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ABSTRACT

In this tkesis we\describeﬁﬁhe design and implementation
of two prototype interpreters fc¢r Omega, an object-oriented,
production-rule proyramming language. The first implementa-
tion is a throw-away fprototype written in LISP; the second
implementation is a more complete version written in C. The
Omega language features two major components: a set of
production rules executed through pattern-directed invoca-
tion, and a relational database of values and objects. He
develop a simple system of rule evaluation which relies on
hashed indexing for rule selection and a list implementation
of relations. The system!s fperformance is ?K%igﬁted in
comparison with LISP and Prolog interpreters. _We conclude-
with a discussion of é%f experience in developing example
applications, and recommend extensions to the language tased
'on this experience.




J TABLE OF CCNTENTS

I. INTRODUCTION ¢ o o« o « « o « o o« o« o s o o o « « & 12
A. BACKGROUND v v« v « « o o o 2 « a « o =« o« « « =« 12
B. APPLICATIVE LANGUAGES .+ « o o o o = « o « o « 13
C. OBJECT-ORIENTED LANGUAGES . « ¢ v« « « o« « o - 13
D. INFERENCE SYSTEMS AND LOGIC PROGRAMAING . . . 14
E. A COMBINED APPROACH =« « 2 2 « = ¢« s « o « « « 15
F. AN IMPLEMENTATION STODY . o v« ¢ « « « « « « - 15
G. A SUBJECTIVE EVALUATION . . v o o » & « « « « 16

I11. AN ISFORMAL DESCRIPTION OF THE LANGUAGE . . « « . 17
A. GENERAL &« o o« ¢ o o o @ o o o o o s o o o « « 17
B. OBJECTS AND VALUES « o o o o o « o o o o = « « 17
C. A RELATIONAL MODEL . ¢ ¢ = o « o « « » = o « « 18
D. PATTERN-DIRECTED FRCDUCTION RULES . . « « « « 19
E. THE APPLICATIVE COMPCNENT . . o o ¢ o o =« « « 23
F. PROCEDURKES ¢« o o o o o ¢« o o « o o s o o« « o« « 24
G. SEQUENTIAL CONTROL < « « o « « o o = « o « » o 26
H. CONTROLLING THE NAME SPACE . « ¢ ©. o o o o = o« 217
I. A PROGRAMHING SYSTEM o« « o o o o« o« =« « o « « o« 30

III. DESIGN ISSUES AND GOALS 4 v o o o « o« o o o o o & 22
A. TdE ARCHITECTURE OF RULE-BASED SYSTEKS . . . . 32

B. KULE SELECTION AND CCNFLICT . @« ¢« o 2 o o o « 32

C. PATTERN-HATCHING . o o « ce o o « o a « o =« o« o« 33

D. MORE CONVENTIONAL ISSUES ¢ « « o o « « « « « o« 35

E. DESIGN GOALS v «o o « e o « o 2 s s o« o « o« « « 35

1. Feature Implementation . . . . +« « « « « « 35

2. Relation Representations . . .« . « « « « « 36
3. Efficiency .« . o« ¢ ¢ o o 2 o s 2 o o o &« « 36

....................................

.. .,..'
R BEATSRALS
- " . PR .' .‘ -‘ . l' P
L P e e e
SIRIINP NI NP LPIPY




4. EVAlUAtiON « « o « = o o o o = o o o o « - 36

Iv. A LISP PREOTOTYEE « « 2 o s s o a o« o o o o o o o o« 37
A. WHY LISP? &4 o« o o o o o o o 2 o o« o o o o « o« 317
Be ORGANIZATION . ¢ o o o o o o a o o o« « « o o« o« 38
C. THE LEXICAL SCANNER AND PARSER « « « = o« « o « 38

1. The Lexical SCADLEr « « « « o « « « « o« - 38
2. The PAISEr « o o« o o o o « o o s o o o « « 39
D. RULE EVALUATION . 2 o« o o « « o « « = o o « » U1
1. Instruction Evaluation .« « « & « o & « « o U2
2. The Applicative Component . . « « « « o . 42
3. ObjeCts o o o o o o« o o e = o @« o o o o o 43
4. RelationNS o« ¢ o o o o o o o o« o o o « o o« U4
S. Binding .« ¢ ¢ o ¢ o ¢ o 4 e o « o = o « o U6
Ee CONTROL o o o ¢ o o o o o o« o o « o = a o « « 48
F. ERROR CONDITIONS . o « 2 s o « o o « o o« s « « U489
G. A BOOT SYSTEM <« « o ¢ = o o« o e 2 o« = o« « »« « 50
He LESSONS LEARNED &+ o o o « o o « o « o « o« « « 51

V. A FOLLOW-~-ON IMPLEMENTATICH IN C . ¢ « ¢ o « « « « 54
A. WHY C2? o o o o ¢ = o o s o o o » a« o o o« =« =« « 54
B. CHANGES TO SYNTAX AND SEMANTICS . ¢« « « « « « 55

1. An Antecedent Reyword . . « « « « « « « « 55
2. Rule Denotations « ¢« ¢« « & o ¢ ¢ ¢ « ¢ « . 55
3. Rule Separators . o« « o« « « « o o o « =« « 56
4. Parameter ListS .« ¢ ¢ ¢ o o o o o o « « o« 56
S. Conditional Expressions and Function
Definitions . ¢ ¢ ¢ ¢ « ¢ * o o o o o « ~ 57
6. An Implicit Response for Command Rules . . 58
7. Head/Tail Pattern Specifications . . « . . 59
C. DATA STRUCTURES =« ¢ v « 2 o o o o « o« o = & « 59
1. A Uniform, Tagged lList Structure . . . . . 59 5}

-~

Le ObjeCtS - - . - L] . - [ - - . - L] - L] - - 62 ?“1

3‘ Hash Tables - L ] - - - L L] - L] - - L L - L] 6!‘




vI.

M.
N.
0.
P.

Q.

B, RelatlONS o o o « o « o o o o o =

5. DIirecteories .« « ¢« o o ¢ o e o « =
ORGANIZATION: THE TOF LEVEL . &« « «
THE READER ¢ o o o o o o e o« o o « « =«
Te A LEX SCanner o« « « o o o o o + o
2. A YACC PArSET o o o 2 ¢ o« o o o =
3. Console and File Iaput « « « « « «
A RECURSIVE PRETTY PEINTER « ¢« - . « &
RULE EVALUATION .« o 2 o e « o o o « =
BINDING =« o ¢ o « @« o o « a o o o o
1. Binding At Activation . . . . . .
2. A Binding Stack .« « o a ¢ ¢ o o« a
BACKTRACKING « o « « o o o o o o o« o
RELATION MANAGEMENT EKOUTINES . . . . «
ACTIVE RULE PROCESSING « o « « ¢ o « o«
Te Triggers v o« o o o o o s o o o o «
2. A RuleQlUeNE v o o o o o o o o o =
3. Advantages and Disadvantages of
Triggering o« o o o o o o o o « o =
4. Two-level Triggering . « « o « o =«
THEZ APPLICATIVE COMPCNENT . « « « «
PROCEDURES @ ¢ ¢ o e « o « o « o« o o @
BUILT-IN TFUNCTIONS AND PROCEDURES . .
CANCEL OPERATIONS 4« 2 o o o o o o o @
SEQUENTIAL BLOCKS « o o o o o o o o =
1. A Single-Pass, Multi-~Scope Symbol
Table .« ¢ o ¢ ¢« o ¢ « o o « o « =
2. Evaluation of Multi-Scope Bindings
SYSTEM INITIALIZATION . ¢ ¢ o o o « «

STORAGE MANAGEMENT o o o o « o o o« o o « o

A.
B.

TAE STORAGE PROBLEd ¢ ¢ o o o« o o « =«

STORAGE ALLOCATION AND THE UNIX VIRTUAL

ADDRESS SPACE < ¢ o « o ¢ o o o« o o «

67
€7
68
69
70
70
73
75
76
77
77
78
81
82
83
83
83

84
85
87
89
91
92
93

94
95
97

98
98

99




C. IGNORING STORAGE MANAGEMENT . . « « ¢« « « « 100
D. OMEGA-SPECIFIC STOEAGE OPTIYIZATION . . . . 102
E. REFERENCE COUNTING o « « « o o o « o« = =« o o 104 .
F. GARBAGE CCILECTION . « « « « « o 2+ « « « « «» 108
G. REDUCING CELL STORAGE =« « + « o o o« « « « « 109

ViI. PERFORMANCE EVALUATION « ¢ « o o e o s o o o o o 111
A. METHODOLOGY &« o e « o o o o o o « o o « « « 111
1. Execution Profiling .« « ¢« o« o o « « « « 111

2. Benchmarking « « « o o o o o « « o « « « 113

3. Omega StatisticCsS « o« « « o o « ¢« o« « « « 114

Bo TEST RESULTS ©« o o © o @ o o o o o = o o o 114
1. A pattern-Matchipg Test . . « ¢« « « « « 115

2. Factorial Functicns . « « « ¢« « « « « « 115

3. A Prime Number Sieve . « « + o « o « « « 116

. QuickSOLt .« 2 o o o 2 2« o o o« o « « « - 118

5. A Simulation Program « - « « « « = « « « 120

C. IMPACT OF KEFERENCE COUNTING . o« v « o o o « 122
D. DISCUSSION OF RESULTS =« o o o @ o « o o = = 123
1. Performance Bottlenecks . . . . . . . . 123

2. Relation Statistics . « 4 o ¢ ¢ « &« « o 127

VIII. OBSERVATICNS, RECOMMENDATIONS, AND CONCLUSIONS . 128
A. OBSERVATIONS ON OMEGA =« « ¢ o « o « « « « » 128
1. Programming Experience . . « . . « « « . 128
2. Omega and Prolog « « « « o« o « « « « « « 128
3. The Production Rule as 4 Programming
Paradigm « ¢ ¢ o o ¢ ¢ « 4 o o o o o o« o 131
B. RECOMMENDED AREAS FORK ADDITIONAL STUDY . . . 134
1. Extensions to the language . . . . « . - 134
2. Extensions to the Present Interpreter
DESign v o o o o o o o o o o o » o « =« o« 136

3. Parallelism in Omega « .« « « « « « « « « 139
C. CONCLUSIONS &« ¢ o o o o o + « o o o o« « o o 41

JA .
PP} '
gt te e e

",';."A‘L

T
e -
Ta PR
! ook




APPENDIX A: LEX AND YACC SPECIFICATIONS FOR OMEGA . . 143
APPENDIX B: BUILT-IN FUNCTIONS AND PROCEDURES . . . . 161
APPENDIX C: UTILITY FUNCTIONS AND RULES . . . . . « . 164

APPENDIX D: COMPARATIVE APPLICATIONS: OMEGA, LISP,
AND PROLCG « o o o o « o o o o = o « « « « 171

APPENDIX E: OJMEGA APPLICATION EXAMPLES . . . . . . . . 186
LIST OF REFERENCES o « « o o o o o o o o o a2 « » o « « 206
BIBLIOGRAPHY « « o o o o o o s « o « o = o o s « o « o« 209

INITIAL DISTRIBUTION IIST o « o o o « = o o o o o o o « 210

1
R
AR
s
gt e at. 4




II.
III.
Iv.
v.
VvI.
ViI.
VIII.
IX.

XI.
XII.
XIII.
XIvV.
iv.
IvVI.
XVII.
XVIII.
XIX.
XX.
XXI.

LIST OF TABLES

Cell Field VAluEs .« « o« ¢ o o o « o« o = o =
Execution Times: Pattern-matching . . . . .
Execution Profile Summary: Pattern-matching
Data Type Fregquencies: Pattern-matching . .
Execution Times: Factorial . . . ¢ ¢« « o o «
Execution Profile Summary: Factorial . . . .
Data Type Frequercies: Factorial . . . . . .
Omega Relation Characteristics: Factorial .
Execution Times: The Sieve « ¢ ¢ o o« o o o «
Execution Profile Summary: The Sieve . . . .
Data Type Frequencies: The Sieve « « « . .+ .
Cmega Relation Characteristics: The Sieve .
Execution Times: Quicksort . . . &« ¢ o « o «
Execution Profile Summary: Quicksort . . . «
Data Type Frequencies: Quicksort . . . « . =
Omega Relation Characteristics: Quicksort .
Execution Profile Summary: Simulation . . .
Data Type Frequencies: Simulation . . . . .
Omega Relation Characteristics: Simuiation .
kReference Counting and Execution Times . . .

Proiile of Quicksort with Rerference Counting

10

62
116
116
17
117
118
118
119
119
120
120
121
121
122
122
123
123
124
124
125
125




5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
6.1
7.1

LS R S

Cell
Tree
Hash
List

Left-

LIST OF FIGURES

Structure . ¢ o ¢ o o &+ o o o o o o .
Representation for a Simpie Expression
Table Structure . ¢ ¢« « ¢ o « o o o
Representation for Relations . . . . .

Recursive list Representation . . . .

Transformed lList Structure . « . « « « o« =«

The Binding Stack « « + o o« « o o o o « o

Multi-Scope Symbol Table . « « « ¢ o o« o

UNIX Memory MadD o« o« « o o o o o « a « o o

Code generation for TAG function . . . . .

11

61
63
66
68
74
75
79
95
101
112




e A . ST DT U U A
ERNLPIR I S ) B e Sl i Bt Seteslsatnds DI TP WAL D . U Y T ¢

Y e . ol B a e e T 3 i 4

To illustrate this, consider the assertion of a tuple in
the Reguest relation. Such a tuple may be <a, r>, where the
object a is a relation representing the agent, and the
object r indicates the resource desired. This assertion was
made to trigger the following rule:

if *Request{a, r), *Aivail(r, id) ->
a(id).

In this example, the relation a is wused as a mailbox to
receive a response from the server rule. The assertion ot
the tuple <a, r> is similar te the creation of a conven-
tional activation record, and the mailbox a 1is similar to
the activation record of the caller.

The assertion a(id) places the desired response--a
resource identifier--in the relation belonging to the
requesting agent. When this response appears in the mailbox
relation, the -requesting agent may extract the result and
continue its computations. The mailbox relation serves as a
svnchronization and value-returning mechanisn.

In an event-driven system, such a calling seguence would
be a common usage pattern. This is recognized by the inclu-
sion of a calling mechanism within the language. The above
sequence could be initiated by a synchronous call. Consider
the following rule:

if *InitProc(p)., *Require (g, r), -~Allocate(p, x) ->
Allocate(p, Request{r}).

The Request expression in this example 1is a synchronous
procedure call. Its effect is the automation of the mailltox
handling of the previcus rule. The call Request [r; wilil be
translated by the system into an assertion Request(a, r).
The object a is a system-supplied relation that will receive
a response from rules firing as a result of the assertion.

Wwner, a tuple 1s added to this relation, the tuple 1is

25
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Named functions may also be used within expressions in
the same way as the infix operators. This is shown in the
following rule:

if *AvailTapeDrives(L1), *TapeQueue (L2),
(L1 ~= Nil) & (12 ~= Nil) ->
AvailTapeDrives (Rest[11)),
TapeQueue (Rest[ 12]),
Allocate (First{ L1], First[12]).

In this example, availdble tape drives and jobs gqueued for
tape drives are rerresented as 1lists. The functions
First{x] and Rest[x] return the head and tail pointers of
their argument.

Punctions are declared as fcllows:

fn fact{x] : if x <= 1 -> 1

else x * fact x-1].

This example illustrates that function bodies are similar to
rules, and are in fact conditional expressions. The antece-
dent of a conditional expressicn is a Boolean expression,
but not an inguiry or absence test. The consequent of a
conditional expression is another expression, not an asser- T
tion or deletion. Thus, conditional expressions (and func- .
tion bodies derived from them) are free of side effects. As
the factorial example illustrates, functions may be declared
recursively. Iterative constructs are not defined.

F. PROCEDURES

4 typical invocation sequence for a rule begins when a
tuple is added to a relation. The tuple is associated with
an agent--the object or process that made the assertion--and
the agent often expects a group of rules to execute as a
result of this assertion. Finally, the agent may expect a
value or object to be returned.

24
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The cancel operation returns true if the indicated pattern
is matched against a tuple in a relation. If the antecedent
of the rule succeeds {all conditions are true), then the
tuples matched during cancel operations are deleted fronm
their relations.

Rules may be «coupled througyn alternation. In the
preceding rule, an alternate action may be desired if the

requested resource is not available. This is expressed as:

if *Request (resource, job), *Avail (resource) =->
Allocate (resource, jok)

else if *Request (resource, job) ->
Blocked (resource, job).

The antecedent of the alternate rule will be evaluated if
the primary rule faiis. In this example, the eifect will be
to place the job in a blocked state.

BE. THE APPLICATIVE COMPONENT

Function application is used to support the state tran-
sitions described above. In those cases where a tuple must
be specified, an applicative expression may be used to
compute the value of a member. Consider the following rule:

if *TapeDrives(j, n), n + 1 <= 10 ->

TapeDrives(j, 2 * n) .

This rule uses infix arithmetic operators to compute values
in a constraint and during an assertion. Such operators are
permissible in constraint expressions and in the consequent
portions of the rule, with the restriction that variables
participating in such expressions must be bound. In the
preceding exanmple, the variable n was bound in the
TapeDrives inguiry.
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If the contents of the Request ard Avail relations match the
inquiry patterns, the rule will "fire", and add the tuple
{resource, job> to the Allocate relation.

In the previous example, the free variables resource and
job were bound in the antecedent portion of the rule. These
bindings were maintained through the consequent portion of
the rule and determined the instantiation of objects added
to the Allocate relation. Free variables, therefore, must
be bound through pattern-matching before their use in the
consequent of a rule.

The allocation example raises soae probleas. The rule
successfully allocates a resource to a job by the assertion
to the Allocate relation. This assertion, however, does not
aiter the conditions Request and Avail that initiated the
rule's firing. Thus, this rule may conceptually "fire
forever" unless some action is taken to disable one or more
of its conditions.

The deletion is used for +this purpose. The allocation
rule may be written as:

if Regquest(resource, job), Avail (resource) ->
-~Request (resource, jol),
-Avail (resource),

Allocate (resource, jol).

The deletions -~-Request(resource, job) and -Avail (resource)
remove the indicated tuples from their relatiomns.

The preceding actions-~determine a pattern-match of a
tuple within a relation, then remove the tuple--is a typical
seqguence. An abbreviated syntax for this sequence is the
cancel operation. Using cancel operations, the preceding
rule may be written:

if *Request (resource, job), *Avail (resource)

!
\%

Allocate(resource, jolk).

22
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The absence of a tuple from a relation might or might
not be interpreted as the negation of its presence. If one
uses a "closed world" assumption, then absence is the same
as negation. The logical interpretation of an absence test
is dependent on the programmer's intent and assumptions.

Free variables are not bound in an absence test.
Consider again the rule:

if -~TapeDrives(j, #) =-> « « =«

For the antecedent to be true, there is no tuple <j, & in
the TapeDrives relation. Therefore, the free variable j
will remain unbound.

The inquiry and absence conditions form the basis for
the evalnation of the current state of the system. An addi-
tional mechanism is provided for the evaluation of state
information. This mechanism is termed a constraint, and can
be any Boolean expression.

Consider the case where one is interested in determining
if a job requires more than 5 tape drives. This could be
expressed as :

if TapeDrives(j, n), n > 5 -> . . .

where the expression n > 5 1is a constraint. The joinm

exanple shown previously could le rewritten as
if TapeDrives(j1, n), Priority{(j2, p), j1=j2 -> . . .

The consequent portions of rules alter the state of the
system. The actions of the consequent typically update
relations in some way. The fundamental actions are asser-
tions and deletions.

An assertion adds a tuple to a relation. Consider the
rule:

if Request (resource, job), Avail (resource) ->

Allocate(resource, jol).

21




match the inquiry against the tuples of the relation. Once
a logical variable has become bcund through an inquiry, this
binding will remain in effect for that particular rule.

The following, more complex, ingquiry relies on variable
binding: .

if TapeDrives(j, n), Priority(j, p) -> . . .

The comma is considered as a lcgical "and" between the two
inquiries. Thus, the antecedent of this rule will be evalu-
ated as true if tuples exist ip the TapeDrives and Priority
relations such that the first member of each tuple is the
same. This corresponds to the equality join of relational
database systens.

It is important to note that inquiries are existentially
guantified. An inquiry is evaluated as "if there exists a
tuple <x1, ..., xn> in relation R, return true."

It is also important to note that the logical variable
binding done during [pattern-matching is in effect only for
the duration of the rule. The scope of a logical variable,
then, is the rule where the variable occurs.

Other variables may have more permanent bindings, and
behave like constants. There is no syntactic distinction
between free and bound variables. To avoid confusion in
examples, free logical variables will always begin with a
lower case letter, bound variakles and constants will begin
in upper case.

Another type of antecedent condition is a test for the
absence of a tuple. This condition has the form

if -~TapeDrives(j, 4) -> . . «

which is read "if it is not the case that a tuple <j, Uu4>
exists in the TapeDrives relaticn." 1If the tuple fpattern is
not a member of the relation, the expression is evaluated as
true.

20
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Relations theaselves are chjects, althouyh they are
distingjuished by having an intrinsic value: the collection
of tuples ipstantiating the relation. As objects, relations
may be members of tufples and participate in other relatiorns.

D. PATTERN-DIRECTED FRODUCTION RULES

The relations organize the primitives of the systen.
Thus, at a yiven time, the state of the system is character-
ized by its relations and the entities bound through these
relations. To complete the model, a mechanism must be used
to describe state transitions. Pattern-directed production
rules are used for this purpose.

A rule is a pair <a, ¢>, where a is termed an antecedent
and ¢ a consequent. An antecedent consists of Boolean
conditions that pertain to the state of the systen. Tne
consequent consists of actions that will be executed if the
conditions of the antecedent are true. FKules are written:

if <antecedent> -> <consequent>.

A condition may be one of several constructs. The aost
fundamental is the inguiry. An ingquiry is a pattern-matched
test described by the rule that is performed against tiae
relatious of the systen. As an example, consider the job
queue again. A rule may be desired that checks for jobs
requesting 4 tape drives. This could be expressed as:

if TapeDrives(j, 4) -> . . .

where the consequent of the abcve rule is not shown. The
expression TapeDrives(j, %) is an inquiry, and may be read
as "if there is a tuple <entity, 4> in the TapeDrives rela-
tion, then return true and bind the entity to the variable
j.-" The symbol j in this example is an unbound 1logical
variable, which is considered a wild card in an attempt to
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* Objects are subject to change over time.

» Objects may be created and destroyed.

The distinction between objects and values is discussed in

[Ref. 15]. Subsequent examples should help to illustrate
the rcle of objects in Omega.

C. 1A RELATIONAL MODEL

The components of the 1languaje are organized according
to a relational model. The wmcdel is consistent with rela-
tional terminology introduced by Codd [Ref. 16].

Consider an object that represents a queued process

waiting for an operating system resource. For reference
purposes, the object must Le naned, so call it J.
Associated with the object are a priority, P, and a tape

drive allccation reguirement, T. The priority and resource
requiremenrts are values that pust be associated with the
job. These associations may be described by a Priority
relation and a TapeDrive relaticn. This could be expressed
as Priority(J, P), TapeDrives(Jd, T). In these expressions,
the pairs <J, P> and <J, T> are called tuples.

A tuple is an ordered collection of objects and values.
Note that, unlike relational database models, named attri-
butes are not used to descrite a tuple. Instead, the
members of a tuple are described by relative position (order
is important), by value, and by pattern-matching.

A relation is a set of tuples. Relations are described
by name, and through pattern-matching. As a set, the tuples
of a relation are (1) unigue and (2) unordered.

Objects serve as representative place holders in rela-
tions. The state of an object is determined by the rela-
tions in which it participates, and by the attrikutes
associated with the cobject in these relations.
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- II. AN INPORMAL DESCRIPIION OF THE LANGUAGE

A. GENERAL

This chapter provides a descriptive summary of the
features of the Omega languaye. The descriptions are mainly
by exanmple, and serve to provide a feel for the language
constructs, not detail.

The material in this chapter is based on the work of
Maclennan. The philosophy, informal and formal semantics,
and original syntax of the 1language are introduced in
[Ref. 14]. Some syntactic and semantic differences exist
between the original description of the language given in
[Ref. 14] and the prototype implementations. Later chapters
will deal with the rationale for these deviations. The
implementation syntax is used in this chapter to maintain
consistency with withk the remainder of this thesis. A

- description of the implemeantation syntax is contained in

Appendix A.

B. OBJECIS AND VALUES

The entities of the system are divided into values and
objects. The values of the system include numerics (inte-
gers and reals), character strings, and lists. Lists are
denoted ky square brackets, such as:

[lla"' "bll' [1' 2]].

Objects are referenced by nane, and are subject to the
following properties:

e Objects are unigue.

e Orjects may be shared.
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interpreter organization, data representation, and control
strategies used in the implementation, and how these charac-
teristics impact on the performance of the systen.

This work is a rrototyping effort. Because of the
experimertal nature of the language, various extensions and
modifications were required on preliminary designs. To
support this experimentation, two prototypes for the inter-
preter were written. The first was a throw-away prototype
written in Ffranz LISP. The second was a more complete,
incremental development written in C.

G. A SUBJECTIVE EVALUATION

As a secondary emphasis, some attention is given in this
work to the evaluation of Cmega as a general-purpose
programming language. While these observations are larjely
subjective, they provide some insight into the implementa-
tion [problems associated with these early prototypes.
Having prototype interpreters wup and running has also
provided an opportunity for experimentation with Omega
programming that may fprove useful in the early evaluation of
features in the language.
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and expert systems such as MYCIN [Ref. 10], DENDRAL
[Ref. 11], and PROSPECTOR [Ref. 12].
Prolog is a general-purpose language which uses rule-

based theorenm proving as the computational metaphor
[Ref. 13]. Distinct from the applicative languages, Prolog
uses pattern-matching instead of the procedure «call to
determine the applicability cf rules and the resulting
computations.

E. A COMBINED APPROACH

The preceding discussion highlights the following

features offered by these languages:

e Function application provides a powerful, regular mecha-

nism for stateless computation.

* An object-oriented approach provides an effective crgan-
ization for data and procedures which is useful in
representing temporal relationships and real-world
okjects.

e Rule-based pattern-matching systems have provided an
alternative way for exgressing complex knowledge
representation.

The Omega language [BRef. 14)] represents an approach that

combines these features into a single language framework.

F. AN INPLEMENTATION STODY

The emphasis of this thesis 1is on the implementation of
an interpreter for the Omega language. As an implementation
study, the focus is on language architecture--those charac-
teristics of the 1language that were «conducive or that
presented obstacles to efficient implementation. Of partic-
ular interest in this effort are the characteristics of
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by Smalltalk [Ref. 5]. Smalltalk partitions the program-

der's model into collections of objects called classes.

]

Objects have a state associated with them, and the methods . Lij

{(procedural information) of the class determine an object's 4
computational behavior. Both data and procedural informa-

tion are organized around the olject. .

The object-oriented approach allows certain important =

capabilities. Foremost, the <concept of state is fully

ingrained in the language. The simulation approach facili-

tates the modeling cf real-world activities, with concur-

rency readily handled through the mechanism of communicating .
objects.

Associated with the class mechanism in Smalltalk is the
concept of inheritance. When a new object is created, it
obtains certain default state and behavioral characteristics
from its class. In the functicnal languages, combinatorial

power is obtained through subordinate function application

and the use of functionals. In the object-oriented

approach, combinatorial power is obtained through comfposi- —
tion of new objects from existing ones, and through B
inheritance. ' '

D. INFERENCE SYSTENS AND LOGIC PROGRAMMING

Inference systems have developed through artificial
intelligence efforts at cognitive modeliny, knowledge repre-
sentation, and theorem proving. Based on the early produc-
tion system of Post [Ref. 6], these systems use rules,
similar to logical implication, that provide the computa-
tional framework for a program. Rule-based organization has
been described by Newell [Ref. 7], and an early language
based on the concept was Hewitt's PLANNER [Ref. 8].
Numerous rule-based systems have since been developed, with
notable examples being theorem frovers such as AM [Ref. 9],
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languages, object-oriented languages, and rule-tased infer-

ence languages.

