7,. All solutions arbitrarily close to the
optimal ¥, is the best that can be done. The reason for considering this spe-
cial case is that {20)-(21) and (22)-(26) have reasonably straighforward gen-
eralizations to the rational matrix case, whereas (17)-(18) do not. A further
difficulty with the rational case is that, unlike the constant case, it appears
that it is not possible to actually compute ¥, exactly. This makes our inabil-
ity to obtain a direct generalization of Theorem 3 seem less critical, at least
with respect to application of this theory. More will be said about this in Sec-

tion 5, but the rationa! matrix generalization will focus on (22)-(28).
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The following corollary gives an alternative version of Theorem 3.
Corollary3 For 7 > v,.

L=

-y %oxs razyr-z22)H|| < 5 (20)

® where o

Y = B(?I~4%4)%
Z = (Yr-a4%"¥C (21)

At

Rl
]
A i

There are many alternative characterizations of solutions to (19), BN

aithough the formulas in (20) and (21) seem to be the simplest.

E For the problem in (14), the following eguivalences apply for all ¥y > 7, : . .
| ) 1
|7~ vev|.=» (22) =
i 4
. |[av-ve rvel|l.sv (23) .
i »
I|ri-ve a]iLsy (24) -
° where R, = RV* and 4 =RV . " J’
= g

- - |
| GRr-aam 4 (R, + ve) | =1 (25)

° . ( by Corollary 1') ° :
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S
form of (2.4) for the problem
70 = min ||R + vevil. (14)
where UU =/ and VW* =/
Corollary 2
[lyepll . eyl
Yo = mex l“UJ_R L IIRV fiem (15)

The following theorem parametrizes all solutions to (1). The proof is
omnitted (it can be found in [DHK]), but is similar to Theorem 2 and involves

application of Theorem 1 and 1'.

Theorem 3 Suppose 7 2 7,. The solutions X such that
8|
C Allle

X = =YA*Z + y(I-YY*EW(I-2°2Z)% (17)

<y (16)

are exactly those of the form

where ¥ is an arbitrary contraction (”WH.SI) and Y and Z solve the lineer

equations

Y(PRI-A"A Y
(F1-44")2. (18)
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Theorem 2 RS
N t ]
e Yo = max ch‘ X (13) o |
f;j Proof: Denote by % the right hand side of the equation (13). Clearly, y,=¥
4 _ since compressions are norm decreasing. That y,<% will be shown by using 1
Pg Theorem 1 and 1'. ® V]
_j From Theorem 1 we have that B=Y(5*/=A4)% for some Y such that ‘
. LY
[ “}’i}.s 1. Similarly, Theorem 1' yields C=(52/-44*)%Z for some Z with
0
. 2}t L
3 Let X = —=YA*Z. Then ;

ho " -YA*Z y(szf-A'A)%
- T lerr-astiz

!i[( -4 (721-A'A)K]ff

il
I8

= kstreasmt 4 |4
=7
Since
—4* (ff-A‘A)*] -4 Fr-asW b o’]
(31— [(?f—A'A)* A* ]' 0 %

Thus y7,, so ¥=7,.

This theorem gives one solution to (12) and an expression for 7,. As in
(3), ther may be more than one solution to (12), although Theorem 2 only.
exhibits one. Theorem 3 considers the problem of parametrizing all solu-
tions. The solution X = —Y4"Z is the "central” solution analogous to X = 0 in

(3). The next coroliary is an alternative statement of Theorem 2 using the
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Corollary 1:  For ¥>7,,

B < © p

TV Ty L 2 R e
{
!
|
Liod

:f;'. HX(-sz-A‘A)"iiE_ s1, (7)

¢ .
E The corresponding dual results are ]
[ ¢ Theorem 1° For vy27, * 1
! e dll<7 s 5v. ||Hl=t (® -
E such that : j
(4 X = (PI-AA" Y (9) 9
- 2]
r - Corollary 1'  For 7>, i
;. AR
Q ; [ (1) ]
s }

||o2r-aas)4x]_ = 1 o (w)

1 S
a .
IR '

Now, returning to the problem in (1), let

il &

The following theorem, usually attributed to Parrott [Par], will play a central

T 7T Y

e =m}n

L

role in the synthesis theory. The proof is a straightforward application of

Theorem 1 and 1'.
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| y
in (3), it is immediate that y,= HAI !-. The following theorem characterizes all ) i
solutions to (3). ?: =
s .
A
Theorem 1: For Vy=1y,, R
AllL=7 ®
iﬂEYwit.hHYH.sl such that }
X=Y(PI-A"AM (5) j
Proof: i J
7
| :
| =7 ¥
1
|
. [
XX = AAs ¥4I
lﬂ -
X*X < (PI-A"A) -
if e
. 1
f .
H){u‘{s H(f!—A‘A)”u” vu ]
- —A® n l 'J
X = Y(AI-4*A} for some ||¥]|l=1 o
-
This theorem implies that, in general, (3) has more than one solution. This is 3
in contraest to the a = 2 case. The solution X = 0 is the central solution but E
others are possible unless A*4 =92/, A more restricted version of the LA
theorem is ‘j
k
: A
®
. L




2.1.3 Matrix Cilation Problems

Consider the optimization problem

e A8
e Aflle

wnere X,5,C,A are constant matrices of compatible dimensions. This is a

(1)

B
restatement of (2.7) for the a=« case. The matrix I’; A] is a dilgtion of its

submatrices as indicated in the following diagram:

[+

x Bl > Bl

CAJ - AJ

’ fy d 3
d|l ¢ d| |e (2)
A § c 9

cal > n

] - J
d

In this diagram, ¢ stands for the gperation of compression and d stands

for dilation. Cornpression is always norm decreasing; sometimes dilation

can be made to be norm preserving. Norm preserving dilations are the focus

1 g of this section, which basically follows the development in [DKW] and [Pow].
¢
o See [DKW] for additional references on dilation problems.
The simplest matrix dilation problem occurs when solving
}
g [
¢ i 3
1 n&n l I, - ( )
i Although (3) is a much simplified version of (1), we will see that it contains all
° the essential features of the problem. Letting 7, denote the minimum norm
|
1
s
[
®
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| n+& Ryl i (8)
QE Ra RZZ I

and solution of (8) yields a solution of (1) by solving () for X.

The a = 2 case can be solved immediately from (8) since

ut@ £y i 2
{Rﬁzt Raj] hR“"'QH: * L (9

Thus

{ 0 R,a]
R21 R

Qpt = ~Rn = ~TRluTH

(10)

The simplicity of the a=2 case is responsible for much of its appeal.
Optimization in this norm reduces to projection since Lz is a Hilbert space.
This holds as well for the rational matrix problem.

The a== case is somewhat more complicated since L. is not a Hilbert
space and the minimization in (8) cannoct be solved by projection. For-
tunately, L. arises as the space of linear operators on the Hilbert space Lz,
and (8) can be treated as a dilation problem. The next section focuses on

matrix dilation problems.

VD S
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2
K =F(/.Q) (4)
where
=[Ju J 1] - [ o (PPr)~H
- 7= Ve JZZ} I(szf’z'x )7 —(PpiPR) Pp(PiPi2) %
' i With this substitution, we have
ﬁe F(P.K) = R(P.R({/.Q)
= Py+ {sz(Px"szz) -%} Q{(leP{, )_”sz}
] = Ty + T12@Tz (5)

where the 7y are defined in the obvious way. This parametrization has con-

verted the nonlinear probiem in (1) to one affine in the parameter Q. Note

that Tj2T12 =7 end Ty T2 =/. Thus we can find T and ?J. such that both
1 (T

17’12 Tﬂ and l J.J are square and unitary.

Since both a = 2 and » norms are unitary invariant

1r,,1 [
' [ [ [Q 0}{Tz:
+ T12QT. = [iT T2 T
r “Tu 12€ Zl‘la 11 12 {ylg la
' [, |
- 21 Q 0i:
= [sz Tj] Tulf oo !‘
® : R +@ R
[ = [ ;; 12} (8)
b 21 e
f where
o R th [T;IZTHTE.I Tx'zTn?'_f] )
sz R& TfTuTz‘l TITHT_EJ
Thus the problem in (1) reduces to
o
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3

achieve this are developed in Chapter 3 on Factorization.

Tz:J
f are

sgugre and inner (also Chapter 3). Then pre- and post-multiply by

Ta|®
T to yield

Unitary Invariance: Find T) end T so that [le T,] and

[le TJ}. and

R1y+@ Rig \
Ray Rg (12)
where
T

R =

rs| Tulra 7]

Again, to simplity the presentation suppose that T,,7f=0 so that (12)

[Rn"'Q
Ra |

Projection / Dilation: At this point the a=2 and a== cases again differ.

becomes

(13)

For a=2, the problem reduces, by projection, to

Fig R+ o, (14)

But since R;; € L. . @=-FR;; would not correspond to a stable solution.

The unigque solution is yet another projection
Qpt = PH,(RM) (15)

where Py, denotes projection onto Az When viewed appropriately, these

two projertions can be seen as a single projection onto a subspace of

Ly R €V,

The a== case is again treated as a dilation problern. While it is not true

T —




in general that

Tl 7 e Il 2

min
OEH- L od

it is convenient to use the characterization in Corollary 3.1 and (4.8)-

(4.9). Recall that

R
H ;::Q] {- <y for ¥v>% (17)
ig
(Bt @CAI-RER) H||_ = 1 (16)

The key to proceeding in the rational case is to find X € RfA. such that
M € RE. and M*4=(¥* =R R,). If we use the symbol (73] =R# Rz )%
to denote this #, then (18) makes sense in the rational case. Finding &

involves spectral factorization and is treated in Chapter 3.

Given M € RH. with the desired properties, (18) reduces to
o + @} = 1 (19)
where G=R,M~! € RH. and §=QK™!. Solving (19) for § € RH. solves

(18) for @ € RH.. Note that @=QH is in RHa if § is, since ¥ € RHa by

construction.

The final step in the rational case then involves solving (19) for & € RH..
This is the standard mathematical problem of approximeating an L.
metrix by an H. matrix. The approach which fits most naturally with the

methods of these notes is due to Glover [Glo].

