LOW FREQUENCY INSTABILITIES DRIVEN BY AN ION TEMPERATURE ANISOTROPY

NAVAL RESEARCH LAB WASHINGTON DC

Y C LEE ET AL. 08 MAY 85 NRL-MR-5552

UNCLASSIFIED
Low Frequency Instabilities Driven by an Ion Temperature Anisotropy

Y. C. LEE
Science Applications International Corporation
McLean, VA 22102

J. D. HUBA
Geophysical and Plasma Dynamics Branch
Plasma Physics Division

May 8, 1985

This work was sponsored by the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00129 and work unit title "Early Time Dynamics."

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
Low Frequency Instabilities Driven by an Ion Temperature Anisotropy

We present a detailed linear analysis of low frequency instabilities driven by an ion temperature anisotropy. In particular we investigate the electromagnetic ion cyclotron instability, the mirror instability, and the firehose instability. These instabilities require a high plasma parameter which is typical of an early time HANE plasma. The electromagnetic ion cyclotron and mirror instabilities also require $T_{\parallel} > T_{\perp}$, while the firehose instability requires $T_{\parallel} > T_{\perp}$. In general, we expect the early time coupling shell to have $T_{\parallel} > T_{\perp}$ so that the firehose instability is not obviously relevant to HANE situations but is included for the sake of completeness. We have also included analysis of the influence of an electron temperature anisotropy on the MHD instability. This is an extension and correction of the work of Basu and Coppi (1984). We discuss the application of this research to HANE phenomena.
16. SUPPLEMENTARY NOTATION (Continued)

This work was sponsored by the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00129 and work unit title "Early Time Dynamics."
CONTENTS

I. INTRODUCTION .. 1
II. DERIVATION OF DISPERSION EQUATION 3
III. ANALYSIS OF DISPERSION EQUATION 6
IV. DISCUSSION .. 14
ACKNOWLEDGMENTS ... 17
APPENDIX .. 20
REFERENCES .. 24
LOW FREQUENCY INSTABILITIES DRIVEN BY AN ION TEMPERATURE ANISOTROPY

I. INTRODUCTION

It is well known that HANE's can have deleterious effects on C^3I systems (for example, by disrupting satellite communications and radar systems) and it is therefore important to the Defense Nuclear Agency to understand the atmospheric effects of HANE's. The primary cause of these negative effects is the production of long-lasting, large-scale, ionization irregularities in the ionosphere. In order to understand the cause and evolution of these irregularities, the Naval Research Laboratory has developed and is continuing to develop detailed theoretical and computational models of HANE's. Of recent interest to DNA is a thorough re-examination of early time phenomena (t \lesssim 1 sec) which are primarily associated with the deposition of weapon energy in the atmosphere. Aside from radiation processes, the conversion of the kinetic energy of the debris into thermal energy of both the debris and air ions, and its ultimate deposition in the conjugate patches, is of particular importance. The important issues involved are debris-air coupling length and time scales, and thermalization processes. Underlying these issues are a host of complicated plasma physics processes. The ensuing turbulence which results from plasma instabilities can act as a means to thermalize the various ion species and to pitch angle scatter ions.

To date, the most intense effort to understand the role of plasma instabilities in early time HANE evolution has been directed at debris-air coupling. In this regard, NRL performed a series of investigations in the 70's to determine the anomalous transport properties of instabilities which could occur at the debris-air interface (Lampe et al., 1975). The effects of these instabilities on the evolution of the coupling shell were determined by incorporating the appropriate anomalous transport...
Coefficients in a multi-fluid code (Clark, private communication). Subsequently, further advances have been made in this area through the use of a one dimensional hybrid code. This code treats the electrons as a fluid but the ions as particles. This permits the instabilities, and their effects on the plasma, to be studied self-consistently (Goodrich et al., 1984). It has also been recently suggested that microturbulence could impact the evolution of structure causing instabilities (Huba, 1984). Thus, the point to be made is that plasma turbulence can have a significant impact on the early time evolution of a HANE.

The aforementioned studies of plasma instabilities have dealt with high frequency turbulence, i.e., \(\omega \gg \Omega_i \) where \(\omega \) is the wave frequency and \(\Omega_i = \frac{eB}{m_i c} \) is the ion cyclotron frequency. These instabilities impact very early time processes such as debris-air coupling and plasma thermalization. However, there are many low frequency instabilities (i.e., \(\omega \ll \Omega_i \)) that can be excited which may be important to early time HANE evolution. Specifically, the electromagnetic ion cyclotron instability (\(\omega \sim \Omega_i \)) has the capability of pitch angle scattering energetic ions (Davidson and Ogden, 1975). Debris and air ions are energized predominantly in a direction perpendicular to the ambient magnetic field \(B \). Electromagnetic ion cyclotron waves, if excited, can then "transform" this perpendicular energy to parallel energy. This allows energetic ions to stream down the field lines into the upper atmosphere to deposit their energy; an important consideration in HANE events such as Starfish. Recent 1D particle simulations have observed this effect (Ambrosiano and Brecht, 1984). Aside from the electromagnetic ion cyclotron instability, other low frequency hydromagnetic instabilities may be excited which can be important. For example, the mirror or firehose
instabilities (Hasegawa, 1971) generate electromagnetic turbulence which can propagate away from the coupling shell into the magnetosphere. These waves are capable of pitch angle scattering ambient radiation belt protons which can lead to a redistribution of high energy protons in the magnetosphere (Cladis et al., 1970). This issue is germane to satellite survivability since it is believed that Starfish caused the enhancement of high energy proton fluxes at low L shells (Filz, 1967) which affected the operation of several satellites.

One mechanism to generate the instabilities described above is an anisotropic ion distribution. Specifically, a bi-Maxwellian type distribution such that $T_{\parallel \parallel} \neq T_{\perp \perp}$ where $T_{\parallel \parallel}$ and $T_{\perp \perp}$ are the perpendicular and parallel ion temperatures, respectively. The purpose of this report is to investigate in detail the linear stability properties of low frequency waves ($\omega \ll \omega_1$) which are driven unstable by ion anisotropies. Specific application to HANE events will also be discussed.

The organization of the paper is as follows. In the next section we present the basic assumptions of the analysis and derive a general dispersion equation which describes low frequency modes ($\omega \ll \omega_1$). In Section III we present both analytical and numerical results. Finally, in Section IV we summarize our results and apply them to HANE's.