B. APPLICATIVE LANGUAGES

Applicative languages use the application of a function
to its arguments as the focus for computation. These
languages are typified by pure LiSP [Ref. 2], and by later
functional languages such as FP [Ref. 1] and KRC [Ref. 3].

The strengths of the applicative languages are exeupli-
fied by arithmetic expressions. These strengths include
clear interfaces between computational units, relative inde-
rendence of evaluation order, and a semantic regularity that
lends itself to simple verification and proof techniques.

Functionals, <functions which receive functions as argu-
ments and returm functions as results, provide a mechanisa
for the combination of simple, rrimitive computational units
into collections of arbitrary power and compiexity.

The applicative 1languages achieve their predictability
largely from the prohibition of side-effects during computa-
tion. This characteristic limits the problem domains to
which applicative sclutions can be readily applied. Like
the arithmetic expression, agpplicative languages cannot
readily describe the notion of state. There is no explicit
notion of time in an arithmetic expression, and applicative
languages are correspendingly weak in maintaining temporal
relationships. This characteristic limits the  utility of
applicative languages in inherently state-oriented applica-
tions. Such applications include operating system activi-
ties, data base management, and discrete sinmulation.

C. OBJECT-ORIENTED LANGUAGES

The object-oriented languages have developed from simu-

lation languayes such as Simula [Ref. 4], and are typified

13
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A. BACKGROUND

Two major issues in prograsming language desigm can be
characterized as abstraction and architecture. In this
context, abstraction refers to the ability of the language
to capture the ideas of the programmer. It is a measure of
expressiveness or semantiC power. Architecture refers to
those language characteristics, both organizational and
syntactic, that affect practical usage. This includes ease
of use for the programmer as well as the potential for effi-
cient implementation. Thus an important goal for a program-
ming language is to combine a fpowerful abstraction ability
with an effective language architecture.

Conventional languages have suffered in both of these
areas. These languages focus on the wuse of assignment
statements for computation, apd execution consists of the
sequential flow of program control between assignment state-
ments. John Backus described these "von Neumann" languages
as excessively complex and weak, wnose word-at-a-time
conceptual basis has created an "intellectual bottleneck"
[Ref. 1: p. 615]. These languages are oriented more towards
the word-at-a-time stored program computer than towards the
problem domains they attempt tc satisfy. Thus they have
poor abstraction ability. While simple, elegant imperative
langquages such as Pascal have enjoyed popularity, the need
for increased power has resulted in complex languages such
as Ada. Such languages have attained semantic power at the
expense of architectural effectiveness.

Several alternatives to the von Neumann languages have
been developed. Of interest in this thesis are applicative
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returned as the result of the [frocedure call in the expres-
sion where the call was invoked.

The procedure call as shown in the preceding exampie is
similar to the functicn invocation described earlier. Both
invocations may be used in expressions, returning results
that are incorporated in expressions. The underlying mecha-
nisms of the function and procedure call are different,
however. In particular, the frocedure «call relies on the
use of rules to describe 1its actions, and therefore relies
on side effects.

The server rule in this example may bLe triggered by
either an assertion cr procedure call involving the Request
relation. There is nothing abcut the form of the rule that
indicates its use 1in procedure calls. By convention,
however, such rules must use the leftmost member of a tuple
in the enabling relation as the receiver of the response.

The value returned by a procedure call does not have to

be used in an expression. In the following example:

if *Functiomn(job, c), =CodeTable(c, def) ->
Display{"Illegal function code"}

an assertion to the Display relation is assumed to eventu-
ally cause the message to be displayed at the user's
terminal. The value returned by the calling mechanism is
used for synchronization only, and is otherwise igrored.

G. SEQUENTIAL CONTRCI

In the preceding examples, no particular order was
assumed for the evaluation of oconditions in the antecedent,
and no order is assumed for the execution of the actions in
the conseguent. These actions may be considered tc be
asynchronous and concurrent. This situation becomes evern
rore unstructured when a collection of rules 1is beiny
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considered for evaluation. Once again, no evaluation order
is assuned.

The seguential block provides a mechanism for the
frogrammer to specify an explicit order for rule evaluation.
This is shown in the following:

if *Request(a, r), -~Avail(r) ->
{ =-> Display("Waiting for resource..."};
if *Queue(r, 1) ->
Queue (r, cons{a, 1]);

}

The effect of this rule is to display a aessage and to add
the requesting agent to a queue for the desired resource.
The sequential block guarantees that the rules within the
{} 's will be evaluated in the order shown.

As the example indicates, the variables bound in the
antecedent retain their bindings in the sequential block.
The blocks may be nested, with the bindings of free vari-
ables extending to inner blocks.

In this example, the antecedent 1is omitted in the
Display rule. This is equivalent to a true antecedent.
When writing such rules, the notation may be shortened to:

Display [x}
which is eguivalent to:

if TRUE -> Display {x}.

H. CONTROLLING THE NAME SPACE

The rrevious descriptions give a simple mechanism for

the tinding of logical variables. The rules may be sumna-
rized as:

27
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e The scope of variables bound in an antecedent extends to

the consequenrt for a given rule.

e If sequential blocks are nested, ©pindinjys made in outer

blocks extend to inner blocks.

The previous examples have suggested a more global binding
mechanise, as indicated in the use of relation names. The
Request relation name is globally bound in this manner. The
mechanism through which global names are managed is the
directory.

A directory is a named collection of pairs, <name, defi-
nition>, where the name entry is a character string and the
definition is an object or value representation associated
with the npanme. The directory may be thought of as a named
symbol table.

Maclennan [Ref. 14: pp. 34-35] describes a directory
structure with two partitions: public and private. Names
defined in the public partition are globally visible to
agents other than the owner. Names defined in the private
partition are visible only to the owner.

A simple elaboration of this wmechanism provides a filex-
ible partitioning scheme. The public and private partitions
are associated with named directories. These directories
are organized into named classes, not necessarily disjecint.
In addition, there is a noticn of a ‘“current directory"®
similar to that in UNIX.

The context of a nanme, then, 1is determined by tae
current directory in which the rame is defined. FWhen evalu-
ating the binding of a name, the current directory public
and private partitions are searched for an entry. If this
local search fails, the public directories associated with
the classes of the current directory are searched. The
class structure defines a search path for variable lookup.
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To illustrate these points, consider the definition of
the Request relation of previcus examples. Suppose the
current directory is "ServerDatabase," a member of the class
"Servers." The relation is created and named by:

Define {Private, "Regquest", Newrel{}}.

The Define procedure call makes a <name, definition> entry
into a directory partition. The Newrel {} procedure call is
assumed to return a unigque system identifier that represents
a relation. The definition shcwn, therefore, would create
the relation and bind a name to that relation in the private
partition of the current directcry.

Such a server relation would be of more general utility
than a private definition allouwus. Before the relation is
opened to broader access, an access control mechanisn is
necessary.

This control is achieved by associating capabilities
with each relation. When a relation is created with the
Newrel{} procedure call, full capabilities are associated
with the relation identifier. These capabilities include
read, add, arnd delete. A public definition of the Regquest
relation may be accomplished as follows:

Define {Public, "Request", AddOnly {Reguest}}.

The Addonly procedure call references the system identifier,

with full capabilities, that has been bound to the private

name Request. A copy of this identifier is made with
reduced capabilities but still referring to the same rela-
tion. This new identifier is then installed in the public

directory for general access. This technique of capability
addressing is based on the wcrk of Dennis and Van Horn
[Ref. 17].

Objects are created in a similar manner:

Define{Private, "Jobi", YKewobj{}}.

29
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The Newobj{} procedure returns a unique identifier to be

associated with an object. Objects created in this manner
i have no intripsic value associated with theas, and there is
-~ no access control asscciated with their identifiers.

I. A PROGRAMMING SYSTIEM

. The language elements described may be adapted to a

- general programming systenm. To simplify interaction with
the system, [Ref. W: p. 39)] suggests the use of rules as a
command ianguage.

E; / While syntactically similar to production rules, these

' conmand rules are subject to a slightly different method of

interpretation. If a user wishes to query the contents of

the Allocate relation, this may be accomplisked by:

if Allocate(x) -> Display {x}.

If analyzed as a production rule, however, this guery wouid
be a "fire forever" type. Rules such as this reguire a
different method of evaluation: test, fire, and forget.

The command rules represent the second class of rules in
the system. The first class of rules is that of the produc-
tion rules previously described. These rules are termed
active rules. Active rules comprise a body of state tran-
sition information that continucusly monitors the relations
referenced in their antecedents. Command rules are initi-
ated by an event in the system, and only evaluated once.
The initiating event in previous example was the entry of a
command rule at the termiral.

The active rules are distinct from command rules, jyet
the command rules provide the interactive interface between
the user and the systen. The two categories are bridged
with the rule denotation.
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A rule denotation is a syntactic representation of rules

as data. A potential active rule may be described:

Define {Private, "ReguestRules",
<<
if *Request({a, r), *Avail(r) ->
Allocate(a, r), a{r)
>>
l.

The denotation is expressed between << >>'s, which is inter-
preted as "parse but don't evaluate." This definition binds
the parse tree associated with the server rule to the name
"RequestRules" in the private directory partition.

A rule denotation bound in this manner is a data struc-
ture subject to manipulation by the systen. To make the
transition from this passive status to active status, the
rule denotation is activated:

Activate{ServerRules}.

At this point, the rules expressed in the denotation are
noved to active status and enter a continuous test-fire
cycle,

This process is similar in many respects to progranm
development in a more conventional system. The command
entry of the rule corresponds to the creation of a precgjran
source file, and activation corresponds to coampilation,
linking, and loading.
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III. DESIGN ISSUES AND GOALS

A. THE ARCHITECTURE OF RULE-BASED SYSTENS

Omega is a production-rule systen. Davis [ BRef. 18: p.

301] describes these systems in terms of three components:
e A rule base. Omega's set of active rules.
e A database. The set of relations and their contents.

» An interpreter. The mechanism for rule selection arnd

execution.

B. RULE SELECTION AND CONFLICT

The control cycle of the interpreter processes rules in
a continual recognize/act cycle. The recognition rhase
consists of selection and conflict resolution [ Ref. 18: p.
325].

Omega uses a forward-chaining method for rule selection.
This method, described in the examples of the previous
chapter, compares the antecedent of the rule to the data-
base. A rule 1is selected when an appropriate match |is
found.

In general terms, producticn systems produce a conflict
set for each recognize/act cycle [Ref. 18: p. 325]. The
conflict set consists of all active rules whose antecedents
are true given the current state of the database. In the
Omega system, the resolution of the conflict set is simple.
For a given cycle, each rule within the conflict set will be
tested and, if its conditions are true, will fire. The
order in which the rules in the conflict set are tested is
not specified.




The rules of Omega are indivisible once they are
selected [Ref. 14: pp. 19-20]. To illustrate this point,
suppose the following rules were active:

if *Request(a) -> Allocate(a, Red).
if *Request (a) -> Allocate(a, Blue).

Under this selection strategy, only one of these rules will
fire (assuming there is only <cne tuple in Request). The
indivisible nature of rule evaluation guarantees at least
mutual exclusion for rules such as these. Since the evalua-
tion order for these rules is not defined, a more explicit
antecedent would have to be designed to establish conflict
priorities.

The rule selection and corflict strategies support a
powerful execution mechanismn. Using +this approach, the
procedural information of the system is sensitive to the
state of the database, and responds accordingly. This
Lehavior is more conmrlex than a procedure-oriented systen,
where the thread of execution control is more closely tied
to the procedural code organization.

The complexity of rule testing has performance penalties
associated with the precision of rule selection. By preci-
sion, we refer to the numker of rules whose antecedent
conditions are true compared to the number of rules selected
for testing. The most inefficient and most obvious level of
precision is to scan the entire rule base on every cycle.
We call this a glokral sweep strategy. At the opposite
extreme is a selection strategy that produces only
"successful" rules for test.

C. PATTERN-MATCHING

At the heart of the rule evaluation process is pattern-

matching. Given the form of a rule:
if R(el) -> . . .
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a description the pattern-matching process for each candi-

date tuple x in R is:

match[x, el]:
if x=Nil and el=Nil
return TRUE
else if x=Nil or el1=¥Nil
return FALSE
else if el is an aton
if el is unboungd
bind[el, x]
history := cons[el, history]
return TRUE
else if el = x
return TRUE
else
return FALSE
endif
else if match[first[x , first[el]]
return match{rest{x], restle1]]
else
return FALSE
endif
end match

This descriptiorn assumes a LISP-like list representation for
tuples.

This pattern-matching process is expensive.
Incorporating this method at the heart of the interpretation

cycle presents a significant design challenge.
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D. MOEE CONVENTIONAL ISSUES

Besides these unusual design issues, Omega is subject to
the same design requirements as more conventional languages.
These include:

e A parser and lexical scanner for command/rule input.

A procedure~oriented evaluation component for applica-

tive expressions.

e A flexible symbcl table nmechanism for the support of
directories.

e Dynamic typing.

e Dynamic memory allocation and reclamation.

E. DESIGN GOALS

The design goals for the prctotypes are grouped into the

areas of feature implementation, relation representations,
efficiercy, and evaluation.

1. [Feature Implementation

The major objective in this work was the construc-
tion cf working prototype interpreters for the language. A
progressive schedule was developed that sought to implement
the fcllowing features:

e Canonical Rules. This phase includes the developuent of

the inquiry, absence, assertion, and deletion functions
for tasic rule interpretaticn.

e Function definition and evaluation.

e Procedure calls.
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e Cancel operations.

e Segquential blocks.

2. Relation Representations

Kelations and the operations defined on them are the
central components of the Omega systean. To support flexi-
Lility in relations, a variety of representations is desir-
able. Such representations could range from a simple list
structure to a relational database management system (DBMS).
To reduce the prcblems associated with multiple representa-
tion, the relation interface must be clear: an abstract

data tyre, with primitive oferations defined for data
access.

The Omega 1language was developed as a general-
purpose language, cagpable of [prototyping programming envi-
ronments and a variety of system-level functioas. This
orientation makes execution efficiency an important imple-
mentation issue. The goal was to obtain a level of
efficiency comparable to a LISP systen.

Efficiency was considered mainly in terms of execu-
tion speeds. In those cases where a space-for-time trade-
off was available, it was made.

4. Evaluation

i et S s

The final goal for the prototypes was evaluation. _
This evaluation centered on performance: how control strat- if?
egies and data structures affect execution time. A second
evaluation area was to determine the wutility of language -_1

features through prcocgramming exfperience. fﬂ’

ad
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IV. A LISP ERQTOTYPE

A. WHY 1LIspP?

The design issues for Omega led to the decision to write
a quick prototype <for the exploration of high-level design
decisions. The high-level corcerns were the interpreter
organization, selection strategies for rules, and the repre-
sentation of objects, relations, and directories.
Efficiency was not a design goal for this prototype.

Franz LISP was selected as the initial prototyping

language. This selection was mnade for the following
reasons:

e Availability. Franz LISP was available on the VAX

11/780 system Dbeing used for this work. e were

familiar with Franz LISP, and the implementation is
well-done. The system includes a reliable interpreter,
compiler, and debugging package.

e Symbolic facilities aid in fattern-matching. The heart
of the Omega design is the pattern-matching process.
The symbolic manipulation facilities of LISP allow these
algorithms to be programmed guickly.

e Dynamic typing. The dynamic typing of LISP corresponds

well with the typing of Omega.

e Memory manayement. Memory managdement is transparent
under LISP. While these issues can impact heavily on
system performance, they are complex and distracting to
early prototyping.

® Debuyging. The debugging facilities of Franz LIS?P are

excellent, and superior to any other development
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environment available at the tinme. In a prototyping

project, extensive debugging is essential to cope with
constant design and coding changes.

B. ORGANIZATION

The interpreter is organized like a classic LISP inter-
preter. The organization is based on the description given
in Chapter 11 of [Ref. 19].

The top 1level consists of a read-evaluate-sweep loop.
The read functioa 1is a command rule parser. Commands are
entered at the terminal, parsed, and an instruction list is
generated. This instruction list is passed to the evalua-
tion function for execution. The sweep function processes
any active rules that are ready to fire after the actions of
the read-evaluate phases are cosplete.

C. THE LEXICAL SCANNER AND PARSER

The reader consists of a lexical scanner and parser.
Instead of evaluating input as 1ISpP expressions, the reader
accepts free-format input using the Omega grammar.

1. The lexical Scanner

A character reader function is used to pass a list
of characters to the scancer. This reader function uses the
character input <facility of Franz LISP [Ref. 20: PP
5.6-5.7]. As each character is read, it is added to an
input chnaracter list. The complete character list is
passed to the scanner.

The scanner [processes the input character 1list to
recognize tokens. When recognized, a character 1list is
compressed into a token (LISP atom) wusing the implode func-
tion [Ref. 20: p. 2.11]. The final output of the scanner is
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a 1list of tokens built wup in this manner. It is this
complete list of tokens that is passed to the parser.

The token classes consist of identifiers, constants,
and delipiters. Constants are 1limited to integers and
strings. Once a constant token is recognized and
constructed, a denotation function +transforms the symltol
into a LISP integer or string aton.

The separation of the scanner from 1its supportiny
reader function allows the same routices +to read fronm
multiple sources. Two reader functions are used: one for
console input and one for file input. The file input rfunc-
tion is used to support command rule entry from text files,
similar to the load function of Franz LISP [Ref. 20: p.
5.5].

When receiving console input, the reader needs to

distinguish the end of input for a command. Successive
carriage returns are recognized as this termination
condition.

A single-pass, recursive descent parser is used to
rrocess the token 1list produced by the scanner. As a
construct 1is recognized, an operator symbol is created
which, along with 1its operands, is added to the parser's
output list. The parser receives a token list as input, and
returns an operator/operand list as output.

The output list £for the parser is a simplification
of the abstract syntax for the 1language. Consider the
following input:

if *R1(x), R2(x) -> R3(x).

This rule 1is reduced to a token list by the scanner and

input to the parser. The parser output for tiais rule woulé

be the following LISP expression:
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scanner and parser written in C, and integrated into

rranz LISP as a foreign function [Ref. 20: pp. 8.4-8.8].

e Improved control strategies. More precise rule selec-

tion strategies impact heavily on performance.

e More efficient 1LISP. Franz LISP offers alternatives to
the simple list structures used in this prototype. An
analysis of the prototype performance could be performed
to pinpoint areas for LISP code optimization.

The LISP prototyre was intended to be a throw-away
implementation. While numerous improvemeats are possible in
this fprototype, the performance of the LISP interpreter
becomes a final limitation. An implementation in a lower-
level language offers the potential for data structures, i/o
facilities, and memory management technigues that are more
closely tuned to the requirements of Omega.

An important decision in the life of a throw-away proto-
type is when to stog. This prototype was abandoned aiter
the irgplementation of a limited but fundamental set of
features. The prototype was revised numerous times, but
with a ainimal expense in coding time and implementation
complexity. #hile @many aspects of the interpreter design
changed in the follow-on 1implementation, the contributions

of this fprototype to the next were substantial.
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The prototype implemented a simple 1ist representation
for relations, and assisted in the identification of primi-
tive operations required to manipulate relations. Of
particular interest was the pattern-matchiny algorithm.
Fhile the implementation was flawed, the basic algorithm was
useful in the follow-on prototyrfe.

The iterative backtracking algorithm was more complex
than necessary. The stacks wused to support backtracking
suggested a recursive algorithm as a possible alternative.

The design chosen for the fparser was a poor one. The
steps of creating a character list, then a token list, and
finally an instruction 1list, were time consuming. The
requirement to scan the token list for the presence of the
"->"  token worsened the already poor performance of the
parser.

The interpreter used the crudest possible control
strateqy, and tested every rule on each iteration of the
sweep cycle. This ccntrol strategy hLas the obvious advan-
tage of simplicity, but the performance 1is unacceptaltle.
The control strategy, together with the slow parsing speed,
resulted in a sluggish system response, even with a small
nupber of active rules. In one test «case, the parser
required 13 seconds to process a 33 line rule file; with an
active rule list of about 20 rules, a simple Display conmand
took 2 seconds to execute.

It was anticipated that the performance of this proto-
type would be poor, and so it was. This is not a reflection
of LISP as an implementation languige. No attempt was made
to write efficient LISP, and substantial improvements can

probably ke made. Potential areas for improvement are:

e An improved Gfarser. The character 1i/o in Franz LISP
lends itself to the inefficient implementation used in

the prototype. A possitle improvement would be a
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When the interpreter begins execution, the following

events occur:
e The root directory is loaded into LISP.
e An Omega initialization file is parsed and evaluated.
e The interpreter begins its read-evaluate-sweep cycle.

The initialization file <ccntains Omega command rules
that allow the implementation of system functions with

rules. These rules are defined by the tollowing assertions:

Root ("Activate”, Newrel[ ]).

ActiveRules (Parse[ Fread["sysgen.rul"]]).

The assertion to the ActiveRules relation initializes the
system's set of active rules to those contained in the file

“sysgen.rul." These initialization rules consist of:

if *Define(dir, name, def) -> dir (name, def).
if *Activate(newrules), *ActiveRules(oldrules) ->
ActiveRules(Append[oldrules, newrules]).

These rules and definitions are sufficient to set up a
minimum system. As shown by the rules for Define and
Activate, it 1is possible to express system functions as
rules. To ezpand these functions, more rules may be defined

and added to the active rule list.

H. LESSOBS LEARNED

This early prototype was instructive, both in those
functions which wvorked well ard in those functions which
performed poorly.

The major benefit was the implementation of a top-down

design. The read-evaluate-sweep cycle demonstrated that a
recursive, LISP-1like 1interpreter design was wuseful for
Omega .
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G. A BOOT SYSTEM

After the implementation of the basic rule interpreter,
it was necessary to identify a rminimum set of definitions to
support a working system. When such a system becomes opera-
tional, additional features <can be added through rules
defined in Omega.

The foundation of the naming mechanism is the Define
relation. No rules, relations, or constructs may be added
to the system without the wuse of Define. To accoamodate
names that are added as the system grows, a minimum of a
single directory is necessary.

In this prototype, a root directory, defined in LISP,
contains the initial bindings required by the interpreter.
The root directory dinitially contains the bindirgs for the
Define relation and the active rule list. This directory
also contains a reference to itself: a binding for the name
"root - n

To support the definition cf system functions in 1ISP,
the names of tkhese functions are pre-defined ét the time of
system initialization.

The initial root directory appears as:

(setq root '({(
("Root" root)
("ActiveRules" ActiveFules)
("Cons" cons)
("First" car)
("Rest" cdr)
("Append" append)

)

This association 1list binds the Omega names to the appro-
priate 1LISP symbols.
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and additional <cycles will onot produce any new state

information.

F. ERRGCR CONDITIONS

Binding requirements differ as rule evaluation proceeds
from the antecedent instructions of the rule to the conseg-
uent instructions. These reyuirements constitute a signifi-
cant source of error.

In the antecedent, the members of a tuple may or may rot
te bound. An unbound variable at this point is not an
error, unless the variable is involved in an applicative
expression. In the consequent cf a rule, all variables must
be bound. Unbound variables at this point are regorted as
an errore.

The binding for relation names is more strict. Given a
left-to-right evaluation of instructions, each relation name
nust be bound before its evaluation.

Consider the rale:

if *R(x), x(y, BR) => . . .

The evaluation of relation R occurs first. The variable B
must be globally bound, or an error will occur. In
contrast, the variable x is bourd in the R(Xx) ingquiry. Its

later use as a relaticn name is valig.

The requirement that relation names bLe bound is an
implementation restriction. A more general mechanism would
allow a sequential search of all relations in the database
for trial bindings of relation rames. This would extend the
free variable binding process previously shown only for the
tuples in a relation.

A simple error-handling approach is used in this systen.
When an error 1is detected, a message is displayed and the
intergreter continues with the evaluation of the next

instruction.
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Consider the following rule:

if *R1({x, x, ¥y) -> R2(%x, Y)-

Assume the relation R1 only contains the tuple <1, 2, 3.
Using the match algorithm previcusly Jescribed, the pattern
<x, x, y»> would successfully match against <1, 2, 3>. To
prevent such an error, the match algorithm must take tempo-
rary bindings into consideration. This reguires an exposure
of some of the details of the binding mechanism to the rela-

tion management routines.

E. CONTROL

Active rule interpretation cccurs during the sweep rhase
of the interpreter's top level. This prototype uses the
simplest possible control strategy for rule selection: each
active rule is tested on every cycle. Active rules are
maintained in a list, and the execution function is mapped
to each of the rules. 1In LISP terms, this is written:

(mapcar ' (lambda (rule)
(exec (car rcule) (cadr rule)))
ActiveRulelist))

The 1lambda functioun splits each active rule into its
instruction and environment components.

After each cycle, the above segquence returns a list of
results from each application of the execution function.
The result for a cycle appears as:

(t t nil nil t nii . . .nil)

where each "t" response comes from a successful rule execu-
tion. The sweep phase will ccntinue to cycle through the
active rule 1list until all rules return a "nil" response.
At this point, the active rule list is in a quiescent state,
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directory to be used for varialble lookups. A rule, then, is
represented as a pair: <ep, ip>, with environment pointer
(ep) and an instruction pointer (ip). This representation
is called a closure, and is a technique used to simulate
static variable birding in LISP systems [Ref. 19: PP-
436-37].

To support temporary rindings made by pattern-
matching, a local symbol table is used. The evaluation of
variable bindings follows the following segquence:

e WVken a rule begins execution, a global environment

pointer is set to the envircnment pointer for the rule.

e To evaluate a variable, the local symbol table is
searched for a [revious definition. If not already
defined, the directory referenced by the environment
pointer is searched for a global bimding. If globally
bound, the variable and its definition are installed in
the local symbol table.

e Tf not defined in the 1local symbel table or in the
rule's directory, the variable is considered unbound.
This is represented by the installation of a special
"unbound” definition in the local symbol table.

Variable binding details are external to the rela-
tion management functions. Before passing a tuple to the
match function, 1lookups are made in the local symbol table
and variabies replaced by their definitions. The match
function accepts this tuple as input, and returns a pointer
to the corresponding relation tuple if a match is found.
Free variables become bound by having their match counter-
parts added as definitions in the local symbol table.

The isolation of the relation match function froa
variable binding simplifies the interface between the rela-
tion management routines and the evaluation function. This
simplistic approach is flawed, however.
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match_egqual, however, no variable binding is done. 1Instead,
variable bindings are made after match_equal returns its
result.

The add function places new tuples at the beginning
of the relation list, making the relation list a LIFO struc-
ture. The delete function removes a tuple directly from the
relation list.

5. Binding

Variable binding is controlled by symbol tables for
temporary and global bindings. These symbol tables are
implemented as association 1lists, and are manipulated
through the follcwing management routines:

e Add. Install a symbol and its definition in the symbol
table.

e Delete. Remove a symbol and its definition.

e Lookup. Given a symbol, search the table and return the

definition.

The use of association lists for symbol table repre-

sentation is not the most efficient method provided by I1ISP,

but dces offer some advantages. The representation is
simple, and the talle contents can be easily inspected
during debugging. Also, there is a close corresporndence

between these association lists and the structure chosen for
relations.

The correspondence between symbol tables and rela-
tions allows the direct implementation of directories as
relations. The directory prcvides an environment which
binds variables during rule evaluation.