Glover gives an explicit parametrization of all solutions to (19) in terms

of a realization of G. When combined with the steps developed in these
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notes which reduce

[Femf < ¥ (20)
to (17) and then (19), this yields a parametrization of all X's which
achieve internal stability and satisfv (20). The remainder of these notes
is concerned with developing the mathematics to carry out the steps

outlined above.

4) Recovery of the optimal K: Just as in the constant case Kope =F;(J, Qpe ).
This Ko will stabilize F;(P,K;:) since the parametrization in Step 1)
insured that  stable lead to internal stabiiity of F;(P,K)=F.({P.Fi(/.@)).

Note that although restricting to the special case of {(13) from (12) intro-
duces no loss of generality, it may be possible that (18) does not hold. Let

[R11+Q}”
Ry |
b ol @

-

Then, it is possible that 7, =%. In that case, the algerithm described above

(21)

4 .
» ¢ |

cennot be used to obtain all solutions such that

|

since {17) is not equivalent to (18). It is possible to find all solutions for any ¥

R+ ];
Ry [lL= 7

i1-

(23)

arbitrarily close to v,.

A more fundamental difficulty with the algorithm outlined above is that
it gives no simple way of determining 7,, so that the algorithm must be
iterated on with a search on 7. It seems that the best that can be expected

is to get arbitrarily close to ¥,. Ir view of this, the special case when 7y, =%
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would seem not to be of particular importance.
The question naturally arises whether the inability to compute 7, is '6'—’
intrinsic or simply an artifice of the chosen methodology. This cannot be e
fully resolved in these notes, but there is some evidence to suggest that com- ‘_-4:
putation of 7, is a fundementally difficult problem. In particular, it can be R
shown that ¥, is equal to the norm of the operator L }
4
PRy |
“ (24) -
Re PH% 1Ly > La®Le. k
This implies that 7, can be found as the solution of an eigenvalue problem, ® J
.9
but of a matrix {(or operator) which is infinite rank. Thus again, from this ]
point of view, 7, can be computed only to within an arbitrarily small accu- {
racy, but not exactly. It is clear that this issue needs more research. - ' ]
The remainder of these notes completes the details of the solution out- 7
lined in steps 1)-4) above. This provides a general solution to the #, optimal
control problem modulo the above remarks.
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2.1.5 Figure 1
. | . -
an.x.},; {‘IF‘(P'K)IL: l internal stability
parametrization
K=F(/.Q)

oﬂél;} HTu*" 7'124’7}1““l where T{RTw=I TuTai=!

unitary inveriance
. ’Ru-Q sz'l
Ged. || Riz Rz l e
a=2 o=
projection dilation

g"ﬂi}’}_ G-@H-, Gela

a=2 a=ec
projection dilation
Qo

&p‘=Fl(J-Qopt>
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2.2 Stabilization

2.2.1 Introduction

This chapter considers the problem of finding & parametrization of all

controllers K € R: P™2 which achieve internal stability of

F(P.K) = Py + PoK(I=PxK)™ Py, (1)

_ Pu Pz ¢ pPitRXm emg P € RP™ (2)
21 Paz » vy

The notion of internal stability for (1) is considered in Section 2, where the

where

appropriate definitions and properties are‘developed. The treatment here is
in the spirit of [DeC] and [Per].

The approach taken in the rest of this chapter is to find J so that the
substitution X=F;(J,&) yields

R(P.K)

F(P.F(J.Q))
Fl(TvQ)
= Ty + T12QTy (3

with the additional property that T € A_ and

F;(P.K) internally stable (4)
i Q € Ha.

This approach parametrizes all stabilizing s in terms of a stable
@ € A. in addition to providing an affine parametrization of all stable
F:(P,K). This so-called "Youla parametrization” [You2] is developed in Sec-
tion 3 on Parametrization of All Stabilizing Controllers. Section 3 puts the
algebraic methods of stabilization as expounded by Desoer and co-authors

[DML] in the context of the linear fractional transformations used in these
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notes.

There are two main approaches to constructing stabilizing controllers of
linear systems, the Youla parametrization and state-space methods using
observers and state feedback([KBF],[Lue]). Each is well-known within the
control theory community and each has its advanteges. As indicated above,
the Youla parametrization yields all stabilizing controllers as well as a con-
venient affline parametrization of the closed-loop system. Unfortunately, the
standard algebraic ireatment of this subject gives no reliable scheme to
compute the coeflicients of the parametrization. Observer-based stabilizing
controllers, on the other hand, are eesily constructed in terms of & realize-

tion of P using a variety of state-space computation schemes.

Section 4 shows that these two methods of stabilization are actually
equivalen! in a very direct way. This allows for the Youla parametrization to
be constructed using the standard state-space computations of observer-
besed stabilization methods, providing explicit realizations of the desired /
in (3) in terms of a realization of P. Section 5 puts all of the results of the
preceding sections together to construct the desired affine parametrization

of the closed loop system.

It should be noted that many of the results on the connections between
the algebraic and observer-based stabilization methods were discovered
independently by Nett and coauthors [NeJ]. Also, many of these results were
known within the "systems over rings" community [Kha]. What is clearly ori-
ginal to these notes is the complete equivalence of the two stabilization
methods (Section 4, Theorem 2) and the parametrization in terms of the gen-
eral framework using linear fractional transformations (Section 5).

Nevertheless, this material is not the main focus of these notes but is
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presented in detail so that it may be used in developing the factorization 4

methods of the next chapter. ~
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2.2.2 Internal Stability

In this section P and K are fixed proper transfer matrices. The block

diagram of Figure ! represents the two equations

i}

u P
P = t:zx Pez]' @

It is convenient to introduce two fictitious external signals, w; and wy, as in

. u =Ky (1)

Partition P accordingly:

Figure e

Suppose the signals v,w,, and w, are specified and that u in Figure 1a is

well-defined. Then so are e and ¥. Thus it mekes sense to define the system
[,

in Figure la to be well ~posed provided the transfer matrix from pw;{ to u
2

exists and is proper.
Lemma 1. The system is well-posed if and only if
I = K(=)Pz(=) isinvertible. (3)

Proof. Figure laimplies the equations

u = w; ~ KY - Ku,

Pg v - Pzz‘u

Yy
and these in turn imply that
(I-KP)u = w, + KPo,v + Kw,.

Thus well-posedness is equivalent to the condition that (I-KP)™! exists and is

proper.




QED
1t is straightforward to show that (3) is equivalent to either of the follow-

ing two conditions:

—K(=)]
[_ ngz(m) XI( ) is invertible ; (4)
I = Pg(=)K(=) is invertible . (5)

The well-posedness condition is simple to state in terms of state-space

realizations. Introduce minima!l realizations of P and X:

P = (6)
K = (7)
Note that the partition in (B) corresponds to that in (2), i.e.,
(4181
Pq = q D‘u . (8)

Then Pyy(=)=D,; and K(=)=D, so for example, from (4) well-posedness is

equivalent to the condition that

-pl
_éu ,ﬁ] is invertible. (8

Well-posedness will be assumed for the rest of this section. let z and £
denote the state vectors for P and K respectively, and write the system

equations in Figure 1 with v set to zero and e ignored:

z = Az + Bau (106)

y = G ~ Dpu (10b)
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3
2 =22 + By (10c)
u = L% + Dy. (104)

The system of Figure ! is internally stable provided the origin (z,2) = (0,0)
is asymptotically stable. To get a concrete characterization of internal sta-

bility, solve equations (10b) and (10d) for u and ¥:

- :

(Note that the inverse exists from (9)). Now substitute this into {10a) and

(10¢) to get
z ~lz

N (B, oll ; -pl°
i= [;‘,%]*l: Bll-2m 7]

r =po &
Dy I [c, 0

where

&l
& of

Thus internal stability is equivalent to the condition that 4 has all its eigen-

velues in the open left half-plane.

It is routine to verify that the sbove definition of internal stability
depends only on P and K, not specific realizations of them. The following
result is standard.

Lemma 2. Consider a minimal realization of P as in (8). There exists a
proper K achieving internal stability iff (4,B,) is stabilizable and {C3z.4) is
detectable.

The latter stabilizability and detectability conditions ere ssumed
throughout the remainder of this chapter. Since
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Py = [ﬁﬁ . (11)
e-uations (10) constitute a state-space representation of the system in Fig-
ure 2. Although the realization in (11) is not necessarily minimal, it is stabil-
izable and detectable, and these are enough to yield the following result.
lemma 3. The system in Figure 1 is internally stable iff the one in Figure 2
is.

The next section contains a parametrization of all X°s which achieve

internal stability for the system in Figure 2. To simplify notation, define
G:=Pyp, B:=H, C:= Ca. D:=ng.

Then (A,B) is stabilizable, (C,4) is detectable, and the system under study is

that in Figure 3,

'f'he above notion of internal stability is defined in terms of state-space
realizations of G and X. It is important and useful to characterize internal
stability from an input/output point of view. For this, consider the feedback

system in Figure 4. This system is described by:

Rl o

Now it 1s intuitively clear that if the system in Figure 4 is internally stable

then for all bounded inputs (v,,v2), the outputs {e;,e;) are also bounded. The
following lemma shows that this idea lends to an input/output characterize-

tion of internal stability.

Lemme 4. The system in Figure 4 is internally stable if and only if (/-GK)

is invertible and the transfer matrix

i P T 4 P

e tmctecA e m ke ke aaaad

G e
WA W W S A S 1
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[ +K(/~GK)' G K(I-GK)™!]

(I-GK)'G  (I-GK)™

-G

between (v,,vz) and (e,.e;) belongs to RH..

Proof. As above let {4,5.C.0) and (2,.5.2,D) be stabilizable and detect-
able realizations of G and X respectively. Then the state-space equations for

the system in Figure 4 are:

LTLiEN
n
55
2o,
g W
]
o &y
o
™ o
L

T
N [
]

@; T V) +¥Ya €z = Vg + Y
The last two equations can be rewritten as
{I —ﬁ”ex] IO altJ ['le
1 = L .
-0 1 llkd = e ofls * b
Now suppose that this system is internally stable. Then (7) implies that
(I-DD) = (I-GK)(=) is invertible. Hence (/-GK) is invertible. Further,

since the eigenvalues of

[ ] _al-ta Al
S T ¥

are in the open left half plane, it follows thet the transfer matrix in (10) from

(v,v2) to (e,.ez) is in RH..

