1/3 -

_ AD-A154 723 INTERACTIVE ‘ON-LINE CONFERENCES(U) MASSACHUSETTS INS;

OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE S K SARI
DEC 84 MIT/LCS/TR-330 N8@014-83-K-0125
UNCLASSIFIED F/G 1772

B[[[[[]
HEEEEEEEEEEEEE
EEEENEEEEEEEEE
SEEEEEEEEEEEE.
HEEEEEEENEEEEER
EEEENEEENNNNED
IEEEEEEEEEEEEN

Cadil i Py r-,v—.‘-"."’.r.r.vﬁv;—'}_i_h_l.‘

Cathcaten) 1‘-,»«4-‘-4-.-.,-,-_u_.u-__v_ BTN e : ‘

=
N
i
==
N
(%]

2

"TEFEEER
EEE

——

=
gl
o M3

cr
r
rr

""_IEI— llllll'—s-

22 et e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

- . PN P - C et et et e e . e e e . .

. - ,"A '_ . Lo - - - - - - . A - ~ - . - Y-t - . - 0 .. - - . - N
L PN T S R R AT R S S o

e T e e T T T e e T s . o ey S,

e e s e e e i PERERDC I v

At et e

MIT/LCS/TR-330

INTERACTIVE
ON-LINE
CONFERENCES

e

“CTE

JUN1 2185

Sunil Kumar Sarin

This research was supported by the Detense Advanced Research
Projects Agency of the Department of Defense and was monitored by
the Office of Naval Research under contract number N0O0014-83 K-0125.

- o e
i ThipoarNT A
LRS! TS
popuinlle srenied)

SIS I TRNRITAS; § 3

vy m—

515 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Unclassified

SECUNITY CLASSIFICATION OF THIS PAGE (When Data Entered) L] [
READ INSTRUCTIONS e
REPORT DOQUMENTATION PAGE BEFORE COMPLETING FORM R T
! 1. REPORT NUMBER J S GOVT/ACCESSION BO,! 3. RECIPIENT'S CATALOG NUMBER e . g
MIT/LCS/TR-330 A C - ? § ?f 72 ST
4. TITLE (and Subtitle) N §. TYPE OF REPORT & PERIOD COVERED S e
, . Ph.D diss i
Interactive On-Line Conferences h ssertation
June 1984
6. PERFORMING ORG. REPORT NUMBER
MIT/LCS/TR-330
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
Sunil Kumar Sarin DARPA/DOD

NO0O014-83-K-0125

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

MIT Laboratory for Computer Science :'j;;f_ffj
545 Technology Square o
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ' .
DARPA/DOD December 1984 e
1400 Wilson Blvd. 13. NUMBER OF PAGES L
Arlington, VA 22209 250 B

fd&. MONITORING AGENCY NAME & ADDRESS(if difterent from Controlling Ollice) 15. SECURITY CLASS. (of this report) DI S
ONR/Department of the Navy Unclassified IR
Information Systems Program . @ e
Arlington VA 2 22 l 7 1Sa. gCEEIE.DASiIEFICATION/ DOWNGRADING e e

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

unlimited

18. SUPPLEMENTARY NOTES

13. KEY WORDS (Continue on reverse side if neceasary and identify by block number)

Real-time conferences, shared-screen conferencing, teleconferencing,
distributed computing systems, replicated data, concurrency
control, computer network protocols, broadcast, multicast, ST
virtual terminals, terminal 1linking, workstations, user interfacds. R

20. ABSTRACT (Contlnue on reverse side if necessary and identify by block numbaer) - . . . _.

A real-time conference allows a group of users, each at his or
her own workstation, to conduct a problem-solving meeting by
collectively viewing and manipulating a shared space of on-linc
application information while using a voice communication channel
for discussion and negotiation. A real-time conference thus
supplements asynchronous communication services, such as electrorgic

mail, by permitting simultaneous manipulation of shared ihformatqon.
i

DD ‘ FORM 1473 EDITION OF | NOV 65 1$ OBSOLETE

JAN 73 R A g Unclassified .

SECURITY CLASSIFICATION OF THIS PAGE (When Date Er sred,

e e Lt T et e e e
P U S it SRS ULIN Yl YD Tt Wi

P TR TP NL WA WAL TRt T Y

2

;’ - . .

~ - Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Techniques are presented in this thesis for designing and
implementing real-time conferences on distributed computer

- systems. Useful functions for real-time conferences are proposed
N control over who may join a conference, and over concurrent
participant commands within a conference; "private" spaces and
transfer of information between shared and private spaces; display
of "status" information describing who is present in a conference
and who is entering commands; eliciting and collecting responses
to be used in decision-making; planning a conference and making
it known to potential participants; and maintaining and reviewing
records of a conference. The tradeoffs involved in selecting a
comprehensible set of commands for these functions are illustrateq
by the detailed design of a real-time conferencing system for
joint editing of documents.

Different implementation techniques for real-time conferences are -
evaluated, with particular emphasis on minimizing the response
time of the system to participants' commands. Criteria for .
. choosing among alternative techniques are provided to guide a
A system designer in tailoring a real-time conferencing system for A
his particular application, user community, and implementation R
environment. An architecture is presented that permits -~
dynamic selection of the implementation method based on run-time
. nerformance parameters. The feasibility of implementing real—tim¢
. conferences using the given techniques is demonstrated by two
o prototype systems.

i

Accession For P

NTTIS GRA&I Pal
DTIC TAB |
Unannounced O
Justification |

By
Dist_xiiﬁbution(ﬁ ‘ . .
Availability Codes o
Avail and/or '
Dist, | Special

’ 1

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

~ - w T g g T e T T T T L LT
CoRAr SNAI RIS Srap gra ses gun - SN A APIM B0 SN SP i e SRl i Sl NI Y AL ILA L S SIS S i At M R S TV g ;
R T . T NS T N - R - . . . -

Interactive On-Line Conferences

by

Sunit Kumar Sarin

December 1984

® Massachusetts Institute of Technology 1984

This research was sponsored by the Defense Advanced Research Projects Agency, and was
monitored by the Office of Naval Research under contract number NO0014-83-K-0125.

Massachuseits Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

. " . "
1 R
. e

............

,
,
?
.
,
s
.
,
.
.
\
’
*
g
.
." . AN
| PRI

- EEPRE TN <0 PR T e R S P S S A P .
A T A P e - RN PP I/ S S A S TS S G T W Gt St Puit S | re

Interactive On-Line Conferences

by

Sunil Kumar Sarin

Abstract

A real-time conference allows a group of users, each at his or her own workstation, to
conduct a problem-solving meeting by collectively viewing and manipulating a shared space
of on line application information while using a voice cammunication channel for discussion
and negotiation. A real-time conference thus supplements asynchronous communication
services, such as electronic mail, by permitting simultaneous manipulation of shared
information. .

Techniques are presented in this thems- for designing and implementing real-time
conferences on distributed computer systems. Useful functions for real-time conferences are
proposed: control over who may join a conference, and over concurrent participant
commands within a conference private spaces and transfer of information between shared
and private spaces; display ofg"‘status information describing who is present in a conference
and who is entering conunands; eliciting and collecting responses to be used in decision-
making; planning a conference: and making it known to potential participants, and maintaining
and reviewing records of a conference. The tradeofis involved in selecling a comprehensible
set of commands for these functions are illustrated by the detailed design of a real-time
conferencing system for joint editing of documents. -

Different implementation techniques for real-time conferences are evaluated, with
particular emphasis on minimizing the response time of the system to participants’
commands. Criteria for choosing among affernative techniques are provided to guide a
system designer in tailoring a real-time ‘conferencing system for his particular application,
user community, and implementadtion environment. An architecture is presented that permits
dynamic selection,oHrml)lementation method based on run-time performance parameters.
The fe»asibiliry’”of implementing real-time conferences using the given techniques is
demonstrated by two prototype systems.

!

AN / N i -‘\’-_._’.
AT e, {. - e . vyw T Lo les CF ST
L . f

This report is a minor reviéion of a thesis with the same title submitted to the Department of
Electrical Engineering and Computer Science on June 15, 1984, in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy. Substantive changes were made in

Sections 5.3.2 and 7.1 only. B
Keywords: real-time conferences, shared-screen conferencing, teleconferencing, distributed v .' R
computing systems, replicated data, concurrency control, computer network protocols, . N "

broadcast, multicast, virtual terminals, terminal linking, workstations, user interfaces.

IR AT R L AL .. et o R N L R T T e N T

N Y

Eaadeaie ing aas ae it PROD Mt be i Jen S g Jenanr it 48 S o e s s see g PRL AUl 2eva S e e/ SN Sonsh allemd o P dnc e e e SE A 0 Sr ine S bt

Acknowledgments

I would like to thank my thesis committee, lrene Greif, Michael Hammer, and J.C.R.
Licklider, first for reading this thesis, and second for providing the feedback that encouraged
me to continue an undertaking that they considered worthwhile. As my thesis supervisor, Dr.
Irene Greif very patiently read and endured numerous rough and long-winded drafts. Her
repeated exhortations to bring out the essential points of the research, what it's useful far and
to whom, have considerably enhanced the quality of this document. lrene arranged for
financial support even as t extended my stay, and was generous with acvice about malters
unrelated to the thesis, for both of which | am grateful. Prof. Michael Hammer led me through
the early years of my graduate schooling. including my Master's research, and was an able
instructor in the art of writing and speaking. He is in many ways the principal instigator of this
thesis, having suggested the topic when | was looking for one. Prof. Licklider's obvious
curiosity and interest in the subject of iny thesis provided a useful bolster. He has never failed
to surprise ine with fresh insights into the problem, and my only regret is that our meetings
were so few and far between.

The erstwhile Office Automation group, and its predecessor the Data Base Systems group,
provided a fertile environment for the development of ideas, as well as some wild and crazy
times. Brian Berkowitz, Dan Carnese, Arvola Chan, John Cimral. Ed Gilbert, Jay Kunin,
Dennis Mcl.eod, Bern Niamir, and Stan Zdonik deserve special mention. Andrea Aparo
provided a needed breath of fresh air during the year he visited with us. Members of the
Programming Technoloygy group (the "other half” of the second floor), especially Tim
Anderson, Dave Lebling, and Chris Reeve:, contributed to the atmosphere of friendly anarchy,
and provided occasional systems help as well. It was a pleasure to work with the many
undergraduates who contributed to Dr. Greif's "calendar project”, and to help them through
the agony of learning to debug the code. Larry Rosenstein, Mark Pelkie, Michael How, and
irene Greit wrote supporting code that | used in my first prototype, RTCAL. With minimal
supervision from me, David Brackman implemented a "shared pseudo-terminal” prototype in
one short summer.

Many members of the Computer Systems group (and its many incarnations and offshoots)
have provided input as well. Prof. Jerry Saltzer conducted a seminar a few years ago that
greatly increased my understanding of, and interest in, distributed computer systems. More
recently, Prof. David Reed and Dr. David Clark conducted a seminar that unlocked some of
the mysteries of computer network protocols, a fascinating subject of which | have only
skimmed the surface. Larry Allen provided a wealth of background information on practical
network protocols; he had little choice, we rode the same bus many times. Michael
Greenwald provided help with the "Blink" protocol (designed by David Reed), and Lixia
Zhang was kind enough to let me use her simulator program to test out my own extension of
the protocol, MBlink. They inay no longer remember it, but | also had productive discussions
with Bob Baldwin and Karen Sollins.

The CLU language and system, developed by Bob Scheifler and Paul Johnson and others
under the leadership of Prof. Barbara Liskov, and Maurice Herlihy's message-passing
extension, greatly eased the task of programming the prototypes described in this thesis.
Considerable use was also made of a myriad of text processing, mail handling, programming,

LIPS AT I

CHPOCAN R A A I e il A 4 i et I ekt 0 = = LAt Band

and debugging tools developed in the unique creative environment of the Artificial
Intelligence and Computer Science Laboratories. The Department of Defense Arpanet and
Internet have made it possible for me to access a large amount of nelwork and other
documentation without taking up anybody else’'s time, and to inleract professionally with
many individuals whom | have never met and perhaps never will.

This document was formatted using Unilogic Inc.'s Scribe™ document compiler, and
printed on a Xcrox "Dover” laser printer. | would like to thank the research and technical stalf
members who kept the computers and networks and printers running: Joe Ricchio, Tyrone
Sealy, Steve Berlin, Robert Myhill, and many others whose names | will never know.

The important efforts of the support staff at the Laboratory for Computer Science go
largely unrecognized. | would like to thank Linda Bragman, Gerry Brown, Bob Donahue, Ann
Finn, Nancye Mims, Margie Nieuwkitk, Anne Ruhin, Janet Schoof, Renata Sorkin, and all the
others who have kept things running simoothly over the years. Maria Sensale of the Reading
Raom has been most helptul, and went to great lengths to acquire a report that | wanted to
read.

Prof. Fred Hennie and the late Prof. Bill Martin arranged for financial support during my
first year at M.L.T., while | was still finding my way around. Prof. Jack Dennis performed the
thankless job of graduate counselor with patience, signing my registration form term after
term and encouraging me as | passed each milestone. The 1.B.M. Corporation awarded me a
Graduate Fellowship that supported me for one year. Without continued funding from the
Defense Advanced Research Projects Agency, this research would never have taken place.

At the Indian Institute of Technology, Kharagpur, Amitava Bagchi got me started in
computers through his own obvious enthusiasm with the subject. By demanding to absorb all
of my new-found knowledge, Sajan Punwani helped me learn to clearly communicate that
knowledge, and to better understand it myself.

My parents, Veena and Dharam Pall Sarin, have always been there for me, for longer than |
can remember (naturaily). They provided both moral and financial support, and never
questioned my desire to follow a seemingly endless project to completion. My parents and my
elder brother Vinay are responsible for injecting me with a thirst for knowledge and for
whatever level of intellectual ability 1 have been able to attain. My younger brother Sudhir
{"Sunny”) kept me from lapsing into self-absorption by never giving me a moment's rest
whenever | was home. His curiosity and persistent questioning ("But why?") sharpened my
wits by forcing me to think. A year after his death, his affection and concern for people and
his total immersion in everything he did remain an inspiration to all who knew him.

Florence and Harold Gordon welcomed me into their family as one of their own, and
provided many a refreshing Sunday lunch and gripe session.

Leslie Gordon has been the brightest element of my long and arduous graduate student
career. She has provided encouragement and advice far beyond the call of duty. She
demonstrated infinite patience by listening to my endless complaints about real and imagined
lack of progress, withheld her own complaints when my thesis kept me busy and irritable, and
provided the laughter that was needed when life looked bleaker than it really was. Leslie's
contribution to this thesis cannot be measured; if | am able to give her even half the support
she gives me, | will consider that an accomplishment.

. T P Y e U U BT AT St e S e L. .
PRIPTIFRIRIS D BN, DL RSN S R I BT PR TP b B W - Lo Lo b ag o= 0 ot 4

D A A e i o e £ i AT Bt Aot S0 e Sbencman e Juan 4

G ek -mute Shat disess Sean memc T T Y Y TV W N TN W T — v T - - T

Table of Contents

Chapter One: Introduction 13
1.1 Asynchronous and Real-Time Interactions 13
1.2 Benefits of Real-Time Conferencing 14
1.3 Scope of Thesis 15
1.4 Functional Design of Conferences 17
1.5 Implementing Conferences 19
1.6 Related Work 20 R
1.6.1 Audiographics Conferencing 21 . T
1.6.2 Electronic Blackboards 21 <]
1.6.3 Virtua! Terminal Linking 21
1.6.4 Application-Specific Conferencing 24 R
1.7 Outline of Thesis 25 o
Chapter Two: Example: Joint Document Editing 27 j'. -
2.1 System Environment 28]
2.1.1 Communications and Storage 28 DR
2.1.2 Workstation Interface 30 L
2.2 Editing by Individual Users 31 R
2.2.1 Document Structure and Operations 32 -
2.2.2 Document Windows 35 R 1
2.2.3 Editor Interface 36 S
2.2.4 History-Related Commands 42 R
2.2.5 Access Control 43 Sl
2.2.6 Concurrency Control 44 o 4
2.3 Real-Time Conference Interface 47 [)
2.3.1 Windows and Reservations 47]
2.3.2 Negotiating a Window Size 53 RS
2.3.3 Document Access Control 55 RS
2.3.4 Access to a Conference 56 R
2.3.5 Leaving and Termination 57
Chapter Three: Design of Real-Time Conferences 59
3.1 Shared and Private Spaces 61
3.2 Access Control 65
3.3 Concurrency Control 67
3.3.1 Validation 68
3.3.2 Reservations 70
3.3.3 Comparison 73
3.4 Meeting Support Functions 74
3.4.1 "Chairpersons" and Participant "Roles" 74
3.4.2 Participant Status Information 75

p
..1
N
9

13
p
4
»
2
4
>
b

-t .
SR W SL . Sl P Ml S S R . S i ATy

[y

- LARaI . e aoae S M CRA g vl A ress oo s avus aegs i aubh dvi - ik oA - RIS A A i S e =R Lalir AR - *

s
o
: }
3.4.3 Interjections 78 |
3.4.4 Negotiations 79 o
3.4.5 Access to a Conference 81 _
3.4.6 Rendezvous 82 o
3.4.7 Planning and Scheduling 83 Y
3.4.8 Joining a Conference 84 R
3.4.9 Leaving a Conference 85 e
3.4.10 Conference Termination 86 e
3.4.11 Record-Keeping and Review 87 —. -
3.5 Two-Person Conferences 89 -
3.6 Voice Communication N ‘
3.7 Summary of Design Issues a3 .
Chapter Four: Implementation of Real-Time Conferences 97 4
4.1 Distributed System Model 97 e 1
4.1.1 Sites and Messages o8 .
4.1.2 Object Model 99 ;
4.2 Real-Time Conferences 105 SO
4.2.1 Conference Objects 105 RN
4.2.2 Controller and Workstation Sites 11 o |
4.3 Input and Update Processing 113 R
4.3.1 Workstation Interface 13 Sl
4.3.2 Input Processing 116 T
4.3.3 Update Generation 118 SR
4.3.4 Synchronization Points 120
4.4 Replication Strategies 122
4.4.1 Full Replication 122
4.4.2 Partial Replication 124
4.4 3 Private Spaces 127
4.5 Adding and Removing Participants 13
4.5.1 Immediate Initialization 131
4.5.2 Asynchronous Initialization 132
4.5.3 History-Based Initialization 133
4.5.4 Removing a Participant 135
4.6 Transport Protocols 136 o
4.6.1 Message Encodings 137 Ty
4.6.2 Virtual Circuit Efficiency 138 *
4.6.3 Reliable Multicast 140 .
4.6.4 Non-Sequential Datagram Protocols 145
4.7 Improving Interactive Response 150 S
4.7.1 Many-to-Many Reliable Multicast 152 Co
4.7.2 Adding and Removing Workstations 155 o |
4.7.3 Displaying Unconfirmed Results 155 T
4.8 Using the Implementation Techniques 158 R
Chapter Five: Conference System Architecture 161 ::i:: "
5.1 Dynamic Conference Control 161 : . ‘
8 o
]

.t e
PRr Oy Wi

5.1.1 Groups of Sites

5.1.2 Conterence Descriptions

5.1.3 An Example

5.1.4 Adding and Removing Sites

5.1.5 Negotiating a Change in Protocol
5.2 Conference Management

5.2.1 Multiple Conference Types and Applications

5.2.2 Selecting a Controller Site

5.2.3 Backup Controllers

5.2.4 Moving the Controller Site

5.2.5 Controller Crash Recovery

5.2.6 Combining Conferences

5.2.7 Server Sites in a Conference
5.3 Decentralized Control

5.3.1 Locking

5.3.2 Timestamp Ordering

5.3.3 Token-Passing

5.3.4 Two-Person Conferences

Chapter Six: Prototype Implementations

6.1 Meeting Scheduling in a Real-Time Conference
6.1.1 RTCAL Functions
6.1.2 Experience with RTCAL
6.2 Shared Bitmap System
6.2.1 The Blink Protocol
6.2.2 Handling Multiple Workstations
6.2.3 Remote Mouse-Tracking
6.2.4 Experience with MBlink
6.3 Extended Bitmap System
6.3.1 XMBlink Functions
6.3.2 Application Program Interface
6.3.3 Transport Protocol
6.3.4 Sample Application

Chapter Seven: Summary and Conclusion

7.1 Future Directions
7.2 Relevance to Distributed Computing

References

. - PO I E T A .
PV WL VOl ST VLA A V) POl VAP Sl LA SR Sl WA SR SRl UhE S Wity Uil Vil WAy W

ol el el i iy

M AP AP

M e Tl e madh et S

162
165
165
167
170
174
174
175
177
177
181
183
185
189
19
192
195
196

201

201
202
205
206
207
210
212
213
214
215
219
222
224

229

231
233

239

......
PP SR W S

e . v
: o BN
f TR . STeteto
IR AT S N SR N W

. . N ,v . .‘ o
RIS S AL R

T . .
PG I R Y VAP WDV

o
o
4
. ‘.‘
Table of Figures o
- N | -
. 4
Figure 2-1: A Document Window 35 "l K
Figure 2-2: Alternative Document Versions 46 RN
Figure 2-3: Shared and Private Spaces 48 o . o
Figure 2-4: Shared Space in JEDI 49]
Figure 3-1: Pointer Shapes for Two-Person Conference 90) j
Figure 4-1: Conference Object Specification for JEDI 106
Figure 4-2: Example Document Structure 110
Figure 5-1: Example Group Graph 163 -
Figure 5-2: Group Grapi: for JEDI-CONF 166 ®
Figure 5-3: Ensemble Operations on Groups 168 o j
Figure 6-1: Example RTCAL Display 203 S
Figure 6-2: Architecture of Shared Bitmap System 207
Figure 6-3: Tracking of Workstation Pointers 212 .
Figure 6-4: XMBIlink Conference Object Specification 216 Co 4
Figure 6-5: XMBlink Signals 219 * |
Figure 6-6: Example Crossword Display 226 L]
- . -
_ k
T
. . -4
o
1
- ® J
¢
1 o
BRR
. -
q
]
3 1
e e et et e e T e e e LR T SRR ST S A A S N D e . U T S ST S T _ L N RS IR “~ .4

Chapter One

Introduction

This thesis addresses the problem of supporting and enhancing remote problem-solving
meetings and conferences through access to on-line information. We present both interface
design and implementation techniques for "real-time conferences” in which a group of users,
each at his or her own workstation, colleclively view and manipulate a shared space of
problem information while using a voice communication channel for discussion and

negotiation.

1.1 Asynchronous and Real-Time Interactions

Interactions among people fall into two main categories: real-time interactions such as
face-to-face meetings or telephone conversations, and asynchronous interactions such as
correspondence via the postal service. Each is appropriate for different situations, and
neither is likely to complctely replace the other. Asynchranous interaction can be extremely
useful and elficient in that each communicator can act at a time and pace of his own
choosing. However, it is often the case that after a sequence of asynchronous exchanges of
information. proposals, and counterproposals it is necessary to negotiate in real time in order
te ~esolve outstanding issues. Rapid group decision-making in a crisis situation also requires

r “ainteraction.

Wi, ‘ng advances in technology and declining costs, computers are being .)

. - 4

increasingly used to aid problem-solving and decision-making, in business, design and - R
manufacturing, the military, and other areas. General-purpose too's such as electronic mail]

[55]. computer conferencing [59, 79}, and form management [119, 28], have been devecloped

now widely used. These tools, however, support asynchronous communication only. Real-

for supporting groups of people engaged in such problem-solving. and many such tools are - '. ’ 1
time interaction has been largely ignored in these systems, except for very primitive and ;
. " .« " -‘

<

cumbersome facilities such as typed text messages or "linking” of terminal input and output. '_._: ’

13

1
]
]
-1
W |

R I - R R I AP S R R S LR YL P S P P
b S, N} - 2 - > ” S o' it " . F R N Yy SRR S ST S Y. Sl iy Wi W DB e D S B M W] Aadeldalod

using the system’s communication facilities), and suggests holding a real-time conference

right away.

Because real-time conferences are not held inisolation, but in the larger context of many
asynchronous editing sessions by individual users, it is important that identical or similar
command interfaces be presented to a user when working alone and when in a conference.
Brefore descrnbing the real time joint document editing interface, therctore, we first describe in
detaul how documents are edited by individual users. This will provide a basis for describing
the real ime conference interface. and for showing how certain commands need to be
modified, and new commands included, for a real time conference. First. Section 2.1 brielly
describes the overall system environment as it is perceived by the users. Scction 2.2 then
doscribes document editing by individual users, and Section 2.3 describes joint document

editing in a real time conference.

2.1 System Environment

This section describes the overall system as it appears to the users, and the style of user

interface that we are assuming.

2.1.1 Communications and Storage

We assume a distributed system consisting of users' workstation machines and various
server machines, connected together by some kind of communication network. The network
is largely transparent to the users. That is, except for differences in response time (which may
be unbounded, e.g.. when a remote machine crashes), a user need not be aware of the
physical separation and loration of different machines. We list here some important features
that are found in many contemporary distributed computing environments; not every system
will actually have every foature. and some systems may have certain features in a more

aclvanced form than described here.

The system maintains a collection of long-lived objects, such as documents, circuit
designs, and calendars, which reside on one or more server machines. Directories of objects
are used to provide access to objects based on their "filenames" or in response to "queries”

on various other properties, such as:

28

and

Chapter Two

Y Y S)

Examplie: Joint Document Editing S

[
PGP P N

®
This chapter illustrates the design of real-time conferences by developing the .' SRR 1
specification of an example real-time conterencing system. We have chosen one of the most S «.
common uses of interactive computing, namely text editing [3], as the application for this . ~_ - - }

example system. This system, which we shall call JED/ (for Joint FDlior), is meant to support " ®
groups of people working together to produce and maintain documents of any of several ‘
different kinds, e.g., a technical article or research proposal with two or more co-authors, an y
annual progress report of a project team, or product documentation written by the designers R
of the product in cooperation with a professional technical writer.] :
While holding a conference using JEDI, each participant will be presented with a shared
space and a private space on his workstation screen; the shared space shows information j::
(from one or more documents) that is identical for all participants, while each participant's . - .7 4

private space shows information visible only to himself. (We will describe the appearance of

the shared and private spaces in more detail later in this chapter.) While editing one or more

documents in a conference, the participants will conduct a voice conversation to discuss the

documents being worked on. e

Most document editing by users of the system will be conducted in individual editing

sessions; a real-time conference will be held only occasionally when the need arises. For

example, after working asynchronously over a period of time to produce drafts of different
sections of a large document, a group of co-authors may wish to hold a real-time conference . o
in order to put the sections together, filling in transitional paragraphs and making other

changes so that the sections How smoothly. Or, alter a draft of a document has been read by

its co-authors and editors and reviewers, each of whom has entered some comments and

possibly proposed alternative sentences or paragraphs, a real-time conference may be held to . “. C
clarify the comments and to resolve outstanding differences. A conference will often be held

only after some planning and scheduling by the users involved, hut may sometimes be held in

a more impromptu manner, e.g., a user calls up one or more other users {over the phone, or R

27

T AT A r et At et atatata e A e aa ata e a atmtatatlataldaaa alatala‘aiataetatatataNararen’acatas e naa o d

T W T v B B e e e e e e e o

Other undocumented conference system prototypes have been developed at the Xerox .
Palo Alto Research Center, e.g., for joint document editing and circuit design.4 These o
systems, and systems such as Palette, above, do in fact illustrate some of the functions we o

propose for real-time conferences, but these systems are somewhat inflexible. Many existing

systems, for example, are restricted to two participants only, or make no allowance for private

"spaces”. (Such restrictions may have been dictated by performance considerations.) Our ~ ,;
research is concerned with exposing the design principles underlying such conferencing g
systems; as such, these systems (as well as terminal linking, synchronous message
communication, and electronic blackboards) can be considered to be particular realizations
of the ideas presented in this thesis.]
[
AJ
1.7 Outline of Thesis 1
This chapter introduced the concept of a real-time conference, and provided a brief N k

overview of our work and comparison with other work, Chapter 2 develops an example
application area, namely joint document editing, in order to explore the design choices and
tradeoffs that must be made. Chapter 3 generalizes from this exercise by listing the design
issues that must be addressed for any real-time conferencing application, together with
criteria for selecting among the different design choices available. Chapter 4 presents
implementation techniques, considering both the overall distributed software organization for
the sites (e.g., workstations) participating in a conference, and protocols for communicating
commands and results. Chapter 5 describes dynamic selection of the implementation method
for a conference based on run-time parameters and constraints, and issues relating to
starting and managing conferences in the overall system environment. Chapter 6 describes
two prototype systems: an early prototype that led to many of the ideas presented in this
thesis, and a current prototype for experimenting with some of our protocol and architectural
ideas. We conclude in Chapter 7 by summarizing the thesis and indicating directions for

further research.

4Several distributed games have also been developed on the Ethernet environment at Xerox PARC and elsewhere,
such as Amaze [6] While there are some similarities, these differ somewhat from our notion of real-time conference
in that games tend to be competitive rather than cooperative.

25

D T S L e Y e
a7 UL PR B - o

- . . T T U S TIPS AN . .
P VI SN Wl TR IST T Wi TS SR 0 T Sl IO I Y W R I U G P WA i PO

of the linked terminals input was received from. Then, the application program checks this
information on every file read or write comimand and rejects the command unless it was typed
by the chairperson. (Non-permanent display and editing commands, which do not touch fites,
are accepted from any participant.) Another approach is to program the system not to accept
a "carriage return” character (and the system "attention” or “interrupt” character) from any
terminal except the chairperson’s. The intention here is that only the chairperson can
complete a command typed by a participant. This approach works only for older teletype-
based programs that accept commands a line at a time, and not for character-at-a-time
programs such as screen-based text editors. Even for line-oriented programs, this can be

rather restrictive because every command now requires the chairperson's explicit approval.

Since input to a conventional interactive program appears as a single character stream,
virtual terminal linking does not allow input from different participants to be treated differently.
Thus, concurrent participant activity via multiple cursors cannot be implemented within a
given application program. If concurrent input is permitted from more than one participant, it
is simply merged into a single stream as it arrives; this is a frequent source of irritation with
terminal linking. Concurrent participant activity can be supported with multiple virtual
terminals, but each virtual terminal must run a separate program instance which does not

permit concurrent activity on common data.

1.6.4 Application-Specific Conferencing

The above limitations of virtual terminal linking can be overcome only by implementing
new application programs that explicitly recognize and interact with more than one user
simultaneously, and that communicate with participants’ workstations in high-level
application terms. A few such application-specific conferencing systems have in fact been
implemented. Structural Programming Inc.'s palette™ drafting system supports a
conferencing mode in which two users can jointly compose and edit a common drawing using
independent cursors [88]. The two cursors have different appearances, one of which is
identical to the cursor that a user sees when working alone. The cursors are displayed on the
two workstation screens with their appearances exchanged; i.e., each participant sees his
own cursor the way it normally appears when working alone, while the "other” participant's
cursor has a different appearance. A participant's commands, e.g., to mark a corner of a

rectangle, are interpreted based on the position of his own cursor.

24

[P N WP LR W A SR RN = LS PN N DIPNE 2 VS AVS

4
]
.'.":,‘_‘.. :“

®

K

. ' q
IRy
° :

to all programs, namely their input and output character streams. When information transfer
is implemented, belween the output of one virtual terminal and the input of another, it can
only be done at the character stream level. High-level application objects cannot be easily
transferred between applications, only their printed representations can. In order to process
this information, the program receiving copied output as input must be able to "parse" it
correctly; while this might be possible with echoed commands ar sometimes with text, il is
difficult if not impossible with more complex information such as a component of a graph.
Even more difficult is sharing of information between different virtual terminals, e.g., a
participant in a private virtual terminal browses over a document that is also being edited via a
shared virtual terminal. While this might be arranged by having both programs access the
same file, it is not possible to edit the file within the address space of one program and have

these changes reflected in the other program in "real time".

Because all information is transmitted at a very low level, virtual terminal linking also does
not permit the capabilities of modern high-performance workstations to he exploited. When
workslations are capable of maintaining application data and executing application software,
transmitting low-level dicpiay operations instead of more compact high-level application
operalions is an unnecessary waste of commu~’ -ation bandwidth. High-level application-
specific communication afso allows workstatior.: transmit application objects stored on

their local disks; this is not possible with virtual terminal linking.

Another problem with virtual (or physical) terminal linking is that a program being
"shared" among a set of linked terminals still believes that it is interacting with a single user at
a single terminal, and runs with a single user’'s access privileges and naming environment. If
permission to enter input is given to a different user, his commands may have a different

effect than what he would normally expect. Thus, unspecified parts of file names may be

defaulted ditferently (e.g., to the directory of the first user, not the user typing the file name),
or command customizations may be different. Worse, the user may be able to read or modify
a file that he is normally not allowed to read or modily, or not be able to read or modify a file
that he is normally allowed to. These problems can sometimes be tolerated it the _
“chairperson” (the user under whose name the program is running) controls who can enter .
input and intervenes by revoking input permission if he is not pleased with what a participant '

is doing. Other ad hoc solutions abound. In Bell Laboratories TOPES system [98], the

operating system code that implements terminal finking is specially modified to indicate which : ".‘.'.'jf‘(-f::

23

r
-9
-9
.9

S N v
e T e T e T T e T T T e T T e T e e e T e e e e
PO OO TR L S SRR R % NP S, S N, - iy B S . e e Y oY

o velhonadiy M- - et di i

——— WT——Y T — P ES il A P T DRI i AR A A A i A

terminal is directed to and processed by the program running at the second terminal. Thus, a
given application program, say a text editor or spreadsheet, can be "shared" in a real-time
conlerence by linking terminals and allowing the terminals to enter input to the given
program. This kind of "conference"” does happen quite commonly when a user encounters a
problem with a program. The user can notify a programmer who will link in his own terminal in
order to debug the problem; such remote debugging is often accompanied by a telephone
conversation as well. (Terminal linking is also commonly used for typed text communication,
but this is effective only for very short messages and does not involve joint interaction on a

shared object.)

Terminal linking as currently available on most systems is very primitive and inconvenient;
for example, linking of terminals at the level of their hardware input/output buffers does not
work well when different terminal types, which expect different character sequences for
screcn control, are linked. These problems can be remedied by defining a device-
independent virtual terminal protocol and implementing translations for different physical
terminal types; virtual rather than physical terminals can then be linked for a real-time
conference. Tymshare's AugmentTM system [30] (which evolved from NLS, above) supports
virtual terminal linking, together with "floor-passing” commands that allow control over which
participant’s terminal can enter input 1o a given virtual terminal. (Such control is not available
on most systems with terminal linking, leading to confusion when participants type
simultaneously.) Augment currently supports the display of one user’s entire screen image on
one or more other users’ screens. it would not be difficult to add support for multiple screen
"windows"” into different virtual terminals, some of which may be "shared" and others
"private”, and for transfer of information between shared and private virtual terminals by
copying output from one virtual terminal to the input of another virtual terminal. (These
facilities are available to individual users on many systems, such as Rochester's VIMS [75],

and are likely to be just as useful in real-time conferences.)

The main virtue of linking virtual terminals is that it provides access to existing application
programs from a conterence without modification to the application software. This is
important because of the considerable effort and money already invested in such software,
and because conference participants can use programs with which they are already familiar.
However, the adaptability of virtual terminals to arbitrary existing programs is their main

limitation as well, because this adaptability arises from assuming the lowest common interface

——— s,

Pl S B Bt S St Jadh MhelCHR A St Y- S dr Tt A nte Sl Juten 0 Aect L AMIMA B IS T ——— - - T

1.6.1 Audiographics Conferencing

Several informational aids have been developed for so-called "audiographics"
conferencing, that combines voice conferencing with transmission of on-line or facsimite
information. Most of these can be characterized as message-oriented, in that some
participant "sends" an item of information, say a doccument or drawing, that is displayed at all
locations. This is the case, for example, with the “data bridge" of AT&T's Nelwork Services
Complex [83]. (It also applies to the so-called "synchronous"” mode in computer
conferencing systems, where participants' contributions consist of text messages.) Some
systems (e.g., "telewriting" using a stylus and tablet [68]) may allow maodification of the
information transmitted, but each image can only be modified from its source location, not by
the others. What all of these lack is the ability of multiple users to interactively edit and modify
a common shared object, such as a blackboard in a face-to-face meeting or an on-line
"shared space” in the kind of real-time conference that we are concerned with. One-way
submission and editing of documents, messages, or pictures may stili be useful in a real-time

conference, but only as a special case.

1.6.2 Electronic Blackboards

Closer to our concept of real-time conferencing is AT&T's "Electronic Blackboard”, which
does present the illusion of a shared object that can be modified from both (or all) locations.
Electronic blackboards are, however, only as useful as real blackboards; the only shared
"object” that can be manipulated is the blackboard image itself. This is usually good enough
for drawing and annotating, but for little else. In a conference held from on-line workstations,
the participants can manipulate not just displayed images but a collection of objects with rich
structure and application semantics that can be viewed and edited and processed in more
interesting and useful ways. Again, an electronic blackboard can be implemented in an
on-line conference by defining an appropriate type of object and set of operations, but this is

only a special case that does not fully exploit the power of the computer.

1.6.3 Virtual Terminal Linking

Terminal linking, a facility popularized by NLS[31,29] and now available on many
operating systems, can be used to provide a limited form of "real-time conferencing”. When
two or more terminals are linked, output directed to any terminal is sent to all of them. itis

also possible to allow a terminal to "advise" another terminal, in that input typed at the first

21

) [RSENGAT IGE W VAR SRIE S S SO S AP A S P AP

PP PR WA AP AR W SN S SURPRE W SRS NS AN RN

voem e s N — e

.. . .
'l 'i . . PR
Ll T aaay)

I
)

Ben

AT A S AT B e A A e S T il - . el —p— - L el S maed aman asui stetic arh i Jadin i S SUREN t
e W W W WUOW W TwWor. A S ek A B S e S MR ML A A AR AR AR RIS T E

R N R

Performance for a given real-time conference can be optimized by dynamically selecting
the protocol used for replicating objects based on workstation and network capabilities. In an
architecture that we have named Fnsemble, any protocol parameters that are dynamically
determined are included in the shared space of the conference as "meta-information” that
may be replicated at workstations. Then, a workstation wishing to join an existing group of
workstations in a conference can examine the protocol meta-information in order to
determine whether or not it is capable of supporting the current protocol. When the controller
sile wishes to select an initial protocol for a group of workstations, it initiates a negotiation
procedure in which each workstation specifies what range of protocols it is capable of
supporting. Based on the responses received, the controller then makes choice that trades
off better performance against including as many workstations as possible. A similar
negotiation allows the controller to dynamically adjust the protocol as workstations join and

leave the conference or as network conditions change.

Finally, we examine the integration of real-time conlerences into the overall distributed
system environment. This includes techniques for publicizing a conference and inviting users
to join, and for making a description of the implementation protocol available to participants’
workstations. We also discuss the interaction between real-time conferences and other

system services such as name lookup and permanent storage.

1.6 Related Work

This section compares our real-time conferencing functions with other systems that
support simultaneous interaction among a group of users. We do not discuss related
implementation techniques in this section, but postpone such discussion until our own

implementation techniques are presented in more detail.

We also do not discuss voice and video teleconferencing systems [96] below, because

these address a different problem. Our research is concerned with the presentation and
manipulation of information in remote meetings, under the assumption that voice

communication, and video if needed, is already available.

M T e T e e PO S Y . L T T LTI N
TR S T TR S P AL T TR Wl W W T U Vhtf A WA WA W I W1 WL AP Vol Shp . gr e I W WL AP O/

functionality that can be achieved with acceptable response.3 However, even within a given
set of implementation constraints the range of design choices may be considerable, and the
main task of a conference system designer is making a selection of useful functions that will
not overwhelm the user with their complexity. We illustrate this design process in detail by
taking an example application, namely joint document editing, and explaining the reasoning
behind a set of choices that achieves a balance between user interface simplicity and full

functionality.

1.5 Implementing Conferences

The implementation techniques we present for real-time conferences use many well-
known methods from the areas of computer networking and distributed databases. Our main
contributions in these areas are an evaluation of which techniques are suitable for real-time
conferencing and when, and special adaptations and extensions of existing techniques for
the particular needs of real-time conferencing. In particular, many existing techniques for
interactive distributed computing deal with a single user's workstation and a remote host;

these techniques require modification for the case of muitiple workstations in a conference.

We present an architecture in which a real-time conference is implemented by a controller
site, which manages the shared space of the conference, interacting with participants’
workstation sites to realize the desired functionality. We describe techniques for replicating
parts of the shared space at the workstations, for propagating updates to replicated
information, and for supplying newly-joining workstations with replicated information. The
techniques are evaluated on the basis of their effect on response time under various
conditions. Response time can often be improved by easing requirements for "consistency"
of the information seen by the participants. We describe a method whereby temporarily
inconsistent data may be shown to the participants, but is quickly corrected so as to achieve
eventual consistency among all participants’ views. This can be tolerated by participants if it
occurs infrequently; the use of "reservations” to control concurrent activity is shown to

considerably reduce the probability of seeing inconsistent data.

3To be truly "interactive"”, the system should respond to a participant's command within a small fraction of a
second [87]. Commands that invoke lengthy computations or secondary storage accesses may take longer to
process overall, but some immediate feedback should be given that the system is working on the command.

19

»

FRun pun i o 4 v . »
e N '7- AP .
. . Lttt

v
e

,—.vy'—-rr'.
RN N

. e
o e R

T g T e s it

responses, and control over who can join a conference and when. We describe these

functions in terms of the abstract objects and operations needed in order to realize them.

We also consider the problem ot muitiple participants operating concurrently on the
shared space. This may often result in confusion, when a given participant’s command has a
different result from what he intended because of an intervening concurrent operation by
some other participant. An extreme solution to this problem is to allow only one participant at
a time to perform operations on the shared space. This is analogous lo holding the "floor™” in
a tace-to-face meeting or conference, and a set of commands for requesting and passing the
floor can be defined. More concurrent activity can be permitted in a contiolled way by a
participant setting reservations on parts of the shared space, e.g., on different displayed
"windows" and on different application objects such as regions of documents, such that

others are prevented from operating on the part that is reserved.