To support the use of multiple directories, the rule
structure was expanded to include an environment pointer for

each rule. This environment pointer represents the
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if match_eyual[ first[ R], Tuple]
return R
else R := rest[k,
end while
return FALSE
end match

The match_egual function 1is a godified version of a recur-
sive list equality test. A podification is regquired for
unbound variables. The algorithm is:

match_equal{R1, R2] :
if R1=Nil and R2=Nil
return TRUE
else if R1=Nil or R2=Nil
return FALSE
else if R1 is UNBOUWD
return TRUE
else if R1 is an aton
return R1=R2
else if match_equal[first[R1], first{R2]]
return match_equal{rest[{ k1], rest{R2]]
else
return FALSE.

€nd match_equal.

The match function performs a linear search of the
relation. Each tuple is selected and tested until a match
is found or the 1ist of tuples is expended. The index
parameter passed to the match function indicates the foint
in the relation where the search is to begin. This irdi-
cator is non-nil when the match is being requested on a

backtrack attempt.
The match_equal algorithm is similar to the pattern-
matching algorithm discussed in the previous chapter. In
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4. Relations

Relations are represented as objects which have an
i associated list of tuples. The relation object identi-
fiers are created through the gensym mechanism previously
described. A value is bound to the symbol using the set
function of LISP.
. To 1illustrate this representation, consider the

following sequence of command rules:

Define (root, "R1", Newrel[ ).

R1 ("all' "b"' "C").

ol R2 ("x", wymw, wzw),
The Newrel[ ] function returns the object identifier for the
new relation. After the assertions, the relation R1
) consists of the £following:

(
(lla" "bll "C")
("x" Ilyll "zll)
o )
The relation is a list of tuples, each of which is a list.

With the list representation for relations is a set

‘ of management routines. These routines are match, add, and
delete.

The match function provides the mechanism for

pattern-matched ingquiries. The function is constructed as
> follows:

match{ RelationName, Tuple, Index] :
if Index = Nil

R := get binding of Relation Name.

,; else

ti R := Index
%1 endif

- while R <> Nil
»
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This applicative mechanism bypasses some important
issues which a non-LISP implementation must consider. These
issues include functicn definition at the rule level and the
interface bhetweer the object-oriented and applicative inter-
preter mechanisms.

The simplicity witbk which new Ifunctions can be
defined to support the Omega interpreter gives this imple-
mentation a strong reliance on functiors. Consider the
implenmentation of a rule for Display:

if *Display (x) ->
Null (Print[x]).

The function call Print{x] 1is translated directly to the
1LIS? print function. Null is a dummy relation whose only
purpose is to allow the print function to execute.

In the above example, the use of the Print function
is inconsistent with the philosophy behind the applicative
component of Cmega. The LISP print results in a side
effect, and is therefore not a pure applicative expression.

The print mechanism 1is more accurately =aodeled
through relations. A functionral implementation is forced in
situations such as this to allow access to LISP definitions.
The consequence of this "bending" of the semantics of the
language is shown by the appearance of awkward constructs
such as the Null reladtion.

3. Cbjects

Pt =P

An object in Onmega is used as a place-holder in
relations. To £ill this role, the fundamental character-
istic of objects is uniqueness. This was easily implemented
using the gensym function of Franz LISP [Ref. 20: p. 2.8],

which returns a unique symbol e€ach time it is «called. A
functicn to create new object identifiers needs only to make fﬁ}

successive calls to gensya. fjp
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predecessor are popred from the binding kistory list and
undone. If an instruction succeeds, any free varialle bind-
ings made during its evaluation are pushed on tke binding
history 1list.

The cancel operaticn requires the generation of a DELZETE
instruction should the cancel evaluate as "true."™ A delete
list 1is maintained for this rpurpose. To support tack-
tracking, the delete list is checked for duplicates before
adding instructions. The instructions in the delete list
are passed to the evaluation furction after all the instruc-
tions for the rule have successfully executed.

1. Instruction Evaluation

The instruction evaluation function perforus a
direct interpretation of the instructions produced by the
parser. The steps of the function are simple:

Eval[l ]:
return Op [ Evalf o1, o2, . . ., on ] ]
where Op is the cperator of 1 and
<o1, . . ., on> are the operands of 1
end Eval.

The function recursively evaluates the operands of an
instruction, then aprlies the instruction's operator to the
result. To support this organization, a LISP function is
defined for each operator.

2. 1The Applicative Component

The applicative compcnent of Onmega is simply
supported by function definitioms in LISP. Such functions
are invoked by the APL operator, which is passed the func-
tion name and its argument~. These symbols are directly
intergpreted by LISP, and a result produaced.
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This protlem 1is solved by a pre-scan of the token
list before parsiny. If the token list doesn't corntairn the
w->" token, it is inserted at the beginning of the list.

D. RULE EVALDATION

The interpretaticn of a rule is done by an iterative
execution function and a subordinate recursive evaluatiorn
function. The execution functicn steps through the instruc-
tions in a rule and passes them to the evaluation furction.
This separation into iterative and recursive functiomns is
done to facilitate backtracking.

The evaluation function returns a value of "true" or
"false." If an instruction is evaluated "false," the execu-
tion routine resets any temporary bindings associated with
that instruction's predecessor, then attempts to re-execute
the predecessor. The rule fails when this process backs up
to the initial instruction. It succeeds if all instructions
succeed.

At the level of the execution function, there is no
distinction between the conditicns of the antecedent and the
actions of the consequent. Backtracking is only meaningful,
however, in the antecedent portion of the rule. Therefore,
the evaluation function always returns "true"™ for instruc-
tions generated from the conseguent of a rule unless an
error is detected.

An instruction history 1list (a stack) is maintained to
support backtracking. If a racktrack 1is required, the
pointer to the predecessor instruction is popped from this
list. If the instruction succeeds, the pointer for the
instruction is pushed on the list.

A tinding history 1list (another stack) records the
logical variable bindings being made as each instruction is

evaluated. If an dinstruction fails, the bindings of its
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(CANCEL (INQUIRY (VAR "R1") (TUPLE (VAR "x"))))
(PRESENT (INQUIRY (VAR "R2") (TUPLE (VAR "x"))))
(ASSERT (VAR "R3") (TUPLE (VAR "x")))

)

The sublists preceded with the symbols CANCEL, PRESENT, and
ASSERT are termed instructions. A list of these instruc-
tions is produced for every rule.

These instructions correspond to the basic actions
that the interpreter must perform. Besides the three
instructions shown, this prototype produces similar instruc-
tions for the deny operation (DENY).

Subordinate instructions are created for operani
generation and evaluation. In the preceding example, the
sublists headed by INQUIRY, TUPLE and VAR fall into this
category. Other subordinate instructions are included for
constants (CON), rule denotations (DENO), and function
application (APL).

A subset of the original Omega grammar is recognized

by the parser. The intent was to allow the interpreter to
evaluate the simplest canonical form of rules, which uses
present/inquiry tests, absence tests, assertions and
denials.

The Omega grammar described in [Ref. 14] makes no
syntactic distinction between the antecedent and conseguent

of a rule. Thus, a rule would te written:
R1(x), R2(x) -> ER3(x), RY4 (x).

The convention of allowing the ®->" to be omitted in a
command rule requires an indeterminate lookahead to decide
whether the antecedent or consequent portion of the rule is
being parsed. If the "->" is omitted, every token in the

input list must be examined.
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A.

V. A FOLLOW-ON IMPIEMENTATION IN C

WHY C?

The second prototype was written using the C language,

although other alternatives were available. The decision to

to use C was based on the following:

The

High level control structures. The language has a
reasonaktle set of control structures that support

modular programming.

Simple but flexible data structuring. C supports a
limited but flexible set of data types and constructors
that are well-suited <for interpreter implementations.
The bit-level operations and weak data typing provide
opportunities for space and speed optimizations.

Recursiorn. C is a recursive language, and many of the
algorithms explored in the LISP prototype were easily

transl] .ted into recursive C versions.

Integration with UNIX. As with the LISP prototype, the
feollow-on was developed on a VAX-11/780, using Berkeley
UNIX (3SD 4.2). No language is better suited to UNIX
than C, and vice versa. The operating system provides
many features that directly support access to systen
routines and variables. The numerous software develop-
ment tools available on a UNIX system are largely

intended for use Lty C proygrammers.

C is not a perfect implementation language by any means.

availability of low-level cperations and type coercion

provide a dangerous source of error and confusior. The

terse syntax is difficult to read for those unfamiliar with
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the language. Finally, C's strict use of call-by- .lue
forces a proliferaticn of pointer usaygye, complete with a
flood of subtle errors resulting from pointer abuse.

Despite its limitations, C is a tool well-suited to its
environment.

B. CHANGES TO SYNTAX AND SEMANTICS

1. An Antecedent Keyword

The previous chapter discussed the problea caused by
the optiomal "->" sign in the Omega syntax. The problem was
circumvented in this implementation by the use of the
keyword "if" to signify the beginning of the antecedent of a

rule. A one token loockahead is sufficient to detect this.

The original Omega syntax uses the "if" keyword to

signify a constraint. Thus a rule would be written:
*R1(x), *R2(y), 1L X > ¥y -> « . .

Syntactically, the keyword is nct necessary to distinguish a
constrairnt. Therefore, the use of the keyword was modified
to solve the lookahead problen. Usiag this modification,
the rule is written:

if *R1(x), *R2(y), X > y -> . « .
The semantics are unchanged.

2. Rule Denotaticns

The delimiters for a rule denotation were originally

asymmetric quotes. This was modified to the <K. e 2D
construct shown in previous chapters. This syntax was
selected to add greater visual emphasis for rule
denotations.
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3. Ru.e Separators

A small but dimportant modification was amade toc the
use of the period and comma as deiimiters. faclennan uses
the semi-colon to separate rules within a sequential block,
and a period is used for the separation of rules in a deno-
tation. This distinction is made to emphasize the sequen-
tial nature of the block in comparison to the concurrent
nature of the rules within the rulile denotation [ Ref. 14: p.
23].

This distinctiorn was altered to solve the command

rule termination protlen. Rules are always separated by
semicolons; a period indicates the end of the current
command rule input. This replaces the dual carriage return

termination of the earlier protctype.

This problem results from the use of rules as a
command language. Rules tend to span multiple lines, so0 a
simple end-of-line termination is not sufficient to indicate
the end of input. Two alternative solutions to this problen
are: (1) terminate a multi-line command with a continuation
character, or (2) use a special character to signify the end
of ingput.

The latter technigue was selected, with some loss of
the wuseful syntactic distinction between denotations and
seguential blocks. It is hoped that the remairing distinc-
tions between the two constructs, <>>'s s, {} 's, are
sufficiently different to serve as a reminder of the differ-
ences in semantics.

4. Parameter Lists

The original syntax for a function call was similar
to the form of an assertion or an inguiry. Thus a rule
would appear as:

*R1(x, Y} -> R2(cons(x, y))-
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The square bracket notation for function parameter lists was

selected to provide an obvious distinction betweer function

calls and otner non-applicative forms in the language. The )
square brackets alsc denote lists, with the similarity

emphasizing the semantic connection between these

constructs.

A similar modification was made for the procedure
call, where curly braces denote the parameter lists. This
syntax appears unusual, and the procedure call mechanism is
unusual. The semantic similarities between the procedare
call and the sequential block, both of which provide some

degree of control on the otherwise free concurrency of
. Omega, is emphasized by their ccmmon use of curly braces.

i. 5. Conditional Expressions and Function Definitions

The introduction of an applicative component into
the language regquired syntactic extensions. These extern-

sions were centered around the conditional expression, which

is illustrated by the following rule: -
if *R1(x) -> R2({ if x<3 -> WYES" else "NO" ).

The value of the assertion is determined by the condi tional -

expression. s

Given the form of the conditional expression, a

function declaration can be formed by giving the function e

name, parameter list, and body (a conditional expression):
fn Max(x, y] ¢ if x > y -> x else y. -

Syntactically, a function declaration may appear anywhere a
command rule would aprear.

The form of the conditicnal expression is a modifi-
cation to the original syntax of the rule, with restrictions
to prevent side effects.
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6. An Implicit Response for Command Rules

A syntactic change was made to allow expressions at
the same level as assertions. This modification allows the
entry of the following command rule:

if *R1(x) -> X.

When this rule is evaluated, the binding of x is "returned"
by the rule. If this binding is printed by the interpreter,
the necessity for ubiquitous "[isplay" calls may ble less-

ened. This allows the command entry of expressions such as:
2 + 2 ¥ 5in{Pi/2].

where the interpreter returns the result.

While this modification to the rule syntax 1is

convenient for command rules, it provides some interesting
semantic questions. Suppose the foliowing 1is an active
rule:

if *R1(x) -> 2 + 2.

Wwhat does the conseyuent of this rule mean? It involves no
aiteration of the database, but instead requires an expres-
sion evaluation.

The action may be described by the following eguiva-
lent form:

if *R1(x) -> Eval{"2 + 2"}.

The expression is asserted to an implicit BEval relation, aand
the semantics of the procedure call apply. Note that, in
general, the value returned by a procedure call used at this
level is ignored. For command rules, this value may be used
to indicate the result returned from evaluating a rule.
Given this interpretation, consider the following

rule:
if *R1(x) -> R2({x).
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What is the '"result" returned Ly the assertion? A simgple
convention is that that the assertion of a tuple x to a

relation R returns the tuple x as its result.

7. Head/Tail Pattern Specifications

A final added feature is a head/tail pattern speci-
ficaticn for lists, similar to that of Prolog [Ref. 21: p.
43]. This is shown in the followiny rule:

if *R1([h:t]) -> R1(h), R2{t).

The [h:t ] notation will match a 1list. The variable h will
be bound to the head (first) of the list, the variable t
will e bound to the tail (rest) of the liist.

The head/tail specification syntax is extended for
tuples:

if *R1(h:t) -> R1(h), R2(t).

This notation provides a pattern specification for tuples
that is independent of +tuple cardinality. This generality
was not possible using previous constructs.

C. DATA STRUCTURES

Data structures posed the major design challenges for
this interpreter. The structures of particular interest
were the representations for rules and for supporting the
objects and values of the language.

1. A Uniform, Tagged List Structure ]

p—R—pe T T

A list structure, similar to that of LISP, was selected for

the representation of rules. This structure was selected -
for the following reasons:

PSPPI Y
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e Rules are represented as birary trees. Using a list
structure for rules allows a direct, recursive evalua-
tion technique similar to that of the LISP prototype.

e Omega needs lists. Lists provide a general constructor
mechanism that is extremely flexible. In a pattern-~
matching 1language, 1ist structures are essential if

pattern-matching is to extend beyond character strings.

e Uniform list structures siaplify design. Given that
lists are desirable as a data type within the language,
a simple set of list handling routines suffices for
analysis and synthesis of data within the interpreter.
Uniform list structure alsc allows storage allocation
and reclamation to concentrate on a single unit: the
list cell.

A diagram of the basic cell structure is shown in
Figure 5.1 The c=211 has three fields: a tag field, a head
field, and a tail field. Table I shows the types of values
that each field may assunme.

The atomic values in this implementation are char-
acter strings, signed integers, and objects. These atoms
are represented by cells. The type of an atom, as withk all
celis, is determined by the value of its tag field.

Integers have their values contained directly in the
head field of a cell. Likewise, objects have their identi-
fiers encoded in this field. The width of this field is 32
tits, determined by the VAX 11/780 word size.

Character strings have a pointer in the head field
that references a contiguous block of string storage.
Reflectiny their C implementaticn, string storage areas are
NULL terminated. On the VAX, NULL is represented by a zero
value.
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TAG HEAD TAIL
°
8 32 32
* bits bits bits
Figure 5.1 Cell Structure.
A list cell contains pcinters ir both the head and
tail fields. There are two classes of 1list cells: Jata

list cells and operator list cells. These are distinguished
by tag values.

Data list cells are analogyous to LISP lists. T hey
serve as dJata constructors. Operator list cells form the
irterior nodes of a binary tree representation for rules.
Rules are transformed and evaluated as tree structures. The
"instruction" concept of the prctotype was dropped in favor
of a wmore uniform approach. Figure 5.2 illustrates the
parse tree for a simple arithmetic expression.

This tagged =structure simplifies evaluation at the

expense of storagye space. Individual tays are used for all
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TABLE I
Cell Field Values

head field:

Contents Comments
cell rpointer data and cperator list cells
string pointer string cell
integer integer cell value
used " for frame size in allocate op
object id object cell--id is 32 bit integer
<blcck,offset> VAK gellT—gives scope and offset
within birding stack frame
tail field:
Contents Comments
cell rointer data and operator list cells

VAR cells and defined objects have
pointers to print names

unused integer, string, and
and most cbject cells

primitive data types and for each construct (node) in the
abstract syntax for rules. This results in a large number
of tags: over 40 in the current implementation. A minimum
of 6 bits, therefore, is reguired to represent the tag of a
node. Given the cell space reguirements given in Figure
5.1, approximately 11 percent of the system storage reguire-
ment is needed for tags. (The actual percentage is somewhat
less because of character string blocks and hash talbles,
discussed below).

As in the LISF prototype, objects are represented by

a unigue identifier. In this implementation a cell is
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Expre.sion: 2 + 4 = 5

PLUS ¢ ’

INY| 2 MULT T

P4

INT| 4 INT| &

Figure 5.2 Tree Representaticn for a Simple Expression.

generated for an object and ar identifier embedded 1in the
head field. Again the problem is how to manage the identi-
fiers so that the are unigue.

The approach used is tc maintain an object count.
Fach time a new object is rejuested, the object «count is
incremented. If the control of object identifier allocation
remains centralized, the objects are guaranteed tc be
unique.

The generation of identifiers this way leads to the
issue of object identifier management. What prevents the
system from running out of unigque identifiers? What happens
when the identifier space is exhausted?
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A simple strategy is to ignore these problems alto-
gether. How long can the systenr generate identifiers before
it runs out? For a rough calculation, assume that a new
identifier is generated every 10 milliseconds. The head
field which contains an identifier is 32 bits, so assume 29
bits are available (the use fcr the remaining 3 bits will
be discussed shortly). With these values, the identifier
space would be exhausted in 229 x 10 milliseconds, or about
62 days. The management of cobject identifiers is not a
major issue in this systen. Should a larger object identi-
fier space be needed, additional bits could ke provided from
the tail field of the object cell.

A small portion of the object identifier space is
reserved for system use. In the current implementation,
the first 64 object identifiers are reserved. The presence
of a system object is easily detected by an examination of
its identifier.

3. Hash Tables

As in the LISFE prototype, certain types of objects
have values associated with thesn. These values are managed
in this implementation using a uniform hash table mechanism.

The hash table index is generated by a simple hash
function. The algorithm is based on that given in [Ref. 22:
p- 135]. The hash functior receives a pointer to a cell as
an argument, and returns the takle index. The algorithm is
as follows:

hash{p] :
if p® is an integer or object cell
return pdhead mod TABLESIZE
else if pd is a string cell
return sum{ pdhead)] mod TABLESIZE
where sum[ s ] returns the sum of
the ASCII characters in the
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string s

else
returan 0
endif

end hash.

This function is a crude hashing algorithm for string
entries, with its primary virtue being simplicity. Object
identifiers are gJenerated linearly, however. The direct
hash off these 1identifiers should result in minimal
collisionms.

The structure itself consists of a pointer table (an
array), with a collision list maintained for each entry.
The collision 1list links together a collection of header
cells. These cells have a key field with a list cell
pointer, a definition field with another list cell pointer,
and a link field with a pointer +to the next header cell.
Figure 5.3 illustrates this structure.

To complete the hash tatle description, a collection
of management and access routines are used. These are:

s Lookup. Given a pointer tc a cell, find an entry whose
key field points to an equivalent structure. If fournd,

return the definition pointer.

¢ Install. Add an entry to the hash table. The hash
table is searched for an existing entry with the same
key value. If found, that entry is replaced. If not
found, the new entry is linked into the appropriate
collision list. ©Note that key entries may be any struc-
ture: objects, strings, or 1lists.

¢ Delete. Remove an entry from the table. The table is
searched for the key value. If found, the entry is

removed and its ccllision list is relinked if necessary.
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Collision List

Key Cell Definition Cell

Figure 5.3 Hash 7Table Structure.

Cbject representatiorns are linked to object identi-
fiers using these hash tables. The objects within Cmega
that have representations are relations, Jdirectories, rule
denotations, and functioas. These eatities are subject to

temporal change, and thus have an object implementation.
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4. xelatiomns

kelations are objects, rut with a twist: they have
access considerations. The access coantrol mecharism 1is
ercoded directly into a relation's object identifier. Three
bits of the identifier signify whether the «relation is
accessible for read, add, or delete operatioms. Wnen a new
relation is created, an object identifier is generated and
the capability ©Lits all set tc 1, indicating full privi-
leges. Subseguent orerations may reduce the capability by
copying the relation object identifier and zeroing the
appropriate bits. This produces a second reference to the
same relation, but with reduced access privileges.

Relations are represented as lists, similar to the
1LISP prototype. As a tuple is added to a relation, a header
cell is created for the tuple and linked in at the head of
the existing tuple list (if any). A pointer to this list s
bound to the relation's object idertifier through the object
table. The list representaticn of a relation is showr in
Figure 5.4

5. Directories

Directories incorporate the hash table into the
gereral list structure. A directory has two header cells:
a class link cell and a partition cell.

The class 1link cell cortains a pointer to a parti-
tion cell, and a poirnter to the next class link cell ir the
class. A lookup path, then, mpay follow this chain froa
directory to directory.

The head pointer of the partition cell points to the
private partition, while the tail pointer of the cell fpcints
to the public partition. Each fpartition is represented by a

single hash table.
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looxups in the object takle where necessary. Thus, the
philosophical differences between objects and values 1in
Omega are supported by concrete differences at the impleamen- -

tation level.

I. BACKTIRACKING

A recursive backtracking algorithm is 1mplemented witl the

conditions (CONDS) orerator. A condition is an element of
the antecedent of a rule: a jresence/injuiry test, an
absence test, or a constraint. Backtracking is initiated

orly on the failure of a presence test. The algorithm is:

conds[ cond_curr, cond_next, ep] :
match_next_ptr := Nil
while TRUE
result := eval{cond_curr, ep]
if result = FAIL
return FAIL
else if cond_next = Nil E
return result
end if
result := eval[ccnd_next, ep]
if result != FAIIL
return result
endif
if cond_curr is not a ‘'present' op
rceturn FAIL

end if
undo trial bindings made for condition
end while

end conds

This ealgorithm treats backtracking as a binary operation.

The "cond_curr" parameter is the currect condition FLeing
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Twe binding process uses the following primitive

routines:

e bind(x, Y] The frame slot for variable ¥ is assignel

pointer y.

e getbinding[x]. Return the value in the frame slot for

variablie x.

e freebkinding[x]. Free the binding for variable x. This

is accomplished Lty assignirg a reserved value to the
frame slot meaning UNBOUND.

When a rule ccmpletes execution, tne dynamic link is
followed to the previous <Zfrane, and the current frane
pointer reset.

The binding stack offers several advantages. First,
variakle lookups are only dore once: at activation tipme.
The dynamic binding fprocess is only concerned with a vari-

able's offset in the stack frame, not with the variable
name. The binding stack allows the simple reclamation of
storage wused for Dbinding. Finally, it allows context

switching in rule interpretation since bindings from iater-
rupted rules are preserved.

A context switch for a rule occurs during a synchro-
nous call. Consider the following rule:

if *R1(x) =-> { B2{x}; R3{X} }-

When the R2 procedure call is made, a context switch is made
to the body of rules that support the call. The binding of
the variable x, however, mnmust be maintained between the R2
procedure call and the R3 procedurz call.

This method of static bindin; eliminates unnecessary
variakle lookups by replacing variables by their defini-
tions. Generality is still maintained for objects such as

relations, whose associated values are determined by dynamic
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The Binding Stack.
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A variable not defined in the directories of the
class is a free variable. The «cell representing a free T
variable contains an ofiset in the head field, and a pointer ) -
to the variable's print name (a string cell) in the tail
field. The offset for a variable depends on the order in
which the free variables of a rule appear.

¥hen a free variable cell is initialized, a pointer
to the variable cell is installed as the print name's defi-
nition in a local symbol table. Subsequent occurrences of
the variable will be replaced by this definition.

During the binding prccess, the parse trees for
enbedded rule denotations are installed in the object table.
A system-generated object identifier replaces the rule deno-
tation subtrees in their parent expressions. The variables
in the rule denotation are 1left unbound--the binding of
these variables is deferred until the denotaticn is
activated.

The final action for the bindinygy process is the . ,
creation of an allocation operator cell for the rule. This Lol
cell has a count of the total number of free variables for
the rule 4in its head field. The taii field contains a

pointer to the actual rule structure.

2. A Binding Stack

The allocation operatcr is used wita a binding
stack. The binding stack is an array with a current frame
pointer and a chain of dynamic link pointers that connect
frames. The binding stack is illustrated in Figure 5.7

When a rule begins interpretation, a stack frame is
created on the binding stack with slots allocated for each
free variable in the rule. The offset in a variable cell
indicates which of thte binding frame slots is to be used for
that variable.
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result := rule[ irdhead, ipatail, ep]

end case
return result

end eval

3ds in the LISP prototype, separate functions are defined for
the majority of interpreter actions. The function rule is
defined external to the case statement, and coantains code
for the interpretation of the RULE operator. Separate calls
to eval are used to evaluate the arguments to rule.

The evaluation function receives two arguments: a
pointer to the subtree being evaluated (ip), and a pointer
to the current directory for global name definitions (ep).
The evaluation function returns a cell pointer as its
result.

H. BINDING

1. Bimnding At Activation

This iamplementation uses an entirely different
binding mechanism than the LISP prototype. The variables of
a rule denotation are bound when a rule becomes active.
These bindings are determined by the environment of activa-
tion. Since a command rule is immediately executed, bindinj
takes rlace immediately for these rules.

The binding [frocess results in a complete copy of
the parse tree for a rule, leaving the original denotation

unaltered for later use. In this way, the denotation is
like a source file, the bound parse tree like an otject
file.

When a rule denotation is bound, the current direc-
tory is searched for variable definitions. The class of the o
current directory provides a search path to other directo- jﬂ?]

ries if the variable is not bound in the current directory. S
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of the current subtree. A section of the algorithm may be

descrited as:

pretty_print{p] :

do case pdtag

case RULE :
print[ "if" ]
pretty_print{[ p@head ]
print[ "->" ]
pretty_print{ pdtail ]
print[";"]

end case

end pretty_print

Although the pretty printer originated as a debugying
aid, the basic design of the tag-oriented case statement was
almost identical for the central evaluation function. This

pretty printer evolved into the Display mechanism for the
interpreter.

G. RULE EVALUATION

Where the LISP prototype used a separate, iterative
execution function for backtracking, the follow-on design
uses a recursive backtracking alygoritha within a single
evaluation function.

As in the pretty printer, the heart of the evaluation
function is a 1large case staterent. The tag value of the
form being evaluated determines the case selection. A
section of this case statement aay be described as:

eval{ip, ep] :
do case ipidtag

case KULE:
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List: [1, 2, 3]

LIST
f
INT | 1
LIST| o | o
f
INT | 2

LIST|

INT 3

Figure 5.6 Transformed List Structure.

F. A EFECURSIVE PRETTY PRINTER

The parser, along with the «cell allocation routines to
generate the parse tree, was the first system coaponent
developed for this implementaticn. A pretty printer was
written at this point primarily to debuy the parser.

The pretty printer 1is based on a 1large case statement,

which selects the apgropriate ocutput form based on the tag
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List: [1, 2, 3]

LIST

INT 3

LIST| o | o

INT 2

LIST .

