
RD-Ri54 769 THE DESIGN AND IMPLEMENTATION OF AN OBJECT-ORIENTED V03
PRODUCTION-RULE INTERPRETER(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA H M MCARTHUR DEC 84

UNCLASSIFIED F/G 9/2 N

11111 . L328 2

'ill'-o
u n i~~ 111 1.8
11111~1- U

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STAN DARDS- I963-A

pT

NAVAL POSTGRADUATE SCHOOL
Monterey, California

CD

I-?

DTIC
"ELECTE

JUN 1 2 18

THESIS
THE DESIGN AND IMPLEMENTATION OF AN

OBJECT-ORIENTED, PRODUCTION-RULE INTERPRETER

=by

Heinz M. McArthur
OLU December 1984

Thesis Advisor: Bruce J. MacLennan

Approved for public release; distribution is unlimited

85- 15 005

.........

-v-- ...

SECURITY CLASSIFICATION OF THIS PAGE (Wen Dat Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
.TTLe Deid ate InoMaster's Thesis

The Design and Implementation of an December 1984
Object-Oriented, Production-Rule
Interpreter 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(#) S. CONTRACT OR GRANT NUMBER(s)

.Heinz M. McArthur
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School December 1984
Monterey, California 93943 13. NUMBER OF PAGES

211
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of thile report)

UNCLASSIFIED

ISa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identify by iock number)

object-oriented, relational, production-rule, rule-based,
pattern-directed, pattern-matching

20. ABSTRACT (Continue on reverse #id if necessary and Identify by block number)

In this thesis we describe the design and implementation of two
prototype interpreters for Omega, an object-oriented, production-
rule programming language. The first implementation is a throw-
away prototype written in LISP; the second implementation is a
more complete version written in C. The Omega language features
two major components: a set of production rules executed through
pattern-directed invocation, and a relational database of values
and objects. We develop a simple system of rule (Continued)

DD I AN" 1473 EDITION OF 1 NOV S IS OBSOLETE
S N 0102- LF- 014- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

. .• :.i - < •i- " •.
" • .

-. - ... * .. r r -r-~ .-- "-...- o-

SECURITY CLASSIFICATION OF THIS PAGE (When Dda Eutoe r)

ABSTRACT (Continued)

evaluation which relies on hashed indexing for rule selection -
and a list implementation of relations. The system's per-
formance is evaluated in comparison with LISP and Prolog
interpreters, We conclude with a discussion of our experience
in developing example applications, and recommend extensions
to the language based on this experience.

Accession For

NTIS GRA&I

DTIC TAB n
Uuanxounoed 0

Justif ication • "

Distribution/i
.

Availability Codes..
.i

Ava il and/or.
.. "Dist Special
.'-

9 7

S~~~~~ N. 0",-LF 4-60

2 SECU ITY CL ASSIIC ATIO N O F
r
TH IS P AG EZlM o- D t a IEt eed)

p

"" " "*mal; -J-,Jnnr.,.J Nb -I,-nnnnS
-, -- -:-. , .. - " " " '- ' " '' ' ' ' ''n > ' ' ' ' ' '0

Approved for public release; distribution is unlimited.

The Design and Implementaticn of an Object-Oriented,
Production-Rule Interpreter

bv

Heinz M. McArthur
Captain United States Marine Corps

B.S., United States Naval Academy, 1977

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IV COMPUTER SCIENCE

from the

NAVAl POSTGRADUATE SCHOOL
December 1984

Author: k

Approved by: _____Z

Dprtment of Computer Science

Daof Information and Poiicv c ce

3

ABSTRACT

In this thesis we describesthe design and implementation

of two prototype interpreters fcr Omega, an object-oriented,

production-rule programming language. The first implementa-

tion is a throw-away prototype written in LISP; the second

implementation is a more complete version written in C. The

Omega language features two major components: a set of

production rules executed through pattern-directed invoca-

tion, and a relational database of values and objects. We

develop a simple system of rule evaluation which relies on

hashed indexing for rule selection and a list implementation

of relations. The system's performance is evaluated in

comparison with LISP and Prolog interpreters. .W-e conclude,,

with a discussion of our; experience in developing example

applications, and recommend extensions to the language based
on this experience.

4. ..-

.

TABLE OF CCNTENTS

INTRODUCTION 12

A. BACKGROUND... 12

B. APPLICATIVE LANGUAGES 13

C. OBJECT-ORIENTED LANGUAGES 13

D. INFERENCE SYSTEMS AND LOGIC PROGRAMM4ING . . . 14

E. A COMBINED APPROACH 15

F. AN IMPLEMIENTATION STUDY 15
G. A SUBJECTIVE EVALUATION 16

II. AN INFORIAL DESCRIPTION OF THE LANGUAGE 17

A. GENERAL 17

B. OBJECTS AND VALUES 17

C. A RELATIONAL MODEL 18

D. PATTERN-DIRECTED PRODUCTION RULES 19

E. THE APPLICATIVE COMPCNENT 23

F. PROCEDURES 24

G. SEQUENTIAL CONTROL..... 26

H. CONTROLLING THE NAME SPACE27

I. A PROGRAMMING SYSTEM 30

iIn DESIGN ISSUES AND GOALS 2

A. THE ARCHITECTURE OF RULE-BASED SYSTEMS 32

B. RULE SELECTION AND CCNFLICT 32

C. PATTERN-HiATCHING 33. . -.-.3

D. MORE CONVENTIONAL ISSUES 35

E. DESIGN GOALS 35

1. Feature Implementation35

2. Relation Representations 36
3. Efficiency36 , .3. Ei..................

5

4. Evaluation.................36

IV. A LISP PROTOTYPE 37

A. WHY LISP'?.................. 37

B. ORGANIZATION..................38

C. THE LEXICAL SCANNER AND PARSER .. -. 38

1. The Lexical Scanner............38

2.* The Parser............... . 39

D. RULE EVALUATION................41

1. Instruction Evaluation...........42

2. The Applicative Component 42

3. Objects................ . 43

4. Relations.................44

5. Binding................ . 46

E . CONTROL48

F. ERROR CONDITIONS...... 49

G. A BOOT SYSTEM.................50

H. LESSONS LEARNED................51

V. A FOLLOW-ON IMPLEIENTATICN IN C...........54

A.* WHY C? 54

B . CHANGES TO SYNTAX AND SEMANTICS 55

1. An Antecedent Keyword...........55

2. Rule Denotations55

3. Rule Separators 56

4. Parameter Lists...............56

5. Conditional Expressions and Function

Definitions................57

6. An Implicit Response for Command Rules .58

7. Head/Tail Pattern Specifications.......59

C. DATA STRUCTURES................59

1. A Uniform, Tagged List Structure.......59

2. Objects 62

3. Hash Tables 64

6

4. Relations.................67

5. Directories............... 67

D. ORGANIZATION: THE TOP LEVEL.............68

E. THE READER...................69

1 . A LEX Scanner...............70

2. A YACC Parser...............70

3. Console and File Izput........ . 73

F . A RECURSIVE PRETTY PEINTER............75

G. RULE EVALUATION................76

H. BINJDING.......................77

1 . Binding At Activation...........77

2. A Binding Stack..............78

I. BACKTRACKING 81

J. RELATION MANAGEMENT ROUTINES..........82

K. ACTIVE RULE PROCESSING 83

1 . Triggers..................83

2. A Rule Queue 83

3. Advantages and Disadvantages of

Triggering.................84

4. Two-Level Triggering............85

L. TH2 APPLICATIVE COMPCNENT...........87

Mi. PROCEDURES.....................89

N. BUILT-IN FUNCTIONS AND PROCEDURES........91

0. CANCEL OPERATIONS...............92

P . SEQUENTIAL BLOCKS................93

1. A Single-Pass, Multi-Scope Symbol

Table 94

2. Evaluation of Multi-Scope Bindings . . . 95

Q.SYSTEM INITIALIZATION.............97

VI. STORAGE MIANAGEMlENT 98

A. THE STORAGE PROBLEM...............98

B. STORAGE ALLOCATION AND THE UNIX VIRTUAL

ADDRESS SPACE.................99

7

C. IGNORING STORAGE MANAGEMENT 100

D. OMEGA-SPECIFIC STORAGE OPTIMIIZATION ... 102

E. REFERENCE COUNTING 104

F . GARBAGE COLLECTION108

G. REDUCING CELL STORAG.................109

VII. PERFORMANCE EVALUATION 111

A. METHODOLOGY..................111

1 . Execution Profiling............111

2. Benchmarking.................113

3. Omega Statistics...............114

B. TEST RESULTS..................114

1. A Pattern-Matching Test...........115

2. Factorial Functicns.............115

3. A Prime Number Sieve............116

4.~ Quicksort.................118

5. A Simulation Program.............120

C. IMPACT OF BEFERENCE COUNTING...........122

D. DISCUSSION OF RESULTS.............123

1. Performance Bottlenecks...........123

2. Relation Statistics............127

VIII. OBSERVATICNS, RECOMMENDATIONS, AND CONCLUSIONS 128

A. OBSERVATIONS ON OMEGA.............128

1 . Programming Experience 128

2. Omega and Prolog..............128

3. The Production Rule as a Programming

Paradigm..................131

B. RECOMMENDED AREAS FOR ADDITIONAL STUDY . .. 134

1. Extensions to the Language 134

2. Extensions to the Present Interpreter -

Design...................136

3. Parallelism in Oliega............139

C. CONCLUSIONS 141

APPENDIX A: LEX AND YACC SPECITICATIONS FOR OM1EGA .. 143

APPENDIX B: BUILT-IN FUNCTIONS AND PROCEDURES 161

APPENDIX C: UTILITY FUNCTIONS AND RULES...........164

APPENDIX D: COM~PARATIVE APPLICATIONS: OM~EGA, LISP,

AND PROCG......................171

APPENDIX E: OMEGA APPLICATION EXAMIPLES............186

LIST OF REFERENCES........................206

BIBLIOGRAPHY...........................209

INITIAl DISTRIBUTION IIST...................0

-. -~--~ . .- 1- --.- .

LIST OF TABLES

I. Cell Field Values 62

Ii. Execution Times: Pattern-matching 116

III. Execution Profile Summary: Pattern-matching . . 116

IV. Data Type Frequencies: Pattern-matching 117

V. Execution Times: Factorial 117

VI. Execution Profile Summary: Factorial 118

VII. Data Type Frequencies: Factorial 118

VIII. Omega Relation Characteristics: Factorial . . . 119

IX. Execution Times: The Sieve 119

X. Execution Profile Summary: The Sieve 120

XI. Data Type Frequencies: The Sieve 120

XII. Omega Relation Characteristics: The Sieve . . . 121

XIII. Execution Times: Quicksort 121

XIV. Execution Profile Summary: Quicksort 122

XV. Data Type Frequencies: Quicksort 122

XVI. Omega Relation Characteristics: Quicksort . . . 123

XVII. Execution Profile Summary: Simulation 123

XVIII. Data Type Frequencies: Simulation ... 124

XIX. Omega Relation Characteristics: Simulation . . . 124

XX. Reference Counting and Execution Times 125

XXI. Profile of Quicksort with Reference Counting . . 125

10

-ll:1l
....................

. .-.. .

LIST OF FIGURES

5.1 Cell Structure 61

5.2 Tree Representation for a Simple Expression 63

5.3 Hash Table Structure................66

5.4j List Representation for Relations...........68

5.5 Left-Recursive list Representation 7

5.6 Transformed List Structure.............75

5.7 The Binding Stack..................79

5.8 Mul1ti-Scope Symbol Table..............95

6.1 UNIX MemoryMap...................101

7.1 Code generation for TAG function..........112

To illustrate this, consider the assertion of a tuple in

the Request relation. Such a tuple may be <a, r>, where the

object a is a relation representing the agent, and the

object r indicates the resource desired. This assertion was

made to trigger the following rule:

if *Request(a, r), *Avail(r, id) ->

a (id).

In this example, the relation a is used as a mailbox to

receive a response from the server rule. The assertion of

the tuple <a, r> is similar to the creation of a conven-

tional activation record, and the mailbox a is similar to

the activation record of the caller.

The assertion a(id) places the desired response--a

resource identifier--in the relation belonging to the

requesting agent. When this response appears in the mailbox

relation, the requesting agent may extract the result and

continue its computations. The mailbox relation serves as a

synclhronization and value-returning mechanism.

In an event-driven system, such a calling seguence would

be a common usage pattern. This is recognized by the inclu-

sion of a calling mechanism within the language. The above

sequence could be initiated by a synchronous call. Consider

the following rule:

if *InitProc(p) , *Require (j, r) , -Allocate(p, x) ->

Allocate(p, Request(r).

The Request expression in this example is a syrichrunous

procedure call. Its effect is the automation of the mailhox

handling of the previcus rule. The call Reguest~r] %ill be

translated by the system into an assertion Request (a, r).

The object a is a system-supplied relation that will receive

a response from rules firing as a result of the assertion.

When a tuple is added to this relation, the tuplE is

25

2V...

Named functions may also bc used within expressions in

the same way as the infix operators. This is shown in the

following rule:

if *AvailTapeDrives(L1) , *apeQueue (L2)

(11 -= Nil) & (12 -= Nil) ->

AvailTapeDrives (Rest'll]),

TapeQueue (Rest[12 J),
Allocate (First< L], First[12]).

In this example, availacble tape drives and jobs queued for

tape drives are represented as lists. The functions

First[x] and Rest[x] return the head and tail pointers of

their argument.

Functions are declared as fcllows:

fn fact~x] if x <= 1 -> 1

else x * fact-x-1].

This example illustrates that function bodies are similar to

rules, and are in fact conditional expressions. The antece-

dent of a conditional expressicn is a Boolean expression,

but not an inquiry or absence test. The consequent of a

conditional expression is another expression, not an asser-

tion or deletion. Thus, conditional expressions (and func-

tion bodies derived from them) are free of side effects. As

the factorial example illustrates, functions may be declared

recursively. Iterative constructs are not defined.

F. PROCEDURES

A typical invocation sequence for a rule begins when a

tuple is added to a relation. The tuple is associated with

an agent--the object or process that made the assertion--and

the agent often expects a group of rules to execute as a

result of this assertion. Finally, the agent may expect a

value or object to be returned.

24

The cancel operation returns true if the indicated pattern

is matched against a tuple in a relation. If the antecedent

of the rule succeeds (all conditions are true), then the

tuples matched during cancel operations are deleted from

their relations.

Rules may be coupled through alternation. In the

preceding rule, an alternate action may be desired if the

requested resource is not available. This is expressed as:

if *Request(resource, job), *Avail(resource) ->

Allocate (resource, job)

else if *Request(resource, job) ->

Blocked (resource, job).

The antecedent of the alternate rule will be evaluated if

the primary rule fails. In this example, the effect will be

to place the job in a blocked state.

E. THE APPLICATIVE COMPONENT

Function application is used to support the state tran-

sitions described above. In those cases where a tuple must

be specified, an applicative expression may be used to

compute the value of a member. Consider the following rule:

if *TapeDrives(j, n), n + 1 <= 10 ->

TapeDrives(j, 2 * n)

This rule uses infix arithmetic operators to compute values

in a constraint and during an assertion. Such operators are

permissible in constraint expressions and in the consequent

portions of the rule, with the restriction that variables

participating in such expressions must be bound. In the

preceding example, the variable n was bound in the

TapeDrives inquiry.

23

.. '-.

........

.

If the contents of the Request and Avail relations match the

inquiry patterns, the rule will "fire", and add the tuple

<resource, job> to the Allocate relation.

In the previous example, the free variables resource and

job were bound in the antecedent portion of the rule. These

bindings were maintained through the consequent portion of

the rule and determined the instantiation of objects added

to the Allocate relation. Free variables, therefore, must

be bound through pattern-matching before their use in the

consequent of a rule.

The allocation example raises some problems. The rule

successfully allocates a resource to a job by the assertion

to the Allocate relation. This assertion, however, does not

alter the conditions Request and Avail that initiated the

rule's firing. Thus, this rule may conceptually "fire

forever" unless some action is taken to disable one or more

of its conditions.

The deletion is used for this purpose. The allocation

rule may be written as:

if Request(resource, job), Avail(resource) ->

-Request(resource, jot),

-Avail (resource),

Allocate (resource, jot).

The deletions -Request(resource, job) and -'Avail(resource)

remove the indicated tuples from their relations.

The preceding actions--determine a pattern-match of a

tuple within a relation, then remove the tuple--is a typical

sequence. An abbreviated syntax for this sequence is the

cancel operation. Using cancel operations, the preceding

rule may be written:

if *Reeuest(resource, job) , *Avail(resource) ->

Allocate (resource, jot).

22

. . .

The absence of a tuple from a relation might or might

not be interpreted as the negation of its presence. If one

uses a "closed world" assumption, then absence is the same

as negation. The logical interpretation of an absence test

is dependent on the programmer's intent and assumptions.

Free variables are not bound in an absence test.

Consider again the rule:

if -TapeDrives(j, 4) ->

For the antecedent to be true, there is no tuple <j, 4> in

the TapeDrives relation. Therefore, the free variable j

will remain unbound.

The inquiry and absence conditions form the basis for

the evaluation of the current state of the system. An addi-

tional mechanism is provided for the evaluation of state

information. This mechanism is termed a constraint, and can

be any Boolean expression.

Consider the case where one is interested in determining

if a job requires more than 5 tape drives. This could be

expressed as :

if TapeDrives(j, n), n > 5->

where the expression n > 5 is a constraint. The join

example shown previously could te rewritten as

if TapeDrives(jl, n), Priority(j2, p), j1=j2 ->

The consequent portions of rules alter the state of the

system. The actions of the consequent typically update

relations in some way. The fundamental actions are asser-

tions and deletions.

An assertion adds a tuple to a relation. Consider the

rule:

if Request (resource, job) , Avail(resource) ->

Allocate(resource, job).

21

match the inquiry against the tuples of the relation. Once

a logical variable has become bcund through an inquiry, this

binding will remain in effect for that particular rule.

The following, more complex, inquiry relies on variable

binding:

if TapeDrives(j, n), Priority(j, p) ->

The comma is considered as a lcgical "and" between the two

inquiries. Thus, the antecedent of this rule will be evalu-

ated as true if tuples exist in the TapeDrives and Priority

relations such that the first member of each tuple is the

same. This corresponds to the equality join of relational

database systems.

It is important to note that inquiries are existentially

quantified. An inquiry is evaluated as "if there exists a

tuple <xl, ... , xn> in relation R, return true."
It is also important to note that the logical variable

binding done during pattern-matching is in effect only for

the duration of the rule. The scope of a logical variable,

then, is the rule where the variable occurs.

Other variables may have more permanent bindings, and

behave like constants. There is no syntactic distinction

between free and bound variables. To avoid confusion in

examples, free logical variables will always begin with a

lower case letter, bound variahles and constants will begin

in upper case.

Another type of antecedent condition is a test for the

absence of a tuple. This condition has the form

if -,TapeDrives(j, 4) -> .

which is read "if it is not the case that a tuple <j, 4>

exists in the TapeDrives relaticn." If the tuple pattern is

not a member of the relation, the expression is evaluated as

true.

20

u u ,ii u~i u~i I. -5 M lE . * I PS -- -

Relations themselves are cbjects, although they are

distinguished by having an intrinsic value: the collection

of tuples instantiating the relation. As objects, relations

may be members of tuples and participate in other relations.

D. PATTERN-DIRECTED FRODUCTION RULES

The relations organize the primitives of the system.

Thus, at a given time, the state of the system is character-

ized ty its relations and the entities bound through these

relations. To complete the model, a mechanism must be used

to describe state transitions. Pattern-directed production

rules are used for this purpose.

A rule is a pair <a, c>, where a is termed an antecedent

and c a consequent. An antecedent consists of Boolean

conditions that pertain to the state of the system. The

conseguent consists of actions that will be executed if the

conditions of the antecedent are true. Rules are written:

if <antecedent> -> <consequent>.

A condition may be one of several constructs. The most

fundamental is the inquiry. An inquiry is a pattern-matched

test described by the rule that is performed against the

relations of the system. As an example, consider the job

queue again. A rule may be desired that checks for jobs

requesting 4 tape drives. This could be expressed as:

if TapeDrives(j, 4) ->

where the consequent of the abcve rule is not shown. The

expression TapeDrives(j, 4) is an inquiry, and may be read

as "if there is a tuple <entity, 4> in the TapeDrives rela-

tion, then return true and bind the entity to the variable

J." The symbol j in this example is an unbound logical

variable, which is considered a wild card in an attempt to

19

"'' .hi l "i '-i . 2 >l

i I * -_ .. - l _

" Objects are subject to change over time.

" Objects may be created and destroyed.

The distinction between objects and values is discussed in

[Ref. 15]. Subsequent examples should help to illustrate

the role of objects in Omega.

C. A RELATIONAL MODEL

The components of the language are organized according

to a relational model. The mcdel is consistent with rela-

tional terminology introduced by Codd [Ref. 16].

Consider an object that represents a queued process

waiting for an operating system resource. For reference

purposes, the object must he named, so call it J.

Associated with the object are a priority, P, and a tape

drive allocation requirement, T. The priority and resource

requirements are values that aust be associated with the

job. These associations may be described by a Priority

relation and a TapeDrive relation. This could be expressed

as Priority(J, P), TapeDrives(J, T). In these expressions,

the pairs <J, P> and <, T> are called tuples.

A tuple is an ordered collection of objects and values.

Note that, unlike relational database models, named attri-

butes are not used to describe a tuple. Instead, the

members of a tuple are described by relative position (order

is important), by value, and by pattern-matching.

A relation is a set of tuples. Relations are described
by name, and through pattern-matching. As a set, the tuples

of a relation are (1) unique and (2) unordered.
Objects serve as representative place holders in rela-

tions. The state of an object is determined by the rela-

tions in which it participates, and by the attributes

associated with the object in these relations.

18

. T"

II. AN INFORaAL DESCRIP71ON OF THE LANGUAGE

A. GE.E.AL

This chapter provides a descriptive summary of the

features of the Omega language. The descriptions are mainly

by example, and serve to provide a feel for the language

constructs, not detail.
The material in this chapter is based on the work of

MacLennan. The philosophy, informal and formal semantics,

and original syntax of the language are introduced in

[Ref. 14). Some syntactic and semantic differences exist

between the original description of the language given in

[Ref. 14) and the prototype implementations. Later chapters

will deal with the rationale for these deviations. The

implementation syntax is used in this chapter to maintain

consistency with with the remainder of this thesis.A

description of the implemeatation syntax is contained in

Appendix A.

B. OBJECTS AND VALUES

The entities of the system are divided into values and

objects. The values of the system include numerics (inte-

gers and reals), character strings, and lists. Lists are

denoted ty square brackets, such as:

Objects are referenced by name, and are subject to the

following properties:

" objects are uniijue.

" Otjects may be shared.

17

. •

. . ."

interpreter organization, data representation, and control

strategies used in the implementation, and how these charac-

teristics impact on the performance of the system.

This work is a prototyping effort. Because of the

experimental nature of the language, various extensions and

modifications were required on preliminary designs. To

support this experimentation, two prototypes for the inter-

preter were written. The first was a throw-away prototype

written in Franz LISP. The second was a more complete,

incremental development written in C.

G. A SUBJECTIVE EVALUATION

As a secondary emphasis, some attention is given in this

work to the evaluation of Cmega as a general-purpose

programming language. While these observations are largely

subjective, they provide some insight into the implementa-

tion problems associated with these early prototypes.

Having prototype interpreters up and running has also
provided an opportunity for experimentation with Omega

programming that may Frove useful in the early evaluation of

features in the language.