A private space allows a conference participant to retrieve and edit and compose
information outside of the shared space, invisible to the other participants. A private space is
thus analogous to the private notes that one might bring to a face-to-face meeting.
Commands for "crossing the boundary” between shared and private spaces should be
provided, to allow a participant to "submit” selected information from his private space to the
shared space for all participants to see and perhaps even edit, and to allow a participant to
copy information from the shared space and privately "browse" or edit and explore
alternatives. A related consideration is whether feedback from the system (command "echo”,
or error messanes) in response to a given participant’s actions should be shown privately to
just that participant, or should be shown to all participants in the shared space. The latter is
useful in giving other participants an indication that a participant is doing something and not
sitting idie (just as one can be observed to be drawing on a blackboard even though the
drawing is not complete and ready for discussion), but requires that a participant be able to
distinguish the teedback that was caused by his own commands from feedback caused by the

olher participants’ commands.

Selecting a set of functions to provide in a real-time conference can be considerably more
difficult than the same task for a single-user interactive system, because of the wider range of
options available. Different choices may be appropriate for different applications and user
communities, or even for individual users with different preferences. The implementation

environment (processors and communication links) will in many cases constrain the

18

- GRS R B R T N L U B T R S C e
CERA S - - - - o - B LA <
ettt L T e S,

.
-'_~'... :
- e m———

. - . . . R VL L e T YO AP AL AL -
‘ - - * el . - 2 . - - = *, N > o« e - . - . - . - . ~ - . . - -
A A T A S~y S e S O DT SRS U DAL . DA TP I T S T DA S P TP PR P ISP TN G S LI WP S I VI P 52U PSSP WA oo e

social component of the interaction is secondary (e.g., the participants already have an

ongoing work relationship), a real-time conference should be the ideal mode of interaction.

We do assume that a real-time conference is conducted in an atmosphere that is mostly
cooperative. Participants may modify or overwrite each others' contributions and updates if

they believe that will help in solving their problem. Disagreements among participants will no

doubt arise, but we assume that the participants resolve their differences by social and
organizational processes outside the system. They may use the voice channel during the
conference, or deal with conflicts and disagreements after the conference. 1t will be useful for
the system to keep histories and records to support this process, so that participants’ actions

can be reviewed and "undone". e

While the functions and implementation techniques we describe are applicable to large
conferences involving perhaps tens of participants, most real-time conferences in practice '_'Z: o
will involve only a few participants. We also expect that many "conferences” will involve only
two participants, just as many face-to-face interactions and telephone calls do. This thesis
therefore includes special kinds of functions, and special optimizations at the implementation

level, that can be used for the particular case of two-person conferences.

The remainder of this chapter provides an overview of our design and implementation
techniques for real-time conferences, and compares our work with other work in the same

and related fields.

1.4 Functional Design of Conferences

The primary function of a real-time conference is to provide a shared space of information

that the conference participants can display on their workstation screens and that they can

) manipulate (e.g., edit or process) in some specified way. The precise nature of how - o
information is displayed and edited will vary from application to application, e.g., document j‘.%::_'::\fj
editing or circuit design, and a given conference will use known techniques from its particular ':,:l_';~12"
domain. Our concern is with the additional functions that are needed to support and manage _. o

the simultaneous manipulation of a given shared space by multiple participants. Such
functions include the display of "status" information showing who is present and who is

entering commands, support for negotiation and decision-making by eliciting and collecting

17

e e
et e ta - P . - : - i iy -7 - N - < ~ - B - - - - .
S P T P U U T L PO T O T SRS B N TR RSN . e et e At et et
. " g - '-. .-. g K . - - -’ -O‘ .\. “. - 'b o o n .’ .t LT, - C . '.- _.. T '.- Y et T m '.- T et m . A i. - Ol -t e et et . "
e Tl Tev L - - P AP I “ At EL AP M . o, oy MR AT T T T L A

CIREIARIFRATIIA RTINS P I R W I A WAL I T R Yo T P N T L S W Y LRGN o PGSR TS PR W R G,

LRI R A i St e Mgt I e, e R - o P T el Sbul e v Bowk SnMGLSSAl M i AN v Sreh oAb dedh e drtat I At st Aedk S Bl Sefh ndh sente st

form of asynchronous individual actions over a period of time, with an occasional real-time
conference being held when necessary, e.¢., because outstanding disagreements remain or

because of an impending deadline. -

Asynchronous communication can and has been used to record and structure users’

discussion of a problem in the form of commentary, arguments, proposals, and responses;

this is done using typed text as the medium in several "computer conferencing” systems. In a ®
real-time conference, the use of typed text for discussion of the problem at hand is usually too
slow and cumbersome to be practical. We instead expect that voice communicalion will be

necessary for discussion and negotiation in a real-time conference.? This thesis does not

address how voice communication is to be provided in a real time conference. We will ' @ _
assume the availibility of voice communication, and concentrate on how shared on-line AR
information is managed in a conference. An ideal "inlegrated” system would include ‘

microphones and speakers in every workstation, and would automatically set up the voice i

i‘_ connections for a conference at the same time as the on-line "data" connections. Until such - L
inlegrated hardware and software is universally available, it may be necessary for participants :j»;:':.
to establish voice communications separately, e.g., using a "conference call" on the -

3

telephone network. Similar arguments apply to various forms of video communication that

are useful for transmitting non-verbal sources of feedhack such as gestures and facial

expressions. Video communication requires more expensive equipment and greater ::

communication bandwidth than voice, and studies by Chapanis [16] suggest that the
usefulness of video in helping a group solve a problem is not significantly greater than voice
alone. It is also hard to concentrate on both displayed on-line information and participants’ -

faces at the same time. We therefore consider video communication optional for real-time

conferences, and again assume that it will be set up separately if needed.

We do not propose real-time conferences as a replacement for all simultaneous '.'
interactions among people. Interactions whose primary purpose is social or political will »
banefit little from on-line information access; a face-to-face meeting will usually be necessary,
with video teleconferencing as a second choice when travel is a problem. However, for

meetings where problem-solving using on-line information is the primary objective, and the

2Typed text communication should not be ruled out completely, especially since voice communication is useless

for peopte with heanng disabiities In other situations, voice communication equipment may not be available, or
conterence calls may not be supported, or a user’s only tclephone line may be taken up by his terminal and modem.

16

' ’l‘;’*

" i Gl el T o AL AN S A i oA e AN 5 2 i S et i i i
OGNS IR N AP S S AR AL PETH A A e

adequate; a real-time conference is needed if travel is to be avoided. We also note that travel
avoidance, for any kind of remote meeting, can be viewed not only in terms of the savings in
time, money, and fuel, but also in a more positive way. That is, not having to travel to a
conference may allow more people who are interested to attend. And, because relevant
information does not have to be collected .: advance and "carried” to a conference, more
information will be accessible. (We note that Brecht's study of meetings and conferences

[11] cites inadequate access to information as a significant problem in many meetings.)

1.3 Scope of Thesis

A real-time conference as we envision it has a small to moderately targe group of
participants, each seated at a workstation, with the workstations connected by some
combination of local and long-haul communication lines or networks. The participants in
such a conference interact mainly as peers, in a cooperative atmosphere where the emphasis
is on achieving a common goal, e.g., reaching agreement on a design or strategic decision,

using on-line information relevant to the problem,

This thesis examines in detail the issues that must be addressed when designing and

implementing real-time conferences of the ahove kinds. The goals of this thesis are twofold:

1. To define a set of useful functions that should be made available to users
participating in a real-time conference.

2. To develop techniques for implementing the above functions cfficiently using
current and near-future computer and communication technology.

Our description of conterencing functions and implementation techniques is directed at the
designer of a real-time conferencing system. We illustrate the design process by developing
an example real-time conferencing system in detail. The functions and techniques are then
discussed in general terms for a wide range of applications, allowing the designer to select
those functions and techniques that are best suited to his particular application, user
community, and implementation environment. To aid the designer in this undertaking, we
present different options and compare them in terms of their effects on user interface

complexity and on efficiency of implementation.

We emphasize that real-time conferences are not intended to be the sole means of

communication in a system. Most interaction using shared information is likely to take the

15

B A

‘al

L A A

[PR

AN R . N . P
- b T T S, R I R I oo RcH e
e e i mata G ATR VPP VR PRI DA I DA DA IR I TS I S P LS IO G S SRR G S0 TV Tl Sl e

Our research is concerned with real-time conlerences, in which groups of users at
interconnected workstations can simultaneously view and manipulate on-line problem

information in more interesting and useful ways.'

1.2 Benefits of Real-Time Conferencing

The benefits of real-time conferencing using on-line information can be viewed in at least
two ways: as an enhancement to inleractive computing, or as an enhancement to
telecommunications. Real-time conferencing increases the usefulness of interactive
computing because the same computing tools that are available to a user when working alone
at his workstation can also be used in a meeting; this is important because a sizable fraction

of people’s work time is spent interacting with others.

in contrast, telecommunication facilities, from the telephone through video
“teleconferencing”, provide little or no access to information of common interest. Real-time
conferencing places the full power of the computer, to store, retrieve, edit, and process
information, at the disposal of users who are interacting across a long or short distance.
participants can point at or refer to displayed information while conversing, with the
assurance that the others know what they are referring to. Information whose need was not
anticipated can be accessed, and new alternatives can be explored and analyzed on the fly.
(These benefits of on-line information access can also be realized in face-to-face interactions,
by placing appropriate equipment in conference rooms, but that is not the focus of our

research.)

A somewhat different benefit of real-time conferencing is reducing the need to travel to
meetings. (Such "travel" does not always involve very long distances; e.g., employees of
many large corporations often have to travel between different locations of the corporation
within the same city.) We do not claim travel avoidance as a unique benefit of real-time
conferencing, because it applies equally to other forms of "teleconferencing” such as video
communication and “electronic blackboards". However, when access to on-line information

is an important requirement for a given meeting, video and blackboard communication is not

'0ther terms that have been used to describe a similar concept include “shared-screen teleconferencing”, "data
conferencing”, and "desk-to-desk conferencing”.

14

r ——— T T T Y Y TS Y Y YT Y T BT W T2 T e T

)
L
|
i
}

o the type of an object;
e the user who created or updated an object, ——
e the date and time of creation or update;

e scheduled date and time (e.g., for appointments and project deadlines).

Each object has a history consisting of the sequence of versions that it goes through as it
is updated. Particular versions may or may not be explicitly stored in the system, depending
on record-keeping requirements and the cost and availability of storage. Versions of an
object may be volatile or permanent. For example, a common way of updating an object,
such as a document, is for a program (e.g., an "editor") to first make a volatile copy of the -
current version of the object. The user then makes changes to this volatile copy, using an
interface provided by the editor program, occasionally requesting that the volatile copy be
saved permanently. We shall call each such saved version a checkpoint. Checkpoints may
sometimes be made automatically by the editor program, without the user explicitly .
requesting them, e.g., every few minutes or every N update commands. (This is often referred

to as "auto-saving” [115].) N

In addition to checkpointed versions, the sequence of individual changes between two
checkpoints, or between tha last checkpoint and the current volatile version, may also be
saved in an object called a log. Logs allow finer reviewing of the history of the object, and "
allow any arbitrary sequence of updates to be "undone”, with a corresponding cost in storage
for the log. In addition, if a machine crashes before an object being edited has been

checkpointed, much of the lost work can be recovered if a log of updates has been saved.

Each object has associated access control information describing who can perform what
opcrations, such as read and update, on the object. Various forms of protection against
concurrent update of an object may also be provided. We will describe these features in more

detail as we develop the document editing example.

User-to-user communication is supported in the form ol messages, typically but not
necessarily consisting of text, that are sent to users’ mailboxes. Various forms of implicit
communication may also be supported, in which a user is informed when an object of special -
interest to him has been updated by some other user. A user checks his mailbox and reads :
new messages at his own leisuire. He may in addition wish to be interrupted, by a real-time

notification prominently displayed on his screen, on the occurrence of events deemed

L e . PPN S P PTG ¢

pe I G o e s A N e S Ed et S S ek e sdiasd arel mef sk s DA Dl aesl St sad s el e MD Gt e bow e g ——r
».-'
[
B —
o ¢

7
.

4,‘—~__

important, e.g., the arrival of new mail, or a particular object updated, or a real-time

-

conference called, or an "alarm" set to go oft at a designated time. Each user controls what ol

®

kinds of events interrupt him and when.
2.1.2 Workstation Interface .

The physical display screen of a user's workstation is assumed to be multiplexed among _.

one or more viewports. Each viewport presents an image that is derived from an object (such
as a document) or a collection of objects in some specified way. The image in a viewport is

- gencrated and updated by a program, such as a text editor, that is associated with the

p viewport. ‘o

We shall assume that the workstation has the following user input devices:

p

1 o A keyboard, which has keys for all the characters in a given character set (e.g.,

. ASCII or EBCDIC) and some additional specially-labeled function keys. (We will ‘.

g, make many references to function keys in this discussion; for a keyboard that : .

- does not have function keys, or only has a few, we will assume that some
"control” character from the given character set is used instead.)

o A mouse with some small number of buttons, say two or three. A pointer, which is

- a distinctive small pattern, is superimposed on the display screen at some
E location, and the location of the pointer on the screen moves in proportion when . ®
f the user moves the mouse over the surface, e.g., the user's desk, on which the

mouse is resting.

Each user action on an input device, i.e., a keystroke, or a mouse movement and/or button
push, updates a corresponding object in the workstation’s memory: an input event stream for -
keystrokes and button pushes, or a mouse position register for movements of the mouse.
Updates 1o objects, such as the above, can cause actions to ve invoked that may update other
objects, and so on. Thus, a typical action sequence may be: the user updates an input object;

some application object, e.g., a document, is updated; a viewport that displays the object in

question is updated in turn. T
At any given time, one of the viewports on the screen is the current viewport, and user

input actions are interpreted as commands to the program associated with this viewport. R

Commands may be invoked by input actions in any of several ways: - .
e Character commands, where a single keystroke invokes a command. _!.j‘ i

e Button commands invoked by depressing a mouse button. The arguments to the o
command, and sometimes even which command gets invoked, will in general R

T v <.

e e e s T e e T e e S LT T e T e T T e T e T
DO NI DA WG RO YIRS YPUL. IR UPAE PR DAY WP T WU WS W TR Sy SPNE SN W WA T S W U SO —

depend on the position of the mouse at the time the button is clicked.

e A command may be sclected from a menu, by pointing at the command name in —e—l
the menu and clicking a mouse button. The menu, of currently meaningful
commands, is displayed only when the user requests it by typing the MENU
function key. The menu appears in a pop-up viewport that temporarily obscures -
some of the information displayed on the screen; the menu disappears and the
obscured information is redisplayed after the user selects a command or types
CANCEL. °

e After typing the COMMAND function key, the user can type the name of a
command, in full or using a prefix that is sufficiently long to distinguish it from all
other command names, followed by any necessary arguments to the command.
Characters typed are collected in a command line that is "echoed” at some .
appropriate position within the current viewport. The ENTER key completes the ®
command, causing the command line to be parsed and executed; the CANCEL
key can be used instead to discard the command line.

] Which of the above is used for a given command in a viewport is determined by the - T
associated program; it will often be possible to invoke a given command in more than one M-
] way. Once a command has been entered and processed, its effect will be displayed in the . .
{ viewport in the form of an update to a displayed object, such as a document, and/or some .
s feedback such as highlighting or an error message.
Some small set of user input actions is reserved for the following commands to the
H worlkstation executive which has overall control over the screen and viewports: designating a

given viewport to be the current one, creating a new viewport with some associated program,

L destroying a viewport, and moving or changing the size of a viewport.

2.2 Editing by Individual Users

To establish a proper context for joint document editing in a real-time conference, we first

describe a document structure and single-user editing interface that has many of the features ; ¢ :

of contemporary text editors. For simplicity, this example editor does not include some of the .
more advanced features that are becoming available in interactive document editing systems,
such as multiple fonts, multiple component types with different formatting parameters, LA 7;»_'?

pagination, floating figures and footnotes, embedded graphics, and so on. This will allow us

to concentrate, in Section 2.3, on the novel issues that are raised by real-time conferencing

rather than on the details of particular document editing facitities.

31

L Lt - . e . .. - . J e TR N S

oo RN L - T T T e e e T T e T T e e e
T P e T e T e e e e e T T U T LT g = IO R)
R A A I P TR VAP WA W ML WS vt WA W DAL ST D P W PE TS WA IS W VT WU ¥ S T P WP At

R —_———m—w T T———— T ——————— ————

2.2.1 Document Struclture and Operations

We describe here the underlying data structure and system-level operations on
documents. (User commands, which are translated into these underlying operations by the
text editor program, are described in Section 2.2.3.)) A two-dimensional "quarter-plane"”
model of the structure of a document is assumed, similar to that described by Meyrowitz and
van Dam [86]. That is, a document consists of a sequence of one or more Jines, where each
line is a variable- and unlimited length sequence of characters. A line with no characters in it

will be called a blank line. An empty document has a single line which is blank.

For many ot the editing operations, it is also convenicnt to view the contents of a
document as a one-dimensional string consisting of the lines of the document concatenated
together with special end-of-line, or EOL, characters separating consecutive lines. There is
no EOL before the first line or after the last line in this model. (A user may sometimes find it
convenient to end a document with a blank line, in which case the last character in the
document content string will be the EOL that follows the next-to-last line.) An empty

document, with a single blank line, has an empty content string.

Every document has a unique name, which is a user-supplied character string. The
document name may in many systems have some internal structure, e.g., may include a
"path” through a directory hierarchy, and/or a sutfix identifying the document's "type"; the
details of these naming conventions vary from system to system and are not important here.
The operation Create-Document(name) creates, and returns, an empty document (one

blank line) with the given name. The name must be unique, i.e., not already used.

Operations on documents, such as insertion and deletion described below, are performed
using cursors. A cursor is a kind of "pointer” that is logically positioned between two
characters of a document content string, or before the first character or after the last
character. A document may have any number of associated cursors, which may be moved
explicitly or updated as a side-effect of operations on the document as described below. A
cursor is considered to be in a given line of the document if it appears after the EOL (or the
beginning of the document) that precedes that line and before the EOL (or the end of the
document) that follows the line. The operation Create-Cursor(document) creates and
returns a cursor that points to the heginning of the given document, i.e., before the first
character if there is one. A cursor can be moved using the following operations (additional

cursor maovement operations will be described presently):

32

LR St Ao dan Avet Sass Gt ek atel Mt R et o

E

. @

Lo

RO

e
g

P Ty—r— ey e - Ty T————y CE I M B A e i s gr s Jaa Baan et e e men
. T e T T . " -

Move-Cursor-Absolute(document,cursor,11ne,offset):
Moves the given cursor to the specified position of the specified line. The
offset must be betlween zero, in which case the cursor is positioned before
the first character of the line, and the length of the givan line.

Move-Cursor-Relative(document,cursor, number):
Moves the cursor forward by the specified number of characters. The
number may be negative, in which case the cursor moves backward (or
zero, in which case the cursor does not move.)

|

Move-To-Cursor(document,cursor,another-cursor):
Moves the first cursor to be coincident with the second cursor. (The two
cursors will subsequently move independently of each other.)

A search paltern is a regular expression that can match a sequence of characters in the

contents of a document.’ The following patterns will match single characters as specified:

e An alphabetic character will match the same character if it appears in the
document in upper or lower case. Case-insensitive search is the default; if a
given character must match exactly including case, it can be "quoted"” using \
below.

e $ matches the end-of-line character.

e A \ preceding any character will match exactly that character; this is used to
match characters that otherwise have special meaning.

? matches any character.

e [c1-c2] matches any character in the range ci through c2, e.g., [0-9] or
[A-Z].

e Any character other than the special characters defined here will match exactly
that character only.
Patterns can be combined in the following ways:

e Concatenation: pip2..pN will match anything that matches p? immediately e
followed by anything that matches p2 and so on through pN. A simple example of e
this is a string of individual characters (e.g., the), although more complex)

patterns can be concatenated. D 4

e Nepetition: p* will match as many consecutive accurrences as possible, zero or .
more, of the pattern p. The pattern p+ will match one or more occurrences of the RO
pattern p. S
e Alternatives: {p1p2...pN} will match anything that matches p7 or p2 or ... or pN. - @ 5
For example { +$} will match either several consecutive spaces or an EOL. 4
Y

The syntax we present for search ?mtems is intended to serve only as an example, and is derived from the text
. L ; M

processing facilities available on UNIX " [70). °

- b r

L Te et PN I TR A S P S I C
T T I P I TRV T . P T T A L T TR A Tl TPT SATT h o T SN A
AL PO U S U T e P i e WS U WPy A We/ WP’ AT WPk P W P ook adnnds

ERaNE AR - AV IR G gt g oot Ao s ainiis i it P N s S S Bl

e Parentheses: (p) will match anything that matches p. This is needed when there
is a possible ambiguity, e.g., {abc} will match a or b or ¢ while {(ab)c} will
match ab or ¢.

Patterns can be used for simple string and word searches, case-sensitive or case-

independent. In addition, patterns can be used to delimit the boundaries of logical units of

text, such as:

e The end of a "paragraph™ is delimited by one or more blank lines, i.e., two or
more consecutive EOLs: $$+.

e Mhe pattern {.1\?7} *, i.e., a sentence-terminator followed by any number of
spaces, delimits the end of a "sentence”.

o The end of a "word" is delimited by any punctuation character or space followed
by zero or more spaces: { ,.I\?7} *.

The above patterns will be used for supporting user operations on logical units of text, as

described later.

Palterns can be used to move a cursor within a document using two basic operations:

Move-End-Pattern{(document,cursor,origin-cursor,pattern,number):

Moves the first argument cursor to the end of the number-th occurrence
of the given pattern following the current position of origin-cursor.
Cursor and origin-cursor may or may not be the same cursor. A
cursor can thus be moved by searching relative to its own current
position, or can be positioned relative to some other cursor which does
not move. If there are fewer than number occurrences of pattern
following origin-cursor, cursor moves to the end of the document.
Zero and negative values of number are used to move to occurrences of
pattern that precede origin-cursor: zero moves to the end of the
immediately-preceding occurrence, -1 moves to the end of the one
preceding that, and so on until the beginning of the document is reached.

Move-Start-Pattern(document,cursor,origin-cursor,pattern,number):

This is similar to Move-End-Pattern, except that cursor is moved to the
beginning of the given occurrence of pattern.

The contents of a document may be moadified, using a cursor, with the following

operations:

Insert-String(document,cursor,string):

Inserts the given text string at the position specified by the cursor. The
cursor is advanced to point after the inserted text. (Other cursors that
may have been coincident with this cursor do not move.) The inserted
string may contain EOLs, in which case the current line (in which the
cursor is located) is split and additional lines added to the document.

34

LR A S S At ittt M g i A APt NI A A TET TN, At Mt e auih Sagh Sadhs Al B A e SVt i el I SN el i PR

Delete-Region(document,cursor,another-cursor) returns(string):
The text between the two cursors is deleted from the document. Both
cursors, as well as any other cursors that may have been located in the
deleted region, now point between the character just preceding the
deletion and the character just after it. The deleted text is returned by this
operation; it may later be used in an Insert-String operation on the same or
different document, tor example.

Delete-Characters(cursor,number) returns(string): P
Deletes, and returns, number characters forward from the given cursor
position, no farther than the end of the document. Negative values of
number delete characters backward trom the given cursor.

Format-Region(document,cursor,another-cursor,line-width):
Causes the region of text between the two cursors to be "formatted™ ®
according to the given line-width. The formatting algorithm is fairly 1
straightforward: lines are "filled" to contain as many words as possible 1
withou exceeding Tine-width; a word that is longer than 1ine-width }
appears all by itself on an oversize line; lines are not filled across
paragraphs (which are delimited by blank lines). o

The operation Copy-Region(document,cursor,anothesr-cursor) does not modify the
document, but simply returns the contents of the region between the two cursors. Again, the

returned string may be used in a later Insert-String operation. - '_L.-' '

2.2.2 Document Windows

It was the best of Limes and it was
the worst of times.

The quick brown fox jumps over the laz

#**END#“

| |
| I
| |
| A paragraph with a long line.]
| |
| |
| |
| |

Figure 2-1:A Document Window . R

A document window is a rectangular subse! of the quarter-plane of the document, defined 1
by a starting-line, a height (expressed as the number of lines), a starting-column, and a width.
Windows are displayed on the workstation with some additional information, as shown in - :'_’j-'t g

Figure 2-1. An extra line at the top of the window is used for displaying the document name I

35

. W T e et e et - - ., - - . .- .] . ._.l,'.'_ ”‘.'_."-'.._.'_
PSP I T T SUEE. N TR PSR ST PRy P N TR LN P PR PR --1‘---.:A-‘-‘J

S S SRS AP S S embat ol e ks

e el

RS T S S SR N0 ey S A I S Byt By e B At Baaty M) P———y

and version (described later) and whether the user has modified the document. An extra
column or "margin” on the right indicates whether any of the lines displayed in the window
have additional characters past the last displayed column. If the starting-column of the
window is not column one, then all lines displayed have additional text to the left; when this is
the case, it is indicated in the top line. {(The top and right margins are also used for horizontal
and vertical "scrolling” as described below.) In addition, if the window extends past the last
{or first) line of the document, that is indicated within the window as shown. Some of the text
displayed in a window may be specially highlighted, e.g., to indicate the position of the editing

cursor and the selected region, described presently.

2.2.3 Editor Interface

The text editor program uses its screen viewport, assigned to it by the workstation
"executive" when the editor is invoked, to display a super-window that is a collection of
non-overlapping windows. For simplicity, we shall assume that the windows are stacked
vertically and all have the same width. (More complex arrangements are possible, including
side-by-side placement of windows, requiring additional commands for window manipulation.)
Initially the editor super-window is occupied entirely by a single blank window that has no
document assigned to it; documents may be assigned ta windows, and windows created and

removed, using window manipulation commands described presently.

The text editor maintains the following invisible state variables that are used and updated

by user commands in a manner that will be described presently:

e A Paste-Buffer, that contains the text string, possibly including EOL characters,
returned by the last delete or copy command.

e The Search-Pattern last used in a SEARCH or SELECT command (described
below).

e A Line-Width, used for automatic formatting.

e A Working-Set of documents being edited. The Working-Set includes every
document currently displayed in a window, and may also include documents not
currently displayed; a given document may be displayed in more than one
window.

Each non-blank window has two associated cursors into the document that it displays.
The editing cursor is the position at which insertions by the user take place; we will for brevity

call this "the cursor”. The second cursor is called the mark. The mark and the cursor

. N Lt .t A PR N e e e e = et AR
PR T R AL N R L Sl S AT Vel S A T P AP P A G A IS, A S0 WA P S s g oL -

'
DRSPS ¢

s e
. AN L
. . Lt
e . .
i o .
S .
. . .
., e

together delineate the region to which deletion and other commands, described below, “pply

when the user is working in the given window.

At any given time, one of the document windows in the editor viewport is the current
window. The region between the mark and cursor of the current window is called the
currently selected region; this region, or as much of it as is visible in the current window, is
specially highlighted, e.g., using reverse-video or underlining. We first describe how scrolling
and editing operations are invoked on the current window, and then describe how windows

are manipulated and the current window selected.

2.2.3.1 Scrolling a Window

Scrolling of a window is the means by which a different region of the given document is
displayed in the window; the document contents are not changed. Vertical scrolling is
accomplished by moving the mouse to some location in the window's right margin and

depressing one of two mouse huttons that will do the following:

e Downward scrolling: the window is scrolled such that the document line currently
alongside the mouse position appears at the top of the window.®

e Lipward scrolling: the window is scrolled such that the line currently at the top of
the window appears alongside the mouse position.

The vertical distance oi the mouse from the top of the window thus determines the number of
lines by which the window is scrolled in either direction. If the mouse is at the bottom of the
window margin, the window is scrolled by the number of lines in the window less one. If the
user presses the wrong button and scrolls in the direction opposite to the one he intends,
simply pressing the other button without moving the mouse restores the window to its original

positinn,

Horizontal scrolling, which is only needed if some lines in the document are longer than
the width of the window, is accomplished in an identical manner, except that the mouse must

be positioned in the top margin of the window.

Mote that scrolling of a window does not move the window's editing cursor or mark; it is

possible that either or both might not be visible when the user scrolls. If the user performs an

6Our interpretation of “upward” and “"downward™ scrolling is based on a model of the window moving over the
document. The opposite model, of the dacument moving under the window, is sometimes used and is equally valid
[12).

37

o 2t . et e s 1 > — B JR A S0 B A Jacine v i one I i A Bet A A S e kI 2 LAY il i A e At it

insertion or deletion operation (described below) while the cursor is not visible, the window is
automatically scrolled so as to make the cursor, and the effects of the operation, visible. If the
cursor is not currently visible and the user wishes to see it without performing an editing
operation, he can click a mouse button to invoke the Mouse to-Cursor command; this scrolls
the window as necessary to display the cursor at approximately the same location on the
screen as the mouse. For this command to be invoked, the mouse must be “inside" the
window, not in the margins which are used for scrolling. (If instead the user wants the cursor
to move to a displayed location that he has reached by scrolling, he points at the desired
location with the mouse and clicks another mouse button to invoke Cursor-to-Mouse; this is

described in more detail below under cursor movement.)

2.2.3.2 Editing Within a Window

The editing operations below cause the contents of the document displayed in the current
window to change as specified at the location of the cursor. The current window, as well as
any other windows into the same document that show some or all of the affected text, is

updated to reflect the chahge.

The simplest editing operation is the insertion of a single character: Sunply typing a
printable character causes Insert-String to be invoked with the editing cursor and a single-
character string as arguments. The cursor is advanced to point alter the inserted character.
(No other cursor into the given document is moved.) The RETURN key is used lo insert an

EOL character, causing the current line of the cursor to be split into two lines at the location

of the cursor. (Either of the resulting lines may be empty, it the cursor is located at the

beginning or end of a line.) Since the SPACE key is used for formatting a line, as described

below, a separate control or function key, which we shall refer to as Quoted-Space, is used to

insert a space character without causing any formatting. RN

Two function keys, RUBOUT and ERASE-FORWARD, are used to delete the character just
before and just after the cursor, respectively. The deleted character, which may be an EOL, is
discarded by the editor.

The DELETE function key deletes the currently selected region, between the mark and the . .
cursor. and saves the deleted text in the Paste-Buffer. The previous contents of the Paste- .]
Buffer are lost. (They mey still be retrievable, albeit in a roundabout way, using "history” '_Zj-:'.j.ifi
commands described presently.) The mark and cursor are now coincident, i.e., the selected - ° 1

‘ :
38 il

R N KR . B
PRI NP WS SPRE AP SPS SN 3 Vil Sha X T S S

-y ——" —— T Y
lagn sowome sen oan an gk aret udh ol vl Sl aeer i el AN thet AR RN SN el S Rt . v . 3 O y r A AN . R

region is now empty.

The COPY function key copies the text in the currently selected region into the Paste-

Buffer without deleting it from the document.

The PASTE function key inserts the contents of the paste buffer at the current cursor
position. The cursor now points at the end of the inserted text, and the mark at the beginning;
the inserted text is thus automatically "selected" (and highlighted in the window). Note that
the contents of the paste buffer may have been obtained from a document other than the one
currently being edited, if the last delete or copy command was executed in a different window;

text can thus be transferred between documents in a "cut and paste” fashion.

The FORMAT function key reformats the currently selected region by invoking the Format-
Region operation with the current region and the current value of the Line-Width state
variable as arguments. (The Line-Width, whose initial default value is the same as the width of
the editor viewport excluding margins, can be changed by a separate command.) Typing the
SPACE bar inserts a space character and then causes the current line of the cursor to be
reformatted. The user can thus type in an entire paragraph without having to use the

RETURN key to break lines; the editor automatically formats the text as it is typed.

2.2.3.3 Cursor Movement and Selection
The user can change the position of his editing cursor using the following commands. All

of these commands scroll the window as necessary to keep the new cursor position visible.

“Arrow" function keys are used to move the cursor one position forward, backward, up, or
down. Forward and backward movement wraps around EOL characters. Upward and
downward movements keep the cursor at the same column position in the previous or next
line, unless the line in question is shorter in which case the cursor moves to the end of that

line. In all cases, the window is scrolled if necessary to keep the new cursor position visible,

When the mouse is in the main text region of the window (as opposed to the margins), a
button invokes Cursor-to-Mouse, which moves the cursor to the location corresponding to the . - i
mouse position. (This requires a reverse transformation from display coordinates to logical o
positions in a document, and may involve approximation to find the "closest" logical location. 1
For example, if the mouse is in column 30 of a 20-character line, the cursor will move only to j‘.'_::
the end of that line, i.e., column 20.) o

39

A -

ool
NN

DA S T WA ST ORI SR DI R W RPN S AU WO SR i VU D i SRt . e am et B A A R Y

The SEARCH function key initiates a patltern-search as follows. The user is prompted by
the word "SEARCH" being echoed at the top of the window; the rest of the command is also
echoed as typed, and the user can at any time CANCEL the command. The user may
optionally type START-OF or END-OF, with END-OF assumed as default it neither is typed,

followed by an optional number (positive or negative or zero), which defaults to 1 if not typed.

The command is then completed by the user specifying a pattern (using the syntax presented “. T

in Section 2.2.1), at which point the Move-Start-Pattern or Move-Fnd-Pattern operation is - ;’_1

invoked to move the cursor over the specified number of occurrences of the pattern. The :_»':;» _;_?

pattern itsclf is specified in either of two ways: _ :]

1. A bwilt-in pattern is associated with each of the function keys WORD, SENTENCE, ”A. — :

PARAGRAPH, DOCUMENT, LINE, and CHARACTER. R

2. Any other pattern can be specified by typing the characters of the pattern, 'f‘,"jﬁ Lj

followed by the ENTER key. If ENTER is typed without specifying a pattern, the e . W

Search-Pattern state variable, set by the previous SEARCH command (or S i
SELECT, below) is used. ‘®

F

The mark stays fixed when the cursor is moved by any of the above operations; the _':.“.jt.-.'.j-'-’.‘

selected region implicitly changes as the cursor moves. The EXCHANGE function key

interchanges the locations of the mark and cursor; the same region as before remains

selected. The commands presented next are used to change the selected region by moving

the mark and keeping the cursor fixed.

MARK-CURSOR moves the mark to the current location of the cursor. The selected

region is now empty, but will grow if the cursor is moved and the mark stays fixed, e.g., if ‘e

characters are typed.

The SELECT function key moves the mark over a given number of occurrences of a

specified pattern, relative to the current position of the cursor (not of the mark). The syntax of SR
(

this command is identical to that for SEARCH, above. B

The use oi the above commands can be iltustrated by means of an example. If the user]

types SELECT PARAGRAPH, the mark will be positioned after the end of the blank line(s) 5 -
terminating the paragraph in which the cursor is currently located, i.e., just before the 0

T
o
s fa

beginning of the next paragraph (or at the end of the document). The text between the cursor

and the end of the paragraph is thus selected, and can be deleted or copied, or formatted, if

desired. If instead the user wishes to delete or copy or format the entire paragraph, he can

s

R P ST S SR S i S .

- - - . < L L N T L T T A I T Sl U
" - . - - * . - ‘e ‘a et e Ta e t. - “a . T - - - - - - - - ‘. - b - a ‘o ' o oy
A T AL W P S AP AP I I I .1 -y ¥ PRIy T i

type SELECT PARAGRAPH as above to position the mark, and then SEARCH 0 PARAGRAPH
to position the cursor at the beginning of the paragraph.7 {The user may instead use the

mouse and Cursor-to-Mouse to define the desired region boundaries.)

2.2.3.4 Window Manipulation
The commands described above operate on the user's current window. The editor
viewport may contain other windows as well, with the same or different documents, and the

user can designate a different window to be current in either of the following ways:

e Using the Next-Window and Previous-Window commands, which select the next
window up or down, respectively, from the current window. These commands
"wrap" around trom the topmost to the bottommost window, or vice versa.

o Implicitly by positioning the mouse in a window other than the current one and
issuing a mouse button command to scroll the window or to move the window's
cursor to the mouse position or vice versa.

The current window can be made larger, at the expense of adjacent windows but no
farther than the boundaries of the editor viewpert, using the Grow-Top and Grow-Bottom
commands. (The editor viewport itself may be grown or shrunk, or repositioned on the
physical screen, by an interaction with the workstation executive; this is not discussed here.)
These commands may cause an adjacent window, above or below respectively, to disappear
completely. If the document in such a window is no longer visible in any other window, the
cursor and mark are saved in an invisible window of zero size; this allows the cursor and mark
positions to be restored when the same document is later displayed, using Edit-Document
below. (Note that there is no need for a command to remove a window, or to shrink a window,
because these can be accomplished by selecting an adjacent window and growing it as
desired.)

The current window can at any time be split into two approximately equal-sized windows
using the Split-Window command. After the split, the upper window displays the same
document as the window before splitting, while the lower window is blank, i.e., has no

associated document. The new biank window becomes the current window, but no editing

7We have arbitranly chosen an "object-verb” command style, of selection followed by an operation such as delete
or copy A vald alternative 1s a "verb-object” syntax, such as Etude's DELETE 3 PARAGRAPH [50]. The verb-object
style allows a "selection™ and an operation to be performed all at once with tewer user keystrokes. The object-verb
style on the other hand provides feedback about what the user 1s about to delete, by always highligivting the currently
selected region, before he performs the deletion.

41

o
§
o
R
I
[]

LSRG DR AR SR T, VO 0 S SR R, O, UL POV PSP, ") UL S NSO M, WP, AL S S S SR NI S ST VLT SLE Wl WA Sl S S AP US-A PR U VA LA |

can be performed in it until an Edit-Document command, described below, is performed. A
user’s lext edding session starts with a single blank window occupying the entire viewport
assigned to the editor; the user can then select documents for editing and create windows

within the viewport as desired.

The Edit Document command causes the current window to display a different document;

the document is specified in either of two ways:

1. By silecling from a menu that displays the Working-Set of documents being
ediled.

2. By typing the name of the document. If the named document is not already in
Working-Set. itis added to it. In addition, if a document with the given name does
not already exist. an empty document is created.

The Working-Set is initially empty when the editor is invoked. and grows as Edit-Document
commands are invoked. The editor maintains its own volatile copy of every document in
Working-Set. Each copy is at any given time either saved, indicating that the current contents
have been saved in a permanent version or checkpoin! of the document, or dirty, indicating
that the copy has been updated since the last checkpoint. Dirty document copies are
checkpointed periodically by the editor, and whenever the user invokes the Save-Document

command which checkpoints the document displayed in the current window. An additional

command, Save-All-Documents, checkpoints all dirty document copies; this is also invoked]
automatically when terminating the editor program.
The Quit-Edit command dissociates the current window from the document it displays; the . ' jli
window becoimes blank. If the document is not displayed in any other window, the editor's . ‘:
volatile copy of the document is discarded and the document is removed from Working-Set.
(If the document copy is "dirty” when this happens, the user is asked whether he first wishes
to checkpoint it.) A list of documents currently in Working-Set, together with flags indicating T g ~-:Z:f
which are dirty, can be called up by the user in a pop-up viewport; the user can invoke L)
Edit-Document, Save-Document and Quit-Edit by pointing at this list and using the mouse -
buttons. "_'f- . |
° -1

2.2.4 History-Related Commands oo 1
A window may be used to review one or more past versions of the document it displays .--_'..-;:;;_. . J
using the HISTORY command. The title line of the window shows the word "History" together .]
"

42 '

any case, retraction of a document does not stop other participants from resubmitting the

document.

We next consider the possibility of interference between a conference and other users
who may be attempting to edit the same document(s), privately or even in another
conference. The same method used for protecting individual users is used: The conference,
as an active enlity in its own right, acquires a reservation that prevents users outside the
conference from moditying the document. An individual user can still attempt to acquire the
reservation, and will receive it after the time limit on the reservation held by the conference
expires. However, the time limit on a reservation held by a conference is set to he much
longer than the time limit on a reservation held by an individual user. This has the effect of
discouraging users from editing a document that is being used in a conference; the user must
either wait a fong time, or try to join the conference if he can. A confercnce may view one or
more documents in "read-only” mode, either on purpose or because some other user has

temporarily reserved the document.

A participant in a conference may attempt to privately edit a document that is shared in the
conference. Unless he is able to acquire the reservation for himself, which will involve a long
wait and will last for only a short time, he will only be able to view the document in read-only
mode in his private space. He may freely select and copy text from the document, but the
region he selects will not be protected against concurrent changes to the document that

other users may be making from the shared space.

2.3.4 Access to a Conference
A real-time conference introduces a second level of access control, namely access to the
conference itself. Again, the creator or owner of the object in question, in this case the

conference, specifies the necessary access controls, which consists of:

e A list of the names of those users who will be allowed to join the conference
unconditionaily.

e A specification of whether the public, i.e., all users other than the above, is
allowed to join unconditionally, not allowed to join at all, or allowed to submit a
requesi to join.

Requests to join are granted or refused by the current chairperson. The chairperson is

initially the conference owner, but the owner or the current chairperson can designate a new

P RSP AGE. UNE AL, Y. S AP A

e e

A ataatatatar .t et atAalat s i e a e Tat

A similar procedure is followed when a participant, holding the super-reservation, uses the
Shrink-Superwindow command to make the shared superwindow smaller. Participants now
specify the smallest size superwindow they are willing to accept, and alternatives are ranked
in the opposite order, i.e., larger sizes, beginning with the current size, first. The initiator then

selects an alternative as described above.

Negotiation of the shared superwindow size is performed at least once in a conference, at
the beginning. In this case, the system pertorms the above negotiation automatically without
bothering the participants by asking for their preferences. Then, additional explicit
negotiations are needed only if participants are not satislied with the default selection made

by the system.

If a participant joins the conference after the shared superwindow size has been selected,
and his offered size is smaller than the current size, the other participants are informed
thereof. The chairperson can take this opportunity, if he wishes, to shrink the superwindow to
accommodate the new participant, or even to some in-hetween size as a compromise. This is
a special case that does not involve any negotiation, and the chairperson can do this without
acquiring the super-reservation. Whatever the decision, the new participant either adjusts his

screen or uses a smaller viewport, as described above.