% INT 1

Figure 5.5 Left-Recursive List Representation.

The scanner produced by LEX accepts input from the
standard input file by default. To receive input from
another text file, the file is opened and the LEX input file
variable reassigned. This simple technigue allows the

alternation of input between several sources.
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currdhead := t;
currdtail := pred
if h = Nil

return curr

else
return h
end if
end if

end rtrans

Figure 5.6 shows the list after the transformation has been
applied.

The YACC parser offers several advantages to a
prototyping effort:

e Development time. The high level of the specification

for YACC minimizes the «comrlexity of parser generaticn.
¥Fe had a complete, functicnal parser working in three

days.

s Ease of modification. Experimentation with syntax is
simple: change the grammar rules, rerun YACC, and
recompile the output. The ease with which the granmnmar

can be modified encourages experimentatioa.

e Verifying specifications. Analysis of grammar chanjes
is easy in YACC. If a change produces ambijuities, YACC
will report conflicts when trying to generate tkLe parser
tables. This automated analysis is a strong point in

favor of using a YACC parser.

3. Comsole and File Input

As in the LISFE prototype, the same parser is used to
read command rules from the console and from text files.

This is implemented using the i/o redirection facilities of
UNIX and C.
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rule [Ref. 24: pp. 14-15]. This scheme results in a flat
gramnmar for expressions in YACC, where the precedence rules
determine associativity and precedence.

Certain constructs in Omega lend themselves to
recursive grammar ruies. YACC encourages such rules to be
left-recursive. Left-recursive rules result in a smaller
parser size, and reduce the likelihood of an internal stack
overflow when parsing a long seguence [Ref. 26: p. 19.].

Consider the following, left-recursive specification
for a list:

list : expression

] list ',' expression

The parse tree generated by such a rule is shown in Figure
5.5 Cne consequence of this fcrm is that the entire list
must be traversed to access the head of the list, an obvious
disadvantage in list-oriented interpretation.

To solve this problem while still respecting the
YACC preference for left-recursion, a recursive transforma-
tion 1is performed on parse trees. This transformation
selectively changes left-recursive forms into right-

recursive forms. The algorithm is:

rtrans{curr, pred] :

if curr = Nil
return Nil

else if curr points tc ap atonm
return curr

else if curr is not a left recursive fornm
currdhead := rtrans. currdkead, Nil ]
currdtail := rtrans{ currdtail, Nil )
return curr

else
h := rtrans{currdhead, curr]
t := rtrans{curradtail, Nil]
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assertion : primary '(' arguments ')
{
3% = newcell (ASSEET, %1, 33);

}

Additional rules are given for "primary" and "arguments."
The newcell function generates a new cell witn the tayg
ASSERT, a head pointer set to the value returned Ly YACC
from parsing "primary," and the tail pointer set to the
value returned by YACC from parsing "argyuments."

The embedded C expressicn determines the actions of
the parser if an assertion is recoyrized. The assignment to
ng3" Jefires YACC's response: this valiue is placed omn a
stack for use in other expressicns. In this implementation,
the value generated for each rule is a cell pointer. When a
form is parsed successfully, the YACC parser returns a
pointer to the root of a parse tree constructed this way.
The YACC specification for Omega is contained in Aprendix A.

YACC is a more complex tool than LEX, and it has
some idiosyncrasies. These include precedence specification
for infix expressions and a preference for left-recursive
grammar rules.

Infix expressions may be specified in YACC Ly a rule

such as:
€xpr : expr OP expr

1
Such a specification is ambiguous, however. To remove this
acrbiguity, YACC allows the declaration of precedence rules.

Thus a precedence rule of:

Fleft T+v v
%ieft 'kv /¢

wouid establish the precedence of the arithmetic operators

and resolve the ambiguities associated with the previous
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that a reasonably efficient parser be produced with a

minimum of time and effort.

1. é

[

EX Scanner

The LEX lexical analyzer denerator [Ref. 23] was
used to produce the code for the scanner. LEX accepts as
input a file of rules described through regular expressions
and their associated actions. The output <from LEX is a
table-driven scanner in C source code.

The following seguence defines LEX actions for
recognizing unsigned integers:

digit [0-9]
int_con {digit}+
{int_con} {
return (INT_CON) ;
}

The return statement is an emkedded C language construct
used to describe the required action by the scanner. In
this example, INT_CCN is a constant used to represent the
token.

LEX is an easy-to-use, sophisticated tool. With no
previous experience, we specified, generated, compiled, and
debugged a LEX scanner in a few hours. The LEX specifica-
tion for Omega is contained in Appendix A.

2. B YACC Parser

The parser was written using the YACC (Yet Anoctker
Compiler-Compiler) parser gemnerator [Ref. 24]. Like LEX,
YACC allows a high level specification for compiler actions.
The output from YACC is a table-driven, LALR(1) parser. The
YACC fparser receives its token input from the LEX scanner.

The following illustrates the YACC specificatiorn for
an Omega assertion:
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from the notion that a command rule "returns" a result. The

top level, then, consists of a read-evaluate-print-sweep
loop.

The read-evaluate-print fhases process the user's
command entry at the terminal. The print phase provides a

visual indicator that some activity 1is taking place because
of the command rule entry.

Suppose a user enters the following rule at the
terminal:

if *R1(zx) -> R2{x), R3(3).

The reader parses the expression, binds variables as appro-
priate, and then passes the parse tree to an evaluation
function. The response from the evaluation function is
displayed at the terminal. In this example, this resyp nse
would be "3." When multiple expressions exist in the
consequent of a rule, the response from the last expression
is disgplayed as the response for the rule.

After the command rule has been evaluated and its
response displayed, the interfpreter begins its sweep phase,
evaluating any active rules that are ready to fire. There
is po implicit respomnse from active rules: their purpose is
to alter the database. At the completion of the sweep
phase, the command loop returns to the reader and waits for
the next entry.

E. THE READER

The reader was a major weakness in the LISP prototyge.
While an efficient parser implementation was not a wmajor
design goal for this work, the slow, error-prone parser of
the LISP prototype was frustrating to work with.

A parser generator was used to «create the parser in the

second prototype. This decision was made with the intent
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Relation Headers

LIST| - LIST
! !
. Tuple Headers
LIST o~— LIST
Tup'le Headers
~
LIST LIST

Figure 5.4 List Representation for Relations.

In this implementation, Jdirectories are represented
differently from relations. This distiuction was mpade to
optimize directory access by hashing, although there 1is a
loss of the generality enjoyed Ly the LISP prototype.

D. ORGANIZATION: THE TOP LEVEL

The interpreter's top level is siailar to that of the

LISP frototype. An added step--the print phase--resualts
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tested. The "cond_next" points to the remaining list of
conditions to be tested. A successiul response from eval on
"cond_mext" indicates that all remaining corditions have
tested successfully. A failure means a backtrack attempt

should be made on the current ccndition.

J. RELATION MANAGEMENT RODTINES

The relaticn management routines of the LISP prototype
are continued in this implementation. They are: match,
add, and delete. As in the LISFE prototype, the add function
links a new tuple at the beginning of the relation list.
The delete function removes the tuple from the relation list
and relinks as necessary.

A pattern-matching algorithm is used in the relation
match function. As in the LISP prototype, the tuple list of
a relation is searched linearly. As each tuple is selected
for a match, it is passed to tle pattern-matching function.
The match function maintains a "match_next" pointer. This
indicates where the last match occurred, and provides a
search contiruation point for backtracking.

The pattern-matching algorithm is similar to that given
in Chapter III. Unlike in the LISP prototype, trial vari-
able tinding occurs during pattern matchking. The pattern-
matching furction binds free variables by using the binad
operator of the binding stack. These bindings are undone if
a rematch is necessary when backtracking.

In +this implementation, relation access control 1is
enforced. The object identifier for the relation is first
tested to ensure the capability bit for the desired opera-
tion is set. If not, the operation is canceled and an error
message is generated.

Ar additional relation function w2s added: match_first.
This function returns a pointer to the first tuple in a
relation.
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K. ACTIVE RULE PROCESSING
1. Iriggers

The technique of triygering is used to improve the
precision of active rule processing. The trigger for a rule
is the left-most relation in the the rule. For the

following rule:

if *R1(x), *R2(y) => - . -

the trigger is the relation R1.

A rule is selected for test when certain events taxe
place involving the +trigger relation. These events are
assertions and deletions. If either of these operations is
performed on the trigger relation, there is a 1likelihood
that the rule's antecedent conditions are now satisfied.

The triggering process is initiated at the time a
rule is activated. The trigger for a rule is determined,
and the rule 1installed in an active rule table (a hash
table), keyed by the object identifier for the trigger rela-
tion. A list is maintained in the active rule table for all
rules associated with a given trigger.

When an assertion or denial is made to a relation,
any rules indexed by that relation are selected from the
active rule table and tested.

A rule is always tested at least once: when it is
activated. This ensures that any pending conditioms will be

serviced hefore the rule enters its triggering cycle.
2. A Rule Queue

Triggered rules are @managed through a circular
queue. When a rule is triggered, a pointer to the rule is
placed in the rule queue.

During the sweep phase, all rules in this queue are

tested. If a rule succeeds, it remains in execution by
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staying in the rule queue. Instead of undergoiny continuous
evaluation, a successful rule is reinserted at the end of
the queue. This enfcrces a fairness policy: each rule in
the queue should get a turn at evaluation.

Given the nature of rule testing, only one instance
of a rule needs to be in the gueue at one time. Hultigple
instances will result in wasted interpreter cycles and
excessive queue sizes.

To control this protiem, a flag bit is used. The
flag bit is contained in the tag field (bit 7) of the first
cell in an active rule 1list. #hen a rule list is placed in
the queue, the flag bit 1is set. Subsequent attempts to
insert the rule 1list in the gueue will be ignored because of

the flag bit value. When the rule list leaves the queue (by
being selected for testing), the flag bit 1is reset and

subsequent queue reguests for the rule will be accepted.

3. Advantages and Disadvantages of Triggering Hfﬁ
Rule triggering has the followiny advantages: S
e Precision. The likelihood of triggered rules firing is .

good. The strategy is much more precise than the glokal
sweep strategy of the LISP grototype.

e Simplicity. The triggering mechanism described 1is B
simple, both in concert and in its supporting
izplementation.

e Triyyers are statically determined. The trigger is the
left-most relaticn of a rule. This 1is a simple,

syntactic distinction that is directly inferable frou

the visual form of a rule.

Despite its attractive aspects, the trigger mecha-
nism just described 1is too simple. To illustrate this

point, consider the following rule:
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if R1(x), ~K2({x) -> R2(x).

The intent of this rule is to enforce the constraint that R1

should remain & subset of R2.

Assume R1 and R2 initially contain the same tuples. ;23;
If a tuple is removed from R2, the relation contents are -
different and the constraint rule should fire. Given the
previous triggering strategy, hcwever, the rule will not be
tested. The affected relation was R2, but the rule is trig-
gered on R1.

B 4., Two-level Triggering

A possilble alternative to this siaple +triggering

method is to index a rule on every relation 1in the antece-

, dent. This will guarantee a correct evaluation, but
nd requires a complex index structure. Also, triggering on
secondary relations is inefficient--these relations may be
updated freguently and result in excessive testing for the
rule. .
ﬁ Another possible alternative is to determine the -
: point of failure. 1In the following rule:
" if *R1(x), *R2(y) => « . .
h the R1 inquiry may succeed and the R2 inguiry fail. If the
R2 relation 1is flagged as the point of failure for tkis
rule, a subseqguent assertion tc R2 could be the trigger for
j a retest of the rule.
’ The difficulty with this strategy is determining the
- point of failure. Consider the following rule:
- if *R1(x), *R2(x%, y), *E3 (X, 2)¢ X > ¥ => « . .
, Each of the relations R1, B2, and R3 may have a tuple that
meets the pattern specificatiorn. There is a dependency,
however, among these 1inyguiries and the coastraint. A
®
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failure, then, may be a failure of the combination and not
of any particular inguiry.

A compromise strategy is used to solve this problen.
We call this technique two-level triggering.

Using two-level triggering, two rule gueues are
maintained. One 1is for active, triggered rules selected
under the original triggering strategqgy. This is the primary
rule queue. The second queue contains rules pending altera-
tion of one or more conditions to enable firing. This is
the secondary rule queue.

When a rule is initially trigygered, it is inserted
in the primary rule gqueue. 1f, when tested, none of the
conditions of its antecedent successfully match, the rule is
discarded.

If, on the other hand, at least the trigger condi-
tion successfully matches (but the coamabination fails), the
rule is entered intoc the secondary queue. The rules of the
secondary queue are tested after the rules of the primary
gqueue have been expended.

Once inserted into the secondary queue, rules will
remain under evaluaticn for possible firing. A rule will
leave the secondary queue under two conditions:

e The rule fires and is +transferred back to the primary

gueue.

e The rule fails to match «c¢n its trigger relation and

leaves the active queues completely.

Two-level triggering may be inefficient. Consider
the followirng rule:

if *Employee_Data(name, salary), salary > 10000 ->

Employee_Data (name, salary/2).
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If the Employee_Data relation is normally not enpty, two-
level +triggering will perpetually maintain this rule in
. either the primary or secondary rule gueues. If many rules
behave this way, the rule selection strategy degrades to a
global sweep, a worst-case perfcrmance.
Many types of rules fair well under two-level trig-
gering. The key to efficiency for this strategy lies in
the wuse of the trigger relation. This relation should

contain matching tuples only when the rule is ready to fire.

L. THE APPLICATIVE COHPONENT

The original description cf Omeya did not contain a
detailed description of the applicative component. Instead,
it assumed that a completely separate applicative language,
such as Maclennpan's & [Ref. 25], would be integrated into
the Omega environment to support applicative evaluation.

The applicative component was a minor issue in the LISP
prototype, but the fcllow-on design had to resolve its role
and form. Some of the alternatives coasidered were:

» Develop a yeneral applicative interpreter interface.
The Omega interpreter and agpplicative interpreters would
be separate processes communicating through this
interface.

e Inteygrate the code for an existing aprlicative

interpreter into the Omegya structure.

® Use simple modifications to Omega grammar and semantics

to add an applicative comporent to the language.

The first option offers the potential for multiplie eval-

uation functions. In one environment, an appiicative

expression may be evaluated by LISP. Another environment 4
may use an A interpreter. ﬂﬁﬂ
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This option was discarded for efficiency reasons.
Applicative expressions use pointers to Omega structures,
which implies shared memory access. Separate processes .
would have to pass this information through an i/o cpera-
tion, such as a mailbox transfer or a UNIX socket [Ref. 26].

The second option was discarded because of complexity,
and the third selected for the same reason. Minor modifica-
tions to Omega itself allowed the rapid developaent of a
simple but useful apglicative mechanism.

The only completely new language feature needed was the
function definition, which has been shown in previous exam-
ples. A function definition takes effect at the same time
rule variables are bound.

The function definition periforms the following actions:

e The function name is bound to a system-generated object

identifier and installed in the current directory.

e The function is separated into a pair, <fp, b>, with

formal parameters (fp) and a function body (b).

e The formal parameters are installed as free variables in
the local symbol table. The variables of the body are
then bound. These varialtles will contain the stack
frame offsets of their corresponding formal parameters.

e An allocation operator 1is 1linked to the <fp, b> rpair.

This operator 1is used to create space on the binding
stack for formal rarameter Lkinding.

e The function structure is installed in the object table,

keyed on the object identifier.

The function definition 1is different from the other
features of Omega. The mechanism bypasses the "Define"
procedure to allow recursive definitions. Note that the

installetion of the function name and object identifier into>
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the current directory is done first. When the variables of
the function body go through the binding process, recursive
references to the function name will be handled properly.

When a function call is evaluated, the function struc-
ture is retrieved frcm the object table. The allocation
operator is interpreted, and a frame created on the birndirg
stack for the functicn's parameters.

The actual parameters for the function call, previously
evaluated, are grougped together in a list. This list is
traversed, and tke fpointer for each actual parameter is
assigned to a slot in the current binding stack frame. At
the ccmypletion of this process, all formal parameters are
found.

The function body is then [assed to the central evalua-
tion function. At this point, the function body is simply
anvther rule, and it is processed by the rule evaluation
routines. The binding stack supports recursion in function
evaluatior.

This applicative mechanism has the advantages of

simplicity and uniformity with the Omega syntax. The func-
tion definition, hovwever, does not conform well with the
other constructs of the language. Also, lambda expressions

and functionals--key compcnents of an applicative language--
are not irplemented.

Despite 1its limitations, a variety of interpreter
utility functions were defined using this mechanism. These
functions are listed in Appendix C.

M. PROCEDURES

With the evaluation and bircding mechanisms already
introduced, the implementation cf a procedure call mechanisn
is simple. The steps for procedure call evaluation are:
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¢ Evaluate the tuple participating in the procedure call.

This tuple 1is analogous to the actual parameters of a
function call, and is implerented as a linked list.

» Generate a new relation object for the mailbox. This

object is linked at the beginning of the tuple list.

s Assert the tuple into its target relation. The asser-

tion mechanism will gueue any ruies triggered as a
result.

e Execute the sweep function to evaluate any triggered

active rules. The sweep functiorn will continue to

execute if there are rules to fire.

e Apply the match_first operation on the mailbox relation
to extract the response from the call. It is this

response that is returned as the result of the procedure
call.

¥hile the procedure <call gives a measure of control to
rule processing, the mechanism is still unstructured. The
philosophy of this implementaticn is "make the assertion and
see what happens." One possible consequence of the mecha-
nism is wmultiple assertions to the mailbox.

Consider the following active rule:
if *Rr(a) -> a("Yes"), a("Nc").

If triggered as a result of a fprocedure call, what is the
value returned by the call? The use of the match_first
operation and the LIFO implementation of relations will
return the last assertion as the response. Other assertions
are ignored. While this convention seems tractable, it is
implementation-deperndent.
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N. BOUILT-IN FUNCTIIONS AND PROCEDURES

¥nile implementing the interpreter, the necessity for
"hard-wired" functions and procedures becane apparent. By
hard-wired, we mean that these mechanisms are supported by C
functions coded in the interpreter, as oprosed to an imple-
mentation in Omega rules or functions. These mechanisms are
built-in for purposes of efficiency. An example is the
Define procedure call.

In the LISP prototype, directories were implemented as
relations and the Define mechanisz was implemented with
Omega rules. By using different representations for direc-
tories and relations, the Define mechanisa has a Jifferent
character that reguires a more specific implementat- n.

Names like “WDefine" are imrlemented as system objects.
Recall that a block of object identifiers is reserved for
system use. Wher a relation identifier i1s evaluated, systen
objects are processed by a different set of routines: one
for system-defined relations and one for system-defined
functions.

The object identifiers for these relations and functions
are examined in a case statement, and the appropriate system
routine called. The routine for Define receives the parawe-
ters (pointers) for the target directory, the name, and the
definition. The entry is then installed in the hash table
for the directory.

The steps required to add a system-defined function are
simple:

e An entry is made in the object header file. This file

contains the definitions of reserved object identifiers.

e An entry is made in the <case statement for the systen

relation or function handler.
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e A directory entry is predefined 1in the system initiali-
zation routine. This routine builds the system's root

directory.

This mechanism allows the access of system routines fron
Omega rules. The procedures for NewRel and NewObj are
implemented in this way. Similarly implemented is the
Display procedure call, which fpasses a structure pointer to
the systen pretty printer.

This system interface replaces the ubiguitous function
definitions of the LISP prototyge. The process reguired to
implement a feature as a functicn cail or procedure call is
the same; the mechanism may be selected that most appropri-
ately models the desired activity. Appendix B 1lists the

buiit-in functions and procedures for thne systean.

O. CANCEL OPERATIONS

The impiementation of cancel operatiouns relies on two
features of the interpreter: the "match_next" pointer into
a relation, and the binary backtrackingy algorithm.

In the backtracking algoritham, a successful evaluation
of the "nexi_condition" pointer indicates that the remaining
conditions of the arntecedent have all been successfully
evaluated. at this foint in the recursion, a pointer to the
match position in the current relation is available if tack-
tracking is regquired. If the current operation is a cancel,
the "w@match_next" pointer references the tuple that should be
deleted. This deletion is done directly by marking the tag
field of the tuple.

The tuple is not removed directly from the relation
because a pointer to the tuple's predecessor in the relation
list is not available. The alternative to marking is to
search the relation from the beginning, maintaining a pred-
ecessor pointer, until the carceled tupie is fonrd. The

relation could then be properly reiinked.
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Marxing was used to avoid excessive searching of rela-
tions. Then a relation is scanned on subsequent inquiries, :
the tuples marked <for deletion are removed. In this way, .
the overhead of iinear search is minimized.

Maclennan introduced the cancel operator as a notational
convenience [Ref. 14: p. 18]. This simple construct demon-
strates several desirable gualities of a language feature:

e The notation is compact, yet readable. The cancel oper-
ation removes the necessity to code a redundant delete

oreration. This saves space in the source file and in
the resulting parse tree.

o A potential source of error is removed. The relation
name and tuple pattern of delete operations normally
correspond exactly to their counterparts in a presence
test. It is easy to misspell identifier names in the
delete clause.

e Cancel operations allow optimization. The use of the
“"match_next?” pointer reduces search time. Hhen a delete
operation is evaluated, +there is no easy way to link
this to searches conducted when processing the rule's
antecedent.

P. SEQUENTIAL BLOCKS

The implementation of the sequential block involves two
functional characteristics: (1) the sequential evaluation
of rules within the klock, and (2) the nested scoping of
free variables.

Seguential evaluation 1is a natural consequence of the
intergpreter's design. The inmplementation evaluates the

actions of a rule's consequent in a left-to-right segquential

order. The rules within a sequential block are processed in
the same way.
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1. A Single-Pass, Multi-Sccpe Symbol Table

The nested scopes of sejuential blocks reguire an elatora-
tion of the binding process previously described. Scoping

is handled ty the following stegls:

e A Dblock count is maintained during binding. As a
sequential block is entered, this count is incremented.
When the Dbinding of the tlock is complete, the block
count is decremented.

e Variables have a block numker and an offset. As new
free variables are encountered 1in a sequential block,
their offset 1s determined. The variable index,
contained in its head field, now contains two eiements:

a block number and an offset within the block.

Free variables are installed in a local symbol talle
as they are encountered 1in the binding process. To

correctly process references to outer blocks, a multi-scope

symbol table 1s required. This symbol table is implemented
as a two stack structure: one stack maintains the variable
reference rpointers, the other stack maintains scope

pointers. As each variable is encountered, the symbol table
stack is searched from the current stack top to the Lase.
If found, the variable is replaced by the definition
returned. ¥ew variables are installed in the symbol table
Ly pushing the variable reference on the stack.

As a sequential block is entered, the stack top for
the precedinyg scope is saved on the scope stack. When the
tinding of the sequential block 1is complete, the predeces-
sor's stack top is restored from the scope stack. The scope
stack partitions the variable reference stack 1into the
approgriate scopes. The structure is illustrated in Figure
5. 8. This symbol tatle structure is similar to structures
used fcr conventional, block-structured languajes [Ref. 27:
pPpP. 325-327].
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Figure 5.8 Multi-Scope Symbol Table.
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2. Evaluation of Multi-Scope Bindings
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The dynamic evaluation of bindings requires modificaticn to
process the nested scopes of sequential blocks. The evalua-

tion function has the following additional features:
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e A global scope count. This is incremented when a
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sequential block beyins execution, and decremented when
the sequential blcck is completed.

an it

e Walking the 1links. The getbinding operation for the

binding stack must now take scoping into account. To do

this, the block number of the variable 1is coapared to
the interpreter's global scope number. If these numbers
are not the sane, then the <correct stack frame is
located by traversing n links up the binding stack,
where n = variable block number - current scope number.

e Function and procedure context switches. Functions and

procedures require new sScopes. This is accomplished by

the following sequence:

Scope_Save := current_Scope
curreant_Scope := 0

Execute the procedure or function
current _Scope := Scope_»Save

This process is similar to static link processing in conven-
tional block~structured languages, such as described 1in
[Ref. 19: p. 232-238].

This implementation does not require separate static mex
and dynamic links. Procedures and functions execute in :
scopes separate from their poirts of invocation. A single
set of links in the tinding stack is sufficient to support
multi-scope references and the calling chain of functions
and procedures. }
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= Q. SYSTEM IRITIALIZATION

The system initialization sequence is similar to that of
the LISP prototype. The root directory is initialized with
the names of the systems's built-in functions and Fproce-
dures. As in the LISP prototype, the directory has a self-
referencing entry.

An Omega initialization file is parsed and evaluated. A
call to the sweep procedure propagates any rule activity
resulting from these rules. This initialization provides
the definitions for utility functions and procedures. These

utility rules are listed in Appendix C.

To augment the initialization file, the user may specify

= an Omega file pame on the UNIX command line. The inter-
ﬁ preter will parse and evaluate these rules as part of the
ﬁ' initialization process.

Finally, the interpreter enters the read phase of its
read-evaluate~-print-sweep cycle.
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I VI. STORAGE MANAGEMENT

A. THE STORAGE PROBLEM

The tasic storage unit for Omega is the cell. These
. units are allocated dynamically, to support changing list
structures, temporary results from computations, and
changing relation coantents. Dypamic memory allocation and
dynamic typing make relation manipalation a flexikle but
complex activity.

The task of freeing unneeded storage juickly became too
complex for explicit memory reclamation in the interpreter
design. By explicit memory reclamation, we mean that, at a
)’ certain section of the code, it <c¢an be determined that a
cell is no longer needed and a call to a reclamation routine
can be immediately made.

- Reclamation is complicated by memory sharing. This
i sharing is a natural consequence of the design of Omega, and

comes from pattern-matching and reuse of active rule
structures.

Consider the following rule:
i if R1(x), -~R2(x) -> R2(x).

When tuples are asserted to the relation R2, two possible

strategies may be used:

e Copy the structure. The complete tuple structure is b
copied, and the ccpy added to the R2 relation.

e Share the structure. The match operation returns a
) pointer to the tuple in Rt. It is this pointer that is
bound to the variable x, and available for inclusion in
R2. If the structure is nct copied, the pointer added
tc R2 refers to the same structure as that in R1.

] . .
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Consider another rule:
if *R1(1) -> R2([1, 2, 3])-

The assertion to R2 adds a tuple generated by a list denota-
tion in the rule -- this denotation is linked into the rule
structure. As in the previous exaaple, the assertion mecha-
nism may choose to copy the structure or share the

structure.
Structure sharing is preferable for two reasons: space
and tinme. Structure sharing obviously reduces storage

requirements by allowing multiple references to the sane
storage areas. Of more importance in this implementation is
a reduction in execution time. The tuples of a relation may
be arbitrarily complex list structures. Copying these
structures continually is an execution overhead that struc-
ture sharing avoids.

B. STORAGE ALLOCATION AND THE OUNIX VIRTUAL ADDRESS SPACE

The inplementation uses the storage allocator provided
in the UNIX C 1library. The allocation routine is malloc.
The reclamation routine is free. [Ref. 26]

To understand how these routines work, a description of
the UNIX virtual memory map is useful. An executing process
has its virtual memory divided into three logjical areas: a
text segment, a data segment, and a stack segment [Ref. 26].

The text segment contains the program code. This
segment 1is normally shared and re-entrant. The stack

segment is used for the system's runtime stack. The stack o
begins at the highest possible virtual address, and grows Eﬁﬁi
down. The stack area is automatically extended as regquired. f;ﬁi

The data segment consists c¢f two sections: initialized --4«
and uninitialized storage. The initialized storage area L
contains statically allocated storage declared in the
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progjram. In this implementaticn, the binding stack, symbol
table stack, and rule gqueues are implemented as arrays.
Their storage allocation appears 1in the initialized storage
area.