16

~~~~~~~..................



and expert systems such as MYCIN [Ref. 10], DENDRAL

[Ref. 11), and PROSPECTOR [Ref. 12].

Prolog is a general-purpose language which uses rule-

based theorem proving as the computational metaphor

[Ref. 13]. Distinct from the applicative languages, Prolog

uses pattern-matching instead of the procedure call to

determine the applicability cf rules and the resulting

computations.

E. A COMBINED APPROACH

The preceding discussion highlights the following

features offered by these languages:

* Function application provides a powerful, regular mecha-

nism for stateless computation.

* An object-oriented approach provides an effective crgan-

ization for data and procedures which is useful in

representing temporal relationships and real-world

objects.

* Rule-based pattern-matching systems have provided an

alternative way for expressing complex knowledge

representation.

The Omega language [Ref. 14] represents an approach that

combines these features into a single language framework.

F. AN IMPLEMENTATION STUDY

The emphasis of this thesis is on the implementation of

an interpreter for the Omega language. As an implementation

study, the focus is on language architecture--those charac-

teristics of the language that were conducive or that

presented obstacles to efficient implementation. Of partic-

ular interest in this effort are the characteristics of

15 : .

- - - - .-..



by Smalltalk [Ref. 5]. Smalltalk partitions the program-

mer's model into collections of objects called classes.

Objects have a state associated with them, and the methods

(procedural information) of the class determine an object's

computational behavior. Both data and procedural informa-

tion are organized around the object.

The object-oriented approach allows certain important

capabilities. Foremost, the concept of state is fully

ingrained in the language. The simulation approach facili-

tates the modeling cf real-world activities, with concur-

rency readily handled through the mechanism of communicating

objects.

Associated with the class mechanism in Smalltalk is the

concept of inheritance. When a new object is created, it

obtains certain default state and behavioral characteristics

from its class. In the functicnal languages, combinatorial

power is obtained through subordinate function application

and the use of functionals. In the object-oriented

approach, combinatorial power is obtained through composi-

tion of new objects from existing ones, and through

inheritance.

D. INFERENCE SYSTEMS AND LOGIC PROGRAMMING

Inference systems have developed through artificial

intelligence efforts at cognitive modeling, knowledge repre-

sentation, and theorem proving. Based on the early produc-

tion system of Post [Ref. 6], these systems use rules,

similar to logical implication, that provide the computa-

tional framework for a program. Rule-based organization has

been described by Newell [Ref. 7], and an early language

based on the concept was Hewitt's PLANNER [Ref. 8].

Numerous rule-based systems have since been developed, with

notable examples being theorem Irovers such as AN [Ref. 9],

14



languages, object-oriented languages, and rule-Lased infer-

ence languages.

B. APPLICATIVE LANGUAGES

Applicative languages use the application of a function

to its arguments as the focus for computation. These

languages are typified by pure LISP (Ref. 2], and by later

functional languages such as FP (Ref. 1] and KEC (Ref. 3].

The strengths of the applicative languages are exempli-

fied by arithmetic expressions. These strengths include

clear interfaces between computational units, relative inde-

pendence of evaluation order, and a semantic regularity thdt

lends itself to simple verification and proof techniques.

Functionals, functions which receive functions as argu-

ments and return functions as results, provide a mechanism

for the combination of simple, primitive computational units

into collections of arbitrary power and complexity.

The applicative languages achieve their predictability

largely from the prohibition of side-effects during computa-

tion. This characteristic limits the problem domains to

which applicative sclutions can be readily applied. Like

the arithmetic expression, applicative languages cannot

readily describe the notion of state. There is no explicit

motion of time in an arithmetic expression, and applicative

languages are correspondingly meak in maintaining temporal

relationships. This characteristic limits the utility of

applicative languages in inherently state-oriented applica-

tions. Such applications include operating system activi-

ties, data base management, and discrete simulation.

C. OBJECT-ORIENTED LANGUAGES

The object-oriented languages have developed from simu-

lation languages such as Simula [Ref. 4], and are typified

13

-. " -'., .- .-.' - -. . .- . .' . o,:' -i .--. . . ," : . - -.. " -'- '- -. " -. -.. . '-. i ' : .-.. . . .-.. ..- -,- .,.. . . . . . . . . . . ... .,



I. INTRODUCTION

A. BACKGROUND

Two major issues in prograsming language design can be

characterized as abstraction and architecture. In this

context, abstraction refers to the ability of the language

to capture the ideas of the programmer. It is a measure of

expressiveness or semantic power. Architecture refers to

those language characteristics, both organizational and

syntactic, that affect practical usage. This includes ease

of use for the programmer as well as the potential for effi-

cient implementation. Thus an important goal for a program-

ming language is to combine a Fowerful abstraction ability

with an effective language architecture.

Conventional languages have suffered in both of these

areas. These languages focus on the use of assignment

statements for computation, amd execution consists of the

sequential flow of program control between assignment state-

ments. John Backus described these "von Neumann" languages

as excessively complex and weak, whose word-at-a-time

conceptual basis has created an "intellectual bottleneck"

[Ref. 1: p. 615]. These languages are oriented more towards

the word-at-a-time stored program computer than towards the

" problem domains they attempt tc satisfy. Thus they have

poor abstraction ability. While simple, elegant imperative

languages such as Pascal have enjoyed popularity, the need

-- .for increased power has resulted in complex languages such

as Ada. Such languages have attained semantic power at the

* expense of architectural effectiveness.

Several alternatives to the von Neumann languages have

been developed. Of interest in this thesis are applicative

12

Jl. * .



returned as the result of the Erocedure call in the expres-

sion where the call was invoked.

The procedure call as shown in the preceding exampie is

similar to the function invocation described earlier. Both

- invocations may be used in expressions, returning results

that are incorporated in expressions. The underlying mecha-

nisms of the function and procedure call are different,

however. In particular, the 1rocedure call relies on the

use of rules to describe its actions, and therefore relies

on side effects.

The server rule in this example may be triggered by

either an assertion or procedure call involving the Request

relation. There is nothing abcut the form of the rule that

indicates its use in procedure calls. By convention,

however, such rules must use the leftmost member of a tuple

*, in the enabling relation as the receiver of the response.

The value returned by a procedure call does not have to

be used in an expression. in the following example:

if *Function(job, c), -CodeTable(c, def) ->

Display["Illegal function code")

an assertion to the Display relation is assumed to eventu-

ally cause the message to be displayed at the user's

terminal. The value returned by the calling mechanism is

used for synchronization only, and is otherwise ignored.

G. SEQUENTIAL CONTRCI

In the preceding examples, no particular order was

assumed for the evaluation of conditions in the antecedent,

and no order is assumed for the execution of the actions in

the consequent. These actions may be considered to be

asynchronous and concurrent. This situation becomes ever

ir ore unstructured when a collection of rules is being

26

. .'.

.



considered for evaluation. Once again, no evaluation order

is assumed.

The seguential block provides a mechanism for the

programmer to specify an explicit order for rule evaluation.

This is shown in the following:

if *Request(a, r), -Avail(r) ->

f -> Display("Waitin for resource...");

if *Queue(r, 1) ->

Queue(r, cons[a, I]);

The effect of this rule is to display a message and to add

the requesting agent to a queue for the desired resource.

The sequential block guarantees that the rules within the

f 's will be evaluated in the order shown.

As the example indicates, the variables bound in the

antecedent retain their bindings in the sequential block.

The blocks may be nested, with the bindings of free vari-

ables extending to inner blocks.

In this example, the antecedent is omitted in the

Display rule. This is equivalent to a true antecedent.

When writing such rules, the notation may be shortened to:

Display (x)

which is ecuivalent to:

if TRUE -> Display(xJ.

H. CONTROLLING THE NAME SPACE

The previous descriptions give a simple mechanism for

the binding of logical variables. The rules may be summa-

rized as:

27

•' ;-,,,,,.. :-~ ,n " - " ' - ii,,a,,i~ li i~ i " " " ... .. . .-. . .' ." .- , . ..< ., , .., ' . . . ."-



* The scope of variables bound in an antecedent extends to

the consequent for a given rule.

* If sequential blocks are nested, bindings made in outer

blocks extend to inner blocks.

The previous examples have suggested a more global binding

mechanism, as indicated in the use of relation names. 7he

Request relation name is globally bound in this manner. The

mechanism through which global names are managed is the

directory.

A directory is a named collection of pairs, <name, defi-

nition>, where the name entry is a character string and the

definition is an object or value representation associated

with the name. The directory may be thought of as a named

symbol table.

MacLennan [Ref. 14: pp. 34-35] describes a directory

structure with two partitions: public and private. Names

defined in the public partition are globally visible to

agents other than the owner. Names defined in the private

partition are visible only to the owner.

A simple elaboration of this mechanism provides a flex-

ible partitioning scheme. The public and private partitions

are associated with named directories. These directories

* are organized into named classes, not necessarily disjcint.

In addition, there is a noticn of a "current directory"

similar to that in UNIX.

The context of a name, then, is determined by the

current directory in which the name is defined. When evalu-

ating the binding of a name, the current directory public

and private partitions are searched for an entry. If this

local search fails, the public directories associated with

the classes of the current directory are searched. The

class structure defines a search path for variable lookup.

28



To illustrate these points, consider the definition of

the Request relation of previcus examples. Suppose the

current directory is "ServerDatabase," a member of the class
"Servers." The relation is created and named by:

Define[Private, "Request", Newrel (f.

The Define procedure call makes a <name, definition> entry

into a directory partition. The Newrelf} procedure call is

assumed to return a unique system identifier that represents

a relation. The definition shcwn, therefore, would create

the relation and bind a name to that relation in the private

partition of the current directcry.

Such a server relation would be of more general utility

than a private definition allows. Before the relation is

opened to broader access, an access control mechanism is

necessary.

This control is achieved by associating capabilities

with each relation. When a relation is created with the

Newrelf) procedure call, full capabilities are associated

with the relation identifier. These capabilities include

read, add, and delete. A public definition of the Reguest

relation may be accomplished as follows:

Define[Public, "Request", AddOnly(Request)). - -

The AddOnly procedure call references the system identifier,

with full capabilities, that has been bound to the private

name Request. A copy of this identifier is made with

reduced capabilities but still referring to the same rela-

tion. This new identifier is then installed in the public

directory for general access. This technique of capability

addressing is based on the wcrk of Dennis and Van Horn

[Ref. 17].
Objects are created in a similar manner:

Define(Private, "Jobi", :ehobj [)}.

29

.o .



The Newobj(] procedure returns a unique identifier to be

associated with an object. Objects created in this manner

have no intrinsic value associated with them, and there is

no access control associated with their identifiers.

I. A PROGRAMMING SYSTEM

The language elements described may be adapted to a

general programming system. To simplify interaction with

the system, [Ref. 14: p. 39] suggests the use of rules as a

command language.

While syntactically similar to production rules, these

command rules are subject to a slightly different method of

interpretation. If a user wishes to query the contents of

the Allocate relation, this may be accomplished by:

if Allocate (x) -> Display [x).

If analyzed as a production rule, however, this guery would

be a "fire forever" type. Rules such as this require a

different method of evaluation: test, fire, and forget. .

The command rules represent the second class of rules in

the system. The first class of rules is that of the produc-

tion rules previously described. These rules are termed

active rules. Active rules comprise a body of state tran-

sition information that continucusly monitors the relations

referenced in their antecedents. Command rules are initi-

ated by an event in the system, and only evaluated once.

The initiating event in previous example was the entry of a

command rule at the terminal.

The active rules are distinct from command rules, yet

the command rules provide the interactive interface between

the user and the system. The two categories are bridged

with the rule denotation.

30

.............................. - iBimiI I



- - . . . . . • ., . -• .. . s. , - . . " -. . , •

A rule denotation is a syntactic representation of rules

as data. A potential active rule may be described:

Define (Private, "ReguestRules",

if *Reguest(a, r), *Avail(r) ->

Allocdte(a, r), a(r)

I.

The denotation is expressed between << >>Is, which is inter-

preted as "parse but don't evaluate." This definition binds

the parse tree associated with the server rule to the name

"RequestRules" in the private directory partition.

A rule denotation bound in this manner is a data struc-

ture subject to manipulation by the system. To makE the

transition from this passive status to active status, the

rule denotation is activated:

Activate (ServerRules].

At this point, the rules expressed in the denotation are

moved to active status and enter a continuous test-fire

cycle.

This process is similar in many respects to program

development in a more conventional system. The command

entry of the rule corresponds to the creation of a progran.

source file, and activation corresponds to compilation,

linking, and loading.

31

* * *...* ..... :|



III. DESIGN ISSUES AND GOALS

A. THE ARCHITECTURE OF RULE-BASED SYSTEMS

Omega is a production-rule system. Davis [Ref. 18: p.

301] describes these systems in terms of three components:

" A rule base. Omega's set of active rules.

" A database. The set of relations and their contents.

" An interpreter. The mechanism for rule selection and

execution.

B. RULE SELECTION AND CONFLICT

The control cycle of the interpreter processes rules in

a continual recognize/act cycle. The recognition phase

consists of selection and conflict resolution [Ref. 18: p.

325 ].

Omega uses a forward-chaining method for rule selection.

This method, described in the examples of the previous

chapter, compares the antecedent of the rule to the data-

base. A rule is selected when an appropriate match is

found.

In general terms, production systems produce a conflict

set for each recognize/act cycle [Ref. 18: p. 325]. The

conflict set consists of all active rules whose antecedents

are true given the current state of the database. In the

Omega system, the resolution of the conflict set is simple.

For a given cycle, each rule within the conflict set will be

tested and, if its conditions are true, will fire. The

order in which the rules in the conflict set are tested is

not specified.

32



The rules of Omega are indivisible once they are

selected [Ref. 14: pp. 19-20]. To illustrate this point,

suppose the following rules were active:

if *Request (a) -> Allocate (a, Red).

if *Request(a) -> Allocate(a, Blue).

Under this selection strategy, only one of these rules will

fire (assuming there is only cne tuple in Request). The

indivisible nature of rule evaluation guarantees at least

mutual exclusion for rules such as these. Since the evalua-

tion order for these rules is not defined, a more explicit

antecedent would have to be designed to establish conflict

priorities.

The rule selection and coflict strategies support a

powerful execution mechanism. Using this approach, the

procedural information of the system is sensitive to the

state of the database, and responds accordingly. This

behavior is more complex than a procedure-oriented system,

where the thread of execution control is more closely tied

to the procedural code organization.

The complexity of rule testing has performance penalties

associated with the precision of rule selection. By preci-

sion, we refer to the number of rules whose antecedent

conditions are true compared to the number of rules selected

for testing. The most inefficient and most obvious level of

precision is to scan the entire rule base on every cycle.

We call this a glolal sweep strategy. At the opposite

extreme is a selection strategy that produces only -.

"successful" rules for test.

C. PATTERN-BATCHING

At the heart of the rule evaluation process is pattern- .-

matching. Given the form of a rule:

if R(el) ->

33



a description the pattern-matching process for each candi-

date tuple x in R is:

match[x, el]:

if x=Nil and el=Nil

return TRUE

else if x=Nil or el=Nil

return FALSE

else if el is an atom

if el is unbound

bindlel, x]

history := cons[el, history]

return TRUE

else if el = x

return TRUE

else

return FALSE

endif

else if matchffirst[x:, first[el]]

return match[rest-x], restrel].

else

return FALSE

endif

end match

This description assumes a LISP-like list representation for

tuples.

This pattern-matching process is expensive.

Incorporating this method at the heart of the interpretation

cycle presents a significant design challenge.

34



D. MORE CONVENTIONA1 ISSUES

Besides these unusual design issues, Omega is subject to

the same design requirements as more conventional languages.

These include:

" A parser and lexical scanner for command/rule input.

" A procedure-oriented evaluation component for applica-

tive expressions.

" A flexible symbcl table mechanism for the support of

directories.

* Dynamic typing.

" Dynamic memory allocation and reclamation.

E. DESIGN GOALS

The design goals for the prctotypes are grouped into the

areas of feature implementation, relation representations,

efficiency, and evaluation.

1. Feature Implementation

The major objective in this work was the construc-

tion cf working prototype interpreters for the language. A

progressive schedule was developed that sought to implement

the fcllowing features:

" Canonical Rules. This phase includes the development of

the inquiry, absence, assertion, and deletion functions

for lasic rule interpretaticn.

" Function definition and evaluation.

" Procedure calls.

35



" Cancel operations.

" Sequential blocks.

2. Relation Representations

Relations and the operations defined on them are the

central components of the Omega system. To support flexi-

bility in relations, a variety of representations is desir-

able. Such representations could range from a simple list

structure to a relational database management system (DBM S).

To reduce the prcblems associated with multiple representa-

tion, the relation interface must be clear: an abstract

data type, with primitive operations defined for data

access.

3. Efficiency

The Omega language was developed as a general-

purpose language, capable of prototyping programming envi-

ronments and a variety of system-level functions. This

orientation makes execution efficiency an important imple-

mentation issue. The goal was to obtain a level of

efficiency comparable to a LISP system.

Efficiency was considered mainly in terms of execu-

tion speeds. In those cases where a space-for-time trade-

off was available, it was made.

4. Evaluation

The final goal for the prototypes was evaluation.

This evaluation centered on performance: how control strat-

egies and data structures affect execution time. A second

evaluation area was to determine the utility of language

features through programming experience.

36
. fea..tu. ..re. ..s . . .



IV. A LISP EROTOTYPE

A. WHY lISP?

The design issues for Omega led to the decision to write

a quick prototype for the exploration of high-level design

decisions. The high-level concerns were the interpreter

organization, selection strategies for rules, and the repre-

sentation of objects, relations, and directories.

Efficiency was not a design goal for this prototype.

Franz LISP was selected as the initial prototyping

language. This selection was made for the following

reasons:

* Availability. Franz LISP was available on the VAX

11/780 system being used for this work. ie were

familiar with Franz LISP, and the implementation is

well-done. The system includes a reliable interpreter,

compiler, and debugging package.

o Symbolic facilities aid in Fattern-matching. The heart

of the Omega design is the pattern-matching process.

The symbolic manipulation facilities of LISP allow these

algorithms to be programmed iuickly.

" Dynamic typing. The dynamic tyi.ing of LISP corresponds

well with the typing of Omega.

" Memory management. Memory management is transparent

under LISP. While these issues can impact heavily on "

system performance, they are complex and distracting to

early prototyping.

" Debugging. The debugging facilities of Franz LISP are

excellent, and superior to any other development

37



environment available at the time. In a prototyping

project, extensive debugging is essential to cope with

constant design and coding changes.

B. ORGANIZATION

The interpreter is organized like a classic LISP inter-

preter. The organization is based on the description given

in Chapter 11 of [Ref. 19].

The top level consists of a read-evaluate-sweep loop.

The read function is a command rule parser. Commands are

entered at the terminal, parsed, and an instruction list is

generated. This instruction list is passed to the evalua-

tion function for execution. The sweep function processes

any active rules that are ready to fire after the actions of

the read-evaluate phases are cooplete.

C. THE LEXICAL SCANNER AND PARSER

The reader consists of a lexical scanner and parser.

Instead of evaluating input as LISP ezpressions, the reader

accepts free-format input using the Omega grammar.

. ~The Lexical Scanner

A character reader function is used to pass a list

of characters to the scanner. This reader function uses the

character input facility of Franz LISP [Ref. 20: pp.

5.6-5.7]. As each character is read, it is added to an

input character list. The complete character list is

passed to the scanner.,

The scanner processes the input character list to

recognize tokens. Phen recognized, a character list is

compressed into a token (LISP atom) using the implode func-

tion [Ref. 20: p. 2.11]. The final output of the scanner is

38



a list of tokens built up in this manner. it is this

complete list of tokens that is passed to the parser.

The token classes consist of identifiers, constants,

and delimiters. Constants are limited to integers and

strings. Once a constant token is recognized and

constructed, a denotation function transforms the symbol

into a LISP integer or string atom.

The separation of the scanner from its supporting

reader function allows the same routines to read from

multiple sources. Two reader functions are used: one for

console input and one for file input. The file input func-

tion is used to support command rule entry from text files,

similar to the load function of Franz LISP [Ref. 20: p.

5.5].
When receiving console input, the reader needs to

distinguish the end of input for a command. Successive

carriage returns are recognized as this termination

condition.

2. The Parser

A single-pass, recursive descent parser is used to

process the token list produced by the scanner. As a

construct is recognized, an operator symbol is created

which, along with its operands, is added to the parser's

output list. The parser receives a token list as input, and

returns an operator/operand list as output.

The output list for the parser is a simplification

of the abstract syntax for the language. Consider the

following input:

if *Rl [x) , R2(x) -> R3 (x).

This rule is reduced to a token list by the scanner and

input to the parser. The parser output for th-is rule would

be the following LISP expression:

39



scanner and parser written in C, and integrated into

Franz LISP as a foreign function [Ref. 20: pp. 8.4-8.8].

" Improved control strategies. More precise rule selec-

tion strategies impact heavily on performance.

" Bore efficient LISP. Franz LISP offers alternatives to

the simple list structures used in this prototype. An

analysis of the prototype performance could be performed

to pinpoint areas for LISP code optimization.

The LISP prototype was intended to be a throw-away

implementation. While numerous improvemeats are possible in

this prototype, the performance of the LISP interpreter

becomes a final limitation. An implementation in a lower-

level language offers the potential for data structures, i/o

facilities, and memory management techniques that are more

closely tuned to the requirements of Omega.

An important decision in the life of a throw-away proto-

type is when to stop. This prototype was abandoned after

the iaplementation of a limited but fundamental set of

features. The prototype was revised numerous times, but

with a minimal expense in coding time and implementation

complexity. While many aspects of the interpreter design

changed in the follow-on implementation, the contributions

of this prototype to the next were substantial.

53



The prototype implemented a simple list representation

for relations, and assisted in the identification of primi-

tive operations reguired to manipulate relations. Of

particular interest was the pattern-matching algorithm.

While the implementation was flawed, the basic algorithm was

useful in the follow-on prototype.

The iterative backtracking algorithm was more complex

than necessary. The stacks used to support backtracking

suggested a recursive algorithm as a possible alternative.

The design chosen for the parser was a poor one. The

steps of creating a character list, then a token list, and

finally an instruction list, were time consuming. The

requirement to scan the token list for the preserce of the

"->" token worsened the already poor performance of the

parser.

The interpreter used the crudest possible control

strategy, and tested every rule on each iteration of the

sweep cycle. This ccntrol strategy has the obvious advan-

tage of simplicity, but the performance is unacceptable.

The control strategy, together with the slow parsing speed,

resulted in a sluggish system response, even with a small

number of active rules. In one test case, the parser

required 13 seconds to process a 33 line rule file; with an

active rule list of about 20 rules, a simple Display command

took 2 seconds to execute.

It was anticipated that the performance of this proto-

type would be poor, and so it was. This is not a reflection

of LISP as an implementation language. No attempt was made

to write efficient LISP, and substantial improvements can

probably be made. Potential areas for improvement are:

An improved parser. The character i/o in Franz LISP