2.3.3 Document Access Control

Documents are added to the shared Working-Set by users executing Edit-Document
commands from a shared window. Any user with read or update access to a document can
do this, even if not all participants in the conference have read access; all participants are in
effect given "temporary” read accsass to documents in the shared Working-Set. Update
access controls on a document are strictly obeyed: a participant is not allowed to modify a

document to which he does not have update access.

A document can be removed from the shared Working-Set only by a Quit-Edit command,
when the document is not visible in any other shared window. Since this may erase changes
made by other participants, Quit-Edit can be invoked only by a participant with update access
to the document. (An exception to this is a document that is in "read-only" mode, i.e., not
being edited in the conference; any participant can remove such a document from the shared

Working-Set.) It is expected that such "retractions” of documents will rarely be needed; in

S Ve et
“ -

~ P - ~ . - - T CREEN R
. hd D I I RS R - LR S - CYRL B, <A P - B IS P G e A T U R
PP NP IO G S o SR WV S Sl ST T s WV Tl WS, T St S i S A S . TP S A, R P PO B l_;J

=

AP WP U VI SR\

el
e ¥

L Aot An it sk it Snmm i Minas Jeceh a4 LA 200l s Sod Dugh Jnge st S et Jen JAath St A ust St S Shie SitaCieaichenc] T

Size Participants

As replics come in, the list of alternatives is expanded and updated. Suppose, for example,
the other participants respond as follows: B will accept only 44x54, C agrees to 50x54 (the

proposed new size), and) 50x48. The list of alternatives will then look like:

Size Participants
44x48 all
44x54 all bhut D
50x48 all but B
50x54 A.C

{The set of alternatives may in addition be presented visually by displaying rectangles of the

corresponding sizes around the shared superwindow.)

When all participants have responded, the initiator must make a selection from the
alternatives presented, by deciding whether it is more important to accommodate as many
participants as possible, with a smaller superwindow size, or to present as much information
as possible, with a larger superwindow that fewer participants can accommodate. Unless the
current superwindow size is retained, the shared superwindow is grown as specified, and
each participant adjusts his screen to make room for the larger shared superwindow. If a
particular participant was not willing to accommodate the size finally chosen, he can still
change his mind and make room on his screen, or he can display only part of the shared

superwindow in a smaller viewport that can be scrolled by commands to his workstation. In

the latter case, the participant will not always see all of what everybody else can see, and may

miss some of the action; he may instead choose to leave the conference.

The initiator of the negotiation may interrupt the procedure at any time and either retain
the current superwindow size or select a new one based on only those replies received so far. ‘ ®
Thus. he does not have to wait for participants who are slow in responding, or never respond. NN
So long as one or more participants have not responded, the system will prompt the initiator E K -f;f-ﬁf:
at perindic intervals urging him to make a selection and terminate the negotiation. As a last : :

resort. e.q.. the initiator does not make a selection after a fong time, the chairperson can

intervene at any time by taking away the super-reservation. The negotiation continues if the
super reservation is thus transferred, until some participant terminates the negotiation while

holding the super-reservation. e R

. R : - to. T CoL T M - e T .. .0 t. . agte 2 - . e . . . L. - . R
AR AU T SRS S SR IAE P SAL ST S IR SIS SRIr S A0 St T Tl T Mo U S LA B S PELIV A S I W S B

L "Nl St i I e e =R A A St LA I A R AT RS RGP M AP A -

"request” the super-reservalion, which serves as a polite warning to participants that they
may soon lose their reservations; the chairperson’s request is not queued, since he himself

can at any time give or take away the super-reservation.

The participant currently holding the super-reservation may release it at any time, at which
point the super-reservation is free. Participants may then acquire individual window-
reservations, or the chairperson may choose to acquire the super-reservation or give it to

some other participant.

2.3.2 Negotiatling a Window Size

The holder of the super-reservation can change the size of the shared superwindow, e.g.,
he may wish to grow the superwindow to display more information, or shrink it to
accominodate a participant with a small screen. Since changing the size will require every
participant to adjust his screen accordingly, the participant wishing to make such a change

must first go through the following negotiation procedure.

Let us assume that the participant wishes to make the super-window larger, for which he
invokes the Grow-Superwindow command; the procedure for making the superwindow
smaller is similar and is discussed below. The participant, who we shall call the initiator of the
negotiation, specifies the desired new size, either as a pair of numbers (height and width), or
by indicating the desired-size rectangle on the screen using his mouse. Each participant is
notified of the desired change in size, and in turn specifies the maximum new size, no larger

than the proposed size and no smaller than the current superwindow size, that he is willing to

accommodate on his screen. This again may be specified as a pair of numbers or indirectly

by specitying a rectangle on the screen.

As participants respond, their offered sizes are processed to generate a list of plausible

alternative superwindow sizes, together with which sizes are acceptable to which .
participants; this list is displayed to all the participants. Suppose, for example, that participant ::Vi :f:
A is the initiator, currently holding the super-reservation, and wishes to grow the superwindow A 4
from its current size of 36x48 characters to 50x54. When the negotiation starts, i.e., no replies

have yet been received, only two alternatives are presented: the current superwindow size,
and the desired new size. By implication, the desired new size is acceptable to the initiator A,

who does not have to generate an explicit response.

1
'

5
' {
G A
. . A
ala'al LWl

z

. - T L L . e T T e 3
PR LA ST RSN L LI I AT W UL RS\ S NP SRS Wi SPNE S PR AT W LU U SN WAE W WL YRE WA WRE W R . g 2

.

O PS B e e e s L B e L e e e e S e e e et A e e N R D o A i R r.»._?_."

e,
PRI S

overlapping region reserved, the mark in this window is moved to the cursor paosition, giving

an "empty" region reservation. Even an empty region reservation is not allowed to overlap

other region reservations, because the participant may insert text at the cursor position and
thus modity the other participant's region; this may require moving the cursor to the

beginning of the document, outside any regions reserved by other participants. No time limit

St AR
RO NP W

is set on region reservations; because free windows do not have their regions reserved, the £

timeout mechanism on window-reservations is sufficient.

.

The super-reservation is a reservation on the entire shared superwindow. No other
participants can hold window reservations when a participant holds the super-reservation.
The holder of the super reservation, if any, can perform any editing command or window . 1
manipulation operation in any window. He may also change the size of the superwindow, . 7

which is described below in Section 2.3.2.

The super-reservation is useful, for part of a conference or for an entire conference, when e
it is desired to have only one participant at a time working in the shared space, as well as for
global actions such as changing the size of the shared space. This is similar to holding the
"floor"” in a face-to-face meeting or conference. The super-reservation is controlled by the
conference chairperson, who is designated by the creator of the conference. A participant
can request the super-reservation, which notifies all participants of the request and also
updates the shared status window to show that the request has been gueued. The status
window, as shown in Figure 2-4, shows the current chairperson, the current holder of the

super-reservation if any, and any requests that are queued. Operations involving the super-

reservation and request queue (requesting, granting, and releasing the super-reservation, .
and withdrawing a request) are performed hy pointing at the appropriate region of the status :
window and clicking a mouse button. Keyboard alternatives to these operations are also "
available, e.g., allowing the chairperson to give the super-reservation to the "next" participant -. i ;
in the queue without having to find and point at that specific participant.

The chairperson can at any time grant the super-reservation to any participant, including
himself, even if the participant’s request is not first in the queue and even if the participant has S 1
not requested the super-reservation. (For example, the participant may have used the voice '..'. o

channel, unknown to the system, to ask for the super-reservation.) The current holder of the

super-reservation loses it, or, if nobody currently holds the super-reservation, every

participant loses the window-reservation that he may be holding. The chairperson can also

52

i Soant s Tt e et o Aot Sacd Dis gk et T w7 e Y TR T e T T T TR TN TN VY T YW W e T T Ty

e A participant can hold a reservation on only one shared window at a time, except when
holding the "super-reservation” described below. Thus, a participant holding a
reservation on one shared window loses that reservation when he acquires a reservation

on a different window.

& A participant automatically loses the reservation on a shared window if he does not
perform an operation in that window for some specified period of time, say haif a minute.
This protects against a participant who goes off into his private space and works there
without releasing his shared window reservation, or a participant who simply sits and does

nothing or who walks away from his workstation or whose workstation crashes.

e If participant A, say, attempts to acquire a window-reservation currently held by
participant B, say, A's command fails and is discarded but B is notified and loses his
reservation after a brief time interval. Once the reservation is lost, any participant, A or B

or any other, may then acquire it.

Window reservations permit only one participant at a time to operate in each shared
window. It is possible, however, for a given document to be displayed in more than one
window, and the document may be modified concurrently by the participants holding those
window-reservations. Interference among these participants is prevented by providing
region-reservations: The currently selected region in each window, between the cursor
position and the mark, is reserved and no two region reservations are allowed to overlap.
Since a participant can only insert at his cursor position and delete between the cursor and
mark, concurrent changes by different participants to a given document cannot overlap. (itis
not possible, for example, for one participant 1o inadvertently erase text that another
participant inserts into the region that the first participant is about to delete.) An attempt by a
participant to move his cursor or mark into another participant's region will generate an error
message, and the cursor or mark will not move, i.e., the participant has the same region

selected and reserved as before.

The current region in a given window is reserved only if some participant is actually
working in that window, i.e., has the window reserved. Thus, a participant working in one
window is not kept out of a region in another window that nobody is using. When a
participant acquires the reservation on a window that is currently free, an attempt is made to

reserve the current region of that window. If this fails, because some other participant has an

51

- —————— T Y TN T T T T T T
St g 0 An Sr S Ao use SAS Sulh o U arER- aIN* i aduic i e/l SR T A . " R

If the participant holding a window reservation does not have update access to the document
in that window, he may not modify the document; he may only scroll, select by moving the

cursor and mark, and copy into his paste buffer.

The use of private paste buffers for the delete, copy, and paste commands permits
transfer of text between shared and private spaces. Thus, a participant may copy or delete
text from a shared window, and then select a private window into which he pastes the copied
text, or vice versa. The absence of a shared paste buffer also prevents different participants’
delete or copy commands from interfering with each other. The only problem with not having
a shared paste buffer is that if one participant deletes text from a shared document then
another participant cannol get back the text from the first participant’s private paste buffer;

however, deleted text can still be retrieved from the document history.

In addition to the above, the participant holding a window reservation may perform a

limited set of operations on windows and on the shared Working-Set:

e He may grow the top or bottom of the window only if the adjacent window, above or below,

is not currently reservéd by any participant.

e He may split the window, acquiring the reservation on the lower, blank, window resulting

fromn the spiit.

e He may perform an Edit-Document command, specifying a document already in the
shared Working-Set or a new document. The latter allows participants to "submit"

documents to a conference.

¢ He may perform a Quit-Edit command if he has update access to the given document.
The reserved window becomes blank, and the document is removed from the shared

Working-Set if it is not displayed in any other shared window.

Window reservations are acquired and released by participants as follows:

e Any participant may acquire the reservation on a window that is free by using one of the
commands normally used for designating the "current” window: moving his pointer into
the window and executing Cursor-to-Mouse or Mouse-to-Cursor or scrolling using the

margins, or executing Next-Window or Previous-Window from an adjacent window.

» A participant can release his reservation on a shared window at any time.

et et T
o e e e ettt

E N A UL PR T S
Y e e el e at A tat atatatatan

Ve W Wy W N w Ve W, PRl At M e I LA A g et S LM

TR

|conference "Annual Report" 2-Jan-84 11:37 |
|JMERRILL LYNCH PIERCE FENNER SMITIH JONES |
| Req#l Chair Left Waiting |

|Stocks.mss v#13 Merrill
| Blue chips rose 10.3% this year, reflecting a trend |
Jthat hegan last year when the Dow Jones hit 1000. |

e e ittt +
|Bonds.mss v#9 FREE]
| Returns on T-hills were not as promising as |
janticipated; we are therefore taking a tax writeoff. |
{Municipal bonds on the other hand |
$mmmmmm o= B et e T + . .
|Speculation.mss v#1 Smith | - T
| ***T0p**=* | [) 4
| A good year for pork bellies, soybean futures, and | o
e it e el e e it il i + I

Figure 2-4:Shared Space in JEDI

participant to perform scrolling and editing operations in that window.

e Region reservations which isolate participants who may be editing the same
document via different windows. '

e A super reservation on the entire shared space, which allows a participant to
perform more global operations involving multiple windows.

(In addition, document reservations, described earlier in Section 2.2.6, isolate the conference
as a whole against other users who wish to concurrently edit the same documents.) We

describe each type of reservation in more detail below.

Each window in the shared space has an associated window-reservation which at any

given time is either free or is assignad to one participant; the name of the participant, if any,

holding the reservation, is displayed in the "title" line of the window (along with the document
name, as before). Possession of a window-reservation allows a participant to perform the o

following operations in the window, using the same command interface as a single user:

¢ Scrolling, cursor movement, and selection using the mark.

o Typing in, -.rasing, and formatting text.

e Deletion and copying of the currently selected region; these operations cause the
selected text to be saved in the participant's private paste buffer.

e "Pasting” of the contents of the participant's private paste buffer into the
document.

49

e e e e e e T e e e e e e T T e Tl
BTN Tt PN AP YL AT AU IR, NN IR Ve VoS A YO MR Sl SIS PR S S AE S NI SN SO AP S NS S AL S aaatt s

L A A v . B v - L e A I ainie ML AL suiuicmaut Suvh svas R RN AP (L SPR Sl T T TEETYC AT wom s —w e, =S

| private |
Fomm e + L T +---+
| 2 I | X | p 1
| X| | 1 r |
I | | | i
| 4 | | 4 | val
I I I | te]
fmmmmm e e + o +---+
participant 1 participant 2
e ittt + R e + -
| 2 | | 2 I]
I 1] I 1] E
| I I | b
| 4 I | X |
| I I |
e it + R e +
| private | | private |
| X | Fommmmmmm oo m oo + . 4
e ettt e +
participant 3 participant 4

Figure 2-3:Shared and Private Spaces

tn addition to document windows, the shared superwindow has a small number of lines at
the top occupied by a conference status window that shows who is in the conference and
other useful information about participants that will be described presently. This is shown in
Figure 2-4.

Each participant’s private space has a Working-Set of documents being edited privately, a

Paste-Buffer, and a Line-Width for formatting; the participant can work in this private space in

the same way as he would when not in a conference, using the single-user editing interface
described earlier. The shared space has its own Working-Set of documents, and a Line-

Width, but no paste buffer for reasons we describe presently. How the shared Working-Set is

POV SAIPITY §

updated (from its initial empty state), and what happens when it overlaps one or more

i
T

participants’ private Working-Sets, is described presently.

Participant activity in the shared space is controlled using the following kinds of

reservations:

e A window reservation on each window in the shared space, which allows a

. . e - e e T e e T e e e e e Lt s
. a Lt e T e e e CRE ISP T SN . R Tt RN St E P O e I I T I IR I I N
at@atat. L et ata®a'atu" tea tae®ac fa s st L2 : > A ata e . MIPRL I WP 3 P R WA Y g R W R AR . P

P R 2RI I A M A Nl el e BSOS AP i et e i i i N M A A ORI R T et ey S Yoy

2.3 Real-Time Conference Interface

We are now in a position to describe JEDI, our real-time joint document editing system. . ‘
We first describe the joint document editing interface as it appears in a conference that has :
already been set up with some set of participants; the process of starting a conference and

adding participants is described later.

2.3.1 Windows and Reservations

Each participant in a real-time conference using JEDI sees two collections of document
editing windows, or "superwindows", on his screen: a shared space and a privale space. A
participant may place the private and shared spaces on his screen in any juxtapaosition he
chooses, either ane above the other or side-by-side. This is illustrated in Figure 2-3; a more
detailed picture of the contents of the shared space will be shown below. A participant may in

addition have other viewports unrelated to the conference on his screen, although it is

unlikely that there will often be enough screen space left over. A participant with a small
screen may have to overlay one space with the other, with commands provided for switching :
between the two, i.e., making the obscured space, shared or private, fully visible and
obscuring the other one. Or, a participant with two physical screens at his workstation may

place the shared space in one screen and the private space in the other. s

Each participant has a pointer that he can move over the shared space using his motuise.
The participants’ pointer positions are visible to all participants in the shared space, with each
pointer having a different "shape"” (i.e., the pixel-pattern that is superimposed on the
displayed information) so that different participants’ pointers can be distinguished. In
addition, each participant sees the position of his pointer on his screen with a special shape
that he can easily distinguish as his "own". This is also illustrated in Figure 2-3, using
participants’ "numbers” for their pointer positions and X to indicate a participant’s own
pointer. A participant can move his pointer off the shared space, making it no longer visible to
the others. (A participant’'s mouse position will still be visible to the participant himself, e.g.,
participant 3 in the figure may use his mouse for commands in his private space.) Note that
the participants’ pointer positions are defined with respect to the image displayed in the
shared space, and are not affected by scrolling, editing, or window manipulation operations

that change what is displayed in the shared space.

47

Lot et v e e L T B O R e r PR SO P ST R R S BPOPRL SPRLPE
PO -A,‘ N et - IR R RN DR P AP I

PR . R L M U B LI et . DU T A T A -

- " “te - - A . - *, - g - - . - . - . - . . »

. ST e e e T T, e
e alte antaan'male S 2 A Rmta? el e ala atatatat ettt e A At ta et At e A e a’ea 8 s s alacadal alala a4

more than one such alternative branch, generalted by different users, as shown in Figure 2-2.

al A's alternative
/
vl - v2 - v3 "true" history
\
bl - b2 B's alternative

Figure 2-2:Alternative Document Versions

The user generating an alternative branch may discard individual versions in that branch
or the entire branch. More likely, the user at same point may wish to "install” his changes into
a new version in the document's true history. If the origin version number on which the
alternative was based is still current (true for al in Figure 2-2, but not for b2) and no other
user has the document reserved, the alternative is successfully written as a new document
version. If not, the user’s editor will read the latest true version of the document, acquiring the
reservation if possible, and display this document version to the user. The user may then edit
this version, copying over some or all ot the changes that he had made in his alternative. Or,
the user may instruct his editor to automatically merge the latest document version and his
alternative. The editor does this as best as it can using a document comparison procedure,
asking the user to make a decision or perform some editing whenever incompatible changes
(e.g.. to the same line or paragraph) appear in the two versions. (Certain "minor" changes
are ignored by the merge procedure: additional or missing blank lines; words that differ only
in case; and paragraphs that differ only in the position of the line-breaks between words.) The
user then saves a new version, as already described, when satisfied with the combined

changes.

The above support for "alternatives” allows users to continue working in the presence of
communication failures or "partitions"” that may make it impossible for a user's workstation to
acquire a reservation or write a new version. Or, a user wishing to explore an alternative
development path without interfering with other users can do so by deliberately not acquiring

the reservation, with the intention of later merging {or discarding) his alternative.

- __--A-. B T

e . IR R
LIPS PG WA LN G WL S O

- . B

t e . - . . DR - - " - -'.s"~"--
LRSI P R T L NI S ST W e

l
:
:
.
:

------ AN Rt ahatatair MRS A AT AT N A e S AU SRR AN b

If the user does not perform a Save-Document command within the given time limit, his cditor
will automatically do it for him. When a new version of the document is to be written,
validation of the version number is still performed; the write succeeds only if the document
version read is slill current and no other user currently holds a reservation on the document.
This allows lhe write to succeed even if it was attempted after the reservation time limit
expired, provided no other user has updated or reserved the document in the meantime. On
successtully writing a new version, the editor tries to reacquire the reservation for further

updates; this may fail if another user has been granted the reservation.

If a user A, say, tries to acquire a reservation on a document that some other user, say B,
already has reserved, the following happens. A is informed that B is currently updating the
document, and for the moment is shown the current document version (i.e., the last
checkpoint, not B's dirty version which is visible only to B), in read-only mode. B in turn is
informed that A has requested the reservation, and is warned that he will lose his reservation
when its time limit expires. This gives B a chance to record his changes in a new version, at
which point A receives the reservation and the new document version, which he may proceed
to edit. Since only one user at a time can hold the reservation on a document, and the holder
of the reservation always sees the most recent changes made by the previous holder of the
reservation, the above problem of lost concurrent updates cannot arise. A may of course
choose to undo changes made by B, but will only do so with full knowledge of what he is

doing, rather than accidentally overwriting changes that he has not seen.

While A is editing the document above, B now sees the document in read-only mode. B
may in turn request the reservation, at which point A is informed, and so on. This process
may go on indefinitely, although in practice one user or the other might choose to bow out
and let the other proceed. Alternatively, users who find each other trying to update the same
document concurrently might choose to work together in a real-time conference, described

presently, and view each others’ changes in real time.

If a user does not save his changes by the time he loses the document reservation to
another user, his work is not lost. Instead, his copy of the document, if dirty, is saved as an
alternative version. An alternative document version has an associated origin version
number, which is the version number of the original document that was read by the user
creating the alternative. An alternative can be further updated by its0r, and a sequence

of alternatives saved to form an alternative "branch"” of the document history. There may be

St - e te e - P e T T VIR W A TR S T e et
e " P R T o e uTe e . F e T R TP Y P
T L T R .. « T

e e T it et et it ate et ettt ala e atat At Al At A a A w

. R T ST S ST S dv J Y SRR
(AT LA APG, W A UL YR R WL WG WA W W W W U VW W W)

Lk e s b S A R e avs s Jeui st e o AR = e P e dage Parialiin it Sttt M St I A M T AT I I AL R

2.2.6 Concurrency Control

Giving multiple users update access to a document introduces the familiar problem of -z
concurrent update. in the absence of any controls, described below, the following may
happen. Users A and B both execute Edit Document commands on the same document X,
say. Their editors now have separate volatile copies of X which are updated by A and B

independently of each other. Each user then checkpoints his updated copy of the document.

Ii A, say. is the first to write out a new version, then the new version that B checkpoints will
include none of A's changes; A may further update his copy and write out a new version that
does not have any of B's changes, and s0 on. Even though neither user's changes are lost
when multiple versions are retained, any other user who reads the lalest version of the

document will see only one user's changes, A's or B's, and will not be aware of the others'.

Two levels of protection are provided against the above kind of problem. The first,
validation, works as follows. A user's editor, on executing an Edit-Document command, is
supplied with the version number of the document version that it reads into its volatile copy. e
When the editor wishes ta checkpoint its updated copy as a new version of the document, on >
a user comimand or after an "auto-save” interval, the attempt to write fails if the version that
was read is no longer the current version of the document, i.e., some othar user wrote a new
version in the meantime. if the attempt to write succeeds, the editor remembers the version -
number of the new document version that it wrote, so as to validate this the next time it tries to -

writc a new version.

This validation using version numbers will avoid the problem described above. If A and B ®
read the same current version of a document, and A is the first to write out a new version, then
B will be unable to write a new version because the version he read is no longer current. B's

work is not necessarily lost; this is discussed below under "alternatives”.

A second levei of protection is the setting of reservations in an attempt to forestall the s
possibility of failing to write a new version because of an intervening concurrent update. The
user’'s editor, on executing an Edit-Document operation, can set a reservation that prevents '4 -
other users from writing new versions for some specified period of time, say a minute or two 8 v.i

8A reservation is in some ways similar to a "lock” in database systems, but differs in that it is more volatile and may)
be revoked by the system, e.g., when the time period expires or if the document owner revokes this user's permission NS
to update. A reservation is also held tor longer than a lock; in our system, we assume that true "locks” on the °
document will be set only briefly, invisible to the user, while actually writing a new version.

a4

with an identification (e.g., version number or "timestamp") of which version of the document
is currently being viewed. The window is placed in a "read-only” mode that does not allow

E the document contents to he maodified; it does not make sense to change past history.

Scrolling and cursor movement and selection, and the COPY command, are permitted in e

read-only mode. This allows text from a previous document version to be pasted into another

window that displays the current version of the same or different document; even the entire

l previous contents of a document may be copied in this way.

In addition, the following commands are provided for operating on the history:

e Next-Version and Previous-Version, which show the next and previous)
checkpoint, respectively, from the document's history. e

e QUIT viewing the document history, and restore the window to allow editing of the
current version of the document.

* UNDO, which makes the currently displayed version the new version of the o
document. -

+ MERGE the contents of the currently displayed checkpoint with the current
version of the document to produce a new version; this uses the procedure }
described below for merging “alternatives”.

If the user wishes to see both the current version and the history of the document ut the same

time, he can do so in different windows. . e

2.2.5 Access Control

Every document has an owner who is the user who originally created it, i.e., wrote the first h— B
F version associated with the given document's name. The document is initially accessible only
. to its owner, but the owner can at any time change the specification of which users can

update the document, i.e., write a new version, and which users can read the document, i.e.,

view its contents. Each of these is specified as an access control list of user names, or as the
special value public which gives all users the given privilege, to read or update. Users with
update access are implicitly given read access as well. The owner retains the sole ability to
erase past versions of the document, or to erase all versions and delete the document
altogether; he may also instruct the system to automatically "garbage-collect” old versions
based on some criteria such as age or an upper limit on the number of recent versions to

retain.

B N e T N e Ty RS o o RN WV W T e e,

chairperson at any time. The chairperson also has the power to remove a participant from the

conference, e.g., one whose behavior is disruptive.

2.3.5 Leaving and Termination

A participant can leave a conference at any time; the other participants are notified and

their status windows updated. The leaving participant's copy of the shared space now

becomes part of his private editing space. The documents in the shared Working-Sct are
included in his private Working-Set, allowing him to browse over the information that was

) discussed and manipulated in the conference. (The participant will have to do this in read-

example, in order to respond to an urgent message or other interruption outside the

’ only mode, since the conference presumably still has the documents reserved.) The P
participant may instead discard his copy of the shared space, making room on his screen for

: other activities.

b ,A-' .

¢ A participant leaving a conference may join again, unless the conference has terminated S

é {below) or his permission to join revoked in the meantime. He may leave temporarily, for - .4._

-

conference. Or, a participant may "leave" temporarily for the sole purpose of browsing over SABAR

T
Ty
’

one or more shared documents in the region of his screen occupied by the shared space.

When the last participant having update access to a given document leaves a conference,
the document is automatically checkpointed if "dirty” and the reservation released; the
document reverts to read-only mode for the rest of the conference (or until a participant
removes it with a Quit-Edit operation). The dc. -ment may be later updated in the conference Y
if a participant having update access to the document joins and acquires the document

reservation for the conference.

When there is only one participant left in a conference and that participant leaves, the
conference terminates: No further participants can join or rejoin, and no further activity can
take place. A record of the conference is retained so that participants who are trying to join

are properly informed that the conference has terminated.

57 o

P I N AP S PP N AP WAL P AP I W L W P S TR o PP vl AR USRS IPUR AR AT TD W SOUr W WU VIRE WL W WU VN YRS W W W |

- ————— R s e T e Ee D e Je L Bt A e i e B R s idcas i diasnn A iU RS S A S B e e A

Chapter Three

Design of Real-Time Conferences

Having developed a particular real-time conferencing system in detail in Chapter 2, we . :
now attempt to generalize from that exercise. In the course of designing the joint document 'jv:. -
editor JEDI, we addressed several issues that can be expected to arise, in some form or '
another, when designing a real-time conferencing system for any other application, e.g., - >."

computer-aided circuit design or financial planning using spreadsheets. We discuss these
issues in detail in this chapter, presenting the different options available for resolving each
issue. We believe that different choices will be appropriate in different contexts, and
therefore do not prescribe a single solution for all users and all applications. Instead, our
discussion of the issues and options is orienled towards a hypothetical designer who is faced
with the task of designing a conferencing system for his particular application and user
community. To aid the designer in his task, we describe the factors and tradeoffs that must be

taken into consideration when selecting among the available options. (The designer may in

some cases allow for more than one option in his system, with the choice for a particular
conference beiny made at "run-time" by the users involved.) We will in this chapter refer
back to the joint document editing example, indicating why particular design choices were
made the way they were, what alternatives were available, and how the selection among

choices might be made in a different application or difterent selting.

——TTTT

Our discussion focuses primarily on the underlying functions presented to the user, rather

than on cosmetic details about how the functions are presented such as different kinds of el
command syntax or pointing and selection methods. While these details may be important in
making a system "user-friendly” and "easy-to-use", it is the user's conceptual mode! of what

the system can do that ultimately determines whether the system will be used. D=ztails of the

°

"physical” interface can usually be selected after an appropriate conceptual model has been

A defined, and considerable literature [1, 2] is available on this subject. e

E For each kind of different function that can be provided in a real-time conference, the ;l.::j.-_:"

- following issues will be addressed: S
°

59

PREVIOUS PAGE
IS BLANK

v el o . e e e e T e N N T e e e e e ST LT T e
BN R P I SR T T N T T T I PP R I, w, S,
AR R D R W ST WS R SN PR PR WL WAL L WA SPRE AP L P AR YA I UL TIPS N WP BT PP G S G N R TS S TR W W Yy

ST RS e Srud Sl et awh ol o il Sk A e AT o NAFa s eui i bt it S Sro i I i i SR

1. What objects, of what type and structure, are used to support the given function.

2. What operations are performed on the given objects in order to implement the
function.

3. Which users are permitted to perform the operations.

4. How concurrent operations by different users are handled.

. We will first discuss these questions in the context of the "main" application function of a
conterence, be it document editing or circuit design. We will then describe several other
functions that may be useful in conducting and managing a conference. These functions,

which include participants’ leaving and joining a conference and support for participant -.

Y

E negotiations, we shall collectively refer to as meeting support. In selecting a set of meeting o . +
'. support functions for a given real-time conference system, it is important to bear in mind the ‘

- effect on the user interface of providing these functions. Each new function introduces

' i
I R
PSR W I

another set of commands that the user must know about, and the additional power is gained

only at the expense of a more complex interface. The potential for user confusion is e
considerably higher in a real-time conference than in a solitary user interaction with the
system, and it may in many cases be best to err on the side of simplicity, i.e., leave out more

advanced functions or at least make it optional for users to know about and use them.

We also consider in this chapter what special support can be provided for "conferences”
involving only two participants. The need for two-person simultaneous interactions is likely to

arise very frequently in practice, and such interactions tend to have a somewhat different

nature than interactions among three or more people.

For most of this chapter, we assume that voice communication is not included in the
real-time conferencing system. Rather, the participants in a conference must themselves

establish a voice channel for discussion by some unspecified external! means, e.g., a

4

telephone conference call {or a simple two-party call if there are only two participants). At the
end of this chapter, we briefly discuss some issues that would arise if voice communication

were included as an integral part of the system. Integration of voice communication is

desirable, and may be feasible with current and near-future voice interface hardware and

oo AU PR
ok uiaialafalae _ala a

packet voice communication protocols.

It is rarely the case that conceptual design can be carried out in a vacuum without

consideration of the feasibility of implementation, with acceptable performance, in the given sl ::.j-:'.jl

-, P . et et et ‘. e T At T e e T e T e T et et e .t Tt e et e
T L R AR L S . S A SRR A SRS S S TR Y TS rer sy a2 o o P S 2

- e N TR R R IR ST T T T T L e e R
(ORGP Y ST VO Yol SLAPULA WOAT AR VLA VOTT T ALY Wl Wl Vol W, B VLAY Wil VAT LA I S WA Vel Sl ol WA 4 [P S . W YR WL W

T L LT O S M Rt e s b A e e Ll S Jhen SR Aes S B d M Eas Sndt aut St et set Al fan L0 Tihe e e 4 6 K

implementation environment. We will therefore briefly mention implementation-related factors
that do have a bearing on the conceptual design, as and when they arise. Implementation

issues are treated more fully in Chapters 4 and 5.

3.1 Shared and Private Spaces

The primary purpose of a real-time conference is to share some collection of objects that
are relevant to the problem or task that the participants are trying to solve or accomplish. We
shall call this collection of objects the shared space of the conference. In addition, it is useful
to support the notion of private spaces in which participants can consult or compose
information without involving the other participants, in the same way that they can do with
their private notes in a face-to-face meeting. If such support is not available, a participant
who wishes to look at private information or take private notes, even for a few seconds, is
forced to leave the conference, work privately, and return to the conference when done. This
is very cumbersome, especially if the need to work privately arises several times during a

conference.

Private spaces are only useful to the extent that it is possible to establish some
relationship between the information in the shared and private spaces. Thus, a participant
may wish to privately view some of the information from the shared space, perhaps looking at
a different region of a shared document or viewing an aobject in a different display format, or
may wish to copy information from the shared space for private editing and exploration of
alternatives. Conversely. a participant may wish to “submit” information from his private
space to the conference. In JEDI, for example, a participant can introduce an entire
document to the conference, and can insert text selected from his private space into a shared

document. Similar functions are likely to be useful in other applications as well.

Once a decision has been made to support private spaces in a conference, the question
then arises as to which objects should be shared among all participants and which should be
private to individual participants. This issue can be quite complex because an interactive
computer system typically implements many kinds of “"objects" at many different levels of
abstraction: not just abstract application objects, such as documents and circuit drawings,
but also a variety of objects that support interaction with the user. Such objects include

images of application objects (such as a document window), cursors, mouse pointers, "paste

61

PREN L T - . L St e e T TR T .
P L [T U e R T R L I T
LR, o e e e 0. P AR TP e R A

2

1
’
+
i ’ S
'. '.ll.'.
Attt

¥
4 .
e e e

PP I S

. ® 1
[N T
RO

P

R

*u .-.-~~' ..‘
RS

Y

PR
*a s a’a

‘‘‘‘‘ -.A-\.-E-‘liiii.--‘..."l.'T.IT':F‘_“V"I".'-.'\.-.-.‘T
e S TR TS T A L e R e T e R s - BRI A g A i B .

butfers”, command feedback in the form of echoes and error messages, status and summary
information, menus, and other on-line assistance. We examine here the factors involved in

determining whether and how such objects should be shared in a real-time conference.

Sharing an "image" of the application objects being manipulated, e.g., the
“superwindow" in JED!, is usually important in providing the illusion of a common
"blackboard”. Knowing th : all participants can see an identical image on their workstation
screens provides a comny .asis for discussion and negotiation. Thus, a participant can say
“the text in the upper righi: hand corner” over the voice channel with the assurance that he
will be understood; this can be further refined using a mouse to "point” at specific parts of the
shared image and saying "this part of the document™. However, sharing only the image, in
the form of a character array or bitmap or graphic "display file", without providing direct
access to the contents of the underlying application objects, e.g., documents, is inflexible
because not all participants’ workstations may have the same display capabilities or available
space on their screens. To accommodate such differences, it is impcrtant to allow tailoring of
the piesentation of the shared space by local transformations at individual workstations. If
only low-level information, in the form of an already-formatted image, is accessible then the
kinds of transformations that can be performed are extremely limited. Thus, while it may be
easy to "clip” an image down to the size of a viewport available for display, this only allows
part of the image to be displayed. A participant might instead decide to "scale" the entire
image down to the smaller size, but if scaling is performed on an already-formatted bitmap,
the result is likely to be illegible. On the other hand, if high-tevel application information, i.e.,
the document contents, were accessible, it is somewhat easier to construct a smaller image

that approximates what everybody else can see, e.g., using a smaller font.

While sharing high-level application information does allow for individual participants to
tailor their views of the data, it may result in the loss of a common view that forms the basis for
discussion, as with a blackbcard. A compromise solution is the one taken in JEDI: both the
document contents and an image, the superwindow, are shared, with the understanding that
participants are encouraged to display the shared image unless their workstations are
incapable of doing so or if they wish to asynchronously view different parts of the
document(s). Thus, participants do have a common view when they want it, and also have the
flexibility to deviate from that when they wish. (If it is desirable to find out which participants

are looking at the shared image and which are not, this can be done using "status"

62

P S S

~ et et »oet .
PURIF SR WL WP S RCWRT T W EWMLAC T I SR Sl W

1

® ... -

. Lo

‘ S S

o e e .

DR N S U SN S A DL S W S SRS

Ce_apt_a

T ORI

e At oo v set e BESS0 i MEF L N aar e odaci e Wit St RN R A

information as described below.)

We next consider other kinds of "objects” that will be needed to support user interaction

in the shared space, and whether these objects should be visible only to individual

participants or to all. (For user interaction in private spaces, the issue of whether or not other

participants should see feedback does not arise.) Feedback from the syslem, in the form of

an echo or error message or highlighting of selected information or a menu, occurs in

response to an action by a specific participant. That participant should obviously see the

feedback, but the guestion is should other participants be shown the same feedback as well?

How this question is resolved will depend on several factors:

B L e
R I L I IR FREEIE A
LRI P R S A P A DS DO IR P PP alela’ sl il

How useful is it for a participant to see feedback generated in response to another
participant's actions? For commands that involve several physical steps, e.g., SELECT 2
PARAGRAPH or other "line-oriented” command interfaces, sharing the command "echo”
is useful in giving the other participants a sense that one is actively doing something and
not sitting idle. It may sometimes also be useful in demonstrating to another participant
how to enter certain commands, allowing a real-time conference to be used for "training”
purposes. These benefits may be counteracted by the possibility that participants may
sometimes not be interested in seeing feedback generated by other participants and might
find that it distracts them from their own interaction. (The additional communication

bandwidth needed to display feedback to all participants might also be an issue.)

How easy is it to distinguish feedback generated in response to different participants’
actions? For example, in JEDI, the participants' mouse pointers are assigned different
"shapes" so that they can be easily distinguished; different colors could be used instead it
participants’ workstations had color screens. Command feedback from actions within a
shared window is displayed within that window; since each window can have only one
participant working in it, and that participant's name is shown at the top of the window,
feedback from different participants’ editing actions is also easily distinguished. (This
would not be so easy if we allowed two or more participants to concurrently edit within the
same shared window.) On the other hand, certain kinds of feedback are difficult to
separate so easily, and should be displayed only to the participant performing the action
that caused the feedback. For example, if a participant moves his mouse pointer into a
window reserved by another participant and attempts to acquire the window reservation,

only the first participant sees the resulting error message. (And only the second

e et . LR R A TR S TPy
. . LR PR @ Lt e e e Tt T s e
L R . CVIP AP U Wil NOGEr WP Sl WAy B TS 3

o

g

-t..:'_._" -'Tq

T
°

.
.
.
o
. i
-9
2

»
:

R R
PRI
PR W)

PR . . et T
oo . . DR
[P PP SV Shr S R R S D]

B ek Tadh sk Sudh serin el L T Bte T B e QUL PR IR R e R

participant sees the message informing him that his reservation will soon be lost) A
requested menu or help display will often be larger than the shared window in which a
participant is working; it is not desirable that this participant's request for a menu obscure
information on other participants’ screens that these other participants may be working
on. This kind of feedback is again shown only to the participant to whom it applies, and
does not disturb other participants. Note that some of these decisions could be made
differently in a conferencing system that only allows one participant at a time to work in

the shared space as a whole.

¢ How does a user distinquish feedback generated in response to his own actions from
feedback generated by other participants' actions? This issue does not arise when
fecdback is shown only to the participant to which it applies. If, however, it is considered
useful to share feedback, i.e., display it to all participants, then this question becomes
particularty important. The purpose of the feedback is to aid the user in deciding his
subsequent actions, and it is therefore not desirable to let a user mistake some other
participant’s feedback for his own. The main technique that can be used here is for
teadback to be specially highlighted on the screen of the participant to which it applies, in
a way that other participants will not see. Thus, echoing and error messages in a

document window will flash or appear in reverse-video on the screen of the participant

working in that window; other participants will see the feedback without any highlighting.
(This is also less obtrusive to the other participants should they be busy working on

something else.) Similarly, even though every participant’s pointer into the shared space

is assigned a different shape, each participant sees his own pointer with a fixed shape that
is identical to what he sees when in a editing session by himself. Thus, a participant can
easily distinguish his own pointer from all others and can correctly determine which way

to move his mouse in order to reach a desired pointer position.

1

In summary, sharing feedback by displaying it to all participants can be useful, but only if _ o
individual participants can easily determine which feedback applies to them, if it does not 4
intrude on other participants’ activities, and if it does not take up so much extra bandwidth as : o -
to seriously degrade performance. ' ”. -
i

LR

e

Lar i S e en ara aet R S et At Seul SSkl SRRl g SSNE SN T = e

3.2 Access Control

The types of objects shared in a conference and the operations available on these objects
will vary from application to application. Unless there are important security reasons,
permission to perform the operations should in general be given to all participants in the
conference. (This does not necessarily mean that all participants may perform operations at
the same time; that problem is discussed below in Section 3.3} In certain special situations,
the informattion being shared might be particularly sensitive, and some users might be aliowed
in the conference only as "observers" with no update ~iivileges. Similar consideriations might
apply in determining whether or not all participants can see a given object or image, e.g., in a

game where participants are meant to have different views of the shared space.

We first discuss some problems that arise when the objects being manipulated in a
conference have independent existence outside the conference, objects for which access
controls have already been set. In such a case, giving all conference participants unlimited
read and update access to an object may violate the access control specifications, i.e., a
participant might update objects that he is not normaily allowed to update, or see information
that he is not normally allowed to see. This problem arose in the joint document editing
example, and our solution was as follows. A participant is only allowed to update documents
to which he has update access, obeying existing access controls on documents. An
alternative might have been to allow any participant to update the conference’s volatile copy
of a document, but only allow participants with update access to permanently save, or
discard, the document copy. This is also a reasonable approach, except for the
complications that arise when we consider that the conference might "auto-save” a
document without any participant having explicitly requested it; it is not clear whose

permission must be obtained in order to auto-save, and this alternative was rejected for JEDI.

As far as read access is concerned, we decided to allow all participants to see all
documents submitted to the conference. While this might appear to violate access control
restrictions, it is in fact not unreasonable, based on the following considerations. (These

considerations may not apply in all other situations, e.g., classified military information.)

1. If only those participants having read access are allowed to see a given document
(or other object), then the system and the participants must keep track of who can
see what. Without some assurance that all participants can see more or less the
same information, the common basis for discussion is lost.