II. DERIVATION OF DISPERSION EQUATION

We assume a spatially homogeneous plasma with an ion temperature anisotropy ($T_{\parallel \parallel} \neq T_{\perp \perp}$) that is immersed in a uniform static magnetic field $\mathbf{B} = B_0 \hat{z}$. The perturbed electric field is taken to be $\mathbf{E}(x,t) = E_0 \exp \left[i(k \cdot \hat{x} - \omega t)\right]$ where $k = k_\perp \hat{x} + k_z \hat{z}$ without any loss of generality because of the symmetry of the unperturbed system. The perpendicular wavelength of
the perturbation is assumed to be much larger than the electron Larmor radius $\rho_e (k_\perp \rho_e \ll 1)$ but can be comparable to the ion Larmor radius $\rho_i (k_\perp \rho_i \sim 1)$. The frequency, as well as the growth rate, of the perturbation is taken to be of order of the ion cyclotron frequency ($\omega \lesssim \Omega_i$). For simplicity, we assume that the equilibrium ion distribution is described by a bi-Maxwellian distribution function

$$F_i(v^2_\perp, v^2_\parallel) = \left(\frac{m_i}{2\pi T_{i\perp}}\right)^{1/2} \left(\frac{m_i}{2\pi T_{i\parallel}}\right)^{1/2} \exp \left(-\frac{m_i v^2_\perp}{2T_{i\perp}} - \frac{m_i v^2_\parallel}{2T_{i\parallel}}\right),$$

(1)

where m_i is the mass of the ion species. The electron distribution function is assumed to be isotropic since collisions, as well as high frequency instabilities driven by any electron anisotropy, tend to remove the velocity-space anisotropy in the electron distribution on a very short time scale (i.e., $t \ll \Omega_i^{-1}$) [see Appendix].

Linearizing the Vlasov equation and using Maxwell's equation, a set of homogeneous equations $\mathbf{M} \cdot \mathbf{E} = 0$ describing the propagation of electromagnetic disturbances at an arbitrary angle with respect to the magnetic field can be obtained (Krall and Trivelpiece, 1973), where

$$\mathbf{M} = 1 - \frac{k^2 c^2 - c^2 k^2}{\omega^2} + \Sigma \frac{2\omega^2}{\omega_\alpha} \exp \left< \mathbf{P}_{\alpha} \mathbf{Q}_{\alpha} \right>$$

(2)

and

$$\left< \right>_{\alpha} \equiv 2\pi \int dv_{\parallel} \int 2v_{\perp} dv_{\perp} \left(\right),$$

$$\mathbf{P}_{\alpha} = \frac{n^n J^n}{k_\perp} A^n x + i v_{\parallel} J^n A^n y + v_{\parallel} J^n B^n z.$$
\[Q_n = \frac{n\Omega J_n}{k_\perp} x - i\nu_n J_n^* y + \nu_n J_n^* z \]

\[A_n \equiv \left[(1 - \frac{k_\perp^2}{\omega^2}) \frac{\partial f_a}{\partial \nu_n} + \frac{k_\parallel^2}{\omega} \frac{\partial f_a}{\partial \nu_n} \right] (\omega - n\Omega_a - k_\perp^2) \]

\[B_n \equiv A_n + \left(\frac{\partial f_a}{\partial \nu_n^2} - \frac{\partial f_a}{\partial \nu_n^2} \right)/\omega, \]

\[J_n = J_n(k_\perp^2/\Omega_a) \] is the Bessel function of order \(n \), \(J_n^*(x) = dJ_n/dx \), and \(\Omega_a = e\alpha_0/m_a c \) is the cyclotron frequency of species \(a \) (e: electrons and i: ions).

After performing the velocity space integration for both species and taking the appropriate small gyroradius limit for electrons, we obtain the dispersion equation

\[\text{det} [M] = 0. \] (3)

The components of \(M \) are

\[M_{xx} = 1 - \frac{k_\perp^2 c^2}{\omega^2} + \frac{\omega^2}{2} \frac{p_\perp}{\omega} \left(G_e + G_\nu_{-1} \right) + \frac{1}{2} \frac{\omega^2}{n} \frac{n}{x} G_n \]

\[M_{xy} = -M_{yx} = \frac{1}{2} \frac{\omega^2}{\omega} \left(G_e - G_\nu_{-1} \right) + i \frac{\omega^2}{n} \frac{n}{x} G_n \]

\[M_{xz} = M_{zx} = \frac{k_\parallel k_\perp^2 c^2}{\omega^2} + \frac{\omega^2}{2\omega^2} \left(H_e + H_\nu_{-1} \right) + \frac{1}{2} \frac{\omega^2}{n} \frac{n}{x} H_n \]

\[M_{yy} = 1 - \frac{k_\perp^2 c^2}{\omega^2} + \frac{\omega^2}{2} \frac{p_\perp}{\omega} \left(G_e + G_\nu_{-1} \right) + \frac{1}{2} \frac{\omega^2}{n} \frac{n}{x} \left(\nu \nu_n^* \right) \]

\[M_{yz} = -M_{zy} = i \frac{\omega^2}{\omega} \frac{k_\perp}{k_\parallel} H_e + i \frac{\omega^2}{n} \frac{n}{x} \frac{n}{n} \]

5
\[M_{zz} = 1 - \frac{k_1^2 c^2}{\omega^2} + \frac{2\omega^2}{k_1^2 v_e^2} e_0 + \frac{\omega^2}{k_1^2 \frac{\omega}{\epsilon}} \frac{\omega n \Omega_i^2}{\epsilon} x \frac{H_n}{x} \]

where

\[G_{e,n} = \frac{\omega - \omega n \Omega_i^2}{k_1 v_e} Z \left(\frac{x}{k_1 v_e} \right); \quad H_{e,n} = 1 + \frac{\omega - \omega n \Omega_i^2}{k_1 v_e} Z \left(\frac{x}{k_1 v_e} \right); \quad x = \frac{k_1^2 \frac{\omega}{\epsilon}}{2\Omega_i^2}, \]

\[G_n = \left[1 - \frac{\omega - \omega n \Omega_i^2}{\omega} \left(1 - \frac{T_\perp}{T_\parallel} \right) \right] \frac{\omega - \omega n \Omega_i^2}{k_1 v_\perp} Z \left(\frac{x}{k_1 v_\perp} \right) \cdot \left(1 - \frac{T_\perp}{T_\parallel} \right), \]

\[H_n = \left[\frac{T_\perp}{T_\parallel} + \frac{n \Omega_i^2}{\omega} \left(1 - \frac{T_\perp}{T_\parallel} \right) \right] \left[1 + \frac{\omega - \omega n \Omega_i^2}{k_1 v_\perp} Z \left(\frac{x}{k_1 v_\perp} \right) \right]; \quad \frac{T_\perp}{T_\parallel} = \frac{v_\perp^2}{v_\parallel^2}. \]

\(v_e \) is the electron thermal velocity, \(v_\perp \) and \(v_\parallel \) are the ion perpendicular and parallel thermal velocity, respectively, \(Z(\xi) \) is the plasma dispersion function, \(I_n(x) \) is the modified Bessel function of order \(n \), and \(\Gamma_n = d\Gamma_n/dx \).