lends itself to the inefficient implementation used in

the prototype. A possitle improvement would be a

52



When the interpreter begins execution, the following

events occur:

" The root directory is loaded into LISP.

" An Omega initialization file is pdrsed and evaluated.

" The interpreter begins its read-evaluate-sweep cycle.

The initialization file ccntains Omega command rules

that allow the implementation of system functions with

rules. These rules are defined by the toliowing assertions:

Root ("Activate", Newrel[ J) .

ActiveRules (Parse[ Fread["sysgen. rul" ]])

The assertion to the ActiveRules relation initializes the

system's set of active rules to those contained in the file

"sysgen.rul." These initialization rules consist of:

if *Define(dir, name, def) -> dir(name, def).

if *Activate(newrules) , *ActiveRules(oldrules) -.

ActiveRules(Append[oldrules, newrules]).

These rules and definitions are sufficient to set up a

minimum system. As shown by the rules for Define and

Activate, it is possible to express system functions as

rules. To expand these functions, more rules may be defined

and added to the active rule list.

H. IESSOBS LEARNED

This early prototype was instructive, both in those

functions which worked well aid in those functions which

performed poorly.

The major benefit was the implementation of a top-down

design. The read-evaluate-sweep cycle demonstrated that a

recursive, LISP-like interpreter design was uscful for

Omega.

51



G. A BOOT SYSTEM

After the implementation of the basic rule interpreter,

it was necessary to identify a xinimum set of definitions to

support a working system. When such a system becomes opera-

tional, additional features can be added through rules

defined in Omega.

The foundation of the naming mechanism is the Define

relation. No rules, relations, or constructs may be added

to the system without the use of Define. To accommodate

names that are added as the system grows, a minimum of a

single directory is necessary.

In this prototype, a root directory, defined in LISP,

contains the initial bindings required by the interpreter.

The root directory initially contains the bindings for the

Define relation and the active rule list. This directory

also contains a reference to itself: a binding for the name

"root."

To support the definition cf system functions in LISP,

the names of these functions are pre-defined at the time of

system initialization.

The initial root directory appears as:

(setg root '(

("Root" root)

("ActiveRules" Active ules)

("Cons" cons)

("First" car)

("Rest" cdr)

("Append" append)

This association list binds the Omega names to the appro-

priate LISP symbols.

50

• -.- , b. . .a,. -- ,- -. ,= -. - ~ i . '-" 'n " ." . ." "n. .' " -" '"" " i "" -



and additional cycles will not produce any new state

inf or ma tion.

F. ERROR CONDITIONS

Binding requirements differ as rule evaluation proceeds

from the antecedent instructions of the rule to the conseq-

uent instructions. These requirements constitute a signifi-

cant source of error.

In the antecedent, the members of a tuple may or may not

be bound. An unbound variable at this point is not an

error, unless the variable is involved in an applicative

expression. In the consequent cf a rule, all variables must

be bound. Unbound variables at this point are reported as

an error.

The binding for relation names is more strict. Given a

left-to-right evaluation of instructions, each relation name

must be bound before its evaluation.

Consider the rule:

if *R(x), x (y, B) ->

The evaluation of relation R occurs first. The variable R

must be globally bound, or an error will occur. In

contrast, the variable x is bourd in the R(x) inquiry. Its

later use as a relaticn name is valid.

The re, uirement that relation names be bound is an

implementation restriction. A more general mechanism would

allow a sequential search of all relations in the database

for trial bindings of relation names. This would extend the

free variable binding process previously shown only for the

tuples in a relation.

A simple error-handling approach is used in this system.

Uhen an error is detected, a zessage is displayed and the

interireter continues with the evaluation of the next

instruction.

49



Consider the following rule:

jf *1(x, x, y) -> R2(x, y).

Assume the relation RI only contains the tuple <1, 2, 3>.

Using the match algorithm previcusly described, the pattern

<x, x, y> would successfully match against <1, 2, 3>. To

prevent such an error, the match algorithm must take tempo-

rary bindings into consideration. This requires an exposure

of some of the details of the binding mechanism to the rela-

tion management routines.

E. CONTROL

Active rule interpretation occurs during the sweep phase

of the interpreter's top level. This prototype uses the

simplest possible control strategy for rule selection: each

active rule is tested on every cycle. Active rules are

maintained in a list, and the execution function is mapped

to each of the rules. In LISP terms, this is written:

(mapcar (lambda (rule)

(exec (car rule) (cadr rule)))

ActiveRuleList))

The lambda functioL splits each active rule into its

instruction and environment components.

After each cycle, the above sequence returns a list of

results from each application of the execution function.

The result for a cycle appears as:

(t t nil nil t nil . nil)

where each "t" response comes from a successful rule execu-

tion. The sweep phase will ccntinue to cycle through the

active rule list until all rules return a "nil" response.

At this point, the active rule list is in a quiescent state,

48



directory to be used for variable lookups. A rule, then, is

represented as a pair: <ep, iF>, with environment pointer

(ep) and an instruction pointei (ip). This representation

is called a closure, and is a technique used to simulate

static variable binding in LISP systems (Ref. 19: pp.

436-37].

To support temporary bindings made by pattern-

matching, a local symbol table is used. The evaluation of

variable bindings follows the following sequence:

* When a rule begins execution, a global environment

pointer is set to the environment pointer for the rule.

* To evaluate a variable, the local symbol table is

searched for a previous definition. If not already

defined, the directory referenced by the environment

pointer is searched for a global binding. If globally

bound, the variable and its definition are installed in

the local symbol table.

i If not defined in the local symbol table or in the

rule's directory, the variable is considered unbound.

This is represented by the installation of a special
"unbound" definition in the local symbol table.

Variable binding details are external to the rela-

tion management functions. Before gassing a tuple to the

match function, lookups are made in the local symbol table

and variables replaced by their definitions. The match

function accepts this tuple as input, and returns a pointer

to the corresponding relation tuple if a match is found.

Free variables become bound by having their match counter-

parts added as definitions in the local symbol table.

The isolation of the relation match function from

variable binding simplifies the interface between the rela-

tion management routines and the evaluation function. This

simplistic approach is flawed, however.

47



.1.-

match-equal, however, no variable binding is done. Instead,

variable bindings are made after matchequal returns its

result.

The add function places new tuples at the beginning

of the relation list, making the relation list a LIFO struc-

ture. The delete function removes a tuple directly from the

relation list.

5. Bindina

Variable binding is controlled by symbol tables for

temporary and global bindings. These symbol tables are

implemented as association lists, and are manipulated

through the follcwing management routines:

" Add. Install a symbol and its definition in the symbol

table.

" Delete. Remove a symbol and its definition.

" Lookup. Given a symbol, search the table and return the

definition.

The use of association lists for symbol table repre-

sentation is not the most efficient method provided by lISP,

but dces offer some advantages. The representation is

simple, and the table contents can be easily inspected

during debugging. Also, there is a close correspondence

between these association lists and the structure chosen for

relations.

The correspondence between symbol tables and rela-

tions allows the direct implementation of directories as

relations. The directory prcvides an environment which

binds variables during rule evaluation.

To support the use of multiple directories, the rule

structure was expanded to include an environment pointer for

each rule. This environment pointer represents the

46

.v '.-.-..- .'.. . ... - , L..,.-',,,_.: .. -., ,._" _'_-"._' . . .• . - _ . " " . . - " - :, .- , .,



if match_eAuai[ first[ R], Tuple]

ret urn R

else R := rest[R:

end while

return FALSE

end match

The match-eaual function is a zodified version of a recur-

sive list equality test. A nodification is required for

unbound variables. The algorithm is:

matchequal[R1, R2]

if Rl=Nil and R2=Nil

return TRUE

else if R1=Nil or R2=il

return FALSE

else if RI is UNBOUI.,C-

return TRUE

else if R1 is an atom

return Rl=R2

else if match_ecjual[first[R1], firstLR2]]

return matchequal[rest[R1], rest[R2]]

else

return FALSE.

end match_equal.

The match function performs a linear search of the

relation. Each tuple is selected and tested until a match

is found or the list of tuples is expended. The index

parameter passed to the match function indicates the point

in the relation where the search is to begin. This indi-

cator is non-nil when the match is being requested on a

backtrack attempt.

The matchequal algorithm is similar to the pattern-

matching algorithm discussed in the previous chapter. In

45

. .........

. . . .. -

........



4. Relations

Relations are represented as objects which have an

associated list of tuples. The relation object identi-

fiers are created through the gensym mechanism previously

described. A value is bound to the symbol using the set

function of LISP.

To illustrate this representation, consider the

following sequence of command rules:

Define (root, "RI,, Newrel[ ])

El ("a", "b", "c")

R2("x", Ilyl, "z"

The Newrel[ ] function returns the object identifier for the

new relation. After the assertions, the relation al

consists of the following:

("a" "b" "c")

"x" "y" "z")_

The relation is a list of tuples, each of which is a list.

With the list representation for relations is a set

of management routines. These routines are match, add, and

delete.

The match function provides the mechanism for

pattern-matched inquiries. The function is constructed as

follows:

match[RelationName, Tuple, Index]

if Index = Nil

R := get binding of Relation Name.

else

R : Index

endif

while R <> Nil

44

S4L-



This applicative mechanism bypasses some important

issues which a non-LISP implementation must consider. These

issues include functicn definition at the rule level and the

interface between the object-oriented and applicative inter-

preter mechanisms.

The simplicity with which new functions can be "

defined to support the Omega interpreter gives this imple-

mentation a strong reliance on functions. Consider the

implementation of a rule for Display:

if *Display (x) ->

Null (Print[ x]) .

The function call Print~x] is translated directly to the

LISP print function. Null is a dummy relation whose only

purpose is to allow the print function to execute.

In the above example, the use of the Print function

is inconsistent with the philosophy behind the applicative

component of Omega. The LISP print results in a side

effect, and is therefore not a jure applicative expression.

The print mechanism is more accurately modeled

through relations. A functional implementation is forced in

situations such as this to allow access to LISP definitions.

The consequence of this "bending" of the semantics of the

language is shown by the appearance of awkward constructs

such as the Null relation.

3. Cbjects

An object in Omega is used as a place-holder in

relations. To fill this role, the fundamental character-

istic of objects is unigueness. This was easily ioplemented

using the gensys function of Franz LISP (Ref. 20: p. 2.8],

which returns a unigue symbol each time it is called. A

functicn to create new object identifiers needs only to make

successive calls to gensym.

43



predecessor are popped from the binding history list and

undone. If an instruction succeeds, any free variable bind-
ings made during its evaluation are pushed on the binding

history list.

The cancel operaticn requires the gelieration of a DELETE

instruction should the cancel evaluate as "true." A delete

list is maintained for this purpose. To support back-

tracking, the delete list is checked for duplicates before
adding instructions. The instructions in the delete list

are passed to the evaluation function after all the instruc-

tions for the rule have successfully executed.

1. Instruction Evaluation

The instruction evaluation function performs a

direct interpretation of the instructions produced by the

parser. The steps of the function are simple:

Eval[1]:

return Op £ Eval[ ol, o2, . .. , on ] )
where Op is the cperator of 1 and

<ol, . . ., on> are the operands of 1

end Eval.

The function recursively evaluates the operands of an

instruction, then applies the instruction's operator to the

result. To support this organization, a LISP function is

defined for each operator.

2. The Aplicative Component

The applicative compcnent of Omega is simply

supported by function definitions in LISP. Such functions

are invoked by the API operator, which is passed the func-

tion name and its argument--. These symbols are directly

interpreted by LISP, and a result prodaced.

42

"~~~~~~~~..................."-.....-..............-......-,.-...-.-.-...-i.- .. .-............... ........ ,-.... .. .



This problem is solved by a pre-scan of the token

list before parsing, if the token list doesn't contain the

"->" token, it is inserted at the beginning of the list.

D. RULE EVALUATION

The interpretaticn of a rule is done by an iterative

execution function and a subordinate recursive evaluation

function. The execution functicn steps through the instruc-

tions in a rule and passes them to the evaluation function.

This separation into iterative and recursive functions is

done to facilitate backtracking.

The evaluation function returns a value of "true" or

"false." If an instruction is evaluated "false," the execu-

tion routine resets any temporary bindings associated with

that instruction's predecessor, then attempts to re-execute

the predecessor. The rule fails when this process backs up

to the initial instruction. It succeeds if all instructions

succeed.

At the level of the execution function, there is no

distinction between the conditicns of the antecedent and the

actions of the conseguent. Backtracking is only meaningful,

however, in the antecedent portion of the rule. Therefore,

the evaluation function always returns "true" for instruc-

tions generated from the consequent of a rule unless an

error is detected.

An instruction history list (a stack) is maintained to

support backtracking. If a tacktrack is reguired, the

pointer to the predecessor instruction is popped from this

list. If the instruction succeeds, the pointer for the

instruction is pushed on the list.

A binding history list (another stack) records the

logical variable bindings being made as each instruction is

evaluated. If an instruction fails, the bindings of its

41

-0 ; " - :- ' : - T , - -- - - -m m m '- : " " " , " '. - a



(CANCEL (INQUIRY (VAR "R1i") (TUPLE (VAR "x") )))

(PRESENT (INQUIRY (VAR "R2") (TUPLE (VAR "x"))))

a (ASSERT (VAR "R3") (TUPLE (VAR "x")))

The sublists preceded with the symbols CANCEL, PRESENT, and

ASSERT are termed instructions. A list of these instruc-

tions is produced for every rule.

These instructions correspond to the basic actions

that the interpreter must perform. Besides the three

Jinstructions shown, this prototype produces similar instruc-

tions for the deny operation (DENY).

Subordinate instructions are created for operand

generation and evaluation. In the preceding example, the

sublists headed by INQUIRY, TUPLE and VAR fall into this

category. Other subordinate instructions are included for

constants (CON) , rule denotations (DENO), and function

application (APL).

A subset of the original Omega grammar is recognized

by the parser. The intent was to allow the interpreter to

evaluate the simplest canonical form of rules, which uses

present/inguiry tests, absence tests, assertions and

denials.

The Omega grammar described in [Ref. 14] makes no

syntactic distinction between the antecedent and consequent

of a rule. Thus, a rule would he written:

R1 (x) , R2 (x) -> E3(x), R4 (x).

The convention of allowing the " to be omitted in a

command rule requires an indeterminate lookahead to decide

whether the antecedent or consequent portion of the rule is

being parsed. If the "->" is omitted, every token in the

* . input list must be examined.

40

-•o



V. A FOLLOW-ON IMPLEMENTATION IN C-
A. WHY C?

The second prototype was written using the C language,

although other alternatives were available. The decision to

to use C was based on the following:

* High level control structures. The language has a

reasonable set of control structures that support

ti modular programming.

* Simple but flexible data structuring. C supports a

limited but flexible set of data types and constructors

that are well-suited for interpreter implementations.

The bit-level operations and weak data typing provide

opportunities for space and speed optimizations.

• Recursion. C is a recursive language, and many of the

algorithms explored in the LISP prototype were easily

transJ ted into recursive C versions.

* Integration with UNIX. As with the LISP prototype, the

follow-on was developed on a VAX-11/780, using Berkeley

UNIX (BSD 4.2). No language is better suited to UNIX

than C, and vice versa. The operating system provides

many features that directly support access to system

routines and variables. The numerous software develop-

ment tools available on a UNIX system are largely

intended for use ty C programmers.

C is not a perfect implementation language by any means.

* The availability of low-level cperdtions and type coercion

provide a dangerous source of error and confusion. The

terse 3yntax is difficult to read for those unfamiliar with

0
54

0

- -. . . . . . . . . . . - . - . .



the language. Finally, C's strict use of call-by- Llue

forces a proliferaticn of pointer usdye, complete with a

flood of subtle errors resulting from pointer abuse.

Despite its limitations, C is d tool well-suited to its

environment.

B. CHANGES TO SYNTAX AND SEMANTICS

1. An Antecedent Keyword

The previous chapter discussed the problem caused by

the optional "->" sign in the Orega syntax. The problem was

circumvented in this implementation by the use of the

keyword "if" to signify the beginning of the antecedent of a

rule. A one token lookahead is sufficient to detect this.

The original Omega syntax uses the "if" keyword to

signify a constraint. Thus a rule would be written:

*R1 (x), *R2 (y) , if x > y ->

Syntactically, the keyword is nct necessary to distinguish a

constraint. Therefore, the use of the keyword was modified

to solve the lookahead problem. Using this modification,

the rule is written:

if *RI(x), *R2(y), x > y -.

The semantics are unchanged.

2. Rule Denotaticns

The delimiters for a rule denotation were originally

asymmetric quotes. This was modified to the <<. .>>

construct shown in previous chapters. This syntax was

selected to add greater visual emphasis for rule

denotations.

55



3. Rule Se-ara tors

A small but important modification was made to the

use of the period and comma as delimiters. MacLennan uses

the semi-colon to separate rules within a sequential block,

and a period is used for the separation of rules in a deno-

tation. This distinction is made to emphasize the sequen-

tial nature of the block in comparison to the concurrent

nature of the rules within the rule denotation [Ref. 14: p.

231.

This distinction was altered to solve the command

rule termination problem. Rules are always separated by

semicolons; a period indicates the end of the current

command rule input. This replaces the dual carriage return

termination of the earlier protctype.

This problem results from the use of rules as a

command language. Rules tend to span multiple lines, so a

simple end-of-line termination is not sufficient to indicate

the end of input. Two alternative solutions to this problem

are: (1) terminate a multi-line command with a continuation

character, or (2) use a special character to signify the end
of inut.

The latter technique was selected, with some loss of

the useful syntactic distinction between denotations and

seguential blocks. It is hoped that the remaining distinc-

tions between the two constructs, <<>>'s vs. I) 's, are

sufficiently different to serve as a reminder of the differ-

ences in semantics.

4. Parameter Lists

The original syntax for a function call was similar

to the form of an assertion or an inguiry. Thus a rule

would appear as:

* E1 (x, y) -> R2 (cons(x, y)).

56



The square bracket notation for function parameter lists was

selected to provide an obvious distinction between function

calls and other non-applicative forms in the language. The

square brackets also denote lists, with the similarity

emphasizing the semantic connection between these

cons tructs.

A similar modification was made for the procedure

call, where curly braces denote the parameter lists. This

syntax appears unusual, and the procedure call mechanism is

unusual. The semantic similarities between the procedure

call and the sequential block, both of which provide some

degree of control on the otherwise free concurrency of

Omega, is emphasized by their ccmmon use of curly braces.

5. Conditional Expressions and Function Definitions

The introduction of an applicative component into

the language required syntactic extensions. These exten-

sions were centered around the conditional expression, which

is illustrated by the following rule:

if *R1 (x) -> R2 (if x<3 -> "YES" else "NC" .

The value of the assertion is determined by the conditional

expression.

Given the form of the conditional expression, a

function declaration can be formed by giving the function

name, parameter list, and body (a conditional expression):

fn Max[x, y] : if x > y -> x else y.

Syntactically, a function declaration may appear anywhere a

command rule would appear.

The form of the conditional expression is a modifi-

cation to the original syntax of the rule, with restrictions

to prevent side effects.

57



6. An Imalicit Response for Command Rules

A syntactic change was made to allow expressions at

the same level as assertions. This modification allows the

entry of the following command rule:

if *R1(x) -> X.

When this rule is evaluated, the binding of x is "returned"

by the rule. If this binding is printed by the interpreter,

the necessity for ubiquitous "risplay" calls may be less-

ened. This allows the command entry of expressions such as:

2 + 2 * Sin[Pi/2].

where the interpreter returns the result.

While this modification to the rule syntax is

convenient for command rules, it provides some interesting

semantic questions. Suppose the following is an active

rule:

if *R1(x) -> 2 + 2.

What does the conseguent of this rule mean? It involves no

alteration of the database, but instead requires an expres-

sion evaluation.

The action may be described by the following equiva-

lent form:

if *R1 (x) -> Eval["2 + 2"].

The expression is asserted to an implicit Eval relation, and

the semantics of the procedure call apply. Note that, in

general, the value returned by a procedure call used at this

level is ignored. For command rules, this value may be used

to indicate the result returned from evaluating a rule.

Given this interpretation, consider the following

rule:

if *R1 (x) -> R2 (x).

58

I,.

. . . .............................



What is the "result" returned Ly the assertion? A simple

convention is that that the assertion of a tuple x to a

relation R returns the tuple x as its result.

7. Head!Taii Pattern Specifications

A final added feature is a head/tail pattern speci-

ficaticn for lists, similar to that of Prolog rRef. 21: p.

43]. This is shown in the following rule:

if *R1 ([h:t]) -> R1(h), R2 (t).

The [h:t] notation will match a list. The variable h will

be bound to the head (first) of the list, the variable t

will be bound to the tail (rest) of the list.

The head/tail specification syntax is extended for

tuples:

if *R1 (h:t) -> R1(h) , R2(t).

This notation provides a pattern specification for tuples

that is independent of tuple cardinality. This generality

was not possible using previous constructs.

C. DATA STRUCTURES

Data structures posed the major design challenges for

this interpreter. The structures of particular interest

were the representations for rules and for supporting the

objects and values of the language.

1. A Uniform, Tagged List Structure

A list structure, similar to that of LISP, was selected for

the representation of rules. This structure was selected

for the following reasons:

59

. A ,



II _ _ II _ . ,. . . . .. . . . .

"Rules are represented as binary trees. Using a list

structure for rules allows a direct, recursive evalua-

tion technique similar to that of the LISP prototype.

* Omega needs lists. Lists provide a general constructor

mechanism that is extremely flexible. In a pattern-

matching language, list structures are essential if

pattern-matching is to extend beyond character strings.

* Uniform list structures sixplify design. Given that

lists are desirable as a data type within the language,

a simple set of list handling routines suffices for

analysis and synthesis of data within the interpreter.

Uniform list structure alsc allows storage allocation

and reclamation to concentrate on a single unit: the

list cell.

A diagram of the basic cell structure is shown in

Figure 5.1 The cell has three fields: a tag field, a head

field, and a tail field. Table I shows the types of values

that each field may assume.

The atomic values in this implementation are char-

acter strings, signed integers, and objects. These atoms

are represented by cells. The type of an atom, as with all

cells, is determined by the value of its tag field.

Integers have their values contained directly in the

head field of a cell. Likewise, objects have their identi-

fiers encoded in this field. 7he width of this field is 32

bits, determined by the VAX 11/780 word size.

Character strings have a pointer in the head field

that references a contiguous block of string storage.

Reflecting their C implementaticn, string storage areas are

NULL terminated. On the VAX, NULL is represented by a zero

value.

60

. . .



II !

TAG HEAD TAIL

8 32 32

bits bits bi ts

Figure 5.1 Cell Structure.

A list cell contains pcinters in both the head and

tail fields. There are two classes oi list cells: Jatd
list cells and operator list cells. These are distinguished

by tag values.

Data list cells are analogous to LISP lists. They

serve as data constructors. Ojerator list cells form the

interior nodes of a binary tree representatioi for rules.
Rules are transformed and evaluated as tree structures. The -

"instruction" concept of the prctotype was dropped in favo"
of a more uniform approach. Figure 5.2 illustrates the
parse tree for a simple arithmetic expression.

This tagged -tructure simplifies evaluation at the
expense of storage siace. Individual tas art used for all

61



TABLE I

Cell Field Values

head field:
Contents Comments

cell rointer data and cperator list cells

string pointer string cell

integer integer cell value
used for frame size in allocate op

object id object cell--id is 32 bit integer

<blcck, offset> VAR cell--gives scope and offset
within binding stack frame

tail field:
Contents Comments

cell Eointer data and operator list cells
VAR cells and defined objects have
pointers to print names

unused integer string, and
and most cbject cells

---

primitive data types and for each construct (node) in the

abstract syntax for rules. This results in a large number

of tags: over 40 in the current implementation. A minimum

of 6 bits, therefore, is rejuired to represent the tag of a