Ed .s -

DR S I AT A T VR T P S LR -
el e lte it ttal e el e e Ut ta Lt e e e

A0 A Jvah ines drene o Canaes g T TR TS TS T
DAL Lo sen o can Lag 2oe M eR MR EENCL e cure S et Sesr S it A St S Ol I A I A A f B [RCIRAL AN

2. Access control requirements for an ohject are usually not well anticipated, and
often necd to be updated as needs change. 1f a given object is not accessible to
some of the participants in a conlerence, the others will often want to given these
participants read access in order 1o have a common basis for discussion.

3. Read access controls can easily be circumvented on most systems by a user
copying the contents of an object into another object and releasing the second
object to anybody he please. It therefore seems pointless ta be overly cautious
about participants not having read access to an object. (We do not want to be too
casual about read access, howover; in JEDI, we do require that at least the
participant submitling the document have read access to it.)

Ail of the above asstumes that the existing hardware and software base allows the kinds of
manipulation of access control information doscribed; this may be true on personal
computers that allow any form of access control to be implemented, or in an advanced
"object management” system such as ENCORE [124]. It the confercncing system is to be
implemented on a traditional time-shared operating system, however, this may not be the
case. On most file systems, for example, it may not be possible, short of the user actually
attempting an operation, to determine whether a given user has read or write access to a
given file. In addition, a program must usually be "logged in" undecr one particular user, and

runs with the privileges of that user. Then, a participant other than the one under whom the

conferencing program is logged in might be able to update a file that he is nat permitted to
update, or, conversely, not be able to update a file that he normally does have permission to . -A_i:,.i:

update.

In cases such as the above, it is not clear that any scheme can be devised that is both
"correct” in not viclating access control specifications yet not unduly restrictive to the
participants in a conference. Some compromise will probably be necessary, such as the
tollowing: Give the user running the conferencing program the power of chairperson, with the

ability to give or take away permission to operate on the shared space. Then, even though

operations on files are executed by the system based on the chairperson's privileges, the
chairperson can at least watch the other participants and intervene if he does not like what
some participant is doing. It is still not possible for a participant to update, from the shared
space, a file for which the chairperson does not have update access. The participant could,
however, copy the necessary information into his private space, which presumably is
implemented by a program running with his own privileges, and update the file from there.
Note also that most operating systems do not allow a running program to change its user-

name. It will therefore not be possible to "change" the chairperson in mid-conference,

66

[N

B e S L P AP P T T I N A L
et el el e el i ralsan T et atate ntala A al alead

P et AT Y TR cE E — R iTT AT M W R R e N W T W T W T W~ W TE T W YT W Y w—w —wYw, w-w, Yo G YW TR % P T CTW W W % W e w s ow -

except by copying the entire state of the conference to a different program running under the
“new" chairperson’s privileges; this may be too expensive or even impossible, and a given

conference on such a system will usually have a single fixed chairperson.

The situation is further complicated if we consider a new object or file that is created from
within the shared space of a conference. In this case, who is the "owner” of the object or file,
with the power to specify which users have what access? The owner should perhaps be the
participant who performed the operation that created the new object, but again this may not
be implementable on a system that automatically sets the owner to be the user running the
conferencing program, i.e., the chairperson. Furthermore, which users should be given read
or update access, froin their own programs outside the conference, to the new lile? It seems
reasonable to give all current participants read access, but again the access controls on a
new file are olten set automatically based on a default that is system-wide or obtained from
the user’s "profile”. Even though the owner of an file can always change the access controls
it he is not satisfied with the default, he is usually not aware of what the default is and will not
notice if the default differs from what he expected or desired; he will only notice the problem

much later, when some user tries to access the file and is unable to.

3.3 Concurrency Control

While certain shared objects in a conference might be updatable only by a single fixed
participant, e.g., the position of a participant's mouse "pointer”, most objects will be
updatable by more than one participant since that iz how a conference supports interaction
among users. Consider the following scenario that may occur when participants can update a
shared aobject concurrently: Participant A inserts some text into a document, and then
participant B deletes a region of the document that includes A’'s insertion. If we assume that
B saw A's insertion and knows what he is doing, then his deletion of what A inserted is not a
problem as far as the system is concerned; the ability to edit other participants' contributions
is an essential part of the yive and take of a real-time conference. (lf B is acting maliciously

when he deletes A's inserted text, that will presumably be dealt with by means that do not

properly belong in the computer system.) If on the other hand B did not know that the text he

is deleting includes some text that A is inserting, then this is a problem because B's deletion

command causes an unintended effect that he is not aware of. This can in fact happen if

67

L T e AURC SO T P R UL S I .
A PR N . A e, - . -, . - - - Y
. .- . P . . LS

~ » o
Sl e . - S e R PRI B A T e e A T e T St e e e e e
IR S VLIPS SASPULI P S S Yo Wit Tl PP ALIPILIT TP T I St DR YAIP Ut LA Uil ThiP TRt I VP U Wi U8 ik T Tel Dol TP T G SR I T S SN DLl el Sull Y. thit 1

participants are allowed to enter commands concurrently: even though A's insertion
"happened lirst”, from the point of view of the system, its effects were not yet displayed on B's
screen when B entered his deletion command, because of communication and processing

delays.

One approach to such concurrent conflict is -+ ihe system to do nothing about it. The
system leaves it to the participants to notice whe :erference occurs (such as in the above
example), and to take corrective action (such as restoring the deleted text) if they find it
necessary. While it imnay be reasonable to lcave this responsibility to the participants, given
that each can see what everybody is doing, the problem might simply compound itself. On
noticing interference among their actions, two or more participants might concurrently
alteampt corrective action thereby causing further interference and confusion. This is a well-
known problem with "terminal-linking"” systems; the problem is bad enough when users are
simply typing text messages to each other, and is even more serious when users' input affects

application data.

A more reasonable approach to dealing with concurrent conflicting operations is to use

either or a combination of the following techniques:

1. Validation, which invokes protective measures only after a problem of concurrent
conflict is detected.

2. Reservations, by which a user protects an object or region of an object against
concurrent modification by others.

3.3.1 Validation

Using validation, the system "detects” a conflict when it determines that a given operation
will probably have a different effect from what was intended by the participant when he
entered the operation. A simple detection mechanism is the following. Each operation
entered by a participant on an object is tagged by the system with a version number that
identifies the version of the object that the participant saw when he entered the operation.
Then, when the operation is ready to be processed by the system, typically after some
communication delay, the version number is compared with the current version number of the
object. If the version identifiers are different, then a conflict has occurred because there was
an intervening concurrent update that the participant did not see. This can be refined further

by checking how the intervening update actually changed the object, and pronouncing a

PR U S S S SRS A SV TOAL WA ST Sl WSl VAL PN Sl ST WP AE Tl S S0 ¥ S S, AT HPUL A SR P, PURTRR - DAL WL P

L .o . A
P . e, L BN CENEIN
ca'e e _aal el ek a0 0 ae 2

{ TeT. T T .

',.'. . .","-
' - ".'l 'A.".'.'
i

conflict only if this operation would in fact have a different effect. For example, if some other
participant updated the document concurrently hut the fatter’'s update does not overlap this
participant’s update, the system will not treat this as a conflict. How this is determined is likely
to be very application-specific, and requires that additional history information about updates
to the object be maintained. Such information might often be needed anyway, to support

various forms of commmand "undoing”.

Once the system decides that a conflict probably did occur, it can do either of two things:

1. Reject the participant’'s operation on the assumption that the participant will not
want it to have a difterent effect than what was intended. The panlicipant who
entered the operation is sent an error message, and he may or may not wish to
attempt the operation again after seeing the new state of the object.

2. Perform the operation anyway but inform the participant that the operation may
not have had the effect he intended. In this case, it is still up to the participant to
take corrective action if he is not satisfied. Unlike the case where the system
provides no control at all, the system now aids the participants by determining
when a conflict has occurred. The problem of more than one participant
concurrently attempting corrective action can still occur, but the system, having
detected the problem, is now in a better position to forestall that. For example,
the system may introduce a short delay during which only one participant is
allowed to proceed.

Which of the abiove should be used depends on the relative fikelihoods that, once the system
detects a conflict, the participant will want his operation to be rejected or will want it to be
performed anyway. While it is impossible for the system to always correctly guess the

participant's desires, we note that the relative likelihoods will be influenced by how intelligent

the system is in detecting "conflicts”. For example, if the system only checks a version _
number on the whole document, it will often "detect" a conflict when concurrent operations '_f . ._:}_,

attect disjoint parts of the document. A participant i much less likely to want to abort his

operation in this case than if the system detects a conflict only when concurrent updates do

overlap. - 1
it is important to note that the system, using any form of validation, cannot catch all cases ":j-.'-'_‘i-',-':,': 1

Lt et .-Al

of concurrent interference. For example, an operation by a participant may carry an up-to- =]
date version identifier of the affected object, but even it the participant's screen already _e. 1

shows the latest version of that object the participant may not have noticed it; there will
always be some delay between when an update appears on the screen and when the

participant sees it and comprehends its meaning. Or, the participant may have been entering

69

— - — At Y T Y TN YT TR TR T Y TITW UM TSI w e L a = -

a command and did not react quickly enough on seeing a concurrent update to stop his
command. Thus, while the system can often be helpful in detecting concurrent interference,

it cannot cover all cases hecause of user reaction detays outside the system.

3.3.2 Reservations

A reservation on an object (or on a collection of objects, or on a region of a large object)
prevents all users except the holder of the reservation from updaling the object. In its
simplest form, a single "super" reservation can be set on the entire shared space of a
conference, allowing only one participant at a time to enter commands on the shared space.
There will of course be little interaction if the same participant holds the reservation for the
duration of the conference; mechanisms for passing the reservation are needed, which are

described presently.

If more concurrency is desired in a conference, reservations can be set on smaller disjoint
subsets of the shared space. An example is provided by the joint document editor, where
participants hold reservations on different windows and on non-overlapping regions of a
document (or on regions of different documents). Thus, it is not possible for participant A in
the scenario above to insert text into the region ahout to be deleted by participant B because
B has that region reserved. (If B reserves the region, and then deletes it, after A inserts some

text, we do not consider this a problem because B saw what A inserted.)

Assuming reservations are to be used, the first question to be addressed is: How many
reservations on how many diflerent kinds of objects are needed? A single reservation on the

entire shared space may be used, or a collection of reservations at a finer granularity, or both

as in JEDI which allows multiple reservations so long as nobody holds the “super-

reservation”. _ :.~_.~“_;_-;

If multiple reservations are permitted. allowing multiple participants to work concurrently]
on different parts of the shared space, we must carefully consider the burden on the user of

understanding what a given reservation means, and how to acquire and release it. "Window"

reservations, as in JEDI, are easy to understand: the windows themselves are easily '-"~1
distinguishable, and only one participant at a time can work within a given window. And no L . 3
special commands are needed to acquire a window reservation; the same commands used to '.'.:f"_.:'_:ﬁ ;
"select” a window impliciily try to acquire the reservation. It might be plausible, in this or lil
® -4

70]

-

: ;

R A

aa atat atatata A P I P I I P S P LIPS P LI S0 5 Do U DL U S S Yl Tt WL SeP Tl S i R S

T o din Suen e B Jues sben oes Joui Suen S VA e ga S un e et B4 the et ihie e IVECENECEN MR R

other application, to allow more than one participant to work within the same shared
adow. This allows each participant to see where he is in relation to other participants, and
1y be particularly useful when different participants’ cursors are close together. But we
ected this choice in JEDI because it introduces other problems such as participants
ncurrently trying to scroll in opposite directions, and where to display feedback for the
ferent participants’ commands. The choice made in JEDI is for participants wishing to
ncurrently edit the same document to use different windows; this avoids interference at the
ndow level, at the cost of being able to display less information in each window than if the

rticipants worked concurrently in one larger window.

Window reservations do not prevent interference among participants editing the same
cument through different windows; "region” reservations were therefore introduced. The

ly region reservations were defined in JEDI has the following advantages:

o The maximal region of the document that the participant can modify with his next
command. e.qg.. DELETE, is the "selected" region, between his mark and cursor.
It therefore makes intuitive sense to reserve precisely this region and protect it
against changes by other participants.

e Again, no additional commands are needed lo acquire a region reservation,
"selecting” a region, by moving the cursor or mark, implicitly requests a
reservation on that region. This would not be the case if users could reserve
arbatrary regions that are unrelated to the region selected for deletion or copying;
special reservation commands would need to be defined.

e Showing the user what region he has reserved involves no extra work, because
the “selected” region must be highlighted anyway. Again, the problem of
properly displaying the information would be worse if the reserved and selected
regions were allowed to be different.

us. by keeping the reserved region identical to the selected region, the burden on the user

ninimized.

Once the number and variety of reservations to be used is determined, the next question
how do participants attempt to acquire, or request, reservations, and how and when are
ch requests granted? In some cases, such as the window and region reservations of JEDI,
‘eservation request is implicit in certain related commands, i.e., a command to select a
vdow or region. In other cases, there may be no such conveniently related command, and
acial commands must be introduced to explicitly request a reservation; this is the case with

» super-reservation in JEDI.

7

S T e e e e . e e e e e N

D R T Je T e et T T P R
R PR T A PR S LIP Wl WA SO T DR Tl SOAC M Sl /Ay 6 LSS s S0 SPR e W I IRE AR N Y

L aon AACER AR s or st nd Shgh Saa Jrh A S iears saar T T T YT T T e

lating the object(s) in question to a state considered appropriate for release. In some
es, the system itsell may briefly delay providing the new participants with shared objects
il a more opportune moment. At the start of the conference, for example, it may be
tvenient to wait for additional participants to join so that they can all be sent the data at the
e time (perhaps using multicast communication, as described in Section 4.6.3). Or, a

dow size negotiation may be taking place, in which case it may be appropriate to wait and

show the participant the current window size because he will have to readjust his screen
i when a new window size is chosen. Or, if a current participant is entering a command

2n a new participant joins, the system may wait a few seconds while the first participant

1ses or finishes his command. In cases where a joining participant does have to wait, he .]
wid be given some feedback informing him that his case is being considered; in the ,f. y
ience of such feedback, the participant might think there was a communication failure or ,:'.j]
sh of the conference and simply give up. o A:

|.9 Leaving a Conference

A participant should be frec to leave a conterence at any time, with all other participants
ng informed. The leaving participant loses any reservations that he holds, and gives up the
iair” if he is currently the chairperson: a new chairperson can be designated by the system
e chairperson leaves without giving the chair to somebody else. A participant should be
wed to join a conference again after having left, unless his permission to join has been
oked (which might have happened if he was removed from the conference for
behavior). On leaving, a p« ‘icipant should give the other participants an indication of
ather or not he plans to join again and after how long. This is only informative and not

1ing, because regardless of whut he says there is nothing to stop the participant from

irning earlier than indicated or after much longer than indicated or never. On returning to

onference, a participant must be supplied with up-to-date versions of shared objects and °
dows. This is no different than for a participant joining for the first time, except that it
ih* involve less transmission delay if only changes made since the participant left are sent. RS

is and other optimizations are discussed in the next chapter.)

e L T oe B T T S . R
T AT AT T s e aYatatarar PRI W WA NP APV P -3 ST WA S VN S S S F N S

- - Pt A Andb R Al Aaft it S SR - Bt AL AN e g o RISV A s e = s it Ar i S S Eadia

many calendar and "tickler” systems, e.g., a participant could ask that he be interrupted by a
message when the scheduled time of a conference approaches. This same idea can be used
during a conference as well, e.y., participants could be warned, once or periodically, when a

conference runs for longer than the scheduled duration.

Even planning and scheduling a conference well in advance will only succeed when there
is an understanding that potential participants will do the right thing — check the calendar
system, or look at the databases for the projects they are involved in — at some time before
the conference is due to begin. This is no different from electronic mail, or even the postal
service — the system works only to the extent that users check their mailboxes frequently

enough.

3.4.8 Joining a Conference

Regardless of how a user finds out about a conference, by invitation or by looking in a
database, some interface must be provided for him to indicate his desire to join some
conference. For example, he might select a conference from a list, consisting of invitations
received plus conference descriptions obtained from one or more databases, by pcinting. If
explicitly invited to a conference, a user should have a way of "declining" to join. Then, if the
other participants are waiting for him to join (e.g., to complete a "negotiation”), they will know
that there is no need to wait any further. The user should of course have the option of

changing his mind and asking to join a conference even after having declined.

An authorized participant may join a conference at any time, whether or not any activity
has taken place. (Similarly, "requests” to join from users not explicitly allowed should be
enteriained at any time, unless the conference is completely closed to the public.) A newly-
joining participant should be provided with an up-to-date version of the objects and windows
in the shared space. in order to follow and participate in the subsequent action. (The
participant may instead wish to see a more detailed history of what went on; that is described
later) In certain cases, though, it may be necessary to delay the admission of a joining
participant for a short while. For example, if the participant can only "request” to join, his
admission to the conference will have to await the approval of some authorized participant,
e.g.. the chairperson. Or, even with permission to join the conference, the participant might
not automatically receive access to a given object. (This situation should admittedly be rare.)

Again, some authorized user must give the new participant such access, perhaps after

.

iddress over the phone.)

A conference can be "announced” by placing a description of it in any of several kinds of
hared database, e.g., a special "conference server” or a project database or a calendar,
vhich one(s) to use will depend on the expected use of these databases and on how far out
nto the network the word is to be spread. A user will only find out about a conference if he
ooks at one of the databases where it has been announced; he may also program his

vorkstation to periodically "poll” selected databases for him, looking for new conferences.

Conference invitation messages and announcements should carry information that will
wlp a participant decide whether or not he wishes to join, e.g., a brief text "statement ot
wrpose™, and/or a description of which objects will be discussed and manipulated, and/or a
scheduled time and duration. {In Chapter 5, we shall see that additional information, not seen
wy the uzer, will need to be included in invitations and announcements for implementation

rposes.)

3.4.7 Planning and Scheduling

Both of the: above mechanisms, inviting users and announcing conferences, require some
yior agreement in order for them to work: a user will only receive conference invitations if he
‘rogisters” his workstation address at one or more name servers, and will only find an
innounced conference if he (or his workstation) looks in the right places. Such agreement
vill often take place outside the system, e.g., participants agree in a prior face-to-face

nteraction or over the phone to hold a real time conference at a particular time.

It the right tools are available, some of the work of planning and scheduling a conference
:ould be done using the system itself. A conference can be created, or "called”, well in
idvance of its actually being held, and announced in a calendar system or a project database
w wherever. This gives potential participants time to indicate their availability and to
1egotiate a suitable time for the conference, and to make other preparations that they may
ind necessary, e.g., locate relevant private notes or information that they would like to
‘submit” to the conference. (As we describe in Chapter 5, advance notice might also allow
»articipants to transfer copies of large shared objects such as documents to their
vorkstations, avoiding this transmission delay when the conference actually commences.)

Sonference schedule information can be used in reminders or alarms that are provided by

La

N TR A/ e Aete bt Be dee et i e A g
PN AR N

BRI . T T
- . N R et ..
e taata‘a B’ a’a’s.asA’aNa’a’s alr a’r

L SAAEAt ahat cnak atma Mt sl o

manipulated in the conference, e.g., all users having access to a given document.

A combination of the above might sometimes be used. In addition, a conference might or
might not allow users who have not explicitly been given permission (by one of the above
means) to request permission to join. Then, some participant designated as "chairperson”
would consider such requests and grant or deny them, or this power could be given to all

participants, allowing each to "bring your friends".

As with access controls for any other kind of object, the question arises as to who
specifies, and can update, the access controls for a conference. A typical approach, taken in
JEDI, is that the user who first creates an object, in this case the conlerence, is its owner and
has the sole authority to set and update access controls. An extension might be desired
allowing users other than the owner to granc access rights to other users; if so, the question
again arises as to who designates these other users. The authority to grant authority can be
taken through as many levels of indirection as desired, and the same question arises at each
level; the recursion must be terminated somewhere with an object’s creator being the one
who has to specify the first level of access rights. Few systems actually permit arbitrary levels
of indirection in granting access rights; one or two levels is usually sufficient for practical

purposes.

3.4.6 Rendezvous
Once a conlerence has been created, some means is needed for authorized users to find
out about it so that they may join the conference if they wish. There are two kinds of

mechanisms for doing this:
1. Inviting specific users by sending them messages describing the conference.

2. Announcing a conference by including a description in some shared database(s).

Inviting users is the more direct and immediate method of informing them about a
conference, but it is limited to users who can be explicitly named and enumerated; it is not
possible, for example, to “invite" the entire public in this way. (At best, it may be possible to
send a message to all users logged onto one or more given machines.) Inviting a user of
course requires knowing where to send the invitation; this will usually require looking up some
kind of name server[9, 95, 113] to determine a user's workstation's network address. (If
name servers are for some reason inaccessible, the inviting participant should be allowed to

manually enter the invitee's network address if he knows it, e.g., if the invitee supplies his

82

T . s T " . v‘ . . ° . . - - - . . S - -
R S I AT A S IS TR SRR TR SR S R .
> e et e A A ks — P AT S

I AN

.
'
v
v
‘a

T A " T LA St A AT IS S AW vl BRI S /il SN i)

2P A " = S Bl it liatfabt e

responses to the negotiation; he may instruct his workstation accordingly, asking to be

notified only when the negotiation is terminated.

e |f the negotiation involves a proposed operation on the system, in what way do the
responses constrain the possible execution of this operation? (This queslion does not
arise in cases such as collecting participants’ remarks about some application data, which
is simply information-gathering and does not involve any proposed operation.) It is
conceivable that a voting rule could be implemented by the system, with a proposed

action automatically executed if a unanimous vote or some specified majority is achieved,

and automatically rejected when enough negative votes are received to make such

consensus impossible. Rules could similarly be devised for other negotiations, e.g., o K |
automatically selecting the minimum of the offered sizes when trying to grow a window. . "
However, we feel that it will not often be desirable to build such rules into the system, 7 oo
because it will not always be possible to capture a participant's intentions and preferences ' :;-LAA:"_}" ‘

in an algorithmic rule and because it limits participants’ flexibility to make decisions
unconstrained by the rules. Therefore, it will usually be best to make responses

non-binding and to let an authorized participant (e.g., the initiator of the negotiation, or

the conference chairperson) decide how to proceed. The decision made may go against
one ar more participants’ responses, but such differences are best resolved by the -‘.4
participants outside the system. While leaving the choice to the participants, it is still :
possible for the system to aid in the selection process, e.g., by presenting a set of

plausible alternatives based on the responses, as in JEDI.

3.4.5 Access to a Conference llj:.'.:'-'
When a conference comes into existence, the system must be told which users will be
allowed to participate. The simplest form of specification is a list of user-names (i.e., an

"access control list"), although other forms might often be uselul:

¢ A conference might be designated as public, allowing anybody to join.

o If the system supports the notion of "user groups” or "projects”, a conference
might be made open to all members of a given group or project.

e A password might be selected for the conference, and distributed to selected
users by some unspecified outside means (e.g., word of mouth); only users who
can supply the correct password are permitted to join the conference.

e The set ol allowed users may be implicitly defined by the object(s) being

81

T e -

Lt T T e e e e e e e e e e e T R DT e e S S P P
e e e T v e e e T e T e A e e AT e e B A B B B B B S BB B Bt Sm i B S, B

under way? It is possible to envision participants working in one or more windows while a

negotiation is taking place, but this can easily get confusing. In any case, a participant
must (but cannot be forced to) usually interrupt what he is doing anyway in order to
respond to the negotiation. Thus in JEDI it was decided not to permit editing while a
super-window size is being initiated, and this was implemented by requiring the initiator of
the negotiation to hold the "super-reservation”. Holding more than one concurrent
negotiation about the same topic can similarly be a source of confusion. Not all activity in
the conference should be prohibited during a negotiation, however; participants should at
least be permitted to leave the conlerence or work in their private spaces. New
participants should be allowed to join. in which case responses should be elicited from

them as well.

When does the negotiation terminate? There is certainly no need to wait any longer once
a response has been received from every participant in the conference. However, some
participants might take a long time to reply, or never reply, and these participants should
not be permitted to hold up the conference for too long. It is therefore necessary to
provide some kind of timeout, and/or allow the participant conducting the negotiation to

interrupt the negotiation and stop waiting for responses.

How are the responses displayed? This would depend on the type of information carried
by a response, e.g., "votes" may be tabulated alongside the participants’ names, or some
problem-specific algorithm may be used such as the computation of alternative super-

window sizes in JEDI.

When are the responses displayed? They must of course be displayed when the
negotiation terminates, whether by virtue of all responses having been received or on a
timeout. It will in most cases be useful, however, to display responses as they arrive, both
to give feedback that something is happening and also to allow the participant to
prematurely terminate the negotiation should a particular early response seem to warrant
it.

To whom are the responses displayed? Unless there is some special reason to be
secretive, all participants should see the responses; showing them only to the initiator of
the negotiation will make the others feel left out. If a participant continues to work, e.g., in

his private space, he may not wish to have his screen cluttered and be interrupted by

. Ve

- = = Y - . e S - N - . - - - ~ .h- M
. e T et - ~ - =~ -t e - - - . - . - - - . - ~ - -
PP PN TR TP GO WY WoT Wil WAL L W WP WOl W W WRE WA WA WAl =

w—T YT

e The ability to highlight a specific object or window, e.g., causing it to blink,
perhaps by pointing and clicking a mouse button. (A participant who does not
currently have the desired object or window on his screen will instead receive a
message informing him that his attention is being elicited.) This is useful when
other participants may be looking elsewhere, and a given participant wants to call
their attention to some data that he wishes to discuss or update. No semantics is
assaciated wilh this mechanism by the system, it is simply a means for
participants to quickly signal to each other.

A conference participant is free to ignore such requests for attention, and may even instruct
his workstation to suppress certain notifications, e.g., from a participant who is overusing this

facility and causing too many interruptions.

3.4.4 Negotiations

In JEDI we saw an example of negotiation where a participant wishing to grow (or shrink)
the shared superwindow first elicits reactions from all participants, in the form of maximum
acceptable superwindow sizes, to the proposed change. There are many other situations

where a similar pattern of eliciting and collecting responses can be useful, such as:

e Collecting "votes” on some resolution, or remarks about some object (e.g., a new
document version), or rankings from a set of alternatives.

e Collecting participant’'s reactions to some proposed operation on the shared
space. e.d., changing the superwindow size as in JEDI, or terminating the
conference.

e "Inviting" a set of users to join the conference and then waiting to see which
ones join and which ones don't.

In designing a negotiation protocol for any of the above functions, the following questions

must be considered:

e Who can initiate a particular kind of negotiation? This privilege might be restricted to the
chairperson, or given to all participants. The latter approach was used in JEDI, allowing
any participant to initiate a window size negotiation, but subject to the restriction of

holding the super-reservation.

e How are participants notified that a negotiation is taking place and that a response is
expected? This will typically require some attention-getting mechanism, e.g., flashing a

message on the screen or ringing a bell.

e What other activity can take place concurrently in a conference while a negotiation is

79 o

“ e e e e e e e -

L e e e T e e e e e e e e Ve e L e
PR . S e e e e e e e e

S PR .—.-.‘_\.--.".‘. B et e e e e T . SN B)
PRI SR I I S S PR T A 1. 0 PSRN LS ST T I TV o Sl Byl Thi. S M —_ PRIPUE S R SNPS SN AL S AL

. «
I I »

D
= :'. .i
interested in all of this information all of the time. 1t will usually be sufficient to allocate a smalil 7
amount of screen space for the main summary of the conference status, like the shared status ____4*
window in JEDI, with a participant calling up more detailed information in a "pop-up” viewport . ..' 1
only when he needs it. (Even the main status window might be displayed only on request, if '1
screen space is scarce; participants can still rely on their memories to know who is present.) ?
In addition, it is useful to provide special notification of significant changes to the b. 3
conference status, e.g., a participant leaving the conference or a new participant joining; : j
such notification should be accompanied by some attention-getting mechanisin such as . ‘
ringing a "bell” or flashing the part of the screen where the notification appears. Notification .fl :'.;‘- ;
of significant changes should be provided even if the status information in question is visible . \:
elsewhere on the screen, because the participant might not be looking at it and may not i ' .]
notice an update.)
v
3.4.3 Interjections &
A large part of the usefulness of simultaneous interaction in a face-to-face meeting comes
from the ability to interrupt a participant in order to inject a brief remark or otherwise elicit
attention. Similar mechanisms are needed in a real-time conference, that can be quickly and _ ,._,‘
easily invoked and do not incur the overhead of formally acquiring a "reservation”. Voice is . ' A
usually the quickest way of making an interjection, but it may not always work well depending -'jf:lj','_-
on how the voice channel in a given conference is implemented. For example, many voice Bt
conference "bridges" cut off all speakers except the current one, and therefore allow an
interjection only when the current speaker pauses for long enough. Even when this cutotf
problem is not present, a separately-implemented voice channel will not identify which
participant is speaking or interrupting; either all participants’ voices are clearly o
distinguishable, or a participant must identity himself verbally when speaking. L

Within the conference system, some operations are by their very nature intended to attract -f'}

attention, e.g., pointing with a mouse, or requesting the "super-reservation”. In addition to

these, however, some "interjection" facility whose sole purpose is to attract attention is likely fjﬁ_::"‘-_'ﬁ:-"."
to be useful, in particular: . ®
e The ability to compose and send a brief text message, e.g., a "one-liner" that
flashes on the all participants’ screens. This may be particularly useful for private

communication with a selected participant, which is not possible over a shared
voice channel.

78

- L I UL IR T R UL AT AP B R T VA PAC R ST Tl CRICRIEN L LS TaT .
P I P I SR SRS ST SIS - PRSI Y VAP W GO W e W BPI AP AEISET eV TR WA Tl U JLiY Uiy GO0 e o Guiy Suis W e . atbhaubonedocalcabecmibnl

M R A A S S R N ™ RO M Ao S e I in* il aORE SC it it et ol el dl i il nith ot aiiiovieh sl and sl aOiR el sul oo B Sk Sel svel cel o

RN

flagging the participants' entries in the main status window. (A participant should not be
flagged as distracted if his attention wanders only for a very short time, e.g., he moves into his
private space and then comes back quickly; notifying everybody of such momentary

distractions will only be source of irritation.)

If more detailed information is desired as to exactly what a "distracted” participant is
looking at, an "outline" of the document(s) beinyg shared could be displayed that indicates the
position of the main shared window(s) as well as which other regions specific participants
may be separately looking at. This idea could be used in other applications as well, e.g., ina
graphics-based system a “map of the world" could be displayed with rectangles outlining the

main shared window and participants’ private windows, if any.

A different kind of "slatus" information relates to the performance ol the conferencing
system. [f the system is responding sluggishly due to communication delays or errors (which
are usually "converted” into delays by later retransmission), it is useful to know whether the
problem lies in the communication path to a particular participant's workstation; it may then
be desirable to remove that participant from the conference in crder to let the conference
continue properly. Such action might be taken automatically by the system, by setting a
“timeout” and removing a participant’'s workstation if it does not respond, and the
participants need not be bothered with the information. However, the system might not
always make a choice that the participants like; whatever the timeout interval chosen,
participants might s metimes be willing to tolerate a longer delay, and sometimes might be
more impatient and only accept a shorter delay. It therefore seems reasonable to let the
participants themselves, or a specially designated participant such as the chairperson, decide
when and whether to remove a "slow” participant because of delay problems. (if the
chairperson himself is the one who is slow. the system could automatically designate a new
chairperson.) The petformance-related information that is displayed. on request or on a
timeout, should be in a form that is meaningful to the participants, e.g., an indication of which
participants’ workstations are experiencing delays over a given threshold, rather t.an a

collection of numbers with only low-level significance.

It should be apparent from the above that the amount . "status” information that can be
presented in a conference is considerable. Not all of it may fit on a participant’'s screen at the
same time, and even if it did it would leave little room for viewing application information,

which is after all what the conlerence is for. Fortunately, participants will typically not be

77

- y—y a4 v PR e s e
TPy - L i A S S B Mans Biva A 4 St i Al S) ol B T - T " A

of names of those participants who are present in the conference.? In addition to listing just
those participants who are currently present, it may sometimes be useful to present status
information about other users, e.g., participants who were "“invited" (below) but who have yet

to join, or participants who were present in the conference but have since left.

Not only does a participant wish to know who else is present in a conference, he will
typicaily wish to know who is doing what: working on a given window or object, or pointing at
information with a mouse. This information can be presented by labeling the object in
question appropriately, e.g., each shared window in JEDI carries the name of the participant,
if any, who is working on it. In some cases, e.g., parlicipants’ mouse pointer positions,
labeling with a participant’s name is too unwieldy; some kind of color or shape coding can be
used instead. If =0, it will be important to indicate which colors or shapes have been assigned
to which participants; these might be displayed, for example, next to the participants’ names
in the "main” status window. An alternative way of presenling such information is to hightight
or flag a participant’s entry in the main status window in some distinctive way. This can be
useful if there are not too many different ways of highlighting a participant's entry, making
them hard to distinguish and understand. in JEDI, the current chairperson, the holder of the
"super-reservation”, and the participants requesting the super-reservation are flagged in the
main status window. More detailed information, such as which participant is working in each
of several windows, is hard to present in this manner without making it too confusing; other

approaches, such as labeling relevant objects, should be used instead.

Finally, a participant may wish to know what each other participant is Jooking at, so as to
be sure whether they all understand what he says when he refers to the displayed information.
In a face-to-face meeting, it is usually possible to discern that some participant is looking at
his notes, or at a different part of the blackboard, and therefore may not be paying full
attention; it is then possible to interrupt him and call his attention to a particular item on the
blackboard. A useful approach is to define one shared window, or collection of windows, as
the "main focus” of the conference with the assumption that participants will most of the time
be looking at this main focus. Then, it is only necessary to indicate which participants are

"distracted”, i.e., not currently paying attention to the main focus; this could also be done by

9Olher identitying information may be used instead of names, if it were available and considered useful. For .-.‘:f y
example, it may well be possible with future technology to display a small digital image of each participant's face, g
retrieved from an image database or transmitted in real time from a camera. L)

76

IR AR S J T L 1S N O IR A A P
S R N U P U D R RN T TR, Dol Dol o U5 ot Tl it Sadf Th FA W SY T NP U VL PR e WY Y -

[P VNI S

conferences, participants can usually coordinate their activity without resorting to a central
mediator. (The joint document editing system has a chairperson regardless of conference
size, bul the powers of the chairperson clo not have to be exercised if not found necessary,

2.g., participants may reserve individual windows without the chairperson’s intervention.)

It a chairperson role is defined, it shouild be flexible enough to allow different participants
to play that role at different times, e.g., by allowing the current chairperson to designate a new
one. More complex participant roles could be defined, but it is not clear how useful they will
be; users will have to learn new commands, and invoke them every time they wish to change
roles. Role definitions can be very useful for longer-term coordination, as in [69, 19]. The
burclen of defining and assuming different roles is not unreasonable when users are working
individually over a period of time; in a real-time situation, however, these can easily get in the
way. Instead of defining highly stylized and restrictive roles, it might be better to give all
participants free access to the shared objects involved and let them implicitly switch "roles”
as they please. For example, a participant can implicitly play the role of "note-taker" by
acquiring a reservation on the object (e.g., a document) being used to record the "minutes”
of the conference; it is not necessary for the conferencing system to provide special support

for the concepts of "minutes” or "note-taker”.

3.4.2 Participant Status Information

It is important for a participant in a real-time conference to know which other participants
are present and watching what he is doing. (Or to know who is listening to him speak on the
voice channel — this is discussed separately in Section 3.6, bui the same principles presented
here apply.) In a face-to-face meeting, this information is readily available because all
participants are physically present and each can see the others. Since this is not the case in a
real-time conference, some means of presenting “status” information to the participants is
needed. One might take the approach used in telephone conference calls, where each
participant announces his presence and every participant is expected to rely on his own
memory of who is present; this hardly seems necessary in a conferencing system that has the

power of a computer at its disposal.

The simplest kind of status information is illustrated by the "status window" in JEDI: a list

75

. o
. C e e e
’ PSRN

’
Sndhanda s,

t'?\-TTUCY.o.}-.YV-.T“WV:H'iﬁ_‘.V‘.‘"‘ AL CI BB SR Ty I St At S i AT S

-
.
’
o

source of irritation.

It is possible for the participants in a real-time conference to use the voice channel to
negotiate the taking of turns and thereby avoid concurrent conflict. If the participants can
successfully do this, no special protection in the form of reservations or validation is needed
from the conferencing system. However, this will not work very well with a large number of
participants. If there are more than two or three participants, the voice channel itself
becomes an object of contention. Participants may have dilficulty agreeing on whose turn is
next. and concurrent conflicting updates may occur quite frequently. Therefore, reservations
seecm particularly necessary in large conferences, whereas in smaller conferences validation

or no control at all may be sufficient.

3.4 Meeting Support Functions

We next look at some "generic" functions that may be used to facilitate the management
of a real-time conference. While the specific nature of a given function, and whether the
function is provided at all, may vary from system to system, the issues involved in designing
object types and operations for a given function are common. These are discussed below,
together with the problems of access control and concurrency control for each kind of

function.

3.4.1 "Chairpersons™ and Participant "Roles"”

tn most face-to-face meetings, participants can be observed playing ditferent "roles” such
as moderator or chairperson, note taker, and so on. It is possible to build such roles into a
real-time conferencing system if desired by defining exactly what a given role can and cannot

do, in terms of access to and ability to update different objects, and who can assume a given

role and when. However, participants’ roles in a meeting, and even the meaning of different

roles. frequently change and the system should not get in the way of this dynamic hehavior.

i.' One useful role is that of a conference chairperson with overall control over the
conference, e.g., the ability to allow participants into the conference and to grant
reservations. (The concept of a chairperson has appeared in other real-time conferencing

systems, as well as in network voice conferencing.) Having a chairperson is particularly

useful for resolving contention in large groups, say more than three participants. For smaller

74

et gt e e s s e TN e e e e e .- T T

L - '."..-.......-...'..-’.‘_._‘A R
B A I R SRR AL P RO R, R T £ W el Wl WA B Sl . . WL, .y

T — - T R Ty v

e An idle time limit: a participant loses a reservation if he does not use it, i.e.,
perform a command for which the reservation is needed, for some specified
period of time.

e An overall time limit on how long a participant can hold a given reservation once
granted. In this case, it is useful to warn a participant a short time before he loses
the reservation so that he can finish up what he is doing.

e A conflict time limit: the participant keeps the reservation indefinitely so long as
no other participant wants the same or a conflicting reservation. Once a
conflicting reservation request is made, this participant is notified and loses his
reservation after the given conflict time limit. (This method was used in JEDI for
window reservations.)

A combination of the above might also be used, e.g., with a moderately short idle time limit

and a longer overall time limit.

3.3.3 Comparison

Reservations are useful in avoiding concurrent conflict, but they incur an additional

overhead on the user. This is especially so when we consider that the shared space of a
conference may have complex structure; in JEDI, for example, reservations on windows do
not prevent interference at the document level, and reservations on document regions were
therefore included as well. The user overhead of acquiring and releasing reservations can be

minimized by making some reservation operations implicit in existing commands, as in JEDL.

It is also possible to use a concurrency control method that combines reservations and
validation. For example, reservations could be set on windows but validation used to detect

concurrent conflicting operations on the same document from different windows. Or,

reservations could be made optional in that each participant decides whether or not he AR

wishes to protect himself against concurrent updates by others. For a participant who :{"-_;':-'}_,-5

chooses not to set a reservation on an object he is updating, either validation or no control at

all may be used. e 3
Validation does not require additional user commands. However, validation will be f:;f'._‘. a l'_'_;
practical only when the prebability of interference is very low. This may be the case when -]
4

communication delays are short (e.g., all workstations located on a single local area network) ° :

and few participants are acting concurrently. As the number of participants and the

communication delay increases, however, the probability of concurrent operations conflicting

increases, and the need to frequently resubmit or recover from conflicting operations will be a

73

P EP S L I .
Tetata"a'atalilalalatalar CRPL WA P WL W W

Requests for a reservation may be granted manually by some participant designated as
"chairperson”. It so, requests should be saved on a queue so that the chairperson knows .._‘,-
who has requested a reservation and when. As with the super-reservation in JEDI!, the
chairperson can at any time grant the reservation to any participant, taking it away from the

participant who currently holds it. This may be supplemented by polite warnings from the

chairperson that a participant should finish what he is doing before he loses his reservation. PR

Having the chairperson manage reservation requests is reasonable when there is only one
or a few reservations to manage. With a possibly large number of reservations, the burden on
the chairperson (or other participants designated to manage reservations) will be prohibitive.
Reservation requests may alternatively be managed automatically by the system according to o
some scheduling policy. (It is also possible to have a mixture of strategies, e.g., the system
automalically manages reservations except when the chairperson manually intervenes.) The
policy involves deciding what happens when one participant requests a reservation that is

currently unavailable because some other participant holds it: o

e The reservation request is queued until such time as the reservation becomes
available.

¢ An unsuccessful reservation request is discarded; the participant himself must try
again at a more opportune moment,.

Queuing a reservation request removes the burden of a participant having to resubmit the
request, but makes the user interface more complex: that there is a queued reservation
request needs to be displayed somewhere, and if a participant changes his mind about the
reservation request and decides to do something else instead, he needs a command for °o
withdrawing his queued request. Even with such a command, he may forget to withdraw his »
request, in which case he will later be interrupted on receiving a reservation he no longer

wants. All this can get very complicated when there are many reservations; thus, window and

region reservation requests are not queued in JEDI. On the other hand, there is only one 7‘0
"super-reservation” in JEDI, and it is not difficult to display and manipulate the state of a

single request queue.

The scheduling policy may be refined to provide some degree of fairness, by not allowing
a participant to hold a given reservation for too long. (This also protects against crashes of a
participant's workstation.) This can be done by setting some kind of time limit on a

reservation, such as:

72

3.4.10 Conference Termination
“Termination” of a conference causes all activily in the conference to cease. Permission ,, _;'A;

ﬂ to terminate a conference might be granted to the conference owner or chairperson, or @
perhaps to any participant when holding a "super-reservation™ on the shared space. Since o

terminating the confcrence is such a drastic action, it is best to precede it with a

“"negotiation” that warns all participants that the conference may be about to terminate. An
alternative approach, used in JEDI, is not to give any one participant the power to terminate
the conference, but instead terminate the conference only implicitly when all participants
leave. (Again, a participant who wants to have the conference terminated can use a
i— negotiation protocol to urge all participants to ieave. Not all participants may choose to leave,
however, and the initiating participant can do no better than ‘cave and let the others
continue.) This method requires some timeout mechanism for removing participants whose
worhstations have crashed, so that the conference does not remain stuck indetinitely with

participants who will never issue a command to leave. .'