The wuninitialized storage area is used for dynamic
memory allocation. Calls to malloc will extend this area.
Calls to free will reclaiunm, compact, and free virtual
storage where possible.

The maximum sizes for the stack and data segments are
system—dependent and locally tailored to achieve desired
performance goals. The system used for this work has the
followinyg limits set:

data segment -- 6112 kbytes
stack segment -- 512 kbytes

This organization is illustrated in Figure 6.1

Malloc allocates memory aligyned on word boundaries.
Structure storage requirements are rounded to the next four
byte multiple based on the 32 bit word size of the VAX. The
consequence of word alignment is an additional space
requirement for cells. Even though the design only speci-
fies 8 bits for the tag field, this requirement is rounded
to 3Z bits. A cell has 12 bytes allocated, with 3 bytes of
storage (25 percent) unused.

C. IGNORING STORAGE MANAGEMENT

The interpreter was initially implemented with no
storage management strategy. Cells were allocated when
necessary, but no attempt was made to free excess storage. )

This policy proved to be urnsatisfactory. A lengthy test _;
program exceeds the system data segment 1limits. On one R
test, the interpreter ran for 10 minutes before exhausting 3
its available memory. At this point, 384,159 cells had been
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aliocated wusiny 4.5 Mbytes of virtual memory for cell

storage.

It is possible, but not necessarily desirable, to
increase the data segment limits for a process. The data
segment limit used during testing--6 Mbytes--should be nore
than sufficient for this implementation. A large,
constantly growing process also suffers from excessive swap
space requirements and a high page fault rate.

These factors point out a familiar lesson: while virtual
storage systems allow a large address space, storage manage-
ment is still a major consideration. These policies are
particularly important in a multiuser operating system such
as UNIX, where excessively large processes can have an

adverse impact on the user community.

D. OHBEGA-SPECIFIC STORAGE OPTIMIZATION

Approaches were considered wh}ch reduce the storage
requirements of the system by focusing on specific charac-
teristics of the implementation. ZITwo areas for optimization
were: (1) eliminate expression evaluation during pattern-
matching, and (2) reclaim cell storage for the initial
tuples added to relations.

The pattern-matching routines are executed frequently as
rules are selected for test. An active rule structure is
reused, so intermediate results umust have separate storage
allocated. Coansider the following rule:

if *IsManager(a, x), Position ("Manager: " + x) =->
a ("is Manager")

else if *IsManager (a, x) =->
a ("is not Manager").

In the Position inquiry, the ™" represents string concat-

enation. To evaluate this rule, a new tuple must be
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generated to record the results of the concatenation opera-
tion. This tuple is ther used in the injuiry. Cells such
as these may be generated frequently during rule testing.

A possible optimization to this requirement is to
restrict expressions in the antecedent of a rule to
constraints. Strict pattern-matching is supported primarily
by the binding stack and little additional memory is
required. If expressions are limited to constraints, and
constraints shifted to the end of a 1list of antecedent
conditions, rule failures will occur before the constraint
is evaluated, minimizing dynamic memory allocation. Tests
conducted using this strategy showed a decrease of cell
allocation ranging from 1C percent to 40 percernt.

While this strétegy reduces memory requireanents, the
basic 1issue of storage reclamation 1is not solved. The
restriction on tugle expressions is significant--the
programmer must now remember this as an exception to syntax
and semantics.

One possible alternative tc the above strategy is the
use of a separate storage allocator and reclamation routine
for intermediate, temporary storage. This approach was not
pursued because a more general solution to the storage
management problem was needed.

Certain types of relations tend to be small, with a
cardinality of 1 or 0. Consider the following rule:

if *Push(a, x, 1) =>
a([x:1]).

This rule executes a Push operation by cons'ing the member x
onto the list 1.

While multiple agents may have reguests to Push active
at the same time, a typical situvation is where Push contains
a single request which is serviced and promptly removeqd. a

simple strategy optisizes storage for such relations.
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A relation list has a collection of celis which we refer
to as tuple headers (illustrated ir Figure 5.4). These
neaders link pointers into the relation list which refer to
the actual structures of the tuple nmembers. WLile the
poirnters may change, the number of header cells is dependernt
on the tuple cardinality. This cardinality tends to remain
fixed after it is dynamically determined.

When the first tuple is added to a relation, the header
cell requirements are allocated. A cancel will flag this
tuple as deleted by marking the tag, but the tuple will
remain linked into the relation list. A subsequent asser-
tion may then reuse these header cells for the next tuple.

This strategy allows a simple optimization of relation
storage requirements. Early tests of this strategy indicate
a potential 10 percent reducticn in cell allocation. The
strategy postpones memory exhaustion but doesn't prevent it;
a more general storage management policy is still regquired.

E. REFERENCE COUNTING

Eeference counting was selected for cell reclamation.
This technique is described extensively in the literature.
Our algoritkms are based on the material presented in
[Ref. 19: pp. 440-442] and [Ref. 28: pp. 383-384].

The implementation of reference counting required the addi-
tion of a reference count field in the cell structure and
some simple management routines.

Since 25 percent of cell storage is wasted, the inclu-
sion of a reference count field bears no additional cost.
The reference count field is irplemented as a 16 bit signed
integer, although a smaller field would be sufficient.
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The reference counting routines are as follows:
e Incrfef -~ Increment a cell reference count:

IncrRef{p] :
if p = Nil
return;
else
pdrefcount := rdrefcount + 1
endif

end.

e DecrRef -- Decrement a celil reference count:

Decrkef{p] :
if p = Nil
return;
parefcount := parefcount - 1
if porefcount <= 0
if @ is a string cell
free string storage
else if pd is a list cell
DecrRef[ pdhead ]
DecrRef[ patail)
endif
free p
endif
end DecrRef

B 2 b4 S s Bnan e

When a cell for an atom is created, its reference count

is initialized to zero. Reference counts are altered when
pointer references change. This occurs in the following
routines:
105
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e NewCell -- Create a new list cell. The algorithm is:

NewCell[x, y]:
P := malloc{celisize]
pdrefcount := 0
pd?head := x
pdtail := ¥y
IncrRef[x]
IncrRef( y]
return p

end NewCell

e Setiecad -- Change the head fointer for a cell. This is
the rplaca function of LISP:

SetHead{x, y]J:
IncrReif yJ;
DecrRef[ x@head ];
x3head := Yy

end SetHead

e SetTail -- Change the tail fointer for a cell. This the
rgplacd function of LISP:

SetTail{x, y]:
IncrRef] y ]
DecrRef[ xatail]
xdtail := y

erd SetTail

Feference counts also need to reflect the references of
a recursive implementation. To 1illustrate this point,
consider the following interpreter routine to

multiplication:

igplement
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Mult[x, y] :
IncrRef[ x]
IncrRef[y ]

temp := MakInt[xdhead * ydhead]
DecrRef] x ]

Decrkef{ y]

return tenmp

end Mult.

Before its invocation, the arguments to Mult have Dbeen
recursively evaluated. If these parameters involved expres-
sions, thern either garameter may be an intermediate resalt.
The IncrRef operations reflect the Mult routine's references
via its formal parameters. After completion of the multipli-
cation, the references are decremented with DecrRef, which
will free intermediate results that are no longer required.

Reference counts must remain consistent, so an analysis
of local references throughout the interpreter was required.
A point of irterest is the binding stack: the bind operation
must increment a cell's reference count while the ﬁnbind
operation must decrement the reference count. The determi-
nation of these specific referemnce counting points proved to
be a tedious process, although still more tractable than
explicit reclaration.

Reference counting offers the following advantages:

e Simplicity. The data structures and algorithms are

supported by the existiny recursive interpreter desigr.

e Immediate reclamation. Unmneeded storage 1is reclaimed

immediately.

e Uniform computational reguirements. The overhead of 1

storage reclamation is spread out over the execution 3

time of the intergreter.
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TABLE XII

Omega Relation Characteristics: The Sieve

Sample Frequency: 149

Characteristic Mean Std Dev Mode

Relation _. 1.0 0.0 1.0
cardinality

Turple _. i 2.6 0.5 3.0
cardinality

Object Table Collisions:
Collision List Length

o —— — —— v ————————— — o - ——— ——

TABLE XIII
Execution Times: Quicksort

Systen Execution Time (secs)
Omega 142
Prolog 27
LISE
Interpreted 81
Compiled 4o

Comparative Lenchmarks were not written for this
problem, and timing comparisons are not shown. The execu-
tion profile for the simulation is given in Table XVII, data
type freguencies are shown in Table XVIII, and relation

statistics are shown in Table XIX.
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TABLE X
Execution Profile Summary: The Sieve
% Execution No.

Time Calls Name Descr

13.7 118635 eval evaluation function

4.2 16462 tufl eval tuple/args

4.0 29425 malloc memory allocation

2.9 28169 newcell <create new cell

2.7 12348 frafpl apply fn to args
TABLE XI

Data Type Frequencies: The Sieve

Type Frequency % of Total
Lists
Op List 1990 1
Data List 20372 72
Atonms
Integer 3266 12
String 1146 4
Boolean 423 2
Cbject 232 1
Variable 761 3

5. A Simulation Progranm

This example is a Monte Carlo simulation of a three
node message switching npetwork. It is a more complex

program than tne preceding benchmarks, and the intergreter

exhibits a wider rangye of activities. The source code for
the simulation rules is listed in Appendix E.
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TABLE VIII
Omega Relation Characteristics: Factorial

Sample Frequency: 2078

Characteristic Mean Std Dev Mode
kelation _ 1.0 0.0 1.0
cardinality
Tuple_. . 2.0 0.1 2.0
cardinality
Obiegt.Tablg Collisions:
Collision List Length Frequency
1 43126
TABLE IX

Execution Times: The Sieve

Systen Execution Time (secs)
Omega 19
Prolog 11
LISP
Interpreted 9
Compiled 3

The timing results are shown in Table XIII. These
times are based on executing an ascending sort on a list of
150 integers initially arranged in descending order (an
O(n2) undertaking for Quicksort). An execution profile
summary is given in Table X1IV, and Table XV contains the
data type freguencies. The relation characteristics of the
Lenchmark are shown in Table XVI.




TABLE VI
Execution Profile Summary: Factorial

% Execution

No-
Time Calls Name Descr
14.8 155457 eval evaluation function
3.7 32059 malloc memory allocation
3.2 245001 binaop binary operation
2.1 30346 newcell create a new cell
1.9 9097 tupl eval tuple/args
TABLE VII
Data Type Frequencies: Factorial
Type Frequency % of Total
Lists
Op list 2001 7
Data List 9777 32
Atoms
Integer 15530 51
String 1607 5
Boolean 502 2
Cbject 226 1
Variakle 720 2

4. Quicksort

This benchmark exercises the Omega procedure call
and pattern-matching mechanisis. The Quicksort splits
lists, recursively sorts the sublists, and combines tae

results. The Prolog version is taken from the example given
in [Ref. 21: p. 147].
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TABLE IV
Data Type Frequencies: Pattern-matching
Type Fregquency % of Total
Lists_
Op list 2053 11
Data List 8815 49
Atoms
Integer 2028 11
String 1141 6
Boolean 3004 17
Cbject 235 1
Variable 747 4
TABLE V
Execution Times: Factorial
Systen Execution Time (secs)
Omega 23
Prolog 99
LISP
Inte;ireted 12
Compiled 4
performed by the applicative conponent. The Prolog version

is based on an example given in [Ref. 21: p. 157].

The timing results for this benchmark are shown in
Table IX. These times are based on a sieve list of 350 inte-
gers. A summary of the Omega execution profile is given in
Table X, data type distributions are given in Table XI, and
relation characteristics in Table XII.
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TABLE II
Execution Times: Pattern-matching

Systen Execution Time (secs)
Omega 212
Prolog 102
LISP
Interpreted N/A
Compiled 230
TABLE III

Execution Profile Summary: Pattern-matching

% Execution No.
Time Calls Name Descr
30.5 2021016 urni fy attern-matching
10.90 1010985 equ ist eqguality test
5.7 5035 match_s_ linear list Search
4.4 100400 FreeBind reset frame bindings
0.9 70019 eval evaluation function

Omega type distributicn for this benchmark, and Table VIII
shows the relation characteristics.

3. A Prime Numbe ieve

The third benchmark is a prime number generation
prograan. The benchmarks use a sieve algorithm to remove
prime number multiples from a list of nuabers. This is an
interesting benchmark for Omega in that the sieve is driven
by rules, but the major computation--removing multiples--is

A
A ot
P SR
L A )
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execution percentage for a routine is shown to be 5 percent,
its relative impact is approximately 10 percent in unpro-
filed execution.

1. A Pattern-Matching Test

This benchmark asserts a coamon tuple in two rela-
tions, followed by 1000 disjoint assertions to each. A
pattern-match search finds the common tuple. The search
requires more than 2 x 106 pattern-match tests, a worst-case
performance.

The Prolog version is similar, with assertions made
to the Prolog rule base. Prolog searches the rule base fromn
top to botton. The common clauses are asserted and subseg-
uent clauses placed before these using the asserta predicate
[Ref. 21: p. 105].

We include a LISP implementation of a nested loops
search, although this is a sismplification of the pattern-
matching process of Omega and Prolog. Only a compiled LISP
version was tested because an interpreted version 1is at an
unfair disadvantage when competiny with the direct implemen-
tations of this process.

The timing results for this benchmark are shown in
Table II. A summary of the Omega execution profile is shown
in Table III, and type information is shown in Table IV.
Relation characteristics are not shown for this test.

2. Factorial Functions

This benchmark exercises the applicative componernt
of the interpreter. A recursive factorial function is
executed 500 times, with each <call computing Fact[15].
Larger factorials are not used because both Franz LISF and
Omega experience integer overflcw in their computation.

Timing results are shown in Table V, and an Omega

execution profile summary in Takle VI. Table VII shows the
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3. Omega Statistics

Besides benchmark and profiling measurements, addi-
tional information was collected to begin a characterization
of Omega program behavior. This information included:

e Data type frequencies.
e Hash collisions in the object table.

e Relation characteristics: relation cardinality and tuple
cardinality.

The last two areas are dynamic characteristics which change
as rules fire and alter the database. These measurements
were taken using a sampling technique: object table meas-
urements were made immediately after each rule evaluation.

B. TEST RESULTS

Benchmark programs were tested using two different

versions of the interpreter. The versions were:
e The standard interpreter without reference counting.

e A version compiled with the gprof profile option and

containing object table and cell measurement routines.

The overhead of measurement and profiling necessitated the
separate compilations.

The execution profiles produced by gprof are extensive.
These are summarized and included in profile summary tables,
with the profiling ipformation for the five most expensive
(in execution time) routines shown. The percentages given
in these profile submmaries are taken directly from the
profile reports, and reflect the 1large overhead of the
profiler. The profiling routines typically consumed about
50 percent of the total execution time. Thus, if an
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2. Benchmarking

In this chapter we present a collection of simple
benchmark prograums. The performance of the Omeyga irter-
preter is compared to interpreted Franz LISP, compiled Franz
1Isp, and the C-Prolog interpreter. The C-Prolog inter-
preter is a VAX Prolog implementation dJdescended from the
DECsysteu~10/20 Prolog system [Ref. 31 apnd 32]. These
systems are all written in C.

These benchmarks are nct intended as an evaluation

of C-Prolog or Franz LISP, and no effort has been made to .,;é
write efficient Prolog or LISP. Because these systems are i
well-engineered and efficient in what they do, ve present A

these benchmarks as an indicaticn of the current proyress of

our implementation. The source code for the benchmarks is
inciuded in Appendix D.

Timing information was cbtained through calls to the
date function of the UNIX command shell [Ref. 26]. The

following Omega rule demonstrates this technijue:

if *gTest (a) ~> {
Systenm {"date%"};
Qsort {IotaR{1, 150 1};
System {"date"};

]

The date function returns the current system time to tne

nearest second. The test systems all possessed a function

similar to the System procedure shown above, and the over-
head of executing such a system call should be consistent
between interpreters. The timing granularity of one second
regquired establishing benchmarks of sufficient duraticn to

provide meaningful ccmparisons. o
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macro implementation results in a savings of 4

instructions--a substantial improvement given the kigh

Function Implementation
C statements VAX instructions

x = tag{p); pushl -8 (fp)
calls _tag
movl T0,=-4 (fp)

cvtbl *4 (ap),r0
return (p->tag) ; ret

Macro Implementation

C statements VAX instructioans
# define tag (x) (x->tay)
x = tag(p); cvtbl *-8 (fp) ,~4 (fp)

Figure 7.1 Code generation for TAG function.

frequency of tag extraction during interpretation.

Replacing procedural imfplementations with macros is

not a panacea. Macro implementation has at least two
disadvantages:

e Debugging is more difficult. dacros are textually

expanded by a preprocessor before compilation. The

errors that occur are unusuval, do not correspond well

with source code, and may produce unexpected effects.

e Profiling information 4is lcst. An execution profile
pointed out the expense of the tag function. Once coded
as a macro, the cost of +this code sequence is absorbed

in the routines where the macro is expanded.
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VII. PERFORMANCE EVALUATION
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A. METHCDOLOGY

A progressive series of programs were developed to test
features as they were implemented. These programs assisted
in determining the interpreter's reliability and execution
characteristics. Execution profiles and comparative bench-
marks wvwere used to evaluate behavior and performance.

In this implementation, performance was subordinate to a
clear, workable design. Per formance optimization efforts
were started only after the design and implementation of a
series of features were complete, with all test programs
successfully executing.

1. Execution Profiling

The gprof call graph execution profiler [Ref. 26]
was an important tool for evaluating weak points in the
performance of the interpreter. Execution profiles pointed
out some immediate inefficiencies in the implementation that
could be easily remedied.

A simple examrle is the tag function. Initially, a
function was used to extract the tag value from a cell. The
rationale behind this implementation was information hiding:
the details of the cell structure were accessible to only a
few handling routines.

Execution profiles on fattern-matching showed this
implementation to be costly: the interpreter spent over 10
percent of its execution time extracting tags. To solve
this problem, the function was rewritten as a C macro
[Ref. 22: p. 86]. The VAX instructions generated by the
alternative implementations are shown in Figure 7.1. The
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field containing a cell offset to the next «cell in the
structure instead of a full pointer. An escape mechanismn
allows full pointer access where necessary [kef. 30: P-
266 ].

The above techniques are mertioned as potential improve-
ments in the current allocation schenre. These techniques,
like garbage collection, require more explicit control of
storage allocation than is offered by the current design.

A potential storage savings can be obtained with the
current tagged cell structure Lty embedding the tag in the
tail field. This is a simple modification that regquires
masking the tail field value to obtain the tag or tail
pointer. If a reference ccunting field is not used
(assuming garbage collection instead) this technigue
reduces the current cell requirement to 8 bytes, a 33
percent reduction. Using this encoding scheme, the tail
pointer is restricted to a 24 bit range.
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Accessing intermediate results is

present recursive implementation.
stack

is to maintain a

specifically for

the

A possible solution

complicated by

referencing

these si.uictures during a mark phase.

e Cells require a mark pit.

The current

cell structure

provides an 8 bit tag. Bits O through 5 are used for
the tag value, kit 7 is used as a flag on certain
structures. Bit 6 remains available for marking
purposes.

e Complete storage access 1s required

This immediate access implies that
must Dbe managed by the
reasonable virtual memory image,

obtain and release memory on

compaction whenever possible.

interpreter.

pagye boundaries,

for the sweep phase.
the memory allocator
To maintain a
this allocator must

using

G. REDUCING CELL STORAGE

The current 12 byte rejuirement for cell storage is
Jarge. Since the cell structure is based on tahe LISP model,
numerous LISP techniques may te used to reduce this
requirement.

LISP structures have fewer distinct cell types. Instead

of encoding tay information directly,
allocated
memory [Kef. 29].

different types are often
separate sections of
address range of a pointer [rovides
information.

List linearization techniques are
storage reguirements.
cells,

uous storage.
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normally linked via their tail pointers,

storage for cells of
from noncontiguous,
In this the

the type

way,

necessary

another way to reduce
These techniques attempt to maintain

in contig-

This allows a reduced tail field size, with a




A major limitation of reference counting is the 2iffi-
culty in reclaiming cyclic structures. The design of Omega
prevents this problen. Only "pure" 1lists are used and
rplacx orerations are not defined.

Reference counting places a computational tLturden--

incrementing reference counts--at a sensitive point: aemory

allocation. The execution penalties associated with refer-
€nce counting are examined in the next chapter.

F. GARBAGE COLLECTION

Garkage collection was not selected as a storage manage-
ment strategy because of the ccmplexity of implementation.
The malloc and free routines offer a predefined storage
allocation systen, while a garbage collection systenm
requires an explicit design of these components.

The development of a garltage collector would be an
interestiny extension to the current design. Some of the

considerations for a rark-and-sweep garbage collector are:

e Structure access is required for the mark phase. This

phase needs to access the following interpreter

structures:
1. The object table.
2. The active rule table.

3. FKules under evaluation by the console ccnmand

pProcessor.

4. Rules under evaluation by the file ccomand

processor.

5. Intermediate results generated during rule

evaluation.
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TABLE 11V
Execution Profile Summary: Quicksort

% Execution No.

Tine Calls Name Descr

13.7 717396 eval evaluation function
5.1 216385 unify pattern-matching
2.7 151009 malloc pemory allocation
2.6 91975 tupl eval tuple/args

2.0 143777 newcell create new cell

TABLE XV
Data Type Frequencies: Quicksort

Type Frequency % of Total

P t 753
Data list 121627
Atoms
Integer 170
String 6820
Booliean 11777
Cb ject 533
Va< _able 808

C. IMPACT OF REFERENCE COUNTING

The timing information presented previously was taken
without reference counting. A separate version of the
interpreter was compiled with the reference counting
routines included, and separate measurements taken. The
impact of reference counting on execution speed is shown in
Table XX. A summary of the Quicksort benchmark, with refer-
ence counting implemented, is shown in Table XXI.
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TABLE XVI
Ompega Relation Characteristics: Quicksort

Sample Freguency: 35704

Characteristic Mean Std Dev Mode
Relation _ 1.0 0.0 1.0
cardinality
Tugle . . 4.9 0.7 5.0
cardinality
Object Table Collisions:
Coilisxon List Length Frequency
1 785578
2 264

TABLE 3IVII
Execution Profile Summary: Simulation

% Execution No.

Time Calls Name Descr
9.4 211364 eval evaluation function
3.3 63126 unify pattern-matching
2.9 63782 malloc nemory allocatiodn
2.1 1221 write system i/o
1.8 35220 iookup hash table lookup

D. DISCUSSION OF RESULTS

1. Performance Bottlenecks

The measurements presented in the preceding sections

provide some insight into the effectiveness of the present
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TABLE XVIII ‘ﬁJ
Data Type Freguencies: Simulation
Type Freyuency % of Total Zj
Lists_ S
Op list 6125 11 :
Data List 26053 47 -
Atoms i
Integer 2147 4 )
String 6340 11
Boolean 10124 18
Object 2390 4
Variable 2290 4
TABLE XIX

Omega Relation Characteristics: Simulation

Sample Frequency: 9972

Characteristic Mean Std Dev Mode
Relation _ 5.7 6.3 1.0
cardinality -
Tuple . . 2.3 0.7 2.0 ne
cardinality e

Obiegt.Table Collisions:
Collision List Length Frequency

- —— —— — —— o — . _———— - —
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1
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implementation. The execution speeds for the Omega bench-
marks are consistently slower than C-Prolog and Franz LISP.
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TABLE XX
Reference Counting and Execution Times

Benchmark w/0 Ref Counts v Ref Counts %Incr
Pattern 212 223 5
match
Factorial 23 30 30
Sieve 19 25 32
Quicksort 142 181 27
TABLE XXI

Profile of Quicksort with Reference Counting

% Execution No.
Time Calls Name Descr
9.9 717396 eval evaluation function
. 216385 unif attern-matching
3.7 421556 Decrref decrement ref count
3.3 541624 IncrRef increment ref count
2.4 151009 malloc memory allocation

This rperformance is shown in both applicative expression and
rule evaluation.

The central evaluation function, eval, consumes the
majority of execution time. This is not surprising given
the present recursive implementation: eval is called
directly or indirectly in most cperations. Embedded in eval
are accesses of the binding stack for atom evaluation in
tuples and argument lists.

The high frequency of calls to eval suggest its
design as a potential point for optimization. This
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optimization may include a reduvction of unnecessary recur-
sive calls to eval. When evaluating interior, nodes of a
rule tree, the sons of a node are always passed to eval,

which will decode the tag and call the appropriate subordi-
nate routine. I1f the required subordirate routine is known
at the parent node, the intermediate <call to eval may be
omitted.

Another alternative is to replace the recursive eval
with an iterative version. This requires the management of
an exrlicit operand stack, and involves a major redesign
- effort. The management of an operand stack would, however,
solve an implementation problem for gJarbage collection
discussed in the previous chapter.

The pattern-matching routine becomes significant in
extended rule processing, as shown by the Quicksort and
network simulation tests. We ncte similarities between eval
and the pattern-matching routine unify:

e Both routines are heavily exercised.

i e Both routines access the binding stack when evaluating

- free variables.
e Both routines are recursive.

i The recursive aigorithm for pattern-matching is simple and
elegant. An iterative version would be more complex, but
may provide a performance gain.

A final area for performance improvement is storage
management. The storage allocation routine, wmalloc, and
routines that call it, such as newcell, consistently rank
high in the execution profiles. Our implementation of
reference counting for storajge reclamation proved to be
expensive, with a 30 percent ircrease in execution time for
extended tests. These results make garbage collection
appear to be a desirable alternative. Hardware support for

reference counting could also provide a solution.
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2. DRelation Statistics

The statistical information gathered on relations

provides sone evidence to support previous conjectures:

e Spall relations are commonplace. The mode for relation
cardinality was 1.0 in every test. These statistics
will vary depending on the application, and generaliza-
tions can't yet be made tased on the limited tests
conducted.

e Object ideantifiers hash well. The object table colli-
sion results indicate an even distribution of hash
values. Collisicns in the object table siow down rela-
tion list lookup, an important part of the synchronous
procedure call. Only in the simulation test did hash
table lookups begin to become significant in the execu-
tion profiles. This coincides with the increased number
of objects generated and an increased collision
frequency in the cbject table.
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VIII. OBSERVATIONS, BECOMMENDATIONS, AND CONCLUSIONS

A. OBSERVATIONS ON CHMEGA
1. Programming Experience

our experience with Omega programming is reflected
in the rules listed in Appendices C-E. We believe these
examples demonstrate a variety of applications which have
simple solutions in Omeyga rules.

An important body of rules are the system utilities
listed in Appendix C. Included are relation copying utili-
ties, an extension to the systemr pretty printer, and a help
facility. The last appiicaticn shows a simple use of the
System procedure call to 1list help files at the user's
terminal. This technique could be extended to use the Omega
interpreter as a rule-based driver for the UNIX command
shell.

The longest and most significant application is the
simulation model 1listed in Appendix E and profiled in the
previous chapter. We include this example as an event-
driven, state-transition problem which is readily expressed
as rules of the form:

if Clock(t1), *Event(t1l, e) =->

ProcessEvent {e}.

2. Omega and Prolog

The benchmarking examples of the previous chapter
presented rules in Prolog and Omega that are similar in
form. Both these languages use pattern-directed invocation
for rule selection, and both languages are intended for
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general programaing applications. Despite similarities,
these lanquajes have fundamental differences.

Omega uses forward inference, Prolog uses backward
inference; Omega programmers and Prolog programmers think
in different directicns. To design an Omega rule, one uses
the traim of thougat: "Given the <current state of the
system, generate the next state.™ A Prolog rule is designed
with the thought: "To prove this goal, it is necessary to
prove these subgoals." Prolog relies on a theorem-proving
approach, Omega on a data-driven approach.