III. ANALYSIS OF DISPERSION EQUATION

A. Electromagnetic Ion Cyclotron-Instability

We first consider the excitation of ion cyclotron waves with \(\omega \sim \Omega_i \).

For the case of parallel propagation (\(k_\parallel = 0 \)), the linear dispersion relation can be greatly simplified to give

\[\det [\mathbf{M}] = D_+ D_- \left(1 + \frac{2\omega^2}{k_1^2 v_e^2} e_0 + \frac{2\omega^2}{k_1^2 \frac{\omega}{\epsilon}} H_0 \right) = 0, \quad (5) \]

where

\[D_\pm = 1 - \frac{k_1^2 c^2}{\omega^2} + \frac{\omega^2}{k_1^2 \frac{\omega}{\epsilon}} G_\pm + \frac{\omega^2}{k_1^2 \frac{\omega}{\epsilon}} G_\pm. \]
Davidson and Ogden (1975) have shown that the transverse electromagnetic portion of (5) exhibits a strong instability in the presence of an ion temperature anisotropy such that $T_{li} > T_{li}$. This instability has a characteristic frequency at maximum growth rate of $\omega_p \lesssim \Omega_i$ and $\gamma \sim (\beta_{li}/2)^{1/2} \Omega_i$ where $\beta_{li} = 8\pi n_i T_{li}/B_0^2$, and the corresponding wavelength is such that $k_{\parallel}c/\omega_{pl} \gtrsim 1$. The electrostatic branch of the dispersion relation can be shown to be rigorously stable by the Nyquist technique.

The assumption that $k_{\perp} = 0$ corresponds to an "infinite" wavelength in the direction orthogonal to the ambient magnetic B_0. For application to HANE's this assumption is violated because the coupling shell has finite dimensions perpendicular to B_0. Thus, it is necessary to investigate the linear stability properties of ion cyclotron waves for oblique propagation using (3) and (4) if we are to apply this instability to HANE's. Since, in general, (3) and (4) are not amenable to analytical results we solve them numerically for a variety of parameters.

In Fig. 1 we show the growth rate γ/Ω_i vs. parallel wavenumber $ck_{\parallel}/\omega_{pi}$ for $\theta = 0^\circ$, 20°, 40°, 60°, and 80° where $\theta = \tan^{-1}(k_{\parallel}/k_{\perp})$. The other parameters used are $\omega_{pi}/\Omega_i = 400$, $m_i/m_e = 1836$, $T_{li}/T_{li} = 20$, $\beta_{li} = 1.0$, and $T_e/T_{li} = 0.1$. There are two major effects of oblique propagation on the excitation of electromagnetic cyclotron waves. First, the growth rate of the instability decreases as the waves become more oblique, i.e., as θ increases. However, even for θ as large as $\sim 50^\circ$ the growth rate is only reduced by a factor of two. Thus, the waves have substantial growth rates for a wide range of angles and are not confined to nearly parallel propagation. Second, in general, as θ increases the bandwidth of unstable modes in k_{\parallel} space decreases. The small k_{\parallel} cutoff remains roughly constant ($ck_{\parallel}/\omega_{pi} \sim 0.5$) for $0^\circ < \theta < 80^\circ$, but the large k_{\parallel} cutoff is reduced by
more than a factor of two. We note that the shape of the $\theta = 60^\circ$ growth rate is different from the others; namely, there is not a sharp falloff for modes with $k_\parallel > k_\parallel m$ where $k_\parallel m$ corresponds to the k_\parallel for maximum growth. There is almost a "plateau" in the growth rate in this region. This parameter regime corresponds to the Harris instability (Soper and Harris, 1965; Gary et al., 1976). The Harris instability only occurs for obliquely propagating waves and, in general, has a maximum growth rate less than the parallel propagating electromagnetic ion cyclotron instability (Gary et al., 1976).

In Fig. 2 we plot γ_m/ω_i and $ck_\parallel m/\omega_i$ vs. θ where γ_m denotes the maximum growth rate as a function of parallel wavenumber and $k_\parallel m$ is the corresponding wavenumber at maximum growth. The other parameters used are the same as in Fig. 1. These curves emphasize the major points indicated by Fig. 1: (1) maximum growth occurs for $\theta = 0^\circ$ (or $k_\perp = 0$, purely parallel propagating waves); (2) there is substantial wave growth for most angles of propagation; and (3) the wavelength of the fastest growing mode increases as the angle of propagation becomes more oblique (i.e., closer to perpendicular propagation).

B. MHD Instabilities

We now investigate low-frequency MHD instabilities i.e., $\omega \ll \Omega_i$. However, prior to presenting detailed numerical results, we first make several simplifying assumptions so that analytical results can be given. We assume that $\Omega_e, \Omega_i > \omega, k_\parallel v_e, k_\parallel v_i$ without any special ordering for $\omega/k_\parallel v_e$ and $\omega/k_\parallel v_i$. Making use of the approximation $\xi Z(\xi) = -1 - 1/2\xi^2$, for $\xi >> 1$ the following limiting matrix elements can be derived:
Equation (A9) corrects the algebraic error made in Basu and Coppi (1982), as well as extending their result to include ion temperature anisotropy. The instability criterion in this case is

$$k^2(c_A^2 + \alpha v_A^2) + k^2 v_A^2 [1 + \beta_{\perp} + \beta_{le} (1 - \frac{T_{le}}{2T_{le}})] < 0. \quad (A10)$$

For $k_\perp^2/k_{\parallel}^2 << 2/\beta_{\parallel}$, one of the mode becomes unstable if

$$\frac{T_{le}}{T_{le}} \beta_{le} > 2(1 + \beta_{\perp}). \quad (A11)$$

The unstable mode is superficially similar to the well-known MHD "mirror" instability, but since, as noted by Basu and Coppi (1982), "frozen-in condition" is not imposed, it is not identical to the mirror mode. The other mode is always stable, the reason that Basu and Coppi were able to obtain instability can be traced to the algebraic error they made.