Conversely, supppose that (/=GK) is invertible and the transfer matrix
in (10) is in RH .. Then, in particular, (/~GK)™! is proper which implies that
(I-GK)(=) = (/-DD) is invertible. Therefore

.
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is nonsingular. Now routine transfer function calculations give,

rex_[ [o& 1
Bz-Lj?[C‘D o

Since the transfer matrix from (v,,vz) to (e,,e;) belongs to RH.. it fcllows

5 0

! =0 _T\-1 pd
[ (S! A) 0o B

-0 I

that

B 0
-

-] N
Bamqw

belongs to RH.. Finally, since (4.8,C) and (4.5,C) are s‘abilizable and

detectable, it follows that the eigenvalues of 4 areinthe open left half plane.

QED

We note that to check internal stability it is necessary (and sufficient) to
check that each of the four transfer matrices in (11) are in #H.. It is not
difficult to construct examples of G and K such that any three of the four

transfer matrices in (11) are in RA, while the fourth one is unstable.
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2.2.3 Parametrization of All Stabilizing Controllers

Two matrices N M € RH. with the same number of columns are

right —coprime it the combined matrix m has a left inverse in RA.. That is,

there exists X.Y € RA. such that X + YN =]. This is often called a
Bezout or Diophantine equation. An alternative definition is that two
matrices in RA. are right-coprime if every common right divisor in RH. is
invertible in RH,. This can be shown to be equivalent to the above definition

in terms of a left inverse, but we will not use this fact.

It is a fact that every G € R, (proper, real-rational) has a right-coprime
factorization G = NM~! where N,M € RH. are right coprime. Similarly,
there exist left coprime factorizations (lcf), defined in the obvious way by
duality. The proof of the existence of such coprime factorizations will be
given in the next section with explicit realizations for the factorizations. In
this section, we will see how these factorizations can be used to obtain a

parametrization of all stabilizing controllers.
Begin with rcf's and lef's of G and X in Figure 4:

NE™ = @-\N (1)
UVt = V0 2)

G
K

Lemma 1. Consider the system in Figure 4. The following conditions are
equivalent:

1. The feedback system is internally stabie,

2. [x q is invertible in RH ..
v -0 o
l_ﬁ ‘7] is invertible in RH .

Proof: As we saw in Lemma 2.3 of the last section, internal stability is
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equivalent to the condition that

! - -1
-G I € RH.

-1
[{,.’,‘] < RA.. (3)

or, equivalently,

Now

o0 b 7
o

A Ly ol o
FI

Since the matrices

ol |
ool
are right-coprime, (3) holds iff
-1
T

This proves the equivalence of conditions 1 and 2. The equivalence of 1 and 3
is proved similarly.

QED

We shall see in the next section how to find explicit realizations for
N.M. N @ u, v, U, 7, and such that (1) holds and
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The above lemma says that I’? &
K & U % = V00, ]
A
then qualifies a particular controller achieving internal stability. All stabiliz- _o]
b ing controllers can be expressed in terms of X, and a parameter , as shown “.“ 1
in the following: S
Theorem 1. The set of all proper controilers achieving internal stability is : j
l! parametrized by the formula '; J
s K=K + VIQU+V NG v (8)
K 4
L where Q ranges over RH, such that (/ = V;'NQ)(=) is invertible. * 1
h Proof: Assume K has the form indicated. ' R
o oo
N Define
o
& U U+MQ V& V,+NQ
; T& 0, +~d, Vv +ef
.
3 then
3 A -(ﬁ.:oﬁﬂu U+ i
. -ﬂ 7 =| -~ v, + NQ
;:._ _ - vo 'Uo e fir
: N = Q 7/ ~N . I
. b7k 9 .
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Thus X achieves internal stability by lemma 1.

Conversely, suppose K is proper and it achieves internal stability. Intro-

duce rcf and lef of X as in (2).

Then by lemma 1, Z & &V - NU is invertible in RH.. Define § by the

equation
U. + Hq = UZ‘ll ’ (8)
30
Q=Y UZ - 1) (8)
Then L
V, + NQ = V, + NE"UZ™ - U,) i
= ¥+ @ WUz - ) trom (1) vl
= @-y@v, - fu, « Ruz o
= v + Nvz) trom (5) S
= d-z + Fv)zo S
= g-ildvz K
= vz (10)
Thus, 7
K = gy f?‘j;#
= (Uy +HQ)(Y% +NQ)™ )
= UV + (M = LGNQU + VN R (11) -
L
from (prelim? ). Then, since ,. 1
: (M - U VN = (| = T O, N) = VoV, 0 - O N) = 7 S
{ we have that 4
o .
= R
! -
& L
- ‘“1
| :
o
b R
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K = U7, + V3QU + VINQ (12)
To see that @ belongs to RH., observe first from (9) and (10) that 4Q
and N¥@ both do. Right-coprimeness of N and X then implies that @ € RH..

Finally, since V and Z evaluated at s== are both invertible, so is
V, = NQ, from (10), hence sois / + V;"INQ.

QED

Define the rational matrix

v
- -v.-w] (13)

and consider a controller X given by formula (). Then the controller equa-

J @&

tion
v = R(J.Qw e
= {6+ Preu + wweriy i
QR
is equivalent to the triple of equations S
@
v, = By - vy, \
V1 = Qu . “
The block diagram corresponding to this triple is in Figure §. We con- -~.qu
clude that every stabilizing controller can be represented as X = F,(/,Q), as e ‘\:
in Figure 5, for some parameter @, which is constrained only to be stable and . '
proper and to make X proper. ' . ’

The next section gives an explicit state-space realization of one choice of

the interconnection matrix /.

...................
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2.2.4 RealizationofJ:

Recall from Section 2 that we have

.;.;.j
G"lc‘ l o

where (A.B) is stabilizable and (C.4) is detectable. To obtein a right- ]
coprime factorization of G, choose a matrix F such that 4+BF is stable. __-Tj?:;;
Lemma 1. A stabilizing state feedback F yields ref G = NU~! where “.“1

]

[ +BF| B
p‘: = | F |I. (1) R

{c+DF|D S
Proot: That G = N&™! follows from: @

‘f.'t_ ok FHF—”’#]

4 BF -—.—
0 A+BF (cascade of two systems) = ﬂ
C DF |Dj -

A+BF BF|B

L0 410

C+DF DF\D
+B8F

= Fc..._"’z]pp D (deletion of uncontrollable part)

=N.

b e A e
- .

T

i

|

in

A 2t

(by change of basis in the state—space) -Ti]

—
[
o :.
o

-9

hd 7
)
2
o
AN |

That N and X are right-coprime will follow from (3) below.

) LT LT
. f C
" R

Note that for any nonsingular Z

+BF|B.
m:= Flzl. \ (1a)
C+DF\DZ
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is also a realization of an r¢f of G. 3
: N
» By duality, to get a left-coprime factorization of G, take A such that ]
». .
i ' A+HC is stable. }
Lemma 1'. A stebilizing output injection H yields icf G=#~!N where j
| 2

. ~ ~' +HC|\H B+H. SRR
| NM=I"c It »p | (2
4
- o~ e
® The next step is to specity U, V,. U,, ¥, to satisfy !-_]
v, =U,|\le v, Iro B

_.v ﬁ ]g V. = Il (3)

The idea behind the choice of these matrices is as follows. Using

observer theory, find a controller X, achieving internal stability. Perform

{actorizations
K =05 =70,

analogous to the ones just performed on G. Then Lemma 3.1 implies that the

‘ left-band side .of (3) must be invertible in RH.. We shall see that, in fact, (3)
-.'_' is satisfled.
-*_' ‘ The equations for X, are
2z=42 + Bu +- H(CE + Du - y)
- u = f2, ~ e
0 | that is, 0.4
_la+ Br + HC + HOF|-H] @ T
K=l F o] ]
-]
» Define T o
. P
i
B
® °
- 1
3
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+ BF + HC + HDF , B:= -H

A:=4
¢:=F ,D:=0
F:=Cc+DF , B:=~(B + HD).

Following (1) and (2), define

v A-BFlB +BF|=H]
[U]:= P 11l = C+DF 1 (5)
° C+DP|D
[ 5 ] Faf?‘é‘ﬁ B+8D L4+Hc|-<a+fw) -H]

=[F ]| 7 0} (8)
Using the above definitions we have that

v,] [A+8r|B -4
[:7;,.]= F 10]. (8)

C+DF\D 1[I

!”L E- _ A+HC|(B+HD) H
[ A ] =[ F I of. (28c)
c -0 I .

and the following theorem halds.

Theorem 2.

Equation (3) is satisfled.
Proof: Verification of (3) is immediate using (7), (8), and the inversion for-
mula for systems (prelim).

A realization of / is now immediate. Substitution of (1), (4). (5),

and (8) into (3.13) leads after simplification to
[A+BF+HC+HDF|-H B+HD

J= F
I -(C+DF) I -D

(e

»

Let’'s recap. We began with the (stabilizable and detectable) realization
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G=E.'|'5].

We chose F and H so that A+5F and A+HC were stable. Define J by (9).
Then the proper K's achieving internal stability are precisely those
representable as in Figure 5, where § € RH, and

I + D@(=) isinvertible
(The last condition is equivalent to the one

(I + V;NQ)(=) is invertible
which is required as per Theorem 1).

This representation result has an interesting interpretation : every
internal stabilization amounts to adding stable dynamics to the plant and
then stabilizing the extended plant by means of an observer. The precise .
statement is as follows; for simplicity of the formulas, only the case of ._

strictly proper G and K is treated.