These opposite control strategies are reflected in

different implementation techniques:

e Prolog recursively evaluates its rules from a goal
stack. This technique often allows intermediate storage
allocation from stackistructures. This method of allo-
cation and reclamation is simpler than the heap alloca-
tion used by Omega and LISP, and results in a faster
cons operation [Ref. 32: p. 114]. This performance is
refiected in the Quicksort benchmark of the previous
chapter.

e Theorem proving requires backtracking. Prolog selects
rules from its rule base to prove subgoais. If multigle
rules for a subgoal are present, they will be selected
and tested until the subgoal is proven or all possible
rules fail. Backtracking letween rules requires a more
general pattern-matching technigue in Prolog than Omega.
In Prolog, variables may ke bound to variables. In
Omega, a rule fires or it doesn't--there is no reguire-
ment for backtracking between rules, and variables are
bound only to objects and values in the database.

Programming problems may be solved by either forward

or backward inference. To illustrate this point, we use the
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missionaries and cannibals proltlem [Ref. 33: p. 51), a
simple state-space search exanjle. The Omeya and Prolog
rules for this problem are listed in Appendix D.

In the missionaries and cannibals problem, a simpli-

fied description of the Omega rules is:

if *State(x, path), GoalState{x] ->
Displayn {path}

else if *State(x,path), IslegalState[x],
-member[x, path] ->
GenerateNewStates {x,[ x:path]}

else if *State(x,path) ->.

Given a starting state, the Omega rules will generate all
possible new states that may te reached from that state.
This process continues until all combinations of 1legal
states have been tested. No backtracking is required in
these rules--successful states continue to fire, and unsuc-
cessful states are removed from the computation. We main-
tain a list of previous states in the wvariable path to
prevent cycles.

A simplified version of the Prolog rules for this
problem is:

goalState (X,Path) :-
finalState (X),
print(Path).

goalState (X ,Path) :-
not member (X,Path),
legalState (X) ,
possibleNextState (X,Y),
goalstate (Y, [ X|Path]) .

In the Prolog version,

the predicate possibleNextState will

bind the variable Y to a new
X. In its attempt tc "prove”

state that can be reached from

the starting goal state, all
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possikle state «combinations wiil be generated Ly back-
tracking on possibleNextState. We observe Prolog exploring
new states through backtracking where Orega relies c¢n the
generaticn of new states in the database.

Certain classes of problems 1lend themselves well to
the natural recursion inherent in Prolog. The Quicksort
rules of Appendix D are a model of brevity and clarity. We
suggest that event-driven or data-driven applications, such
as the simulation example of Appendix E, are Dbetter
described through Omega. Omega was developed as a high-
level language for programming environment description and
implementation. This family of applications are represented
more naturally through forward inference descriptions.

3. The Production Rule as a Programming Paradigm

Both Omega and Prolog use the production rule as the
programming paradign. How easy is it to program with
production rules? We consider this to be an application-
dependent quality. A problem can be effectively described
with production rules if the following characteristics
apply:

e The problem can be decomposed into a set of small,
cause/effect subproblems. Each subproblem is descrilted

by a singyle rule or small set of rules.

¢ The subproblems are independent, and rejuire minimal

communication between rules.

The independence of rules allows the programmer to

add or remove rules without concern <rfor the impact of these

changes on other rules in the active rule list. In our
current design, the rule denctation is the unit of rule
organization. Thus, a goal for a manageable rule structure

is independence of rule denotation sets.
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A significant limitaticn of most productiorn rule
systemns is a lack of meaningful semantic composition, the
inability to compose a complex action from a collection of :

previously defined simpler acticns. Rosenchein writes:

[In production systems] tests_ and transformations are
sophisticated and”™ are designed to implement constructs
found in various applications. However, there is gener-
ally no way to symbolize comfosition of operations in a
transparen Hag. Complicated_tests and actions have to
be simulated Y groups of rules whose_ coordination is
not symbolized 1n~ the program _or graced with a mnemoric
name. The more ccmplicated the tésts and actions,  the
more severe the coordination groblems, This 1is typical
of programs written at one level of abstraction, no

matter_ how soghisticated the primitive operations.
[Ref. 34: p. 535]

Omegya provides some pctential solutions to this
problen. The object-oriented approach of the language
allows the partitioning of related data and rules through
directories and classes. This organization of the name
space provides the first step in a hierarchical composition
of rule activity.

The second step 1is the procedure call mechanism.
This mechanism serves as an invccation trigger for a collec-
tion of rules, with a method of integrating the outcome from
their actions into more complex expressions. The utility of
this mechanism 1is indicated by its widespread use in the
examples presented in this thesis.

Although our programming examples are dependent orn

the procedure «call, we note potential problems with the
mechanism:

e The actions associated with a procedure call may not be
obvious. The procedure call asserts a tuple to a given L
relation, and extracts the response from its mailbox. S
Multiple rule denotations may use the procedure's rela- - f
tion, and fire as a result of the procedure assertion;

the possibilities for subtle side effects are
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significant. The final effect of a procedure call can
only be determined from an analysis of alli rules associ- ;1f
ated with the procedure's relation name (as defined in *'}
its directory).

e The procedure mechanism does not enforce parameter

checks. The tuple asserted in a procedure call is anal-
ogous to the actual parameters of a conventional proce-
dure call. In Omega, there is no parameter counting or
type checking. Consider the following rule:

if *R{a, x) -> displayn{x}. ‘ -

If the user mistakenly enters "R (100)," the assertion
will be made but the rule will not fire because of a
pattern-matching failure. The procedure <call "R {100,
200} " will fail for the same reason. In both of these

situations, no error indication will be given.

There are programming technigues that correct the

last problem. 1If we code the rule as: -
if *R(a:l) -> . . .

the head/tail 1list specification will w@match against any

tuple. The rule designer may then code explicit type and £

parameter count checks with an appropriate response to
errors. We use this techbique in the atility rules
contained in Appendix C.

A declarative mechanism may also be used to specify

the expected tuple size for a given relation. Any devia-
tions would trigger am error response.
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B. RECOMHMENDED AREAS FOR ADDITIONAL STUDY S

1. Extensions to the Langquage

Our programning and implementation experience with
Omega have suggested three additional extensions to the
language: (1) a syntactic distinction for free variables,
(2) a universal gquantifier, and (3) pamed rules.

In our current implementatiorn, the distinction
between free and bound variables is made when rules are
activated: 1if defined in the class/directory structure, the
variakble is bound; if not defined, it is consijered free.

This strategy is a [fotential source of error.
Suppose we wish to define a constant, and use the following
definition:

Define {Root, "a", 100}.

The selection of the variable name a will conflict with the
majority of our rule denotations, where this variable is
consistently used to represent a mailbox relation. The “

activation and test of the follcwing rule:
if *T(a, x) -> a(2 * x).

will result in a type clash error. These errors are subtle, -
and reqguire the programmer tc¢ remeaber which names are

previously defined in a given environment. To solve this

problenm, free variables should Le syntactically distin-
guished. Thus, the preceding rule may be written:

if *T (&a, &€x) -> €a(2 * &x).

Previous definitions cannot adversely affect this rule.
C-Prolog uses a similar convention: free variable names

begin with upper case letters, bound variable names beygin
with lower case letters.
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In Chapter 2, we emphasized the point that a reia-
tion inguiry is existentially Juantified. Consider the
following rule:

if Copyrel(rl, r2), ri1(x), -r2(x) ->
r2 (x)
else if *CopyRel(r1l, r2) ->.

This rule implements a relation copying utility. The
programmer's intent for this rule is that all tuples in r1
should be asserted to relation r2. Existential quantifica-
tion will select a single tuple on each firing cycle for the
rule. Note that the absence test on relation r2 is required
to ensure termination.

A possible alternative is to provide universal quan-
tification for tuple selection. With this mechanism, the

copy rule could be written:
if *CopyRel(r1, r2), $ri1(x) -> r2(x).

The "3$" symbol is used +to represent wuniversal quantifica-
tion. The action of the quantifier is "for all tuples x in
relation r1, assert x to relatior r2." A universal guanti-

fier offers the following advantages:

e The programmer's intentions are more clearly expressed.

There is a similarity between universal quantification
and the mapcar function of ILISP.

e Perrormance may be enhancegd. A universa. gquantifier
allows optimization by completing the actions of the
rule iu one rule cycle. The costs of wmultiple rule
selection and testiny, shcwr in the profiles of the
unify procedure in the preceding chapter, may be high.

It is recognized that the existential juantification

of the present design is sufficient to accomplish the
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cpd_rule

rule

cause

H rule
{
3%$=newcell (CPD_RULE,Nil,$1);

}

| cpd_rule ELSE rule
{
$$=newcell (CPD_RULE, 31, 33);

}

: IF cause IMPLICATION effect
{
$%=newcell {(RULE, $2,304);

}

l IF cause IMPLICATION R
{ O
$$=newcell (RULE, 32,N1il) ;

}

| IMPLICATION effect
{
$%=newcell (RULE,Nil,$2);

}

| effect
{
$%=newcell (RULE,Nil,$1); o
} T

: conditicns
{

33 = 31;
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session : /% enpty */

{
parsetree = Nil;
}
I '.l
{
parsetree = Nil;

return(-1) ;

3

| statement_list '.!
{
parsetree = $1;
return (-1) ;

3

statement_list : statement
{ ST
$$=newcell (STA_LIST,Nil,$1); e
}
{ statement_list ';! statement
{ <
3%$=newcell (STA_LIST,$1,33); Gy
}

statement : cpd_rule
{
3% = 31, -
} 1
| fn_definition '
{ R
$% = 31, .
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Ttype
%type
Stype
%type
htype
®type
%type
%type

<cell>
<cell>
<cell>
<cell>
<cell>
<cell>
<cell>
<cell>

effect asserticn
arguments seq_block
unop binop

rule_denotation
variable self ref
fn_definition
fn_application

cond_expr cpd_expr

/% token declarations */

%token
%token
%token
%token
%token
%token

IDENTIFIER

IF ELSE
STR_CON INT_CON
IMPLICATION BEG_DENC
NE LE
FUNCTION NIL

/% operator precedance */

%left
%left
%left
%left
%left
Fleft
®left
®left

L |
’

expression

list
ISI
[ ]
=0
et

%0

1 11

L

NE LE GE

'/' '%l

%start session

%%

/* productions for Omega grammar

......

w7

................................

LUl and Jaol et el Ao ek

denial
expression

primary

constant
fn_head
list
call

END_DENO
GE

P St
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tracefun (msgqg)

char *msg;

{
printf ("\n***fs*x¥xx —--> " _pnsgqg);
ECHO;
printf ("\n");

/% ok 3 o e ook ok kol e ok ok ak e ook o ok koo ok ok ok ol ook o sk ok ok ok ok e ok ok ko ok ok ok dokokokok %

* *
* YACC Specification for Omega Parser *
* *

ek e o ok e ke ok e ol o ik ok dkok dookok ek ok e e ke ok ok ook ok ki ok ok kkok Rk ok kb k% k/
%{

# include "tag.h"
# include "defs.h"

PTR newcell();
PTR makint ();
PTR makstr () ;
PTR parsetree;

char *strdeno () ;
%}
/*¥ type declarations for parser stack */

%union {

PTR cell;
}
%type <cell> session statement_list
wtype <cell> statement <cpd_rule rule cause

%type <cell> conditions conditicn inguiry

“type <cell> constraint transaction transactions
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{deno} {
return (EEG_DENOQ) ;
} -
{end_deno} {
return (END_DENO) ;
} -
{ne} {
return (NE) ;
}
{le} {
return {1E) ;
}
{ge} {
return (GE) ,; :
} .
fdelimiter} { ;
return (yytext[0]);
}
{comment} ; .
{whitespace] H )

/* ignore others */

#*%

strequ(s1, s2)
char *s1, *s2;
{

return (strcmp (s1, s2) == 0);
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fidentifier} {

if (strequ(yytext, "if"))
return (IF) ;

else if (strequ(yytext, "else"))
return (ELSE) ;

else if (strequ(yytext, "in"))
return (FUNCTION) ;

else if (strequ(yytext, "Nil"))
return (NIL) ;

else
return (IDENTIFIER);

}
{int_con} {
return (INT_CON) ;
}
{str_con} {
c = input() ;
if (e == N\
unput(c) ;
--Yyleng;
yymore() ;
}
else {
unput{c) ;
return (STR_CON) ;
}
}
{implication} { U
return (IMPLICATION) ; | 1
} :
144 -
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APPENDIX A
LEX AND YACC SPECIFICATIONS FOR OMEGA

/3% % ok e o e sk e ok ok ok e ki e ok e sl ook ok i dk ok ok sk sk ok skok e ook ok ok ok ook ok ok ok ok ok ko

* ' *
* LEX specification -- *
* Omega lexical grammar *
* *

e 3 ok o 2k e e e e e Je e A a3k e e e e e e ke g ook Aok sk ek Ak ke de ke ok ek ok ok ok kok ok

/% lexical scanner grampar */

digit [0-9]

lttr [a=zA-Z]

whitespace [ \t\n]

identifier {lttr} (({lttr}| {digit}|_)*({Lttr}|{digit}))*
int_con fdigit} +

delimiter [=+1|,.;'a() J*/%6:=<>_JI\[1\]

implication ->

deno <<
end_deno >>

ne =

le <=

ge >=

int _con fdigit} +
str_con NI EREAN
comment NI\ n J*\n
%%

/*¥ recognizer actions fcr token classes */

int c;
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C. CONCLUSIONS

This thesis has described two prototype implementations
of Omega interpreters, based c¢cn the model of a LISP-like
list fprocessing systen. Through these designs, we have
developed a complete LL(1)/LE(1) grammar, and implemented a

Ve
'.11'14'I‘I

table-driven parser using the YACC parser dgenerator. Many
of the design and implementation problems encountered are
similar to the LISP design issues of the literature.

The unconventional component of Omega is its pattern-
directed set of active rules. Our implementation processes
these rules by a simple triggering method of rule indexing
kased on relation identifiers. Triggering, along with the
processing of multiple rule queues, simulates the concurrent
evaluation of rules in the Omega model.

An evaluation of our interpreter's performance indicates
current execution sreeds are slower than Franz LISP and
C-Prolog. Possible Lbottlenecks include excessive recursive
calls to the central evaluation function, 1ineffiiciencies in
pattern-matching, and execution penalties in storage manage-
ment routines. While the present design may be optimized to -\i
improve this performance, other issues are of more interest
in future research. These issues include alternative repre-
sentations of relations, alternative control strategies for
forward inference rule systems, and the exploitation of
parallelism in Omega.

Our final contribution in this work is a body of Omega
programs and some statistical ipformation on their behavior.
As the Gmega language matures, this experience may help to
characterize potential extensicns and improvements to the o
language and its implementation. j;f

’
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parallelism (where multiple rules for a goal are evaluated
concurrently) [Ref. 36: p. 29].

In Omega, AND parallelism may be exploited in both
the antecedent and conseguent of a rule. In the antecedent,
inquiries nust be independent for concurrent evaluation.

Consider the following rule:
if *R1(x), *R2(x), *R3(y) -> R3(xty).

The first two inguiries, R1(Xx) and R2(x), are mutually
dependent on the variable x. An evaluation order for these
inquiries should be made to allcw the binding for the vari-
able x to guide the relation search. The third inquiry,
R3(y), is independent of evaluation order. An AND parallel
strategy should separate a rule antecedent into independent
subunits that exploit concurrency where possible.

The evaluation of acticns in the consequent of a
rule has fewer constraints. Any actions separated by commas
are potentially subject to ccncurreat evaluation. The
actions of a sequential block are, however, restricted to a
mandatory evaluation crder.

The evaluation of separate rules in Omega is unord-
ered; OR parallelism is the ncrm for the Omega model. A
parallel implementation of rule evaluation is complicated by
the shared memory access that many rules require. This
shared access implies a locking mechanism at the relation
level, along with a deadlock-prevention strategy.

The exploitation of parallelism in Omega offers the
potential for the resolution of our present performance
bottlenecks. A rarallel architecture that optimizes
pattern-matching and concurrent rule evaluation would yield
substantial performance improverments.
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e The file 1is parsed using the file command reader,

invoked with the Do procedure call.

{] e Any rule denotations contained in the command rules are

then activated.

This process requires rule files to be reloaded each
II time the interpreter is run. Also, the current implementa-
tion allows rule activation but not deactivation. These
limitations sugygest the following extensions:

e A save/restore facility. This facility would copy and
t; restore the virtual memory image of the interpreter's
data segment.

- e A structure editor. There is «currently no way to edit
rule denotations once they are loaded into the inter-
preter. A structure editor would be useful, particu-

larly when debugging.

e Rule deactivation. The atkility to remove rules from
active status is necessary to allow testing and modifi-
cation. The use of rule names would simplify this

process.

3. Parallelism in Omega

The prototypes discussed in this work have been
sequential, single-threaded <control implementations. An
important extension to this work is the exploration of
parallelism in Omega rule interpretation, with architectures
tailored for concurrent rule evaluation.

Parallelism in Omega shares similarities with paral-
lelism in Prolog. The Prolog literature divides this paral-
lelism in two categories: AND parallelism (where multiple
subgoals in a rule are evaluated concurrently), and OR
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The space considerations of Chapter VI, as well as
the execution statistics of Chapter VII, indicate that a
garbage coilection scheme may preferable to rererence -
ri countiny. The implementation of an efficient compacting
garbage collector can provide significant performance

improvenments.

A useful extension to our implementation would be a
flexible debugger. We currently use a trace facility that
provides a display of rule execution. While this facility

is useful, the information provided is not specific enough.

P

The following debugging features would be helpful:

e Specification of trace and break points by relation
name. When a tuple is added or removed from a relation,
the debugger may be invoked and the bindings of vari-
ables available for examination. o4

e Specification of trace and break points for specific

L .

rules. This facility is similar to the preceding one, : f?

but only certain rules are monitored. Note that the -

.
N

lack of names for individual rules makes this feature
difficult to implement.

e Debugger invocation on error conditions. As in the LISP izd
prototype, error conditions result in an error message
and a return to the interpreter's top level. The imple-
mentation of a dektugger would allow a more sophisticated
response.

Our present method for rule creation and modifica-
tion should be extended. Currently, the following steps are
used to create rules:

e Command rules are entered into a file wusing a standard
text editor. The vi .. cedure call is provided in Omega
to allow ready access to the UNIX editor of the same
nape [Ref. 26].
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technigque is to frovide a hashed index structure for

tuples within a relation, possibly using a user-

) Jun B e S o,

specified key or arbitrarily using the first tugle =
member as a key. An indexed relation structure would

v

: Lave 1little impact on most of the benchmarks of the

, preceding chapter (except the pattern-matching test) .
because of the small relation sizes. A substantial .
; performance improvement for inquiries on larger rela-

tions may be realized.

e A relational DBMS implementation of relations. The
current design ~can be extended to include a guery and '
response translation interface with a concurrently
executing DBMS. The ianterface could be organized around
object identifier recognition, as system objects are
currently handled. The tag field of DBMS-supported )
objects could be assigned a unijgue value to route these
objects to the DBMS interface instead of the normal
relation management routines.

Control strategies for rule selection and test
remain an open subject in this work. Oour two-level trig-
gering strategy, discussed in Chapter V, was selected as a
compromise implementation taat provides a reasonable level -
of rule selection precision wunder a programmer's control.
Full indexing of rules--triggering on all the relations in
the rule antecedent--was not attempted. The performance of
full indexing compared to two-level triggering is a poten-
tial point for additional study.

The control strategy of Omega, like Prolog, is o
"hard-wired" into the interpreter design. The designs of .
several cther rule-based systems have taken a more flexible
approach: meta~-rules dictate control strategies [Ref. 35].

The idea of integrating rule-based control strategies into
Omega would be an interestingy extension to the language and

its interpretation.
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intended function of the CopyRel rules and similar applica-
tions. The advantages of universal guantification must be
weighed against the added complexity to the language. :
It would be useful to be able to reference rules by
name. The rule forms the basic computational wunit in the
language, yet may nct be referenced explicitly; the ouly
named reference for a rule 1is its source rule denotation.
If the denotation is large, its name 1is not a selective
description. If a single rule is to be manipuiated, perhaps
by a structure editor, tke ertire denotation must be
accessed. A similar problem is experienced with activating

and deactivating rule denotationms.

2. Extensions to the Present Interpreter Design

Our present implementation includes the majori%y of
Omega language features descrited in [Ref. 14]. Several
possible extensions to the present implementation are of
interest.

The class mechanism described in Chapters II and IV
is not currently implemented. The present systeam provides a
singyle directory, root, freguently referemnced in our exam-
ples. The class and directcry structures, with rules
indexed on relation objects, provide the inheritance meciaa-
nism for the language. The implementation of classes as
binding lookup paths will allow a more thorough exploration
of the object-oriented nature of Omega than has been
provided in this work.

Both the LISP prototype and the «current prototype
use a simple linked-1list relation structure. There are two

alternate representations that are of immediate interest:

e Hashed indexing of relation lists. Relations lists are

currently selected via hashed access of the object
tablie. A performance-enhancinyg extension to this
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conditions : conditicn
{
$$=newcell (CONDS,Nil,$1);
]
| constraint
{
$%=newcell (CONDS,Nil,$1);
}

] conditicns ',*' condition

{
$$=newcell (CONDS, $1, $3);

3

3 | conditions ',' constraint

{
$3%-newcell (CONDS, $1, $3);

}

condition %' inquiry

{
$3=newcell (CANC, 32,Nil) ;
}

| "2 inquiry
{
$$=newcell (ABST, $2,Nil) ;
}

| inquiry

{
$$%=newcell (PRES, $1,N1i1) ;

}
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f
iLquiry : primary ' (' arguments ')

{
$%=newcell (INQY, $1,33);
}

constraint

(X3

expression

{
]
kﬂ $$=newcell (CONSTR, $1,N11) ;
}

effect transactions

{
3% = 31,
1

transaction
{
$$=newcell (TRANS,Nil,$1);
}
} transactions ',' transaction
{
$$=newcell (TRANS,$1,$3) ;
}

transactions

transaction : asserticn
{ -
33 = 3$1;
}

] denial
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{
3% = 31; 5
[i } "
: | expression
: {
L $8 = $1;
L } _>
_ l seg_block .
- { L
. 3% = 31, S
» . 1
. ' Y
assertion : primary ' (' arguments ')'?
{ o
$%=newcell (ASSERT,$1,$3); :]
3
denial H '-* primary '(' arguments ') . s
{ 1
$$=newcell (DENY, $2, $4) ; =
} o
, S
fr._definition : FUNCTION fn_head *:' cpd_expr
{
$$=newcell (FN,$2,%4);
} c
L4
’ -
S
fn_head : '[' arguments ' ]! }
{
$%=newcell (FNDCL,Nil,%$2);
}
] primary '[! arjuments ']!
{
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$$=newcell (FNDCL,$1,33);

}
; arguments : /* empty */
. $% = Nil;
}
| list
. {
- $3 = 31;
3
| expression ':' expression
{
» $$=newcell (CONS, $1,$3) ;
}
| . .
list : expression
g {
- 3$=newcell (LIST,Nil,$1);
o . . .
] list '," expression
- {
e $$=newcell (LIST,$1,$£3);
3 }
® seq_block : '{* statemernt_list '}°
- {
o $$=newcell (SEQ_BLK,$2,Nil);
o }
®
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expression

'{' statement_list ';' '}

{
3%=newcell (SEQ_BLK,3%$2,Nil);
}
primary
{
38 = $1;
}
constant
{
$$% = $1;
3
call
{
$8 = 3$1;
}
fn_application
{
33 = $1;
3
rule_denotation
{
3% = $1;
}
unop
{
$3% = 31;
3
binop
{
3% = $1;
}

Y(* cpd_expr ")
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fn_application

call

rule_denotation

33

1
-7
8]

-

‘[ list ']
{
$$ = $2;
}
'[' exrression ':' expression ']
{
$$=newcell (CONS, 32,%4);
}
'[l IJI
{

$3 Nil;

primary '[ ' arguments ' ]°
{
3%$=newcell (APL,$1,$3);
}

primary ' {' arguments '}
{
$$=newcell (CALL, $1,%3);
}

BEG_DENO statement_iist END_DENO
{
$%=newcell (DENO, 32,Nil) ;

}
BEG_DENC statement_list ';"' END_DENO

{
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33=newcell (DENO, $2,Nil) ;

}
unop : *+' expression %prec '*!'
{
$$ = 32;
]
| '-* expression %prec '*!
{
$$=newcell (UNMINUS,$2,N1l);
}
] 'Y expression
{
$3=newcell (NOT,32,Nil);
}
binop : expression '+' expression
{
$$=newcell (PLUS, $1,3%3);
}
| expression '-' expression
{
- -
$$=newcell (MINUS,31,33); -
} _i
| expression '#' expression ]
{
$5=newcell (MULT, $1,33) ; TS
} =
| expression '/' expression ;];Q
{ ]
$$=newcell (DIV,$1,83); R
} 0
{ expression '%' expression
{
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$%=newcell (MOD,31,83);

3
] expression '=' expression )
{
$$=newcell (EQU,$1,33);
3
| expression '<' expression
{
$$=newcell (LT,31,%$3);
}
{ expression '>' expression
{
$$5=newcell (GT,51,%$3);
}
I expression NE expression _
{ ;
$$=newcell (NEQ,$1,%$3); g
}
| expression LE expression
(
$$=newcell (LEQ,$1,33); Q
} o
{ expression GE expression .
{ =
$$=newcell (GEQ,31,$3); 3%
} =
| expression '6' expression ;
4
{ ]
$$=newcell (AND,3$1,8%3); B :
} -]
| expression '|' expression - o
9
{ =
$$=newcell (OR,$1,$3); ]
SR
] ERE
157 .




primary : variable

{
3$ = 31;
}
| self_ref
{
3% = 31;
self_ref : 'd*' variable
{
$$=newcell (SELF_REF,32,Nil);
}
variatle : IDENTIFIER
{ .
parsetree = makstr(yytext);
$$-nevcell (VAR,Nil, parsetree);
}
constant : STR_CON
{
$3% = makstr({strdeno (yytext)) ;
}
I INT_CON
{
$3 = makint(atoi (yytext)) ;
} __;
e Y
| NIL iffj
( ]
3% = Nil;
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)
}
cpd_expr : cond_exgr )
{
$$=newcell (CPD_RULE,Nil,$1);
3
I cpd_expr ELSE cond_expr '
{
$$=newcell (CPD_RULE,$1,33);
}
’ v
cond_expr : expression
{
$$=newcell (RULE,Nil, $1) ;
} ]
{ IF constraint IMPLICATION expression '
{
3}$=newcell (RJULE, $2,34) ;
3 L

‘
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Ll nd
nnr
/¥ user defined functions */

# include "lex.yy.c"

/¥

lexical scanner returns string constants

string denotation routine

with " delimiters included.

Denotation routine simply removes the extra "s.

= ———— — — —— ———— ———————— ————— . ———— ————— o ————— —

ckar #*strdeno(s2)

char *s2;

{
char *s1;
s1 = s2 + 1;
* (s1 + (strlen(s1)-1)) = '"\0';
return (s1) ;
}
/* error handler

Prints error message and line number where error occurred.

No attemgt made to recover from errors.