In the other limit, $k_{\parallel} v_{\parallel} / k_{\perp} v_{le} >> \omega$, we find

$$\overline{M}_{zy} = \frac{\omega}{\omega} \frac{2}{\omega} \frac{k_{\perp} T_{le} - T_{le}}{k_{\parallel} T_{le} - T_{le}} \quad (A12a)$$

$$M_{yy} = D_{xx} = \frac{n_1^2}{n_1^2} [1 - \beta_{\perp} (\frac{T_{le}}{T_{le}} - 1) - \beta_{le} (\frac{T_{le}}{T_{le}} - 1)] \quad (A12b)$$

$$D_{xx} = 1 + \frac{2\omega}{2\omega} \frac{2\omega}{2\omega} \frac{2\omega}{2\omega} \frac{2\omega}{2\omega} \frac{2\omega}{2\omega} \frac{2\omega}{2\omega} \frac{2\omega}{2\omega}$$

$$\frac{k_{\parallel} v_{\parallel} T_{le} - T_{le}}{k_{\perp} v_{le} T_{le} - T_{le}} \quad (A12c)$$
where \(\bar{\alpha} = 1 - (\beta_{\parallel} - \beta_{\perp})/2 \), \(\beta_{\parallel} = \beta_{\parallel e} + \beta_{\parallel i} \), \(\beta_{\perp} = \beta_{\perp e} + \beta_{\perp i} \), and \(M_{xy} = M_{yx} = 0 \) as before. Focusing our attention again to the limit \(k_{\parallel} v_{e} >> \omega >> k_{\perp} v_{e} \), we find

\[
\bar{H}_{e0} = \frac{T_{\|e}}{T_{\|e}} \left(1 + i\sqrt{\frac{\omega}{k_{\|} v_{e}}} \right).
\]

Hence

\[
\bar{M}_{zy} = \frac{\omega^2 k_{\|}}{\omega n_{i}} \frac{T_{\|e}}{T_{\|e}} \quad \text{(A5)}
\]

\[
M_{yy} = D_{xx} - \bar{\alpha}^2 n_{i}^2 \left(1 + \beta_{\perp e} - \beta_{\perp e} \frac{T_{\|e}}{T_{\|e}} - 1 \right) \quad \text{(A6)}
\]

\[
D_{zz} = 1 + \frac{2\omega^2}{k_{\|} v_{e}} - \frac{\omega^2}{k_{\|} v_{e}} \quad \text{(A7)}
\]

Redefining \(\omega_s = k_{\parallel} v_{\perp e} (m_e/m_i)^{1/2} = k_{\parallel} c_{s\|} \) to be the parallel ion sound frequency, (8) can be simplified to

\[
1 - \frac{\omega_s^2}{\omega^2} = \frac{k_{\parallel}^2 \rho_{s\|}^2}{2} + \frac{\beta_{\perp e}}{2} \frac{(k_{\parallel}^2/k^2)(T_{\|e}/T_{\|e})}{\omega} - \frac{k_{\parallel}^2}{k_{\perp}^2 A} \left[1 + \beta_{\perp i} - \beta_{\perp e} \frac{T_{\|e}}{T_{\|e}} - 1 \right] \frac{k_{\parallel}^2}{k^2} \quad \text{(A8)}
\]

where \(\beta_{\perp e} = \frac{(2c_{s\|}^2/v_A^2)(T_{\|e}/T_{\|e})}{\rho_{s\|}^2} \), and \(\rho_{s\|}^2 = 2c_{s\|}^2/\omega_i^2 \).

Due to the smallness of \(k_{\parallel}^2 \rho_{s\|}^2 \), (A8) can be simplified by ignoring the \(k_{\parallel}^2 \rho_{s\|}^2 \) term, which results in the following coupled-mode equation.
APPENDIX

To recover the results of Basu and Coppi (1982), we need to include the electron temperature anisotropy. This can be most simply done by changing \(H_{e_1} \) to

\[
\tilde{H}_{e_1} = \frac{T_{e_1}}{T_{e_1}} + \frac{n_{e_1}}{\omega} \left(1 - \frac{T_{e_1}}{T_{e_1}} \right) \left[1 + \frac{\omega - n_{e_1}}{k_{\|} v_{\|} e_1} \right] \left(\frac{\omega - n_{e_1}}{k_{\|} v_{\|} e_1} \right)
\]

(A1)

and using \(G_{e_1} = \omega(\omega - n_{e_1})^{-1}(\tilde{H}_{e_1} - 1) \) for \(G_{e_1} \). In addition, the \(M_{yy} \) element of (4) should be modified as follows

\[
M_{yy} = 1 - \frac{\omega^2}{2\omega^2} \left(\frac{2k_{\|} v_{\|} e_1}{\omega^2} \tilde{G}_{e_0} + \tilde{G}_{e_1} + \tilde{G}_{e_{-1}} \right) + \frac{\omega^2}{\omega_{\|}^2} \frac{k_{\|}}{k_{\|}^2} \frac{n}{x^2} H_0. \]

(A2)