Theorem 2.
Assume G and X are strictly proper and the system in Figure 3 is inter- _O
’ nally stable. Then G can be embedded in a system o ‘
-9
where L]
]
0 St
wob2] aell ek
T 2
e
and 4, is stable, such that X has the form SO
[A.+B.F.*H.C.|—H.] R
K= . (11) oo
l £ ] 0 o i
®

where 4, < B, F, and A, + H, G, are stable, i
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Proof. X is representable as in Figure 5 for some @ in RH.. For K to be - "’Z'::

strictly proper, so must @ be (see (3.8)). Take a minimal realization of @:

Since @ € RHa 4; is stable. Let z and z; denote state vectors for J and &

respectively, and write the equations for the system in Figure 5: *
z=(4 + BF + HC)z - By + By,
us=Frr+y »
u === +vy ﬂ.:
Zg = AeZs + Bauy o
V1= G2 ]

These equations yieid Y

u=Fz,.

é! = (A + BoFy = HyC)zy = Hey
where
H

= :=[:- . Fe=fpal. o [—B.] - | l

and 4, B,. G, are as in (10). S
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2.2.5 Closed-Loop Transfer Matrix

Theorem 1 provides a parametrization, in terms of @, of all proper X's
which achieve internal stability in Figure 1. The goal in this section is to

express the transfer matrix from v to e in terms of @.

A -tabilizing X is representable as in Figure 5. Substitution of the block
diagram in Figure 5 into that in Figure 1 leads to the one in Figure 8. Elimi-
nation of the signals u and y leads to Figure 7 for a suitable transfer matrix
T. Thus all closed-loop transfer matrices are representable as in Figure 7. It

remains to give a realization of T.

We must first put back the original notation which was simplified at the
end of Section 2. Let -
148, 5

Cl Du sz (1)
Ca|D2 Dz

P =

be 2 minimal reelization of P, and choose F and H so that A+5zF and
A+HC, are stable.

Lemma 4. >
A+BaF =BaF B, 32]
o] A+HCo|B1+HDzy 0O | o
T = \6;~DuF -DaF| Du Dsm (@)
0 Ce Dy 0

Proof. With the original notation we have from (..4.9) that

A+32F+HC2+HD22FI“H Ba+HDp

F 0 I (3)
"( Cg - Dggp) l I "Da

<,
n

Partition J and T accordingly:

R R PR 2
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_ [Jn Sz
T Ya V=
T = Tu The
T |Ta T/
The equations governing the system in Figure 8 are
Pu 2 0|l
0 Jzz 0 le ]
[ { “-’u”'u.] [0 sz
wit: 4 ”‘UJ P
while those for Figure 7 are
e| _ [Tu Tial|v
1| T Tar Tzjyy
Therefore
7w Tl [Py 0] [Pp off 1 —syl™o Jig @
Ta Tz 0 Ja2{ " |0 lel-'Pa l Py O}

The strategy now is to use the representations (1) and (3) in (4) to obtain (2).
The algebra is long and tedious, but straightforward, so the details are omit-
ted

Partition T according to (2):

_ T T
T2y Taa|
Explcitly, we have
[4+B.F -B.F | B,
Ty = \ 0 A+HCy | B+ HDy (53)

lcx*uxaF "szfl Dy, l
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state feedback. Using the notation

_1alB| la+srlB )
N = 1815| = [c+DFlo
we will use (1)-(3) to get N inner and A+5F stable. From (2) we have that
Z=R KU where R=D'D>0 and U is any orthogonal matrix. Take U=/. Equa-
ton (1) implies that
R-%B'X - R-%D(C+DF) =0
so solving for I yields
F = <RY(B'X + D'C) (9)
Then equation (3) yields
Ax+xia-¢¢C
(A+BF)X = X(A+BF) = (C+DF)y(C+DF)
(A=-BR™\D'C-BR™B'XyX = X(A-BR™\D'C-BR™'8'X)
+ (C=DR™\B'X-DR™\D'CY(C-DR™\B'X~DR-1D'C)
= (A=BR-\D'CYX + X(A=BR-'\D'C) - XBR"'B'X + CDyD{C  (10)

0

since DyD) = [-DR™'D'. Thus X=Ric[4y], where

_W-srmpc  -BRB a1
A4 = | _cppiC —(4-BRTDCY

That X=Ric (4y) exists such that A+5F is stable follows from Theorem
2.1 as follows. Let

[ = G*CG

-A\"t
Ry 3 i -

That 7 = G"G > 0 is true by assumption. To satisfy Theorem 2.1 we rmust

have (A4, B) stabilizable and (P . A) detectable, but this is immediate since

o

. Y,
dand L

F
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and Z can be any nonsingula- matrix. To obtain a rcf with ¥ inner, we sim-

ply need to use equations (1)-(4) to solve for F and Z. This yields the follow-

ing theorem: ".
Theorem 1 : 7‘
Assume p 2 m. Then, there exists a rcf G = NM~! with N inner if and !

only if G*G > 0 on the jw-axis, including at ®. This factcrization is unique up

to a constant unitary multiple.

A particular realization for the factorization is

o
lﬁ] ®
where
°
R=DD >0 » §
F==RYB'X=DC) ' (8) ]
and -
R-\D'C BR-'B et
- = ' - " ' » ) ‘;
X = Ric [‘-oplpic -(4-Brpcy] =0© ™ :
[Proot] : J
(only if) :

Suppose G=NM? is a rcf and N°N=l Then
G*'G = (NY2)Y*'(NH™') = (M~Y)*H~1 > Oonthe jo-axis since € RH..
(if) :

The if part will be proven by showing that (1)-(4) lead directly to the
above realization of the rc¢f of G with inner numerator. That G = N¥~! is an

rcf follows immediately from (4) once it is established that F is a stabilizing

[
1
Nl
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2.3.4 Inner-Outer and Spectral Factorization : {

In this section, the special form of coprirne factorizations required to
reduce the general H, optimal control problem to a best approximation @
problem will be developed. In particular, explicit realizations are given for
coprime factorizations G = N¥~! with inner numerator N (Theorem 1) and
inner denominator ¥ (Theorem 3): and for the complementary inner factor j

N) which completes the inner numerator to make [.N N J] square and inner i

(Theorem 2). The theorems will be stated for right coprime factorizations
(rcf) with the duals for lcf's following just as for the general case of 4

coprime factorization developed earlier. Y

)

B
For the following theorems, it is assumed that G = %‘!‘5] € RP™ and

the realization is minimal. We will denote by R%(R=0) the symmetric o

. q

matrix such that R%ER% = R and use " |’ for any orthogonal complement of ]

D so that [DR -4 .Dj] (with R=D'D) is square and orthogonal. .

1 - o

Recall from Corollary 0.3.3.1 that N = [AT7] is inner if and only if -. q

) Bx+ Dt =0 ~ (1) e

i) DD =1 (2) B
Ly

where the observability gramian X solves . ‘]

AX+ X3 +0C =0 (3) S

From Lemma 2.4.1 a stabilizing state feedback F yields ref G=NM"! . -

v 1

where o

* . o ;"I

+BF\B R

N = F Z | (4) R

C+DF\|\DZ ° -

'~..‘

._:.‘

3
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Remark :

The unique stabilizing solution of Theorem 1 will be denoted by Ric (4y).
Note that this theorem is more general than Theorem 2.1 from the previous
section since no detectability assumptions are made. The following theorem

will play an important role in the next section in obtaining complementary

inner factors.

Theorem 2:
It @ = HTH = 0 in (ARE) and X is its solution, then Ker(X) < Ker(H).

[P O U
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[—xr [ —s”]L’ ]

-(E"X+XE-XWX+ Q) -(E-’:IX)"]
-vx -w |
= F 0 —(E-—W()"]'
This puts Ay in block upper triangular form and clearly exhibits a particular
partitioning of the eigenvalues of Ay with respect to the imaginary axis. For
example, if £-HX has all its eigenvalues in C_, then —(E£-¥X)T has all its

poles in €,. Thus, the solution of ARE which stabilizes £—FX yield a decom-
position of Ay into stable and unstable parts.

This section will explore the conditions under which the desired solution
of ARE exists. There is a considerable literature addressing the theory of
ARE (eg. [And), [Cop), [Kuc], [Mat], [Mol], [Pot), [Wil]), and it is not the pur-
pose of these notes to give a detaﬂed treatment of this subject. We will sim-
ply review the results which are relevant to the factorization theorems in this
report.

Now, we are going to state the main theorem of this section which gives
the necessary and sufficient conditions for the existence of 2 unique stabiliz-
ing solution of (ARE). Without loss of generality, we will assume that
¥ = GGT.

Theorem 1:

The stabilizability of (£,G) and Re[A;(4g)]#0 (V¥ i=12...2n)is
necessary as well as sufficient for the existence of & unique stabilizing solu-

tion of (ARE).
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2.3.3 Solution of the Algebraic Riccati Equation :
Consider once again the Algebraic Riccati Equation,

E’X+XE-XWX+Q=O (ARE)
where

E. /" Q e R™, W=W"20 and Q=¢7

with the associated Hamiltonian matrix

Ag=|_o _gT (Hamiltonian)

E -rl
Our main interest is to find the unique rsal symmetric stabilizing solution
such that the matrix (£ = WX) is asymptotically stable. For simplicity we
will use "solution” of the ARE to mean a real symmetric one. The ARE con-
sidered here is more general than the ARE which arises in linear quadratic
optimal control and Kalman-Bucy flltering theory in that there is no assump-
tion on the definiteness of the matrix Q.

An important property of the Hamiltonian matrix Ay is that the distribu-
tion of its eigenvalues (denoted as A{4y)) is symmetric with respect to both
the real and imaginery axes, ie., if A\ € A(Ay) with multiplicity k. so is
X —-A, and -X. Therefore, A can be partitioned as A; and Ay so that
A € A, with multiplicity k implies that X € Ajand =A.-X € A all with
the same multiplicity.

