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1. INTRODUCTION

This report compares different models and algorithms for
computing the excess sound attenuation for sound propagation
over near-level terrain. On the basis of these comparisons and
other considerations, the report provides recommendations for

the excess sound attenuation algorithms incorporated in NOISEMAP
calculations.

The comparisons of models are based upon differences in
A-weighted sound levels at varying distances from aircraft with
and without the excess sound attenuation adjustments applied.
The excess sound attenuation adjustments for most models are
applied to aircraft flyover 1/3 octave band noise spectra.
These comparisons provide a basis for estimating the practical

differences in the different models for computing excess sound
attenuation.*

The excess attenuation data that were studied included
curves derived from the recent excess attenuation measurements
conducted at Wright-Patterson AFB [1],[2] and curves based upon
theoretical ESA values using model parameters that provided a
good fit between theory and the field experiments as well as the

existing NOISEMAP model [3] and the SAE excess attenuation
curve [4].

*The airport noise prediction models in widespread use in this
country are based on the A-weighted sound level method (typi-
cally with single flyover noise events described in terms of the
sound exposure level (SEL) and with day-night level (DNL) as the
descriptor of the 24-hour noise environment).
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Sections 2 and 3 of the report discuss the method of

approach and summarize the comparisons. Section 4 discusses the

results. The last section provides recommendations for the

NOISEMAP programs.

This report describes an extension and an application of

the work discussed in reference 2. The reader is referred to

reference 2 for definition of many of the terms, and for details
of the theoretical model utilized in this report.
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2. METHOD OF APPROACH

As discussed in Ref. 2, the experimental ESA measurements
(referred to herein as the Dayton measurements) have been
analyzed to yield average values of excess attenuation for
certain ranges of wind component speeds* and temperature
gradient conditions. Further, theoretical predictions of excess
sound attenuation over a flat surface of uniform impedance were
found to provide a reasonable fit with the experimental data
(for near neutral temperature conditions and near zero wind
component conditions) for selected values of flow resistivity
and atmospheric turbulence parameters in the theoretical model.
Both the field data and theoretical calculations provide values
of excess sound attenuation in 1/3 octave bands at different
distances from the source.

In most NOISEMAP applications and in most practical
community noise prediction applications as well, the noise
measure of interest is the A-weighted sound level. Thus, it is
of great practical interest to compare different ESA algorithms
in terms of their influences on A-weighted noise level results
that are not obtainable directly from either the field
measurements or analytical studies.

The shape of the noise spectrum varies among aircraft and
engine power settings at a given reference distance. The
spectrum shape also varies significantly with distance from the
aircraft due to air attenuation. Hence, the calculated
differences in A-levels with and without excess attenuation
adjustments applied to the noise spectrum may be expected to
vary as a function of aircraft type, power setting, and
distance. Thus, in comparing different ESA assumptions, the
basic approach was to use the different sets of 1/3 octave band
spectra versus distance data for different aircraft and to

*The wind component is taken as the magnitude of the wind speed
in the direction of sound propagation.
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compute differences in A-levels with and without the excess
attenuations applied to the data. The resulting differences in
A-levels could then be compared among aircraft.

2.1 Selection of Noise Spectra f"
Flyover noise vs distance data were selected to provide a .ii
variety of spectrum shapes representing noise levels produced by ;k

turbojet, turbofan, and turboprop aircraft at distances ranging

different aircraft at a slant distance of 1000 feeﬁﬁ

from 200 to 25,000 ft. Eight spectrum sets were selected from fii
those in Ref. 5, representing typical takeoff and approach 'gfﬁ
levels for the C-135A (turbojet), C-9A (low bypass ratio 8
turbofan), C-130H (turboprop), and F~16 (afterburner turbojet). ;ﬁ
A ninth spectrum set--that for the Challenger 600, a business Q;E
aircraft powered with a high bypass ratio turbofan- was also ;;ﬁ
selected. Figures 1 through 5 show the noise spectra for the &;;

2.2 Selection of ESA Data

The special digital computer program (Omega 13) discussed ;-.
in Ref. 1 provided capabilities for sorting the experimental ESA i
data for specified ranges of temperature gradient and wind ¢?Q
component values. For each sort program, the program computed
average values for each 1/3 octave band at the measured
distances. The program also provided a regression curve**fitted .'
to the data and computed ESA values at various specified {33
distance intervals based on the fitted regression curve.