In the low frequency long wavelength limit, the matrix elements become

\[
D_{xx} = M_{xx} + \frac{n_{\perp}}{n_{\parallel}} \alpha = 1 + \frac{\omega_{\perp}^2}{\omega_{\parallel}^2} \text{ (A3a)}
\]

\[
M_{yy} = D_{xx} - \frac{n_{\perp}}{n_{\parallel}} \left(1 - \beta_{\perp} G_0 - \beta_{\parallel} G_{e_0} \right) \text{ (A3b)}
\]

\[
\bar{M}_{zy} = \frac{\omega_{\perp}^2}{\omega_{\parallel}^2} \frac{k_{\parallel}}{k_{\parallel}^2} \left(\tilde{H}_{e_1} - H_0 \right) \text{ (A3c)}
\]

\[
M_{xz} = M_{zx} = n_{\parallel} n_{\perp} \bar{\alpha} \text{ (A3d)}
\]

\[
D_{zz} = M_{zz} + \frac{n_{\perp}}{n_{\parallel}} = 1 + \frac{2\omega_{\perp}^2}{k_{\parallel}^2 v_{\parallel}^2} \tilde{H}_{e_0} + \frac{2\omega_{\perp}^2}{k_{\parallel}^2 v_{\parallel}^2} H_0. \text{ (A3e)}
\]
Fig. 2. Plot of $\frac{\gamma_m}{\Omega_i}$ and $\frac{c k_m}{\omega_{pi}}$ versus θ where γ_m denotes the maximum growth rate as a function of parallel wavenumber and k_m is the corresponding wavenumber. The other parameters are the same as in Fig. 1.
Fig. 1. Plot of γ/Ω_1 versus $c k_\parallel / \omega_{pi}$ for $\theta = 0^\circ$, 20°, 40°, 60°, and 80° where $\theta = \tan^{-1}(k_\parallel / k_\perp)$. The other parameters used are $\omega_{pi}/\Omega_1 = 400$, $m_1/m_i = 1836$, $T_{ii}/T_{ii} = 20$, $v_{i1} = 1.0$, and $T_e/T_{ii} = 0.1$. Note that although the growth rate is a maximum for $\theta = 0^\circ$, it still has an appreciable value for oblique propagation.
is believed to have occurred following Starfish (Filz, 1967). And second, these waves (i.e., electromagnetic ion cyclotron) have a significant component of δE_z since they propagate obliquely, i.e., $k_\perp > k_\parallel$. These waves can be resonance with cold magnetospheric electrons which can be heated to 10-50 eV. This can lead to enhanced particle precipitation (Cornwall and Vesecky, 1984).

ACKNOWLEDGMENTS

We thank Dan Spicer for helpful discussions. This research has been supported by the Defense Nuclear Agency.
applying these results to HANEs a minimum time scale $\tau \sim \Omega^{-1}$ is required before the instabilities can be excited. However, one expects an instability to e fold several times before the fluctuating fields reach a sufficiently large amplitude to affect the particles. Thus, the time scale on which ion cyclotron waves become important is $\tau \sim 5\gamma^{-1} \sim 15 \Omega^{-1}$. Note that the ion cyclotron frequency is based on the value of the compressed magnetic field in the coupling shell. Since this value can be as much as an order of magnitude (or larger) than the ambient field, this time scale can be relatively fast. For example, assuming $m_i = 28$, $B_0 = 5G$, and $Z = 1$ we find that $\Omega^{-1} = 0.6$ msec so that $\tau \sim 9$ msec. Thus, in modeling the effects of electromagnetic ion cyclotron turbulence on debris and air ions (namely, pitch angle scattering) a minimum time scale is required which should be implemented in early time codes which model debris patch formation. We roughly estimate this time scale to be $\tau_m \sim 15\Omega^{-1}$ although it is parameter dependent and specific burst conditions need to be considered to accurately determine τ_m. We also add that pitch angle scattering is not the only mechanism which can convert perpendicular ion energy to parallel ion energy. The inverse mirror force associated with the compressed magnetic shell can also cause this energy conversion. The time scale with this process is shorter than pitch angle scattering since it is not associated with wave turbulence.

The waves discussed in this paper can have other important implications for HANE disturbances. First, these waves can also pitch angle scatter high energy ambient radiation belt protons ($E > 1$ MeV). This can cause these high energy radiation belt particles to become trapped at lower L shells where defense and communication satellites reside. Enhanced fluences can then damage or incapacitate these satellites. In fact, this
anisotropy on the MHD instability and is an extension (and correction) of the work of Basu and Coppi (1982). Again, this is included for completeness. We now discuss the application of this research to HANE phenomena.

An important reason for this study was to investigate the stability properties of the electromagnetic ion cyclotron instability in order to determine whether or not it would be unstable in the HANE coupling shell. The significance of these unstable waves is that they pitch angle scatter ions, and therefore allow perpendicular energy to be transformed to parallel energy which is germane to debris patch formation. Most earlier studies focussed on parallel propagating modes which have "infinite" transverse wavelengths. However, the coupling shell has finite dimensions transverse to B_0 and one needs to consider oblique propagating modes for application to HANEs. The results of our analysis show that the electromagnetic ion cyclotron frequency has significant growth for a broad range of angles relative to B_0. Although maximum growth occurs for $\theta = 0$ (i.e., $k_\perp = 0$), waves have relatively strong growth up to $\theta \sim 80^\circ$. This corresponds to transverse wavenumbers in the range $0 \leq k_\perp \leq 5 k_\parallel$; since $k_\parallel \sim \omega_{pi}/c$ (see Fig. 1) we can rewrite this inequality as $0 \leq k_\perp \leq 5\omega_{pi}/c$. Transforming to wavelength space we find that $\lambda_\parallel \sim c/\omega_{pi}$ and $\lambda_\perp \geq c/5\omega_{pi}$. For HANE events such as Starfish and Checkmate, we note that the coupling shell width L is substantially larger than c/ω_{pi} at times $t \sim$ few Ω^{-1}_i, which implies $L >> \lambda_\parallel, \lambda_\perp$. Thus, electromagnetic ion cyclotron waves will easily "fit" into the coupling shell, so that they can play a significant role in pitch angle scattering ions.

In this regard, another important issue is time scale. The instabilities considered in this report require magnetized ions; thus, in
through the small coupling coefficient ε. The preceding results derived for mirror instabilities correspond to weak coupling approximation of (10) by treating $D(\omega, k)$ to be of the order of ε. If we assume instead that $\omega^2 - \alpha k^2 v_A^2 \sim O(\varepsilon)$, then we arrive at the "firehose" dispersion relation (19). It is trivial to see that the firehose stability condition is $\beta_\parallel - \beta_\perp > 2$. In fact the stability condition remains unchanged as we change the ordering of $\omega, k_\parallel v_e, \text{ and } k_\parallel v_\perp$. Even with the inclusion of the electron temperature anisotropy, the stability condition merely changes to $\beta_\parallel - \beta_\perp > 2$. It therefore seems that the "firehose" mode is a very robust MHD mode which is insensitive to the kinetic effects associated with the parallel motion of electrons and ions. The firehose instability should not be a major concern for HANE since it required $T_\parallel > T_\perp$ which is not satisfied under ideal HANE conditions, at least in the coupling region during early time.