Which of the above methods should be used will depend on security requirements. Thus
in JED! we decided that no participant should be allowed to terminate the conference against
the wishes of the others, i.e., all participants must leave. On the other hand, on a system
where the conferencing program runs with a particular participant’s privileges, it seems

reasonable to let that participant and no other one terminate the conference. e

Once a conference is terminated, some record of it should be maintained. Users who

received invitations or announcements generated before the conference was terminate? inay °
still be trying to join; if all evidence of the existence of the conference is erased, it will not be

possible to inform these users that the conference has terminated. The actual deletion of the

conference record, and reclamation of the associated storage, should be a separate action . j'?'_f-. g

from terminating the conference, that is taken only when it is decided that a record of the ®

conference is no longer needed or that it is not useful enough to justify the associated storage
cost. This decision to "garbage-collect”" a terminated conference may be made automatically
= by the system or manually by the conference owner, and may take place any time from a few . e ¥
i. minutes after the conference terminates to several days later, depending on record-keeping R .

needs and available storage.

P e
PN AR W WS e

RSP R R
MR N AR SR LA LTI L VY SO S T UG Sl U S Y

T e o e A S e A S0 A S S s e s e s e e e e e L S gt |

3.4.11 Record-Keeping and Review

Independent of real-time conferences, it is often useful to record the evolution of an -__~—-4
application object by keeping a sequence of versions or "checkpoints” of the object. Many
systems do provide such a facility, and we have included one in our example joint document
editor. Functions for using this record are illustrated in JEDI: selecting a particular version
for reviewing in "read-only” mode, and extracting information from past versions for use in -
operations on the current version of the same or different object. ("Undoing™ updates to an

object by discarding its current version and reverting to some previous one can be viewed as

an extreme example of the latter.) More sophisticated ways of designating the version of
interest may be designed, e.g., by date and time or "the version that user X wrote" or "the - 3
version | last saw when | looked at this object"”, or by pointing and selecting from a "directory” o
or "time line" of available versions. (For a detailed discussion of version reference
mechanisins, including branching "alternatives”, see [124].) In addition, if a Jog is maintained
of incremental updates applied between two checkpoints, or between the last checkpoint and
the current "dirty” version, it should be possible to continuously replay the updates at some
reasonable rate and view the sequence of intermediate states. A replay facility should allow
the user to interrupt the replay and pause to view the displayed state before continuing or
skipping ahead. The uselulness of such history and review facilities must be weighed against
the cost of storage and the complexity of the user commands and access controls (e.g., who
can delete which past versions) that must be defined. Such functions have little to do with
conferences in particular, but where they are available they should be accessible from a

real-time conference as well.

The concept of object history may be applied to a real-time conference itself. (And to

individual editing sessions, or private spaces in a conference, although the need to show

':‘ such history to other users seems less compelling.) Thus, it is possible to design a .

+ conferencing system that records not only updates to the main application objects such as
documents but also window updates such as scrolling, when participants joined and left, and

so on. It is important to define precisely what should and should not be recorded, e.g.,

recording and retrieving past cursor positions may not be very useful because one can no

longer edit the past document version using the cursor.

The history of a conference might be useful, for example, to a participant who joins the

conference late and wishes to see what happened before. The participant might in this case

87

. S ST S S o -~
MR - e R T R e
S e T T, PRI R . I CU N TR S G LIRS T S SR > . -‘\

T T Tt e ey
N . C e e e e e T et e, SRR
P U N YA P SR T PULIT NP TP S TP S TR T, Tt NIL I T S AL~ TPL . -t

D e Bus gve g G Sl Ak M Sadh Shet R iy Pt S R

oW " i) v T " o > - -y

continue to fall behind the conference while he is reviewing its history, a risk he must evaluate
for himself. (The ability to qquickly stop the review and enter the conference at its current state
will of course be important.) Alternatively, a conference participant, say the chairperson or
holder of the "super-reservation”, could use the shared space itself to review the conference
for the benefit of a newly-joined participant. This might be useful to the other participants as a
summary and recapitulation; a participant who is not interested in this review might instead
work in his private space and receive a notification when the conference review is complete.
This style of review has some important benefits. The particirant who was already present in
the conference may be able to choose what is important enough in the history to show the
new participant, saving the new participant some trouble and time. And, the current
participant or participants may use the voice channel to explain what is being shown, perhaps
repeating or summarizing some of the past discussion that took place on the voice channel. If
a user were to review the record of a conference by himself without the help of some
knowledgeable participant explaining it and pointing out important events, that would be
about as useful as seeing how the blackboard evolved in a meeting without hearing any of the
accompanying discussion. (We assume that the voice discussion itself is not being recorded;
even if it were, there are other problems that are discussed in Section 3.6.) Similarly, the
history of a given conference can be reviewed in a future conference, with a user who was
present at the first conference explaining it to a group of interested users who were not
present. (A valid question arises as to whether the act of reviewing a conference should itself
be recorded in a conference’s history; while this is technically feasible, its usefulness is

uncertain.)

An alternative to a complete record of a conference is to allow the state of the shared
space to be "checkpointed" in the same way that document versions are checkpointed. (The
system might also automatically save the state at points that appear interesting, such as a new
participant joining or a long pause in activity on the shared space.) This would make it easier
for a user to find the important points of interest for review. A log of updates might still be
recorded and made available to those who wish to see more detail; again, the possible
usefulness must be weighed against the cost of storage. A useful feature to provide is the
ability to edit the history at the end of the conference, retaining just those parts that seem

worth saving; this might occasionally be used in mid-conference as well.

A slightly different form of record-keeping function is maintaining statistical and summary

P S e,

YA L IO L BPIL S B S RSP UG I R NP U A a SmBalatas

P T e Pt IT SR
el ezl et aat s A s A el S

- O B

L e e o ey e sk aa P e s e LT USSR SRR AR o T
T f
BTN
L
3
information about past activity, e.g., which participants held a given reservation and for how S :
long. Assuming the participants do not object to such monitoring, this information can be ,-m4
useful to a chairperson who is trying to be "fair” in granting requests. Such statistical . . 1
information may also be useful for sociological studies of how real-time conferences are used. ;- e \:
(In the latter case, the participants’ identities should probably be hidden.)
Record-keeping facilities introduce some new access control questions. Once something A -
has been recorded, who in the future should be permitted to review it? This applies not only : ;
to users currently in the conference, but to users who might later join; depending on the
situation, it might or might not be desirable to give a newly-joining participant access to o : 1
everything that happened in his absence. Editing the history after-the-fact is also important, ® .
allowing users to change their minds, but in the case of a conference, where the history is a . j'
collective effort not attributable to any one user, the question arises as to who should be given f" - :
permission to edit what parts of the history. ,-;V"li‘ - B
9 4
3.5 Two-Person Conferences
A large proportion of simultaneous interactions between people involve only two '-;1;-'.‘-:-'-'-“-'*
participants. While a strict interpretation of the word "conference"” might imply a group of T _‘
three or more, we include two-person conferences in our research because most computer : -;ﬁ:
systems offer little support for any group of users, two or more, to interact in real time using T :;'
shared information. :‘. *?4;
Two-person interactions in real life tend to be somewhat different from interactions S .":’
involving three or more people; a participant is only concerned with one other person’s

parception of what one is doing or saying rather than with several people's perceptions.

Similar differences can be expected in an on-line "conference” involving only two users; we

describe here a few special kinds of support that the system can provide.

First, operations that require naming and identification of participants are simplified when

« participant need only think about, and be informed about, one person other than himself. o '
Thus, when a participant is holding a reservation or the chair and wishes to pass it to the
other participant, it is not necessary to explicitly name the other participant; a simpler

command with no user-name as argument, the equivaient of saying "Over", can be provided

R RN e -
- . ‘e M - . - s - Y . . - - - - - . . Te DR .~ . . . - [N .
- . RN e s e e T e T s st T e TR T Tl et T S T I S PRI
O IR R P A IR o R WHE I, UL WL WL SR APW DR NS T WAL I P W WA NS, Wl WS WRRIE RS 5 S SRR R o S s o8
Alatalaa ata o o al " P e

e DO A S S e SRR Y

by the system. Similarly, "status” information can be presented in terins of one's own “self"

and the "other" participant. For example, if each participant can move a "pointer” over the

shared space using his mouse or cursor movement keys, only two pointer "shapes” are
needed as shown in Figure 3-1. (This s how the two participants' cursors are displayed in the

Palette™ diaﬂing system [88].) When the number of participants N is greater than two, N + 1

different puinter shapes are needed in order to allow each participant to clearly identify his AT
own pointer and at the same time ensure that a given participant’s pointer has the same o 3

appearance on every participant’s screen except his own. (This was illustrated in Figure 2-3.) v n R

Figure 3-1:Pointer Shapes for Two-Person Conference

Negotiations between twa peaple are also simpler than among a group of three or more.
A participant wishing to make a change, e.g., of the shared window size, can propose a
change or a range of choices and simply let the other participant make the decision. One
round of communication is saved, compared to the negotiation procedure of Section 3.4.4,

because once the Lecond participant receives the proposal from the first one, all the

information needed to make the decision is available; it is not necessary for the second

participant to send his preferences back to ne first one before a decision can be made. (This

assumes that the two participants have equal power to make the decision; this method cannot
be used if only one participant has this power.) This simplification does not work so well when - ,._ }

there are three or more people. At best, participants' preferences or votes could be

accumulated one by one in some specified order, with the last participant making the decision

based on the information received from all the others. This however involves too many

rounds of communication compared with the method of collecting participants' preferences

in parallel, as in Section 3.4.4.

it the designer of a conferencing system wishes to provide a special two-person "mode"

T T T T T T - AL AL A N RPN P S i Ol o

along the above lines, that is different from the interface provided in a larger conference, he
must consider th> nossibility of a two-person conference growing into a larger one when a
aew participant is added. (It is also possible to design a restricted system that supports only
two-person interactions, in which case this question does not arise.) Since increasing the
conference size from two to three (or more) represents a significant change in the nature of
the interaction, the original two participants may be quite willing to tolerate a change in the
user interface, and possibly a brief delay as well if the system needs to reorganize its
implementation of the conference (Section 5.3.4). The reverse problem must be considered
when participants leave a conference, i.e., should a larger conference revert to a special
two-person mode when parlicipants leave and only two are left? Changing modes seems
useful, but may be irritating if a participant who left returns shortly afterward and c.uses the
mode to change back again. In general, a special two-person mode should only be used
when there is a reasonable expectation that additional participants (or participants who have
left) will not soon be added or try to join the conference. Unless additional participants have
been invited and the system is waiting for them to join, the system usually cannot tell whether
or not this is the case. It is best to let the two participants decide whether to use a special

two-person mode, either by a simple neqgotiation or by a unilateral decision from one of them.

3.6 Voice Communication

So far, we have implicitly assumed that voice communication in a real-time conference is
handled "outside" the conferencing system by the participants themselves making the
telephone connections. With voice input and output hardware becoming increasingly
available, it may be possible to integrate voice communication with the conferencing system.

Such integration will have many advantages, such as:

e A single mechanism rather than two for looking up and connecting with
participants.

o A system-enforced correlation between the set of users one is talking with on the
phone and the set of users one is interacting with in the shared space.

e Autcmatic identification by the system of which participant is speaking. (For
example, the name of the participant(s) speaking could be made to flash in the
"status” window, or a simulation of lip movement could be shown on a displayed
facial image.)

Conceptually, a voice connection can be viewed as just another shared abstract "object"

N

. e L e, .
et e BT e T e T e e T T e e
R T I NP Bl I Thor S, T IRr. DI S PP A Y PRSP EATEE il IS SIS POE . Syl SR .. W)

-

S

that can be "updated” by a participant speaking into his microphone.'0 Concurrency control
of this shared object can be implemented, and has been in network voice conferencing
systems, by associating a "reservation” and defining some policy for granting the reservation.
Permitting only one participant at a time to speak, however, does not allow for interjections
such as "hmmm", "I see”, or "Wait a minute", which are important sources of feedback in
conversation; many people lind it difficult to continue speaking with assurance in the absence
of any such feedback. This problem can be alleviated by defining limited "side channels” for
such feedback [105], or by not reserving the voice channel at all and letting the participants
do their own “concurrency control” (e.g., backing oft and repeating their utterances

whenever there is interference). Again, the latter is likely to be practical only for small groups.

Recording of the discussion on the voice channel is a potentially useful idea, e.g., for
other interested parties to determine what went on, or for later transcription of "minutes”. It
must be used with extreme caution if at all, because knowing that the discussion is being
recorded discourages "off-the-record” comments. Users become particularly cautious ahout
what they say; the discussion, and even the outcome of tha conference, suffers as a result. A
possible approach to this is to define two different "logical voice channels”, one recorded
and or not. Then, a participant could choose whether or not he wishes to speak on the
record or off, perhaps using a button on his microphcne. Thus, a participant could address a
comment to the record by explicit command, just as he would when using a voice "mail"
system or when performing voice "annotation” of documents or other objects. "Status"
information about whether or not recording is cn shouid of course be presented, e.g., in the
form of a red light or even periodic beeps. Facilities for excising from the record after-the-fact
are also likely to be useful, both on-the-spot (when a participant makes a comment that he
would like to erase), and at the end of the conference when it is decided to remove irrelevant
discussion and make the record more compact and easier to review. In the absence of
facilities tor selective recording and for editing the record, replaying the record of the

discussion will take too long to be of much use.

10This conceptual view of course hides the special implementation protocols that are needed for voice encoding,
transmission, and decoding, see [21] for details.

92

NPT

s s et

ﬂ
.
.9
.',‘
.
“u
o

L ana o

AR v uees ciuh ek e mea- adORINE R SR St M ol o R

3.7 Summary of Design Issues

It is useful to support both shared and private "spaces" in a conference. Careful attention
needs to be paid to which objects, abstract or displayed, are shared among all participants
and which are seen only by a single one: a participant's display should be set up so that he
can clearly distinguish which is which. The usefulness of private spaces in a conference
depends largely on the extent to which the system allows information to be transferred across

the boundary between a participant’s private space and the shared space of the conference.

Real-time conferencing raises new access control issues that have not appeared in
traditional computer systems where each action is performed on behalf of, and seen by, some
one user. We have only begun to address these questions, and ours is by no means the last
word. But it does appear that reasonable solutions, e.g., to the problem of who can see and
update an object in the shared space, are possible. It the conlerencing system is constrained
in its implementation by an existing conventional operating system, some compromises will
have to be made, e.g., having a "chairperson”, under whose name the conference system is

running, decide when and to whom to give read and update permission.

The basic problem of concurrency control in a conference is that a given operation by a
participant may have an effect different than intended beruse of an intervening concurrent
operation by another participant, the elfects of which the first participant has not yet seen.
This problem can be avoided by setting reservations on the shared space or parts of it, with
an automatic or manual method for managing reservations and requests for reservations. Itis
possible to allow concurrent activity in a conference by setting reservations on disjoint parts
of the shared space. The number of such reservations actually used will in practice be small,
because users will have difficulty keeping track of mulliple ongoing activities on their screens,
and because of the user and system overhead of requesting and granting and releasing
reservations. An alternative approach to concurrency control is not to use reservations to
prevent interference, but to perform vaiidation (e.g., using version numbers) to detect
interference when it does happen. This avoids the need for participants to set reservations,
but is restricted to situations where it is possible to be "optimistic" that the probability of
interference actually occurring is low. We will also see, in the next chapter, that using
reservations permils certain improvements in response time that are not feasible unless the

probability of concurrent contlict is low.

< T T T Y R . B LTI TR U IE Y A e - .
B TR T T A P R S . P I R
I R T P T T PR M T I e T L ST PP TP TN P TR S PUr S M W L S
IO I A AR SR S . T S, S S St i WAy WA WK WY R W SR e e e

Rt Jhith A et A Y ArEra Sas Svis Srat a4 sat s dh s pal a AL oA A TE S SR

It may be uselul to define participant roles in a conference; an example is that of
conference "chairperson”, whose powers might be defined differently for different
conferencing systems. Defining too many different roles is likely to be counterproductive,
because it is hard to anticipate all the ditferent ways in which users may wish to interact, and

the need to formally switch roles will be a burden on the participants.

It is important to present meaningful status information about who is present in the
conference, who if anyone is the chairperson, who is working on and looking at what data.
Detailed information of this nature will not be needed all of the time; it is best to present a
small amount of summary information in a “status window" that a participant can refer to,
altowing him to call up more detailed information on request. It is also important to provide
special notification, in a way that attracts attention, of important changes to the conference

status.

Interjection facilities, such as sending short messages or causing a designated object to
be highlighted, arc useful as a means for participants to attract each others’ attention quickly

without having to go through the process of acquiring a reservation.

Negotiations are useful in selecting a window size for the shared space, or for collecting
remarks or votes relating to some application object. All of these negotiations have a
common pattern: some participant initiates the negotiation, all participants are notified and
their responses collected, and the responses are tabulated for display or processed to
generate a set of plausible choices. A negotiation terminates when all participants respond,
or on a "timeout” when the participant in charge no longer wishes to wait for a participant

who has not responded.

Once a conference has been created, two complementary mechanisms are available for
participants to join the conference: direct invitations to those participants who are currently
on-line ana registered with a "name server”; and announcements of the conference in well-
known databases and directories where interested users are likely to look. A participant
should be allowed to leave a conference at any time and join again later, receiving an up-to-

date display of the shared space. Permission to terminate a conference may be given to just

one participant at any given time, or a conference may be terminated only implicitly when all

participants leave; the choice depends on security requirements.

“Conferences” involving only two people can make use of special features that are not

94

-, et e . L e e e N e T e e e e T T T

Lt e e . P T R AU R . e A
e it e P AR IR E B L T Nl S e Sl Sl P o o

yossible or useful in larger groups, e.g., passing a reservation to the "other™ participant

vithout having to explicitly name him, and faster negotiations.

It is desirable to include voice communication in the conferencing system if the hardware
ind software is available, reducing the user overhead of making telephone calls and providing
nore complete and useful status information. Similar "concurrency control" methods, using
‘eservations or no control at all, will then be applicuble to the voice channel as well. The
/0ice conversation can also be recorded automatically, but this may have undesirable social
sonsequences. Continuous recording also requires a large amount of storage and makes it
arder for a user to later separate the interesting discussion from the irrelevant chatter.
Selective recording by explicit command, together with the ability to edit the record, is much

nore likely to be useful.

In the next chapter, we will address the problem of implementing a real-time conferencing

system that has some or all of the features described in this chapter.

95

- - - t . . . - . .. L) - - - . . - - -
N 3 : N * AR - - . - - - - - - - . - - - - - . - - . - - L
“- A L atala’a 2 8 s ‘s’ s.ea rlme el ela aalae a0 s e AR ahind ot B

. PR . N
Se Tt Tt Cn T on er it Bt L8

_A

DRSS
T Yt Y

Chapter Four

Implementation of Real-Time Conferences

In this chapter we address the problem of implementing the desired functionality of a
al-time conferencing system, such as the joint document editor of Chapter 2, on a
stributed collection of workstations and other machines. The main implementation question
be resolved by the designer is the following: How are data and processing distributed or
plicated among the workstations of the participants in a conference, and possibly other
jents, and how are the data and processing coordinated in order to realize the desired
nctionality? This chapter addresses this question from the point of view of a single real-time
inference that is already running; different implementation organizations and techniques
e presented, and their tradeoffs discussed. The overall system architecture for starting and
anaging conferences, for finding conferences and participants, and for dynamic selection of

e implementation method, is discussed in Chapter 5.

Both this chapter and the next use many existing technigues from the areas of computer - ‘:.,_. -4

tworks and distributed databases; we will mention these, and point out differences and
tensions, as they are presented. Our main contributions are: a review and evaluation of
sich techniques are suitable for real-time conferences and when, and special adaptations of

isting techniques for the particular needs of real-time conferences. The latter include the

ordination of multiple participants’ workstations rather than just one (which is the usual

enario treated in the literature on interactive distributed computing), and specific ways of

wling consistency for improved response time. '.~f'-I~;'-A

.1 Distributed System Model

In addressing conference implementation issues, we assume a somewhat idealized model

the system implementation environment that will insulate us from considerations relating to

e particular technology, operating system, and programming language being used for the

plementation. This model is general enough to apply to a wide range of implementation

97

PREviOUs
PA
IS BLANK GE

environments. We do not expect this model to be implemented in exaclly the manner

described; rather, we view actual system implementations as particular instances of the
model.

4.1.1 Sites and Messages

The system is assumed to be a distributed collection of sites, where each site consists of a

virtual processor and a virtual address space. A site may or may nol have its own physical
processar, e.g.. a given physical processor may be multiplexed among some collection of

sites Wherever it is necessary to maintain the distinction, we shall call a physical machine a

Al

host: more than one site might reside on a given host. Every site has a unique global o 4
=it address, which other sites can use in order to send messages (below) to it. -]
y R

The execution of a site's virtual processor consists of a sequence of steps, where each x 3
step consists of the following:) : |
. 4

1. The site receives and reads a message.

2. The site performs some computation in response to the message, typically
modifying the contents of its address space.

3. The site sends zero or more messages.
Messages in the above may be sent to or received from the following kinds of agents:

e A device that interfaces with the external world, e.g., a workstation screen and
keyboard.

e A site, including the given site itself. It is assumed that every sile can
communicate with any site whose address it knows.

¢ A site may cause itself to rece. ve a timer message at some specified later time.
Timer and background messages (below) allow a site to perform housekeeping
chores. to break up lengthy computations into shorter steps, or to delay acting on
a particular message until a more appropriate time.

¢ Cortain messages are spontaneously generated: an initialize message is received " o }_”

by a site when it is created (e.g., when the machine's "boot"” button is hit or when RERE

the host kernel starts up a process in order to create the "site"); and a AR
barkground message is received whenever the site has completed a step and R
there are no other messages waiting to be processed. ' K

@ 4

With the exception of unreliable "datagram™ communication, which is discussed in Section T *1
4.6.4, messages sent by a given site (or device) to a given site (or device) are never lost, and ‘::Z. ;Z’_f\i‘_:'_l
are received by the destination site in the order sent. The delay between the sending and the ST
AR |

receipt of a given message may be indefinitely long. Messages from different sites to a given 4 . {
- A

98

PUR P R T I e o T T T e et e Tn e T e T et et e e T e e
PR L VLG A R A S A S L Rl CIMAE TN Sl ST SOAR SR Tl ST ST TR SO S AT Sl VA S AT WP AP WL P o A G P PP W S PR S ¥ |
(e e el - e e e e el e

re received in some arbitrary "arrival” order; this order may be different at different

ation sites.

tes do not share memary; their address spaces are disjoint, and messages are the only
s of communication between sites. For programming languages and operating systems
o allow processes on a host to share memory, a given collection of processes can be

:d as one or more "sites"” depending on how the shared memory is being used:

Loosely-coupled processes, where the amount of shared memory is limited.
Shared memaory in such a systein is typically used in a stylized way that simulates
message-passing, with additional efficiency gained by passing pointers to shared
memory rather than copying the contents ot "messages”. Each process in such
a system will therefore be viewed as a distinct "site” in our model. Note that this
allows multiple user processes on a conventional time-shared system to be
included in our model of a "distributed" system.

Tightly-coupled concurrent processes that operate on data that is mostly shared,
synchronizing using such mechanisms as monitors [60, 73] or locks {80]. We
shall view such a collection of processes as a single site, with the computations of
the different processes broken up into short "critical sections” that are executed
one at atime.

2 Object Model

/e next describe a particular model of object structure that allows sites to refer to objects
d at other sites with which it communicates; this is necessary i order to permit useful
buted computation, such as real-time conferencing, despite the lack of shared memory.
nodel describes object structure as viewed "externally” by ather sites; a given external
:t structure may be implemented internally within a site in any way that achieves the same

ionality.

structured object is a collection of components, each of which is a (selector,value, pair;
10 components of a structured object can have the same selector. A component value
ne an immediate value, such as an integer or string, or may be another structured object;
:ts can thus be hierarchically structured. Different kinds ol structured objects allow

ent kinds of selectors, for example:

» The selectors in an array are integers in a given range.

» The selectors in a record are fixed strings representing the "fields" of the record.
(Because its selectors are known in advance, a record may in fact be represented
internally as an array-like object, allowing more compact transmission and

ISICSIE FOIR Vo AT SN AR SR S S G SN S N SISO A RPN SN LU I S N SR S UM UL SO

R A

RS
S

[J
R
-]
9
-]
4
. . . 4
N
R
R .".:‘-
- 7;7-"--..-.:..*
. @ 1
S
NUSU ;.i
. e 4
e
R
®
4

o
S
ISR

e maenhl
P O W

.
»

storage of selectors using integers.)

e The selectors in a table are arbitrary strings. A table may in addition be ordered,
allowing sequential access as with an array but without requiring that the
selectors form a consecutive integer sequence.

/ariations and combinations of the above are possible, e.g., two-dimensional or multi-

limensional arrays where the selectors are pairs or tuples of integers.

If a selector is used when accessing a given structured object such that the object has no
:omponent with the given selector, we shall treat this as if the object does have a component
sith the special value Undefined associated with the selector. This takes care of situations
vhere an illegal or nonexistent selector is used by accident. It also allows addition (or
sreation) and removal (or deletion) of components to be treated as special cases of updating
he value associated with a given selector. Adding a new component, with a given selector
ind value, is equivalent to updating the component from its previous value of Undefined to the
jiven new value, while removing a component is equivalent to updating the component from
ts current value to a new value of Undefined. The special value Undetined can also be
xplicitly stored in a component of a structurcd object, and tested for equality. This may be
1seful, for example, it after the deletion of a component it is desired that the same selector
iever be used again, or be used only with a higher "version number” {see below) than any

reviously used.

Each site maintains a naming context, which is a structured object whose components are
bjects that were created at this site. (A site's naming context can have any of the forms
lescribed above.) The site at which an object was created is called the object’s birth-site.
‘he only objects that can be referred to in messages are those that are contained in some
ite’s naming context. A unigue id (unique identifier) is a sequence of selectors, starting with
. site-address, that specifies the "path” traversed, through the components of the naming
ontext of the given site, to reach a given object. Unique-ids can thus be sent in messages in
rder to refer to the object in question, and can be stored in objects as a form of abstract
pointer”. (We do not consider internal pointers in this model, because they cannot be
waningfully transmitted outside a site's address space.) It is not always necessary to store
1e complete unique-id in order to refer to a unique object; leading selectors of the unique-id
an be skipped if they are implied from the context in which the object reference is being

tored or transmitted.

100

PP T ——— T R

AD-A154 723 INTERACTIVE ON-LINE CONFERENCES(U) MASSACHUSETTS INST 2/3
OF TECH CAMBRIDGE LAB FOR COHPUTER SCIENCE S K SARIN
DEC 84 MIT/LCS/TR-330 N@B814-83-K

UNCLASSIFIED F/G 17/2 NL

‘ i

AR Sng Sadh A A0 LA NGNS Sr) SR et AUl il aide AR nh -t i 9 " o lh T — T ry DT - et ry y yog B o Y Ll S el e S o oo —

R e T .~ .

-.-.‘ ..

)
CAER

..T,-v._v-.-,v
(AN

. .
.
e e

-4
or

S s

= ke [J32 . X
=.z muz :

l.'-

L £ B
s =",
I

i< e

IA
=
’

O

nm

B
T e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

e

[N

o

DACEREREN
¢ s
s

'- <,
3
.

[

« e o el e v o - - gt .

P T 4 . . 5 Dt et . oAt . PR S Y o .
AP PRP RS WY TP ey T N P P PN Y 3 hd talat ot PR Wl W U T WP W W Ve PO T T T I 2y Bl chred

A site may have any number of naming contexts associated with site-addresses other than
its own, each of which contains information about objects created at that other site which are
somehow of interest to this site. A site may for example keep a copy of an object, or parts of a
structured object, from another site; we shall see, for example, that the workstation of a
participant in a conference keeps copies of parts of the shared space for display to the
participant. Note that any naming context that a site associates with some other site's

address is in effect a partial “copy" of that other site's own naming-context.

The home site of an object is the unique site where the most up-to-date copy of that object
is available; this copy is called the primary copy of the object. Only the home site can initiate
updates to the object; other sites update their copies only in response to update messages
received from the home site, or known to have originated from the home site. (A received
update messayge may sometimes be forwarded to other sites.) Sites other than the home site
may "request” the home site to perform an update by sending an appropriately encoded
message; whether, when, and how the home site decides to act on these requests is arbitrary

and not specified by this model.

We shall assume in this chapter that the home site of an object is fixed, i.e., is always its
birth-site. An extension to this, that allows an object to "migrate” to a different home site, is

presented in Chapter 5.

When the home site of an object "crashes", the object hecomes inaccessible for update.
Other sites may hold copies that can be read; some applications may in addition allow
"alternatives" (below) to be generated by updates to these copies. When a site recovers from
a crash, objects that it held prior to crashing may or may not be available. If the site saved an
object on permanent storage (e.g., disk), the object wiil be available again on recovery. On
the other hand, objects in volatile storage will be treated as having been "deleted"” (i.e., set to
Undefined) without warning when the site crashed. In some cases, the copy saved on disk
may be older than the volatile copy; a crash is then treated as causing recent changes to be

"undone" and this older version restored.

in addition to a copy, a site may associate various kinds of bookkeeping information with
an object, both in its own naming context and in the naming contexts of other sites. (In some
cases a site might maintain bookkeeping information only and no copy; we shall treat this

case as if the site has a "copy"” with the special value Undefined.) The various kinds of

101

‘A

‘y
»
0

——r T Ty o .

bookkeeping information are described below.

4.1.2.1 Agreements

A site may often enter into an agreement with another site to keep the other site informed
of changes to a given object, using some specified class of update messages (described
below). Such agreements, as we shall see, are how real-time conferences are implemented.
Information about such agreements, to send or receive updates, must therefore be

remembered by the sites in question.

4.1.2.2 Version Numbers

A monotonically increasing version number may be associated with an object to keep
track of updates to the object. Version numbers may be of several kinds. A sequential version
number is incremented by one each time the object is updated. A timestamp is a version
number drawn from a clock or counter that is associated with some larger context that
includes the given object. This context may be a containing object, or a collection of objects,
or a site as a whole, or the entire distributed system. Within such a context, the same
timestamp is never assigned twice."! Unlike a sequential version number, the timestamp of an
object will in general increase by more than one with each update. Timestamps therefore
require more bits to store and transmit than sequential version numbers, but are useful when
it is important to determine the relative ordering of updates to different objects within a

context; the latter cannot be determined using sequential version numbers that are

independently assigned to different objects. Which kind of version number is used for a

particular object will depend on how the abject, and other related objects, is to be used. _ .

The version number associated with a given site’s copy of a given object may in general

be "behind"” the version number on tha home site's copy, because updates have not been

'_,r.rv._v'
T
Voo . PRI

sent or are in transit. If a site does not have a copy of a given object, we shall treat this as if

the site has a "copy" having value Undefined and special version number zero. Thus, every

object has version number "zero" prior to its creation within a given parent object; the version

AL AR N A A o

number of a component object that is not Undefined must always be greater than zero.

”ln the case of system-wide limestamps, global uniqueness is ensured by appending a site's address or other

identitier to the value ot its local clock or counter. The local clocks of different sites may be kept approximately
synchronized using a mechanism such as Lamport's [72].

102

RNt b S e N S R S rp——— T T T T YT T T T Ty

4.1.2.3 Update History

An object update is a description of an update operation and arguments that, when
applied to some specified old version of the object yields some other specified new version of
the object. Updates can he transmitted in messages, allowing the receiving site to update its

copy if it has the appropriate old version, and can be slored in "histories” (below).

The most common type of update is a relative update which describes the update
operation that was actually applied to the specified old version of Ihe object, by the home site
! at the time, to yield the new version. However, the operation in an update description need
not always be the one that was actually applied, and the new versicn need not always
' immediately follow the old one. It may be possible, for example, to compute a single update
operation that when applied to a specified old version of an object will yield a specified new

version several updates ahead. In the extreme, an absolute update is one where the "old"

"

version, to which the update operation applies, is version number "zergo". Such an update
carries a complete description (possibly compressed) of the specified "new" version. The
"creation” of an object, and the recording or transmission of an object’s current contents, are

treated as instances of absolute updates. “"Deletion” of an object is also a form of absolute

update, where the "new” value of the object is Undefined.

It may sometimes also be possible to derive inverse updates where the "new" version is
actually older than the "old" version; these can be used to "undo” changes to an object in a

more efficient way than restoring a complete copy of the old version.

An object’s history is the sequence of versions and updates that it went through. This
history is an abstract concept; a stored history will in general contain some subset of the
complete abstract history, perhaps with gaps. A stored history may contain only complete
copies or "checkpoints” (which are in fact "absolute"” updates) of particular versions, or only
“relative” updates, or some mixture, and may or may not contain "inverse" updates. A stored
history may also contain additional access structures for finding versions and updates based
on various criteria (such as time of update and user), so as to implement ti.e various "review"
functions described in Section 3.4.11. There is no oite unique site where "the" history of an
object is stored; different sites may store different histories for the same object, for different

purposes and with possibly differnnt methods for finding the stored h. .tory for a given object.

103

- - - - . - - . PR 0 . . - . -
WAL S AL A A A O S NSRS T Tl G TL Y S Tl Tl AT T Yo S o S S P

————— . s S A SR e A s e e e o e B och

4.1.2.4 Alternative Versions

Since only the home site of an object can initiate updates to the object, only the home site
issues version numbers. In some cases, a site other than the home site may update its copy
on its own in anticipation of the home site approving the update. The site's version in this
case is referred to as an allernative version. The site will assign its copy an alternative version
number that is distinguishable from any bona fide version number that the home site might
issue. This site will usually remember which true version of the object the alternalive version
was derived from; this is part of the alternative’s "ancestry"”, below. Il may also remember
what update, or sequence of updates, was applied to the original version in order to yield the
alternalive one, or an “inverse" update that it can apply to the alternative version to get back

the original true version.

4.1.2.5 Equivalence and Ancestry

Often two versions of different objects are known to have identical values, e.g., when the
value of one is copied into the other. This may even happen with different versions of the
same object, e.g., when changes are "undone" by making a past version the current version
{(with a new version number) or when "promoting" an alternative version by giving it a bona

fide version number. Remembering version equivalences is useful in ailowing sites to

determine when they already have some data that they need, thus avoiding costly :.?;;_}.
retransmission of the same data from another site. It is also useful when the need to "merge" R o
similar objects (e.g., documents or conferences) arises; knowledge of a common "ancestor”, : :Lj::
found by tracing back through the histories of the two objects until equivalent versions are) “‘.“j
discovered, will often allow the merging to be automated or otherwise optimized. JERESANIOA

S
e e

4.1.2.6 Immutability L

In some cases, such as termination of a conference, an object reaches a "final" state } ®
such that it will never be updated further; it can be marked as immutable. Sometimes the

reason for marking an object immutable is that there is some other object that "supersedes”

it: an example we shall see in Chapter 5 is when two conferences are to be "combined” such

that one conference terminates and the other one continues. For such situations it is also - __Q 1
useful to remember which object supersedes the now-immutable object, so that sites that try o '
to access the immutable object can be directed to the object that supersedes it. (The {.fj. .'_”._-'{I

superseding object may in turn remember the given immutable object as part of its

104

"ancestry", described above.)

4.1.2.7 Derived Values

The value of a given object version may often have been computed by applying a given
function (free of "side effects") to some argument objects and values, e.g., the current
contents of a displayed “window" mav have been computed functionally from a given
document version and region coordinates, or an object code module may have been
"compiled" from a source code module using certain parameters. [f the function and the
argument object versions are remembered, this can be useful in avoiding recomputation of
the derived value, or in allowing a new value of the object to be recomputed "incrementally”.
(Details of whether and how incremental recomputation is performed are dependent on the
application and are outside the scope of this model; see [109] for an example in the domain of

software management.)

4.2 Real-Time Conferences

in the terms of the above model, a real-time conference is simply a structured object
representing the "shared space" of the conference, together with an agreement to replicate

parts of this object at the workstation sites representing the participants of the conference.

4.2.1 Conference Objects
An examgle of a conference "object” is the type definition JEDI-CONF in Figure 4-1. This
specifies the shared space of the joint document editing system of Chapter 2 as a Pascal-like

"record" [66] with several components, some of which are themselves structured obiject

types. We have taken some liberties with strict Pascal syntax and semantics, such as the T
qualifiers NONDECREASING and IMMUTABLE for certain object components, and dynamic B . ‘.’:‘1

definition of a type based on run-time values. For example, the "subrange" type 1. .npartcs

allows integers from one through the current value of component npartcs, which specifies T -:j:-'{.-:
the number of participants. (Not all of these "participants” are necessarily in the conference - -

at the same time; the array ws-statuses specifies which participants are "Active" and which

are not and which are in the process of joining.) This subrange definition is meaningful only

within the context of a given object of type JEDI-CONF, and may even change within that

105

type LINE-ID = int

type RECT-COORDINATES = record
y: int
x: int

type RECT-SIZE = record
height: int
width: int

type JEDI-CONF = record

"description”, released oulside conference
controller: site-address

conf-id: int unique in controller’s
naming context
conf-type: "JEDI-CONF" see Section 5.2.1

subject: string
owner: user-name
allowed-users: list of user-name
public-access: (Yes,No,Request)
enumerated type

estd-start-time: date-time estimated

estd-end-time: date-time

start-time: date-time Undelined - not started
end-time: date-time not Undefined = terminated
npartcs: int NONDECREASING size of participant-related arrays
chair: 1..npartcs chairperson’s participant number

partc-names: array[1l..npartcs] of user-name
ws-addresses: arrayf1l..npartcs] IMMUTABLE of site-address
ws-statuses: arrayf[1l..npartcs] of (Active,Maybe,Quit)
ndocs: int NONDECREASING size of working-set
file-servers: array[l..ndocs] of site-address

tile server for each
doc-names: array[1l..ndocs] IMMUTABLE of string
replic-1ine-1imit: int internal

super-window-size: rect-size N
continued :::' "
o
Figure 4-1:Conference Object Specification for JEDI j
NCURE
Lo]

106

.........

LACIL RGN M e gr pvilpnd st il g SRl Grh ape acih gol oA a0l L SR ol oai pet o v el i et RAG aad ae LAtGl ands shul Joes teen e Y

documents
working-set: array[1..ndocs] of DOC-INFO

declared below
replic-line-count: 1int number currently replicated
proposed-1ine-1imit: {int Undefined if no negotiation

ws-1ine-1imits: array[1..npartcs] of int
each Undelincd if no response

shared "superwindow"”
proposed-size: rect-size Undefined if no negotiation
ws~size-responses: array[1..npartc] of rect-size
super-reservation: 1..npartc Undefined - free
super-requests: 1ist of 1..npartc
queue of requests
visible~windows: 1ist of record
doc#: 1..ndocs index into doc array
or Undefined = blank window
window#: 1..(working-set[doc#].nwindows)
index into window array
for given doc
position: rect-coordinate relative to
top left of super-window
pointers: array[1..npartcs] of rect-coordinate
pdrticipant’s pointers
ptr-shapes: array[1..npartcs] of bit-pattern

ptr-frequency: int maximum rate, per second
miscellany

lookup-servers: 1ist of site-address

current-time: date-time periodically updated

line-width: 1int
search-pattern: string
paste-buffers: array[1..npartc] of string
copy of each
participant’s paste buffer
ws-invited: array[1..npartc] of
(Invited,Removed,Undefined)
ws-requested-to-join: array[1..npartc] of
(Requested,Declined,Undefined)

continued

Figure 4-1, continued

PR
LA
LN P S Y

107

" i PIRAAEE S A AL AN e S SRS i

type DOC-INFO = record
information about each document
saved-v#: int last checkpoint
zero = removed
saved-timestamp: date-time
changes: int since last checkpoint
zero = "clean”
read-only: boolean
reservation-timeout: date-time
it reserved at server
who-can-write: array[1..npartcs] of boolean
determined from server

contents

lines: 1ist of record at least one,
id: 1ine-1id in ascending order
contents: string mutable, variable length
replicated: bool waorkstations have copy?

redundant - cursors and marks in this line
cursors: list of 1..nwindows
marks: 1ist of 1..nwindows
shared windows displaying this document
nwindows: int
windows: array[1..nwindows] of DOC-WINDOW
declared below
participants’ private windows
private-windows: array[1l..npartc] of 1ist of record
start-1ine: line-id
height: 1int
end-line: line-id

type DOC-WINDOW = record
size: rect-size height and width
Zero = not displayed
start-1ine: 1ine-1d
end-l1ine: line-1d implied by above
and document caontents;
NOT = start + height-1 PRI
start-column: int e
cursor and mark
cursor-line: 1ine-id R

cursor-column: int . ® p

mark-line: 1ine-1d R
mark-column: 1int e
command-in-progress: parse-tree
feedback: string

conference only

reserved-by: 1..npartcs Undefined - free -0
reservation-timeout: date-time Q,jx;b‘

s,
el

L4

o s
h

Figure 4-1, concluded

‘s

f

108

sl
PR S

Y

. B S . P R TR AT B R, SR R T T P R TLP ML TR S
A A R T A R I et Tt et e e e MNP UMD UP I YU TP UL YT UL TS U G SR TP W0 U S WOt TS Thw T S0 .-
St e’ e a'alatae yY a—ln o ol bl i

P Maama a0 s i i - e SR et OG- amatt e e Al o RPN N Su i et i e, et i St S St

context (e.g., as participants are added). Dynamic subrange types thus allow us to define
arrays of variable size, such as partc-names and working-set. The declaration of a given
object component (e.g., chair) as being of one of these subrange types clearly distinguishes
the different uses of integers as indices into the corresponding array(s). Such indices also
allow for more compact reference in messages, using the index number of a participant or

document instead of its full name.