One connection between the ARE and Ay can be seen by assuming that X

IO
is a solution to ARE and conjugating Ay by [—X Il to yisld

TN
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The next section focuses on the solution of the Riccati equation.
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then from (4) and (5) " _ﬁ
(ol - A)z, = 0 ) .
(Juw! + A')zy = =Pz, (8) ‘_-_','_-:._:
Since (7) implies = (jw, /+A')=0, from (8) we have zPz,=0. This implies, .
along with (7) that (P.4) is not detectable. Hence Cz,#0. Now Lemma :.. -4
0.2.3.8 implies that there exists 1, #0 such that I'(jw)u, =0. This contradicts o 1
the hypothesis that I'(jw)>0. Eence (a) - (c). S
(b) » (a) Suppose SX=X such that E-BR™'B'X = A-BR™YS'+B'X) is
stable. Let F=-R~Y(S'+B8'X) and
AJB
# = FT
1t is easily verified by use of the Riccati equation for X and routine algebra f*
that ' = 4°RH so ' -
TYs) = HYs)RN (M (=)™ s
e
Now 1
+8F|B
= T :
So 4! € RH.. ThusT™! € RL. and for all O<ws= chies
Mw) = HGo)RM (=)™ > 0
Hence T{(jo) > 0 and (b) - (a). N
= (c) » (b) Thisis part of Theorem 3.1 in the next section. :
QED : :
b o |
. . I |
2 R
K
: 1
®
F
& . e e e 2l A A e I A




s :
2
¢) The Hamiltonian matrix
L = |A-BRIS  -BRTB
# T |-P+SR-'S' ~(A-BR-\S'y
has no j w-axis eigenvalues.
SR
Corollary 1  If the conditions in Theorem 1 are satisfled then S& € R, ¥ 3
such that 4! € RH.and _—
T'= M*RM. :
A particular realization of one such X is :!___:
7
AlB
H = I-F\II
where F= = R™\(S"+ B'X). o
Proof: (a)-(c) Let .
ip o
I(s) = [%,-3] ] @) ‘e ¢
Then Ay = A -BD-'C. Suppose Ay has an eigenvalue on the jo~axis. Then :
3w, Z, =(2,',2¢")' such that 1
.9
Ayz, = ju,z, ) T
or - ) 1
(§wel =A)zy, = =BRYS'z,+B'z,) (4) RN
®
q (Jwy [+A’)zy = =~(P=SR™!S")z,+SR™8'z, (5) 5 j
g Suppose ]
| 0=20z = Sz, - Bz, (6) S
® -9
- 3 1
-
li. )
{ )
e e e e ]
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2.3.2 Riccati Equations and Factorizations

Consider the Algebraic Riccati Equation, ]

EX+XE-XWX+Q=0 (ARE) R
where A j

E.W.Q €¢ R*™, W=F=20and Q=¢'
with the associated Hamiltonian matrix
E -r/] S

An=| g g (Hamiltonian) )

The following theorem and corollary characterizes the relationship

between spectral factorization, Riccati equations, and decomposition of Ham-

iltonians.

R
L
a'_a' 4l _la

Theorem 1 Let 4,5.P,S.R be matrices of compatible dimensions such that
P=P', R=R'>0, with (4,B) stabilizable and (P,4) detectable. Then the fol-

BT
‘
—at .

lowing statements are equivalent. } L2

a) The parahermitian rational matrix

w0 « e 2

satisfles

I'jow)>0 foral Osw=sw

b) For E=A-BR™'S', W=BR™'B' and Q=P-SR"!S", there exists a unique .._!_,_
real X=X' such that . : -::f oy
EX+XE-XWX+Q =0

and £-BR™18'X is stable.

..........
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The key idea behind the factorizations in this chapter is the connection
between inner functions, . Riccati equations, and spectral factorization.
Indeed, the factorization (Y2 /~G*G)%is just a special case of spectral factori-
zation ([You),[And]). Sections 2 and 3 develop the fundamental properties
about Riccati equations that will be needed in Section 4 to construct the
desired factorizations. The material in Sections 2 and 3 is for the most part
well-known within the control theory community ([And],[Cop].
[Xuc].[Mat],[Mol],[Pot].[Wil]), although Theorem 1 of Section 2 is apparently
a somewhat novel description of the connection between spectral factorizs-

tion, Riccati equations, and decomposition of Hamiltonians.

Section 4 shows that coprime factorizations with inner numerator and
complementary inner factors both involve using a state feedback or output
injection matrix based on a Riccati solution. This provides a reliable compu-
tational method based on standard approaches to finding solutions of Riccati
equations ([Pot),[Lau]). Section 5 completes the solution to the H, optimal
control problem by completing the parametrization of the optimal controller
using the factorizations developed in Section 4.

(o e

e
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2.3 Factorization e
2.3.1 Introduction to Factorization S
1"'
: The last chapter developed methods for finding J's so that the substitu- e
- tion K=F,(/.Q) yields »
# F(P.X) = R(P.R(/.Q) -
2
§ = F(T.Q) ‘
9 = Ty + T12Q7T2 (1)
with the additional requirement that T € A, and -
° .9,
y Fi(P.K) internally stable (2) .
it Q € H..

This parametrizes all stabilizing X"s in terms of a stable @ € H. in addi-
tion to providing an affine parametrization of all stabie F;(P.X). The actual
structure of stabilizing parametrizations J was in terms of an observar-based e
compensator. The stabilizing state feedback and output injections of the
observer-based compensator were shown to provide coprime factorizations of ;

P and solve the Bezout identities necessary to provide the parametrization

QhOACEN | Ty YTy
SEL"MARARANS  KAII00RE |
f
[

of all stabilizing controllers.
In this chapter, the requirement is added that T3 and T'p; be inner, that _.
is TTi2=] and T2, T8 =/. In addition, we find T) and Ty so that [T,z T_J and <
& T =
o T.| are square and inner. This provides the necessary factorizations to
[ . A complete step 2) in Section 2.1.5 on the Rational Macrix Generalization. The N .
final missing step in completing the solution in the rational case is to find :;‘:f
N M € RHo for a given G € RL. with ”GH. < v such that ¥~!'€ RH. and ‘
l_’ Py H*M=(I-G*G). The symbol (¥3/~G"G)*is used to denote this 4. T;
‘o °
t_ .
&;7?;,__* e e e T o -
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Ty =

A+B:F |B,)
: Cy+DigF Dul
h [4+HC, | B, +an,]

o Ta =l Ca I Dy,

T = 0.

In Figure 7 the governing equations are therefore

e = Tyv + Ty,
u, = Thv
v = Qu,

so that

e = (T + TiaQTalv.

In summary, we have

SOl

g rt T

Catg

R R SE R e i st T Y T T T T T T e ———e

able by an internally stabilizing proper controller is equal to

Ty + T12@T2y : Q€ERAL, [ + D Q(=) invertible].

Ly

coeflicient matrices 7, have very simple realizations, namely, as in (5).

(5b)

(5c)

Theorem 3. The set of all closed-loop transfer matrices from v to ¢ achiev-

The important points to note are that the closed-loop transfer matrix is

" simply an affine function of the controller parameter matrix @ and that the

L U SR PR
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E::A‘-; the realization for G was assumed minimal. Thus, Theorem 2.1 ensures that
b X = Ric (4y) exists such that A+BF is stable.

The uniqueness of the factorization foliows from coprimeness and N
inner. Suppose that G = N M! = NoM3! are two right coprime factoriza-
tions and that both numerators are inner. By coprimeness, these two factor-

,.
3

P,- -,

'Lu izations are unique up to a right multiple which is a unit in RAZ*™. That is,

2
there exists a unit 8 € RHZ*™, such that K:] 8= b’:a]. Clearly, © is inner

since @*0 = @°N N8 = N3N, = I. The only inner units in RH. are constant
matrices, and thus the desired uniqueness property is established. Note that
b the nonuniqueness is contained entirely in the choice of a particular square

root of R.

Q.E.D.

In a similar manner equations (1)-(3) can be used to obtain the comple-

mentary inner factor (CIF) in the following theorem.

————Y VT

Theorem 2:
- !
g If p >m in Theorem 1, then there exists a CIF N; € RHP*P~™) such "
b .
[ that the matrix {N N -|J is square and inner. A particular realization is j
o la+8F |-xtC'D] . ';
a | N = lC'*'DFI Dy ] where X and F are from Theorem 1 and X7 is the A

pseudo-inverse of X .

[Proot] :
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The proof consists of verifying directly that [N N _l] is inner using the

above realization for Ny and the realization for N from Theorem 1. Using the -
. "‘. ]
notation .
ilg] [4+BriBR-% -xtC'D)] (19)
[” ”J] = [ciB} T |c+oFior-% Dy |
and the fact that Ker(X) < Ker(D;C) (Theorem 3.2), equations (1)-(3) follow . s
immediately. Thus [N N Jl is inner.
0
Theorem 3:
There exists a r¢f G = N4 ™! such that M € RHT'™ is inner if and only e
L
if G has no poles on the ja~axis. A particular realization is
+BF : :iif-z\.
= F I € REM?I™ (14) S
C+DF|D o
where -9
F=-BX (18) o
and
. |4 -s8 .
X = Ric b 4| =0 (18) T
[Proof] : -
The proof is essentielly the same as for Theorem 1. The details are - ‘
straightforward and are omitted. ST
. s
;.
.
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In the following theorem, we may assume that G(s) is stable without loss
of generality. Any G € RL. may be factored using the dual of Theorem 3 to

obtain a stable numnerator N such that N*N = G*G.

Theorem 4 : (Spectral Factorization)

Assume G(s) € RHJ"™ and ¥ > ||G(s)|le Then, there exists a
M € RH.™™ with stable inverse such that ¥*X4 = 73/ — G*G with

M= - REK | R%

A 3]
where
R=¥I -DD >0
Ke= -R™Y(B'X - D'C)

A+BR-\D'C -BR™'\B’
C(I+DR™D)C -(A+BR™'D'C)

X = Ric

[Proof] :

Let

et - g et 58 "SI0

where R =98/ ~D'D.