IV. DISCUSSION

We have presented a detailed linear analysis of low frequency ($\omega \leq \Omega_i$) instabilities driven by an ion temperature anisotropy ($T_{\parallel i} \neq T_{\parallel i}$). In particular we have studied the electromagnetic ion cyclotron instability, the mirror instability, and the firehose instability. These instabilities require a high β plasma (i.e., $\beta > 1$) which is typical of an early time HANE plasma. The electromagnetic ion cyclotron and mirror instabilities also require $T_{\parallel i} > T_{\parallel i}$, while the firehose instability requires $T_{\parallel i} > T_{\parallel i}$.

In general, we expect the early time coupling shell to have $T_{\parallel i} > T_{\parallel i}$ so that the firehose instability is not obviously relevant to HANE situations but has been included for the sake of completeness. We have also included an Appendix which describes the influence of an electron temperature
mode which are unstable under conditions discussed in their paper, are no longer so in our isotropic electron limit. In fact it is easy to see that (16) admits real ω^2 roots (i.e., they are either purely growing or pure oscillatory), and the sole condition for instability is

$$k_\parallel^2(c_s^2 + \alpha v_A^2) + k_{\perp A}^2(1 + \beta_{\perp A} + \beta_e/2) < 0,$$ \hspace{1cm} (17)

which can only be satisfied for sufficiently negative values of α, or

$$\beta_{\parallel} - \beta_{\perp} > 2.$$ \hspace{1cm} (18)

The instability condition (18) is the same as that of "firehose" instability even though the usual "frozen-in" condition is not imposed, as noted by Basu and Coppi (1982), and the polarization is different from that of the usual firehose mode. A more detailed discussion of this point is given in the Appendix.

To recover the "firehose" instability, we note that (10) can be rewritten in the following form

$$\left(-\frac{\omega^2}{2} - \alpha\right)D(\omega, k) = \alpha k_{\perp A}^2 \equiv \varepsilon,$$ \hspace{1cm} (19)

where $D(\omega, k) = 0$ gives (11), the "mirror" mode dispersion equation. Equation (37) can be considered to be the linear mode-coupling equation between the mirror-type modes and the "firehose" mode

$$\omega^2 = \alpha k_{\parallel A}^2 \equiv \varepsilon - \frac{1}{2} (\beta_{\parallel} - \beta_{\perp}) k_{\perp A}^2$$ \hspace{1cm} (20)
where we have made use of the identity \(G_0 = H_0 - 1 \) to approximate \(G_0 \) by \(-1\).

From (14b), \(D_{zz} = 1 + \frac{k_{De}^2}{k_i^2} - \frac{\omega_{pi}^2}{\omega^2} = \left(\frac{k_{De}^2}{k_i^2}\right)(1 - \frac{\omega_s^2}{\omega^2}) \), where \(\omega_s = k_{||}\omega_{pi}/k_{De} = k_{||}c_s \) is the ion sound frequency. The dispersion relation (8) reduces to

\[
1 - \frac{\omega_s^2}{\omega^2} = a \frac{k_{||}^2 \rho_s^2}{k_{||}^2} + \frac{\beta_i}{2} \frac{k_{||}^2}{k^2} - \frac{2}{k_{||}^2 - \alpha} \frac{\omega_{pi}^2}{k_{||}^2} \frac{k_{||}^2}{k^2} \frac{1}{1 + \beta_{||}} - \frac{a}{k^2} \frac{k_{||}^2}{k^2}
\]

(15)

Here again, the smallness of \(k_{||}^2 \rho_s^2 \) allows us to drop the first term on the right hand side of (15) provided that \(|\omega^2 - \alpha k_{||}^2 \omega_{pi}^2| \gg k_{||}^2 \rho_s^2 \omega^2 \). The resulting dispersion relation becomes

\[
(1 - \frac{\omega_s^2}{\omega^2}) \frac{\omega_{pi}^2}{k_{||}^2 V_A^2} - \frac{\alpha}{k_{||}^2} - \frac{k_{||}^2}{k^2} \frac{1}{1 + \beta_{||}} = \frac{\beta_i}{2} \frac{k_{||}^2}{k^2} \frac{1}{2}
\]

(16)

Equation (16) closely resembles the equation derived by Basu and Coppi (1982) with one significant difference: their equation is derived under the assumption of large electron anisotropy and cold ions, whereas ours assumes isotropic electrons but retains temperature anisotropy for ions. Therefore the slow magnetosonic wave and the so-called "field-swelling"
where \(\rho_s^2 = 2c_s^2/\nu_1^2 = (v_e/\Omega_1)(m_e/m_i) \), \(v_A^2 = c_s^2/\nu_1 \), \(\beta_e = 2c_s^2/V_e^2 = 8\pi n_e/B_e^2 \) and \(\beta_{i1} = 2V_{i1}/V_e^2 = 8\pi n_i/B_i^2 \). For \(T_e = T_{i1} = T_{i1}' \), \(\rho_s^2 \approx \rho_{i1}^2 \), we find

\[
\frac{k^2_{||} \rho_s^2}{\omega^2} \ll 1, \text{ consistent with our long wavelength ordering. The smallness of } k^2_{||} \rho_s^2 \text{ immediately yields, for frequencies significantly different from } \sqrt{a_k V_A}, \text{ the following approximate dispersion relation}
\]

\[
(1 + \frac{T_e}{T_{i1}})\left[\frac{\omega^2}{k^2 V_A^2} - \frac{k^2_{||}}{k^2} \left[1 + \beta_{i1} (1 - \frac{T_{i1}}{T_{i1}'}) \right] \right] = \frac{\beta_e}{2} (1 - \frac{T_{i1}}{T_{i1}'}) \frac{k^2_{||}}{k^2}.
\]

The stability condition is given by

\[
\omega^2 = v_{i1}^2 \left[1 - \frac{1}{2} (\beta_{i1} - \beta_{i1}') k^2_{||} \right] + v_{i1}^2 \left[1 + \beta_{i1} (1 - \frac{T_{i1}}{T_{i1}'}) + \frac{\beta_e (1 - \frac{T_{i1}}{T_{i1}'})^2}{2(1 + \frac{T_e}{T_{i1}'})} \right] k^2_{||} > 0.
\]

For \(k^2_{||} \ll 2/\beta_{i1} \), the stability condition becomes

\[
1 + \beta_{i1} (1 - \frac{T_{i1}}{T_{i1}'}) + \frac{T_e \left[T_{i1}^2 + T_{i1}'^2 - 2 T_{i1} T_{i1}' \right]}{2 T_{i1}' (T_{i1}' + T_e)} > 0.
\]

It is easy to see that instability can only occur when \(T_{i1} \) is sufficiently larger than \(T_{i1}' \). The stability condition (13) is the same as that of the MHD mirror mode (Hasegawa, 1971). Note that mirror instability only takes place when both \(k_{||} \) and \(k_{\perp} \) are sufficiently nonzero, i.e., for oblique propagation.