node. Given the cell space requirements given in Figure

5.1, approximately 11 percent of the system storage reyuire-

ment is needed for tags. (The actual percentage is somewhat

less because of character string blocks and hash tables,

discussed below).

2. Cbj1ects

As in the LISP prototype, objects are represented by

a unique identifier. In this implementation a cell is

62



Expre-sion: 2 +4 S

Figure 5.2 Tree Representaticl for a Simple Expression.

generated for an object and ar. identifier embedded in the

head field. Again the problem is how to manage the identi-

fiers so that the are unique.

The approach ased is tc maintain ail object count.

Each time a new object is re.,utested, the object count is

incremented. If the control of object identifier allocation -

remains centralized, tihe objects are guaranteed to be

uni que.

The generation of identifiers this way leads to the

issue of object identifier mnanaqement. What prevents the

system from running out of urnique identifiers? What happeas

when the identifier space is exhausted?

63



A simple strategy is to ignore these problems alto-

gether. How long can the system generate identifiers before

it runs out? For a rough calculation, assume that a new

identifier is generated every 10 milliseconds. The head

field which contains an identifier is 32 bits, so assume 29

bits are available (the use fcr the remaining 3 bits will

be discussed shortly). With these values, the identifier

space would be exhausted in 229 x 10 milliseconds, or about

62 days. The management of object identifiers is not a

major issue in this system. Should a larger object identi-

fier space be needed, additional bits could be provided from

the tail field of the object cell.

A small portion of the object identifier space is

reserved for system use. In the current implementation,

the first 64 object identifiers are reserved. The presence

of a system object is easily detected by an examination of

its identifier.

3. Hash Tables

As in the LISP prototype, certain types of objects

have values associated with them. These values are managed

in this implementation using a uniform hash table mechanism.

The hash table index is generated by a simple hash

function. The algorithm is based on that given in [Ref. 22:
p. 135]. The hash function receives a pointer to a cell as

an argument, and returns the table index. The algorithm is

as follows:

hash(p]

if pa) is an integer or object cell

return p@head mod TABLESIZE

else if p@ is a string cell

return sum[p~head] mod TABLESIZE

where sum[s] returns the sum of

the ASCII characters in the

64



string s

else

return 0

endif

end hash.

This function is a crude hashing algorithm for string

entries, with its primary virtue being simplicity. Object

identifiers are generated linearly, however. The direct

hash off these identifiers should result in minimal

collisions.

The structure itself consists of a pointer table (an

array), with a collision list maintained for each entry.

The collision list links together a collection of header

cells. These cells have a key field with a list cell

pointer, a definition field with another list cell pointer,

and a link field with a pointer to the next header cell.

Figure 5.3 illustrates this structure.

To complete the hash tahle description, a collection

of management and access routines are used. These are:

* Lookup. Given a pointer tc a cell, find an entry whose

key field points to an equivalent structure. If found,

return the definition pointer.

" Install. Add an entry to the hash table. The hash

table is searched for an existing entry with the same

key value. If found, that entry is replaced. If not

found, the new entry is linked into the appropriate

collision list. Note that key entries may be any struc-

ture: objects, strings, or lists.

• Delete. Remove an entry from the table. The table is

searched for the key value. If found, the entry is

removed and its ccllision list is relinked if necessary.

65

. . . . . . . . . . . .. .... '. ."



Collision List

Key Cell Definition Cell

Figure 5.3 Hash 7able Structure.

Cbject representatiot.s are linkt: d to object identi-

fiers using these hash tables. The objects within CmEja

that have representations are rElations, directories, rule

denotations, and functions. These entit ies dre subject tu

temporal change, and thus have an object iI~lmertatiori.

66



4. Relations

Relations are objects, hut with a twist: they have

access considerations. The access control mechanism is

encoded directly into a relation's object identifier. Three

bits of the identifier signify whether the relation is

accessible for read, add, or delete operations. When a new

relation is created, an object identifier is generated and

the capability bits all set tc 1, indicating full privi-

leges. Subsequent operations may reduce the capability by

copying the relation object identifier and zeroing the

appropriate bits. This produces a second reference to the

same relation, but with reduced access privileges.

Relations are represented as lists, similar to the

LISP prototype. As a tuple is added to a relation, a header

cell is created for the tuple and linked in at the head of

the existing tuple list (if any). A pointer to this list s

bound to the relation's object identifier through the object

table. The list representaticn of a relation is shown in

Figure 5.4

5. Directories

Directories incorporate the hash table into the

general list structure. A directory has two header cells:

a class link cell and a partition cell.

The class link cell cortains a pointer to a parti-

tion cell, and a pointer to the next class link cell in the

class. A lookup path, then, may follow this chain from

directory to directory.

The head pointer of the partition cell points to the

private partition, while the tail pointer of the cell pcints

to the public partition. Each Eartition is represented by a

single hash table.

67



I |, I In I n*. . •. .

lookups in the object table where necessary. Thus, the

philosophical differences between objects and values in

Omega are supported by concrete differences at the implemen-

tation level.

I. BACKTRACKING

A recursive backtracking algorithm is implemented with the

conditions (CONDS) ojerator. A condition is an element of

the antecedent of a rule: a resence/inluiry test, an

absence test, or a constraint. Backtracking is initiated

only on the failure of a presence test. The algorithm is:

conds[cond_curr, cond_next, ep]

match nextptr := Nil

while TRUE

result := eval[ccndcurr, ep]

if result = FAIL

return FAIL

else if condnext Nil

return result

end if

result := eval[ccndnext, ep]

if result != FAIl.

return result

endif

if cond-curr is not a 'present' op

return FAIL

end if

undo trial bindings made for condition

end while

end conds

This algorithm treats backtracking as a binary operation.

The "cond curr" parameter is the current condition heing

81



The binding Vrocess uses the following primitive

rout ines:

* bind[x, y]. The frame slot for variable x is assi4neJ

pointer y.

* getbinding[xj. Return the value in the frame slot for

variable x.

" freebindingfx]. Free the binding for variable x. This

is accomplished by assigning a reserved value to the

frame slot meaning UNBOUND.

When a rule completes execution, the dynamic link is

followed to the previous frame, and the current frame

pointer reset.

The binding stack offers several advantages. First,

variable lookups are only done once: at activation time.

The dynamic binding process is only concerned with a vari-

able's offset in the stack frame, not with the variable

name. The binding stack allous the simple reclamation of

storage used for binding. finally, it allows context

switching in rule interpretation since bindings from inter-

rupted rules are preserved.

A context switch for a rule occurs during a synchro-

nous call. Consider the following rule:

if *R1 (x) -> [ R23x; R3[x) I.

When the R2 procedure call is made, a context switch is made

to the body of rules that support the call. The binding of

the variable x, however, must be maintained between the R2

procedure call and the R3 procedure call.

This method of static bindin- eliminates unnecessary

variable lookups by replacing variables by their defini-

tions. Generality is still maintained for objects such as

relations, whose associated values are determined by dynamic

80



B I nd Ing
___ ___ ___ ___ ___ Pointers

F...ame. .. I .......

...............

Frame.....
P.....nter....

.. .. . . . . . .. . . .



A variable not defined in the directories of the

class is a free variable. The cell representing a free

variable contains an offset in the head field, and a pointer

to the variable's print name (a string cell) in the tail

field. The offset for a variable depends on the order in

which the free variables of a rule appear.

When a free variable cell is initialized, a pointer

to the variable cell is installed as the print name's defi-

nition in a local symbol table. Subsequent occurrences of

the variable will be replaced by this definition.

During the binding process, the parse trees for

embedded rule denotations are installed in the object table.

A system-generated object identifier replaces the rule deno-

tation subtrees in their parent expressions. The variables

in the rule denotation are left unbound--the binding of

these variables is deferred until the denotation is

activated.

The final action for the binding process is the

creation of an allocation operator cell for the rule. This

cell has a count of the total number of free variables for

the rule in its head field. The tail field contains a

pointer to the actual rule structure.

2. A Binding Stack

The allocation operatcr is used with a binding

stack. The binding stack is an array with a current frame

pointer and a chain of dynamic link pointers that connect

frames. The binding stack is illustrated in Figure 5.7

When a rule begins interpretation, a stack frame is

created on the binding stack with slots allocated for each

free variable in the rule. The offset in a variable cell

indicates which of the binding frame slots is to be used for

that variable.

78



result rule[iphead, ip~tail, ep]

end case

return result

end eval

As in the LISP prototype, separate functions are defined for-

the majority of interpreter actions. The function rule is

defined external to the case statement, and contains code

for the interpretation of the RULE operator. Separate calls

to eval are used to evaluate the arguments to rule.

The evaluation function receives two arguments: a

pointer to the subtree being evaluated (ip), and a pointer

to the current directory for global name definitions (ep).

The evaluation function returns a cell pointer as its

result.

H. BINDING

1. Bindinq At Activation

This implementation uses an entirely different

binding mechanism than the LISP prototype. The variables of

a rule denotation are bound when a rule becomes active.

These bindings are determined by the environment of activa-

tion. Since a command rule is immediately executed, bindin.;

takes place immediately for these rules.

The binding process results in a complete copy of

the parse tree for a rule, leaving the original denotation

unaltered for later use. In this way, the denotation is

like a source file, the bound parse tree like an object

file.

When a rule denotation is bound, the current direc-

tory is searched for variable definitions. The class of the

current directory provides a search path to other directo-

ries if the variable is not bound in the current directory.

77

_ . .... ..: . .:.:. - L .:..... ..- -..... .. :....;-. •.- -- .::.- ... : . ;- .-. . . .- ..- .



of the current subtree. A section of the algorithm may be

described as:

prettyprint[p]

do case p~tag

case RULE

print[ "if" ]

prettyprint[ p@head ]
print' 1"->" ]
prettyprintL p~tail J
print[";"]

end case

end prettyprint

Although the pretty printer originated as a debugging

aid, the basic design of the tag-oriented case statement was

almost identical for the central evaluation function. This

pretty printer evolved into the Display mechanism for the

interpreter.

G. RULE EVALUATION

Where the LISP prototype used a separate, iterative

execution function for backtracking, the follow-on design

uses a recursive backtracking algorithm within a single

evaluation function.

As in the pretty printer, the heart of the evaluation

function is a large case statelent. The tag value of the

form being evaluated determines the case selection. A

section of this case statement Ray be described as:

eval[ip, ep]

do case ipdtag

case RULE:

76

........................... .........................................................



List: (1, 2, 3]

LIST

Figure 5.6 Transformed List Structure.

F. A BECURSIVE PRETTY PRINTER

The parser, along with the cell allocation routinEs to

generate the parse tree, was the first system Component

developed for this implementation. A pretty printer was

written at this point primarily to debugi ti~e parser.

The pretty printer is based on a ldrye Case statement,

which selects the ap:~ropriate output form based on the taq

75



List: [1, 2, 3]

LIST

___ __ _ INT 3

I NT

Figure 5.5 Left-Recursive List Representation.

The scanner produced by LEX accepts input from the

standard input file by default. To receive input from

another text file, the file is opened and the LEX input file
variable reassigned. This simple tech rii.ue allows the

alternation of input between several sources.

74.



curr~hEad t;

curr-tail := pred

if h = Nil

return curr

else

return h

end if

end if

end rtrans

Figure 5.6 shows the list after the transformation has been

applied.

The YACC parser offers several advantages to a

prototyping effort:

Development time. The high level of the specification

for YACC minimizes the complexity of parser generation.

Ve had a complete, functional parser working in three

days.

• Ease of modification. Experimentation with syntax is

simple: change the grammar rules, rerun YACC, and

recompile the output. The ease with which the grammar

can be modified encourages experimentation.

" Verifying specifications. Analysis of grammar chanjes

is easy in YACC. If a change produces ambiguities, YACC

will report conflicts when trying to generate the parser

tables. This automated analysis is a strong point in

favor of using a YACC parser.

3. Console and File Input

As in the LISP prototype, the same parser is used to

read command rules from the console and from text files.

This is implemented using the i/o redirection facilities of

UNIX and C.

73



rule [Ref. 24: pp. 14-15]. This scheme results in a flat

grammar for expressions in YACC, where the precedence rules

determine associativity and precedence.

Certain constructs in Omega lend themselves to

recursive grammar rules. YACC encourages such rules to be

left-recursive. Left-recursive rules result in a smaller

parser size, and reduce the likelihood of an internal stack
overflow when parsing a long seguence [Ref. 24: p. 19.].

Consider the following, left-recursive specification

for a list:

list expression

list :, expression

The parse tree generated by such a rule is shown in Figure

5.5 Cne consequence of this fcrm is that the entire list

must be traversed to access the head of the list, an obvious

disadvantage in list-oriented interpretation.

To solve this problem while still respecting the

YACC preference for left-recursion, a recursive transforma-

tion is performed on parse trees. This transformation

selectively changes left-recu rsive forms into right-

recursive forms. The algorithm is:

rtrans[curr, pred]

if curr = Nil

return Nil

else if curr points tc an atom

return curr

else if curr is not a left recursive form

curr~head := rtrans" curr@head, Nil ]
curr~tail := rtrans[ curratail, Nil ]

return curr

else

h : rtrans[currahead, curr]

t := rtrans[curratail, Nil]

72



assertion primary '(' arguments ')

$$ = newcell (ASSERT, $1, $3);

I

Additional rules are given for "primary" and "arguments."

The newcell function generates a new cell with the tag

ASSERT, a head pointer set to the value returned by YACC

from parsing "primary," and the tail pointer set to the

value returned by YACC from parsir. "larguments."

The embedded C expressicn determines the actions of

the parser if an assertion is recoJrnized. The assignment to

"$$" defines YACC's response: this vaiue is placed oh a

stack for use in other expressicns. In this implementation,

the value generated for each rule is a cell pointer. When a

form is parsed successfully, the YACC parser returns a

pointer to the root of a parse tree constructed this way.

The YACC specification for Omega is contained in Appendix A.

YACC is a more complex tool than LEX, and it has

some idiosyncrasies. These include precedence specification

for infix expressions and a preference for left-recursive

grammar rules.

Infix expressions may be specified in YACC ky a rule

such as:

expr expr OP expr

Such a specification is ambiguous, however. To remove this

ambiguity, YACC allows the declaration of precedence rules.

Thus a precedence rule of:

%left '+' '-'

%left '*' '/

would establish the precedence of the arithmetic operators

and resolve the ambiguities associated witn the previous

71
0



that a reasonably efficient Earser be produced with a

minimum of time and effort.

1. A LEX Scanner

The LEX lexical analyzer generator [Ref. 23] was

used to produce the code for the scanner. LEX accepts as

input a file of rules described through regular expressions

and their associated actions. The output from LEX is a

table-driven scanner in C source code.

The following sequence defines LEX actions for

recognizing unsigned integers:

digit [ 0-9]

int_con (digit)+

{int_con) C

return (INTCON) ;

The return statement is an emhedded C language construct

used to describe the required action by the scanner. In

this example, INTCCN is a constant used to represent the

token.

LEX is an easy-to-use, sophisticated tool. With no

previous experience, we specified, generated, compiled, and

debugged a LEX scanner in a few hours. The LEX specifica-

tion for Omega is contained in Appendix A.

2. A YACC Parser

The parser was written using the YACC (Yet Another

Compiler-Compiler) parser generator [Ref. 24]. Like LEX,

YACC allows a high level specification for compiler actions.

The output from YACC is a table-driven, LALR(1) parser. The

YACC parser receives its token input from the LEX scanner.

The following illustrates the YACC specification for

an Omega assertion:

70



4

from the notion that a command rule "returns" a result. The

top level, then, consists of a read-evaluate-print-sweep

loop.

The read-evaluate-print Ehases process the user's

command entry at the terminal. The print phase provides a

visual indicator that some activity is taking place because

of the command rule entry.

Suppose a user enters the following rule at the

terminal:

if *R1(x) -> R2(x), R3(3).

The reader parses the expression, binds variables as appro-

priate, and then passes the parse tree to an evaluation

function. The response from the evaluation function is

displayed at the terminal. In this example, this resp nse

would be "3." When multiple expressions exist in the

conseguent of a rule, the response from the last expression

is displayed as the response Zor the rule.

After the command rule has been evaluated and its

response displayed, the interpreter begins its sweep phase,

evaluating any active rules that are ready to fire. There

is no implicit response from active rules: their purpose is

to alter the database. At the completion of the sweep

phase, the command loop returns to the reader and waits for

the next entry.

E. THE READER

The reader was a major weakness in the LISP prototype.

While an efficient parser implementation was not a major

design goal for this work, the slow, error-drone parser of

the LISP prototype was frustrating to work with.

A parser generator was used to create the parser in the

second prototype. This decision was made with the intent

69

-. -..... ....,a .I . . ...- .-- ,- . .. - ." - ' - ' . "" ' ." '° ." " " "." '



I Relation Headers

* Tuple Headers

LIT.IS

Figure 5.4 List Representation for Relations.

In this implezentation, directories are represented

*differently from relations. This distiiiction was made to

optimize directory access by hashing, althoujh there is a

loss of the generality enjoyed Ly the LISP prototype.

* D. ORGANIZATION: THE TOP LEVEL

The interpreter's top level is siiildr to that of the

LISP irototype. An ddd, d stEp--the priiit hase--rcsuits

08



tested. The "condnext" points to the remaining list of

conditions to be tested. A successful response from eval on

"cond next" indicates that all remaining conditions have

tested successfully. A failure means a backtrack attempt

should be made on the current ccndition.

J. RELATION MANAGEMENT ROUTINES

The relaticn management routines of the LISP prototype

are continued in this implementation. They are: match,

add, and delete. As in the LISE prototype, the add function

6| links a new tuple at the beginning of the relation list.

The delete function removes the tuple from the relation list

and relinks as necessary.

A pattern-matching algorithm is used in the relation

match function. As in the LISP prototype, the tuple list of

a relation is searched linearly. As each tuple is selected

for a match, it is passed to the pattern-matching function.

The match function maintains a "match-next" pointer. This

indicates where the last match occurred, and provides a

search continuation point for backtracking.

The pattern-matching algorithm is similar to that given

in Chapter III. Unlike in the LISP prototype, trial vari-

able binding occurs during pattern matching. The pattern-

matchinig function binds free variables by uising the bind

operator of the binding stack. These bindings are undone if

a rematch Is necessary when backtracking.

In this implementation, relation access control is

enforced. The object identifier for the relation is first

tested to ensure the capability bit for the desired opera-

tion is set. If not, the operation is canceled add an error

• message is generated.

An additional relation function w-s added: match first.

This function returns a pointer to the first tuple in a

relation.

82

.0. . - • . , I . • , i i> i . -- • .. . , . •. . -, > . , -. . .- .- i - - .



K. ACTIVE RULE PROCESSING

1. [i e~

The technique of triggering is used to improve the

precision of active rule processing. The trigger for a rule

is the left-most relation in the the rule. For the

following rule:

if *R(x), *R2 (y) ->

the trigger is the relation R1.

A rule is selected for test when certain events take

place involving the trigger relation. These events are

assertions and deletions. If either of these operations is

performed on the trigger relation, there is a likelihood

that the rule's antecedent conditions are now satisfied.

The triggering process is initiated at the time a

rule i2 activated. The trigger for a rule is determined,

and the rule installed in an active rule table (a hash

table), keyed by the object identifier for the trigger rela-

tion. A list is maintained in the active rule table for all

rules associated with a given trigger.

When an assertion or denial is made to a relation,

any rules indexed by that relation are selected from the

active rule table and tested.

A rule is always tested at least once: when it is

activated. This ensures that any pending conditions will be

serviced before the rule enters its triggering cycle.

2. A Rule Queue

Triggered rules are managed through a circular

1 queue. When a rule is triggered, a pointer to the rule is

placed in the rule queue.

During the sweep phase, all rules in this queue are

tested. If a rule succeeds, it remains in execution by

83

0 - '. ., , ,..l..- ad.,.L-I aiu
's r "

..k,.l,,n,,,ihimih l li i ~ l m " " ' - - " i .. : d" ' " '



0

staying in the rule queue. Instead of undergoing continuous

evaluation, a successful rule is reinserted at the end of

the queue. This enfcrces a fairness policy: each rule in

the queue should get a turn at Evaluation.

Given the nature of rule testing, only one instance

of a rule needs to be in the queue at one time. Multiple

instances will result in wasted interpreter cycles and

excessive queue sizes.

To control this problem, a flag bit is used. Tie

flag bit is contained in the tag field (bit 7) of the first

cell in an active rule list. When a rule list is placed in

the queue, the flag bit is set. Subsequent attempts to

insert the rule list in the queue will be ignored because of

the flag bit value. When the rule list leaves the queue (by

being selected for testing), the flag bit is reset and

subsequent queue requests for the rule will be accepted.

3. Advantaqes and Disadvantaqes o2 Triezrinq

Rule triggering has the following advantages:

* Precision. The likelihood of triggered rules firing is

good. The strategy is much more precise than the global

sweep strategy of the LISP Irototype.

* Simplicity. The triggering mechanism described is

simple, both in concept and in its supporting

i zplementation.

• Triggers are statically determined. The trigger is the

left-most relaticn of a rule. This is a simple,

syntactic distinction that is directly inferable from

the visual form of a rule.

Despite its attractive aspects, the trigger mecha-

nism just described is too simple. To illustrate this

point, consider the following rule:

84

0- • + i . - .. . . . ' ' '+ - - ' . - - + ' ' '- -- - - - L - ' '- + '- " ' - -+ - " . . - ' : - " - '



if R1 (x), -R2 (x) -> R2 (x)

The intent of this rule is to enforce the constraint that R1

should remain a subset of R2.

Assume R1 and R2 initially contain the same tuples.

If a tuple is removed from R2, the relation contents are

different and the constraint rule should fire. Given the
previous triggering strategy, hcwever, the rule will not be

tested. The affected relation was R2, but the rule is trig-

gered on R1.

4. Two-Level Trig_erina

A possible alternative to this simple triggering

method is to index a rule on every relation in the antece-

dent. This will guarantee a correct evaluation, but

requires a complex index structure. Also, triggering on

secondary relations is inefficient--these relations may be

updated frequently and result in excessive testing for the

rule.

Another possible alternative is to determine the

point of failure. In the following rule:

if *R1 (x) , *R2(y) -> .. .-

the R1 inquiry may succeed and the R2 inquiry fail. If the

R2 relation is flagged as the point of failure for this

rule, a subsequent assertion tc R2 could be the trigger for

a retest of the rule.

The difficulty with this strategy is determining the

point of failure. Consider the following rule:

if *Rl (x), *R2 (x, y), *R3 (x, z), x > y ->

Each of the relations R1, R2, and R3 may have a tuple that

meets the pattern specification. There is a dependency,

however, among these inquiries and the constraint. A

85



failure, then, may be a failure of the combination and not

of any particular inquiry.

A compromise strategy is used to solve this problem.

We call this technique two-level triggering.

Using two-level triggering, two rule gueues are

maintained. One is for active, triggered rules selected

under the original triggering strategy. This is the primary

rule queue. The second queue contains rules pending altera-

tion of one or more conditions to enable firing. This is

the secondary rule queue.

When a rule is initially triggered, it is inserted
in the primary rule queue. If, when tested, none of the

conditions of its antecedent successfully match, the rule is

discarded.

If, on the other hand, at least the trigger condi-

tion successfully matches (but the combination fails), the

rule is entered into the secondary gueue. The rules of the

secondary queue are tested after the rules of the primary

queue have been expended.

Once inserted into the secondary queue, rules will

remain under evaluaticn for possible firing. A rule will

leave the secondary queue under two conditions:

* The rule fires and is transferred back to the primary

queue.

* The rule fails to match cn its trigger relation and

leaves the active queues completely.

Two-level triggering may be inefficient. Consider

the following rule:

if *EmployeeData(name, salary), salary > 10000 ->

EmployeeData(name, salary/2).

86

,'. .1

-- "" '' -''-- - L: - '-L '- ' . ; .
I'

. . , - .& . .. . . ..



If the Employee-Data relation is normally not empty, two-

level triggering will perpetually maintain this rule in