Since 7> ||Glle T(j@)>0. The minimality of the realization of G(s)
guarantees that (4, B) is controllable and (=C'C, 4) is observable. Thus,
from Corollary\z. 1, there exists #(s) € RI™*™ such that ' = ¥*X and a par-
ticular realization is

l_a_|&
# =\ Tphp [RR

where

e
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? .
K = -RYB'X-DC)
and. ""‘"ﬂ.'
¥ = Ric | A*BRID'C ~BR™'B o
=HMClc(r+prD)C -(a+BRDCY| o
Since G is stable, we conclude that ¥ € RA.™™, T
2
Q.E.D.
Remarks : -t
|
(1) The minimality condition in Theorem 3 can be weakened to (4,B)
stabilizable and 4 has no eigenvalues on the ju-axis and the S
theorem still holds. —.— =
() It G € RAJ’™ in Theocrem 1, then X is 2 unit in RA. and H~'is .
“outer”. In this case, G = N(X4~?) is called "inner-outer factoriza-
tion" (10F). ‘
(3) Dual results for all factorizations can be obtained whenp < m. In @
these factorizations, output injection using the dual Riccati solution
replaces state feedback to obtain corresponding left factorizations.
(4) The symbol (3] — G*G)# will be used to denote the M in Theorem .'
4, oL
o
®

PP W P
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2.3.5 Parametrizing the Optimal Controller -
This section combines the results of Youla's parametrization and the ' =
coprime factorization to parameterize ail stabilizing controliers in a way that @ .
is convenient for solving optimal L; and L. control problems. This completes . "
the rational generalization of the constant matrix case as outlined in Section
2.1.5. The only remaining step is a standard H.. approximation problem. 2
a2
Let
(1) R
. -~
Suppose that neither Pz nor P; has transmission zeros on the jw-axis
(including = ) and, without loss of generality, D37 D3 =/ and Dy Dy T = 1.
Under these assumptions, let D;={(D,2); and 5]_= (Dey)p that is, [D,z DJ] "o »
and {Dg;’ D Iy } are orthogonal matrices. Then, factor P as before with F -
and H given as follows :
F=—(DyuTC + BsTX) e
A -B;D;zr01 "'3832’. ]
= Ri 2
X = Rie ~CTDWTC, ~(A=BDy" )T @
[ - and
E.. H=~8,DyT + YCyT) ' __.
i (A-B\Day'CT  -GiTCa
Y=Re| p3r557 r (@)
.- -8B, D" D\B\" —(A=-B,Dy"Cy)
:- Then, N;2*Njz =/ and ﬁg,ﬁzx‘ = /. Also, let Njand ﬁlbe CIF 's so that
o , o
. {4+ B,F | B -x'C, n,i
S [Nxz le - lcx*‘szF‘Dm Dy
2
Y o
[ - R
\ ®
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2
_ .,
-4
2 o
5
4
V.| |A=HC B+ 5Dy ]
M= G Day (4) .
-DLB;’Y' Dl - 4
Letting
A+ByF =B,F| B, B, .
(A'V)" le 0 A‘HCg B‘+szl 0 5 :!- -4
T = N“ 0 = Cl+Dl‘F -DIQF Dll Dlz ( ) 1
0 Ce Day 0 ]
reduces 4
to ;

=i [[Imro ||} -

[
.9
= q%_ [“ (NV)1y + Na@Ng '].] (7 :
The optimal X may be recovered from Q. .'
—.
.
Because both the ||+ |z and || « [l norms are unitary invariant, an alter- ]
native expression is possible. For any § € RH,{ a = 2, =), we have ]
~ A T

”(NV)U + NigQNg “‘ °
ol T
= [Nxz Nj] {(NV)u + NxaQNm] [NﬁLJ . s
_ {Nxz'(Nvlnﬁif’ Q Nxa'(”ﬁuff] | . jl:_,j.'_:’
- NP*(NV)uNg*  NON)ONC ] -_.__A;
R,,*Q Ru] (8) :
B Rsy  Ralls Y
“:‘
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3
u sz R
The a = 2 case is particularly simple and it possible to get explicit for- S
mulas for the optimal controller. Since
nre sz 0 R,g] z]n o
10 . }
tﬁﬁzx Rzz i2 [ ”R"+ Q“ [sz Razz]|l2 : (10) ¥y
;
the optimal @ is seen immediately to be
Qo = [Ru} (11) )
+
LR
To obtain an explicit expression for ¢, we need to compute R. o
~ r 1V ]
Note that (NV),; = tN u N 12 Vaul It is convenient to compute 1
91
- T4
L
Ny2* [ Ni*Nu 7 RS
NJ.‘ lNu Ngz = N‘L‘ 0 (12) - :j
and _:::
vll ~ ~ o -
vﬂl Nay® Ny (13) _. _j
seperately. '- - q‘
Claim 1 S
[ r T ] o
g ol [AB)T (G DF)T Dy + XBy
N.L‘J [Nuj = -B,T D" Dy, (14)
- pffext DDy,
- [Proot] g
° ®
- N
[ o
3 .’1 1
o ]
STy
;f' . SN
. . \1
°
L‘ 1
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7 =
o 4 =
;. K
: A+ BF 0 B,
. (Ne® [ ] =(C1+DF)T(C,+ D1aF) (A "'4331"')7 =(C1 = D1eF)T Dy,
l n D12’ (Cy + DyoF) By ‘ Dy’ Dy, ®
b, ) Dl —DLTC1XT Deru
t. ‘-‘ . 1 '7.-
[ conjugating the states by —X [ . we have
. - _ ‘ .
4 A+BoF 0 B, ®
[¥y2* 0 =(A+ByF)T | —(C1+ D12F)T D)y - X5, '
Ng [N”] - DIZT(CI"'DIEF) = B,T ByT I DlzrDu _ .
L 0 -D_chle Deru
!
° Since Dya"(C)+ D1oF)+ BaTX = D1a"Cy+ ByTX + F = 0, the claim is verified. ® |
& : S
Q.E.D. -
Claim 2: .
. B
. [-(A+ch)" | -C" 18,5y ] :
le Vu® Npj=(Bi~ an)’ D" af | (15) :
0 0 T
o]
[Proof] : ® 1
+HC; =(By+HDy\)'(B\+ HD2))|(By + HD2))Dsy™  B\D) :
l’i'u 0 ~(A + HCp)T CT -vB,0f .
S o ‘ oL ]
Va l”z‘ ”l] = (8, + HDz)” ‘ D™ oy . °
F 0 0 0 T
oo | o
conjugating by Il O
[Ad—HCg 0 0 0 o
Zu [ﬁ . ¥ oo 0 =(A+HC)T | ¢f -Y'Bﬂ o
Vaf "2 YL} F l 0 —(Bi+HDa)"|Da™  Df o
r FY 0 0
which verifies the claim.
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5
Q.E.D.
Putting these results together yields
le‘ Vll ~ ~
e ] o 7 =
|4 + B.F)T| (€, + DaF)T D, - XB, 0] [+ HC)T| ~&;T 118,57]
=| B Dya"Dy 1| KBi+HD2)T| D™ Dff
DfC,X' Deru 0 -FY 0 0

Note that this is the cascade of two systems with all of their poles in C, .
Thus, projection onto Hgz+C leaves only the constant term. Therefore, in

the Lg case :

Theorem :

Qopt = D" Dy Doy (17)

The a== case is somewhat more complicated but can quickly be
reduced to a standard matrix best approximation problem. Suppose that
from (8) we want to find aill @ € RH. such that

_ l [Ru"'Q Rm]
B Ry Rez

From Chapter 2.1 we know that (18) may be reduced without loss of general-

< 5. (18)

ity to
[l 7 e 7osnloals @
Recall that
Hr;;::q] c sy for y>% (20)
if

*
. 1
1
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. . . . :
bt 2 B AP S YY)




M e A A Bin dee ane A acae o T L dad et el A Al AT < T Caain MR ARt G i decnd S aSir S

..
. -
1

'

[(Ru+ @2 -RAR) K| = 1 (21)

N )

“G + b“. <1 (22)

where G=R,; M~ € RH. and J=QM~. Solving (22) for § € RH. solves (20)
for @ € RH.. Note that Q=QX is in RH. it § is, since # € RH. by construc-

tion.

The fnal step in the rational case then involves solving (22) for @ € RH..
This is a standard mathematical problem of approximating an L. matrix by K

an Ha. matrix 1
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Part 3. Large Space Structure Control
1, LSS Control Perspective

2. Modeling and Analysis Issues
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3.1 LSS Control Perspective

This part will outline the maein issues involved in applying the methods of e |
the previous parts to large space structure ( LSS ) control problems. The ' f
most fundemental issue is how the performance specifications and uncer- -]
tainty can be put into the general framework developed in Part 1. For the
most part, LSS control problems involve the usual problems of providing 1
tracking and disturbance rejection in the presence of plant uncertainty and

noise.

A significant distinguishing feature of LSS control seems to be that there .

is a great deal of structure associated with the plant uncertainty. On the one

LSRR G G

hand, thic suggests that the methods of the previous sections, which focus

.
s 2

attention on structured uncertainty, are uniquely suited to handle LSS con- — 4
trol problems. On the other hand, it will require significant application-
specific niodeling and analysis to exploit the known structural properties of
LSS uncertainty.

The remainder of this section will outline the main issues in control of

‘ol bk A

LSS's, with emphesis on those associated with large antennas. The discussion
will be k«pt as elementary as possible, and will avoid the use of the more
advanced of the mathematical techniques developed in the previous parts of ®
these nol2s. With this as a foundation, the next section will discuss specific

modeling issues and how they relate to the methods of the rest of these T

notes.

mission performance from an incompletely known spacecraft in the face of
uncertain disturbances. Such a problem invariably requires the use of feed-

Fror. a controls perspective, the problem is to achieve the specified :
back. Because the eflect of feedback is critical to spacecraft performance a ®
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review of the feedback fundamentals relevant to this problem is in order. By
examining the properties of feedback in a general setting, without regard to ,J
the technique used to generate the feedback law, fundamental relationships
between performan;:e. robustness and feedback control loop properties
become evident. This will make it easier to appreciate the role that the
specific methods developed in the preceding sections can play in analysis !

and syrthesis of controllers for large space structures.