2. Firehose Instability

In the limit \(k_{||} v_e \gg \omega \gg k_{\perp} v_{i1} \), \(H_0 = 1 + i\pi \omega/k_{||} v_e \), and \(H_0 = -\frac{1}{2} k^2_{||} v_{i1}^2/\omega^2 \). We arrive at the following approximate expressions for \(\bar{M}_{yz} \), \(M_{zz} \), and \(M_{yy} \):

11
1. Mirror Instability

First, let us consider the familiar mirror instability. This corresponds to the limit \(k_\parallel v_\parallel, k_\parallel v_e \gg \omega \). In this limit \(D_{zz} \) becomes very large, hence \(E_{\parallel}(E_{\parallel}) \sim 0 \) which is equivalent to "frozen-in condition" in ideal MHD treatment. Using small argument expansion for \(Z(\xi_\parallel) \) and \(Z(\xi_\perp) \), we find

\[
D_{zz} = \frac{\omega^2}{\omega^2} \frac{k_\parallel}{k_\parallel} \frac{(1 - T_{\parallel1})}{T_{\parallel1}}
\]

\[
M_{zy} = 1 + \frac{\omega^2}{\omega^2} \frac{p_1}{\alpha_1^2} \frac{k_\parallel}{k_\parallel} \frac{(1 - T_{\parallel1})}{T_{\parallel1}}
\]

\[
M_{yy} = 1 + \frac{\omega^2}{\omega^2} \frac{p_1}{\alpha_1^2} \frac{k_\parallel}{k_\parallel} \frac{(1 - T_{\parallel1})}{T_{\parallel1}}
\]

\[
D_{xx} = 1 + \frac{\omega^2}{\omega^2} \frac{p_1}{\alpha_1^2} \frac{k_\parallel}{k_\parallel} \frac{(1 - T_{\parallel1})}{T_{\parallel1}}
\]

\[
D_{zz} = 1 + \frac{\omega^2}{\omega^2} \frac{p_1}{\alpha_1^2} \frac{k_\parallel}{k_\parallel} \frac{(1 - T_{\parallel1})}{T_{\parallel1}}
\]

Approximating \(D_{zz} = (k_{De}/k_{\parallel1})(1 + T_e/T_{\parallel1}) \), \(k_{De} = 2\omega_e^2/v_e^2 \), and \(D_{xx} = \omega_{p1}/\alpha_1^2 \), the dispersion relation (8) reduces to

\[
1 + \frac{T_e}{T_{\parallel1}} = \alpha \frac{k_{\parallel1}^2 \rho_1^2}{\omega^2} + \frac{\beta_1}{2} \frac{\omega^2}{\omega^2} - \alpha \frac{k_{\parallel1}^2 \rho_1^2}{k_{\parallel1}^2 \rho_1^2} \frac{1 + \beta_{\parallel1} (1 - T_{\parallel1} / T_{\parallel1})}{k_{\parallel1}^2 \rho_1^2} \]

\[
(k_{\parallel1}^2 / k_1^2)(1 - T_{\parallel1} / T_{\parallel1})^2
\]

\[
1 + \frac{T_e}{T_{\parallel1}} = \alpha \frac{k_{\parallel1}^2 \rho_1^2}{\omega^2} + \frac{\beta_1}{2} \frac{\omega^2}{\omega^2} - \alpha \frac{k_{\parallel1}^2 \rho_1^2}{k_{\parallel1}^2 \rho_1^2} \frac{1 + \beta_{\parallel1} (1 - T_{\parallel1} / T_{\parallel1})}{k_{\parallel1}^2 \rho_1^2} \]

\[
(k_{\parallel1}^2 / k_1^2)(1 - T_{\parallel1} / T_{\parallel1})^2
\]
\[M_{xx} = 1 + \frac{\omega^2}{2} \frac{p_1}{n_1^2} - k_1^2 c^2 \left[1 - \frac{1}{2}(\beta_{\parallel i} - \beta_{\perp i}) \right] \]

\[M_{xy} = M_{yx} = 0 \]

\[M_{yy} = M_{xx} - \frac{k_1^2 c^2}{\omega^2} + \frac{k_1^2 c^2}{\omega^2} \beta_{\perp i} G_0 \]

\[M_{yz} = - M_{zy} = -i \frac{\omega p_i}{\omega n_i} \frac{k_1}{k_{\parallel i}} (n_0 H_0 - n_0 H_1) \]

\[M_{xz} = M_{zx} = \frac{k_1 k_{\parallel i}}{\omega^2} c^2 \left[1 - \frac{1}{2} (\beta_{\parallel i} - \beta_{\perp i}) \right] \]

\[M_{zz} = 1 - \frac{k_1^2 c^2}{\omega^2} \left[1 - \frac{1}{2}(\beta_{\parallel i} - \beta_{\perp i}) \right] + \frac{2\omega^2}{k_{\parallel i}^2 v_e} n_0 H_1 + \frac{2\omega^2}{k_{\parallel i}^2 v_{\perp i}} H_0 \]

where \(\beta_{\parallel i} = \omega_{\parallel i} v_{\parallel i}^2 / \Omega_{\parallel i} c^2 \), \(\beta_{\perp i} = \omega_{\perp i} v_{\perp i}^2 / \Omega_{\perp i} c^2 = 8\pi n T_{\parallel i} / B^2 \). In deriving (6) we have omitted terms which are smaller by order \(\omega / \Omega_{\parallel i} \) and \(\omega / \Omega_{\perp i} \). In addition, we have taken the small ion Larmor radius limit \((k_{\parallel i} \rho_i << 1) \). For \(\beta_{\parallel i} = 1 \) we can also neglect the 1 in \(M_{xx} \) as well as \(M_{zz} \) since \(\omega_{\parallel i} / \Omega_{\parallel i}, k_{\parallel i}^2 c^2 / \omega^2, k_{\parallel i}^2 c^2 / \omega^2 \gg 1 \). We now show how the well known mirror and firehose instabilities are recovered when subsidiary orderings are made.