either the primary or secondary rule queues. If many rules

behave this way, the cule selection strategy degrades to a

global sweep, a worst-case performance.

Many types of rules fair well under two-level trig-

gering. The key to efficiency for this strategy lies in

the use of the trigger relation. This relation should

contain matching tuples only when the rule is ready to fire.

I. THE APPLICATIVE COMPONENT

The original description cf Omega did not contain a

detailed description of the applicative component. Instead,

it assumed that a completely separate applicative language,

such as MacLennan's A (Ref. 25], would be integrated into

the Omega environment to support applicative evaluation.

The applicative component was a minor issue in the LISP

prototype, but the fcllow-on design had to resolve its role

and form. Some of the alternatives considered were:

" Develop a general applicative interpreter interface.

The Omega interpreter and a-plicative interpreters would

be separate processes communicating through this

interface.

" Integrate the code for an existing aplicative

interpreter into the Omega structure.

" Use simple modifications to Omega grammar and semantics

to add an applicative component to the language.

The first option offers the potential for multiple eval-

uation functions. In one environment, an applicative

expression may be evaluated by LISP. Another environment

may use an A interpreter.

87

.- :.. .



This option was discarded for efficiency reasons.

Applicative expressions use pointers to Omega structures,

which implies shared memory access. Separate processes

would have to pass this information through an i/o cpera-

tion, such as a mailbox transfer or a UNIX socket [Ref. 26].

The second option was discarded because of complexity,

and the third selected for the same reason. Minor modifica-

tions to Omega itself allowed the rapid development of a

simple but useful apclicative mechanism.

The only completely new language feature needed was the

function definition, which has been shown in previous exam-

ples. A function definitioli takes effect at the same time

rule variables are bound.

The function definition performs the following actions:

" The function name is bound to a system-generated object

identifier and installed in the current directory.

" The function is separated into a pair, <fp, b>, with

formal parameters (fp) and a function body (b).

" The formal parameters are installed as free variables in

the local symbol table. The variables of the body are

then bound. These variables will contain the stack

frame offsets of their corresponding formal parameters.

" An allocation operator is linked to the <fp, b> Fair.

This operator is used to create space on the binding

stack for formal Farameter binding.

" The function structure is installed in the object table,

keyed on the object identifier.

The function definition is different from the other

features of Omega. The mechanism bypasses the "Define"

procedure to allow recursive definitions. Note that the

installation of the function name and object identifier inta

88



the current directory is done first. When the variables of:;'

the function body go through the binding process, recursive

references to the function name will be handled properly.

When a function call is evaluated, the function struc-

ture is retrieved from the object table. The allocation

operator is interpreted, and a frame created on the binding

stack for the functicn's parameters.

The actual parameters for the function call, previously

evaluated, are grouped together in a list. This list is

traversed, and the pointer for each actual parameter is

assigned to a slot in the current binding stack frame. At

the ccmjletion of this process, all formal parameters are

hound.

The function body is then passed to the central evalua-

tion function. At this point, the function body is simply

another rule, and it is processed by the rule evaluation

routines. The binding stack supports recursion in function

evaluation.-

This applicative mechanism has the advantages of

simplicity and uniformity with the Omega syntax. The func-

tion definition, however, does not conform well with the

other constructs of the language. Also, lambda expressions

and functionals--key components of an applicative language--

are not implemented.

Despite its limitations, a variety of interpreter .

utility functions were defined using this mechanism. These

functions are listed in Appendix C.

M. PEOCEDURES

With the evaluation and binding mechanisms already

introduced, the implementation of a procedure call mechanism

is simple. The steps for procedure call evaluation are:

89



" Evaluate the tupie participating in the procedure call.

This tuple is analogous to the actual parameters of a

function call, and is impleuented as a linked list.

" Generate a new relation object for the mailbox. This

object is linked at the beginning of the tuple list.

" Assert the tuple into its target relation. The asser- - ,

tion mechanism will queue any rules triggered as a

result.

" Execute the sweep function to evaluate any triggered

active rules. The sweep function will continue to

execute if there are rules to fire.

" Apply the matchfirst operation on the mailbox relation

to extract the response from the call. It is this

response that is returned as the result of the procedure

call.

Phile the procedure call gives a measure of control to

rule processing, the mechanism is still unstructured. The

philosophy of this implementaticn is "make the assertion and

see what happens." One possible consequence of the mecha-

nism is multiple assertions to the mailbox.

Consider the following active rule:

if *R (a) -> a ("Yes") , a ("Nc").

If triggered as a result of a procedure call, what is the

value returned by the call? The use of the matchfirst

operation and the IIFO implementation of relations will

return the last assertion as the response. Other assertions

are ignored. While this convention seems tractable, it is

implementation-dependent.

90

- ..



N. BUILT-IN FUNCTIONS AND PROCEDURES

While implementing the interpreter, the necessity for

"hard-wired" functions and procedures became apparent. By

hard-wired, we mean that these mechanisms are supported by C

functions coded in the interpreter, as opposed to an imple-

mentation in Omega rules or functions. These mechanisms are

built-in for purposes of efficiency. An example is the

Define procedure call.

In the LISP prototype, directories were implemented as

relations and the Define mechanism was implemented with

Omega rules. By using different representations for direc-

tories and relations, the Define mechanism has a different

character that requires a more specific implementat -n.

iames like "Define" are implemented as system objects.

Recall that a block of object identifiers is reserved for

system use. When a relation identifier is evaluated, system

objects are processed by a different set of routines: one

for system-defined relations and one for system-defined

functions.

The object identifiers for these relations and functions

are examined in a case statement, and the appropriate system

routine called. The routine for Define receives the parame-

ters (pointers) for the target directory, the name, and the

definition. The entry is then installed in the hash table

for the directory.

The steps required to add a system-defined function are

simple:

" An entry is made in thle object header file. This file

contains the definitions of reserved object identifiers.

" An entry is made in the case statement for the system

relation or function handler.

91



* A directory entry is predefined in the system initiali-

zation routine. This routine builds the system's root

directory.

This mechanism allows the access of system routines from

Omega rules. The procedures for NewRel and NewObj are

implemented in this way. Similarly implemented is the

Display procedure call, which passes a structure pointer to

the system pretty printer.

This system interface replaces the ubiguitous function

definitions of the LISP prototype. The process required to

implement a feature as a functicn call or procedure call is

the same; the mechanism may be selected that most appropri-

ately models the desired activity. Appendix B lists the

buiit-in functions and procedures for the system.

0. CANCEL OPERATIONS

The implementation of cancel operations relies on two

features of the interreter: the "matchnext" pointer into

a relation, and the binary backtracking algorithm.

In the backtracking algorithm, a successful evaluation

of the "nextcondition" pointer indicates that the remaining

conditions of the antecedent have all been successfully

evaluated, at this point in the recursion, a pointer to the

match position in the current relation is available if hack-

tracking is required. If the current operation is a cancel,

the "matchnext" pointer references the tuple that should be

deleted. This deletion is done directly by marking the tag

field of the tuple.

The tuple is not removed directly from the relation

because a pointer to the tuple's predecessor in the relation

list is not available. The alternative to marking is to

search the relation from the beginning, maintaining a pred-

ecessor pointer, until the carceled tupie is fonr d. The

relation could then be properly relinked.

92



Marking was used to avoid excessive searching of rela-

tions. Phen a relation is scanned on subsequent inquiries,

the tuples marked for deletion are removed. In this way,

the overhead of linear search is minimized.

MacLennan introduced the cancel operator as a notational -

convenience (Ref. 14: p. 18]. This simple construct demon-

strates several desirable qualities of a language feature:

" The notation is compact, yet readable. The cancel oper-

ation removes the necessity to code a redundant delete

operation. This saves space in the source file and in

the resulting parse tree.

" A potential source of error is removed. The relation

name and tuple pattern of delete operations normally

correspond exactly to their counterparts in a presence

test. It is easy to misspell identifier names in the

delete clause.

" Cancel operations allow optimization. The use of the

"matchnext" pointer reduces search time. When a delete

operation is evaluated, there is no easy way to link

this to searches conducted when processing the rule's

antecedent.

P. SEQUENTIAL BLOCKS

The implementation of the seuential block involves two

functional characteristics: (1) the sequential evaluation

of rules within the block, and (2) the nested scoping of

free variables.

Sequential evaluation is a natural consequence of the

interpreter's design. The irplementation evaluates the

actions of a rule's consequent in d left-to-right sequential

order. The rules within a sequential block are processed in

the same way.

93



1. A Single-Pass, Multi-Sccpe Symbol Table

The nested scopes of seguential blocks require an elabora-

tion of the binding process previously described. Scoping

is handled by the following stels:

" A block count is maintained during binding. As a

sequential block is entered, this count is incremented.

When the binding of the block is complete, the block

count is decremented.

" Variables have a block number and an offset. As new

free variables are encountered in a sequential block,

their offset is determined. The variable index,

contained in its head field, now zontains two elements:

a block number and an offset within the block.

Free variables are installed in a local symbol tahle

as they are encountered in the binding process. To

correctly process references to outer blocks, a multi-scope

symbol table is required. This symbol table is implemented

as a two stack structure: one stack maintaias the variable

reference pointers, the other stack maintains scope

pointers. As each variable is encountered, the symbol table

stack is searched from the current stack top to the base.

If found, the variable is replaced by the definition

returned. New variables are installed in the symbol table

Ly pushing the variable reference on the stack.

As a sequential block is entered, the stack top for

the preceding scope is saved on the scope stack. When the

hinding of the sequential block is complete, the predeces-

sor's stack top is restored from the scope stack. The scope

stack partitions the variabli reference stack into the

appropriate scopes. The structure is illustrated in Figure

5.8. This symbol table structure is similar to structures

used fcr conventional, block-structured languajes [Ref. 27:

pp. 325-327].

9

;-:,.,,:;_-",- ; ..- .. .._.- ,. .. ...-i,_. .,.-. . ..-. ..,.-. .:. ..- ' - ' " ' " ' - ,-



Va r able

Scope Reference Variable

St~ck 'St a ck Pointers

V ar ia b I e
Lookup

____ __________Path

Figure 5.8 Multi-Scope Symnbol Table.

95



AD-RI54 769 THE DESIGN AND IMPLEMENTATION OF AN OBJECT-ORIENTED 2?3
PRODUCTION-RULE INTERPRETER(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA H M MCARTHUR DEC 84

UNCLASSIFIED F/G 9/2 NL

Ehmmmhhmmum



A5S

1.25 112.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- I963-A

Ilk

.. . . . ...



2. Evaluation of Multi-Sco.e Bindins-

The dynamic evaluation of bindings requires modificaticn to

process the nested scopes of sequential blocks. The evalua-

tion function has the following additional features:

0 A global scope count. This is incremented when a

sequential block begins execution, and decremented when

the sequential blcck is comileted.

- Walking the links. The getbinding operation for the

binding stack must now take scoping into account. To do

this, the block number of the variable is compared to

the interpreter's global scope number. If these numbers

are not the same, then the correct stack frame is

located by traversing n links up the binding stack,

where n = variable block nunber - current scope number.

* Function and procedure context switches. Functions and

procedures require new scopes. This is accomplished by

the following sequence:

Scope_Save := currentScope

currentScope := 0

Execute the procedure or function

currentScope := ScopeSave

This process is similar to static link processing in conven-

tional block-structured languages, such as described in

[Ref. 19: p. 232-238].

This implementation does not require separate static

and dynamic links. Procedures and functions execute in

scopes separate from their points of invocation. A single

set of links in the binding stack is sufficient to support

multi-scope references and the calling chain of functions

and procedures.

96

............................... ".-



Q. SYSTEM INITIALIZATION

The system initialization sequence is similar to that of

the LISP prototype. The root directory is initialized with

the names of the systems's built-in functions and proce-

dures. As in the LISP prototype, the directory has a self-

referencing entry.

An Omega initialization file is parsed and evaluated. A

call to the sweep procedure propagates any rule activity

resulting from these rules. This initialization provides

the definitions for utility functions and procedures. These

utility rules are listed in Appendix C.

To augment the initialization file, the user may specify

an Omega file name on the UNIX command line. The inter-

preter will parse and evaluate these rules as part of the

initialization process.

Finally, the interpreter enters the read phase of its

read-evaluate-print-sweep cycle.

97

". .



VI. STORAGE MANAGEMENT

A. TEE STORAGE PROBLEM

The basic storage unit for Omega is the cell. These

units are allocated dynamically, to support changing list

structures, temporary results from computations, and

changing relation contents. Dynamic memory allocation and

dynamic typing make relation manipulation a flexible but

complex activity.

The task of freeing unneeded storage ,juickly became too

complex for explicit memory reclamation in the interpreter

design. By explicit memory reclamation, we mean that, at a

certain section of the code, it can be determined that a

cell is no longer needed and a call to a reclamation routine

can be immediately made.

Reclamation is complicated by memory sharing. This
sharing is a natural consequence of the design of Omega, and

comes from pattern-matching and reuse of active rule

structures.

Consider the following rule:

if R1(x), -R2(x) -> R2 (x).

When tuples are asserted to the relation R2, two possible

strategies may be used:

* Cory the structure. The complete tuple structure is

copied, and the ccpy added to the R2 relation.

* Share the structure. The match operation returns a

pointer to the tuple in R1. It is this pointer that is

bound to the variable x, and available for inclusion in

R2. If the structure is nct copied, the pointer added

tc R2 refers to the same structure as that in R1.

98

I



Consider another rule:

if *R1(1) -> R2 ([1, 2, 3)).

The assertion to R2 adds a tuple generated by a list denota-

tion in the rule -- this denotation is linked into the rule

structure. As in the previous example, the assertion mecha-

nism may choose to copy the structure or share the

structure.

Structure sharing is preferable for two reasons: space

and time. Structure sharing obviously reduces storage

requirements by allowing multiple references to the same

storage areas. Of more importance in this implementation is

a reduction in execution time. The tuples of a relation may

be arbitrarily complex list structures. Copying these

structures coutinually is an execution overhead that struc-

ture sharing avoids.

B. STORAGE ALLOCATION AND THE UNIX VIRTUAL ADDRESS SPACE

The ispiementation uses the storage allocator provided

in the UNIX C library. The allocation routine is malloc.

The reclamation routine is free. [Ref. 26]

To understand how these routines work, a description of

the UNIX virtual memory map is useful. An executing process

has its virtual memory divided into three lojical areas: a

text segment, a data segment, and a stack segment [Ref. 26].

The text segment contains the program code. This
segment is normally shared and re-entrant. The stack

segment is used for the system's runtime stack. The stack

begins at the highest possible virtual address, and grows

down. The stack area is automatically extended as required.

The data segment consists cf two sections: initialized

and uninitialized storage. The initialized storage area
contains statically allocated storage declared in the

99

.. . . . . .. . . . . . .. -

. .. .' .



progjram. In this implementaticn, the binding stack, symbol

table stack, and rule queues are implemented as arrays.

Their storagc allocation appears in the initialized storage

area.

The uninitialized storage area is used for dynamic

memory allocation. Calls to malloc will extend this area.

Calls to free will reclaim, compact, and free virtual

storage where possible.

The maximum sizes for the stack and data segments are

system-dependent and locally tailored to achieve desired

performance goals. The system used for this work has the

followiny limits set:

data segment -- 6112 kbytes

stack segment -- 512 kbytes

This organization is illustrated in Figure 6.1

Malloc allocates memory aligned on word boundaries.

Structure storage requirements are rounded to the next four

byte multiple based on the 32 bit word size of the VAX. The

consequence of word alignment is an additional space
requirement for cells. Even though the design only speci-

fies 8 bits for the tag field, this requirement is rounded

to 32 bits. A cell has 12 bytes allocated, with 3 bytes of

storage (25 percent) unused.

C. IGNORING STORAGE MANAGEMEN

The interpreter was initially implemented with no

storage management strategy. Cells were allocated when

necessary, but no attempt was made to free excess storage.

This policy proved to be unsatisfactory. A lengthy test

program exceeds the system data segment limits. On one

test, the interpreter ran for 10 minutes before exhausting

its available memory. At this point, 384,159 cells had been

100

1 o o i: -

. . . . . .. .~~~~~~~~~~ .............................



High
SVi rtualI
Add resses

Stack
SSegment Stack
Growth --------__ __ __ Seament

DData

............

Growth Uinitialized
..................... ..... .....

. . . . . . . . .. .~ . . . . . . ... . . . .



allocated using 4.5 Mbytes of virtual memory for cell

storage.

It is possible, but not necessarily desirable, to

increase the data segment limits for a process. The data -

segment limit used during testing--6 Mbytes--should be more

than sufficient for this implementation. A large,

constantly growing process also suffers from excessive swap

space requirements and a high page fault rate.

These factors point out a familiar lesson: while virtual

storage systems allow a large address space, storage manage-

ment is still a major consideration. These policies are

particularly important in a multiuser operating system such

as UNIX, where excessively large processes can have an

adverse impact on the user community.

D. OMEGA-SPECIFIC STORAGE OPTIMIZATION

Approaches were considered which reduce the storage

requirements of the system by focusing on specific charac-

teristics of the implementation. Two areas for optimization

were: (1) eliminate expression evaluation during pattern-

matching, and (2) reclaim cell storage for the initial

tuples added to relations.

The pattern-matching routines are executed frequently as

rules are selected for test. An active rule structure is

reused, so intermediate results must have separate storage

allocated. Consider the following rule:

if *IsManager(a, x), Position('Manager: " + x) ->

a ("is Manager")

else if *IsManager(a, x) ->

a ("is not Manager").

In the Position inquiry, the "1+" represents string concat-

enation. To evaluate this rule, a new tuple must be

102

. .. . .



generated to record the results of the concatenation opera-

tion. This tuple is then used in the inquiry. Cells such

as these may be generated frequently during rule testing.

A possible optimization to this requirement is to

restrict expressions in the antecedent of a rule to

constraints. Strict pattern-matching is supported primarily

by the binding stack and little additional memory is

required. If expressions are limited to constraints, and

constraints shifted to the end of a list of antecedent

conditions, rule failures will occur before the constraint

is evaluated, minimizing dynamic memory allocation. Tests

conducted using this strategy showed a decrease of cell

allocation ranging from 10 percent to 40 percent.

While this strategy reduces memory requirements, the

basic issue of storage reclamation is not solved. The

restriction on tujle expressions is significant--the

programmer must now remember this as an exception to syntax

and semantics.

One possible alternative tc the above strategy is the

use of a separate storage allocator and reclamation routine

for intermediate, temporary storage. This approach was not

pursued because a more general solution to the storage

management problem was needed.

Certain types of relations tend to be small, with a

cardinality of 1 or 0. Consider the following rule: .

if *Push(a, x, 1) ->

a (I x: 1J).

This rule executes a Push operation by cons'ing the member x

onto the list 1.

While multiple agents may have requests to Push active

at the same time, a typical situation is where Push contains

a single request which is serviced and promptly removEd. A

simple strategy optimizes storage for such relations.

103

. . . . . .. . . . . . . . .,

• -.' " ' -.' ." . .'. -i '. ( : .. -.: :' . i, --- -.-. .- ---.. .-. ., ..' - -. .. . .- .... . ' _ -. ." .: .- ..: -. ., -



A relation list has a collection of cells which we refer

to as tuple headers (illustrated in Figure 5.4). These

headers link pointers into the relation list which refer to

the actual structures of the tuple members. While the

pointers may change, the number of header cells is dependent

on the tuple cardinality. This cardinality tends to remain

fixed after it is dynamically determined.

When the first tuple is added to a relation, the header

cell requirements are allocated. A cancel will flag this

tuple as deleted by marking the tag, but the tuple will

remain linked into the relation list. A subsequent asser-

tion may then reuse these header cells for the next tuple.

This strategy allows a simrle optimization of relation

storage requirements. Early tests of this strategy indicate

a potential 10 percent reducticn in cell allocation. The

strategy postpones memory exhaustion but doesn't prevent it;

a more general storage management policy is still required.

E. REFERENCE COUNTING

Refeience counting was selected for cell reclamation.

This technique is described extensively in the literature.

Our algorithms are based on the material presented in

[Ref. 19: pp. 440-4421 and [Ref. 28: pp. 383-384].

The implementation of reference counting required the addi- -

tion of a reference count field in the cell structure and

some simple management routines.

Since 25 percent of cell storage is wasted, the inclu-

sion of a reference count field bears no additional cost.

The reference count field is i~ilemented as a 16 bit signed

integer, although a smaller field would be sufficient.

104

. •L ,. & _ _ . ._ _ _. . _ . . . . . .,



The reference counting routines are as follows:

*Incr~ef -- Increment a cell reference count:

IncrRef Lp)

if p Nil

return;

else

pa~refcourit : ~arefcount + 1

endif

end.

*DecrRef -- Decrement a cellJ reference count:

Decr~ef p]

if p,= Nil

ret urn;

p~refcount :=parefcount 1

if parefcount <= 0

if p@) is a string cell

free string storage

else if p@) is a list cell

D ec r Re f p a hea d

D ecr Re f p at a i1

endif

free p

endi f

end DecrRef

When a cell for an atom is created, its reference count

is initialized to zero. Reference counts are altered when

pointer references change. This occurs in the following

routines:

105



* iiewCell -- Create a new list cell. The algorithm is:

NewCellLx, y]:

p :=malloc[celisizc]

p~refcount :=0

p~head : x
p~tail :~Y

IncrRef[%~]

IncrRef( y]

return p

end NewCell

*SetHead -- Change the head Eointer for a cell. This is

the rplaca funct-ion of LISP:

Setflead~x, y]:

in crRef( yj;

DecrRef[ x~head J;
x~bhead :~y

end SetHead

*SetTail -- Change the tail Eointer for a cell. This the

rplacd function of LISP:

IncrRefr y

DecrRef[ x~tail]

x~tail :zy

end SetTail

Eeference counts also need to reflect the references Of

a recursive implementation. To illustrate this point,

consider the following interpreter routine to iirplement

multiplicdtion:

10C



mult[x, y]

IncrRef[ x]

IncrRef[ y]

temp := MakInt[xEhead * y~head]

DecrRef[x]

DecrRef[y]

return temp

end Mult.

Before its invocation, the arguments to Mult have been

recursively evaluated. If these parameters involved expres-

sions, then either parameter may be an intermediate result.

The IncrRef operations reflect the Mult routine's references

via its formal parameters. After completion of the multipli-

cation, the references are decremented with DecrRef, which

will free intermediate results that are no longer required.

Reference counts must remain consistent, so an analysis

of local references throughout the interpreter was required.

A point of interest is the binding stack: the bind operation

must increment a cell's reference count while the unbind

operation must decrement the reference count. The determi-

nation of these specific reference counting points proved to

be a tedious process, although still more tractable than

explicit reclaration.

Reference counting offers the following advantages:

* Simplicity. The data structures and algorithms are

supported by the existing recursive interpreter design.

" Immediate reclamation. Unneeded storage is reclaimed

immediately.

" Uniform computational requirements. The overhead of

storage reclamation is spread out over the execution

time of the interpreter.

107



TABLE IIIF ~Omega fielation Characteristics: The Sieve

Sample Fregluency: 149

Characteristic Mean Std Dev Mode

Relation 1.0 0.0 1.0
cardinali ty

Tupie 2.6 0.5 3.0
car dinality

Object Table Collisions:
Co 1lision List Length Frequency

1 26914

TABLE XIIII

Execution Times: Quicksort

System Execution Time (secs)

Oniega 142
Pro log 27
LISP

Interpreted 81
Compiled 40

Comparative benchmarks were not written for this

problem, and timing comparisons are not shown. The execu-

tion Frofile for the simulation is given in Table XVII, data

type frecuencies are shown in Table XVIII, and relation

statistics are shown in Table XIX.

121

. . . . .. .. .. .. .. . . . . . . . .



TABLE X

Execution Profile Summary: The Sieve