Three regression curve analyses were selected. All of the
analyses represented over-ground propagation under neutral

* Reference 5 was chosen because it has a large volume of flyover noise data fﬁ(“v
where the microphone was directly under the aircraft's flight path and data .

results are in terms of A-weighted levels with and without ESA added into them.
An independent check by an AFAMRL scientist confirmed that conclusions and
recommendations drawr in this report would have been the same had average
ground-runup noise gata (averaged around the aircraft) been used instead of
flyover data. EROE

** A fifth-order polynomial curve
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reference position of 250 feet. This is consistent with the

approach used in comparing theory with field data in reference
2.

A third set of theoretical ESA values, the ESA values
for a flow resistivity of 100 cgs rayls, was calculated in terms
of differences re a hard surface. This assumes that the
reference measurements were all made above a hard surface, and
are now to be applied to estimate noise levels, at 250 ft
distance and greater, above a grassy surface.

The three sets of theoretical ESA values are tabulated

in Table 3. A comparison of these ESA values at a distance of
2000 feet is shown in Fig. 8.

Each of the above seven sets of ESA values is
frequency-dependent. A-level differences obtained by use of
these ESA sets were also compared with the SAE ESA curve (ref.
4) which is not frequency-dependent.
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temperature gradient conditions. Three ranges of wind component
values were selected:

B L
e
»

WL T O

-3 to -1 m/s (-6.7 to -2.2 mph)
-1 to +1 m/s (-2.2 to +2.2 mph)
+1 to +3 m/s (+2.2 to +6.7 mph)

These three sets of wind conditions were selected to
cover a range of wind conditions spanning moderate upwind to
moderate downwind propagation.

A fourth set of ESA curves is represented by the
current NOISEMAP algorithms (ref 3). The NOISEMAP algorithms
plus the three ESA curves derived from the Dayton field
measurements represent excess attenuation curves derived from
;j field measurements. The ESA values for these four sets are
tabulated in Tables 1 and 2. Plots of the ESA values at
W distances of 2000 and 5000 feet are shown in Figure 6 and 7.

Three sets of theoretical ESA values were computed*
based upon two sets of parameters that had been found to provide
a reasonable fit with the experimental Dayton data as discussed
' in reference 2. Flow resistivity values of 100 and 150 cgs
- rayls were assumed. Turbulent atmosphere parameters of
fluctuating index of refraction of 1 x 10-7 and amplitude
phase covariance values of 0.85 were assumed.

For both flow resistivity values, ESA values were
computed in terms of the difference in ESA with respect to
measurements at a reference measuring position at 250 feet from

N .
B+ | LSOO

4, 8%

the aircraft source. This assumes, in essence, that no excess
sound attenuation occurred between the aircraft and the

A e

v .
LR )

* The theoretical model is described in Appendix A of Reference ‘
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3. ANALYTIC RESULTS

A-level differences for the three sets of ESA values
based on the Dayton field measurements and also A-level
differences using the current NOISEMAP algorithms* are shown for
each aircraft spectrum set in Figs. 9 through 17. These show
clearly the significant differences in ESA values for the three
wind conditions varying from moderate upwind to moderate
downwind conditions. Note that the ESA values for the NOISEMAP
algorithm, shown in the figures, approximate the values for the
field data for downwind conditions at distances of about 1000
feet or greater. Without the 5dB added to the values of Table 2,
the NOISEMAP values fall well below the downwind field curve.

Figures 18, 19 and 20 show the average excess

4 SR

attenuation as well as the maximum and minimum values for the
nine spectra for each of the three wind component conditions.
The average values together with the standard deviation for
these three conditions and for the NOISEMAP calculations are
tabulated in Table 4. For the three wind component conditions .
the standard deviations range from approximately 0.6 to 4 dB, o
typically averaging 2 dB or less with the values generally o
tending to increase with distance. KNG
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* The NOISEMAP ESA values in Table 2 (with +5 dB) were used to obtain
the NOISEMAP, A-level difference curves in Fiqures 9 through 17.
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With regard to NOISEMAP, there are two questions that
become important: (a) How well do the conditions under which the
Dayton measurements were obtained represent "typical" airport
conditions? and (b) What wind conditions (upwind, downwind,
no-wind) should be selected for NOISEMAP applications?