We emphasize that the data type specification of Figure 4-1 is meant to be an "external”
view of the conference object, suitable for transmission, in whole or part, between sites (as is
the "xrep” of Herlihy and Liskov [57]). The data type will typically be implemented, within a
site, using some variations and enhancements for efficiency (such as a tree or linked list for
the sequence of lines in a document). The designer will also have to translate the abstract
specification into a programming language that may not support all of the features assumed
above, such as dynamic arrays and explicit manipulation of the value Undefined. Note that
there are no "pointers" in the specification. Instead, all references io objects not directly
contained use indices into arrays, or "ids" in the case of document lines. This, again, allows
a site to refer to a component of an object at another site by including an index or id in a
message. Internally, however, a site may "cache" a pointer to the designated object for faster
access, at the cost of keeping the pointer consistent on update (which might never happen,
especially for IMMUTABLE array elements). The data type JEDI-CONF already “caches”
some redundant information that must be kept consistent, e.g., the cursors and markers in

each line of a document; these are also in the form of ids and not pointers.

We will refer to the specification of JEDI-CONF again in this chapter, as we use this
example to illustrate our implementation technigues. First, we briefly describe the document
data structure that is being assumed. Every line in a document is assigned a line-id that is
unigque and mostly unchanged (with exceptions as noted below) for the lifetime of that line
within that document. Line-ids are ordered in that an earlier line of a document has a smaller
id than a later line, but line-ids are in general not consecutive: there will almost always be a
"gap" between the line-ids of two successive lines, to allow possible insertions of new lines
without changing any line-ids. This means that cursors and windows can "point” to a given
line using its line-id without having to be updated when preceding lines are inserted or
deleted; this contrasts with the use of consecutive line numbers which do change on the

insertion or deletion of lines. (A reference to a given line will of course have to be updated if

109

P
-1
o

AT T, T T T e s e e L W et e e e T e e e 7

N e T R SR NI S R 0 S . Shi T S ; PP P PTG ULE WA S s S P L S, . LI, R U P L

R R A T TR T —r—w———eee sk e it et i e

that line is deleted. If there is an insertion or deletion within a line, only the offsets of some
cursors in the line need be updated, not the line-id.) Reducing this update overhead may or
may not be an important consideration within a given site, but is especially significant when

relerences 1o lines may be held by other sites.'?

LINE-ID CONTENTS
10 The first line
20 The second line
40 The third 1ine
45 The fourth line
47 The fifth 11ine
60 The sixth line
63 The seventh line
67 The eighth 1ine
66 The ninth 1ine
70 The tenth line
80 The eleventh 1ine
8b The twelfth 1ine
9b The thirteenth and last 1ine

id count ptr
root {I0] & 1 L 1531 7 1 .,

o

contents
[The first Tine] [The second Tine]

Figure 4-2:Example Document Structure

To find a line in a document given its id, any reasonable ordered search structure may be

12An alternative method that avoids updating of references to lines is the use of pointers to lines in a linked list.

While this does have the desirable property that line references do not have to be updated. internal pointers are not
sutable for remote reterence by other sites It is also not possible to tell which of two lines is "earlier” simply by
comparing pointers.

110

e T T i e i PR PE VS PP DA PR ST T T S S VA P S GRS S Sy

D et -

AN A
St
v ', ', « o
SN O TR

.
2

NPT

e

L afiw-asa ~unae i Pkt At et Sus. gt Jintte e Javte Sape Suse et S _Eng St Sht BN A St e E St A A

used. Figure 4-2 shows a short sample document and a "B-tree" {5, 22] implementation.
(Note that the use of line-ids is reminiscent of editing and programming with "line numbers";
the line-ids in our case, however, are managed automatically by the system and are never
visible to the users.) Each node in the tree has an ascending sequence of line-ids, and a
pointer associated with each such that the pointer identifies a subtree containing lines with
ids between the given line-id and the next one. A count of the number of lines in each subtree
is also cached in every node, allowing the next or previous or Nth line relative to a given line
(or relative to the beginning or end of the document) to be quickly found. This is needed, for
example, in order to detormine which lines are to be displayed in a "window" of given height
starting at a given line-id; it could alternatively be implemented by doubly-linking the nodes
containing the line contents. Deleting lines from the <locument by removing them from the
tree is straightforward; cursors and windows that refer to a deleted line must of course be
updated to refer to the last preceding undeleted line. Inserting one or more lines between two
successive lines id 1 and id2 involves assigning ids to these new lines from the range between
id 1 and id2, and inserting these lines into the tree at the proper position (updating counts, and
possibly splitting nodes of the tree if necessary). If the gap between id1 and id2 is smaller
than the number of lines to be inserted, then one or more lines in the vicinity of the insertion
will be renumbered, i.e., assigned new line-ids, to make room; cursors and windows referring
to the aftected lines will have to be updated in this case. We assume that linc-ids use a fairly
farge number of bits and that some reasonable heuristic is followed for assigning ids to

inserted lines, so that renumbering of lines occurs rarely if at all.

4.2.2 Controlier and Workstation Sites

The "home site" of a real-time conference object is referred to as the conference
contioller. We assume in this chapter that a conference does not migrate from its birth site;
movement of a conference to a different controller site is discussed in Chapter 5. Different

conferences may have different controller sites.

Each participant in a real-time conference is represented by a workstation site. (For a
participant having a terminal with no local intelligence, the workstation "site" is the
corresponding process on whatever host the terminal has been connected to.) Each
workstation maintains copies of some or all of the components of the conference object, and

receives update messages from the controller as the components are updated. these updates

111

are then reflected on the participants’ display screens. Comimands entered by a participant to
operate on the shared space are forwarded by his workstation to the controller in the form of R
input messages; the controller processes or rejects input messages according to the desired
access and concurrency control critenia for the given conference. Except as noted in Section
4.7, workstations do not communicate directly with each other; all communication within a

conference is between the controller and individual workstations only.

We will assume for most of the discussion in this chapter that the controller site in a
conference is a distinct site from the participants’ workstations, and that the controller site is

equipped with sufficient processing power and storage (real or virtual) to manage the activity

in n conference. (The controller’'s ability to do so will of course degrade as the number of e
participants in the conference increases.) The participants’ workstations may not in generat

be so well equipped in which case relying on a separate site to provide a conference

"service” is appropriate. Using a separate controller site allows a conference to continue

independent of individual participants leaving the conference, and makes the conference less . _
vulnerable to crashes of individual participants' workstations. A conference is, however, :
vulnerable to crashes of the controller site itself. We assume in this chapter that the controller

site is in fact more reliable than any workstation, and is unlikely to crash during a conference

(which might typically last from several minutes to an hour, seldom longer). We will describe . @ 4

crash recovery using "backup controllers™ in Chapter 5.

Using a separate controller site for a conference does involve an extra site in the

conference, with added communication complexity and overhead (e.g., three-party

communication for a two-person conference) that should not be necessary if one or more

R
participants’ workstations do in fact have sufficient processing power and storage, and - ::‘_:
acceptable reliabilit *~ act as conference controller. We therefore allow for a given site in a :
conference to play the . “hoth controller and workstation. if it is capable of doing so. The .
functions of controller ang . .station must be suitably multiplexed on the site's real or

virtual processor, and "messages” belween the two roles simulated. In such an arrangement, _ .
the participant whose workstation is also the controller will be "favored™ in that he will receive ' -"...-_':j
more immediate response to his commands than the other participants. In many cases, this Y
may in fact be quite reasonable, e.g.. if the given participant is the conference "chairperson”.

If it is not desirable to favor one participant over the others just because his workstation

happens to be the controller, the controller may introduce short artificial delays, -

12

COPRE PRI AP YR W AL WP WP . I UL I I UL S LIPS LS PP AP WIS WS-

reset whenever the line is modified. (This will almost always be followed by sending the line,
and setting the flag once again, because operations that change the document contents at a
given cursor position must make the cursor visible in its window.) This scheme does overlook
one problem, however, namely storage space constraints at the workstations. As a
conference progresses, the number of lines replicated will grow, approaching full replication
of all document tines in the limit. Since our reason for exploring partial replication is that
workstahions may not be capable of supporting full replication, one or more workstations may

soon run out of space.

The solution to the above problem is to place an upper /imit on the number of lines that
may be replicated. The controller can select a reasonable limit by asking each workstation for
an estimate of how many document liney it can accommodate in its available local storage,
and seleching the smallest of the values returned by the workstations. (This is an example of
protocol negatiation, described in more detail in Chapter 5. As described in Section 5.1.5, the
controller may timeout and ignore a workstation that does not reply for a long period of time.)
In addition to remembering which lines are currently replicated and which are not, the
controller also keeps track of the number of lines currently replicated. When this number
reaches the chosen limit and additional lines need to be sent for display, the controller
invokes a replacement algorithm (such as "least recently used") to select as many lines as

necessary which the workstations are instructed to discard.

It is also possible to have all workstations execute the same replacement algorithm as the
controller, in which case they need not be told which lines to discard. This approach is
somewhat more fragile, since it requires ensuring that all workstations do have the correct
code for executing the identical replacement algorithm, as well as the storage for that code. It
also limits the Hexitihity of the controller in using "non-sequential” protocols, described in
Section 4.6.4, with which workstations may not always have the exactly same state as the
controller. In addition, very httle bandwidth is saved by this method. Explicit commands to
discard lines can be encoded into a vy small number of bytes (only needing to carry an
"opcode” and a line-id). and are only sent when there is some other operation that needs to
he sent anyway (else there would be no need to discard a line}. These few bytes can almost
always be combined into the same netwoik packet as the other operation(s). Having the
controller explicitly tell the workstations which lines to discard is therefore simpler than

having the workstations duplicate the replacement algorithm, and the extra cost is close to

126

(PR At v R T T T T T T T T T T Y T - e W e T T T e e e T w3 T s

operation as follows:

1. Determine which windows need updating. There may be morc than one, if a
document that was modified is displayed in more than one window; the ensuing
steps apply to each window in turn.

2. Determine the new "coordinates”, i.e., starting and ending line id, of the window.

3. For each line in the new line-id range that was not in the old line-id range of the
window, send the contents of the line to every workstation.

4. For each line in the new line-id range that was in the old line id range but h.s
been changed, send an update message. (We shall see presently that this
message may carry the entire new contents of the changed line, but will often be
more cfficiently transmitted if specified as an incremental update to the previous
contents of the line.) "Update" messages, with new value Undefined, must also
be sent for lines in the new line.id range that have been dcleted from the
document.

5. Send the new window coordinates if they have changed; if not, a "window ready
for redisplay” message. presuinably encoded into fewer bits than needed to
resend the coordinates, is sent. At this point the workstation will correctly
redisplay the window.

Having redisplayed windows as specilied by the controller, a workstation will discard any
document lines that are no longer visible in any window. This is wasteful, however; if these
lines need to be displayed again later in the conference. the controller must send them to the
workstations a second time. Performance can therefore be improved if workstations
remember lines previously sent, and the controller also keeps track of which lines it has sent
so that it need only send those lines which the workstations do not already have.
Furthermore, it the conference participants are temporarily "idle", the controller can take
advantage of the unused processor and communication channel capacity by sending
additional "anticipatory” lines that are not currently visible and have not yet been sent. If and
when these lines need to be later displayed they will not have to be resent, again improving
response time. Heuristic methods for sclecting which lines to send when idle are specified in
[41.116]: for example, the controller may anticipate sequential scrolling and therefore send
the next scveral lines following the lines visible in a window and possibly a few lines preceding

the window as well.

The above scheme can be implemented quite easily it the controller associates a single
“flag” with every line (of every document in the shared Working-Set) indicating whether or not

the line has already been sent to the workstations. The flag on a previously-sent line must be

R T T A, R PO, S A P S L PRI . S PR A S UL S S W VA5 W S L. LI N

W e

..,1.-
T e

- e W

PRI
.

. N S
PRI DT ¥ WU UK SOV WO U B

o Level of detail, e.g., with hierarchical documents [30].
e Spatial position, e.g., with graphical data structures [33].
The first of the above is illustrated below using JEDI as an example; similar principles can be

applied to other kinds of data structures as well.

4.4.2 Partial Replication

Examining the shared space of JEDI-CONF (in Figure 4-1), we see that it is desirable to
replicatc most of the information at all participants’ workstations. Information about which
participants are present, who is the chairperson, who has which window reserved, and so on,
is needed in order to display appropriate "“status" information. Information about
reservations allows a workstation to "filter” out commands that a participant cannot execute
on the shared space; when the participant does not hold a window-reservation or the super-
reservation, the controlier site will not be burdened with commands that it must reject. It is
also desirable to replicate the names of documents in the shared Working-Set in order to
allow a participant to select a shared document for private browsing; this is discussed in more
detail when we examine private spaces. Except for the actual contents of shared documents,
the storage needed to replicate the shared space is modest; the variable-size arrays, of

participants and document names and windows, will typically have a few elements each.

The bulk of the storage cost of the shared space is therefore due to the contents of the
lines in the documents in the shared space, and it is this that we consider for partial
replication; all other data in the shared space will be assumed to be fully replicated. If we
ignore participants’ private windows for now, we see that the only parts of shared documents
that actually need to be replicated at participants’ workstations are those parts actually
displayed in a shared window. It is therefore sufficient to replicate the contents of only those
lines that appear in some window. (It is possible that only part of some line may be visible in a
given window, but we will not consider partial replication within individual lines because
partially-visible lines will be infrequent and the added complexity of breaking up a line will

outweigh the possible space savings.)

A minimal form of partial replication would have the workstations keep a copy of just those
document lines that are displayed in the shared superwindow. (We do assume that each
workstation has at least this much storage available.) After an editing operation, such as

scrolling or insertion or deletion, the controller informs all workstations of the "results” of the

124

LI R R il e a aaCatata avalala Lol car Cantm e M o el a e e ai e laia e le la

data is transmitted asynchronously, in a way that spreads the delay over a period of time.
That is, the controller sends the most urgent data (e.g., document lines to be displayed in
shared windows) first, allowing the workstations to display it immediately to the participants.
The remaining data in the shared space is sent either when needed tor display, or when the
conference is temporarily "idle" and the controller can take advantage of spare processor
and communication channel capacity; the workstations thus acquire their copies of the
shared space a little at a time while the conference is running. Some additional bookkeeping
is required of the controller, e.g., flags on each document line or ranges of line-ids, indicating
which lines have been sent to the workstations and which have not yet been sent. Extra
processing is also needed on each operation to check whether any data needed by the

operation has not yet been sent.

Full replication does require that every workstation possess the processing power and
storage needed to manage the entire shared space; this may not often be the case. The next
section describes partial replication in which a copy of selected parts of the shared space is
maintained at the workstations. The techniques described helow have appeared in recent
“distributed editing” protocols [41, 116]. These protocols deal with only one user's
workstation and a remote host; we have made necessary modifications and extensions in
order to handle multiple workstations in a conference. In addition, single-user distributed
editing allows the user's workstation to perform several operations locally without informing
the remote host; while this saves communication bandwidth, it is not acceptable for a real-
time conference in which all participants’ workstations must be quickly informed of each
operation so that they may update their displays. (We do consider local execution of
operations at the workstation for improved response in Section 4.7, but immediate
transmission of operations is still required.) Similar partial replication techniques are likely to
be applicable to other kinds of structured objects, e.g. hierarchical "structured display files"
used in interactive graphics applications [33]. We will assume in the following that that an
identical replication strategy is to be followed for all warkstations; "heterogeneous”
arrangements, e.g , full replication for some workstations and partiat replication for others,

are also possible but will require more complex bookkeeping by the controlier.

When partial replication is used, the choice of which component objects to replicate at the

workstations may be determined by any or all of the following factors:

e Logical sequence, e.g., with lines of a document.

123

e e Ta et e e

..
Y

LRI T W, PR W TPAE SR ST WA PR W WY S YT wo SR DT W WA S ST S S s P P P =P P IR 0 I N R I S

agien i arme uwes seul T . —— e 2 et el I b e it en i s Jel S JABE Benh et Susit gt et J

4.4 Replication Strategies

This section addresses the problem of what parts of the shared space the workstations
should keep copies of, i.e., should be replicated, and the implications of the available choices.
We first examine this without consideration of private spaces, and discuss the impact of

private spaces at the end of the section.

At one extreme, it is possible to give workstations copies of only the shared window(s) in
the conference, not the actual application data (e.g., documents) that is displayed in the
windows. This is the "virtual terminal” approach, and has the limitations described in Section
1.6.3, namely that the display of shared information cannot be tailored to the workstation's
capabilities and that application information located at the workstation cannot be transferred.
While there are circumstances where a virtual terminal approach is useful and perhaps the
only one available, e.g., accessing an existing single-user program without modification from
a conference, we will assume below that workstations do have some local intelligence and are

capable of storing and processing some application information.

4.4.1 Full Replication

The conceptually simplest approach to replicating application . rmation is for every
workstation to hold a complete copy of the entire shared space. Th.. «llows the controller
and all workstations to run identical software for performing operations on the shared space,
and these operations can be transmitted in their highest-level most compact form, thus
optimizing performance by minimizing the network bandwidth needed. Full replication allows
a workstation to act as conference controller; there is no need for an extra controller site. (In
addit:on, workstations supporting full replication may serve as "backup" controllers and take
over the conference from the current controlier, as described in Chapter 5.) Full replication
also makes it easy for participants to asynchronousty "browse" over parts of the shared
space from their private spaces; we shall see presently that this is harder to implement when

"partial” replication is being used.

If the volume of data in the shared space is considerably larger than what is displayed (in
shared windows) at any given time, considerable delay will be experienced at the beginning of
a conference, and when large objects are added to the shared space, when the controller

provides the workstations with an initial copy. This large initial delay can be avoided if the

122

e ana searie o s s s aew are e e s anl Shec) MEMISE < aEEeAEE LI Aur i Rete St Rai Jhet i St et IS e SO S AR

negotiations conducted by the participants (e.g., collecting votes or remarks), and internal
negotiations automatically invoked by the controller site, e.g., to determine the workstations’
capabilities as described in Chapter 5. Such points in a conference we shall call

synchronization points.

A synchronization point terminates when the caontroller receives the expected response
from each worikstation. Since not every workstation (or participant) may reply quickly, or
some may never reply (e.g., the workstation crashed), it is also important to allow a
synchronization point to be terminated by a timeout. How the timeout interval is chosen will
depend both on estimated transmission delays and on whether the response expected is to be
generated automatically by the workstations or manually entered by the participants. Since
the delay due to user "think time" is likely to be much longer than transmission delays, a
much longer timeout period should be used when responses are elicited from the participants
themselves; it may also be reasonable to have a participant such as the "chairperson” decide

how long to wait in such a case.

It a synchronization point is terminated by timeout before all replies have been received,
the controller may wish to remove the workstations who have not yet replied, or simply
continue the conference without taking these workstations’ responses into account. Which of
these actions is appropriate will depend on what kind of response was expected and how it
constrains further processing. For example, the absence of a "vote" from a given participant
should rarely require that the participant be removed from the conference; the conference
can continue and the given participant's opinion will simply not be considered at this time.
(His opinion may or may not be considered later, if and when it arrives.) On the other hand, if
the controller is no longer able to transmit messages because one or more workstations are
not processing their messages {described under "How control” in Section 4.6.2), then the
conference cannot continue. Unless the controller is willing to wait, and slow down the
conference, until these workstations begin accepting messages again, it must remove these

workstations and continue the conference without them.

121

P - S o “'. . A..’ R ..‘-~.'. PCU S S .
A AR I PP Pk, ST P e SR, P W el W PO Wl Pl . Y

s aila Ca Al

sent. If communication bandwidth is scarce, one option available is to exchange and verity
version numbers only when establishing that the workstation has a correct initial version, and

then not include version numbers in subsequent update messages.

When the controller executes an operation on the shared space, an update message may
be generated immediately, either in the form of the high-level operation that was just applied,
or translating it into one or more lower-level operations if the protocol requires that.'® Or,
update messages may be deferred: the object, or affected components ol it, is marked "dirty”
when updated. Changes to dirty object components are then sent to the workstations
periodically (with a high enough frequency to maintain reasonable interactive response) or
when a sufficiently large number of changes accumulate. ' Changes to dirty objects may be
sent in absolute form, carrying the complete new contents, or as relative operations
computed by comparing with the value of the object when it was last sent to the workstations.
Sending relative updates will in general require less bandwidth because such updates are
more compact than absolute ones, but will require that the controller remember some
information about the previous value of objects and have an efficient comparison algorithm

such as the various "incremental redisplay” algorithms used in many text editors [45, 115].

Immediate transmission of update operations is simpler in terms of the software required,
and also gets the updates to the workstations more quickly. Deferred updating can still be
useful, especially when bandwidth is scarce and the effects of a sequence ot operations can
be "compressed” into a single more compact operation, e.g., a character typed by the user is
quickly erased. (The case of limited bandwidth is exactly the situation where incremental
redisplay is most heneficial in text editing.) In all cases, generation of updates should not be

deterred for so long as to degrade response time.

4.3.4 Synchronization Points

At various points in a conference, the controller may issue an update message that

expects an input message from every workstation in response. Examples of this are

13The sending of lower-level operations may he: done in tandem with the exccution of the high-level operation at

the controller, e.g .. the code that implements Fill-Polygan will both update the controller's bitmap copy and send a
Wnite- S.anline operation as it generates each scan-line of the polygon.

14Note that deferred generation of updates is different from buffering and batching of already-generated updates
that may be invisibly performed by lower-level communication software.

120

STt e e e T e

K AR AR I
i a PPN U AT WA TP Ths Thir Sl YL WY T W Ty

‘d

AL A e b

P

T T - . . — M eI]

N TP N S U T S A LTS
PR WAL WA WAL W TR AT SR S U WAL WL WL W WS, VIR WD SO WS WK Y S W Wl P iy Soupn - ORI

what coordinate ranges are covered by lhe polygon on each horizontal scan-line of the
bitmap, and then writing into the bitmap one scan-line at a time. If the bitmap is to be
replicated at a group of workstations (so that the participants can see it on their screens), the
designer has one of two choices: the controller could send the Fill-Polygon operation and
arguments as is and let the workstations do the scan-conversion; or, the controller could do
the scan-conversion and send the workstations the resulting sequence of Write-Scanline
operations. The choice should depend on the workstations' capabilities. Sending a higher-
level operation (such as Fill-Polygon) is more compact and saves bandwidth but requires that
the workstations be capable of performing the higher-level operation. If instead a workstation
is not capable of doing scan-conversion, then lower-level operations must be sent, requiring

that more bits (or packets) be sent and degrading performance somewhat.

Update messages may or may not carry some form of version number, sequential or
clock-based (a "timestamp"). Version numbers are not strictly needed when reliable
sequenced transmission is used, because a workstation will always have the correct previous
version to apply the next update to. (Supplying an initial version prior to transmission of
updates is discussed in Section 4.5.) However, version numbers must be transmitted with
update messages if validation of input messages based on version numbers is to be
performed. (With unreliable datagram communication, which we describe in Section 4.6.4,
version numbers are needed so that a workstation can detect duplicate and out-of-order
update messages.) Transmitting version numbers of course incurs added communication
overhead, which can be minimized by making them as compact as possible, i.e., assigning
them sequentially and using only as many bits as are necessary to make the probability of
"wrap-around” of the version number space, and the possible confusion that may result from
assigning the same version number twice, small enough that it can be ignored. (This is in fact
a standard technique for assigning message or packet sequence numbers in computer

communication protocols.)

Version numbers are also useful when communication is performed via "third parties", so
that message sequencing guarantees no longer hold. For example, we shall see cases where
a workstation may get a copy of an object from some site other than the conference
controller, such as a "file server” or "lookup server". Having obtained a copy from a server,
the workstation can then report the version number on that copy to the controller in order for

the controller to determine whether any subsequent updates, or a new value, needs to be

119

D A S R . e Ve R I R e T I R P

T T T T

Ty

1.

)|

It Me s SNSRI Jean e Ste e T SR i A A R A AT A AR SR

participant saw at the time he entered the operation. But when the second input message
arrives at the controller, the first input message has already been processed and has caused
the document version number to be incremented to V2, say, causing the second input

message to be rejected because it was based on an obsolete version (V1) of the document.

Because the second input message above was sent before the results of the first were
seen, the controller took this to mean that the two operations conflicted. But because the two
opcrations were entered by the same participant, who in his mind assumed that the first
operation would succeed when he entered the second, this ought not to be construed as an
error. To avoid this problem, the controller must retain some history information indicating
which participant's operation resulted in which version of the object, so that it does not reject
an operation that "conflicts” with a preceding operation by the same participant. (The
allernative, of a workstation only allowing one input message to be outstanding at a time, is

unacceptable because it does not allow participants to type ahead.)

In many interactive systems input typed ahead is discarded ii earlier input caused an error
that the user has not yet seen, on the assumption that the user would have wanted to do
somacthing different if he had known that an earlier operation had failed. This can be
implemented as well, if the controller remembers not only who entered which operation but
also whether or not each operation generated an error; it can then determine whether or not
the error message was seen at the time a given operation was entered, and act accordingly.
Note that if the controller is recording a hislory of operations on the shared space, all of the
information needed for validating input and for accepting or rejecting typed-ahead input is

reardily available.

4.3 .3 Update Generation

A= the controller processes input messages, it sends the results to all workstations in the
given group in the form of update messages which each warkstation interprets and applies to
its copy of the replicated objects. Update messages can be generated in various forms, and

the different choices available are described below.

Different operations may in general be used in reporting changes to a replicated object.
For example, consider the Fill-Polygon operation on a bitmapped image. This is typically

implemented by applying one of several "scan-conversion" algorithms [33] that determine

18

''''''''
.....

P YR S TR B T S IR Bt Suie

lime, based on some estimate of the difference in transmission delays, thus giving operations
from the slower workstation a better chance of succeeding. (If the controller is itself also a
participant’s workstation, it is treated as an exceptionally "fast” workstation with close to zero
message transmission delay.) This will of course cause the response time observed by all
workstations to degrade to that of the slowest workstation; if this is unacceptable, it is best for
the controller to remove the slow workstation and its participant from the conference
altogether. In some cases, the controller might deliberately bias its processing of input in
favar of a particular workstation, especially if one participant is given power of "chairperson”.
(This might be an argument for making the chairperson's workstation the conference
controller site, provided the workstation can store a complete copy of the shared space and
can perform all processing of operations. If the chair is passed to a different participant, e.g.,
when the chairperson leaves the conference or wishes to relinquish the chair, the controller

site can be moved as well; this is described in Section 5.2.4.)

Concurrency control, as described in Section 3.3, can be performed using reservations, or
by validating the assumptions made by the operation at the tiine the participant entered it,
e.g., the version number of the shared space, or of the particular object(s) being operated on.
Implementing validation, if that is the approach chosen by the designer, requires that update
messages carry version numbers for the objects that they update, so that input messages
requesting operations can report the version number of the copy that the workstation
currently holds. The controller can then compare the version number carried by an input
message with the current version number of the objact, and rcject the operation or issue a
warning (depending on the method chosen by the designer) if the version numbers differ.
More sophisticated validation, based on whether or not the intervening concurrent operation
actually conflicts with an incoming operation, can be performed if the controller maintains a

history of recent operations on the shared space.

Validation of input messages using object version numbers can interfere with type-ahead
in a subtle way. Suppose a user is typing quickly and that each character typed causes an
operation (e.g, to insert the character into a document) t 2 sent to the controller in an input
message. Let us assume that the version number of the object being operated on, say a
document, is V1 at the time the tirst character is typed, and that the second character is typed
before the workstation receives the result of the first operation from the controller. Then, both

the first and second input messages will specily V1 as the version of the document that the

117

.S ‘Li.. L.

i B Bt e B A e A e T ———————————

typing quickly and each keystroke (or burst of keystrokes) results in an input message, the
participant is not forced to wait for the results of one input message betare he can enter
further input. In some cases, however, the workstation may need to wait for the results of a
given operation to be received from the controller because some subsequent operation by the
participant depends on these results. For example, suppose a participant enters a COPY (or

DELLETE) command in the shared space followed by a PASTE command in his private space.

The private PASTE command is executed locally, and does not involve the controller, but in
order to have the desired effect it cannot be executed until the text copied from the shared
space is received from the controller. This may involve a short wait that may or may not be

perceptible to the user; in any case, if the workstation has to wait too long the participant

always has the option of leaving the conference.

4.3.2 Input Processing s

The action taken by the controller on receiving an input message from a workstation will
depend not only on the particular operation requested but also on whether the given
participant currently has permission (e.g., in the form of a reservation, in addition to his overalil

access rights) to perform the given operation. A workstation will filter out and not transmit

operations that the participant is not allowed to perform, based on its current knowledge of
access rights and reservations, but when the controller takes away a participant’s reservation
there will be a transient state during which the workstation, believing it still holds the
reservation, will continue to forward operations to the controller. The controller must
thercfore recheck every input message that it receives against the true state of access

controls and reservations.

The simplest controller strategy is to process (i.e., execute or reject) input messages as

they are received from the different workstations. This raises the question of fairness, in that

if 4 given workstation is experiencing longer communication delays than the other
workstations, then its input operations will take longer before they are processed. In the
absence of preventive methods such as reservations, intervening operations from other
workstations may cause this workstation's operations to have a different effect than intended,
and may even cause many operations to be rejected if validation (described below) is being
performed. If it is important to give fair treatment to every participant’s input, the controller

may artificially delay acting on input messages from a fast workstation by a small amount of

RN

16

Ca
’

fe e,
'."

e e e e e e e e S A A A B Ao S L e e e e) e e A et
.

participant's private space as well. We assume that the need to parse every command
entered by every participant, on private spaces as well as the shared space, will almost always

impose an unacceptable burden on the controller site.)

It input messages instead take the form of higher-level application operations, then the

workstation can include application objects from its private space as arguments in operations

that it sends to the controller. Thus, a PASTE command is translated into an Insert-String o

operation with the contents of the paste buffer as argument. The workstation thus takes some
responsibility for parsing the participant's physical actions into operations on the shared)
: space. For longer "commands" that involve a sequence of physical keystrokes and/or _

b mouse actions, e.g., SELECT 3 WORD, parsing may be done by the workstation, by the L
controller, or a combination of both; how this is done will depend on the interface o
requirements and on whether any private information must be included as an argument of the

command. In JEDI, for example, the interface specification requires that such commands be g

"echoed" in all participants’ copies of the shared space; therefore, some form of input must e
be sent to the controller as the participant is typing the command. This might take the form of

a stream of characters, or high-level operations on a "parse-tree” that is constructed as the

command is typed. Again, the higher-level approach is more flexible because it ailows for)
private application objects ta be transmitted should that need arise. if instead command echo - .
were to appear only on the given participant’s screen, the workstation could parse the entire .
command locally and send only the resulting operation when the participant completes the

command (with a terminating key such as ENTER); in this case, the other participants will not

be aware that this participant is doing something in the shared space.

A participant’s workstation will in general wish to keep track of which of the operations it
sent in input messages were actually disposed of (either executed or rejected) by the

controller. This it can do by labeling each input message with a unique identifier, such as a

sequence number, and having output messages from the controller (whether results of)
execution or error messages) identify which input messages, if any, they are the results of. :
Thus, if an operation remains outstanding for a very long time, the workstation can inform the
participant thereof, who may then decide to leave the conference if he does not want to keep - . '

waiting.

The workstation may also allow operations to be typed ahead by the participant, in that

more than one operation may be outstanding at any given time. Thus, if the participant is

.. P T o A A A
LU IR T TP NI S S AT PRI W Sy deaadea Boa ot

“private space") and the screen updated accordingly when the command completes. Other
actions may be directed at the "shared space"” of a conference in which this user is
participating. The participant’s workstation may also occasionally have to deal with more
than one conference at the same time, e.g., if while in one conference the workstation
receives an invitation to another conference, it informs the participant who may then decide to
teave the first conference and join the second one. (The participant may even try to combine

the conferences; this is discussed in Section 5.2.6.)

The participant's actions on the shared space of a conference must he translated by the
workstation into input messages that are sent to the controller site for processing. The
workstation will also receive update messages from the controller describing changes to the
shared space that resuited from the actions of the conference participants (including this
participant). The workstation processes each update message by updating its copy of the
shared space and then updating the screen (or the "viewport” of the screen allocated to the
shared space) to show the effects of the update. The workstation is responsible for
determining whether a participant's physical actions are intended to operate on local or
remote data; this it does by providing commands for the participant to "sclect” a window or
"mode”. The workstation may also prevent the participant from using certain kinds of
commands depending on various conditions, e.g., if the participant does not hold a
"reservation” that is needed in order to enter commands in a shared window; this will save the

controller site the burden of having to respand to input messages that it must reject.

For participant actions that are directed at the shared space of a conference, there are
many ways in which the workstation could send these to the conference controller as input
messages. At the lowest level, physical keystrokes and mouse actions might be forwarded to
the controller for parsing into operations on the shared space. This is the approach taken by
"virtual terminal™ protocols, and is best suited for situations where the participant’s action
have little semantic content and do not need much parsing, e.g., moving a mouse "pointer”
over a shared window. For higher-level operations, however, remote parsing of keystrokes by
the controller has the problems already described for virtual terminals in Section 1.6.3. The
PASTE command in JEDI, for example, cannot be implemented by remote parsing at the
controller because it requires locally stored application data (the participant's "paste buffer")
from the participant’s private space. (Such information transfer could be implemented with

remote parsing if the controller manages not only the shared space but also every

114

‘ ‘_l,.“,v..,‘.'.

*1
.

B N "';'."
P ERRRRE R
. . tL . .

| PN
'

Ladd
‘ K
AI‘.l,
£ 4
S
DR A

1
P

L A R ARy
Y3
f’l

e . TT——— - ————

v foa, Y e e e .
_,..‘-44....

P ——— P P ————

approximating the message transmission delays from the other workstations, before
processing the given participant's commands. This is discussed in more detail below in
Section 4.3.2.

While having a participant's workstation play the role of conference controller allows a
conference to be held with one fewer site, the given participant cannot leave the conference
and use his workstation for other purposes. We will describe how the controller of a
conference can be moved to a different site, thereby allowing the controlling workstation to

leave, in Chapter 5.

In discussing how the controller and workstations interact, we assume that a real-time
conference has already been set up, with the controller and workstation sites already running
the software needed for the given conference. The problems of locating controller and
workstation sites, and of finding and starting up the necessary software, are discussed in
Chapter 5.

4.3 Input and Update Processing

This section describes how participants’ workstation sites generate, and the controller
responds to, "input" messages describing the participants’ commands, and how the
controller generates and the workstations respond to "update" messages describing the
effects of these commands. Different kinds of input and update messages, and their refative
merits, are discussed. What kinds of input and update messages can be used will in some
cases be constrained by what information from the conference object is "replicated” at the
workstations. While replication strategies are discussed in Section 4.4, the two issues are in
fact closely interrelated and we will make occasional reference below to how the replication

strategy influences the processing of input and update messages.

4.3.1 Workstation Interface

A participant's workstation site is responsible for displaying information to him on his
display screen and for dealing with actions that he performs on physical input devices such as
the keyboard and mouse. (These functions are often referred to as "window management”
and "command parsing", respectively.) Some of the participant's actions will have purely

local effect, in that a command is invoked on locally stored data (e.g., the participant's

113

W ey

zero.

Y Y vV Y v v v

4.4.3 Private Spaces

We have made several references above to participants’ private spaces; we now discuss
in detail how these might be implemented. We assume that each participant's private space is
managed by his workstation site; the hurden of processing all participants' commands on
their private spaces will usually be too much for a single cor.troiler site. With responsibility for
the private spaces on the workstations, we next examine interactions between the private and
shared spaces. In JEDI-CONF, there are two sources of such interaction: the participant’s
paste buffer, for transferring text beciween windows, shared or private; and private windows . e

into adocument that is in the shared Working-Set. We examine each in turn.

A participant’s paste buffer is update by COPY and DELETE commands and its contents
are used by the PASTE commanc. So long as these commands are performed on private
windows, they can be executed locally by the workstation without any interaction with the .
controller. If any of these commands are entered on a shared window, however, some
interaction between the workstation and controller is required. A straightforward

implementation would be as follows:

i e A DELETE or ~OPY command on a shared window is sent to the controller, who
- must not only report the result of the operation (document and/or window
. updates) to all workstations but also return the contents of the deleted (or copied)
. region to the workstation tihat originated the command; the workstation stores the B
F received text into its paste buffer. s

e A PASTE command is translated into an Insert-String operation that is sent to the
controller, carrying the contents of the paste buffer as argument. (If the
workstation has not yet received the resuits of a preceding COPY or DELETE on a
shared window, it first waits for the paste buller to be updated by the results of
the command.)

Depending on how the participant uses the above cominands, some improvement may be T
possible. If the participant copies or deletes text fiom a shared window and then pastes it into
a shared window, same or ditferent, the affected text must be sent from the controller to the
workstation and then from the workstation back to the controller. Sending the text back to the) [
controller, when it originated from the controller in the first place, is wasteful. It is therefore
useful to allow the controller to replicate parts of participants’ private spaces (such as the

paste buffer here), in the same way that workstations replicate parts of the shared space. '_j.-_:'

127

. S e e e e e et e et e . R PP R~ R R AT S A
Leransd [IONF N P PSP PGPS 7 SIS TR T S Sl Sl SOE Sl) PP LT URT DAL PP Pl Ty T P DR P W SR DAY DRI R AL IR S

T T T DA A T T T S e T T VT e Y T e T w v v PTEIT T e T e e T

Then. a workstation can send a more compact PASTE command carrying no argument, with
the understanding that the controller will use its copy of the participant's paste buffer to SR

perform the operation.

Replicating a participant’s paste buffer at the controller requires that the controller’s copy

be kept consistent. If, however, a participant is performing several cut and paste operations
in his own private space, then sending the new contents of the paste huffer to the controller o

each time is wasteful because it is never used in a paste command on the shared space. This

can be remedied by the workstation updating the controller’'s copy only when needed, i.e.,

when the participant does enter a paste command on the shared space. Since the controller)
'j never uses the participant's paste buffer on any other occasion, it is not necessary for it to e
receive every update in "real time". This strategy can be implemented by a workstation .

associating the following information with its paste buffer: R

o A "dirty" flag that. it on, indicates that the paste buffer has been changed locally
by the workstation without informing the controller. o

e A Waiting-For sequence number or other unique identifier specifying a COPY or
DELETE command whaose result the workstation is awaiting from the controller.
Waiting-For will be Undefined if no such operation is outstanding, and the dirty
flag s never on unless Waiting-For is Undefined.

The action taken by the workstation is then as follows:

¢ COPY or DELETE in a private window: Update the paste buffer, set its dirty flag
on, and set Waiting-For to Undefined. (The workstation need no longer wait for
any results to arrive from the controller because the contents of the paste buffer -
are completely replaced.) “ . -

o COPY or DELETE in a shared window: Send the command to the controller and
set Waiting-For to the sequence number assigned to this command. The
controller on executing this command and returning the affected text will also
save the text in its copy of this participant's paste butfer.

o PASTE command in a private window: If Waiting-For is Undefined, insert the L
contents of the paste buffer into the given private document. H not, wait until
Waiting-For becomes Undefined, i.e., until the awaited results are received from
the controller, and then use the contents of the paste buffer.

e PASTE command in a shared window: if the "dirty" flag is off, send the command T
to the controller who must have an up-lo-date copy of the paste butfer. If not, first ®
send the contents of the paste buffer to the controller and set the dirly flag off,
and then send the paste command.

e Results of COPY or DELETE received from controller, carrying a sequence
number: If the sequence number matches Waiting-For, update the paste buffer)

128

and set Waiting-For to Undefined; the dirty flag must already be off, and need not
be updated. If the sequence number does not match Waiting-For, discard the
message because it carries the results of a command rendered obsolete by a
subsequent COPY or DELETE in a shared or private window.

n We next examine the necessity of the controller transmitting the results of a COPY or

DELETE command to the workstation. Since the workstation has some lines of shared
. documents replicated, it is possible that it may already have the text to be copied or deleted. 4 o
-

The controller therefore does the following on executing a COPY or DELETE:

L"f- o If every line between the mark and cursor inclusive is currently replicated by the
. - workstations, simply send the COPY or DELETE command as its own "result” to
y all workstations. Every workstation can delete the selected region (or do nothing
on a COPY), while the workstation that originated the command will in addition
save the selected text in its paste bufter. (The workstation in question will
recognize its own COPY or DELETE command by matching the Waiting-For
sequence number as described above.)

o If one or more lines in the selected region are not currently replicated, send these
lines to the originating workstation (only) and then send the COPY or DELETE
command to all workstations. The other workstations will delete all affected lines
that they do have a copy of (or do nothing on a COPY command, again), ignoring
the other deleted lines that they do not have. The originating workstation will
save the selected text, which includes text from the lines specially sent by the
controller, in its paste bufter. The extra lines are sent by the controller only to the
originating workstation, not the others, and are specially marked. The
workstation uses them aonly for copying into the paste bhuffer; it does not retain AR
them in its partial capy of lines from the shared docurnients, so that its copy stays '."-"?f:-':"
consistent with the other workstations and the controller. o

The other interesting issue in implementing the private space has to do with the possible ot
overlap of shared and private Working-Sets. We assume that every document is permanently

stored at some file server which also enforces access controls, grants and takes away

reservations, and so on, and that the file server for a given document is easily determined
{e.g.. embedded as part of the document "name”). In general, the workstation of a participant =

wishing to view or edit a document in his private space must obtain the document from its file

server, which will verify the participant's access rights. (A workstation with limited local
storage may negotiate "partial replication” of documents with their file servers, as in the
distributed editing protocols of [41, 116].) If, however, the document in question happens to
be in the shared Working-Set and is being edited in the conference, the workstation should
instead get the contents of the document (or at least those lines that are to be displayed in a

private window) from the conference controller. The reason for this is that obtaining the

129 =

- et T e T e e e e

T A ‘. et s L e e -
. A I A I . N BT A A e S e e e e S T T R A T AP AP
DU PN L, s T ST SV LS SPCELGY. U S S A'."J".'"--.f - .LM_&A._. FUFVT T LIGT SN IS TUT TS P TV T W I

A\ B B AL e ne At e St wi ant Mab Ui Snd el e A AL AL AR T A AL R e aC A .y vy FTTTT

document from the file server will only get the last "checkpointed” version; the intermediate
editing changes heing made in the conference will not be seen. (If the participant specifically
does not want to see the editing changes as they are made, he should he allowed to ask for a

"frozen" version in his command; his workstation will go to the lile server in this case.)