% Execution No.
Time Calls Nam E Descr

13.7 118635 eval evaluation function
4.2 16462 tuil eval tuple/args
4.0 29425 ma loc memory alloca ion
2.9 28169 newcell create new cell
2.7 1 2.48 fnarl apply fn to args

TABLE XI

Data Type Frequencies: The Sieve

Type Freguency % of Total

Lists
Op List 1990 7
Data List 20372 72

Atoms
Integer 3266 12
String 1146 4
Boolean 423 2
Cbject 232 1
Variable 761 3

5. A Simulation Program

This example is a Monte Carlo simulation of a three

node message switching network. It is a more complex

program than the preceding benchmarks, and the interFreter

exhibits a wider range of activities. The source code for

the simulation rules is listed in Appendix E.

120



TABLE VIII,

Omega Relation Characteristics: Factorial

Sample Frequency: 2078

Characteristic Mean Std Dev Mode

Relation 1.0 0.0 1.0
car dimnality

Tuple 2.0 0.1 2.0
cardinality

Object Table Collisions:
Collision List Length Frequency

1 43126

TABLE IX

Execution Times: The Sieve

System Execution Time (secs)

Omega 19
Prolog 11
LISP

Interpreted 9
Comiled 3

The timing results are shown in Table XIII. These

times are based on executing an ascending sort on a list of

150 integers initially arranged in descending order (an

0(n2 ) undertaking for Quicksort). An execution profile

summary is given in Table XIV, and Table XV contains the

data type frequencies. The relation characteristics of the

benchmark are shown in Table XVI.

119

-. '.-..



TABLE TI -
Execution Profile Summary: Factorial

%Execution No.
Time Calls Name Descr

14.8 155457 eval evaluation function
3.7 32059 malloc me~mory allocation
3.2 24001 binop binary operation
2.1 30346 newcell create a new cell
1.9 9097 tupi eval tuple/args

TABLE III

Data Type Frequencies: Factorial

Type Frequency % of Total

Lists
Op List 2001 7
Data List 9777 32

Atoms
Integer 15530 51
String 1607 5
Boolean 502 2
Cbject 226 1
Variable 720 2

4. Q~icksort

This benchmark exercises the Omega procedure call

and pattern-matching mechanisas. The Quicksort splits

lists, recursively sorts the sublists, and combines the

results. The Prolog version is taken from the example given

in [Ref. 21: p. 1147].

118



TABLE IV

Data Type Frequencies: Pattern-matchingI

Type Fregluency X of Total1

Lists
Op List 2053 11
Data List 8815 49

Atoms
Integer 2028 11
String 1141 6I
Boolean 3004 17
Cbject 235 1
Variable 7474

TABLE V -1
Execution Times: Factorial

System Execution Time (secs)

Omega 23
Prolog 99
LISP
Interpreted 12
comnplied 4

performed by the applicative comp~onent. The Prolog version

is based on an example given in (Ref. 21: p. 157].

The timing results for this benchmark are shown in

Table IX. These times are based on a sieve list of 350 inte-

gers. A summary of the omega execution profile is given in

Table X, data type distributions are given ini Table XI,~ and

relation characteristics in Table KII.

117



TABLE II 1
Execution Times: Pattern-matching

System Execution Time (secs)
-- - -- ---- ----

Ome a 212 I
Prolog 102
LISP

Interpreted N/ACompiled 230

TABLE III

Execution Profile Summary: Pattern-matching I

Execution No. '
Time Calls NamE Descr----------- -------------------
30.5 2021016 unify pattern-matching
10.0 1010985 equ list equality test
5.7 5035 match s linear list search
4.4 100400 FreeBnd reset frame bindings I
0.9 70019 eval evaluation function .II ..

Omega type distributicn for this benchmark, and Table VIII

shows the relation characteristics.

3. A Prime Number Sieve

The third benchmark is a prime number generation

program. The benchmarks use a sieve algorithm to remove

prime number multiples from a list of numbers. This is an

interesting benchmark for Omega in that the sieve is driven

by rules, but the major computation--removing multiples--is

116



execution percentage for a routine is shown to be 5 percent,

its relative impact is approximately 10 percent in unpro-

filed execution.

1. A Pattern-Matchina Test

This benchmark asserts a common tuple in two rela-

tions, followed by 1000 disjoint assertions to each. A

pattern-match search finds the common tuple. The search

requires more than 2 x 106 pattern-match tests, a worst-case

performance.

The Prolog version is similar, with assertions made

to the Prolog rule base. Prolog searches the rule base from

top to bottom. The common clauses are asserted and subseq-

uent clauses placed before these using the asserta predicate

[Ref. 21: p. 105].

We include a LISP implementation of a nested loops

search, although this is a simplification of the pattern-

matching process of Omega and Prolog. Only a compiled LISP

version was tested because an interpreted version is at an

unfair disadvantage when competing with the direct implemen-

tations of this process.

The timing results for this benchmark are shown in

Table II. A summary of the Omega execution profile is shown

in Table III, and type information is shown in Table IV.

Relation characteristics are not shown for this test.

2. Factorial Functions

This benchmark exercises the applicative component

of the interpreter. A recuisive factorial function is

executed 500 times, with each call computing Fact[15].

Larger factorials are not used because both Franz LISP and

Omega experience integer overflcw in their computation.

Timing results are shown in Table V, and an Omega

execution profile summary in Table VI. Table VII shows the

115



i n n l I ! .............. -....... -. : ..- """ -' .

3. Omeqa Statistics

Besides benchmark and profiling measurements, addi-

tional information was collected to begin a characterization

of Omega program behavior. This information included:

" Data type frequencies.

" Hash collisions in the object table.

" Relation characteristics: relation cardinality and tuple

cardinality.

The last two areas are dynamic characteristics which change

as rules fire and alter the database. These measurements

were taken using a sampling technique: object table meas-

urements were made immediately after each rule evaluation.

B. TEST RESULTS

Benchmark programs were tested using two different

versions of the interpreter. The versions were: -

" The standard interpreter without reference counting.

" A version compiled with the gprof profile option and

containing object table and cell measurement routines.

The overhead of measurement and profiling necessitated the

separate compilations.

The execution profiles produced by gprof are extensive.

These are summarized and included in profile summary tables,

with the profiling information for the five most expensive

(in execution time) routines shown. The percentages given

in these profile summaries are taken directly from the

profile reports, and reflect the large overhead of the

profiler. The profiling routines typically consumed about

50 percent of the total execution time. Thus, if an

114



2. Benchmarkinq"

In this chapter we present a collection of simple

benchmark programs. The performance of the Omega inter-

preter is compared to interpreted Franz LISP, compiled Franz

LISP, and the C-Prolog interpreter. The C-Prolog inter-

preter is a VAX Prolog implementation descended from the 2
DEcsystem-10/20 Prolog system [Ref. 31 and 32]. These

systems are all written in C.

These benchmarks are nct intended as an evaluation

of C-Prolog or Franz LISP, and no effort has been made to

write efficient Prolog or LISP. Because these systems are

well-engineered and efficient in what they do, we present

these benchmarks as an indication of the current progress of

our implementation. The source code for the benchmarks is

included in Appendix D.

Timing information was cbtained through calls to the

date function of the UNIX command shell [Ref. 26]. The

following Omega rule demonstrates this techniiue:

if *qTest (a) -> {

System ("date") ;

Qsort(IotaR[l1, 150];

System ("date"] ;

The date function returns the current system time to the

nearest second. The test systems all possessed a function

similar to the System procedure shown above, and the over-

head of executing such a system call should be consistent

between interpreters. The timing granularity of one second

required establishing benchmarks of sufficient duraticn to

provide meaningful ccmparisons.

113

1 j

• ". -. '- .; - " ' -'" " " - " " "- -' ' '- " ",-" " ' - " -" ' - . ..



macro implementation results in a savings of 4

instructions--a substantial improvement given the high

Function Implementation

C statements VAX instructions

x = tag(p); pushl -8(fp)calls tag
movl EO,-4 (fp)

ta p
( cvtbl *4(ap),rO
return (p->tag) ; ret

Macro Implementation

C statements VAX instructions
# define tag (x) (x->tag)
x =tag(p) ; cvtbl *-8 (fp) ,-4 (f p)

Figure 7.1 Code generation for TAG function.

frequency of tag extraction during interpretation.

Replacing procedural implementations with macros is

not a panacea. Macro implementation has at least two

disadvantages:

* Debugging is more difficult. Macros are textually

expanded by a preprocessor before compilation. The

errors that occur are unusual, do not correspond well

with source code, and may produce unexpected effects.

* Profiling information is lcst. An execution profile

pointed out the expense of the tag function. Once coded
as a macro, the cost of this code sequence is absorbed

in the routines where the macro is expanded.

112

. . -. •



VII. PERFORMANCE EVALUATION

A. METHODOLOGY

A progressive series of programs were developed to test

features as they were implemented. These programs assisted

in determining the interpreter's reliability and execution

characteristics. Execution profiles and comparative bench-

marks were used to evaluate behavior and performance.

In this implementation, performance was subordinate to a

clear, workable design. Performance optimization efforts

were started only after the design and implementation of a

series of features were complete, with all test programs

successfully executing.

1. Execution Profiling

The gprof call graph execution profiler [Ref. 26]
was an important tool for evaluating weak points in the

performance of the interpreter. Execution profiles pointed

out some immediate inefficiencies in the implementation that

could be easily remedied.

A simple example is the tag function. Initially, a

function was used to extract the tag value from a cell. The

rationale behind this implementation was information hiding:

the details of the cell structure were accessible to only a

few handling routines.

Execution profiles on pattern-matching showed this

implementation to be costly: the interpreter spent over 10

percent of its execution time extracting tags. To solve

this problem, the function was rewritten as a C macro

[Ref. 22: p. 86]. The VAX instructions generated by the

alternative implementations are shown in Figure 7.1. The

111



field containing a cell offset to the next cell in the

structure instead of a full pointer. An escape mechanism

allows full pointer access where necessary [fef. 30: p.

266].

The above techniques are mertioned as potential improve-

ments in the current allocation scheme. These techniques,

like garbage collection, require more explicit control of

storage allocation than is offered by the current design.

A potential storage savings can be obtained with the

current tagged cell structure ty embedding the tag in the

tail field. This is a simple modification that requires

masking the tail field value to obtain the tag or tail

pointer. If a reference ccunting field is not used

(assuming garbage collection instead) this technique

reduces the current cell requirement to 8 bytes, a 33

percent reduction. Using this encoding scheme, the tail

pointer is restricted to a 24 bit range.

110

. . .
." , .- - .". ,'. i ." . . ' . . . .. " '.<. :.. ?-i.< . < : .. ' .< -..- , i'. -.- .'., - '



Accessing intermediate results is complicated by the

present recursive implementation. A possible solution

is to maintain a stack specifically for referencing

these sL..-ctures during a mark phase.

* Cells re~luire a mark bit. The current cell structure

provides an 8 bit tag. Bits 0 through 5 are used for

the tag value, bit 7 is used as a flag on certain

structures. Bit 6 remains available for marking

purposes.

* Complete storage access is re(uired for the sweep phase.

This immediate access implies that the memory allocator

must be managed by the interpreter. To maintain a

reasonable virtual memory image, this allocator must

obtain and release memory on page boundaries, using

compaction whenever possible.

G. REDUCING CELL STORAGE

The current 12 byte requirement for cell storage is

large. Since the cell structure is based on the LISP model,

numerous LISP techniques may be used to reduce this

requirement.

LISP structures have fewer distinct cell types. Instead

of encoding tag information directly, storage for cells of

different types are often allocated from noncontiguous,

separate sections of memory [Ref. 29]. In this way, the

address range of a pointer Frovides the necessary type

information.

List linearization techniques are another way to reduce

storage requirements. These techniques attempt to maintain

cells, normally linked via their tail pointers, in contig-

uous storage. This allows a reduced tail field size, with a

109

,<::_...................................................................i " i~~i, ,i' . i- ' .- ' ', i< "' '



A major limitation of reference counting is the eiffi-

culty in reclaiming cyclic stractures. The design of Omega

prevents this problem. Only "pure" lists are used and

rplacx ojerations aro not defined.

Reference counting places A computational burden--

incrementing reference counts--at a sensitive point: memory

allocation. The execution penalties associated with refer-

ence counting are examinel in the next chapter.

F. GARBAGE COLLECTION

Garbage collection was not Eelected as a storage manage-

ment strategy because of the complexity of implementation.

The malloc and free routines offer a predefined storage

allocation system, while a garbage colleztion system

requires an explicit design of these components.

The development of a garbage collector would be an

interesting extension to the current design. Some of the

considerations for a irark-and-sweep garbage collector are:

* Structure access is required for the mark phase. This

phase needs to access the following interpreter

structures:

1. The object table.

2. The active rule table.

3. Rules under evaluation by the console command

processor.

4. Rules under evaluation by the file command

processor.

5. Intermediate results generated during rule

evaluation.

108

i' " - "-. ' ", '." " " " " " " ""' ""'"' ." - ." "-" ." -" -" " , '", ". "" - . "". -" - -. "-- -" " '.",- -" " ' ' '''" " "



TABLE XIV

Execution Profile Summary: Quicksort

-% Execution No.
Time Calls NamE Descr

13.7 717396 eval evaluation function
5.1 216385 unify pattern-matching
2.7 151009 malloc memor allocation
2.6 91975 tupl eval tuple/ar s
2.0 143777 newcell create new cell

I

TABLE XY

Data Type Freguencies: Quicksort

Type Frequency % of Total

Lists
Op List 1753 1
Data List 121627 85

Atoms
Integer 170 0
String 6820 5
Boolean 11777 8
Cbject 533 0
Va--able 808 1

* C. IMPACT OF REFERENCE COUNTING

The timing information presented previously was taken

without reference counting. A separate version of the

interpreter was compiled with the reference counting

routines included, and separate measurements taken. The

impact of reference counting on execution speed is shown in

Table XX. A summary of the Quicksort benchmark, with refer-

ence counting implemented, is shown in Table XXI.

122

0<

- : * -* * .**°~-



TABLE XVI

Omega Relation Characteristics: Quicksort

Sample Frequency: 35704

Characteristic Miean Std Dev Mlode
Relation 1.0 0.0 1.0

car dinality

Tuple 4.9 0.7 5.0
cardinality

Object Table Collisions:
Collision List Length Frequency

1 785578
2 264

f TABLE XVIIExecution Profile Summary: Simulation%Execution NoTime Calls Nam4E Descr9.4 21136J eval evaluation function3.3 63126 unify pattern-matching2.9 63782 malloc memory allocation2.1 1221 write system i/o1.8 35220 lookup hash table lookup

D. DISCUSSION OF RESULTS

1. Performance Bottlenecks

The measurements presented in the preceding sections

provide some insight into the effectiveness of the present

123



TABLE XVIII
Data Type Frequencies: Simulation

Type Fretuency % of Total

7- . Lists
Op list 6125 11
Data List 26053 47

Atoms
Integer 2147 4
String 6340 11
Boolean 10124 18
Object 2390 4
Variable 2290 4

TABLE XIX
Omega Relation Characteristics: Simulation

Sample Frequency: 9972

Characteristic Mean Std Dev Mode
- - -- - - - - - - - - - - -

Relation 5.7 6.3 1.0
car din ali ty

Tuple 2.3 0.7 2.0
cardinali ty

Object Table Collisions:
Collision List Length Frequency

1 404828
2 180974
3 26152

* 4 4552
5 2761
6 11

implementation. The execution speeds for the Omega bench-

marks are consistently slower than C-Prolog and Franz LISP.

124

0. .o .



TABLE XX

Reference Counting and Execution Times

Benchmark w/o Ref Counts w Ref Counts %Incr

Pattern 212 223 5
match

Factorial 23 30 30Sieve 19 25 32Quicksort 142 181 27  f

TABLE XXI

Profile of Quicksort with Reference Counting

% Execution No.
Time Calls Name Descr

9.9 717396 eval evaluation function -
4.0 216385 unify gattern-matching .
3.7 421556 Decr ecrement ref count .
3.3 541624 IncxRef increment ref count
2.4 151009 malloc memory allocation

This performance is shown in both applicative expression and

rule evaluation.

The central evaluation function, eval, consumes the

majority of execution time. This is not surprising given

the present recursive implementation: eval is called

directly or indirectly in most cperations. Embedded in eval

are accesses of the binding stack for atom evaluation in

tuples and argument lists.

The high frequency of calls to eval suggest its

design as a potential point for optimization. This

125

. . . . . . . . . .



optimization may include a reduction of unnecessary recur-

sive calls to eval. When evaluating interior, nodes of a

rule tree, the sons of a node are always passed to eval,

which will decode the tag and call the appropriate subordi-

nate routine. If the required subordinate routine is known

at the parent node, the intermediate call to eval may be

omitted.

Another alternative is to replace the recursive eval

with an iterative version. This reguires the management of

an explicit operand stack, and involves a major redesign

effort. The management of an operand stack would, however,
solve an implementation problem for garbage collection

discussed in the previous chapter.

The pattern-matching routine becomes significant in

extended rule processing, as shown by the Quicksort and

network simulation tests. We ncte similarities between eval

and the pattern-matching routine unify:

* Both routines are heavily exercised.

9 Both routines access the binding stack when evaluating

free variables.

* Both routines are recursive.

The recursive algorithm for pattern-matching is simple and

elegant. An iterative version would be more complex, but

may provide a performance gain.

A final area for performance improvement is storage

management. The storage allocation routine, malloc, and

routines that call it, such as newcell, consistently rank

high in the execution profiles. Our implementation of

reference counting for storage reclamation proved to be

expensive, with a 30 percent increase in execution time for

extended tests. These results make garbage collection

appear to be a desirable alternative. Hardware support for

reference counting could also provide a solution.

126

• p.



2. Relation Statistics

The statistical information gathered on relations

provides some evidence to support previous conjectures:

" Small relations are commonplace. The mode for relation

cardinality was 1.0 in every test. These statistics

will vary depending on the application, and generaliza-

tions can't yet be made based on the limited tests

conducted.

" Object identifiers hash well. The object table colli-

sion results indicate an even distribution of hash

values. Collisions in the object table slow down rela-

tion list lookup, an important part of the synchronous

procedure call. Only in the simulation test did hash

table lookups begin to become significant in the execu-

tion profiles. This coincides with the increased number

of objects generated and an increased collision

frequency in the object table.

127



VIII. OBSERVATIONS, RECOMMENDATIONS, AND CONCLUSIONS

A. OBSERVATIONS ON CMEGA

1. Proqr~amina Experience

Our experience with Omega programming is reflected

in the rules listed in Appendices C-E. We believe these

examples demonstrate a variety of applications which have

simple solutions in Omega rules.

An important body of rules are the system utilities

listed in Appendix C. Included are relation copying utili-

ties, an extension to the system pretty printer, and a help

facility. The last applicaticn shows a simple use of the

System procedure call to list help files at the user's -

terminal. This technique could be extended to use the Omega

interpreter as a rule-based driver for the UNIX command

shell.

The longest and most significant application is the

simulation model listed in Appendix E and profiled in the

previous chapter. We include this example as an event-

driven, state-transition problem which is readily expressed

as rules of the form:

if Clock(tl), *Event(tl, e) ->

ProcessEvent[e}.

2. Omeqa and Prolo.

The benchmarking examples of the previous chapter

presented rules in Prolog and Omega that are similar in

form. Both these languages use pattern-directed invocation

for rule selection, and both languages are intended for

128



general programming applications. Despite similarities,

these languages have fundamental differences.

Omega uses forward inference, Prolog uses backward

inference; Omega programmers and Prolog programmers think

in different directicns. To design an Omega rule, one uses

the train of thought: "Given the current state of the

system, generate the next state." A Prolog rule is designed

with the thought: "To prove this goal, it is necessary to

prove these subgoals." Prolog relies on a theorem-proving

approach, Omega on a data-driven approach.

These opposite control strategies are reflected in

different implementation techniques:

* Prolog recursively evaluates its rules from a goal

stack. This technique often allows intermediate storage

allocation from stack structures. This method of allo-

cation and reclamation is simpler than the heap alloca-

tion used by Omega and LISP, and results in a faster

cons operation [Ref. 32: p. 114). This performance is

reflected in the Quicksort benchmark of the previous

chapter.

* Theorem proving requires backtracking. Prolog selects

rules from its rule base to prove subgoais. If multiple

rules for a subgoal are present, they will be selected

and tested until the subgoal is proven or all possible

rules fail. Backtracking tetween rules requires a more

general pattern-matching technique in Prolog than Omega.

In Prolog, variables may he bound to variables. In

Omega, a rule fires or it doesn't--there is no reguire-

ment for backtracking between rules, and variables are

bound only to objects and values in the database.

Programming problems may be solved by either forward

or backward inference. To illustrate this point, we use the

129

..................... ... ... . ... ... ... ... ... . .

. .. .. ,,



missionaries and cannibals problem [Hef. 33: p. 51), a

simple state-space search examile. The Omega and Prolog

rules for this problem are listed in Appendix D.

In the missionaries and cannibals problem, a simpli-

fied description of the Omega rules is:

if *State(x, path), GoalState[x] ->

Displayn [path)

else if *State(x,path) , IslegalState[x],

-'member[x, path] ->

GenerateNewStates [x,[ x: path])

else if *State(x,path) ->.

Given a starting state, the Onega rules will generate all

possible new states that may be reached from that state.

This process continues until all combinations of legal

states have been tested. No backtracking is required in

these rules--successful states continue to fire, and unsuc-

cessful states are removed from the computation. We main-

tain a list of previous states in the variable path to

prevent cycles.

A simplified version of the Prolog rules for this

problem is:

goalState (X,Path)

finalState (X),

print (Path) .

goalState (X,Path)

not member (X,Path) ,

legalState (X),

possibleNextState (X, Y),

goalState (Y,[ XI Path])

In the Prolog version, the predicate possibleNextState will

bind the variable Y to a new state that can be reached from

X. In its attempt tc "prove" the starting goal state, all

130

. . .. .. . . . . .



possitle state combinations wil be generated by back-

tracking on possibleNextState. We observe Prolog exploring

new states through backtracking where Omega relies cn the

generaticn of new states in the database.

Certain classes of problems lend themselves well to

the natural recursion inherent in Prolog. The Quicksort

rules of Appendix D are a model of brevity and clarity. We

suggest that event-driven or data-driven applications, such

as the simulation example of Appendix E, are better

described through Omega. Omega was developed as a high-

level language for programming environment description and

implementation. This family of applications are represented

more naturally through forward inference descriptions.

3. The Production Rule as a Proqramminq Paradigp

Both Omega and Prolog use the production rule as the

programming paradigm. How easy is it to program with

production rules? We consider this to be an application-

dependent quality. A problem can be effectively described

with production rules if the following characteristics

apply:

* The problem can be decomposed into a set of small,

cause/effect subiroblems. Each subproblem is described

by a single rule or small set of rules.

* The subproblems are independent, and reguire minimal

communication between rules.

The independence of rules allows the programmer to

add or remove rules without concern for the impact of these

changes on other rules in the active rule list. In our

current design, the rule denctation is the unit of rule

organization. Thus, a goal for a manageable rule structure

is independence of rule denotation sets.

131

.- , ,--, &,.,. ,. ...................... ............• . ....... ........... "... .... •



A significant limitaticn of most production rule

systems is a lack of meaningful semantic com.osition, the

inability to compose a complex action from a collection of

previously defined simpler acticns. Rosenchein writes:

(In production systems tests and transformations are
sophisticated and are designed to implement constructs
found in various applications. However there is gener-
ally no way to symbolize comosition o operations in a
transparent wal. Complicated tests and actions have to
be simulated by groups of rules whose coordination is
not symbolized in the proqram or graced with a mnemonic
name. The more ccmplicated the tests and actions, the
more severe the coordination problems. This is typical
of programs written at one level of abstraction, no
matter how sophisticated the primitive operations.
(Ref. 34: p. 535]

Omega provides some pctential solutions to this

problem. The object-oriented approach of the language

allows the partitioning of related data and rules through

directories and classes. This organization of the name

space provides the first step in a hierarchical composition

of rule activity.

The second step is the procedure call mechanism.

This mechanism serves as an invccation trigger for a collec-

tion of rules, with a method of integrating the outcome from

their actions into more complex expressions. The utility of

this mechanism is indicated by its widespread use in the

examples presented in this thesis.

Although our programming examples are dependent on

the procedure call, we note Eotential problems with the

mechanism:

* The actions associated with a procedure call may not be

obvious. The procedure call asserts a tuple to a given

relation, and extracts the response from its mailbox.

Multiple rule denotations may use the procedure's rela-

tion, and fire as a result of the procedure assertion;

the possibilities for subtle side effects are

132



significant. The final effect of a procedure call can

only be determined from an analysis of all rules associ-

ated with the procedure's relation name (as defined in

its directory).

* The procedure mechanism does not enforce parameter

checks. The tuple asserted in a procedure call is anal-

ogous to the actual parameters of a conventional proce-