The current NOISEMAP algorithms reflect a conscious choice
to utilize ESA values that are based on downwind, rather than no
wind or upwind conditions. This conservative approach differs
from the SAE selection of a curve based on essentially no wind
conditions. This downwind choice is based primarily on the

consideration that:

(1) jet takeoff noise is the major noise source
at most airports

(2) for jet aircraft at high thrusts, more noise
is radiated to the rear quadrant than to the
forward quadrant

With most takeoffs occurring into the wind, factors (1) and
(2) suggest that the wind component for the maximum takeoff
levels will average to have a net downwind value.

On this basis, ESA curves based on the moderate downwind
Dayton measurements appear most suitable for calculating
over-ground noise levels. One factor which may limit the
applicability of curves derived from the Dayton measurements to
the NOISEMAP prediction program is that many airport
applications involve propagation over non-level, non-uniform
terrain, frequently with obstacles that reduce or block direct
line-of-sight propagation. The extent to which the ESA values
derived from Dayton field measurements hold for such conditions

is unknown.

Despite this limitation, which can best be resolved by
additional field work, it is believed that the Dayton
measurements represent a more extensive and more detailed data
base upon which to develop ESA curves than the data base from
which the ekisting NOISEMAP algorithms were derived (ref 8).
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5. RECOMMENDATIONS FOR NOISEMAP

This study shows that sets of ESA values derived from the
Dayton field measurements predict ESA differences in terms of
A-levels that are reasonable and are in accord with expectation
(i.e., large differences with wind conditions). Comparison of
these curves with the SAE algorithms show differences that are
explainable and rational. Comparisons with the NOISEMAP curves
show differences that are not fully explainable without better
information about the propagation effects when line of sight
propagation does not exist.

Comparisons of A-levels based upon the Dayton measurements with
theoretical models (for low wind conditions) show reasonable
agreement. This provides considerable experimental support of
theoretical analysis in other propagation applications. It also
supports the use of the curves derived from the field data for
propagation predictions over nearly level surfaces.¥*

With respect to NOISEMAP application, a quote from
Reference 2 is meaningful:

Contours generated by NOISEMAP are usually intended to depict a
noise environment in the vicinity of an airbase based upon
'typical’' or 'average' conditions existing over a period of
time, usually average annual conditions. To this end, it is
desirable to use air absorption and excess attenuation values as
a representative of average conditions at the particular
airbase. Where it is difficult to determine average conditions
over a year, or where there are large seasonal differences, the
intent is to select conditions that are representative during
the time of the year that people are likely to be most sensitive
to noise (summer rather than winter conditions, for example).
...Considering prevailing wind conditions and the variation in
terrain that exist around any airbase, it is clear that average
excess attenuation values, when they are accurately determined,
will vary from point to point, and will vary with respect to the
source location. It will probably never be practicable, or
desirable, to determine sets of average excess attenuation
values for each different grid location in computing contours.

Tt {s believed that the ESA values derived from the Dayton

measurements (Table 1) provide reasonably accurate values for
estimating excess attenuation for zero, and moderate positive
and negative wind component values for propagation over -
near-level grassy terrain. DA
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6. With regard to the excess attenuation values based upon the
theoretical model, the ESA values for the two assumptions as
to the ground flow resistance show very little difference,
reflecting. the relatively very small difference in the shape
of the ESA values at any given distance. However, the
choice of reference conditions can result in sizable
differences (compafe Figs. 22 and 23 with 24).

Although the absolute magnitude of the ESA differences with
the theoretical model compared to the zero wind Dayton
curves are not far different, there are differences in the
rate of change with distance, as noted clearly in Fig. 25.
However, the differences do not appear large enough to

destroy the great usefulness of the theoretical model for
further calculations.*

*The use of a theoretical model in predicting the change in ;*f*x

excess attenuation as a function of elevation angle is discussed
in Ref.7.
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additional experimental measurements -- or more detailed
theoretical analysis.

A significant portion of the observed Dayton attenuation, at
least under no wind conditions, is similar to what is expected
theoretically due to interference from a surface of finite
impedance. Thus, the blockage of line-of-sight propagation, by
disrupting reflection effects, may result in increased noise
levels (lower ESA values) compared to levels without the
blockage.