Therefore, when a participant performs a Edit-Document command in a private window,

his workstation checks its copy of the document names in the shared Working-Set (which is

replicated) and acts as follows:

o If the given document is not in the shared Working-Set, obtain the document from
its file server,

k; ¢ If the given document is in the shared Working-Set, obtain the contents of the
desired private window from the conference controller.

B Before we discuss in detail how the contents of a private window are obtained from the
' controller, by "registering” the window as described below, we briefly examine how the above
strategy is affected by changes to the shared Working-Set. A document that was obtained
from its file server, because it was not in the shared Working-Set at the time, may later be
added 11 the shared Working-Set. If so, the participant’'s workstation, on noticing the change
to the shared Working-Set, should switch strategies for that document and obtain the
contents of private windows from the controller. Conversely, having registered a private
window with the controller, the given document may later {(or concurrently) be removed from

the shared Working-Set. If and when this happens, the controller will send the workstation a

message stating that it can no longer supply the contents of the private window(s) and the

workstation now obtains the document from the file server instead.

if the contents of shared documents were fully replicated at all workstations, implementing
private windows would be trivial: Since it already has a complete copy of the shared .
document and receives updates from the controller as they happen, a workstation can display ®
a private window without any further help from the controller. WIth partial replication,
however, a workstation might find that it does not have copies of some or all of the lines
needed for display in the private window. Il therefore "registers" the private window with the
controller, sending it a message specifying what range of line-ids are covered by the private
window. Therealter, the workstation informs the controller whenever the range of line-ids
changes {(as a result of scrolling the private window), and when the private window is

destroyed (by switching it to another document, or by an adjacent private window growing to

130

e Lt T e T e e e T
e Sat RS AP AP SR PY SPUL W Shir ST TP WA Yai)

LoD Ja anus s aown 2mvh 4 P —— ” T T —— L AR e segh Sl Ainl Sand Shes Stk St Sendh lenith el i Jhthe Sek At M e Bed acth

cover this one). The controllier keeps track of every workstation's private windows into all
shared documents, and ensures that each workstation has an up-to-date copy of all
document lines in that workstation’s private windows. If the number of lines replicated at all
workstations is well below the specified limit, the controller may simplily its bookkeeping by
sending lines needed by any workstation's private windows to all workstations. This will no
ionger be possible once the number of lines replicated approaches its limit, however. Instead,
whenever a workstation registers a new private window or scrolls an existing one, the
controller sends the workstation those document lines needed for the private window that are
not already in the set of lines replicated by all workstations or already in this workstation's

private windows.

-

4.5 Adding and Removing Participants

' Suppose a conference is already in progress, with a group of participants’ workstations
replicating some set of objects using some set of input and update messages, and a new
participant joins. In order to correctly process subsequent update operations sent by the
controller, the new participant’'s workstation must first be supplied with starting values of ali

objects replicated in the group. Furthermore, the method used for supplying these initial

B) I

values must be properly coordinated with new update messages that may be sent, so that the
new workstation is added to the group at just the right time, when it holds the same version of

the replicated objects that the other workstations hold.

4.5.1 Immediate Initialization ety

...A
et
Salal b

The simplest approach to adding a new workstation to a conference is to immediately

send it the current value (in the form of "absolute" update messages) of all objects replicated ','..",:‘{
" in the existing group of workstations. This might be refined slightly by "decomposing" the
“ contents of large objects into smaller pieces and sending a sequence of operations of which
at least the first one must be an absolute update. For example, the contents of a bitmap could
be sent as an initial Clear-Bitmap operation followed by a sequence of Write-Scanline

operations carrying the contents of each horizontal scan-line one at a time. This will allow the

.
.

. . .
[N ST
.‘_..- Lol

receiving workstation to write the scan-lines of the bitmap into the allocated storage, and

..W

. 9
- display them to the participant, as they are received. This would not be possible if the bitmap -1
.- contents were sent as a single monolithic "message” that cannot be processed until it is first

[)

» = ®
- <
131 R

RN - IR
T O T R R AR . sy e L. - ", - R NP U S)
G I PR PP S P AP LI AP PN PR SR P, D . WA WP W ARE SN WY Wi Sy APy N . LRI P P S AR SO N PRI L

e . . - PN . - B LT et . R N PR - . . -
L R L . . . LS P PO . B . . B “ . N « . . . L P L R R S «
PRI P I S . P PR PSP LI PR PR TP PRI RS S I PP S PR PR PR IR IR Py TR T Py Yo T YU U D W W L .

—y LA SRR SO N PRl AN AR A S A AFL S R A AR A A AP A S P

completely received in a separately-allocated buffer. Not only is the extra storage saved by
sending and processing one scan line at a time, but the effect on the participant, who is
waiting for his screen to be updated, will be more pleasing. Various other methods of
decomposing large objects are possible, e.g., since a Clear-Bitmap operation sets all bits to
zero, it can be followed by a sequence of operations that write contiguous "runs™ of one bits.
In the case where not all the replicated data is actually being displayed in a shared window
{e.g., document lines), the controller can send the displayed data first so that the workstation

can show it to the participant immediately while the rest of the data is being sent.

While a copy of a replicated object is being sent, in whole or in parts, to a new workstation,
further updates to the object's current value must be prevented until the complete object
contents have been transmitted, at which point the new workstation can be added to the
group and updates reenabled. This may involve a significant delay ftor large obijects,
especially if the rate at which the new workstation can process incoming data, or the network
bandwidth, is limited. Whether or not this is a serious problem will depend on the length of
the delay and on whether the participants perceive it to be a problem. In many cases, the
entry of a new participant intc a conference represents a significant enough point of
discontinuity that the participants can tolerate the delay; they might occupy themselves with a
conversation on the voice channel, e.g., to briefly summarize the conference and introduce
the new participant. In other cases, participants might not wish to have their commands held
up. The controller could try to choose an appropriate time for giving the new participant’s
workstation its copy of replicated objects in order to minimize this effect, e.g., after informing
all participants that a new participant is joining, the controller could wait for a few seconds in
the hope that participants on learning of this will quickly complete their commands and stop
typing, and only then send the replicated objects to the new workstation. Any such delaying
action is only probabilistic (participants might not stop entering commands), and will in turn
increase the delay seen by the new parlicipant; this again may not be a problem if a joining

participant expects a brief defay anyway.

4.5.2 Asynchronous Initialization

If not all of the replicated objects’ contents are immediately needed for display in a shared

window, the controller can try to "spread out” the above delay by first sending just those

objects (or components) that are urgently needed, and sending the rest asynchronously. That _jf::.' ::f_'f:.

132

CO LN DAL I A

is, the controller adds the new workstation to the existing group but also remembers which of

the replicated objects it has not yet sent. The controller then does the following:

o Whenever it has the opportunity (e.g., the conference is momentarily idle), the
controller sends a few more of the replicated objects to the workstation and
marks them as having been sent.

e Whenever an update or display operation is to be performed that requires one or
more objects that have not yet been sent to the given workstation but have been
sent to the others in the group, first send the required objects to the given
waorkstation before performing the operation.

Since replicated objects are sent to the new workstation only as needed, or when there is
spare processor and communication capacity, an update to the replicated objects is delayed
for only as long as it takes to send the new workstation those objects needed by that update.
This will usually be imperceptible, except perhaps for drastic changes for which participants

may expect some delay anyway.

The above technique is essentially identical to asynchronously supplying all workstations
with replicated objects, as described in Section 4.4.1. The difference here is that the
controller must keep track of which workstations if any are in a "transient” state with respect
to the others, and for each of these must separately remember which objects have been sent
and which have not. This will in the warst case require one extra bit per replicated object per
workstation, but may often be "compressed”, e.g., by remembering ranges of line-ids or array

indices per workstation.

4.5.3 History-Based Initialization

An aiternative to the above, which completely eliminates the blocking of further updates at
the cost of taking the new workstation somewhat longer to catch up and join the group, is to
use the history of updates to the replicated objects, assuming such a history is being
recorded. The controller selects the most recent "absolute” update or “checkpoint” in the
stored history, and sends that to the new workstation followed by all subsequent operations
(which must be "relative” updates) in the history. Once all of these operations have been
sent, the new workstation is added to the groun and will receive subsequent updates. if the
other workstations are in the meantime sending input messages that cause further updates,
these are not a problem because the updates are simply appended to the history so that the
new workstation will receive them before it is added to the group. (The controller must

synchronize its actions to ensure that the new workstation is not considered to have

133

Ty
2 ah

et T
R A .
C_h o alm e & 8

— < . T T ————— — e el e AR e A

exhausted the history, and added to the group, while a new update is being appended.)

The main problem with using a history of updates is that it may take a long time to bring a
workstalion up-to-date, especially when the most recent checkpoint (e.g., a saved version, or
an absolute operation that clears or resets the contents of an object) is followed by a long
sequence of relative updates. This is not a problem for a participant who specifically wishes
to review the history of the canference when joining. If instead the participant does not wish
to review the history, the transmission delay, and processing load on the controller, in sending

the history will usually be warse than if the current cbject contents were sent.

A combination of methods may be used as a compromise. Thatis, a checkpoint is sent if it
is recent enough that the subsequent updates can be quickly processed by the new
workstation; if not, the current values of replicated objects are sent, immediately or
asynchronously as described above. If the controller does have to send the current value
immediately, and temporarily block out further updates, it may take the opportunity to
checkpoint the state of the replicated objects at the same time, in the same traversal over the
given objects. This will be useful if the designer wishes to support queries on the conference
history such as "show the state when participant X joined"; or, a participant in the conference

may have explicitly requested a checkpoint on learning that a new participant is about to join.

Recording an object’'s update history can be particularly useful when adding a new
workstation if the workstation already has some recent copy of the object. This may happen it
a participant leaves a conference briefly and then joins again, during which time his
workstation has not discarded its copy of objects from the conference. Or, when documents
are read and written from file servers, the workstation may have obtained a previous version
of a document from its file server or may be instructed to do so by the controller. 1f the
workstation reports to the controller which previous version, if any, it has, then the controller
need send only the intervening updates if they are still available in the history; it might even be
the case that the workstation's version is still current and no updates need be sent. Since the
controller does not have to send a starting value, even a moderately long sequence of
updates may be better, in terms of transmission and processing delay, than sending the entire

current value.

A

134

e
AP L SR B

. LT e IR AR A R I T R R Lot - . B N ot . Wt e e A
PP PR WL T IR, SR TPRE o W W RPN W SR YO W ST Sy i i S . DU P I HIPTIPE J S SO U S NG VY PP RIS U el Y Yl 4._..‘

4.5.4 Removing a Participant

A participant’s workstation may be removed from a conference when the participant
decides to leave the conference, or when an authorized participant forcibly revokes his
permission to stay, e.g., because of misbehavior. (Which participant can do the latter, e.g., a

chairperson, is up to the designer to decide.)

In addition, the controller site may remove a workstation if it is not responding for a long
period of time, or if the workstation is not processing received messages quicily enough and
is slowing down the conference. In either of these cases, the workstation might in fact have
crashed. The controller may be programmed to remove a slow workstation automatically on a
timeout, or may let an authorized participant such as the chairperson decide how long to wait.
If it is the chairperson’s workstation that is slow, the controller should designate a new

chairperson to make such decisions.

A participant who left the conference may be allowed to join again, depending on the
circumstances under which he left. If the participant was forcibly removed, the controller will
refuse his attempts to join again unless he has been "forgiven" and explicitly given
permission to join again. A participant who left of his own accord should of course be allowed
to join again, unless his permission to join was revoked in the meantime. In the case of a
participant who was removed because of communication problems, the controller must make
a judgment as to whether the problem was transient, and probably will not cccur again, or
persistent. Unless the participant is rejoining from a different workstation, or more specific
information is available from the network (e.g.. the problem was a network "partition” that has
been repaired), the controller can at best make a guess that may turn out to be wrong. A
reasonable approach in this case is to give the participant’'s workstation a second chance (or
some number of chances) and to remove the workstation permanently if communication

problems persist.

When a participant leaves a conference, his workstation may retain its copy of replicated
objects from the shared space. If the participant then joins again, the workstation can report
the version number(s) on its copy to the controller; this may allow the controller to send the
workstation a short history of changes instead of a complete new copy as described above.

The workstation may instead discard ils copy when the participant leaves, if:

o The participant indicates that he does not plan to return to the conference. (He
may of course change his mind later.)

135

- (.- '““‘ "-‘" ﬂ- --A“‘l- I. l- l. Py o PP - - < = L N L] = 2 ﬁ = o 2 -y o 2 =~

e aan o o4 AR A e A e G dinte fhate (e Saus s Bue S TTTETT T T YT, TR IR LW

e Local storage is scarce; having left the conference, the participant may need
storage space for whatever he does next, e.g., reading mail or locally editing
documents.

e The participant has been away from the conference for a long time; the old copy
is likely to be useless because the intervening history of updates may be very
long.

if the participant does rejoin a conference after his workstation has discarded its copy of

replicated objects, the controller will have to supply it with a new copy from scratch.

if a participant leaving a conference does plan to return, his workstation may even wish to
continue receiving update messages from the controller, updating its copy of the shared coe
space wilthout displaying it to the participant. The workstation should only do this if it has @
sufficient spare storage and processing power, over and above what it needs to handle

whatever else the participant wishes to do on leaving the conference. If the designer wishes

to allow for this possibility, the controller site must distinguish between two different

"statuses” of a participant: whether updates are being sent to the participant's workstation, . o 4
and if so whether the participant himsell is actually present. (Note th:t the status information J
displayed to the other participants should be based on the latter.) The controller may also S J
refuse to continue sending update messages to the workstation of a participant who left, S ':' ‘:'f:

simply to unburden itself of the extra load or because the workstation is slow in processing
these updates. Because the other participants are not concerned with whether or not such a
workstation is still receiving update messages, the controller can remove the workstation

automatically without requiring intervention from the chairperson or any other participant.

4

4.6 Transport Protocols |
We have implicitly assumed so far that reliable sequenced transmission of messages : ° 1
between two sites is automatically handled by the communication network. Even with this B 1

assumption, there are some known techniques that can be used for minimizing _«":{-}}
communication overhead, which we briefly review. We also describe some further
improvements in performance that may be possible if the controller and workstations handle

some of the lower-level communication details themselves.

136

SN AN TG T T Sk, SO . ST PR SRR Tl Vol S-S ST L. SV S SR Sl S WAR W B T U VAT S S AP AP LI AL NI WAL WA WS |

4.6.1 Message Encodings

We assume that some efficient procedure is used for encoding an abstract input or update
message into a linear sequence of bytes stitable for transmission, and for decoding such a
linear sequence at the receiving end. As described hy Sproull and Cohen [114], a message is
typically encoded as an "opcode” that designates the parlicular operation being reported or
requested, followed by the encodings of zero or more arguments. A general-purpose
cncoding procedure, such as Xerox's Caurier [122] or Herlihy and Liskov's procedure for
abstract data types [57], may be used. Or, the designer may hand-tailor a more compact
encoding, incurring a greater software development cost, based on the expected usage. FFor
example, in "virtual terminal” protocols the transmission of a single printable character
usually means "dispiay this character at the current position and advance the position”. The
"opcode" is implicit in the argument and is not transmitted, except in the case of other
operations which are assumed to be less frequent. Or, a "Clear-Bitmap" operation that takes
a single one or zero bit as argument can be encoded as two different opcodes each of which

requires no argument to be transmitted.

The message encoding will also depend on what kind of lower-level transport protocol is
being used. For unreliable "datagram” communication (described in Section 4.6.4), input
and updat: messages must include version numbers so that a receiver can detect out-of-
order and duplicated messages. Version numbers are not required in the more common case
of reliable sequenced communication, although they may still be needed in certain messages

as described in Section 4.3.3.

A given linear encoding of a message will usually need to be transmitted as one or more
packets of whatever maximum packet size the given transport protocol supports. (There is no
need to construct the linear encoding separately before sending packets; the encoding
should be performed directly into packet buffers if possible to save storage and processing
time for copying.) If a given message is larger than the maximum packet size, it must be
fragmented by the sending site into multiple packets, which are reassembled by the receiver,;
a special "end-of-message"” bit with each packet, such as provided by the Xerox Sequenced
Packet Protocol (SPP[123]) and X.25[13], can be used to do this. If instead a bytestream
protocol such as the U.S. Department of Defense Transmission Control Protocol (TCP

[14,100]) is being used, message boundaries can be delineated either by embedding

137

e T T T A S N A N A AL T At Bt S e T N
OV SI WAE . VA NSNS VUL S WO SO SOl SR VKAL) L Wl TR SO S W A WA SR WA A TN S S WA %

St

ORAscA B St ve BPE A B S

o 1
PR
N _..'_-‘ -
T
SR,
AR
- R

®

1
3

[]

»." . (.1
. -]
A. .. b

E
o

. e
. ' .) PO 2T P
ntindbndibb e foadendideid bt dhan

E gt '.‘ . ". . ..‘ R
b}
For
1

15 1t many of the

message length descriptors or by using a special byte value as terminator.
messages to be transmitted are smaller than the maximum packet size, embedding message
lengths or terminator bytes will allow more than one message to be sent in a single packet.
Such message aggregation will often improve performance, but in an interactive application
such as conterencing must be used with care. That is, a partially filled packet should not be
butfered for too long and should probably be sent if no further messages are generated within
a short ime interval (some fraction of a second), or if the application explicitly requests that

butfered data be "pushed” out.

For the rest of this section, we shall assume that the communication network allows
arbitrary-length messages to be transmitted, with the understanding that message

fragmentation and reassembly, or aggregation, is performed when necessary.

4.6.2 Virtual Circuit Efficiency

The most common form of transport protocol, available on every network in some form or
another, is a virtual circuit; examples of virtual circuit protocols are TCP [100], Xerox's SPP
[123], and the 1ISO Transport Layer Protocols [62].

A virtual circuit is a bidirectional {or “tull-duplex™) channe! of communication for
transmitting messages, reliably and in sequence, between two sites. A virtual circuit is
implemented by a transport protocol "layar” [63] that hides message loss, duplication, and
reordering.’6 This is done by associating a consecutively increasing sequence number with
each message in a given direction of the virtual circuit, and retransmitting each message
periodically (based on some estimate of the transmission delay) until an acknowledgment is
received. Vittual circuit protocols also provide some form of flow control [37] to prevent the
sender in a given direction from sending messages faster than the receiver can process them.
Flow control is usually implementc: by some form of window strategy: lhe receiver specifies a
"window" of how many additional messages it is willing to accept, and advances the window
as it processes received messages. The sender is not allowed to send any messages beyond

the window specified by the receiver; it must wait for the window to be advanced. A sender

'Sln the tatter case, occurrences of the special byte value within the body of a message must be "quoted”, usually

by repeating the given byte value, to distinguish them from message terminator bytes.

16Conuphon of transmitted messages is also usually masked by attaching a "checksum” and discarding a
message that is received with 2 bad checksum; the message thus appears to have been "lost".

138

CR I A A TR AR

S -

1

]

]
i
q

- e PO LA T S
Sl . . P . . o~ . Wt e Wt T Rt A i
AL VREE RPN WO PP PP L PR LSS T LN NI A G T Yol Wi W S

that is unable to send additional messages because of a "closed” window may timeout and
abort the virtual circuit if it has to wait too long; the same applies if a given message remains

unacknowledged alter a large number of retransmissions.

Acknowledgments of messages in a given direction are combined with data messages in
the reverse direction whenever possible. To minimize the network loud, and the number of
message processing events at the other host, it is important that the number of messages
carrying acknowledgments only and no data be kept as small as possible. The standard
method of deing this is for a receiver to send acknowledgment-only meassages only when the
sender explicitly asks for them. (A special bit in the message header, as in SPP[123], is
reserved to indicate whether or not an acknowledgment is being requested.) The sender in
turn asks for acknowledgments as infrequently as it can, only when the receiver's flow control
"window" is about to be closed or when retransmitting an unacknowledged message. (The
sender may also ask for an acknowledgment if its queue of unacknowledged messages is too

long, whether or not the receiver's window has close’i)

For interactive communication, e.g., remote login or a real time conference, the above
mechanism is not entirely sufficient; a message that is lost will not be retransmitted untit much

later. The following extensions are therefore useful:

1. If a message is received out of sequence, i.e., with a higher sequence number
than the next message expected, there is a very high probability that the previous
message was lost. The recciver theretore returns an unsolicited
acknowledgment, in effect a "negative” acknowledgment, urging the sender to
retransmit the missing message as quickly as possible without waiting for the
message's scheduled retransmission time. (The sender on receiving an
unsolicited acknowledgment will not always retransmit the next unacknowledged
message immediately. The incoming acknowledgment may in fact be quite old,
having been delayed in the network; a message that was sent or retransmitted
fairly recently is therefore probably on its way to the receiver and is not
retransmitted.)

2. When a message is sent that expects a message in response, the sender requests
an acknowledgment. This ensures that the message will be retransmitted later if
lost, even if no further messages are sent and the receiver's window does not
close. (The receiver of a message requesting an acknowledgment should delay
returning the acknowledgment for a brief interval while the message ‘3 being
processed; it a message is quickly generated in response, the acknowledgment
can be included in tie same message [23].)

Except for case 2 above, the actions described are usually performed automatically by the

virtual circuit protocol layer, beyond the application programmer’'s control. The last

139

PR S S YR Y

el T ol ol

<4
p
<
.9
<

[

[]
.“.-..T...:’

- - A;]
. ‘--‘ \ vl

o 4
NS

[
o

L e - i g MGl SN R aat It g . T R e It

technique, however, requires the application to specify when a given message expecls a
response. The virtual circuit layer will either accept an extra argument in the procedure call
for sending a message [23], or allow the application to directly set the bit in the message
header that requests an acknowledgment [123]. When this is possible (not all virtual circuit
protocols allow this, unfortunately), the designer should exploit it: a workstation should
request an acknowledgment when sending an input message that expects an update
message in reply, and the controller should request an acknowledgment when it expects a

response froin a workstation, e.g., at a "synchronization point".

4.6.3 Reliable Multicast

l'he virtual circuit between the controller and each workstation is implemented by lower-
level protocol software independently and without knowledge of how the other virtual circuits
are being used. When the same information must be sent to all workstations, this results in

the following inefficiencies:

e Each virtual circuit has its own retransmission queue; storage is wasted when the
same message is duplicated in multiple queues.

e Each virtual circuit performs retransmissions independently. Multiple "timers”
must be set and responded to for retransmitting the same data to different
destinations, increasing the "process switching” overhead.

o [f efficient multicast communication is supported by the network for transmitting a
message to multiple destinations (e.q., on a local area or satellite network), it
cannot be exploited by independently-implemented virtual circuits; the same data
must be sent separately to each destination.

These problems may not be serious for small conferences (say two or three workstations), but
for targer conferences will impose considerable overhead on the controller. An alternative
approach is to use reliable multicast, which uses the same acknowledgment and
ratransimission techniques as virtual circuits but with a single retransmission queue and timer

for all destinations.

Reliable multicast of a sequence of messages from the controller to a group of
workstations works as follows. We assume that messages are transmitted in the form of
unreliable datagrams: a datagram is not guaranteed to arrive at its destination, but the

probability of its not doing so is extremely low, usually less than one percent.17

17|t 15 assumed that damaged datagrams are not delivered, nor are datagrams delivered to the wrong destination;

checksumming techrniques are used to ensure this.

140 DR

o

T L N . B o . e RN RS . .
VOSSO S SRR VO VLA T AL SO VAU S Sl GO S, S-S SR i S VA SR ST VU Wl S VAl S VLSRG ST, V- Vel WAL WU LIS S S Sl Uil VoI SRAP . B UL 0 JPOR. WU, WS WS

T ———

sends the controller a request for retransmission of the message id associated with the
missing serquence number M. The controller responds to such a request in the same way

as above, extracting the sequence number and message id from its retransmission queue.

» A workstation issuing an input message also includes a global sequence number
indicating that it has received all messages through the given global sequence number;
this will allow the controller to discard messages on its retransmission gueue that it knows
have been received by all workstations. If however a given workstation issues o input
messages, and therefore no acknowledgments, for a long time, the controller's
retransmission queue may grow arbitrarily long. The controller should therefore 1equest
an acknowledgment when its queue grows long, and remove a workstation that does not

respond after the request has been repeated a few times.

An alternative method for controlling the size of the retransmission queue is described by
Chang and Maxemchuk [15]. In this praotocol, the controller site is moved around a virtual ring
that includes every workstation.?* The current controller site passes the "token” to the next
workstation in the ring, making the next workstation the controller, after receiving and
acknowledging K input messages, for some fixed K. A workstation does not keep track of
where the controller is located at any given time (except of course when it is the controller);
rcquests for retransmission are multicast so that whichever site happens to currently be the
controller can respond to them. Because a change of controller requires that the new

controller acknowledge all previous messages, a complete traversal of the token around a

ring of N workstations means that every workstation must have received and acknowledged at
least all messages preceding the last K*N. The retransmission queues of all workstations

(each of which must handle retransmission requests during its turn as controller) therefore ; e ﬁ:

PRI

need be only K*N messages long. Instead of collecting acknowledgments from all sites at T
once in order to bound the length of the retransmission queue, this method collects [)
acknowledqgmants from one site at a time every K messages; the problem of acknowledgment

"bursts” (Seclion 4.6.3.3) does not arise. (lf the workstation holding the token crashes, the

token is regenerated and the ring reconfiyured by one of the other workstations playing

"backup”. using a procedure similar to that described in Section 5.2.5.) . @

24Uf:e of this method requires that it be permissible to move the contioller site of a conference, a possibility that
we discuss in Section 5.2 4.

154

‘a‘a'a’a” Sl PSR S WY BRI SR S 3 0

an "acknowledgment” message carrying the assigned sequence number and the id of the
input message. (The controller will typically assign sequence numbers to messages from
different workstations as it receives them, but may choose to delay messages from
different workstations as described in Section 4.3.2.) For some number of recently-
assigned sequence numbers (how many is discussed below), the controller remembers
the id and contents of the input message that was assigned each sequence number in a
retransimission queue. The controller can thus handie duplicate input messages and

respond to retransmission requests as described below.

A workstation retransimits an input message, using multicast, as often as necessary until it
receives the acknowledging sequence number from the controller; the controller may
have missed the original message, or the workstation may have missed the
acknowledgment. If the controller receives the same input message twice (determined by
comparing message ids in the conltroller’'s retransmission queue) as a result of such
retransmission by the workstation, the controller simply reports the sequence number that
has already been assigned to the message. A workstation may "pipeline” input messages
by sending a new one before the acknowledgment of the previous one has been received,
the controller on receiving an input message without having received the previous one
from the given workstation will not assign it a sequence number untit the previous input

message is retransmitted and assigned a sequence number.

When a workstation reccives an input message from another workstation, or from itself, it
buffers the message until it receives the acknowledging sequence number from the

controller and has processed all messages with the preceding sequence numbers.

If a workstation receives an acknowledging sequence number from the controller for
which it does not have the input message with matching id, it sends the controller a
request for retransmission of the original message. The controller on receiving such a
request looks up its retransmission queue and sends the original message (id plus
contents) to the workstation. The retransmission request is itself retransmitted as often as

necessary until the original message is received from the controller.

If a workstation receives an acknowledging sequence number from the controller out of
sequence (i.e., receives sequence number M+ 1 before M), it does not know which

message id was assigned the preceding sequence number. The workstation therefore

153

LA Bad Saaas et Suge e e — AIBA e Jhe e 4 tn Sov e A AR A RSl B AL SRS i St st it St g BACHEL N AR AR AN

thesis [90]. The original protocol! does not allow for immediate execution of operations out of

sequence, which we will discuss after the basic protocol is presented.

4.7.1 Many-to-Many Reliable Multicast

The following description assumes "full replication” of the shared space, so that every
workstalion is capable of execuling input messages locally; partial replication will be
discussed presently. While full replication at all workstations does not require a separate
controller site, the protocol works equally well whether or not the controller site is itself a

workstation.

We also assume that all messages below are transmitted as unreliable multicast
datagrams using any of the methods in Section 4.6.3.1; retransmission procedures are
therefore included. Reliable virtual circuit communication may be used between pairs of
workstations, avoiding some of the retransmissions below but not all. In particular, if a
workstation crashes after sending a given message to some workstations but not all, the other
workstations will have to request the controller to retransmit the message; pairwise reliable
sequencing is not sufficient when there are more than two sites communicating. Virtual
circuit communication between each pair of sites will also require a number of virtual circuits
that grows as the square of the number ol sites, i.e., N*(N-1)/2 for N sites. For large
conferences (more than three participants, say), this overhead will usually be considerable.
Unless the network supports multicast, or is of sufficiently high bandwidth to support a very
farge number of pairwise virtual circuits, direct communication between workstations should

not be used for large conferences.

The protocol for many-to-many reliable sequenced multicast is as follows:

e Each input message sent by a workstation carries a unique id which consists of a site
identifier (which might be an index into an array; a system-wide site-address is not
required) and a local consecutively assigned sequence number. The message is sent to
all workstations and the controller, unreliably, by the most efficient multicast method or
simulation available. The workstation also pretends to "send” the message to itself, and

performs the actions of a receiving workstation as described below.

e The controller on receiving an input message from a workstation (or from itself) assigns

the message the next global sequence number in a consecutive sequence, and multicasts

152

T~ W e m e -

*
A

' Y

v Y
T
L
.
RO
.'.' AN i
. ® 4
[.y
5 . A

) 9
P
.

. e)

observed "response time” for all actions on the shared space is therefore always at least two
message transmission delays. (Processing delays are also incurred, which may be significant
if the controller or workstations are overloaded, but two message transmission delays is the
absolute minimum that can be achieved. The only exception to this is for a workstation that is
also the controller of the conference.) This contrasts with actions on a participant's private
space, which are executed locally by the workstation to give the participant almost immediate
response. The reason for the extra delay in a conference is that the shared space may be
updated concurrently by other participants, and approval of commands from the controller is

therefore required in order to ensure consistency.

Response time in a conference can be improved if a workstation is allowed to locally
execute commands on the shared space, and display their effects to the participant, before
approval is obtained from the controller. The workstation makes an optimistic guess that the
controller will approve the operation and will do so relative to other participant’s operations in
such a way that its effects will be the same. Since this may not turn out to be true, e.g., the
controller takes away this participant's reservation or processes a conflicting oparation from
another participant before this participant’'s operation, the workstation must peiform the
operation reversibly. That is, the workstation must save sufficient information (old values of
changed or deleted objecls, or an “inverse" operation) to allow the operation to be "undone”

and then reexecuted on the correct state as specified by the controller.

Even with the above improvement, other participants’ workstations will see the effects of a
given participant's operations only after two message transmission delays: the results must
still be received from the controller, which must first receive the input message from the
originating workstation. This delay can also be reduced, to a single message transmission
time, by having workstations send input messages directly to each other and allowing
workstations to immediately execute operations received from other workstations before
approval by the controller. Again, the operations are performed reversibly, allowing them to

be undonc and redone if necessary.

With direct transmission and immediate local execution of operations (carried in input
messages), a consistent ordering of input messages must still be ultimately established; this is
where the controller site comes in. The following "many-to-many” reliable multicast protocol
(as opposed to the "one-to-many"” reliable multicast of Section 4.6.3) can be used to achieve

this. The protocol is described below in the form presented by Section 3.5.2 of Montgomery's

151

T A I N L I I S I s PO S SP IV S I N Sy WA L SR Y Wodi VST NS W S s

PR M W Ty

r

® 4
. 3
o
L d
.,

PR I W ¥ |

R N T T T L T T W N T T s e DI

replicated document lines in the exact same order that they were sent. Thus, the controller
can send lines to be replicated in unreliable datagrams, and a workstation will store all such
lines that it receives, under the correct line-ids, regardless of the order in which they arrive.
Having sent all the necessary document lines, the controller requests an acknowledgment

from the workstations and only retransmits those lines that were lost in transit.

This approach to bulk data transfer was used by Reed at M.I.T. in an experimental non-
sequential “hile transfer” protocol.” Preliminary experiments show that the overall delay in
trancternng a hle is smaller with the non-sequential protocol than with a conventional
protocol that requires blocks of a file to be processed strictly in sequence, provided
appropriate "flow control” measures are taken to ensure that the receiver is not sent data
faster thanat can process.23 It therefore seems plausible that a non-sequential protoco! could
be used for adding a new workstation to a conference, or for sending a new large object to
the existing group of workstations. Norial processing can then proceed, using a sequential
prutocol for relative updates, once acknowledgments have been collected and all
workstations are known to have the data that was sent. Or, data can be sent asynchronously
using a non-sequential protocol, provided acknowledgments for each component object are
collected no later than when the object is needed for display or for a relative update
cneration; this was ilustrated above in the case of "extra" document lines sent by the
controller. While experience with non-sequential protocols is currently limited, this

combination approach seems promising enough to warrant further experimentation.

4.7 Improving Interactive Response

The conference architecture we have assumed so far requires a command from a
participant to be forwarded by his workstation to the controfler site, which then reports the

results of the command to all workstations, including the originating workstation. The

22This approach also being considered for use in the distributed "V" kernel [17] at Stanford. These represent
novel applications of a “fragmentation and reassembly” technique that has been used n lower-level network
protocols s used internally by the Arpanet Interface Message Processors (IMPs) [51] when transmitting a host
message that is farger than one packet. the ditferent packets (up to a maximum of 8) can arrive in any order at the
drslination IMP, which reassembles the message lrom the individual packets A similar approach is used in the
Darpa mternet when an 1P datagram {101} must be fragmented m order to traverse a network with small maximum
packet size

23

This information was obtained from Larry Allen in a private conversation.

150

R PR e T

- e et Attt taa atate’aYala alal Al

L atun. st st pe et arite S S0 S5 S 20t Thdi J0dictiadt Snd Sndbitni Sl el Ani NI vt e e - S teie 4 B S S & BN B A0 ugt S AT S EAL AN St St A)

of these other lines. However, the controller has more flexibility available to it. It may for
example send a few extra document lines while "idle", but request acknowledgments of these
lines only when the next window update is sent; a workstation can therefore return
acknowledgments for the lines in the window and for the extra lines in a single message.
Furthermore, if an acknowledgment from a workstation indicates that it did not receive one of
the extra lines that was sent, the controller does not have to retransmit the line immediately. it
may again wait until it is idle, or defer retransmission of the line until it is actually needed for
display, if that ever happens. Commands to discard previously-sent lines need never he
acknowledged or retransmitted; at worst, a workstation will fail to discard a line that it was

supposed to.

The important point above is that use of a non-sequential protocol allows the controller to
tailor the reliability of transmission to the relative urgency of the information being
transmitted; additional document lines are sent, acknowledged, and retransmitted in a way
that never interferes with ensuring that the workstations quickly receive window updates and
displayed lines. This is not the case with reliable sequenced communication; if the controller
decides to take the opportunity to send one or a few extra lines, and a shared window update
quickly follows, a workstation cannot process the window update until it has received the
preceding extra lines, which may be after a long retransmission delay if one of the preceding

extra lines was lost in transit.

The price paid for the above flexibility is that a non-sequential protocol will almost always
require a larger volume of data to be transmitted (e.g., the entire contents of a line), compared
with sequential protocols that carry more compact “relative” updates (e.g., an Insert-String
operation). Non-sequential protocols are therefore best suited for environments where
bandwidth is not a scarce resource, e.g., a local area or satellite network that is not heavily

loaded, or a few such networks linked together by high-bandwidth gateways.

4.6.4.3 Non-Sequential Initialization

While non-sequential protocols are expensive for transmitting small incremental changes
to large objects, they can be expected o perform no worse, and perhaps better, than a
reliable sequenced protocol (whether virtual circuit or multicast) when new data (e.g.,
document lines) are sent to the workstations for the first time. In this case, the entire contents

must be sent anyway, and there is no special reason why a workstation must receive all

149

e e e u T e e Lt e e e e e T e e e e e e e LR
. et aT . LT - DT T T P R - ~aw
LR . *

WY * . 3 A ~ T T - e AT .
o Wy Bl P, PSSP P AP I S S i PRI LT VR O WL W Y W wi A Y at ot

T

]
)
o
-
. 9
°
* .
o]
’1
® 1
T
."- .‘1
o
]
SRS
]

S
AR
S S LY T R

4.6.4.2 Acknowledgment and Retransmission

Update messages, transmitted as datagrams, may not be received by one or more
workstations; if the same object or component (e.g., a document ling) is not quickly updated
again, a workstation’s copy will remain behind the controller's. Some "acknowledgment” of
which object versions a workstation has received, and retransmission of lost updates, is
therefore needed. Reed's solution for a bitmap is for the controller to periodically requc.. a
workstation to return an "acknowledgment” carrying the version number on each block of the
workstation's copy of the bitmap; the controller then retransmits those blocks for which the
workstation's copy is behind. Note that, unlike a virtual circuit, only the latest value of an
object need be retransmitted, not all previous ones. If it is important for the controller to
ensure that all workstations receive and process the current value of an abject (e.g., when an
important error message or prompt is being displayed), the controller can inhibit further
updates to the object until all workstations have acknowledged that they have the current
version. (As with any other "synchronization point”, the controller may have to wait a long

time, and may choose to remove or ignore workstations that do not acknowledge.)

A non-sequential protocoi allows the controller to tailor its acknowledgment and
retransmission strategy to the needs of the application. Instead of asking for all objects or
components to be acknowledged at the same time (as with the bitmap above), the controller
may selectively ask for different acknowledgments at different times, with different
frequencies. For example, in JEDI it is important that workstations be quickly provided with
those document lines that are displayed in shared windows. The controller, after every
change to a shared window (scrolling, or changes to one or more displayed lines) sends the
new contents and version numbers of changed lines followed by a window update that carries
a window version number and an array of <iine-id,version-number) pairs for the document
lines in the window. A workstation receiving a window update returns its array of version
numbers for the designated lines (some of these version numbers may be "zero", if the
workstation does not have any copy of a given line), and the controller will retransmit any
displayed lines for which the workstation does not have the latest version. Unless the window
is further updated, the window update itself is retransmitted by the controller until every

workstation's acknowledgment indicates that it has all displayed lines up-to-date.

With a replication strategy that allows workstations to hold copies of lines not currently

displayed, the controller may similarly request acknowledgments and perform retransmission

148

e e T - et T TR e A e T et et T et et et e T e T et e T e T e e e AR
TP, S, WYy, JTE, U, S SOUIE. o0 . S COA. SO U SPY SRR el AT Sl Wl Vil GRS . I . SV I PP S P 2w e e K-

.) R A
Rl L el e

T, R N R O O R TRy,
- PR . R - B TS e T .

Array- and record-like objects, as well as name lookup tables and directories, are well-
suited for non-sequential protocol implementations because their component names or
indexes do not change. On the other hand, sequences that allow insertions and deletions at
arbitrary positions (e.g.. a document whose lines are numbered consecutively) are not well
suited for non-sequential protocols. This is because an insertion or deletion of a line at
position N, say, causes the "names"” of lines N + 1 and above to shift by one. Using a non- e
sequential protocol, this would require sending an update message for every line number
from N through the end of the document. This problem can be remedied if the data structure
is redesigned, as was shown in Figure 4-2, so that line numbers are no longer a consecutive
sequence. Then, the resuits of an operation on a document can be transmitted as "absolute"

updates as follows:

e An insertion or deletion within a single line causes that line's version number to
be incremented, and an update message is sent to all workstations carrying the
line's id, new version number, and entire new contents.

e Deletion of the EOL between two lines results in two update messages. The
pieceding line is updated (and version number incremented) to contain the
concatenation of the original two lines. The value associated with the id of the
second line is updated to the special value Undefined. Ids of deleted lines, and
their incremented version numbers, are retained in the document data structure
so that the "deletion” (new value ot Undefined) can be retransmitted to
workstations that missed it, and so that if the same line-id is later reused (to
accommodate an insertion) it uses higher version numbers that cannot be
confused with the older version numbers associated with the same line-id.
Inclusion of deleted lines in the data structure will require that the code for
accessing the next or previous line, or to scan N successive lines for display in a
window, be modified to skip over lines with associated value Undetined. -

e Insertion of an EOL within a line will usually result in two updates. The existing
line is updated to contain the characters preceding the insertion, and the
remaining characters of the line are assigned to a newly-created line. If the new
line is assigned an id that was never used before, any non-zero version number,
say one, can be assigned. If the id of a previously-deleted line is reused, the
existing version number associated with that line-id is incremented.

Insertions or deletions of text strings containing one or more EOLs will result in multiple line
updates, by a simple extension of the above. In the rare case where insertion of one or more
EOLs causes "renumbering” of lines, because the gap in fine-ids is not large enough for
assigning new line-ids, then updates and new version numbers must be sent for the old and

new ids of all renumbered lines.

147

e e T e T N T T e e e e e e T Lt e
BRSNS U SR L AP D L TR PE S JE VRO P C I LT S P S WP S S S B S S T 0% X SR S L e

controller) to discard obsolete (or duplicate) reports that are older than the version that the

receiver already has.

4.6.4.1 Decomposing Large Objects

For larger objects, e.g., a document, transmission of a complete new copy with each
update is expensive, especially when each change is small relative to the size of the object,
e.g., the insertion or deletion of a few characters. It is still possible to use a non-sequential
prolocol if a large object is broken into smaller components with a suitable naming scheme,

such that:

e The components are of fairly limited size.

¢ The number of components is fairly limited, so that the overhead of maintaining a
version number for each one is not prohibitive.

e Operations on the object do not cause the names of the components to change,
or do so only rarely.

This is the approach used by David Reed in some experimental protocols developed at
M1T.2" These protocols were mainly designed for two-party communication; we hu. 2
extended Reed's work below by adding the mechanisms needed for handling multiple
workstations holding copies of an object, and by proposing additional acknowledgment and

retransmission schemes.