- - — . ——— o ———————— ————— — —————————— — ———————— — ——

_________ %/
yyerror (msq)
char *msg;
{ N ..
printf ("%s : ", msg) ; o
printf ("line %d\n", yylineno) ; o
} B
4
o
]
R
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APPENDIX B
BUILT-IN FUNCTIONS AND PROCEDURES

I. Built-in Functions

A. Infix operators --

op type

+ str x str -> str (concatenation)

+ int x int -> int

- "

* "

% " (modulus)

/ " -
< int x int -> Bool Ti
> " )
<= " )
>= "

= any X any -> Bool

= any x any -> Bool

& Bool x Bcol -> Bool )

| Bool x Bcol -> Bool

Unary operators

- Int -> Int
~ Bool -> Bool

B. System defined functions :

IsInt[item] -- Returns TRUE if iten
is an inteyger.
IsStr]item] -- Returns TRUE if itenm
4
16 1 S
]




is a string.

Islist{iten]) -- Returns TRUE 1if iten

is a list.

IsObjlitem] -- Returns TRUE i iten

is an object.

IsRell item] -- Returns TRUE if itenm

is a relation object.
int_str{int] -- Integer to string conversion.

first[ list] -- CAR. Returns the first member

of a 1list.

rest{list] -- CDR. Returns all members of

a list after the first member.

cons[x, 1] -- Returns a new list with x as its
first member and 1 as the rest of
the list. The notation [x:1)]

does the same thing.

objval{ object] -- Returns the value bound to an

object.

The following oljects have bound values :
relations
functions

rule denotations

directories

Tag{ form] -- Returns a string representing the

Al

tag of form.
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IiI. Built-in Procedures

A.

General usage:
do {"filename™}
activate {nanmej}
decode {form}

display{formj}

displayn {form}

define {dir,"nanme",def}--

trace{}

exit (}

newobj{}
newrel {}

purge{relaticn_nanme}

UNIX system hooks:
vi{"file"}

system {"command"}

shell {j

PSP G P LEP AP T P Wy S T T G
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Executes rules from file.
Activate rule denotation.
Post order dump of nodes.
Pretty printer.

Pretty printer. Erds

with a newline.
Make a directory entry.
Toggle the trace function.

End session.

Same as Cntl-D.
Generate a new object.
Generate a new relation.

Empty a relation.

Invoke the VI text editor.

Pass a command to the
UNIX shell.

Spawn a temporary
UNIX shell.
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remove(?, [, [ ])-

remove (P, [I|Is], [IINis]) :-
not(0 is I mod P),
remove (P, Is, Nis).

remove (P, [I{Is], Nis) :-

0 is I mod P, remove(P, Is, HNis).

sTest :-
systenm ("date"),
primes (350, Ps),
system ("date"),
print (Ps).
: sieve benchmark -- Franz LISP

(defun iota (n1 n2)
(cond ((greaterp n1 n2) nil)
(t (cons n1 (iota (addl1 nl1) n2)))))

(defun purgeMults (x 1)
{(cond ((null 1) nili)

((zerop (mod (car 1) x)) (purygeiults x (cdr 1)))
(t (cons (car 1) (purgeMults x (cdr 1))))))

(defun primes (n)

(primesAux (iota 2 n)))

(defun primesAux (1)
(cond ((null 1) nil)
{t (cons (car 1)
(primesAux
(purgeMults
(car 1)
(cdr 1)))))))

178

SR SR W N Rt R PR P SRS ” - i




else [first[1l]:Purgeiults x, rest{1l]j].

define{root, "SieveRules",
<<
if *Primes{a, n) ->

PrimesAux{a, iota; 2, n], Nil);

if *PrimesAux(a, Nil, 1) ->
a(reverse[l])
else if *PrimesAux(a,[x:11], 12) ->

PrimesAux(a, FurgeMultsi{x, 11], [x:12]);

if *sTest(a) -> {
systenm {"date"};
Primes {350} ;
system {("date"};
a ("0K") ;
}s

>i.

activate {SieveRules}.

Vi,
Sieve benchmark -- Prolog

primes(Limit, Ps) :-
iota(2, Limit, Is),
sift(Is, Ps).

iota (lo, Hi, [Lo|Rest]) :-
Lo =< Hi, M 1is Lo+1, iota(¥, Hi, Rest).
iota(_, _, [ D -

sift ([ 2, [ D~
sift ([IlIs], [I|Ps]) :-

remove (I, Is, lLew), sift(New, Ps).
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; the benchmark driver --
: (fact 15) executed n times
(defun driver (n)
(cond ((egual n 0) "OK")
{(t (fact 195)
(driver (- n 1)))))

; the CSH date function provides a crude

; timer to the nearest second.

(defun factTest (n)
(exec date)
(driver n)

(exec date))

3 e 3k 3k Ak 3 e 3 e ok ok o ke e ol koo ok k3 e a3k ok Sk okodk sk akak A % ok ko ok Xk o ok ok ok kR

* *
* Prime Number Sieve * P
* *
* *

33 o 3 o e ok sk ok e e ook ok ok ok ook ok ok koK b sk ko oo o ke 3 ok ok k3K kel ok 3k ok ek ok ok

e

sieve benchmark -- Omega

. ——— ——— - —— i ————— — ———— —— T ————— ——— i W W —— i —— s

define{root, "Primes", newrel{}}. )
define{root, "PrimesAux", newrel{;}.

define{root, "sTest", newrel({}}.

fn PurgeMults[x, 1] : 4
if 1 = Nil -> Nil |
else if first{l] % x = C -> ' ?

PurgeMults[ x, rest{1]] R
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system('"date") ;
Driver {n} ;
system("date") ;
}i

>>} .

! activate the rules

activate{DriverRules}.

/%
factorial benchmark -- Prolog

fact (N, 1) :- N =< 0.
fact (N, F} :-
N >= 0, fact(N-1, M), F is M * N.

driver (0).
driver(N) :-
N > 0, fact (15, X}, M is N-1, driver (4).

factTest (N) :-

systen ("date"),
driver (N),

system {("date").

; Factorial benchmark -- Franz LISP

(defun fact (n)
(cond ((lessp n 0) 1)
((zerop n) 1)
(t (* n (fact (- n 1))))))
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* *
* Factorial *
* *
* *

3ok 3 3k e 3k ok ok ok gk ok ok Ak ok sk ksl ek dkok ok ol sk ok ok ok kool ok e okokokokok ok

)

‘e

factorial benchmark -- Cmega

fr fact{n] :
if n<= 0 -> 1
else n * fact{n-1].

! driver rules

definef{root, "Driver"™, newrel{}}.
define{root, "factTest", newrel {}}.

define{root, "DriverRules",

<< if *priver{a, n) -> {
if n <= 0 -> a ("OK")
else -> {

fact[15];
Driver{a, n-1)
}

}:

the CSH date function provides a timer

times given to the nearest second

if *factTest (a, n) -> {
display{"Omega factorial: "};
display {n};
displayn {" calls"};
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(defun genbDat (n1 n2)
(prog (i1)
(setqg i1 n1)
LOOP
(cond ((greaterp i1 n2)
(return))
(t (setq r1 (cons i1 rl))
(setq r2 (cors (plus i1 n2) r2))
(setq i1 (addl i1))
(gc LOOP)))))

(defun match ()

(prog (t1 t2)
(setg t1 r1)
LOOP 1
{setq t2 r2)
LOOP2 =
(cond ((null t2) s

(cond ((null t1) (return nil))
(t (setg t1 (cdr t1))
(go LCOP1)))) e
((equal (car t1) (car t2)) NEN
(return (car t1))) '
(t (setq t2 (cdr t2))
(go LOOP2)))))

(defun mTest ()
(setq r1 (list 9999))
(setq r2 (list 9999))
(genDat 1 1000)
{exec date)
(match) -;i

(exec date))
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systen {"date"};

if R1(x), R2(x) -> {

systenm(*date") ;

displayrn {x} ; o

}i -

a("0K") ; o
}

>}.

! activate the rules

activate {MatchRules}.

/%
PROLOG pattern matching benchmark
------------------------------------ */
r1(9999).
r2(9999) . :
genDat (Lo, Hi) =:- ;
Lo < Hi,
12 is Lo + Hi,
asserta(ri1(lo)),
asserta (r2(12)), .
Lonext is Lo + 1,
genDat (Lonext, Hi).
genDat (Hi, Hi).
mTest (X) :-
genDat (1, 1000),
system ("date"m),
r1({X), r2(X),
systen ("date").
; pattern matching benchmark -- Franz LISP
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APPENDIX D -
COMPARATIVE APPLICATIONS: OMEGA, LISP, AND PROLOG

a3 e 3 3k ok ookl e ook dk sk ek gk ok o ke gk ak ok ook sk ke ok ok ke ok Ak ki ok Rk ok ok ok ok

* * -
* Pattern Matching Tests *
* *
* *

3 e 3k ok S 3 S e sk 3k ok ok ok o ok koK sk sk e koo ek ok e dk ook e ok sk ke k ok ok ok kR ok ok ko ok ok ok

! pattern matching benchrark -- Omega

T T T i U i vl g g Sy

define{root, "R1", newrel{}}.
define{rcot, "R2", newrel{}}.
define{root, "genDat", newrel(}}.
define{root, "mTest"™, newrel({}}.

define{root, "MatchRules",
<<

! the data generating rules

if #*genDat(a, n1, n2', nl > n2 =>
a ("OK")

€lse if *genDat(a, nl1, n2) -> {
R1{(n1);
R2(n1 + n2);
genDat (a, n1+1, n2);
}s

if *mTest(a) -> {
R1(©999); R2 (9999);
genDat {1, 1000} ;
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define{root, "AssertTuple", newrei{}}.

define{root, "AssertlistRules",
<<

if *Assertlist(a:{r:1]), IsRel[a], IsRel{r] ->
AssertAux(a, r, L)

else if *Assertlist (a:l) -=>
displayn{"Usage : Assert{Relname, ListOfTuples}"},
a(Nil) ;

if *AssertAux(a, r, Nil)} ->

a (l‘OK")

else if #*AssertAux({a, r, (x:1]) ->

AssertTuple{r, xj},

AssertAux(a, r, 1);
if *AssertTuple(a, r, x), ~Islist[x] ->

displayn {"Error in Assert -- tuple not a list", x}
else if *AssertTuple(a, r, Nil) ->

a (Nil)

else if *AssertTuple(a, r, [x:1)) ->

r(x:1),
a(r);
>>}.
activate {AssertlistRules}. T
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CopyRel {x, temp},
DumpDisplay(a, x, temp);

if *DumpDisplay(a, name, k), *RK(x:y) =->
display {name},
display{" ("},
display{x:y},
displayn{™)."},
DumpDisplay(a, name, R)

else if *DumpDisplay(a, name, R) ->
a("") ;
! Pretty print objects ...

! Functions require a bit of set up

if *pPpObj(a, name, def), Tag[def J="FN" ->
display {"fn "},
display {name},
displayn {def}, .
a(mm) wnll

! otherwise, just display def (might be Nil)

else if *PpObj(a, name, def) ->

displayn{def};

>> 3.

activate {PpRules}.

! assert list procedures :
! allows one to assert multiple tuples to a relation o
! Usage is Assert{relname, [tuple], [tuple], ...}

define{root, "Assertlist", newrel(}}.

define{root, "AssertAux", newrel{}}.
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define {root, "Pp", newrel{}}.

define {root, "PpAux", newrel(}}.
define {root, "PpRel", newrel({}}.
define {root, "PpObj", newrel {}}.

define {root, "DumpDisplay", newrel({}}.

e

the rules ...

define {root, "“PpRules",
<L

! single member is a ¢ocf by the user
if *pp(a:L), -IsRel{a] ->
dispiayn {"Usage : Pp{x1, x2, ...}"};

if *Pp(a:Nil) ->
a ("O K")

else if *pp(a:[x:L]) -> o
2pAux {x}, s
Pp(a:l);

! Is it a relation ?

if *PpAux(a, x), IsRel{x] ->
PpRel {x, newrel {}},
a (llll)

! or other type of object ? '}¥;
else if *ppAux(a, x), IsObj[x] -> -
PpoObj(a, x, objval{x]), -]
a("")

! otherwise just display it

else if *PpAux(a, x) -> 1
displayn {x},
a("");

e latala

if *Ppkel(a, %, temp) =>

168
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<<
if *Bugs{a) ->

displayn {"Describe the Ekuy. End with Cntrl-p :"},
systen {"mail -s 'Bug Refport' mcarthur"},
a ("OK")

>>}.

define{root, "Bugs", newrel {}}.
activate {BugRules}.

displayn{"To report a bug, enter Bugs{}."}.

! CopyRel -- Copy from one relation to another
! Usaye is CopyRel {R1, K2}.

define{root, "CopyRel", newrel {}}.

define{root, "CopyRelRules",
<L

if CopyRel(a, ri1, r2), rl(x:y), ~r2(x:y) ->
r2(x:y)

else if *Co,yRel (a, r1, r2) ->
a (llOK") ;

>>}.
activate {CopyRelRules}.

! EP - A pretty printer fcr objects.

These rules are reguired because the standard pretty

=3

printer - disyplay - doesn't do lookups on objects.

! define the relations....
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if 11 = Nil | 12 = Nil -> Nil
else cons{[first{11], first[12]],
pairlist[rest[11], rest[12]]].

fn append[ 11, 1273 :
if 11 = Nil -> 12
else if 12 = Nil -> 11
else cons[first{11], aprerd{rest{l11], 12]].

=]

fn iocta[nl, n2] :
if n1 > n2 -> Nil
else cons[nl1, iota[nl+1, n2j]l.

fn length{1l] :

if 1=Nil -> O

else 1 + length[rest{1]].
fn ith{1l, i] :

if i<=1 -> 1

else if 1=N1l1l -> Nil

else ith{rest{l], i-1].

1 % ke ok ok ok o ok ok ok sk ok kol e ok s o dkeske ol ok ok sk ok ko ksl ook ok ke ke Aok Rk

! Utilities -- !
! This file contains a set of utility !
! rules that are automatically loaded !
! at system boot. !

¥ ek ok o ook ok ok ok gk kool sk sk ook s ok ok oo ek ol s ek ok ok s s ok o i sk skok ok

! System Help function

define{root, "help", newrel({}}.
define{root, "Helplib", newrel{[}}.

Helplib ("2v, "/work/mcar thur/commnon/summarcy.help") .
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APPENDIX C

UTILITY FUNCTIONS AND ROLES

----------------------------------------------

! Function library
TrrrrerIYILIILIOLAILILLIYILIIOELOILILLILOILOLELILIOLEIILILILIOLIOYLILY

! A dumny forward declaration is used for reverseldux
! due to single pass static scoping.

fn reverseAux[x] : Nil.
fn reverse/1l] : reversedux[1l, ¥Nill].

fn reverseAux[ 11, 127] :
if 11 = Nil -> 12
else

reverseAux[rest[11], cons[ first{ 11], 12]].
fn mag{ £, 1] :
if 1

else

Nil -> 1

cons{ f[ first{1]], map[f, rest[1]]].

fn member[x, 1] :
if 1 = Nil -> Nil
else if x = first[{1l] -> 1
else member x, rest[1]].
fn assoc[x, 1] :
if 1 = Nil -> Nil
else if -~ Islist{first[1]}] | first{1l] = Nil
-> assoc[x, rest[1]]
else if x = first{first[1]] -> first{l]
€lse assoc[ x, rest{1]].

fn pairlist{11, 12] :

Gy
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(defun sTest ()
(exec date)
(primes 350)
(exec date))

s e 3 ek ok ok ok ook ok o ke ok sk ek sk kool ek o e ok kol ik o sk o ok ok ok ook kol ok ok

* %
* Quicksort *
* *
* *

3 3 e Sk ook A ok Xk ok ok ok ke kok ook ko sk ks ok ok A e e ek Sk ek dfeokook skosk ook ok k%

fn iotaR{nl1, n2] :
if n1 > n2 -> Nil
else [nZ2:iotaR{nt, n2-1.].

define{root, "Qsort", newrel{}}.
define{root, "QsortAux", newrel {}}.

define{root, "qTest", newrel{}}.
define{root, "QsortRules",

K

1 Quick Sort

if *Qsort{a, Nil) ->
a(Nil);
if #*gsort(a, [x:L]} ->

¢gsortAux{a, x, L, Nil, ¥il);
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Dndhatithane hai ek,

if *QsortAuxf{a, x, Nil, L1, L2) =->
a(append(Qsort{L1}, [x:¢sort{L2};]):
if *QsortAux(a, x, {y:L1], L2, 13) -> {
if y <= x ->

Y

QsortAux(a, x, 11, [y:1l2], L3)
e else S
'n Qsortaux({a, x, 11, L2, [y:1L3))
1

if *gTest(a, n) -> {

N system {"date"};

l;' gsort{iotaR[ 1, nl};
system {"date"};
a ("OK") ;
}i

>>1}. o

activate {QsortRules}.

/* Quicksort Benchmark -- Frolog

gsort ({H|T],S) :-
split (H,T,A,B),
gsort(A,Al),
gsort(B,B1),
append (A1,[H|IB1],S).
gsort([J, [ 1)-

split (H,[A1X],[A1Y],2) :-
A < H,
split (H,X,Y, Z).
split (H,[A1X],Y,[A}2]) :-
H < A,
split (H,X,Y,2)-
split (L,[ 0,0 3.L])-
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append([ J,1,1).
append({H|TJ,L,[H}V]) :-
apperd (T,L,V).

iotak (Lo, Hi, [Hi|Rest]) :-
Lo =< Hi, M iy Hi-1, iotaR(lLo, M, Eest).
jotaR(_, _, [ 1)~

gTest (N) :-
system ("date"),
iotaR (1, N, L),
gsort(L, S),
system ("date"),

print(S).

; Quicksort Benchmark -- Franz LISP

O o o — ——— - ——— — — - ——— — ———— ———_— —— " — ——— — —— - . ———

(defun gsort(l)
(cond ((null 1) nil)
(t {setq s (split (car 1) (cdr 1)))
(append (gsort (car s))
(cons (car 1) (gsort {(cadr s))))})i)

(defun split (x 1)
(prog (s)
(cond ((null 1) (return (list nil nil))))
(sety s (split x (cdr 1)))
(cond ((lessp (car 1) x)
(return (list (cons (car 1) (car s)} (cadr s)))]}
(t

(return (list (car s)
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(cons (car 1) (cadr s))))))))

(defun iotaR (n1 n2)
(cond ((greaterp n1 n2) nil)
(t (cons n2 (iotaR n1 (subl n2)))})))

(defun gTest (mn)
(exec date)
(gsort (iotaR 1 n))
(exec date))
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Missionaries and Cannibals:

*
*
A State Search Problen *
*
*
*

# # ¥ #* #
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! Hissionaries and Cannibals -- Omega

! Generate and test search strategy

define{root, "mc", newrel{}}.
define{root, "misCan", newrel{}}.
define{root, "Ppl", newrel{}}.

define{ root, "misCanRules", ,
<<
if *mc(nM, nC) ->
misCan(1,nM,nC,nM,ncC,0,0,Nil);
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.....

if misCan(s,nM,nC,0,0,n¥,nC,path)

- {
purge {misCan} ;
PpL{{[s,0,0,nM,nCJ:path]};
displayn{"Finis"™
}

else if *misCan(s,nl,nC,nL,cL,mnk,cR,path),
(mL >= 0 & mL <= nM &

cL >= 0 & cL <= nC ¢
BR >= 0 & mR <= nM &
CR >= 0 & cR <= nC §
(nL >= ¢l | ml = 0) &

(R >= cR | mR = 0)),
~menter{[{s,mL,cL,nR,cR],pat’ ]

misCan{( {0-¢) ,nH¥,nC,nL~s,cl,nR+s,cR,
s,nL,cL,mR,cR :path ), ]
misCan((0-s) ,nM,nC,mL,clL-s,mnR,CR+s,
s,mL,cL,nR,cR :path ), ]
misCan { (0-s),niM,nC,nl,cL-2%s,nR,cEk+2%*s,
s,elL,clL,mR,cR :path ), ]
misCan((0-s) ,nid,nC,nL~2%s,cL,nk+2%*s,CR,
sysmL,cL,nR,cR :path },]
misCan((0-s),0M,nC,mlL~-s,cl-s,mk+s, CRk+s,
s,oL,cL,nR,ck :path ) ]

else if *misCan(s,nM,nC,ml,clL,mR,cKk,path) ->;
! a small pretty printer for the output list

if #*ppl(a, Nil) ->

else if *PpL{a, [x:1L]) -> {
PpL {i};
displayn {x} ;
}

> 3.
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activate{ misCanRules }.

/%
Missionaries and Cannibals -- Prolog

pc (Nm,Nc) :- miscCan(-1,Nm,Nc,0,0,Nm,Nc,[]) .

misCan(S,Nm,Nc,Nm,Nc,0,0,Path) :-
Nm >= Nc, ppl({[S,Nm,Nc,0,0]jPath]).
misCan(S,Nm,Nc,M1,C1,Mr,Cr,Path) :-
safe(Nm,Nc,M1,C1,Mr,Cr),
equal ([s,M1,C1,Mr,Cr],P),
not (member (P,Path)),
S1 is -5,
possible (S,Mi,Ci,Mr,Cr,M11,C11,8x1,Cc1),
misCan(s1,Nm,Nc,M11,C11,Mc1,Cc1,[P|Path]).

safe (Nmn,Nc,M1,C1l,Mr,C) :-
Ml >= 0, Ml =< Nn
cl >= 0, Cl =< Nc,
(M1 >= Cc1 ; Ml =:= 0)
(Mr >= Cr ; Mr =:= Q).

possible(s,¥1,Cl,Mrc,Cr,M11,C11,M01,Cc1) :-
(M11 is M1-2%*s,
Mr1 is Mr+2%s§,
cl1 is C1,
Crl is Cr);

(M11 is M1,
Mr1 is Mr, R
Cl1 is Cl-2%s, S
Crl is Cr+2%s) ; -
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(M11 is
Mr1 is
Cil is
Crl is
(M11 is
Mr1 is
Cl1 is

Cr1l is

M11 is
Mrl1 is
Cl1 is

Cr1l is

member(X,[ ]) :-
member (X,[X]|1]) .
member (X,[Y|L])

equal (X,X).

ppL([ J) -

PPL({X|1]) :- print(X), nl, ppl(L).

Mi-s,
Mr+S,
Cl-5s,
Cr+S);

Ml-5s,
Mr+S,
cl,
Cr) ;

M1,
Mr,
Ccl-s,
Crc+S).

!,fail.

:- member (X,1L).
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APPENDIX E

OMEGA APPLICATION EXAMPLES

1 e ok o 3 e ok ook sl ook e dkodkooke o sk sl sk ok ook ok e ek o ok ok ke sk ik ok i ok e ik ok kol kol ok ok ok Rk )

! Monte Carlo Simulation for 3 node message network.

!

1
H
!
B

!

1 3 3 ok 3k ok ks ok o kol ek 3k ok sk ok sk o ok dk deokook sk ook 33k 3k ok ok sikoode sl kol ik e Rk sk ok ke koo sk ok ksl k)

1 the relations

define{root,
define{root,
define{root,
deiine{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define {root,
define{root,
define{root,
define {root,
define{root,
define{root,
define {root,
define{root,
define{root,
define{root,
define{root,
define{rocot,

define{root,

"Begin'", newrel {}}.
"End", newrel({}}.
"Clock", newrel(}} .
"NextTime", newrelf}}.
"LastTime", newrel {}}.

"Event", newrel{}}.

"ProcessEvents", newrel {}}.

"ProcessEventsAux", newrel{}}.

"Summary", unewrel {}}.
"Status?", newrel {}}.
"BusyTime", newrel{}}.
"OLength", newrel {}}.
“"Stats", newrel{}}.
"BusyStats", newrel{}}.
"QStats", newrel {}}.
"Totals", newrel{}]}.
"NodeTotals", newrel({}}.
"JobTotals", newrel{}}.
"JobTotalsAux", newrel{}}.
"Displayline", newrel{}}.
"Start", newrel{}}.
WArrive", newrel{}}.

"NewArrival", newrel{}}.
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define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define {root,
define{root,
define {root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,
define{root,

define{root,

"Service", newrel{}}.
"StartTime", newrel{}}.
"Depart", newrel {}].
"ExitTime", newrel{}j}.
"InService", newrel{}}.
"on, newrel{}}.

"Eng", newrel{}}.
"CalcNextArr", newrel{}].
"CalcDeparture", newrel{}}.
"CalcRoute", newrel{}}.
"NewJob", newrel{}]}.
"JobServiceT", newrel{}}.
"JobCount", newrel {3}.
"GenArrT", newrel {}}.
"GenServI", newrel{}}.
"GenRoute”, newrel {}}.
"ServiceTlime", newrel{}}.
"ArrInterval?, newrel{}}.
"PossibleRoutes", rewrel({}}.
"Seed", newrel{}}.

"Rnd", newrel{}}.
"Rndlist", newrel {}}.

"WorkList", newrel{j}.

! the Nodes

definef{root,
defirne{root,
define{root,

define{root,

[

"Node1", newobj{}}.
"Node2", newobj{}1}.
"Node3", newobj{}}.
"Oout", newobj{}}-.

initalize MonteCarlo talkles

! Service times (message transmission times)

ServiceTime (1, 0, 12).
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ServiceTime (2, 13, 32).
ServiceTime (3, 33, 79).
ServiceTine (4, 80, 92). -
ServiceTime (5, 93, 99).

! Interarrival times

ArrInterval (Nodel, 1, 0, 16).
ArrInterval (Nodetl, 2, 17, 24).
ArrInterval (Nodel, 3, 25, 49).
ArrInterval (Nodel, 4, 50, 91).
ArrInterval (Nodel, 5, 92, 99).

Arrinterval (Node2, 1, 03, 28).
Arrlnterval (Node2, 2, 29, 70).
ArrInterval (Node2, 3, 71, 85).
ArrInterval (Node2, 4, 86, 92).
ArrInterval (Node2, 5, 93, 99).
! - Routing table

PossibleRouteséNode1, Node2, 0, 29).
PossitleRoutes (Nodel, Node3, 30, 59).
PossikbleRoutes (Nodel1, Out, 60, 99) .

PossibleRoutes (Node2, Nodel, 0, 29).
PossikleRoutes (Node2, Node3, 30, 49).
PossibleRoutes (Node2, Out, 50, 99).

PossibleRoutes (Node3, Out, 0, 99) . 1

! Random number table

RndList ([ -

e ' A L el

97,95,12,11,90,49,57,13,86, 81,
02,92,75,91,24,58,39,22,13,02, R
80,67,14,99,16,89,96 ,63,00,04, !
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96,76,20,28,72,12,77,23,79,46,
s5,64,82,61,73,94,26,18,37,31,
50,02,74,70,16,85,95,32,85,67, _
29,53,08,33,81,34,30,21,24,25,
s8,16,01,91,70,07,50,13,18,24,
51,16,69,67,16,53,11,06,36,10,
04,55,36,97,30,99,80,10,52,40,
86, 54,35,61,59,89,64,57,16,02,
24,23,52,11,59,10,88,68,17,39,
39,36,99,50,74,27,69,48,32, 68,
60,71,41,25,90,93,07,24,29,59,
65,88,48,06,68,92,70,97,02,66,
44,74,11,60,14,57,08,54,12, 90,
93,10,95;80,32,50,40,44,08,12,
20,46,36,19,47,78,16,90,59,64,
86,54,24,88,94,14,58,49,80,79,
12,88,12,25,19,70,40,06,40,31,
42,00,50,24,60,90,69,60,07,86, s
29,98,81,68,61,24,90,92,32,68, i
36,63,02,37,89,40,81,77,74,82,
01,77,82,78,20,72,35,38,56,89,
41,69,43,37,41,21,36,39,57,80,
54,40,76,04,05,01,45,84,55,11,
68,03,82,32,22,80,92,47,77,62,
21,31,77,75,43,13,83,43,70, 16,
53,64,54,21,04,23,85,4t,81, 36,
91,66,21,47,95,69,58,91,47,59,
48,72,74,40,97,92,05,01,61,18,
36,21,47,71,84,46,09,85,32,82,
55,95,24,85,84,51,61,60,62,13,
70,27,01,88,84,85,77,94,67,35,
38,13,66,15,38,54,43,64,25,43,
36,80,25,24,92,98,35,12,17,62,
%8,10,91,61,04,90,05,22,75, 20,
56,54,29,19,26,26,87,94,27,73
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Worklist (Nil).