5. The SAE curve is displaced by the order of 2 to 3 dB above
the zero wind component Dayton curve out to a distance of
approximately 3000 feet. The curves are near parallel for
shorter distances, a situation that is understandable since both
curves are based upon field measurements over grassy surface
under Tow-temperature gradient and low-wind component
conditions.*

* The SAE curve has been derived from octave band ESA values
based upon the measurements under winter conditions at Radlett,
England (Ref. 6). In a manner similar to that used in this
study, the octave band ESA corrections were applied to a variety
of aircraft spectra and a mean curve was developed. The Radlett
field measurements extended only to 3600 feet, which accounts
for the leveling off of the SAE curve at distances above about
3000 feet as shown in Fig. 21. The greater attenuation at
shorter distances given by the SAE curve may be accounted for,
tn large part, from the fact that the reference measuring
positions in the Radlett measurements were much closer to the
source that the 250-foot distance for the Dayton measurements.
Hence, the reported attenuation values from the Radlett
measurements likely include more of the "total" excess
attenuation between the source and distant measurement
positions. This does not mean there are probliems with the
Dayton data since, in the NOISEMAP application of Dayton data,
the noise source is always defined by the noise data at 250
feet, the reference microphone locations.
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factor also implies that the small changes in the ESA values
as a function of frequency at any given distance are likely
to have little effect on the resulting A-level ESA
difference; i.e. the A-level differences are not sensitive
to small changes in ESA values.

4. Two sets of NOISEMAP ESA curves are typically employed in
current contour calculations:

1. Values as given in Table 2 are used to determine
noise levels at varying distances for ground runup
noise.

2. Values of Table 2 with a value of 5 dB added
are used for predicting flight noise and
predicting the transition between over ground
propagation and overhead propagation of air-
craft flight noise (see ref. 7).

With the 5 dB addition to the values of table 2, the
NOISEMAP and Dayton downwind curves yield similar values of
attenuation over the distance range of approximately 1000 to
4000 feet with the NOISEMAP values exceeding the downwind
data curves at shorter or longer distances. Without the 5 dB
added, the NOISEMAP curves fall below the downwind data
curves over most of the distance range.

The NOISEMAP curves (without the added 5 dB) are based upon
downwind noise propagation measurements at commercial
airports in which line-of-site propagation was

blocked -~ a situation frequently encountered in both
military and civil airfield situations.

A key question to be answered is to whether downwind
propagation with blockage results in lower or higher
noise levels then would be expected for line-of-gsight
propagation. The differences between the NOISEMAP.
curve (without the 5 dB adjustment) and downwind data
curves cannot be fully explained or understood without
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1. Spectrum shape does influence the A-level differences, and
the differences in A-levels among aircraft are quite sizable
(standard deviations among spectrum of the order of 1 to 2
dB).

2. As expected, there are very sizable differences in the
A-level attenuation with wind conditions. For neutral and
upwind propagation, the A-level differences show an almost
constant rate of increase with the logarithm of distance.
For upwind propagation the rate is approximately 4.3 dB per
octave (14.3 dB per decade) and with zero wind component the
rate of change with distance is nearly the same--3.5 dB per
doubling of distance (11.7 dB per decade distance of
change). The displacement between the two curves is
roughly constant, varying from 7 to 11 dB. The downwind
condition obviously shows much lower attenuation and the
rate of change with distance is more irregular.

3. The rate of change of A-level differences as a function of
distance is a function of both the ESA values and the change
in noise spectrum shape due to air absorption. The ESA
~values are at a maximum at midfrequencies of the order of
200 to 500 Hz; hence, the reduction of levels in this
frequency range affects the A-levels increasingly as the
higher frequency levels decrease with distance due to air
absorption. Thus, even with a constant set of ESA values
that did not increase with distance, there would be an
increase in the A-level differences with distance because of
the loss of high-frequency sound energy. As an example, the
maximum attenuation values in any given 1/3 octave band for
the upwind propagation increase with distance out to
approximately 3000 feet, and do not increase at higher
distances. However, the A-level ESA values show a
near-uniform rate of increase out to 10,000 feet. This
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The average values for the three wind conditions as well as
for NOISEMAP, all from Table 4, are plotted in Fig. 21 together
with the SAE excess attenuation curve (which, as noted earlier,
is aircraft-independent). The SAE curve follows the trend of
the curve for the zero wind component conditions out to a
distance of approximately 4000 feet, then leveling off at
greater distances. Also note that the SAE curve is greater than
the average attenuation given by the NOISEMAP algorithms for
distances greater than 500 feet.