Writing \(M_{zy} = iM_{zy} \) to make explicit the \(i \) dependence, we can express the dispersion relation (6) in the following compact form:

\[M_{zz} = \frac{n_{\parallel i}^2 n_{\perp i}^2 (1 - \frac{1}{2} (\beta_{\parallel i} - \beta_{\perp i}))^2}{M_{xx}} + \frac{n_{\parallel i}^2}{M_{yy}} \]

where \(n_{\parallel i}^2 \equiv c^2 k_{\parallel i}^2 / \omega^2 \) and \(n_{\perp i}^2 \equiv c^2 k_{\perp i}^2 / \omega^2 \). Further simplification is possible with the introduction of \(\alpha \equiv 1 - \frac{1}{2} (\beta_{\parallel i} - \beta_{\perp i}) \), \(D_{xx} \equiv M_{xx} + \alpha n_{\parallel i}^2 \), and \(D_{zz} \equiv M_{zz} + \alpha n_{\perp i}^2 \).
The "firehose" branch in this case still remains the same, but the coupled-mode equation becomes

\[
\left(-\frac{\omega}{2k^2} - \frac{k}{2} \alpha \right) - \left(1 + \beta \right) - \frac{T_{le}}{T_{||}} - \beta \frac{T_{le}}{T_{||}} \left(\frac{k^2}{k^2} \right) = \frac{\beta_{\perp} \left(\frac{k}{2} \right)}{2 \left(1 + \frac{T_{le}}{T_{||}} \right)} \left(\frac{T_{le}}{T_{le}} - \frac{T_{le}}{T_{||}} \right)^2.
\]

\[(A13) \]

Notice that the parallel ion-sound branch is gone because \(k \cdot v_{\|} >> \omega \), which means that both electrons and ions respond adiabatically to parallel electric field. The stability condition is given by

\[
\omega^2 = v^2_A \left[1 - \frac{1}{2} \left(\beta_\parallel - \beta_\perp \right) \right] k^2_A + v^2_A \left[1 - \beta_\parallel \frac{T_{le}}{T_{||}} - \beta_\perp \frac{T_{le}}{T_{||}} + \right.

\left. \frac{\beta_{\perp} \left(\frac{T_{le}}{T_{le}} - \frac{T_{le}}{T_{||}} \right)}{2 \left(1 + \frac{T_{le}}{T_{||}} \right)} \right] k^2_A > 0.
\]

\[(A14) \]

For \(k_\parallel^2/k^2 << 2/\beta_\parallel \), the instability condition is the same as that of the MHD mirror instability (Hasegawa, 1971). Note that "frozen-in" condition is satisfied when \(k \cdot v_{\|} \cdot k \cdot v_{\|} >> \omega \) since the perturbed parallel electric field is completely shielded out by the parallel electron and ion adiabatic response.
REFERENCES

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DDST
03CY ATTN RAEE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAO/DNA
BUILDING 20676
KIRTLAND AFB, NM 87115
01CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JSTPS/JLKS
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEFENSE TECHNICAL INFORMATION CENTER
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEFENSE TECHNICAL INFORMATION CENTER
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WWMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD
COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN NICO LIBRARY
01CY ATTN ETDPS B. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
01CY ATTN DOC LIBRARY/TSLD
01CY ATTN OCSE V. COYNE

SAMSO/SZ
PST OFFICE BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
01CY ATTN SZJ

SAMSO/SK
P.O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
01CY ATTN SKA (SPACE COMM SYSTEMS)
M. CLAVIN

SAMSO/MN
NORTON AFB, CA 92409
(MINUTEMAN)
01CY ATTN MNNL

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSCOM AFB, MA 01731
01CY ATTN EEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.C. 20545
01CY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR D. SHERWOOD

EG&G, INC.
LOS ALAMOS DIVISION
P.O. BOX 809
LOS ALAMOS, NM 88544
01CY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR TECH INFO DEPT
01CY ATTN DOC CON FOR L-389 R. OTT
01CY ATTN DOC CON FOR L-311 R. HAGER

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN DOC CON FOR J. WOLCOTT
01CY ATTN DOC CON FOR R.F. TASCHEK
01CY ATTN DOC CON FOR E. JONES
01CY ATTN DOC CON FOR J. MALIK
01CY ATTN DOC CON FOR R. JEFFRIES
01CY ATTN DOC CON FOR J. ZINN
01CY ATTN DOC CON FOR P. KEATON
01CY ATTN DOC CON FOR D. WESTERVELT
01CY ATTN D. SAPPENFIELD

SANDIA LABORATORIES
P.O. BOX 5800
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR W. BROWN
01CY ATTN DOC CON FOR A. THORNBROUGH
01CY ATTN DOC CON FOR T. WRIGHT
01CY ATTN DOC CON FOR D. DAHLGREN
01CY ATTN DOC CON FOR 3141
01CY ATTN DOC CON FOR SPACE PROJECT DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR B. MURPHEY
01CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
01CY ATTN DOC CON DR. YO SONG
OTHER GOVERNMENT

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303
01CY ATTN A. JEAN (UNCLASS ONLY)
01CY ATTN W. UTLaUT
01CY ATTN D. CROMBIE
01CY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
01CY ATTN R. GRUBB
01CY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
01CY ATTN I. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOWER
01CY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 RUTLAND DRIVE
AUSTIN, TX 78758
01CY ATTN L. SLOAN
01CY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
01CY ATTN J. WORKMAN
01CY ATTN C. PRETTIE
01CY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. HALL
01CY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN D.J. COX
01CY ATTN J.P. GILMORE

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
01CY ATTN H. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, Calif 90401
01CY ATTN C.B. GARBARD
01CY ATTN R. LELEVIER

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
01CY ATTN J. ROBERTS
01CY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GOSSARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M.H. BORTNER
SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201
01CY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES
CO., INC.
HMES
COURT STREET
SYRACUSE, NY 13201
01CY ATTN G. MILLMAN
END

FILMED

7-85

DTIC