! Intialize Queues

C(Nodel, Nil).
Q(Node2, Nil).
C(Node3, Nil).

! the Precedence function

! Scheme is (for events dtime=t, node=n)

! Departures have top priority

Between occurrences of same type of event
! JobN1 precedes JobN2 if N1 < N2.

This function replaces a sort on the event list.

fu Precedencefel, j1, e2, j2] : -
if el1=e2 & j1<j2 -> "TRUE®
else if el=Derart & e2 -= Depart -> "TRUE"

else Nil.

! The Rules

define{root, "SimRules",
<<

! Begin -- Begins the simulation and sets up relaticas

sy

&

if *Begin(a, n) -> {
JobCount (0, 0, n);
lLastTime (0) ;

AP W )
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InService (Nodel,
InService (Node2,

InService{Node3,

BusyTime (Nodel,
BusyTime (Node2,
BusyTime (Node3,

QLength (Nodel,
CLength (Node2,
QLength (Wode3,

Event (0, Start,

Clock (0)
a ("OK") ;
1

™

if *End (a) -> {
purge {JobCount} ;
purye {InService}
a (2nd) ;

1

"-..") :
"-—t)

ll__ﬂ) ;

0)
0):
0):
0):
0);
0):

Heea 17 "__ll) »
r ]

End -- Cleanup for further rums

.
*

! the clock rules -- drives the simulation

if *Clock (999,
Totals {t}:
End (};
3

else if *Clock (t2).,

¥LastTime (t) -> {

*lastTime(t1) -> {
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Stats{tl, t2%};
displayn {

display{"Time : "};

displayn {t2} ;

displayn {"Events :"};

ProcessEvents {t2} ;

Summary{};

LastTime (t2) ;

Clock (NextTime {999}}) ; ! restart the clock
}s

if *NextTime(a, t1), Event(t2, € 1n, j), t2 <ttt ->
NextTime (a, t2)

else if *NextTime(a, t) ->

a(t);

! Frocess all events for time t

e

if *ProcessEvents(a, t), Event(t, el, nil1, j1) -> {
ProcessEventsaux{t, el, nl1, j1};
ProcessEvents{a, t);

}

else if *Processkvents(a, t) ->
a(t);

if *ProcessEventsAux(a, t, el, nt, "1,
Event (t, €2, n2, 3j2),
Precedence e2, j2, el, j13 =>

ProcessEventsAux{a, t, €2, nZ2, j2)

else if *ProcessEventsAux(a, t, e, node, job) -> {
~Event (t, e, node, job) ;

€{t, node, Jjck};
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........................................

display({" "}

displayn {e, node, job};

a(t);

.
! 2
! Summarize the current status for all nodes *‘1
! o
if *Summary (a) -> { o

Status {Node1}, Status{Ncde2}, Status{Node3}; L

displayn{} ; ,,j

displayn {"Pending Events :"}; R

Pp {Event}; aj&

displayn {3} ; "ﬁ

a("m; .

}i

if *Status(a, node), InService (rode, job), Q(node, 1) ->
{
displayn {nodej};
display({" Job in service : "};

B PP | Lt e
. - ) St . .

L T T TSR . R
o N £ -'.‘4..' . . K Y. % o

. L, . S : , R
>IAA-A . “' l.! Ao A .'. 1, P « -

displayn {job};

display (" Jobs in gqueue : "}; -
if 1=Nil -> displayn {"--"} 13%
else displayn{l}; o
a (node) ;
}i :
! ‘;
! Keep running tctals for stats on each node. t
! The relations are : .I?
! BusyTime (node, t) -- Cumulative idle time jl:
! QLength (node, n) -- Time weighted Q length :TF

193




)

if *Stats(a, t1, t2) -> {
BusyStats{t1, t2, Nodel};
BusyStats{t1, t2, Node2};
BusyStats{t1, t2, Node3};
QStats{t1, t2, Nodei};
QStats {t1, t2, Node2};
QStats{t1, t2, Node3};
a(tl);
33

if *BusyStats(a, t1, t2, node), InService (node, "--") =->
a (node)

else if *BusyStats(a, t1, t2, ncde), *BusyTime(node, t) ->
BusyTime(node, t+t2-t1),
a(node) ;

if *QStats(a, t1, t2, node), *Qlength(node,n), Q (node,l) ->
Qlength (node, n + (t2-t1)*length{l]}),
a(node) ;

Totals -- Display stat summary at end of simulaticn

e o=

if *Totals(a, t) -> {
display (" Total time : "};
displayn {t};
displayn {} ;
nisplayline {{"Node", "Busy", "QLlen"]}:
Displayline {{ "—======s=m—cm—mecm=x "1}
NodeTotals {Nodel} ;
NodeTotals {Ncde2} ;
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NodeTotals {Node3} ;
displayn {};
DisplayLine {{ "Job", "Time"]};
Displayline {["-=--==--~-- "1}
JobTotals {Nil, 0} ;
a(t);
1
if *NodeTotals(a, node), *BusyTime(node, t),

*Qlength (node, n) -> {
DisplaylLine{ node, t, nl};
a (node) ;

}:

if *JobTotals(a, 1, n),
*StartTime (j, t1), *ExitTime(j, t2) ->
JobTotals(a, cons[[j, t2-t1], 1], n+t2-t1)

else if *JobTotals(a, 1, n) -> {
JobTotalsAux {1} ;
displayn {} ;
DisplayLine {[ "Total", n Jj};
a(JobTotals) ;
1

if *JokTotalsAux (a, Nil) ->
a(JobTotalsAux)

else if *JobTotalsAux(a, 1) -> {
Displayline {first[1]};
JobTotalsAux (a, rest(1l]);
}H

if *pisplayiine(a, Nil) -> ¢
displayn {} ;
a(Dispiayline);

195

P A
AR S
W R e

-9




else if *Displayline(a, 1) -> {
display {" "}
display {first{1]};
Displayline(a, rest[1]) ;
i

e

! the events -~ Start, Arrive, Depart

s

if *Start(a, t, x, y) -> {
CalcNextArr {t, Node1l};
CalcNextArr {t, Node2};
a(t):
1

if *Arrive(a, t, node, "NewJdob") -> {
NewArrival{t, node, NewJob{}};
a(t)
}

else if *Arrive(a, t, Out, job) -> {
ExitTime (job, t);
a(t)
}

else if *arrive(a, t, node, job) =-> {
Service{t, node, job};
a(t);
13

if *NewArrival(a, t, node, job) =-> {
StartTime(job, t);
CalcNextArr {t, node};

JobServiceT(job, GenServT {Rnd({}});
Service{t, node, job};
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a(t);
}i

if *Service(a, t, node, job), *InService(node, "--") =-> {
InService(node, job);
CalcDeparture{t, node, job}:;
a(t)
}

else if *Service{a, t, node, jok) -> {
Eng {node, job};
a(t);
1i

if *Depart(a, t, node, job),
Q {node, Nil), *InService(node, job) ->
InService(node, "--%),
a(t)

else if *Depart(a, t, node, job),
*Q (node, 1), *InService (node, job) =->
{
Q{node, rest[l]);
InService(node, "--1);
Service{t, node, first[1]};
a(t);
HH

if *CalcNextArr (a,t,ncde), JobCcunt(ni,n2,max), nild>=max ->
a(t)

else if *CalcNextArr (a,t,node), *JobCount (n1,n2,max) ->
{
JobCount (n1+1, n2, max) ;
Event (t+GenArrT {node,Rnd{}},Arrive, node, "NewJob") ; RS
a(t);
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if *CalcDeparture(a,t,node,job), JobServiceT(job,servT) ->
{
Event(t+servT,Depart,node, job);
Event (t+servT,Arrive,GenRoute{node,Rnd{}}, job) ;
a(t);
}:

if *Eng(a, node, job), *Q(node, 1) ->
Q(node, append{l, [Jjobl)),
a (node) ;

if *NewJob(a), *JobCount(nl, n2, max) ->
JobCount (n1, n2+1, max),
a("Job"+int_str[n2+1)) ;

1 parameter generators

! GenServT -- Generate a service time for a message

! GenArrT -- Generate an interarrival time for a job
GenKoute -- Generate the next node for a departure

if *GenServT(a, x), ServiceTinme(t, i1, i2),
(x >= i1) & (x <= i2) ->
a(t);

if *GenArrT (a, node, x), ArrlInterval (node, t, il, iZ2), iy
(x >= i1) & (x <= i2) -> -
a(t); 7
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if *GenRoute{a, node, x), PossilleRoutes(node, n2,
(x >= i1) & (x <= i2) =>
a(n2);

‘s

-

The random number generator ....

! list of random numbers in Worklist.

()

Seed makes the Worklist the portion of the

i1’

i2),

The Rnd procedure takes the first number from the

1 Rndlist with the ith member as the first member.

LT B T

the original list of random numbers.

[T

if *Seed(a, n), Rndlist(l), *Worklist(wl) ->
WorkList (ith([1, n])),
a(n);

if *Rpd(a), *WorkList (Nil), Rndlist(l) ->
Worklist(rest{1l]),
a(first{1)])

else if *Rnd(a), *WorkList(l) ->
WorkList (rest{l]),
a(first(1]);

>}e.
! Activate the rules...

activate {(SimRules}.
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! !
1 Towers of Hanoi !
1 1
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! define the relations
define{root, "Hanoi", newrel{}}.
define{root, “"HanoiAux", newrel {}}.

! The rules

define{root, "HanoiRules",
<<

if *Hanoi(a, n) =->
HanoiAux (a, n, "aA", ®wCw,6 "BW);

if *Hanoidux(a, 1, from, to, aux) -> {
display {"Move disk 1 from peg "} ;
display {fronm};
display{" to reg "};
displayn {to} ;
a("m)

3

else if *Hanoidux(a, n, from, tc, aux) =-> {
Hanoidux {n~-1, from, aux, to};
display{"Move disk "} ;
display {n} ;
display{" from peg "};
display{from};

display{" to feg "}; ?i&
displayn {to}; f:i
HanoiAux {n-1, aux, to, from}; }7;

a(mm; :.:

} S

> 3. =
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activate {Hanoikules}.

displayn {"Towers of Hanoi : Usage : Hanoi{n}"}.

1 e o ke ok o ook ks ok okl ok ok ok kol sk o ki ok bk o e ko ok sk ok ook sk sk kook ok ok
! The Sieve of Eratosthenes !
! !
!For a description of this algorithm, see !
!'"Eratosthenes revisited : Once More through the Sieve',!
'by Jim and Gary Gilbreath, Byte, Jan 83, p 283. !
! !

§ 3k 3k 3 3 sk o o ok ok ok kool ok 3 S Kok ok ok ook desde e e ok Sk g gk ek 3k 3k ko e ok ok ok ok ek ok ok ke ke ke ke )

define{root, "Sieve", newrelf{}}.
define{root, "SieveAux", newrel {}}.
define{root, "Iota", newrel({}}.
define{root, "PurgeMultiples", pewrel{}}.

! the rules

define{root, "SieveRules",
<L

if *Sieve(a, n) -> system("date"%,
SieveAux(a, 0, n-1, Iota{0, n-1, newrel{}});

if *Iota(a, nt1, n2, r), nt > n2 =>

a(r)

else if *Iota(a, n1, n2, r) =
r(n2),
Iota(a, nl, n2-1, r);

if *SieveAux(a, nl1, n2, r), n1 > n2 =>
a ("OK") ,

else if #*Sieveldux(a, nl1, n2, r), r(n1) -> { f;f

201 o
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display{"Prime : "};
disglayn{2*nl1 + 3};
PurgeMultiples{2*n1 + 3, 3*%*n1 + 3, n2, r};

SieveAux({a, n1+1, n2, r);

}

else if *SieveiAux(a, nl1, n2, r) ->

SieveAux (a, ni1+1, n2, r);

if *PurgeMultiples(a, prime, sur, n, r), sum > n ->

a(r)

else if *PurgeMultiples(a, prime, sum, n, r), *r(sum) =->

PurgeMultiples(a, prime, prime+sum, n, r)

else if *PurgeMultiples(a, prime, sum, n, r) ->

PurgeMultiples(a, prime, prime+sum, n, r);
>» }.
activate{SieveRules}.

displayn {"The sieve is loaded : Usage : Sieve{n}"}.

¥ 3k e e o o o ok e ok ok ok ok sl ek K e ko ok ek e ok e e ok ok s ko ok ok ook ok sk ok ok sk ok o o ok ook ok ok ok ok

=)

Rules and asscciated definitions for a universal !
interpreter/pretty printer for a small language of!
arithmetic expressions. !

s ()

!
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]
! definitions T

define{root, "Small", newrel{}}; ‘ T
define{root, "Wait", newrel(}}:
define{root, "Eval", newrel{}};

define{root, "vaiue", newrel{}}:

. .. .« s
l", L T e e
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define{root, ™Appl", newrel({}};

define{root, "0p", newrel{}};
define{root, "Left", newrel {}};
define{root, "Right", newrel {j};
define{root, "Con", newrel{}};
define{root, "Litval", newrel{}};
define{root, "Meaning", nevrel {}};

define{root, "Template”, newrel {}};:

! sche ob jects

define{root, "N1", newobj{}};
definef{root, "N2", newobj{}};
define{root, "N3", newobj{}};
define{root, "N4", newobj{}};
define{root, "N5", newobj{}}.

! functions

fn Yd[x] : x;

fn Sum[x,y] : x + y;

fn Product{x,y] : x * y;

fn upsSum{x,y] : "(" + X + " + "+ y + Mu,
fn upProd{x,y] : "("W + x + " x "+ y + mn,

! initialize the database

Appl (N1) ;
Cp("x", N1);
Left (N2, N1);
Right (N3, N1);

Appl (N2);
Oop("+", N2);
Left (N4, N2);
Right (N5, N2);

Con (N3) ;
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litval(6,N3);
Con (N4) ;
Litval(3,N4);
Con (N5) ;
Litval(5,N5);

Meaning (Sum, "+1);
Meaning (Product, "x");
Meaning(Id, "1lit");

Template (upSum, "+%);
Template (upProd, "x");
Template (int_str, "1it");

1 the Rules

define{root, "SmallRules",
<L
! Driver rule
if *Small(node)
->
Eval (Meaning, node),
Eval (Template, node),
Wait (node) ;

if *Value(Meaning, x, ncde),
*Value(Template, y, pode),
*Hait (node)

->
displayn(x),
displayn(y) ;
! Inheritance rules 1
9
! Leaf node : [i
if ]

*Eval (class, €), ;Sii
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Con (e) ,

Litval (v,e),

class(f, "1it")
->

Value(class, I[v], e);

! Appl node

if

*Eval (class, €),

Appl(e),

left(x,e), Right(y,e)
-
Eval (class, Xx),
Eval (class, Y);

! Synthesis rule
if
*Value (class, u,Xx),
*Value (class, v,Y),
Appl(e),
op(n,e),
left (x,e),
Right(y,e),
class(f, n)

->

Value(class, f{u,v], e€)
> }.
! activate the rules

activate{ SmallRules }.
displayn{"Small interpreter loaded : u Small(N1)"}.

205




.....................

LIST OF REFERENCES . -

1. Backus, J., "Can Programming_ Be Liberated from the -
von Neumann Style? A Functional Style and Its Algebra e
of Proyrams," CACM, Vol. 21, No. 8, pp. 613-64t,
August~1978.

2. McCarthy, J., "Recursive Functions of Symbolic
Expressions_ and Their Ccmputation by Machine, I
CACM, Vol. 3, No. 4, pp. 185-195, August 1960.

3. Turner, D. A., "Recursicn Equations as a Programming
Language," in _ Functiomnal EEQQEQNNLQ%. and its -
Applications: An~ ddvanced Course Darlington,  J.,
Henderson, P., and Tarner, D. X., eds.), ambridge,
pp. 1-28, 1198%.

0. and Nygaard, K., "SIMULA--An ALGOL-Based
ation Language," CACM, Vol. 9, No. 9, pPP.
78, Septembel 19667

5. Kay, A., "HMicroelectronics and the Personal Computer,”
Sc;englflc American, Vol. 237, No. 3, pp. 2 0-26&,
September 1977,

6. Post, E., "Formal Reductions of the General
Combinatorial_Decision Prcblem," Am Jnl Math, Vol. 65,
No. 2, pp. 197-215, April 1943. E

7. Newell, A. and Simon, H., Human Problem Solving,
Prentice-Hall, 1972.

8. Hewitt, C nor
n

cedural Embedding of Knouledqe in -
ELANNER, " 1JC 971.

Proc. 2nd IJCAI, London, pp. 167-182,

9. Lenat, De, "Automated Theory Formation in

Mathematics,™ Proc. Sth I1IJCAI, Cambridge, Mass. .
§33-842,71997.7=7=" == === ’ e + PP

10. Shortliffe, E. He o . ggm{ggggzggg
Consultations: MYCIN, American EISevier

11. Feigenbaum, E. A., Buchanan, B. G., and Lederbery, J.,
"On Generailty and Problen So;ving: A Case Stud; stng
the DENDRAL Program,".ln Machine Intelligernce ol.
(Meltzer, B. and Michie, T., eds.), ERmerican ﬁlsev1er,
pp- 165-190, 1971.

206

...............................................................
.................................




12.

13.

1“.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

...................................................................

BRI

Nilsson, N. J., and
Oork Representations in
rn-Directed 1Inference
gyes-RBEE, F., €ds.Yy,

Duda, _R._ O. Hart, P._ E.,

Sutherland, . "Semantic Net

Rule-Based Sys{ems " in Patt
’

~Nm =

Systemns (Waterman, D. _A.,
Kcademic Press, pp. 203-2<1

Kowalski,

R., Logic for Problen Solving,
North-Holland, 1979.

Naval Postgraduate School Report NPS 52-83-001, A View

of Object-0riented Programmin by B. J. Maclennan
Perruacy 1983 faiade by ’

MaclLennan, B, J., "Values and Objects in Prograaming
Languages," SIGELAN Notices, Vol. 17, No. 2, PpP-
70-79, DecembeT 1982,

Codd, E. F., "A Relaticnal Model of Data for large
Shared Data Banks," CACM, Vol. 13, No. 6, June 1970.

Dennis, J. B., and Van Horn E. C., "Pro?ramming
Semantics for Multlgrogzamme& Computations,™ CACH,
Vol. 9, No. 3, pp. 143-15%, March 1966.

Davis, R._ and King, J. "An Overview of Production
Systenms," in Machine ;gtgili ence, Vol. 8 éElcock, P.
W. and Michie, D., €d5.), Wiley, pp. 300-332, 1977.

Maclennan, B. J., Principles of Programming Languajes:
Design, Evaluatiog, and Lmplementation,  BOIE,
Kinehart, and Winston, 19%83.

Foderaro, J. K., The Franz L

C e Franz LISP Manual, Regents of the
Unlver51£y of Califormia, 1380.

Clockskin, W. F., and Mellish, C. S., Proqramming in
Prolog, Springer-Verlag, 1981.

Kernigan, B. W. and Ritchie, D. M., The C Programming
Lanquage, Prentice-Hall, 1978.

Lesk, 4. E., and Schmidt, E., lLex - A lexical Analyzer
Generator, Bell Laboratories, undated.

———— i e . e e . e

Jchnson, S. C., Yacc

. acc: Yet Another Compiler-Compiler,
Bell Laboratoriés, 137s.

MaclLennan, B. J., Functicnal Progqramming Meggogo_gg%:
Theory and Practice, to be pubIished Y
Addison-Wesley.

University of Califorrnia, The UNIX Programmer's
Manual, 4.2 Berkeley Software J)istribution, 1983,

207

...............




27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Barrett, W. A., and Couch J. D., Compiler
Construcg;gg. Theory and Pracélce, Science Research
issociates, 1979. =

Aho, A. V., Hopcroft, J. E., and Ullman, J. ., Data
Structures and Algorithas, Addison-Wesley, 1983
Baker, H. G. Jr., "Ortimizing the Allocation and
Garba Collection of Spaces," in Artificial

Intel 1 ence: An MIT Perspective, Vol. 2, NIT Press,
BP-o3TTII8E 1579, 7 Especkive, ’ ’

Bobrow, D. G., and Clark, D. W., "Comgact Encoding of
List S%ructures," ACM ggg;&g, Vol. + No. 2, " pp-
26€6-286, October 1979.

SRI International, C-Prclog User's Mapual, Version
1.5, F. Pereira, ed., undate
wWarren, D. H., Pereira, L. M. and Pereira, F.,

"Prolog--The Language and Its Impiementatlon Comgared
with LISP," SIGPLAN Notices, Vol. 12, No. 8, ppe.
109-115, Augusf 9777

Rich, E., Artificial Intelligence, McGraw-Hill, 1983.

Rosenschein, S. J., "The Production System:
Architecture and Abstraction 1n Pattern-Directed
Inference Systems (Waterman, 6 ~and_Hayes-FKoXh,
F., eds.), Kcademic Press, pp- §25- 538, 1978.

Davis, R.,_ "Meta-Rules: Reasoning About Control",
ArtlflC£gl In;g;;;ggggg, Vol. 15, No. 3, pp. 179-222,
DecemEer T98U.

Tick, E., and Warren, D. H. D., "Towards a Pipelined
Prolog Proc%ssor ; in IEEE I%%%EC lQ%QEBgLLQQ%l
mpoSium on ogic Programmif omputer 5ocie
¥§§§, PB. 2297100, %1988" 4. P Y

208




BIBLIOGHAPHY

Foster, J. M. "programming Language Design _For the
Represéntation of Knowledge ™ “ in "Machine 1Intelligence,
Vol. 8 (Elcock, E. W., an ﬁlchle, D., €ds.), WiI€y,  EpP-
: 209-222, '1976.
Goldber A., and Robson D. Smalltalk-80: TILhe language
l_ and Ifs fmpilmentation, Addisdn-ResTeyo-Tggy. oo ~-20ddad
Hayes-Roth, F., Waterman, D._ A. and Lenat, D. B.,
"principles of Pattern-Directed tnference Systems,"™ in
Pattern-Directed _Inference Systems (Waterman D. .
Hayes-Roth, F., edsS.}], AcademiC PreSs, pp. 577-661, 1978.
; McCarthg J., and others, LISP 1.5 Projrammer's Manual, MIT
: Press, 862.

McDermott, J., Newell, A., and Moore, J,, "The Efficiency of
Certain _ Production Sgstem fo lementations, "™ in
Pattern-Directed Inference Systems (Waterman and

D. A.
Hayes=Koth, F., eds.), Academic Press, pp. 155-1756, 19%s.

) McDermott, J. and Forgy, _C., "production System Conflict

" Resolution §trategles, in Pattern-Directed Inference
%xstggg (Waterman, D. _A., and HayeS-FRoth, F., ~eds.],
cadebic Press, pp. 177-199, 1978.

Riegyer, C., "Spontaneous Computation and Its Kole in AI
Modéling,"” 1in Pattern-Directed "Inference §¥§§gg§ (Waterman,
i ?§7g., and Hay€s=Roth, F., €ds.), Académic Press, pp. 69-97,
. Robinson, J A "A Machipe-Oriented Logic Based on the

Resolutign Piinciﬁle " Journal of the ACM, Vol. 12, No. 1,
pPp. 23-41, January 1865°

- Steele, G. L. "Data Representation in PDP-10 MacLISP,"
i Proc. of the MACSYMA User's Conference, NASA, pp. 203-214,

Warren, D._ H. D
They Needed?,”" in ntel
%éé Michie, b., and Bao, VY., &

-¢ "Higher-Order Extensions to Prolog: Are
ﬁgchlgg Intelligence, Vol. 10 (Ha{es, Jd.
8.y, Wiley, pp. 41-454,

Waterman, D. A. and Hayes-Foth, F., "An Overview of

) pattern-Directed  fnference sﬁstems," in_ Pattern-Directed
Inference Systems (Waterman . A., and Hayes-Koth, F.,
€ds.Y, Icad%mic Press, pp. 8-22, 1978°

g%g?ton, P. H., and Horn, B. K. P., LISP, Addison-Wesley,

209

.............................. e S T o T NS F P S
.......... S A IR O ST AN e el e - B T T G N T S

> .. . I I O T . B TR S I S R S T et
ORI SN SPNY_ PN PP PSP PR P PR WP L O AP W S ‘-'a‘ha .‘i‘i'-s.'x'a.'k- L TR N W L R RN PRI N




INITIAL DISTRIEBUTION LIST

No. Copies

1. Defense Tecanical Information Center 2
Cameron Station |
Alexandria, Virginia 22314

2. Lihrar£, Code 0142 2
Naval ostgradnate,School
Monterey, California 93943

3. Department Chairman, Code 52 2
Cepartment of Ccmputer Science
Naval Postgraduate School
Monterey, Califormia 93943

4. Computer Technolo Prograius 1
Codg 37 9y I

Naval Postgraduate School
Monterey, California 93943

5. Professor Daniel Davis . 1
Department of Computer Science, Code 52
Naval Postgraduate School
Monterey, Califcrnia 93943

6. Captain H. M. McArthur, USNC 2
135 Johnson Street .
Red Springs, North Carolimna 28377

7. Professor J. M. Wozencraft 1
Department of Electrical and
Computer Englneerlng,hCode 62
c

Naval Postgrfaduate, ool
Monterey, California 93943

8. Dr. Robert Grafton 1
Code 433

Office of Naval Research
800 N. Quincy . .
Arlington, Virginia 22217

9. Mr. Dennis Hall 1
2 Ivy Drive, ]
Orinda, California 94563

10. Dr. David W. Mizell 1
Office of Naval Fesearch ::1
1030 East Green Street R
Pasadena, California 91106

11. Professor Rudolf Bayer 1
Institut fur Informatik
Technische Universitat S
Postfach 202420
D-8000 Munchen 2 .
West Germany N

210 B




12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

........
........
.........

..............

Mr. Ron Laborde
INMCS .
Whitefriars
lewins Mead
BRISTOL
United Kingdom

Mr. anwood Suttcn
Code_824, Building 600
Naval Ocean Systelms Center
San Diego, California 92152

Mr. Jeffrey Dean L.

Advanced Information_and Decision Systeams
1 San Antonio Circle, Suite 286

Mountain View, California S4040

Mr. David Lefkovitz
310 Cznwyd Rd. .
Bala Cynwyd, Pennsylvania 15004

Dr. Robert Balzer . )

USC Information Sciences Institute
Suite 1001

4676 Admiralty Way_ . .

Marina del Rey, Califormnia 90291

Mr. Jack Fried

Manager, Software Technology
Grupman Aerospace Corporation
Bethpage, New York 11714

Mr. Ronald _E. JO{I . ) .
Manager, Administration and Technical Services
Honeywell, 1Inc.

Comsuter ciences Center

10701 Lyndale Avenue South

Bloomington, Minnesota 55402

LtCol. David Melchar, USMC, Code 03%9 .
United States _Marine Corfs Representative
Naval Postgraduate Schoo

Monterey, California 93943

Mr. A. Daln,Samgles ..
Computer Science Division--EECS
University of California, Berkeley
Berkeley, California 94750

Professor S._Ceri .
Iaboratorio di_cCalcolatori
Departimento_di Elettronica
Politecnico di Milano

20133 - Milano

Italy

211

.........................
........................

1‘ ’_'
N '
e

'
s

o .
Chr)
bt a

e
[
L
B

R

. e
.t

1
:"i




7-85

................