Feedback /mproves Performance ]
A typica! feedback situation for a space pointing mission is shown in Fig. [

3-1. Here we have disturbances acting on a structure to upset the primary

goal of the mission, namely to keep line-of-sight! (LOS) errors smaller than a

specified level, ¢,

°
; ]
iLOS - 10S. |<e. ; ':
It is assumed that measurements of LOS are imperfect due to sensor "o -
dynamics, sensor noise and (possibly) the need to infer LOS from related " 1
measurements. In typical feedback fashion, the sensed response is com- .
pared to the desired or commanded value and the error used by a controller ]
to generate 2 control signal to drive the actuators on the structure. @ 1
Each of the elements cf this loop can be represented by its transfer 1
tunction (TT) reiating the Lapiace transform of the response to the Laplace :
transform of the forcing function. The error response of the structure to ° -
commands, LOS¢ disturbances, D, and sensor noise, N, cen then be ;
developed by standard feedback equation manipulation. Letting
L O 3 ST SR e 09 ey .
®




D, = GpD = disturbance as seen at the output LOS in the absence of

feedback

L = KGT = feedback loop transfer function (i.e., transmission around

the feedback loop)

and AT = Tgwe - T = LOS sensor uncertainty

[ 1 ]V + ATLOS.)
1+L] T

[
(LOS - LOS,) = lul-.r. (D, - LOS,) -

This equation relates system performance to each error source. Its
various terms can be interpreted in many ways, such as amplitudes of sine
waves or as signals in L,;. In either case, four immediate consequences can

be s::en:

Conseguence No. 1 ~The loop transfer function must be
large to achieve small errors. This follows from the first
term on the right hand side of the error equation. In fact,

in order to meet our specified error level, we must have
e |12 |>] D, - Los, |

Thus, at those frequencies where either the disturbance
responses or the comrmands are large compared with ¢, we

require !L! > 1.

Consequence No. 2 —Sensor noise must be small enough.

This follows from the second term, which requires that

e i mAanaAs adahafim o mtafims o atmialal atalalal AL AR A A SRn W s BB 7 N N W

BRI

i




e TN p—, , Naas o —— ——— P ——

<t -——— FEEDBACK ————P

OG0 € e o cmmse cm—

x
COMMANDS k(a
a
Q
[
[ ]
'S
=]
3
oRAIT LOG W

RATE

Figure 3-3. Suitable Control Solution

RIGID i FLEX I8 £ ==mm—g

SOLAR l

TORQUE l
l X
™ | :
[~}
l ¢

|

: |
G e — N\ — I R |
b4
(%)
| s
COMMANDS e
| &
[
] =]
) <
STE ‘e Loow

1 LEXIBLE
ORBIT RATE MODE M‘!

Figure 3-4. Effect of Spacecraft Flexibility on LOS Controi

'@

bk LAA'LA

Aot A 42

N

PRSP T T S S

P

N P

P

et A )

et o d

Py




DISTURBANCES (D) “
l <
(PREFILTERED) LINE. j
LOS COMMAND CONTROL OF.SIGHT ’
. Los SIGNAL STRUCTURAL (LOS) . J
CONTROLLER 4 ACTUATORS e RESPONSE
2 EAROR | (x) G ]
&  SIGNAL « NOISES K
(N} T
T ‘-J
- . 4
.4
SENSING
MECHANISM
SENSED/INFERRED T
LoS
i
Figure 3-1. LOS Feedback Loop ]
.9
1
T
LoG llo-Los ! SOLAR ~{rku o
Qazir"’ronoue N
b
GRAVITY

GRADIENT 6 1
% QW -

<c

&
2 K
wa 1
i3 .
LOG‘ —— G amew G S o e 1 -

x

x .
< R
g R
w 8 4

w g

]
commanDs—____ g !

——

4
ORMIT
RATE

Figure 3-2.

_—-‘LDGW

CMG ROTOR
IMBALANCES

Disturbances Drive Control Requirements

-

-




Y

cmbalalala PR P, bl e ke

budlinfll Rdnhe M Singe Bt -3 0 4 - . 3 S e d ~ e Ao St SR Th S s Jha - I i 2 e e 1 (Rl Sl aiboa i il Wl Nk
. Al R R . . « . - .

seem to be two obvious alternatives to this direct approach. The most desir-
able method would be to actually check for the robustness with respect to
the real parameter variations along with those modelled as complex. This
clearly involves a generalization of the existing SSV and no reliable method

exists for computing such an object in any but the most simnpie cases.

A more promising alternative, at least in the near term, seems to be to
replace the ef fect of the real parameter variation with a complex one. That
is, instead of using the same linear fractional transformation on the A and
simply replacing the real parts of & with complex perturbations, the linear
fractional transfcrmation is changed as well so that the set of plants
described by the new representation closely matches the original set of
plants. Preliminary investigations of this approach appear promising, but no
systematic procedure has been developed for achieving this model
simplification.

Both of these approaches to the real parameter robustness problem
have been investigated and will continue to be important research directions.
The results available to date are rather fragmented and incomplete. While
we have had remarkable success in applying the SSV to several example
problems (including the space shuttle) involving real parameter variations,
the details of the techniques were somewhat problem-specific. It is expected
that a mors coherent view of the real perturbation problem will emerge in

the next year.
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noise model, can be rearranged to fit the generel framework of Part [, shown
in Figure 13. The major sources of uncertainty in this model are surnmarized
in Tables 1,2 and 3. In these tables "external” and “internal” are used to
describe disturbances that are generated physically either outside or inside,
respectively, of the spacecraft. In the sense of Part 1, all these disturbances

are external.

It is clear that the model depicted in Fig. 13 will have a great deal of
structure; the A will have many blocks. Thus, the methods of Part | using the
SSV are clearly going to play a critical role in the analysis and synthesis of
controllers for LSS's. It is unlikely that it will be possible to reliably handle
the inherent uncertainties of LSS control using the paradigm of either sto-
chastic optimal control or standard robust multivariable control theory

based on singuiar values.

On the other hand, the application of SSV techniques to LSS control
appears to be a challenging problem. The large number of blocks in a rea-
sonable perturbation model of a LSS will stress the current experimental
software, so improvements in computation and approximation methods
would be desirable. Another critical issue is that a naive application of the
SSV to Fig. 13 for large space structures could result in very pessimistic
results. The reason for this is that the natural way to represent uncertain
structural mass, stifiness, and damping characteristics is with real parame-
ter variations. Thus, many of the blocks in Fig. 13 would be real, and applica-
tion of the SSV would actually involve checking robustness characteristics

with respect to complex variations.

Simply replacing real perturbations with complex ones of the same mag-

nitude would typically be very conservative in LSS control problemns. There
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"pseudo” truth model, which we recommend. is to introduce perturbations of

appropriate magnitude in all uncertain parameters of the evaluation model.

Disturbance / Command Yodels~The most critical disturbances for control-
ling large space antennas are likely to be high-frequency vibrations due to
CMGs and other rotating machinery, plus distributed forces,/torques due to
this same equipment, coclant turbulence, etc. These may be approximated
as (1) discrete-frequency components, provided a sufficient number of har-
monics are included and uncertainty in gach of the frequencies is accounted
for and (2) broadband disturbances. These latter disturbances will likely be
dominated by the large comunand requirements for slew meaneuvers.
Bandwidth of these command requirements will be minimized by the use of
appropriate command shaping where applicable. Although the numbers will
change, the general characteristics of these disturbances is illustrated in the

plot of Fig. 3-10.

Sensor / Actuator Yodels--Linear models for sensors and actuators will
include all relevant dynamics for frequencies out to roughly a decade beyond
the desired control loop gain crossover. The eflects of unmodeled high-
frequency dynamics and any significant nonlinearities can be approximated
using the frequency-dependent multiplicative uncertainties illustrated in Fig.
3-11 and 3-12.

Analysis Issuas

Figures 3-8, 3-11, and 3-12 can be combined to obtain the desired nomi-
nal plus perturbation model of the LSS that is required to use the analysis
tools of Part I. This perturbation model, together with a disturbance and
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where
A 1
gils) = s2+2f s +wl

This model, as usual, admits a state-space representation of the form

£'=Az+3u
y=Cz + Du
where

et 2
= dieg l-ﬂf" =2y

Because the truth model is not available to the designer, control designs
developed using the design model can only be directly verified using the
evaluation model, which accounts only for the known (but largely unstruc-
tured) errors, AG,(jw). Thus he must “design” to accommodate both these
known errors as well as unknown errors, which inciude both structured
;nors (AA. AB, AC) and largely unstructured errors, AG(jw). It is, of
coui'se. possible to define a "pseudo” truth model by deliberately introducing
perturbations in the structural data used to deflne the finite-element evalue-
tion model, as was done for some of the ACUSS studies. This approach, unfor-
tunately, is prone to meking the same approximation errors in the "pseudo”

truth model as exist in the evaluation model. A safer approach to deflning a
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finite-element modeling technique (e.g.. NASTRAN). It has the form

Ry
G (s) & ‘§l geu(s)cudd

where

1
8242¢ g1 Wgi S +00F

Geils) & 1=1,2,....70

Note that this model differs from the truth model in two respects. First, it is
of lower (finite) order. This difference can generally be approximated as a
bounded frequency-dependent multiplicative error, AG, which is reflected
either to the input or output (as illustrated in Fig. 3-9) of the system. The
second difference is a more systematic one ~ the model parameters are
different. This is due to a number of factors - poorly known structural pro-
perties, too coarse a finite-element grid, nonlinearities, etc. Such errors are
highly structured and generally cannot be reflected to either the input or
output of the system, without substantially increasing the corresponding

bounds for these errbrs.

)

The third model, or design model. is a lower-order approximation to the
evaluation model, which is used for control design. It is derived from the
eveluation model by means to be described shortly. Since it is used for con-
trol design, it should not differ greatly from the evaluation model, except at
high frequencies well bevond desired control loop gain crossover. These
differences can generally be represented by the bounded frequency-
dependent multiplicative error, AG,, illustrated in Fig. 3-9. Depending on
control requirements, this model may sometimes differ also at low fre-

guency. The design model has the general form
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3.2 Modeling and Analysis Issues

We next examine models and model uncertainty for critical elements of the
control design problem, and to see how the LSS control problem fits into the
fremework of Part 1.

Hodel Definition

Spacecraft Models ~To properly motivate the issue of model error, we define
three spacecraft models, which are illustrated in Fig. 3-9. The first model, or
truth model, is supplied by "Mother Nature.” It is an inflnite-dimensional
model which can be represented in the form (assuming either position or

attitude outputs ond force or torque inputs)

G(s) & T guis)endd

where

2 1 i=1,2,....
gu(s) $2+2¢yons T 0d =1

Here wy and ¢y denote frequency and damping for the i* mode while by and
¢y denote input and output influence coeflicient vectors for all relevant input
and output nodes. Line-of-sight and wavefront errors can also be expressed
in this same form by appropriate deflnition of the ¢y's, as can disturbance
inputs by appropriate deflnition of the by's. Rate and acceleration outputs

can be handled by introducing s and s® numerator terms to the gy's.