il Turning now to the excess attenuation calculations using
- the theoretical excess attenuation model, Figs. 22, 23, and 24 S
» show the average excess attenuations for the nine aircraft
spectra together with maximum and minimum values for the three
theoretical assumptions. A1l three of the curves represent i
excess attenuation under neutral temperature gradient and low =
wind conditions; hence, they can best be compared with the
experimental data for low wind component (-1 to +1 m/s) con-

ditions. A comparison of values for the 100 cgs rayls as-
sumptions (Fig. 24) is given in Fig. 25. This shows, on an
expanded scale, the average differences in A-level excess
attenuation for the nine aircraft spectra comparing the Dayton
values minus the theoretical values. You will note that the
average differences are less than *2 dB out to a distance of
approximately 6300 feet. However, the A-level differences for
the theoretical model show a slightly greater rate of increase
with distance out to about 3150 feet and then show a lower rate
of increase for greater distances.

4, DISCUSSION
Comparisons of the exper? :1tal attenuation values using differ-
ent aircraft spectra show the following:




TABLE 4. AVERAGE A-LEVEL ESA DIFFERENCES FOR NINE
AIRCRAFT SPECTRUM SETS

WIND COMPONENT
-3 TO -1 M/S -1 T0 +1 M/S +1 TO +3 M/S NOISEMAF

‘DISTANCE AVE. STD DEV AVE. STD DEV AVE, STD DEV AVE. STD DEV

FEET dr dl dB dB dE dE dH de

250 O O O 0 0 0 5.00 0 e
315 0 0 0 O 0 0 5. Q0 0 j‘ﬁ
400 8.98 0.52 2.27 1.17 2.25 1.16 S.00 O
300 10,22 0.62 3.07 1,320 3,03 1.27 5. 00 O - e
630 11.67 0.82 4,02 1.52 .77 1.38 5.01 0.01 ﬂ?;
800 3.27 1.01 S5.11 1.70 4.44 1.36 5.03 0,03 fﬁ;_
1000 14.8%9 1.21 6.38 1.89 S.160 1,32 S.11 .09 o
1250 15,49 1.38 7.67 1.946 S.464 1.15 .22 Q.11

1600 17.88 1.58 9.25 2.25 5.93 1.29 5.38 0.18

2000 12.76 1.66 10,564 2.21 6.12 1,20 S5.93 0.24

2500 21.01 1.64 11.89 2.24 6.27 1.15 5.86 0.31

3150 21.95 1.60 12.77 2.27 6.32 1.23 6.42 0,42

4000 23.04 1.47 13.65 2.41 b.36 1.32 7.22 0.53

SO00 24.47 1.48 14.76 2.58 6.83 1.54 8.43 0.76

S0 2&6.04 1.57 16.01 2.61 7.4:2 1.78 ?.80 0,93

8OO0 27.51 1,72 17.08 .27 8.15 2.01 10.48 1.10

10000 29.17 1.82 17.92 .97 9.21 2.12 11.74 1.18
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Dea 4.

Thus, it is recommended that ESA curves based on the moderate
downwind Dayton data (win‘component range of +1 to +3
meters/second, Table 2, page 15) replace the current NOISEMAP
ESA algorithms. It is further recommended that a single set of
curves be used for both flight and ground noise.

The typical effect of implementing of these recommendations can
be estimated from Figure 21 (and Figures 9 through 17).

(a) For ground runup noise, the Dayton downwind
curves will predict lower levels (of the
order of 0 to 4 dB out to 10,000 ft)

(b) For flight noise, the Dayton downwind curves will
predict higher levels out to approximately 1000 ft
distance, nearly similar levels over the range from
1000 to 4000 ft, and slightly lower levels at
distances beyond 4000 ft.

(c) Compared to the SAE curve, the Dayton downwind curves

will - "nerally predict consistently higher levels of the
order of 2 to 6 dB.

To obtain better information on over-ground propagation when
terrain or buildings block line-of-sight propagation, it is
strongly recommended that additional ESA field data, similar to
the Dayton measurements, be acquired over more irregular
terrain, as discussed in reference 2.
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