dure call. In Omega, there is no parameter counting or

type checking. Consider the following rule:

if *R(a, x) -> displayn[xJ.

If the user mistakenly enters "R(100) ," the assertion

will be made but the rule will not fire because of a

pattern-matching failure. The procedure call "R{100,

200}" will fail for the same reason. In both of these

situations, no error indication will be given.

There are programming technijues that correct the

last problem. If we code the rule as:

if *R (a:l) ->

the head/tail list specification will match against any

tuple. The rule designer may then code explicit type and

parameter count checks with an appropriate response to

errors. We use this technique in the utility rules

contained in Appendix C.

A declarative mechanism may also be used to specify

the expected tuple size for a given relation. Any devia-

tions would trigger an error response.

133

............................. .



B. RECOMMENDED AREAS FOR ADDITIONAL STUDY

1. Extensions to the Lanquaae

Our programming and implementation experience with

Omega have suggested three additional extensions to the

language: (1) a syntactic distinction for free variables,

(2) a universal quantifier, and (3) named rules.

In our current implementation, the distinction

between free and bound variables is made when rules are

activated: if defined in the class/directory structure, the

variable is bound; if not defined, it is considered free.

This strategy is a potential source of error.

Suppose we wish to define a constant, and use the following

definition:

DefinefRoot, "a", 100).

The selection of the variable name a will conflict with the

majority of our rule denotations, where this variable is

consistently used to represent a mailbox relation. The

activation and test of the follcwing rule:

if *T(a, x) -> a(2 * x).

will result in a type clash error. These errors are subtle,

and reuire the programmer tc remember which names are

previously defined in a given environment. To solve this

problem, free variables should be syntactically distin-

guished. Thus, the preceding rule may be written:

if *T(&a, &x) -> &a(2 * &x).

Previous definitions cannot adversely affect this rule.

C-Prolog uses a similar convention: free variable names

begin with upper case letters, bound variable names begin

with lower case letters.

134



In Chapter 2, we emphasized the point that a rela-

tion inquiry is existentially uantified. Consider the

following rule:

if CopyRel(rl, r2) , rl (x) , -r2 (x) ->

r2 (x)

else if *CopyRel(rl, r2) ->.

This rule implements a relation copying utility. The

programmer's intent for this rule is that all tuples in rl

should be asserted to relation r2. Existential quantifica-

tion will select a single tuple on each firing cycle for the

rule. Note that the absence test on relation r2 is required

to ensure termination.

A possible alternative is to provide universal %uan-

tification for tuple selection. With this mechanism, the

copy rule could be written:

if *CopyRel (rl, r2), $rl(x) -> r2(x).

The "$" symbol is used to represent universal quantifica-

tion. The action of the quantifier is "for all tuples x in

relation ri, assert x to relation r2." A universal quanti-

fier offers the following advantages:

" The programmer's intentions are more clearly expressed.

There is a similarity between universal guantification

ani the sapcar function of LISP.

" Periormance may be enhanced. A universa- quantifier

allows optimization by completing the actions of the

rule in one rule cycle. The costs of miltiple rule

selection and testing, shown in the profiles of the

unify procedure in the preceding chapter, may be high.

It is recognized that the existential juantification

of the present design is sufficient to accomplish the

135



cpd rule rule

$$=newcell(CPDRLE,Nil,$1);

I cpd _ ulE ELSE rule

$ $= ne well (CPD_ UL E, $1, $3);

rule IF causE IMPLICATION effect

$$=newcell (RULE, $2,$4);

IF cause IMPLICATION

$$=newcell (RULE, $2 Nil)

IMPILICATION effect

$$=newcell (RiLE,Nil,$2);

I effect

$$=newcell(RULE,Nil,$1);

cause conditicns

14~9



session /* emFty */

parsetree = Nil;
I

[

parsetree = Nil;

return(-1);
I

statement list '.'

(
parsetree = $1;

return (-1);

statement-list statement

£
$$=newcell (STA_LIST ,Nil,$1)
I

statement list '; statement

$$=newcell (STA_LIST,$1, $3)

statement cpdrule

$$ = $1;

fn_def inition

" II

$$ = $1;

148



%type <cell> effect asserticn denial

%type <cell> ar~uments seq block expression

%type <cell> unop binop primary

%type <cell> rule-denotation

%type <cell> variable self-ref constant

%type <cell> fn-definition fn-head

%type <ce-ll> fn-application li-Ls t

%type <cell> cond_expr cpdexpr call

/* token declarations *

%token IDENTIFIER

%token IF ELSE

%token STRCON INT CON

%token IMPLICATION DEGDENC ENDDENO

%token NE LE GE

%token FUNCTION NIL

/* operator precedance *

%left ,

%left expression

%left list

%left '&I III

%,lef t I-,

%left '=' 1<1 1>1 NE LE GE

'Alef t ''

%left 1* ,, %'

%start session

/* productions for Omega grammar

----------------------------------------------------- *

1L47



tracef un (msg)

char *msg;

printf ("I\n***Ts*** ->",msg)

ECHO;

printf ("\n")

* YACC Specification for Omega Parser

# include "tag.h"

# includE "defs.hil

PTR newcell ();

PTR makint o;

PTR makstr ()
PTR parsetree;

char *strdeno ()

/* type declarations for parser stack *

%union i

PTR cell;

%type <cell> session statement-list

%type <cell> statement cpd rule rule cause

%type <cell> conditions conditicn inluiry

%Otype <cell> constraint transaction transactions

146



Ideno)

return (EEGDENO)

fend dtenol

return (ENDDENO);

In e) I

return (NE);

Ile) I
return (IE);

[gel

return (GE);

[delimiter)

return (yytext[ 0)

(comment)

(whitespace)

1* ignore others *

stregu(sl, s2)

char *sl, *s2;

return (strcmp(sl, s2) ==0)

14



fid ent if ier]

if (strEqu(y~ytext, "f)

return (IF);

else if (stregu(yytext, "else"))

return (ELSE) ;

else if (stregu (yy text, "Ifn"))

return (FUNCTION);

else if (stregu(yytext, "Nil"))

return (NIL)

els e

return (IDENTIFIER)

fint_ cof)£

return (INTCON) ;

jstr_Con]

c input()

if (c = \'

unput (c)

--yyleng;

yymore(0

else

u np ut (c)

return (SIRCON);

(implication)

return (IMPLICATIO4);

144



APPENDIX A

LEX AND YACC SPECIFICATIONS FOR OMEGA

* LEX specification -

* ~omega lexical grammar*

/* lexical scanner grammar *

digit [0-9]

lttr [a-zA-Z]

whitespace C \t\n]

identifier (Ittrl (( flttrl I (digit) I..j*((lttrjI (digitj))*

int-con [digit)+

delimiter [-+!I,~.; a~( 0 U/5& ~<> I \L I \
implication -

deno <

end-deno >

ne 1

ge >

int-con (digit)+

str-con

comment&\\ *n

/* recognizer actions fcr token classes *

imt c;

143



S.

142

]
N - *.~.

- - . - . . .



C. CONCLUSIONS

This thesis has described two prototype implementations

of Omega interpreters, based cn the model of a LISP-like

list processing system. Through these designs, we have

developed a complete LL(1)/LR(1) grammar, and implemented a

table-driven parser using the YACC parser generator. Man-

of the design and implementation problems encountered are

similar to the LISP design issues of the literature.

The unconventional component of Omega is its pattern-

directed set of active rules. Our implementation processes

these rules by a simple triggering method of rule indexing

based on relation identifiers. Triggering, along with the

processing of multiple rule queues, simulates the concurrent

evaluation of rules in the Omega model.

An evaluation of our interpreter's performance indicates

current execution speeds are slower than Franz LISP and

C-Prolog. Possible bottlenecks include excessive recursive

calls to the central evaluation function, inefficiencies in

pattern-matching, and execution penalties in storage manage-

ment routines. While the present design may be optimized to

improve this performance, other issues are of more interest

in future research. These issues include alternative repre-

sentations of relations, alternative control strategies for

forward inference rule systems, and the exploitation of

parallelism in Omega.

Our final contribution in this work is a body of Omega

programs and some statistical information on their behavior.

As the Omega language matures, this experience may help to

characterize potential extensicns and improvements to the

language and its implementation.

141

- " i / i- - ' i -- .' ' . "." .. . i .-- ' : . -. -[ --. .- [ . . - - ... .i. , .. iiii[ .'-ii ii,. ' ' . i .. .A.



parallelism (where multiple rules for a goal are evaluated

concurrently) [Ref. 36: p. 29].

in Omega, AND parallelism may be exploited in both

the antecedent and consequent of a rule. In the antecedent,

inquiries must be independent for concurrent evaluation.

Consider the following rule:

if *R1 (x), *R2(x), *R3(y) -> R3(x+y).

The first two inguiries, R11(x) and R2(x), are mutually

dependent on the variable x. An evaluation order for these

inquiries should be made to allcw the binding for the vari-

able x to guide the relation search. The third inquiry,

3 (y), is independent of evaluation order. An AND parallel

strategy should separate a rule antecedent into independent

subunits that exploit concurrency where possible.

The evaluation of acticns in the consequent of a

rule has fewer constraints. Any actions separated by commas
are potentially subject to ccncurrent evaluation. The

actions of a sequential block are, however, restricted to a
mandatory evaluation order.

The evaluation of separate rules in Omega is unord-

ered; OR parallelism is the norm for the Omega model. A

parallel implementation of rule evaluation is complicated by

the shared memory access that many rules require. This

shared access implies a locking mechanism at the relation

level, along with a deadlock-prevention strategy.

The exploitation of parallelism in Omega offers the

potential for the resolution of our present performance

bottlenecks. A parallel architecture that optimizes

pattern-matching and concurrent rule evaluation would yield

substantial performance improvenents.

140

."o. "



* The file is parsed using the file command reader,

invoked with the Do procedure call.

l • Any rule denotations contained in the command rules are

then activated.

This process re'uires rule files to be reloaded each

time the interpreter is run. Also, the current implementa-

tion allows rule activation but not deactivation. These

limitations suggest the following extensions:

* A save/restore facility. This facility would copy and

restore the virtual memory image of the interpreter's

data segment.

* A structure editor. There is carrently no way to edit

rule denotations once they are loaded into the inter-

preter. A structure editor would be useful, particu-

larly when debugging.

R Rule deactivation. The atility to remove rules from

active status is necessary to allow testing and modifi-

cation. The use of rule names would simplify this

process.

3. Parallelism in Omeqa

The prototypes discussed in this work have been

sequential, single-threaded control implementations. An

important extension to this work is the exploration of

parallelism in Omega rule interpretation, with architectures

tailored for concurrent rule evaluation.

Parallelism in Omega shares similarities with paral-

lelism in Prolog. The Prolog literature divides this paral-

lelism in two categories: AND parallelism (where multiple

subgoals in a rule are evaluated concurrently), and OR

139

14.'°



The space considerations of Chapter VI, as well as

the execution statistics of Chapter VII, indicate that a

garbage collection scheme may preferable to reference

counting. The implementation of an efficient compacting

garbage collector can provide significant performance

improvements.

A useful extension to our implementation would be a

flexible debugger. We currently use a trace facility that

provides a display of rule execution. While this facility

is useful, the information provided is not specific enough.

The following debugging features would be helpful:

* Specification of trace and break points by relation

name. When a tuple is added or removed from a relation,

the debugger may be invoked and the bindings of vari-

ables available for examination.

* Specification of trace and break points for specific

rules. This facility is similar to the preceding one,

but only certain rules are monitored. Note that the

lack of names for individual rules makes this feature

difficult to implement.

- Debugger invocation on error conditions. As in the LISP

prototype, error conditions result in an error message

and a return to the interpreter's top level. The imple-

mentation of a debugger would allow a more sophisticated

response.

* Our present method for rule creation and modifica-

tion should be extended. Currently, the following steps are

used to create rules:

* Command rules are entered into a file using a standard

text editor. The vi -,. --edure call is provided in Omega

to allow ready access to the UNIX editor of the same

name [Ref. 26].

138

............................ ""............. -"" "'"...... ............................................... '-.......................
. , . . - . - .. . : . . , . - . . , - - - r " . . . . . . .... . . .~' I .l



technique is to provide a hashed index structure for

tuples within a relation, possibly using a user-

specified key or arbitrarily using the first tuple

member as a key. An indexed relation structure would

have little impact on most of the benchmarks of the

preceding chapter (except the pattern-matching test)

because of the small relation sizes. A substantial

performance improvement for inquiries on larger rela-

tions may be realized.

A A relational DBMS implementation of relations. The

current design can be extended to include a query and

response translation interface with a concurrently

executing DBMS. The interface could be organized around

object identifier recognition, as system objects are

currently handled. The tag field of DBMS-supported

objects could be assigned a uniiue value to route these

objects to the DBMS interface instead of the normal

relation management routines.

Control strategies for rule selection and test

remain an open subject in this work. Our two-level trig-

gering strategy, discussed in Chapter V, was selected as a

compromise implementation that provides a reasonable level

of rule selection precision under a programmer's control.

Full indexing of rules--triggering on all the relations in

the rule antecedent--was not attempted. The performance of

full indexing compared to two-level triggering is a poten-

tial point for additional study.

The control strategy of Omega, like Prolog, is

"hard-wired" into the interpreter design. The designs of

several cther rule-based systems have taken a more flexible

approach: meta-rules dictate control strategies [Ref. 353.

The idea of integrating rule-based control strategies into

Omega would be an interesting extension to the language and

its interpretation.

137



intended function of the CopyRel rules and similar applica-

tions. The advantages of universal juantification must be

weighed against the added complexity to the language.

It would be useful to be able to reference rules by

name. 7he rule forms the basic computational unit in the

language, yet may nct be referenced explicitly; the only

named reference for a rule is its source rule denotation.

If the denotation is large, its name is not a selective

description. If a single rule is to be manipulated, perhaps

by a structure editor, the entire denotation must be

accessed. A similar problem is experienced with activating

and deactivating rule denotations.

2. Extensions to the Present Interpreter Desin

Our present implementation includes the majority of

Omega language features described in [Ref. 14]. Several

possible extensions to the present implementation are of

interest.

The class mechanism described in Chapters Ii and TV

is not currently implemented. The present system provides a

single directory, root, frequently referenced in our exam-

ples. The class and directcry structures, with rules

indexed on relation objects, provide the inheritance mecha-

nism for the language. The implementation of classes as

binding lookup paths will allow a more thorough exploration

of the object-oriented nature of Omega than has been

provided in this work.

Both the LISP prototype and the current prototype
use a simple linked-list relation structure. There are two

alternate representations that are of immediate interest:

* Hashed indexing of relation lists. Relations lists are

currently selected via hashed access of the object

table. A performance-enhancin j extension to this

136

0

• .. .- -. .. .-. . i-.-i-, - . . . -. .. .i_. ..- . .. .. . .. i-.. ... ... , . .



conditions conditicn

$$=newcell (CONDS.,Nil,$ 1);

I constraint

$$=newce11 (CONDS,Nil,$ 1);

conditions 1.1 condition

$$=n ewcell (CONDS , $1, $ 3);

I conditions If' constraint

$$=newcell(CONDS, $1, $3);

condition ' inquiry

$$=newcej.(CANG, $2, Nil)

I '-"inguiry

$$=newcell (ABST, $2, Nil)

I inguiry

$$=newcell (PRES, $l,Nil);

150



iLjuiry primary 1 Iarguments '

$$=newcel(IN QY, $1, $3)

constraint expression

$$=newcell (CONSTR,$1,Nil) ;

*effect transactions

transactions transaction

$$=newcell (TRANS,Nil,$l);

transactions ','transaction

$$=newceil (TRANS, $1, $3)

transaction assertion

denial

151



I expression

seg block

$$=$1;

assertion primary ' 'arguments '

* $S$=newcell (ASSET,$l,$3);

denial '"primary ' 'arguments '

$$=newcell (DENY, $2, $4~);

fr definition FUNCTION~ fn head ' :1 cpd expr

$$=newceill(FN,$2,$U);

fn head [Iarguments J

$$=newcell (FNDCL ,Nil,$2);

I primary 'j'arguments )

152



$$=newcell (FNDCL ,$1, $3);

arguments /* empty *

I $$ =Nil;

I list

I expression 1:1 expression

S $$-newcell (CONS, $1,$3);

list expression

$$=newcel.(LIST,Nil,$1);

I list ' expression

$$=newcell (LIST, $1,$3)

0 seq block If statement_list t

$$=newcell (SEQ_BLK,$2,Nil);

153



s[ statement lis t'; '

$$=newcell (SEQBLK,$2,Nil);

expression primary

$$ =$1;

constant

$$ =$1;

call

fn~~applicto

$$ =$1;

ruldnoat ion

S$ $1;

unop

binop

$$=$1;

' 'cpdexpr 1

154



$$=$2;

$$=$2;

I f'expression 1:' expression I'

$$=newcel. (CONS, $2, %4)

$$=Nil;

fn application primary ['arguments ]

$$=newcell (APL, $1,$3);

call primary ' arguments '

$$=newcell(CALL,$1,$3);

rule-denotation BEGDENO statement jjst ENDDENO -

$$=n ewcell (DENO, $2, Nil)

BEG DENC statement list 1;1 END_DENO

155



$$=newcell (DENO, $2, Nil)

unop *1expression %vprec *

$$ =$2;

-'expression %prec *

$$=newcell (rNhINUS,$2,Nil);

'"expression

$$=newcell (NOT,$2,Nil)

binop expression 1Iexpression

$$=newcell(PLUS, $1 ,$3);

expression -'expression

$$=newceJ.(MINUS,$1,$3);

expression *1expression

S$=newcell (IULT,$1,$3);

expression I'expression

$$=newcell (DIV,$S1,$S3)

expression 13;1 expression

156



$$=n ewcell (M~OD,$ 1, $3)

expression ' expression

$$=n ewcell (EQU, $1,$3)

expression 1<' expression

$$=n ewcell (LT, $1 ,$3)

expression '>' expression

$$=newcell (GT,$1 43)

expression NE expression

$$=newcell (NEQ,$1,$3)

expression LE expression

$$=newcell (LEQ, S1, $3)

expression GE expression

$$=newcell(GEQ,$1,$3) ;

expression I&' expression

S$=newcell(AND,$1,$3);

expression 'pexpression

$$=newce11 (OR,$1 ,$3);

157



primary vari ablE

self-ref

self-ref 'as' variable

$$=newcell (SELFREF,S2,Ni1);

variatle IDENTIFIER

parsetree =makstr (yytext)

$$-ziewcell (VARNil, parsetree3;

constant STR CON

$S makstr(strdeno (yytext))

INT CON

$$=makint(atoi(yytext));

NIL

$$=Nil;

158



cljdexpr condex~r

$$=newcell (CPD RULE,Nil,$l);

cpdexpr ELSE condexpr

I
$$=newcell (CPDRULE,$1,$3).;

condexpr expression

$$=newcell (RULE, Nil, $1)

IF constraint IMIPLICATION expression

$$=newcell (RUJLE, $2, $4)

159



/* user defined functions *

# include "lex-yy.cI"

string denotation routine

lexical scanner returns string constants

with 11 delimiters included.

Denotation routine simply removes the extra 'Is.

-------------------------------------------------------*

char *strdeno(s2)

char *s2;

char *s1;

si s2 + 1;

*(si + (strlen(si)-l)) =\1

return (si1)

1* error handler

Prints error message and line number where error occurred.

No attemikt made to recover from errors.

--------------------- ------------------------- *

yyerror (msg)

char *msg;

printf (1%s : ", msq)

printf ("line %d\n"I, yylineno)

160



APPENDIX B

BUILT-I FUNCTIONS AND PROCEDURES

i. Built-in Functions

A. Infix operators--

op type

+ str x str str (concatenation)

+ int x int-> int

-- II

" (modulus)
/ 'I!-

< int x int-> Bool
> -

>= ""'

= any x any ->Bool
-= any x any -> Bool

Bool x Bcol -> Bool

& Bool x Bcol -> Bool

Unary operators

- Int -> nt

-' Bool -> Bool

B. System defined functions

IsInt[item] -- Returns tRUE if item

is an integer.

IsStr~item] -- Returns TRUE if item

161

. . " .



is a string.

IsList[item] -- Returns TRUE if item

is a list.

IsObj[item] -- Returns TRUE if item

is an object.

IsRel item] -- Returns TRUE if item

is a relation object.

intstr~int] -- IntegEr to string conversion.

first[list] -- CAB. Returns the first member

of a list.

rest[list] -- CDR. Returns all members of

a list after the first member.

cons[x, 1] -- Returns a new list with x as its

first member and 1 as the rest of

the list. The notation [x:l]

does the same thing.

objval[object] -- Returns the value bound to an

object.

The following otjects have bound values

relations

functions

rule denotations

directories

Tag[form] -- Returns a string representing the

tag of form.

162

12.



if. Built-in Procedures

A. General usage:

do ["filename") -- Executes rules from file.

activate[name) -- Activate rule denotation.

decode[form) -- Post order dump of nodes.

display[form) -- Pretty printer.

displayn [form) -- Pretty printer. Ends

with a newline.

define[dir,"name",def)-- Make a directory entry.

tracef} -- Toggle the trace function.

exit() -- End session.

Same as Cntl-D.

newobjJ} -- Generate a new object.

newrel[) -- Generate a new relation.

purge[relation-name) -- Empty a relation.

B. UNIX system hooks:

vi["file"} -- Invoke the VI text editor.

system ["command") -- Pass a command to the

UNIX shell.

shell[j -- Spawn a temporary

UNIX shell.

163

-. '-' '. ,J ,:.-- -, - ..=-.'. . L , .- a, .," " " " & m ." - , , : ' " - - . - - . - , ' . " - -'



remove(P, [ ,]).

remove(P, [Ills], [IlNis])

not (0 is I mod P),

remove(P, Is, Nis).

remov€(P, [Ills], Nis)

0 is I mod P, remove(P, Is, Nis).

sTest

system ("date") ,

primes (350, Ps)

system ("date"),

print (Ps) .

sieve benchmark -- Franz LISP

(defun iota (nil n2)

(cond ((greaterp n1 n2) nil)

(t (cons nl (iota (add1 n1) n2)))))

(defun purgeMults (x -1)

(cond ((null 1) nil)

((zerop (mod (car 1) x)) (purgeiults x (cdr 1)))

(t (cons (car 1) (purjeMults x (cdr 1))))))

(defun primes (n)

(primesAux (iota 2 n)))

(defun primesAux (1)

(cond ((null 1) nil)

(t (cons (car 1)

(primesAux

(purgeMults

(car )

(cdr 1)))))))

178



else [firstrl:Purge~ults-x, rest'l]]].

definefroot, "SieveRules",

if *Primes(a, n) ->

PrimesAux(a, iota<2, n], Nil);

if *PrimesAux(a, Nil, 1) -

a (reverse[ 1)

else if *PrimesAux(a,Lx:1J, 12) -

PrimesAux(a, PurgeMults~x, 11], [x:12]);

if *sT st (a) - >

system ("date") ;

Primes £350);

system ("date,,)

a ("OKI')

activate (SieveRu les).

Sieve benchmiark -- Prolog

primes(Limit, Ps)

iota(2, Limit, Is),

sift(IS, Ps).

iota(lo, Hi, rLojRest])

Lo =< Hi , M is Lo+ I, iota (M Hi, Rest).

sift ([ >[]
sift(Ills], rjlps])

remove(I, Is, New), sift(New, Ps).

177



the benchmark driver -

(fact 15) executed n times

(defun driver (n)

(cond ((ecdual n 0) "OKI')

(t (fact 15)

(driver (- n 1))))

;the CSH date function provides a crude

timer to the nearest second.

(defun factiest (n)

(exec date)

(driver n)

(exec date))

* Prime Number Sieve*

sieve benchmark -- Omega

definefroot, "Primes", newreifj).

def ine (root , "PrimesAux", newrelf.

definefroot, "IsTest", newrel(fj}

fn PurgeMults[x, 1]

if 1 = Nil ->Nil

else if first[1] %x C -

Puryjelults~x, rEstLl]]

176



system ("date") ;

Driver (n)

syst em ("date") ;
I;

activatE the rules

activate [DriverRules).

/*

factorial benchmark -- Prolog
---------------------- -- ,/

fact (N, 1) - N =< 0.

fact (N, F)

N >= 0, fact(N-1, M), F is M * N.

driver (0).

driver(N)

N > 0, fact(15, X), M is N-i, driver(M).

factTest(N)

system ("date"),

driver (N) ,

system ("date").

; Factorial benchmark -- Franz LISP

(defun fact (n)

(cond ((lessp n 0) 1)

((zerop n) 1)

(t (* n (fact (- n 1))))))

175



* Factorial*

I factorial benchmark -- Cmega

fn fact[n]

if n <= 0 -> 1

else n *fact[n-1J.

driver rules

define(root, "Driver", newrel[fl.

definefroot, "factTest", newrel fl.

definefroot, "Driver Pules",

<<if *Driver(a, n) -

if n <= 0 a> ("OKI')

else -

fact[ 15];

Driver(a, n-i)

the CSEI date function provides a timer

Itimes given to the nearest sEcond

if *factTest (a, n) -

display("'Omega factorial: 111

display (i);

displayn (" Calls")

174



(defun genDat (ni n2)

(prog (i 1)

(setg ii ni)

LOOP

(cond ((greaterp il n2)

(return))

(t (setq ri (cons il ri))

(setq r2 (cors (plus il n2) r2))

(setq il (addi il))

(go LOOP)))))

(defun match (
(prog (ti t2)

(setg ti ri)

LOOP 1

(setg t2 r2)

LOOP 2

(cond ((null t2)

(cond ((null t1) (return nil))

(t (setg ti (cdr t1))

(go LCOP1))))

((equal (car t1) (car t2))

(return, (car ti)))

(t (setq t2 (cdr t2)

(go LOOP2)f)))

(defun miest (
(sets ri (list 9999))

(setq r2 (list 9999))

(genoat 1 1300)

(exrc date)

(match)

(exec dIdte))

173



system (date");

if R1 (x) , R2 (x) -

system(;,date")

displayn Lx);

a (1"OKI');

activate the rules

activate jMatchRulesI

PROLOG pattern matching benchmark

ri (9999).

r2 (9999).

genDat(Lo, Hi)

lo < Hi,

12 is Lo + Hi,

asserta (rl (Lo)),

asserta (r2 (12)),

Lonext is Lo + 1,

geiflat (L onex t, Hi).

genDat (Hi, Hi)

mTest (X)

genDat (1 , 10 00) ,

system ("date") ,

rl(X), r2(X),

system ("date").

pattern matching benchmark -- Fran-z LISP

172



APPENDIX D

COMIPARATIVE APPLICATIONS: OMEGA, LISP, AND PROLOG

* Pattern Matching Tcsts

pattern matching benchn~ark -- omega

definefroot, "IR2i, newrel 01.

definefroot, "genDat", newrel(fl.

definefroot, "'mTest", newrel[j).

definefroot, "M1atchRules",

the data generating rules

if *genDat(a, n1, n2l, n1 > n2 -

a ("OKI?)

else it *genDat(a, n1, n2) -

Ri (ni);

R2(nl + an2)

genDat(a, n1+1, n2);

if *m~est(a) -

Ri (9999) ; R2 (9999);

genDatfi, 10001;

17 1



define(root, "Assertiuple", newrel[)).

definefroot, "AssertListRules",

if *Assert~ist(a:'r:I]), IsRel[ a], IsRel~r] -

AssertAux(a, r, L)

else if *AssertList(a:L) -

displayn ("Ulsage Assert(Relname, ListOfTuples)"),

a (Nil)

if *AssertAux(a, r, Nil) -

a ("OKI')

else if *AssertAux(a, r, [x:lJ) -

AssertTuple fr, xj,

AssertAux(a, r, 1);

if *AssertTuple(a, r, x), -usList[x] -

displayn ["Error in Assert -- tuple not a list", x)

else if *AssertTuple(a, r, Nil) -

a (Nil)

else if *AssertTuple(a, r, fx:1-)

r (x:l1)

a(r);

activate [AssertListRules).

170



CopyRel [x, temp),

DumpDisplay(a, x, temp);

if *DumpDisplay(a, name, h), *R(x:y) ->

display (name) ,

display " (",

display fx:y) ,

displayn [")

DumpDisplay(a, name, R)

else if *DumpDisplay (a, name, R) ->

a Q"")

Pretty print objects ...

I Functions requiie a bit of set up

if *PpObj(a, name, def) , Tag[def]="FN" ->

display ["fn "],

display [name),

displayn (def),

a ("")

otherwise, just display def (might be Nil)

else if *PpObj(a, name, def) ->

displayn(def)

>> ] -

activate {PpRules].

assert list procedures

allows one to assert multiple tuples to a relation

Usage is Assert[relname, [tuple], [tuple], ... }

define[root, "AssertList", newrel[}).

definefroot, "AssertAux", newrel[}I.

169



definefroot, IlPp 1, n ew relj.

define(root, "PpAux", n4Ewrel[J}.

define (root, "PpReI", newrel (I I.

define [root, IPp~objIU, neurel ()J.
define (root, "lDumpDi splay", newrel (]j.

the rules..

define (root, "PpRules",

single member is a gocf by the user

if *Pp (a :L) , -IsRel[ a] -

displayn[("Usage Pp(xl, x2,..J ;

if *Pp(a:Nil) -

a (O KIT)

else if *Pp(a:rx:L]) -

PpAux Jx) ,

Pp (a :L)

IIs it a relation ?

if *PpAux(a, x), Is~elj~x]

PpRelix, newrel Ul)
a( fill)

or other type of objECt ?

else if *PpAux(a, x) , IsObj[x] -

PpO b j(a, x, ob jvalj1[)x

a ("

Iotherwise just display it

else if *PpAux(a, x) -

displayn [x)

a (of"s)

if *PpRel(a, x, temp) -

168



if *Bugs (a) ->

displayn(["Describe the huy. End with Cntrl-D :11),

system[{"mail -s 'Bug Report' mcarthur"),

a (" OK")

define[root, "Bugs", newrel[)).

activate [BugRules}.

displayn ["To report a bug, enter Bugs[)."}.