The second model, or evaluation model, is a high-order finite-dimensional

approximation to the truth model, which is typically derived from some
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and high-bandwidth slewing command requirements, the large space antenna
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Note that the plot in Fig. 3-7 provides explicit requirements for
vibration control. For example, the important controlled modes
are identified as those above the z-line. Also, the amount of damp-
ing each controlled mode requires is ciearly shown. Finally, the
eflect and adequacy of any structural solutions, such as stiffening,

can be clearly assessed. .

CQuass IV: ntegrated Pointing and Wwuration Control—As the e-line
moves still lower, it eventually lies below the average response of
the flexible structure. Damping augmentation alone is no longer
sufficient. In fact, the LOS pointing controlier must now of neces-
sity provide active feedback control in the flexible frequency region
as shown in Fig. 3-8. The significant feature of this problem is that
the LOS itself must now be measured accurately (or inferred from

related measurements) up to very high frequency.

Applicability to Large Space Antennas

In view of the inevitable overlap between structural mode frequencies and
control bandwidth required to meet line-of-sight and antenna surface shape

control requirements in the face of high frequency vibration disturbances

control problem falls into Class IV. Thus we now examine modeling and con-

trol design issues that are relevant to this class of problems,
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increase, we find that some high-frequency modes exceed the e-
line. This is illustrated in Fig. 3-8. If high frequency disturbances
are generated internally, however, it is often possible to isolate ®

and

them (e.g.. shock-mounted CMGs). This decreases D.;

e s

reduces the problem to Class ], for which solutions are known. o )

AL

Qlass [II: Attitude Control with Isolation and Wibration Control- ]
There are limits, however, to how much isolation can be provided. ]
One of the major limitations, for example, occurs when the LOS con-

troller must act through the isolator to point the payload (as was ) Y
true for the ACOSS II model). Rigid body stability requirements '

o als s A

then impose a lower limit on isolation frequency. For example,
assume we can tolerate no more than 45 degrees of phase shift

from the isolator at the LOS controller crossover frequency, .

e oart et

Furthermore, assume we wish to use a passive second-order isola-

tor. Then the Bode gain/phase relations require that

where wy, is the lowest permissible frequency of the isolator. Simi- '._ .*fr',:"

lar calculations can be made for other situations such as active iso-

lation or higher-order passive isolation.

DRV IR

Thus, as disturbances increase or specifications get tighter, we

JE

must eventually face feedback control of flexible modes. This is
illustrated in Fig. 3-7. If only resonant peaks lie above the z-line, it
is sufficient to smooth the disturbance response to more closely fol-

low the average, shown dotted in Fig. 3-7 to return to the conver-

ah a4 e i

tional problem. This is exactly what vibration damping does. -
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Note that 1| and 2 together allow for a-priori assessment of component
bandwidths in terms of mission specs (£) and disturbance environments

(} D, - LOS,

) alone. - '.3

The concepts discussed above apply to flexible spacecraft as well as rigid. We
merely include the effects of flexibility in calculating the open loop distur- -
bance responses. Figure 3-4 is an example. Again, the £-line is introduced to
determine the frequencies where feedback control is necessary. Now, how-
ever, we also introduce a second line, a vertical line at w = ¥,, which serves _
to partition the frequency range into rigid and flexible, Together these two .

lines serve to categorize the control problem.

Control Classes

The control problem can be categorized according to where the ¢-line and
the first flexible mode flex-line occur relative to the disturbance responses.
These categories describe classes of pointing control problems with different
degress-of-difficulty and different solution approaches. Note tht these
classes are unrelated to those of Part 1.

Qass I: Conventional Attitude Control—When all disturbance lim- @

its to the right of the flex-line remain below the e-line (as illustrated
: in Fig. 3-5), no feedback control of the flexible modes is required.
We then have a conventional rigid-body design problem which is

routinely solved on current generation spacecraft.

Class II: Attitude Control with Isolation-lf either the LOS

specification gets tighter (z-line decreases) or the disturbances
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is best understood graphically by plotting the right hand side,

D, - LOS, i

*

of Equation (1). Such a plot is shown for a rigid spacecraft and for typical

.

disturbances in Fig. 3-2 on a log-log scale. For example, solar torques cause
open-loop LOS deflections near the orbital frequency. CMG rotor imbelances
cause LOS errcrs at higher frequencies. All such disturbances can be pulled

. together on the same plot according to their effect on the LOS output (i.e., 'Y
2

). In addition, the command spectra can be included as the transform

of the desired response to LOS commands. Together these terms give

D, - LOS,

' o
Superimposed on Figure 3-2 is an e-line which defines the allowable |

error. Consequence No. 1 can be used to determine the requirements on L.

In particular, for those parts of the figure which lie below the ¢-line, no feed- -
back is required, i.e., § @ { L | << 1] at those frequencies. Eowever, for those
parts which lie above the line, we require g §{ L | > 1 in order to ensure

reduction of errors to the £-level in the closed loop.

These observations suggest that Fig. 3-2 can be used to graphically deter-
mine the suitability of any L, and thus of any compensator K, by directly
sketching 22} 1+LJ. Such a plot is shown as Fig. 3-3. We observe that:

1. 1t is desirable to have the eg | 1+L | li=e follow as closely as possibie to

the disturbance limits. This minimizes control authority.

2. The point where £g §{ 1+L | = ¢ is the crossover frequency, w,. All

herdware components involved in this loop must have bandwidths higher

than this frequency.
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In the minds of most engineers, these fundamental consequences of feedback
are associated with the clessical single-input single-output feedback theory.
It is clear from Part 1 of these notes that they are equally true for more
complex multi-input multi-output situations. In fact, this has been made
clear by much earlier research at Honeywell on extensions of classical con-
cepts to multivariable problems using singular values. This corresponds to
the case 2 framework described in Part 1. Using this framework , Conse-
quences No. 1 through No. 4 can be restated for the multivariable case as fol-

lows:

sfros)>ofu)

FereZ{e*]and g {*} are the maximum and minimum singuler values of the
indicated matrices and ”'“ represents the magnitude (norm) of the indi-

cated vector. @ { | can be interpreted as the maximum gain which the
matrix can produce (at a frequency) and g can similarly be interpreted as

the minimum gain. This point of view is discussed in more detail in [DSt2].

Graphical Interpretation

There is no need to deive into the intricacies of matrix theory in order to

understand the fundamentals of feedback Consequence No. 1, for example,
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Conseguence No. 3 —Sensor uncertainties (errors in T)
must be small encugh. This also follows from the second

term, which requires that

< £ whenever !L » 1
lLOS., !

This result specifies the uncertainty which can be

AT
T

tolerated in the LOS derivation at each frequency. In
essence, it establishes requirements for alignment and

calibration of the LOS reference system.

Consequence No. 4 —Model uncertainties (errors in 1)
must be small enough. This follows from both terms. Let-

ting errors in L be AL, these terms require that
1+ L +AL#0

for ail frequencies and all AL. One way to ensure that this

is true is to require
lAL |< ! 1«14 !
for all frequencies and all AL.

This is a statement of the robustness requirement of feed-
back systems and quantifies the amount of uncertainty

which can bte tolerated without loss of stability.

Mulii-Inputs and Multi-Outputs
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Figure 3-5. Class I: Conventional Attitude Control
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Figure 3-7. Class IIl: Attitude Control with Isolation
and Vibration Control
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Figure 3-12. Sensor Model with Unstructured Uncertainty

s v 7 v vy

[

.’ 1
|
-

|

Y

’)

"
’.
|

y

F .
y
3
y
-
.

L TN T W Sy Y

e LA




InFu+$

W

Pcrfur b ation

A

Nominal

CN+I"S

F[gur( 13,

Mode|

Mc“svreme'ds

K e

Coh‘rruuer

aen”d Stvechure

AT S S Ot

)

Err.fs

aadh

WP F PP G ]

L “ s
casa’ala gl




— Bl S S e g 2 s T T W W Y L Bl AT Tt Mol SRl B s Tefe et S St e S Ral el T B

e
Teable 1. LSS Uncertainty: Esfernal Disturbences and Noises . -
Saurce Frequency Range Cooments

Significant for low-altitude orbits, h < 500 km
A erodynarnic Lovw (Ortit Rate) (Dominant  "external  distuobence  for
h < 250 km)

Independent of altitxde (Dominant "external"

Soler Low (Ortit Rate) dishurbence 2t geosynchronous altitude)

Most significant et low altitude, but relatively o
weekfor A < R,

Gravity G radient Low (Ortit Rate)

|

Most sigrificent at low altitude but relatively | ®
weak function of altitude .

?'TJ

Earth M egnetic Low (Ortit Rate)

Therret Low (Ortit Rate) Independent of altitude
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Table 2 LSS Uncertainty: fterral Distirbences and Naise

Saurce

Stationkeeping Residual
Jet Imbalances

Typicelly the dominant ‘intemeal” dishrbance

Ll 2 et St s e Sam g Pafial

Solar Panel Drive

Mid, (Step)

Sensor/A chuator Errors

Low-Mid

Attitude Reference System
Biases,A lignment /Noise

Mid-Eigh

Rete Gyro Noise/D rift

All

Reection W heel Control M ament Gyro

Vibration

Mid-Eigh Nerrow

Reection W hesls /Control M oment G yros
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Cryogenic Coolers }lmgewhm
High-energy Weepons | present
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Teble 3 LSS Uncertainty: Perturbations

Actuators/Sensors Eigh

Frequency Range

Unknown or eporoximeted high-frequency
dynemics Often modelledas /7 + A

Al

Uncertain Mess, Stiffness Deamping Two
modelling options
1) Directly es parameter veristions

2) Indirectly as uncertein modal frequency,

Truncation

Ng@e&ed dynamics, meny modelling options,
primarty unstruchred
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