CopyRel -- Copy from one relation to another

Usage is CopyRel [R1, R2].

define [root, "CopyRel", newrel .

define [root, "CopyRelules",

<<

if CopyRel(a, rl, r2), rl(x:y), -r2(x:y) ->

r2 (x: y)

else if *Co.yRel (a, rl, r2) ->

a ("CK");•

act ivate [CokyRelRules).

pp - A pretty printer fcr objects.

: These rules are re-uired because the standard pretty

printer - disiiay - doesn't do lookups on objects.

defirie the relations....

167



if 11 = Nil 12 = Nil -> Nil

else consf[first 11], first 12]],

pairlist[rest[l1], rest[ 12]]].

fn append[11, 12]

if 11 = Nil -> 12

else if 12 = Nil -> 11

else cons[first[ll], append~restC11], 12]].

fn iota[nl, n2]

if n1 > n2 -> Nil

else cons[nl, iota[nl+l, n2]].

fn length[l] :

if l=Nil -> 0

else 1 + length[rest[l]].

fn ith[l, i]

if i<=1 -> 1

else if l=Nil -> Nil

else ith[restil], i-1].

Utilities --

This file contains a set of utility

I rules that are automatically loaded

1 at system boot.

System Help function

define[root, "help", newrel(j].

define[root, "HelpLib", newrel (f).

HelpLib ("7", "/work/mcarthur/common/summa ry. help")-

165



APPENDIX C

UTILITY FUNCTIOES AND RULES

Function library

A dummy forward declaration is used for reverseAux

due to single pass static scoping.

fn reverseAux~x] : Nil.

fn reverse-l] : reverseAux[l, Nil].

fn reverseAux[l1, 12]

if 11 = Nil -> 12

else

reverseAux[rest[ll], cons[first[ 11], 12]].

fn maFLf, 1]

if 1 = Nil -> 1

else

cons[f[ first[ l] map[f, rest[l]]].

fn member[x, 1]

if 1 = Nil -> Nil

else if x = first[l] -> 1

else memberLx, rest[l]].

fn assoc[x, 1]

if 1 = Nil -> Nil

else if - IsList~first[l]] first[l] = Nil

-> assoc[x, rest[l]]

else if x = first[first[l]] -> firstLl]

else assoc[x, rest[l 1]].

fn pairlist[ll, 12]

o-4



(defun slest (
(exec date)

(primes 350)

(exec date))

* Quicksort*

i Quicksort benchmark -- Cmega

fn iotaR[nl, n2]

if n1 > n2 -> Nil

else [n2:iotaR~n1, n2-1-].

definefroot, "Qsort", newreill)}

definefroot, "QsortAux", newrelf)).

definefroot, "gTest", newrel [)j

* define (root, "QsortRules",

i (Quick Sort

* if *Qsort(a, N-il) ->

a (Nil)

if *Q sr(a, 'x:Lj) ->

QsortAux (a, X, L, Nil, Nil)

179



-0 -

if *QsortAux(a, x, Nil, L1, L2) -

a(appenaLQsort[11), [x:Csort[L2)f)

if *QsortAux (a, x, [ y:Ll1], L2, 13) -

if y <= x -

QsortAux (a, X, I, y: 123, L3)

else

QsortAux(a, x, 1i, L2, [y:13])

if *gTest (a, n) -

system I" date"l);

Qsort~iotafl[ , n]

system "date");

a(" OKI')

activate [Qsortflules).

1* Quicksort Benchmark -- Erolog

--------------------------------------------------- *

gsort(LHIT],S) :

split (H,T,A, B) ,

gsort(A,Al),

gsort (B ,B1),

append (Ai1, H~ 3,5 ) .
* ~gsor t([,[

split (H,[ AlX],[ A I YZ)

A < H,

split (H , X, Y, Z) .

* split(H,[AjX],Y,[AIZJ)

H < A,

split (H,X,Y, Z).

spi0-11 M1

180



append([ 1,1,L)

append f[Hj T -,L, H1V j)

append (T,L,V).

iotaE(Lo, Hii, [Hil~est])

Lo =< Hi , M i-, Hi-i , iotaR (Lo, M, Rest).

iota (_,-,[]

gTest(N)

system ("date") ,

iotaR(1, N, L),

qsort(L, S),

system ("date"l),

print(S).

Quicksort Benchmark -- Franz LISP

(defun Ssort(l)

(cond ( (null 1) nil)

(t (setg s (split (car 1) (cdr 1)))

(append (gsort (car s))

(cons (car 1) (qsort (cadr s))l)))))

* (defun split (x 1)

(prog (s)

(cond ((null 1) (return (list nil nil))))

(setq s (split x (cdr 1)))

* (cand ( (lessp (car 1) x)

(return (list (cons (car 1) (car s)) (cadr s)f)

(t

(return (list (car s)

181

AN



(cons (car 1) (cadr s)))l)))))

(defun iotafl (iii n2)

(cond ((greaterp n1 n2) nil)

(t (cons n2 (iotaR ni1 (subi n2))))))

(defun gTest (ii)

(exec date)

(gsort (iotaR 1 n))

(exec date))

* Missionaries and Cannibals:*

* A State Search Problem*

!Missionaries and Cannibals -- omega

Generate and test search strategy

definefroot, "'mc", newrel (I.

definefroot, "'misCan", newrelffl.

definefroot, "PpL", newrelf)).

define[ root, "misCanRules",

if *mc (nM., nC) -

misCan(1,nM,nC,nM,nC,O,O, Nil);

182



if misCan (s,nhi,nC,O, 0, ni,nC, path)

purgeimisCan);

PpL [E[s,O,O, nM, nCj: path]);

displayn ("Finis

else if *misCan(s,nM,nC,mL,cL,mR,cR,path),

(mL >= 0 & mL <= nM1 &

cL >= 0 & cL <= nC &

niR >= 0 & mR<= nM &

cR >=-0 & cR <= nC &

(mL >= cL mL = 0) &

(mR >= CR ImR 0=)

-memberIS, mL , cL ,mR cR Pa t'-1

misCan((0-s),nil,nC,mL-s,cL,mR+s,cR,

s,mL,cL,mR,cR : path),

misCan((0-s) ,nM,nC,mL,CL-s,mR,cR+s,

s, mL, CL, mR, CR : pa th),]

misCan((0-s),nM,nC,mL,cL-2*s,mR,cE+2*s,

s,IIIL,cL, mR, CR : path ,
misCan ( (-s) ,nii,nC, mL-2*s,c:L,mE+2*s, CR,

s, mL,cL, mR, CR : path ]
misCan((O- s),nh1,nC,mL-s,cL-s,mR~s,cR+s,

s,mL,cL,mR,cE :path)]

else if *misCan(s,nM,nC,mL,cL,mR,cE,path)->

a small pretty printEr for the output list

if *PpL (a, Nil) -

else if *PpL (a, [x:L]) -

PpL(Lid;

displaynfx);

183



activate[ misCan~ules ]

Missionaries and cannibals -- Prolog

mc(Nm,Nc) :-misCan(-l,Nm,Nc,O,O,Nm,Nc,[]).

misCan (S,Nm,Nc, Nm, Nc,O,0, Path)

Nm >= Nc, ppIt([[S,Nm,Nc,O,OlPath]).

misCan(S,Nm,Nc,M1,Cl,1Mr,Cr,Path)

safe(Nm, Nc, M1,Cl,Mr,Cr)

egual(CS,Ml,Cl,Mr,Cr JP),

not (member (P ,Path))

Si is -5,

possible (S,Ml,Cl, Mr, Cr, Ml 1, Cl1,Mr1, Cr1),

misCanl(S1,Nm,Nc,Mll,Cl1 ,lrl,Crl,[P iPath]).

safe (Nm,Nc,141,C1,Mr,Cr)

MlJ >= 0, Ml1 =< Nm,

Cl >= 0, Cl =< Nc,

(Mlr >= Cr ; Mlr 0).

possible (S,Ml,Cl,Mr,Cr,Mll,C1,Mrl,Crl)

(Mll is 1l-2*S,

?lrl is Mr+2*S,

Cli is Cl,

Cr1 is Cr);

(Mil is Mil,

Mrn is Mir,

C11 is Cl-2*S,

Cr1 is Cr+2*S)

184



- S * U U is il S U S.

?Irl is Mr+S,

Cil is Ci-So

Cr1 is Cr+S);

(Mlii is Mi-S.

Mrl is Mr+S,

cii is Cl,

Cr1 is Cr)

(till is Mll,

tin is Mr,

Cli is Cl-S,

Cr1 is Cr+S).

member (X,[J f- !ail.

member (X,[ X ILJ

member (X,[ YIL]) :-member (X, L) .

eguaJ.(X,X).

ppL([J
ppL(-XIL]) print (X) , ni, ppl (L) .

185



APPENDIX E

OMEGA APPLICATION EXAMPLES

i Monte Carlo Simulation for 3 node message network.

I the relations

definefroot, "Begin", newrelf}J.

def ine (root, "End", newrelf)).

definefroot, "Clock", newrelf)

de.fine(root, "NextTime", newrel jJ).

definefroot, "LastTime", newrel )

defixie froot, "Event", newrel )

def ine (root, "ProcessEvents", newrel f)

definefroot, "ProcessEventsAux", newrelfl).

definef(root, "Summary", iiewrel )

definefroot, "Status", newrelf.

define froot, "BusyTi me", newrel ))

definefroot, "IQLength", newrel (fl.
define(root, "Stats", newrel[ )).

definefroot, "BusyStats", newrelIj

definefroot, "IQStats", newrei. (j .

def inef[root, "Totals", newrelf)).

definefroot, "NodeTotals", newrElf}

def inef[root, "JobTotals", newrelf)).

def inef[root, "JobTotalsAux", newrel(I}.

definefroot, "DisplayLine", newrel()).

definefroot, "Start", newreljl.

def ine [root, "Arrive", newrelf]).

def ine (root, "NewArrival", newrelffl.

186



define(root, "Service", newrel[)].

def inef[root, 'StartTime", neiwrelU

definefroot, "Depart", newreij)).

definefroot, "lExitTime"l, newrelf)).

define [root, "InService", newrel[}

definefroot, " 1 newrel()).

def ine [root, "Eng", newrel (I.

define~root, "CalcNextArr", newrelf)).

definefroot, "CalcDeparture", newrel(fl.

define(root, IlCalcRoute"l, newrejU))

definefroot, "NewJob", newrelf)).

definefroot, "JobServiceT", newrelf)).

definefroot, "JobCount", newrel f)
define (root, IlGenArrT"l, newrel J))]

define [root, "GenServTr", aewrel }].

def inef(root, "GenRoute"l, newrel ]
def ine [root, "ServiceIime", newrelt)).

definefroot, "'Arrlnterval", newrel()).

def inef[root, "Possible~outes", rewrel(l).

definefroot, "Seed", newrelf.

definefroot, "Rnd", newrelf.

def inef[root, "RndList", newrel f)).
definefroot, "WorkList", newrelfil.

the Nodes

definefroot, "Nodel", newobjfU).

defirnefroot, "Node2"', newobjf}

definefroot, "1Node3"l, newobj f)

def inEf[root, "Out", newobj()).

initalize MonteCarlo takles

Service times (message transmission times)

Serviceiime (1, 0, 12).

187



ServiceTime (2, 13, 32).

ServicETime(3, 33, 79).

ServicETime(4, 80, 92).

ServiceTime(5, 93, 99).

Interarrival times

ArrInterval(Nodel, 1, 0, 16).

Arrlnterval(Nodel, 2, 17, 24).

ArrInterval(Nodel, 3, 25, 49).

ArrInterval(Nodel, 4, 50, 91).

ArrInterval(Nodel, 5, 92, 99).

ArrInterval(Node2, 1, 0, 28).

ArrInterval(Node2, 2, 29, 70).

ArrInterval(Node2, 3, 71, 85).

ArrInterval(Node2, 4, 86, 92).

ArrInterval(Node2, 5, 93, 99).

Routing table

PossibleRoutes,(Nodel, Node2, 0, 29).

PossibleRoutes(Nodel, Node3, 30, 59).

PossibleRoutes (Nodel, Out, 60, 99).

Possible~outes(Node2, Nodel, 0, 29).

PossibleRoutes (Node2, Node3, 30, 49) .

PossibleRoutes(Node2, Out, 50, 99).

PossibleRoutes (Node3, Out, 0, 99).

Random number table

RndList ([

97,95,12,11,90,49,57,13,86,81,

02,92,75,91,24,58,39,22,13,02,

80,67,14,99,16,89,96,63,00,04,

188

• . . ., ., ..- ---, '.i, , -. - . ' , ": .: ., ,4 ,.',j , ,.-- ,i,, ,,, l . Ji i "i " ' 
'
i I



96,76,20,28,72 , 12, 77,23,79,4 6,

55,64,82,61,73,94,26,18,37,31,

50,02,74,70,16,85,95,32,85, 67,

29,53,08,33,81,34,30,21,24, 25,

58,16,01,91,70,07,50,13,18,24,

51,16,69,67,16,53,11,06,36,10,

04,55,36,97,30,99,80,10,52,40,

86, 54,35,61,59,89,64,97,16,02,

24,23,52,11,59,10,88,68,17,39,

39,36,99,50,74,27,69,48,32,68,

60,71,41,25,90,93,07,24,29,59,

65,88,48,06,68,92,70,97,02,66,

44,74,11,60,14,57,08,54,12,90,

93, 10,95;80,32,50,40,44,08, 12,

20,46,36,19,47,78,16,90,59,64,

86,54,24,88,94,14,58,49,80,79,

12,88,12,25,19,70,40,06,40,31,

42,00,50,24,60,90,69,60,07,86,

29,98,81,68,61,24,90,92,32,68,

36,63,02,37, 89, 40, 81 ,77,74, 82,

01,77,82,78,20,72,35,38,56,89,

41,6 9,43,37, 4 1, 2 1,36,39, 57, 80,

54,40,76,04,05,01,45,84,55,11,

68,03,82,32,22, 80, 92,47, 77,62,

21,31,77,75,43,13,83,43,70,16,

53,64,54,21,04,23,85,44,81,36,

91,66,21,47,95,69,58,91,47,59,

48,72,74,40,97,92,05,01,61, 18,

36,21,47,71,84,46,09,85,32, 82,

55,95,24,85,84,51,61,60,62, 13,

70,27,01,88,84,85,77,94,67,35,

38,13,66,15,38,54,43,64,25,43,

36,80,25,24,92,98,35,12,17,62,

98, 10,9 1, 61,04, 90, 05, 22,75, 20,

50,54,29,19,26,26,87,94,27,73

189



WorkList (Nil)

Intialize Queues

Q(Nodel, Nil).

Q(Node2, Nil).

Q(Node-3, Nil).

the Precedence function

Scheme is (for events @Jtime=t, node=n)

Departures have top priority

Between occurrences of san~e type of event

JobN1 precedes JobN2 if Ni < N2.
This function replaces a sort on the event list.

fti Preced*ence[el, j1, e2, j2]

if el=e2 & j~j2 -> "TRUE"

else if e1=De~art & e2 .- Depart -> TRUE",

else Nil.

The Rules

define(root, "SimRules",

Begin -- Begins the simulatiopn and sets up reiaticas

if *Begin(a, n) -

JobCount (0, 0, n);

LastTime (0)

190



InService(Nodel, "-"

InService(Node2, .a'

InService(Node3,If.i)

BusyTime(Noael, o)
BusyTime(Node2, 0)

BusyTi me (N od e3, 0);

QLength (Node 1, 0);

QLength (Node2, 0);

QLength (Node3, 0);

Event(0, Start, "-,""

Clock (0)

a ("OKI')

End -- Cleanup for further runs

if *End~j(a) >

purcje(JobCount];

purge (In Ser vice]

a (End);

the clock rules -- drives the simulation

if * Clock (999) , *Lastime (t) -

'otals ft)

End ;

else if *Clock (t2) , *IastTime (tl1) -

191



Stats[tl, t2);

displayn f

display ("Time

displayn [t2}

displayn ("Events :"};

ProcessEventsit2;

Summary[);

LastTime (t2);

Clock(NextTime[999} ; I restart the clock

3;

if *NextTime(a, t1), Event(t2, E, n, j), t2 < tl ->

NextTime (a, t2)

else if *NextTime(a, t) ->

a (t)

Process all events for time t

if *ProcessEvents(a, t), Event (t, el, nl, ji) -> 

ProcessEventsAux~t, el, n1, j);"

ProcessEvents(a, t);

else if *ProcessEvents(a, t) ->

a(t);

if *ProcessEventsAux (a, t, el, ni, .1),

Event(t, e2, n2, j2),

Precedence~e2, j2, el, j1] -)

ProcessEventsAux(a, t, e2, n2, j2)

else if *ProcessEventsAux(a, t, e, node, job) -> [

-Event (t, e, node, job)

Eft, node, jcb);

192



RD-RI54 769 THE DESIGN AND IMPLEMENTATION 
OF AN OBJECT-ORIENTED 3/3.

PRODUCTION-RULE INTERPRETER(U) NAVAL POSTGRADUATE

UNCLSSIIEDSCHOOL MONTEREY CA H M MCARTHUR DEC 84 FG92 N



-- 4I . IIIIt: 2-8 32.5
~3211.

1.25I2.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -I 963-A



displayf I
displayn fe, node, job) ;

aI;

I Summarize the current status for all nodes

if *Summary (a) -

Status (Nodell, Status £Ncde2l, Status fNode3)

displaynfl;

displayn ("Pending Events :11)

Pp (Event);

displayn f)

if *Status(a, node), InService(rode, job), Q(node, 1) -

displayn (nodel;

displa y ("Job in service :"

displayn [job);

display(,, Jobs in queue I);

if l=Nil -> displaync(-"

else displaynfl);

a (node);

Keep running tctals for stats on each node.

I The relations are:

I BusyTime (node, t) - - Cumulative idle time

QLength (node, n) -- Time weighted Q length

193



if *Stats(a, t1, t2) -

BusyStatsftl, t2, Nodel);

BusyStats~tl, t2, Node2);

BusyStatsftl, t2, Node3];

QStatsftl, t2, Nodel);

QStats~tl, t2, Node2];

QStats t 1, t 2, Node 3)

a(tl);

if *BusyStats(a, ti1, t2, node), InService(node, "-)-

a (node)

else if *BusyStats(a, t1, t2, ncde), *BusyTime(node, t) -

BusyTime(node, t+t2-tl)

a (node);

if *QStats(a, t1, t2, node), *Qlength(node,n), Q(node,l) -

QLength (node, n +(t2-t 1) *1ength~ 1]),

a (node);

Totals -- Display stat summary at end of simulation

if *Totals (a, t) -

display ("Total time :"

displayn (t);

displayn (

T)isplayLine (""Node", "Busy", "IQLen"31j;

DisplayLine(I[f"-----------------------I]]

NodeTotals [Node 1];

NodeTota ls [N cde2)

194



'NodeTotals fNode3)

displayn[);

DisplayLine(C "Job", "Time")

DisplayLineCL1------

JobTotals [Nil, 0);

a(t);

if *NodeTotals(a, node), *BusyTime(node, t),

*Qlength(node, n) -

DisplayLine [-node, t, a';

a(node) ;

if *JobTotals(a, 1, n) ,

*StartTjine(j, t1), *ExitTime(j, t2) -

JobTotals (a, cons[ j , t 2- tl1 11, n+t2-tl)

else if *JobTotals (a, 1, n) -

JobTotalsAux i);
displayn(; -

Displa yL ine([" ot al 11, nJ;

a (J obT otals)

j if *JotTotalsAux(a, Nil) -

a (JobTo talsA ux)

else if *JobTotalsAux(a, 1) -

DisplayLine (first 1]];

JobTotalsAux (a, rest~l J);

if *DisplayLine(a, Nil) -

displayn (
a (Displa yLin e);

195

.. _



else if *DisplayLine (a, 1) -

display (first[l]1

DisplayLine (a, rest[l1])

I the events -- Start, Arrive, Depart

if *Start(a, t, x, y)->i

CalcNext Arr ft, Nodel];

CalcNextArr ft, Node2};

a (t)

if *Arrive(a, t, node, "liewdob") -

NewArrivalft, node, NewJobfD;

a (t)

else if *Arrive(a, t, Out, job) -

ExitTime (job, t);

a(t)

else if *Arrive(a, t, node, job) -

Service ft, node, job);

a(t);

if *NewArrival(a, t, node, job) -

StartTime (job, t)

CalcNextArr ft, node); .
JobServiceT(job, GenServT(RndOJ));

Serviceft, node, job);

196



if *Service(a, t, node, job), *InService(node, "-)-

InService (node, job);
Caicfleparture ft, node, job]

a (t)

else if *Service (a, t, node, jot) -

Enqfnode, job);
a (t)

if *Depart(a, t, node, job),

Q(node, Nil) , *InService (node, job) -

InService(node, "-)

a(t)

else if *Depart (a, t, node, job),

*Q(node, 1), *InService(node, job) -

Q(node, restf 1]) ;

InService(node, -)

Serviceft, node, first[l]);

a(t);

if *CalcNextArr(a,t,ncde), JobCcunt (nl,n2,max), nl>=max -

a (t)

else if *CalcNextArr(a,t,node), *JobCount(nl,n2,max) -

JobCount (nl1+ 1, n2, max);

Event (t+GenkrrT (node,Rnd j) ,Arrive, node, "NewJob') ;

197



if *CalcDeparture(a,t,node,job) , JobServiceT(job,servT) -

Event (t+servT,Depart,node, job);

Event (t+servT,Arrive,GenRoute (node, RndU,[Ijob)

a (t);

if *Enq (a, node, job), *Q (node, 1) -

Q(node, appendfl, 'job]:),

a (node);

if *NewJob(a), *JobCount(nl, n2, max) -

JobCount(nl, n2+1, max),

a("lJobll+int str[n2+1 )

I parameter generators

I GenServT -- Generate a service time for a message

GenArrT -- Generate an interarrival time for a job

I GenRoute -- Generate the next node for a departure

if *GenServT(a, x), ServiceTime(t, ii, i2),

(x >= ii) S (x <= i2) -

a~t);

if *GenArrT(a, node, x), Arrlnterval(node, t, ii, i2),

(x >= ii) S (x <= i2) -

a(t);

198



if *Gen~oute(a, node, x), PossilleRoutes(node, n2, ii, i2),

(x >= ii) &(x <= i2) -

a (n2);

I The random number generator .. .

I The End procedure takes the first number from the

I list of random numbers in WorkList.

Seed makes the WorkList the portion of the
I RndList with the ith meaber as the first member.

I If the list of random numbers is exhausted,
i the WorkList is set back to the beginning of

I the original list of random numbers.

if *Seed(a, n), RndList(l), *WorkList(wl) -

WorkList (ithf 1, n]

a (n);

if *Pnd (a), *Workdist (Nil), Rndlist (1)

WorkLi st (re st[lJ1
a (f irst[ 1)

else if *Rnd (a) , *WorkList(l) -

WorkList(restlj) ,

Activate the rules...

activate (SimRules) .

199



Towers of Hanoi

I define the relations

define[root, "Hanoi", newrel[]].

definefroot, "Hanoiux", nevrei. f).

I The rules

define [root, "Hanioiflules",

if *Hanoi(a, n) ->

HanoiAux (a, n, "A", "C", "IB") ;

if *HanoiAux(a, 1, from, to, aux) -

display (,'Move disk 1 from peg "

display (froml;

display[" to peg "I;
displayn [to];

a ("

else if *Hanoikux(a, n, from, tc, aux) -

HanoiAux~n-1, from, aux, to];

dispiay("llove disk III
display [n]
display[$" from peg it);

display [from);
display(" to peg "
displayn [to] ;

HanoiAux[n-1, aux, to, from);

200

-7



- ~ ~ ~ ~ ~ -7 7-77 . - . ~

activate [Hanoi1~ules)

displayn ["Towers of Hanoi Usa ge :Hanoi (n)"}

I The Sieve of Eratosthenes

!For a description of this algorithmn, see

P'Eratosthenes revisited : once M~ore through the Sieve',!

!by Jim and Gary Gilbreath, Byte, Jan 83, p 283.

deinfot"Seenwef)

define froot, "Sieve", nerel 33.

define [root, "Iota", newrely.
definefroot, "Purgelitiples", newrelD)

I the rules

define (root, "SieveRules",

if *Sieve(a, n) -> system ("date"),

Sievekux(a, 0, n-1, Iota(0, n-1, newrel(JI) ;

if *Iota (a, n1, n2, r), n1 > n2 -

a (r)

else if *Iota(a, n1, n2, r) -

r (n2),

Iota(a, n1, n2-1, r);

if *SieveAux(a, n1, n2, r), n1 > n2 -

a ("1OK")

else if *SieveAux(a, n1, n2, r), r (n 1) -

20 1



display ["Prime : ,};

disjlayn (2*n 1 + 3);

PurgeMultiples[2*nl + 3, 3*nl 3, n2, r)

SieveAux(a, n1+1, n2, r);.

else if *SieveAux(a, n1, n2, r) ->

SieveAux(a, n1+1, n2, r);

if *PurgeMultiples(a, prime, suz, n, r), sum > n ->

a(r)

else if *PurgeMultiples(a, prime, sum, n, r), *r(sum) -> "

PurgeMultiples(a, prime, prime+sum, n, r)

else if *Purge Multiples(a, prime, sum, n, r) ->

Purgetultiples(a, prime, prime+sum, n, r);

activate Sieveaules]

displayn{"The sieve is loaded : Usage Sieve(n)"].

Rules and asscciated definitions for a universal i

interpreter/pretty printer for a small language of!

arithmetic expressions. ,
!

definitions

definefroot, "Small", newrel{}] ;

define(root, "Wait", newrel(3]-

definefroot, "Eval", newrel));

definefroot, "Value", newrel)]-

202

................................ *.*%.*-......

. . . . . . .. - k, t.~. - - - - - - - - - - --



defiziefroot, "Appi", newrelffi;

definefroot, 'lop", newrelOl)

definefroot, "Left", newrelfl.

definefroot, "Right", newrel(]

define (root, "Con", neurel f
def ine [root, "'Litval", newrell));

def ine [root, '$Meaning", newrel[J

def ine (root, "Template", newrel fi];

scme objects

definefroot, ItN1i", newobjQ)1

def ine (root, "IN2"1, newobj 1) 1

definefroot, 11N 3"1, ne'wobj[;

definefroot, 'IN4 1", newobj 11

definefroot, "IN5"1, newobj[)).

functions

fni Id~x] :x

fri SuMIx,y] :x Y+

fn Product[x,y] x y;

fn upSum~x,y] ""+ x + "+"+ y+')"

fn upProd~x,y) "(If + x+ " x "1+ y +

initialize the database

Appi (Ni);

Cp (11x"1, N1);

Left (N 2, N1);

Right(1i3, Ni);

Appi (N2);

Op("1+", N2)

left (NL4, N2);

Right (N45, N2);

Con(N3);

203



litva 1(6 N3)

Con (N4)

litval (3, N4)

Con (N5)

litval(5,N5);

Meaning (Product, 1x11);

?eaning(Id, "lit");

Template(upSum, h+'

Template (upProd, "Sx1)

Template (intstr, "1lit"e)

the Rules

definefroot, "SmallRules",

Driver rule

if *Small(node)

Eval (Meaning, node)

Eval (Template, node) ,

Wait (node);

if *Value(Meaning, x, ncde)

*Value (Template, y, node) ,

*Wait (node)

displayn(x),

displayn(y);

!Inheritance rules

!Leaf node

if

*Eval(class, e),

204



Con (e),

Litval (v,e),

class(f, "lit")

Value(class, I~fv], e);

Appi node

if

*Eval(class, e),

Appl (e),

left(x,e), Right(y,e)

Evlcas x),

Eval(class, x);

Synthesis rule

if

*Value (class, u,x),

*Value (class, v,y),

Appl(e),

Op(n,e),

Left (x,e),

Right (y, e),

class(f, n)

Value(class, f~u,v], e)

)>>1

activate the rules

activateL SmallRules )

displayn ["Small interpreter loaded u.i Small (Ni) "I

205



..........

LIST OF REFERENCES

1. Backus, J., "Can Programming Be Liberdted from the
von Neumann Sty e? A Functional Style and its Algebra
of Programs," CAIC M, Vol. 21, No. 8, pp. 613-641,
August 1978.

2. McCarthy, J., "Recursive Functions of Symbolic
Expressions and Their Ccmgutation by Machine, I,"1
CACM, Vol. 3, No. 4, pp. 18 -195, August 1960.

3. Turner, D. A., "Recursicn Equations as a Programming
Languiage" in Functional Programmn and It
Alla ns: A n T' Y e Co~geT rfing T-oiHppdLit e~ T 7 . , es.) Cambridge,
pp. 1-28, 198

4. Dahl 0. and Nygaard, K., "1SILIULA--An ALGOL-Based
Simulation Language "1 CACM, Vol. 9, No. 9, pp.
671-678, September 1966.-

5. Kay, A. "Microelectronics and the Personal Coin uter
Scientific American, Vol. 237, No. 3, pp. MO-2441

6. Post, E, "Formal Reductions of the General
Combinatorial Decision Prcblem," Am Jnl Math, Vol. 65,
No. 2, pp. 197-215, April 1943. -

7. Newell, A. and Simon, H., Human Problem Solvipq,
Prentice-Hall, 1972.

8o Hewitt, C., "Procedural Embedding of Knowledge in
PLANNER," Proc. 2nd IJCAI, London, pp. 167-182, 1971.

9. Lenat, D., "Automated Theory Formation in
Mathematics "1 Proc. 5th IJCAI, Cambridge, Mass., pp.
833-842, 1917.

10. Shortliffe, E. H., Computer-based Medical
Consultations: MYCIN, AmericaiF IsEV1Er, 1976.

11. Feigenbaumn A. Buchanan, B. G., and Lederberg, J.,
"On Generaliity ana Problem Solvinq: A Case Study Usingthe DENDRAL Programf,' in Machine Intelliqence Vol.6
(Meltzer Band Iichie, Fr.-ZdgT-XiilZaiFhlsevier,
pp. 165-190, 1971.

206



12. Duda, R 0. Hart, P. E. Nilsson, N. 3., and
Sutherlad i"emnic Network Representations in
Rule-Based S y~ems" in Pattern-Directed Inference
Systems (WatermanD A. af-fN9=5f--._Uf-.-
XcAMleffic Press, pp. 103-21 1978.

13. Kowalski, R., 12_i c for Problem Solvipq,
North-Holland, 1979.

14. Naval Postgraduate School Report NPS 52-83-001, A View
of Object-Oriented Prqgamingq, by B. J. MacLiinFUH-

15. MacLennan, B. J., "Values and Objects in Prolramming
Languages," SIGPLAN Notices, Vol. 17, NO. 72, p.-
70-79, DecemgTM2.- -

16. Codd, E. F., "A Relaticnal Model of Data for Large
Shared Data Banks," CACM, Vol. 13, No. 6, June 1970.

17. Dennis, J. B., and van Horn E. C., "1Programming
Semantics for ,Multimprq amme& Computations , CACH,
Vol. 9, No. 3, Pp. 14 4-155, March 1966.

18. Davis, R. and King, 3. "An Overview of Production
Systems " in Machine Intelligne Vol. 8 Elcock, p.11. and Aichie~ 6 30-33 , 1977.

19. MacLennan, B. J. Princi.p2les of Progqramrnin~q La~gajes:
Design, Evaluationi,- a -TilemeTfi on. 'HolT,

20. Foderaro J K. The Franz LISP Manual, Regents of the
University ;f CallTr 1U -

21. Clockskin, W. F. , and Mellish, C. S. , ZE.2grA.M.Zip in
Prloq Spring er-Verlag, 1981.

22. Kernigan, B. W. and Ritchie, D. M_ , Th k rq~EAmminE
LangagePrentice-Hall, 1978.

23. Leskc, M. E., and Schmidt, E., lex - A lexical An aljzer
Generator, Bell Laboratories, Uaaeif------

24. Johnson S C, XAcc: Yet Another Compi ler-Comp iler,
Bell Latoratories"778.

25. MacLennan, B. J. Euncticnal Prgarammipa Methodology:
Theory and Prac1E1ie, -to5 ~E puZB1iR0aby
Id~Thon-w~sIey.

26. University of California, The UNIX Programmer's
Manual, 4.2 Berkeley Software D1FEriFiiTron- Tff.

207



27. Barrett, W. A and Couch 3. D. ComE~iler
Construction: Terand Practice, Science RTZeaYci
13sWIMt7-19 737-.--

28. Aho, A. V,, Hopcroft, J. E., and Ulilman, J. D,,Dt
Structures and AlqritlhA, Addison-Wesley, 1983."

29. Baker, H. G. 4r. "Optimizing the Allocation and
Garbag y~Collectio of Spaces," in Artificial
Intelliqnce: 1An MIT Pesecie Vol. 2, HIT ess,

30. Bobrow D Gand Clark, D. W, "Compact Encoding of
List Structures," ACM TOP.A 5, Vol. 1No. 2, pp.
266-286, October 1971J.

31. SRI International, C-Prcloq User's Manual eso
1.5, F. Pereira, ed., Ula-EeI. , Veso

32. Warren, D. H., Pereira, L. M. and Pereira, F.
"Prolog--The Language and It sVImpiementation Comrared
with LISP "o S IGPLAN Noics Vol. 12, no. 8, pp.
109-115, lugiif-T9777.

33. Rich, E., Arlfiial Intelliqence, McGraw-Hill, 1983.

34. Rosenschein, S. 3.0 "The Production System:
Architecture and Abstraction "in Pattern-Directed
Inference Systems (Waterman, b.A XnU1N-e§15
F-.-e-UfT,AXZ5ZZiic Press, pp. ;25-;58, 1978.

35. Davis~ R., "Beta-Rules: Reasoning About Control",
Artificial Inelgne Vol. 15, No. 3, pp. 179-22

36. Tick, E., and Warren, D. H . D., "Towards a Pipelined
Prolog. Processor," in IEEE 1984 International
Symposium on Log ic Proqrammiff& IEE-Corn EffS3Z1T'

208



BIBLIOGREAPH Y

Foster, J. . "Programming Language Design For the
Representa tio o nowledge," in Machine Intelligence,
Vol. 8 (Elcock, E. W., and Wchie, D., -WtZ7, pp
209-222, 1976.

IGoldberg A. and Robson D. Smalltalk-80: The Lanuae
and Its imniementation, 1dd ison -We§1T-71J3.

Hayes-Roth, F. Waterman, D.A and Lenat, D. B. ,
"Principles of' Pattern-Directed Ainference Systems, in
Pattern-Directed Inference Systems (Waterman D. A. ,
IIay-esL-ITo6E, F:;edg.-7j;Xaaiemic-Pes, pp. 577-661, 1978

Pcrs, J., and others, LISP 1.5 Programmer's Manual, MIT

McDermott, J. Newell, A., and Moore J., "The Efficiency 9f
Certain Production System fmp lementations,"l in
Pattern-Directed Inference S.ystems (Waterman 1DL A and

MlcDermott, J. and Forgy, C., P"Production System Conflict
Resolution Itrategies, in Pattern-Directed Inference
1 Sstems (Waterman, 1D. A., ad~ ~7caMic Press, pp. 17-19, 798.

Rieqer, C., " pontaneous Comutation and Its Role in AI
Modlih,"in Pattern-Directed Inference Systems£ (Waterman,

D. A., and H y- d.) dicPrspp. 69-97,
1978.
Robinsop,3 A, "A ilachine-Oriented.Logic Based on the
Resoluticn JPrinciple "1 Journal of the ACM Vol. 1,N.1
p. 23-41, January 1665 ~ -1,N.1

Steele, G. L "Data Representation in PDP-10 MacLISP
Proc. of the Mi SYMA User's Conference, NASA, pp. 203-21il,
""77.---------------
Warren, D. H D. Higher-Order Extensions to Prolog: Are
They Needed'? in hachine Intelligence, Vol. 10 (Ha yes, 3.
E Ilichie, .,anra-5o7 Y7-,-es.T7 Wiley, pp. 1i41 -454,
10~2.

Waterman D A, and Hayes-Eoth, F., "An Overview of
Pattern-Sirected inference Sytems," in Pattern-Directed
Inference Systems (Waterman D A., and ~ i Y
M97:T;-X~aaemi -Press, pp. 5-22; 178

Winston, P. H., and Horn, B. K. P., &lag, Addison-Wesley,
1981.

209



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. library, Code 0142 2
Naval Postqraduate School
Monterey, California 93943

3. Department Chairman Code 52 2
Department of Ccmputer Science
Naval Postgraduate School
Monterey, California 93943

4. Computer Technology Prograjis
Code 37
Naval Postgraduate School
Monterey, California 93943

5. Professor Daniel Davis 1
Department of Computer Science, Code 52
Naval Post raduate School
Monterey, Califcrnia 93943

6. Captain H. M. McArthur, USMC 2
135 Johnson Street
Red Springs, North Carolina 28377

7. Professor J. M. Wozencraft 1
Department of Electrical and
Computer Engineering, Code 62
Naval Postgraduate School
Monterey, California 93943

8. Dr. Robert Grafton 1
Code 433
Office of Naval Research
800N. Quincy .
Arlington, Virgi3ia 22217

9. Mr. Dennis Hall 1
2 Ivy Drive
Orinda, Califormia 94563

10. Dr. David W. Mizell 1
Office of Naval Besearch
1030 East Gregn Street
Pasadena, California 9 1106

11. Professor Rudolf Bayer 1
Institut fur Informatik
Technische Universitat
Postfach 202420
D-8000 Munchen 2
West Germany

210

..." ""-,... .. .. .............. ........... .......... ...............



12. Mr. Ron Laborde
INZICS
Whitefriars
Lewins Mead
BRISTOL
United Kingdom

13. Mr. Lynwood Suttcn
Code 424, Building 600
Naval Ocean Systems. Center
San Diego , California 92152

14. Mr. Jeffrey Dean
Advanced Information and Decision Systems
201 San Antonio Circle, Suite 286
Mountain View, California S4040

15. Mr. David Lefkovitz
.31 0 Cynwy dEd.
Bala ynwyd, Pennsylvania 19004

16. Dr. Robert Balzer
USC Information Sciences Institute
Suite 1001
41676 Admiralty Ray
Marina del Reyf California 90291,

17. Mr. Jack Fried
Manager, Software Technology
Grumman Aerospace Corporation
Bethpage, New York 11714

18. Mr. Ronald E. Jo
Manager Administration and Technical Services
Honeywell Inc
Coinp ter ciences Center
107D 1 Lyndale Avenue South
Bloomington, Minmesota 551402

19. LtCol. David Meichar, USMC, Code 0.3 09
United States Marine Corps Representative
Naval Post raduate School
Monterey, alifornia 93943

20. Mr. A. Dam ,Sam ple.5
Computer Scienc Division--EECS
University of California oBerkeley
Berkeley, California 9470

21. Professor S. Ceri
laboratorio di Calcolatori
De p~rtime nto diElettronica
Po iltecni co di Milano
20133 -Milano

Italy

211



FILMED

7-85

D-TIC