Limiting both the size and the number of components of a large object will usually involve
a tradeoff. A bitmap, for example, can be treated in the extreme as one monolithic object, or
as scveral small onc-bit objects. The former choice is not practical for an non-sequential
protocol because the entire bitmap will have to be sent every time any part of it is updated.
The latter choice, on the other hand, requires remembering a version number for every bit,
which will take up an amount of storage several times that of the bitmap itself. Reed's
solution, which we also use in the prototype system of Chapter 6, is to treat the bitmap as a
rectangular array of blocks, each of which is a rectangle of M by N bits, for some fixed M and
N. Larger values of M and N will require fewer version numbers to be remembered, but wiil
also require sending larger update messages whenever any part of a block changes. These

considerations must be balanced against each other when selecting a block size.

21While these protocols are not documented, some of the ideas were suggested in earlier work by Reed

(102, 103).

146

Chapter 5 can be used to support such dynamic selection of the protocol.) Some networks
support only virtual circuit communication, in which case of course the designer has no other

choice.

4.6.4 Non-Sequential Datagram Protocols

Non-sequential protocols are an extension of real- time communication protocols such as
used for packet voice transmission [21]. Real-time protocols differ from the more common
virtual circuit protocols in that the emphasis is on delivering packets within some maximum
delay interval rather than guaranteeing reliable sequenced delivery. Interactive voice data, for
example, has the characteristic that it loses its relevance after a very short period of time (a
fraction of a second), and that occasional loss of data can be tolerated because an intelligible
waveform that approximates the original one can still be reconstructed at the receiving end.
Therefore, the acknowledgment and retransmission mechanisms used for reliable séquencing
are both unnecessary and introduce unacceptable delays; if a packet is lost, it is more
important to senc the next voice packet than it is ta retransmit the earlier one. Real time
protocols, such aé for voice, are therefore based on unreliable "datagram” communication;
packets are not acknowledged or retransmitted. Voice packets are labeled with timing
information to allow the receiver to reconstruct the voice waveform properly. If a given voice
packet does not arrive by the time the receiving voice decoder needs it, the decoder fills in
some standard value such as zero or performs some extrapolation based on previous values;

these details are peculiar to voice and are not relevant here.

In a real-time conference, a similar protocol can be used effectively for transmitting smalil
objects such as the position of a participant’s "mouse”. For such objects, past values are of
little use and it is more important to display the latest position on all participant's screens as
quickly as possible. (Note that the timing requirements are less stringent than voice. A
position report can be accepted and processed at any time so long as it is more recent than
the last one processed; hence the termi "non-sequential” rather than "real-time".) Virtual
circuit communication is neither necessary nor useful in this case; it is more efficient to
transmit mouse position reports as unreliable datagrams, at some frequency that provides
reasonable response without overloading the network. Each mouse position report is an
"absolute” update that carries the new position, not an increment or offset from the previous

position, and a version number or timestamp to allow a receiving workstation {(or the

145

~ IR R . T e e e e e e e L, . e e
LPL PP P SO ST, S NI SN TR S - S S P WL S S A P AT - P QU WU RS W U LA SRPLy iy e

v ‘

. oo
e e T
AP RR IR)

LA A e e e - g e e A R

messages from the controller to an individual workstation (e.g., crror messages or supplying a

r“' new workstation with its initial copy). We assume that separate connections are used for such

- communication between the controller and each individual workstation, in the form of virtual

increased complexity of

acknowledgment and retransmission

ctrcuits or a simulation of virtual circuits using datagrams and retransmission. These
individual connections will also be used by the workstations to return acknowledgments of
multicast messages from the controller, so that separate acknowledgment messages are not

needed when a workstation has data (an input message) to send.

The existence of independently-sequenced connections (one for multicast, one for
workstation-specific messages) between the controller and a given workstation raises the
possibility that the workstation may receive messages on the two connections in a different
order than they were sent by the controller. (A message sent on one connection may have
been lost and be awaiting retransmission while a newer message sent on the other
connection is received.) In cases where the controller cannot tolerate this reordering, i.e., a
given new message on one connection must be processed after a given message on the other
connection, the controller should first wait for an acknowledgment of the other message
before sending the new one. The same principle applies if reliable multicast connections are
used for different "groups” of workstations, as described in Chapter 5, and a given
workstation is in more than one such group. An alternative implementation of multiple groups
is to have a single reliable multicast connection for the sites in the union of all the groups.
Every message sent on this connection must identify which group(s) (or, equivalently, which

sites) it is intended for, and workstations process or discard received messages accordingly.

In summary, reliable multicast offers significant savings in communication overhead,
especially when the number of workstations in a conference is large and when the network

directly supports multicast datagran communication. These savings are offset by the

programming the controller and workstations to perform

2 and to enforce orderings between multicast and

workstation-specific messages when needed. The designer should take this into account if
considering multicast communication. (The designer may also have the controller site
dynamically decide whether or not to use multicast, e.g., switching from virtual circuits to

multicast when the conference grows larger than two or three participants; the techniques of

20Unlike virtual circuits. which take care ot acknowledgment and retransmission internally, reliable multicast is
unfortunately not generally available as a transport-level protocol service.

144

4.6.3.3 Acknowledgment Bursts

The total volume of incoming acknowledgments can be minimized using the same
techniques described for virtual circuits, namely asking for acknowledgments as infrequently
as possible, and not returning an unsolicited acknowledgment unless there is data to send in
the reverse direction or a message is received out of sequence. In addition, it is important
that the controller not be sent too many messages all at once; the controller's network
interface may not be able to pick up all of them quickly enough, which will degrade
performance and response time because of the need for later retransmission. Preventive
measures should be taken to avoid this whenever a synchronization point occurs, where the

controller sends a single message that expects a response from every workstation.

If the number of workstations is smal! (say two or three), or if there is a significant variation
among the transmission delays to different workstations, the above problem can be ignored
because the probability of too many responses arriving in a short burst is very low. The same
is true if virtual circuits or separately-addressed datagrams are used, because the
workstations will receive their copies of the message at different times. 19 However, when a
large number of workstations on the same local network are sent a single multicast datagram,
the probability of their replies arriving in a short burst is quite high. The workstations should
therctore introduce short artificial defays before sending back their replies, in order to reduce

the probability of collision. This could be done in either of two ways:

e Each workstation waits a random amount of time before returning its reply. (This
is an application of the randomized retry technique first popularized by Ethernet
(85].)

e The replies are staggered by assigning each workstation a different delay interval,
e.g., proportional to the workstation’s index in an array.

4.6.3.4 Remarks on Multicast
In a conference, reliable multicast as described above will provide reliable sequenced
transmission of messages only between the controlier and all workstations; it does not

address the transmission of "input" messages from a workstation to the controller, or

‘gThere will be a problem if the response from the first workstation to be sent the message arrives before the

controller has fimshed sending the message to the other workstations; many network interfaces are unable to receive
white transmitting. This situation should be very unlikely because the round trip transmission time plus tne
processing time needed by the workstalion to generate its response will almost always be greater than the time taken
by the controller to send out all copies of the message.

143

P

4.6.3.2 Acknowledgment and Rctransmission
Reliable multicast as described above has appeared betore in the literature [110, 89].’8 -
Published reliable multicast protocols do not, however, address the problem of

acknowledgment and retransmission in much detail; we try to remedy this by describing some

Cam iy
.
.
.
.

- non-ohvious extensions of the acknowledgment and retransmission methods used in virtual e

(Q
)

g circuits. -

——

Since datagrams are assumed to be rarely lost, a message needing retransmission will
usually remain unacknowledged by one workstation only; a datagram addressed to this

workstation only, rather than a multicast datagram, should be used for the retransmission. ifa

given message has not been acknowledged by any workstations when its retransmission time .
. arrives (e.g., the message was damaged in the network before any workstation could receive
- it), retransmission should of course be done using multicast. In the rare case that two or
b e
s more, but not all, workstations need retransmission of a given message, the controller has a L
" choice: retransmission using multicast will incur unnecessary processing overhead (to check R
\ .

the sequence number and discard the message) at those workstations that already have the

message, whereas separate retransmissions to only those workstations that need it will incur
more overhead at the controller. If we assume that the controller is more likely to be a
bottleneck than any individual workstation, multicast should probably be used for -‘_
retransmitting to two or more workstations. A different "threshold” might be chosen if :

different assumptions about controller and workstation performance hold, but we do rote that

any difference in performance is not likely to be very important because this situation will be

rare.

When different workstations need different messages retransmitted, there is an additional
optimization available to the controller: If individual messages are small and two or more will
fit into a single network packet, the controller can "batch” several retransmissions, possibly
intended for different workstations, into a single multicast packet. Each workstation will then

pick out the messages that it is missing, if any, and discard the rest.

" ttast such relersnces use the term reliable "broadcast”; we prefer to use "multicast” to denote a known set of
destnations, as opposed to "broadcast” which usually means an unknown collection of "all” the sites on a given
network. This usage is consistent with Boggs [10].

142

LIRSS LI ST YoV WL W T Uha” ToaP URSY WM SR S Tha |

1. Each new message is assigned the next higher sequence number and is sent to
all workstations, by one of the methods described below.

2. For each message sent, the controller remembers which workstations have ‘
acknowledged receipt and which have not; a bit-string of the required length may I
be used. K

3. A message is retransmitted periodically until acknowledged by all workstations, or .
until the workstations who have not acknowledged the message are removed by -
the controller, at which point the message is discarded from the retransmission
queue.

4.6.3.1 Multicast Datagram Transmission .
When the controller and all workstations are on a single network that supports multicast ®
communication (e.g., Ethernet[111] or SATNET[65]), a message can be sent to all »
workstations using a single datagram whose destination address is a multicast address
selected for the conference by the controller or by the network. This will considerably reduce

the overhead to the controller of sending an identical message to all workstations. In some - it

cases, an underlying point-to-point network or internetwork may support multicast

- communication using a forwarding tree: the site sending a message (in this case the

controller) sends it to each of its neighbors in the tree, and each site in turn forwards the

ﬁ message to every neighbor except the one it received the message from. Tree-structured "
multicast has been proposed many times in the literature {25, 120], but implementations are v _-
C».f few. One exception to this is the ST protocol [34] currently used in the Darpa internct to ZT:'_:-_{'
2:: support voice conferencing. P

If not all workstations are on a single network that supports multicast, the controller can
still reduce the cost of message transmission if subgroups of workstations are on multicast
nctworks. For any remaining warkstations that are "alone" on their respective networks or T

are on networks that do not support multicast, separate datagrams must be sent. In the worst ®

-1“"‘—' ‘,',‘..- :

case, the controller can "simulate” a multicast by sending a separate datagram to each
workstation. Even in this worst case, the cost savings of a single relransmission queue and
timer, as opposed to separate virtual circuits, may be significant with more than two or three

workstations.]

141

- V. D T T . Lo e e - [T R S
A

R S R <. ' -
L T T T A e R L R P P G P S R S R
- . 2" e agte te Lt - . P PRt PR DL L P SR, L, S, N S T -
IS RN T U Nl W S B B U0 U W] LI TN TR T T Y ._.M

MR JRICIRI T SR R R S\

4.7.2 Adding and Removing Workstations

Direct communication between workstations, by the above method, requires some

additional synchronization when workstations are added to or removed from the conference. . .

When the controller decides to remove the workstation of a participant, for any of the l;:-:‘;:",:j
reasons described in Section 4.5.4 (including a crash of the workstation), the workstation may ‘:;‘-":j-',
have atready sent an input message to some or all workstations that the controller will never * . ’

acknowledge with a sequence number. This is not a problem, because when the other
workstations learn from the controller that the given workstation has been remcved, they can
discard any input messages received from the given workstation that were not acknowledged

by the controller, e

Adding a new participant’'s workstalion requires providing the new workstation with up-to-
date state information, using any of the methods of Section 4.5. Once the controller has done

this (outside of the multicast inechaniem, e.g., using a separate virtual circuit or non- L

sequential protocol), it instructs the new workstation to start listening for multicast messages

and acknowledging sequence numbers. The controller also tells the new workstation the next
global message sequence number that it should process; this allows the workstation to .
discard older messages that it may receive, and to request a retransmission if it misses the .o
expected next message. ‘ .

4.7.3 Displaying Unconfirmed Resulls

The above protocol establishes a consistent ordering for the input messages issued by all

workstations in a conference. Our extension allows a workstation to process a received input
message immediately without waiting for the acknowledging sequence number to arrive from
the controller. in the hope that the controller will assign sequence numbers in the same order
that the workstation processed the inessages. Then, if a workstation learns from the N .
controller that it processed a given message or messages out of sequence (i.e., the next -

sequence number received by the workstation is assigned to a different message), the

workstation will undo the effects of the given message(s) and than “"redo” them in the correct

order. (If the controller instead indicates that a workstation has been removed,
unacknowledged input messages from that workstation are simply undone and discarded.) A N
",:'.; further optimization allows workstations to reduce the amount of undoing and redoing: [f two E“_'-_f;'. .
o input messages are known to commute (e.g., insertions or deletions in different documents or
o T
155
!

A o —em e o s el n sk SASrces Sl Mt el End s S ok el aest umh ead Acwer ik e N dimes

T

D4

in disjoint regions of the same document), they do not have to be undone and redone when it

is determined that they were executed out of sequence. Once a message is known to have R
/

been processed in the correct sequence, its undo information can be discarded by the

workstation.

Since workstations do not wait for the acknowledging sequence number when processing
an input message, the controller need not acknowledge every input message immediately on | J
receipt. The controller can instead wait so as to "batch” a series of several acknowledgments
into a single transmitied packet. This is possible because each ackncwledgment, consisting
only of a sequence number and the original message id, is quite small; a series of sequence
numbers can be farther compressed into a single sequence number and a count. This L
batching is especially useful when workstations are generating input messages quite rapidly;
issuing an immediate acknowledgment for each inpul message will further increase the
already-high network load and degrade response because of packet collisions and the need
for subsequent retransmission. In certain situations, the controller should not batch . .
acknowledging sequence numbers but instead send them out imrediately. If the controller -

sees two conflicting (i.e., non-commutative) operations from differeni workstations arrive

close together, it should inform workstations of the correct order immediately so that any
warkstation that did perforim the operations out ot sequence will rectify the inconsistency .
seen by the participant as quickly as possible. The controller should also not delay the g
acknowledging sequence number for a "drastic” operation {discussed below) which it knows

the workstations will not process until acknowledged, nor should it hold on to one or a series

of unsent acknowledgments for a very long time.

Immediate execution of input messages received by a workstation allows participants to

see results of other participants’ commands after only one message transmission delay
instead of two; the participant issuing a command gets immediate feedback, just as if he were ®

running the application locally on his workstation. (No message transmission delay is

involved when a workstation "sends” an input message to itself.) The price paid for this

improved response is that the results shown to the participants may sometimes be ‘_f -
inconsistent. Updates that "never happened” may be shown to the participants and then be
undone and redone with different effect. Whether it is in fact permissible to let participants

see temporarily inconsistent data is a question for the designer to resolve. Our intuition is that

it is not unreasonable for minor changes, such as small insertions or deletions, so long as the .

156

| - - AR e et M D B i e RCNR B S SV AR i e A i - R SRt et e et S St e St it

frequency with which displayed results have to be undone is low. For more drastic changes
(e.g., the contents of a shared window completely replaced by a new document) it is better to
wait until the correct order is confirmed by the controller. A workstalion is therefore not
required to execute all input messages immediately on receiving them; if an input message
would cause a drastic change, it is bulfered and processed only after the controller has

supplied an acknowledging sequence number and all previous messages have been

processed. For such operations, the response time seen by the participants is again two
message transmission delays; this is not unreasonable because the more drastic operations

are the ones for which participants are likely to expect and tolerate a longer delay.

In addition, steps can be taken to reduce the probability of conflicting messages being
executed out of order, so as to minimize the unpleasantness to the participants. We first

require that a workstation not execute input messages out of sequence if they were sent by

the same other workstation, on the assumption that consecutive commands from a given

participant (e.g., two characters to be inserted into a document in order) will usually not
commute. This is easy to ensure. If a given message from a workstation is lost, a receiving
workstation will detect a "gap" in that workstation's message id sequence when it receives
the next message from that workstation, and can wait until the retransmission mechanism
delivers the previous message. We therefore look at possible conflict between input

messages issued by different workstations. In the case of objects for which only one

workstation can ever initiate updates (e.g., the positions of the workstation's "mouse"), EI'-;lﬁ-fjjh'
commutativity is automatically ensured. {t may still be necessary to undo an I‘f-)]-: -

unacknowledged message if the workstation crashes.) Or, if "reservations” are set so as to -;_:.- 1
discourage workstations from issuing concurrent conflicting operations, input messages from -
different workstations will commute most of the time. (Using reservations does not completely
eliminate the problem. A workstation that believes it holds a reservation may issue an input :"f SRR
message while the controller is taking the reservation away; the execution of the message will -
have to be undone when it is learned that the reservation was taken away before the :'
controller received the input message and assigned it a sequence number.) On the other : A
hand, if reservations are not used the probability of conflicting concurrent operations being
executed out of sequence is considerably higher. (This probability will also increase with the
delay and unreliability of the multicast transmission method used.) If “validation" of input
messages is being performed, based on which version of the shared space was seen at the

time, the situation is even worse because many commands may have been based on

157

R T U I e, S e e e e e e e T N e e e T T e o
L VOIS S APUL AP 1PN, PRI AP SR L, WAL DU YU TN PRSI S NPy Wy ST A0 WA WU L SPUP GG WG W W SO Wl SRS VAR SN W WA Y W SRl W W WS S W)

completely inconsistent data and will therefore be rejected when the correct ordering is
determined. We observe that reservations, which are more appealing from a user interface

standpoint than validation, are also useful in allowing the implementation to be optimized.

The above description assumed that the shared space is fully replicated and all

workstations are capable of executing all operations locally. The ideas can still be used with

partial replication, on a limited bhasis. Thus, with partial replication of document lines as in
JEDI, a workstation can locally execute, and directly transmit, editing operations for which all
of the affected lines are in the currently replicated set; if not, the operation is forwarded to the
controtler for processing and generation of results. For operations received directly from a
workstation, the same undo and redo strategy described above can be used when the correct) .

ordering, relative to all other operations. is determined from the controller.

4.8 Using the Implementation Techniques °

The techniques presented in this chapter are intended to help the designer maximize
performance, especially speed of response to participants’ commands, for a given
conferencing system functionality, architecture, and implementation environment. We do not . R
address a complementary problem that the designer must face, namely how to choose the T]
functionality and implementation method in order to satisfy a given response time constraint. ST
(For example, response time for character echoing and other simple commands shouid
usually be within a quarter or a half of a second.) This must be based nn knowledge of the
processing and bandwidth requirements of the different functions being considered for the
specific application, and some functionality will usually have to be sacrificed if bandwidth is a
scarce resource. (For example, the shared bitmap facility of Chapter 6 is ideally suited for a
high-bandwidth network; performance and response time may not be adequate over long-
distance networks of lower bandwidth.) Performance will also degrade as the number of
participants in a conference increases, because of the increased load on the network and on
the processors, especially that of the controller site. The designer, or the participants in a

conference, may have to place an upper limit on conference size.

Since different implementation methods are appropriate for different conference sizes and
different performance characteristics of the workstations and of the network, the designer

may wish to have the conferencing system select an implementation method for each

158

conference dynamically at run time. This problem, together with other architcctural

considerations, is discussed in the next chapter.

159

B P AP . .- T U S PR PSS S e R
e LT T e T e e T e e e e e e e e T e e e e e T e T T T e T T T T e T T LT o T T
PRPRE A ST SO LY Wi W Sy S YR WPUT Y NG SRS . UORD SR WA WP Sr SO WO YU WP WG SR SN R P S P PSR AP ST SR WP S R W Y

Chapter Five

Conference System Architecture

The previous chapter presented implementation techniques and discussed how they
might be selected for a given real-time conference. This chapter describes an architectural
organization that permits many of the implementation decisions for each different conference
to be made at "run-time"” based on information about the performance and capabilities of the
workstations and the network. We then discuss several issues related to the interaction
between individual conferences and the overall system environment, such as initiating,
moving, and combining conferences, and interaction with sites providing permanent storage
and other services. Finally, we briefly review known alternatives to the method of centralized
control that we have presented for real-time conferences. Close examination of these
decentralized approaches reveals that their performance is likely to be worse than with
centralized control, except for the special case of conferences in which only two sites
participate. (This conclusion applies to real-time conferences in particular, not to distributed

systeins in general.)

5.1 Dynamic Conference Control

For a given real-time conference, there are several parameters describing the protocol
used by the controller and workstations for replicating information and communicating input

and update messages:

o The "level" of replication: which objects or components of objects are
replicated, and sizes of replicated objects or limits on the number of replicated . T
objects of a given type. . ,-,_‘_~.:'-..-'j

o What operations are to be uscd in input and update messages, and what code is S
needed in order to interpret them. BRI |

e Which operations, if any, are to be implemented by direct transmission between
workstations and immediate tocal execution (described in Section 4.7).

e Parameters relating to the lower-level transport mechanism, such as the
encoding of operations into byte streams or packets, and addresses to he used

161

PREVIOUS PAGE RN
1S BLANK SRR

-
D S R e S . . . - e e v R) .« L P T T LT e e T T e T T T T e T e T v
PO YU VO T W WAy WOl W T VLI W SR WLV WP AN DS AN VA WL 1ONE WA A W W T ST Wy SPG W S Gy WA W e X deacdnscduedesniindondes don o dncedn dho 4 ._J

A A A O AL 2
ot e Y PP PN

for multicast or non-sequential datagram communication.

it all of the above decisions are statically determined by the designer, for all conferences
that will be run using his conferencing system code, this will yield an inflexible system. If the
parameters are chosen assuming powerful workstations and a high-bandwidth network, then
high performance will be achieved with such workstations but it will not be possible to
participate in a conference from a lower-grade workstation. On the other hand, if the system
parameters are chosen to accommodate lower-grade workstations, the belter performance
that is obtainable with higher-grade workstations will be ruled out. It is therefore desirable to
leave at least some of the above decisions until "run-time". when a conference is started and
perhaps even during a conference when participants join and leave or as network conditions
change. The architecture we are about to present, which we have named Ensemble, provides
a mechanism for such dynamic selection of parameters. The Ensemble archilecture also
allows for multiple groupings of workstation sites, for cases where different participant
"subgroups” are allowed to see different information, or to implement different levels of
replication and protocol for different sets of workstations based on their capabilities and
available communication bandwidih. For example, the controller might use full replication
and/or a more verbose update protocol for a workstation that is connected to it via a high-
bandwidth local network, but might use partial replication and a more compact protocol for
another workstation that is connected via a slower long-distance line or network. While such
complex configurations may not often be nceded in practice, the architecture is meant to be

general enough so as not to exclude them.

5.1.1 Groups of Sites

Every real-time conference has a controller site, and zero or more other sites at any given
time. These other sites may be participants’ workstations. or may be "server" sites providing
file storage or lookup facilities; for simplicity we shall refer to all of these as "workstations” in

the following.

The sites involved in a conference are organized into groups whose memberships may
change over time. (A given group may temporarily contain as few as one site or even none.)
Groups may overlap, allowing a given site to be in more than one group. The controller itself

may be in some group, e.g., if itis also a participant’s workstation.

162

A i s o R A R

Each site group represents an agreement by the controller to replicate some subset of the
conference object at every site in the group, using some set of allowed input and update
messages that is the same for all sites in the group. (Different groups may use different
protocols for the same object(s).) Thus, multiple groups can be used to represent different
levels of replication or message types, as well as to represent “server” sites whose role in the
conference is typically different from those of the participants’ workstations. Difterent groups
will also be used to represent workstations in various "transient” states, e.q., while being

brought up-to-date prior to being added to some group(s).

{abcd} ({bdef}
/N /N
/ A \

{abc} (bd} {bef}
/ N\ / /
/ N/ /

(ac} (b} (}

Figure 5-1:Example Group Graph

The different site groups in a conference are themselves organized in a partial order
which we call the group graph. An example group graph, with group memberships indicated,
is shown in Figure 5-1. Every site in a given group must be a member of every immediate
ancestor of the group. Groups in the graph that have no ancestor groups are referred to as

root groups.

The parameters governing the protocol in a given group may be static, i.e., embedded in
the code executed by the controller and workstations, or dynamic, i.e., determined at run-time
and maodifiable for each individual conference. If the protocol is dynamic, some
meta-information that uniquely describes the protocol must be included in the conference
object, and this meta-information must be replicated in the immediate ancestors, in the group
graph, of the given group. (For a group that has more than one immediate ancestor, it is
sufficient that the union of the information replicated in the immediate ancestors include all
the necessary meta-information.) The protocol for a "root” group must be static and well-

known throughout the system.

163

B R N N N R R R TR I TNTANy——p—"

. B T R T I T R
LR ST, S SR ST Wil Sl VO S . VL A R VR WOy S

ey v - LS s e v AL ACE At ave Sl A A et L eV pral St N
< —— T I il . . . o . R IR N

Protocol meta-information for a given group may take any of several forms, depending on

what aspects of the protoco! have been chosen by the designer to be variable. Examples are:

e Numeric parameters, e.g., size of a shared window or upper limit on number of
document lines to be replicated.

e Boolean "flags" indicating whether or not a given option, e.g., direct transmission
and local execution, is in effect.

e Several reflated boolean flags may be combined into a hit-string, e.g., indicating
which of several possible operations may actually be used in update or input
messages.

o Identifiers specifying what software a workstation will need in order to interpret
certain update messages in the protocol associated with the group. The
workstation may use this information in order to retrieve the required software
from a "code server” (Section 5.2.7). The protocol meta-information may also
include the necessary code itself, allowing the controller to “download” code to
the workstations. This allows the controller ta download specialized routines that
are not known to the system’s code servers, or to "multicast” the routines to all
workstations more efficiently than if each workstation separately retrieved them
from a server.

In order for a site in a group to send correctly encoded input messages to the controller,
and to correctly interpret update messages, the site must know all of the protocol meta-
information for the given group. Unless the group is a root group, its protocol meta-
information can only be obtained from its ancestor groups. Thus, a site can be added to a
group (other than a root group) only if it is already a member of all immediate ancestor
groups. (Conversely, a site can be removed from a group only if it is a member of no
immediate descendant group.) Because the protocol for a root group is well-known

throughcut the system, any site can be added to a root group at any time.

A private group has a fixed membership consisting of only one site. Private groups are
used for replicating site-specific information at the given site and no other, and for
information from the specific site that is to be replicated at the controller site (e.g., the private
paste buffer and private window positions in JEDI-CONF). A private group is also used for
replicating meta-information describing what class of protocols the given site is capable and
desirous of supporting, e.g., number of lines of storage or level of update operations. A
private group may be a root group, if its protocol is well-known throughout the system. Or, a
private group may be a descendant of another group, one that contains meta-information

describing the private group protocol, or one in which membership is required in order tor the

164

. O o
. N AR A
[P PSP YA W W W

CRRMCEA G 2t St gt Ml Sudl g SEnh Junh Joma A CEEA e PYSECIM AN Jha JAn-Sen 4 G SR v & 4 S AN S AL ERGL St Sae Rias Saue T

private group to exist.

The group graph of a conference may itself be statically determined by the conference
system code, or may be dynamic. The information replicated in a group that has a variable
number of immediate descendant groups must contain sufficient meta-information to identify

all of these groups, in additicn to the necessary protocol parameters.

5.1.2 Conference Descriptions

The information replicated in a given group may include application data in addition to the
protocol meta-information required for each immediate descendant group. The information
replicated in a root group is called a conference description. Conterence descriptions may be
different for different root groups, but we expect that in many real-time conferencing systems
there will be only one root group or the different root groups will replicate the same
information; we therefore loosely refer to a conference description as "the" conference
description. The conference description will contain both protocol meta-information (for the
descendants of the root group) as well as some user-oriented information (such as subject
and time and document names) that will help a user decide whether or not he wishes to join
any descendant groups. A site can be added to a root group when the controller directly
sends it a copy of the conterence description, or when the site informs the controller that it
has obtained a copy of the description from some other site, typically a "lookup server”. The
root groups, and their associated conference descriptions, are thus the starting points for

joining other groups of interest in the conference.

5.1.3 An Example

Not all of the above generality will necessarily be used in a given real-time conference
system; we expect that a fairly simple group structure will often be adequate for the designer’s
purposes. For example, JEDI-CONF has a fixed number of multi-site (non-private) groups
arranged in a static structure; the only dynamically-created groups are private groups of

workstations that join and leave, and of file servers. This is illustrated in Figure 5-2.

The group Actives is the main group of workstations actively participating in the
conference; copies of application objects such as document lines and shared window
positions are replicated in this group. Each active workstation is also in a private group, used

for replicating the workstation's paste buffer and information about its private windows into

165

ST e R - EORE) PR
K CINCIR SIS PRI AT UCN IR Tt Lttt P P T T o S S
PRSI POLIP L AP S LIPS LIS S T WS ST N v i o S R wir Wi i Wiy s -

~ et IR
TR R)

PO I LI

» .l.lh‘:' “:

et
O PRSP SR

el
A ‘y ‘. ‘o .'.
il L a e

Workstations Lookup-Servers FS1 FS2 FES3
Actives wsl ws2 ws3 ws4

wsl' ws2' ws4d'

Figure 5-2:Group Graph for JEDI-CONF

shared documents.

The root group Workstations, the only ancestor of Actives, consists of workstations at
which the conference "description” is replicated, using a well-known protocol. The
conference description includes protocol meta-information for the Actives group, namely
1ine-1imit and super-window-size. The following information is also included in the

conference description, for the benefit of potential participants:

e The conference sub ject string.
e Access control information: owner, allowed-users, and public-access.

o Estimated and actual start and end times of the conference. (Actual times may be
Undetined; an actual end-time that is not Undefined indicates a conference that
has terminated.)

e The current participants: npartcs and the arrays partc-names,
ws-addresses, and ws-statuses.

o The names of the documents in working-saet, and their file server addresses. A
user can thus get an idea of which documents are being viewed and edited in the
conference, and can even retrieve copies of one or more from their file servers if
he wishes to browse before or while joining the conterence.

Each workstation in the Workstations group is also in a private group used for replicating
information about whether the workstation requested to join the Actives group, or was invited
to do so, or both, and for transmission of document and window contents prior to adding the
workstation to Actives. Note that active workstations are in two private groups, because
additional private information (paste buffers and private windows) is replicated only for active
workstations. Workstations not in Actives (ws3 in the figure) are in only one private group. A
workstation that is in Workstations but not in Actives is in a "transient"” state prior to possible

addition to the Actives group, or just after removal from Actives.

166

e N T T T T T T I S L
PR R W AP L PP PR T WA PR LGOS S S A el ks_.!._‘L'i:"J..A

The root group Lookup-Servers is a set of server sites (Section 5.2.7) to whom the
conference description has been sent, so that users may find out about the conference when
they query a lookup server. The information replicated in this group (the conterence
description) is in fact the same as for the Workstations group, but these are distinct groups
because lookup servers and participants’ workstations are treated differently: updates to the
conference description are sent to lookup servers with less urgency than to workstations, and

lookup servers are never considered for possible inclusion in Actives.

Each file server in JEDI-CONF (FS1 through FS3 in the figure) is in a private group in
which documents, and associated reservation information, located at the file server are
replicated. Protocols for communicating with file servers are assumed to be well-known

throughout the system, and each of these groups is therefore a root group.

The group graph and membership for a real-time conference need not actually be
represented in a general graph data structure. Especially when much of the graph is static, its
structure and group membership may be implicit in specially tailored data structures. Thusin
JEDI-CONF the workstations in the Actives group are those whose corresponding element in
the array ws—-statuses is Active, while workstations in the Workstations group are those
whose status is Active or Maybe. (A workstation's status can have a third value, Removed,
this represents workstations which were previously in the Workstations group but are no
longer in any group. The main function of this is to avoid the trouble of compacting
workstation arrays and reassigning workstation "numbers” when a workstation leaves, thus, a

given workstation gets a fixed workstation number for the duration of a conference.)

5.1.4 Adding and Removing Sites

We next describe the dynamics of how sites are added tc and removed from groups;
changes to the protocol within a group are described in the next section. Our discussion will
use the generic operations on groups shown in Figure 5-3. Each operation name is prefixed
with which kind of site can perform the operation: controller (C) or workstation (W). For each
operation type, a corresponding message type is transmitted between controller and
workstation or vice versa. We note that these are "abstract” message types and need not be
actually represented in the exact same way in an implementation. EHicient message
encodings tailored for the particular real-time conferencing system will typically be used; for

example, if there is only one site group that workstations may be invited to or request to join

167

——————

T ——— R T ——_——TeTTTTY—_re——y

S0 aL SR Bt S dhge Bene agnonamurabl- oAl v it i dhiiv iy

(e.q., Actives in JEDI-CONF), then there is no need to include a "group" argument in any of
the messages. Furthermore, a given transmitted message may specify more than one of the
operations shown. For example, an "invitation" message from the controller to a participant's
workstation in JEDI-CONF carries both an Add-Workstation operation for the group
Workstations (in which the conference "description” is replicated) as well as a Will-Add
operation for the group Actives indicating that the controlier would like to add the workstation

to the aclive group; the latter invites the workstation to join by issuing a Please-Add operation.

:Will-Add(group,workstation)
:Please-Add(group,workstation)
:Add-Workstation(group,workstation)

OO

:Will1-Remove(group,workstation)
:Please-Remove(group,workstation)
:Remove-Workstation(group,workstation)

OEO

:Propose-Protocol(group,activity,value)
:Set-Capabilities(group,activity,value)
:Sel-Protocol(group,activity,value)

OEO

Figure 5-3:Ensemble Operations on Groups

The protocol used by the sites in a given group is assumed to consist of one or more
activities such that the parameters governing a given activity can be varied independently of
the other activities. The parameters for one or more activities may in fact be statically
determined and fixed while other activities may vary. For example, it is possible to vary the
activity used for replicating document lines without changing the activity used for requesting
and releasing reservations and reporting the results of reservation operations. Or, the
designer may wish to define independent activities for input, from workstations to the
controller. and for updates, from the controller to the workstations. For each activity that is
variable, a workstation can inform the controller, using the Set-Capabilities operation, of its
corresponding capabilities, i.e., what parameters or range of parameters the workstation can
support. A workstation will typically perform such an operation in response to a Propose-
Protocol message, described in more detail below in Section 5.1.5. The controller will
remember every workstation's stated capabilities in its data structures and assume that they

hold until further notice. If a workstation has never issued a Set-Capabilities for a given

168

Y
AP A P I L AT

L)
LGOI ¢

ity, its capabilities are unknown to the controller; this the controller can represent using
pecial value "Undetined"”. A workstation may "change its mind" about its capabilities at
time (e.g., if its available storage changes drastically, or the participant makes less or
: screen space available), and perform an unsolicited Set-Capabilities operation that

idates any previous Sel-Capabilities for the same activity.

\ site is added to a group when the controller issues an Add-Workstation operation,
h also causes a message to be sent to the given site informing it thereof. (Other sites in
jroup may or may not be informed, depending on whether site "status” information is
cated in the group.) Before a site can be added to a group, certain prercquisites must be
in order that the site may issue correctly encoded input messages and correctly interpret
ite messages on joining the group. First, the site must be provided with up-to-date copies
bjects replicated in the group, using any of the methods described in Section 4.5 for
lizing a workstation. Second, the site must know the current parameters governing the
ip protocol; except for a root group, whose protocol parameters are static, this is done by

ensuring that the site is in all immediate ancestors of the group to which it is being added.

n addition to the above prerequisites, there are certain conditions that the controller
ild. but is not required to, establish. First, the workstation should have indicated its desire
in the given group, by a Please-Add operation. Second, the controlier should check, by
ng been informed of a Set-Capabilities operation, that the workstation is in fact capable of
yorting the group’s current protocol. (The workslation may have issued a Set-Capabilities
3 own accord, or in responge to a Will-Add operation by the controller that "invites” the

cstation to join the given group.)

'he controller in some cases may add a workstation to a group "optimistically”, before it
determined the waorkstation's desire to join the group and ability to support the current
ocol. A simpie example of this is the root group "Workstations™” in JEDI-CONF, to which
controller adds workstations unilaterally when it "invites” them to join the Actives group.
the controller might add a workstation to the Actives group, say, even though the
station’s stated capabilities do not match the current protocol. The controller indicates
oing so that it wishes to allow the workstation into the group but does not wish to change
protoco! to accommodate: ‘he new workstation's reduced capabilities. The workstation
tinstead choose between somehow changing its capabilities to match (if and when that is

sible, e.g., by freeing up storage and/or screen space), and leaving the group (using a

169

Y

et e e, '.
[PSP W SN

PR
. s
NPT N

’» Combining Conferences

s described above, it is possible for two or more conferences, copied from the same
1al conference, 1o evolve when there is a network partition. If and when the network is
ected again and the two controllers are able to communicate, it is desirable to "merge"
hared spaces of the conferences and combine thel: participant groups once again. Even
1er situations where the conferences in question are not known to have been copied
the "same" one, they may be similar enough to provide a reason for combining them.
xample, a participant might find himself invited to two different conferences in which the
s or related documents are being shared; he may wish to combine the conferences, or at

suggest combining them if he himself is not authorized to do that.

he following sequence of steps should be used when combining conferences. Note that

step may be triggered by an automatic decision by a conference controller, or be
wmed manually by a participant, or a mixture. We assume below that there are only two
arences involved; the rare case where three or more conferences are to be combined is

lled by repeating the following steps for two conferences at a time.

retection of a need to combine conferences. In the case of two conferences derived from
1e same original conference, this will happen automatically when their controllers are
ble to communicate once again. (A backup controller starting a new conference should
eriodically try to communicate with the original controlier and other backups that it is
inable to contact.) In other less obvious cases, a user may decide, on examining the
lescriptions or even the shared spaces of two or more conferences, that they should be

ombined.

relection of a winning conference, which is to take over the /osing conference. This may
1ie baseri on any number of possibly conflicting criteria. The "winning” conference could
ie chosen to be the one whose controller is "closest” in the network to more participants’
sorkstations. Or, the conference with less data to transfer to the other could be selected
s the "losing” one. I the state of one conference is identical to a previous version of the
ther, then the other conference shouid probably “win” because combining the two
equires no data transfer between the loser and the winner. The selection might even be
nade arbitrarily by the participant who is bringing the conferences together. We assume
hat the two conference controllers arrive at a consisient decision; the case where each

ries to take over the other, or each waits for the other to take over, is discussed below.

183

AN et Sente Jenss it et Sheeh -utege 7

workstations that did not receive it.

To forestall the possibility that two or more backup controllers simultaneously try to start
new conferences to replace the origina! one, a "priority” ordering can be defined for the
different backup controllers. A given backup controller then starts a new conference only if it

is unable to communicate with all controllers with higher priority, including the current one.

It is still possible for a backup to start a new conference by mistake, because of a
temporary communication problem. If so, workstations that are still in communication with
the current controller, or are joining a conference started by a higher-priority backup, will
instruct the backup to abort its new conference. A backup that is no longer able to
communicate with any workstations will ultimately time out and abort its conference when no

workstations join.

When a backup controller times out and starts a new conference, it may be the case that
the original controller has not actually crashed but that a network partition has made it
impossible for the two sites to communicate. Many solutions to the network partition problem
allow a controller, whether the original one or a backup, to continue processing only if is
communicating with a majority of sites. While this prevents the emergence of divergent
conferences, it is very restrictive in that many partitions or patterns ot crashes may leave no
connected group of sites with a majoriiy. (For example, one critical site out of 2N + 1 could
crash and leave the network partitioned into two groups of N sites each.) In the interests of
letting work continue, it is usually better to take the chance that there may be another
divergent conference elsewhere in the network, with the intention of later "combining” or
"merging" the two conferences (as described below in Section 5.2.6) if and when they can
communicate again. This is the approach taken with replicated files in LOCUS, for example
[97]. (Locus treats divergent copies as being alternative versions of the "same" object,
whereas we treat a backup controller's new conference as a "different” object that was
derived from the original one. This difference is for system modeling purposes only and is
purely cosmetic. Merging of divergent copies requires the same use of version "ancestry”
whether we treal the new conference as being the "same" or a "different” one. And, a
participant in the conference need not be told that a "different” conference was started when
the original controller crashes, although he should be given some feedback about the crash

and takeover because he will notice a significant delay.)

182

F e U P S0 G TP S F INE T W TP SR T S Vo S A

R = U M il e e e vl aonh vl i el AL oL Iattl AL Eba neth sl AAd St o aria: sl AN e L ag LAl anlh ot Jom nams Ao o
. P T P S ot ot Soove o s T T T

Remembering and propagating the entire “chain” of past home sites allows a receiving
2 to "authenticate” that a site claiming to be the home site was in fact passed the object,
1., by verilying the "signatures™ of sites in the chain. (A migration from C” to Cn , 1 must be
igned” both by C_ on initiating the migration and by Cn+l to acknowledge successful
mpletion.) If all sites are "trusted” then such authentication is not necessary. It is still
eful to keep the entire chain, so as to know which sites to inform or ask about future
grations, but the chain may grow rather fong. An overly long chain, unlikely as that may be,
n be truncated to save storage and bandwidth; at worst, some past sites will not be
ormed if and when the object migrates again. If parts of the chain are thus forgotten, a
unt of the number of times moved must be maintained so that a site can determine the most

cent location information received.

2.5 Controller Crash Recovery

If the current controtler of a conference crashes, it is too late for it to designate a new
mntroller using the above procedure. Instead, a backup controller that notices the crash (by
onitoring the controller site and timing out) starts a new conference whose state is copied
yn whatever version of the original conference it has at the time. The backup then "invites"
| participants’ workstations to join the new conference, in the same way as described above.
1e description of the new conference will indicate that its state was copied from a particular
wsion of the original conference; workstations can therefore continue to use their copies of
sjects from the old conference, reporting their version numbers to the controller, in the new

inference.

It a workstation's copy of the original conference is behind the backup controller’s, the
ickup can bring the workstation up-to-date in the new conference as described above. A
wntroller crash raises another possibility that did not arise when explicitly migrating the
wlerence, that one or more workstations may have received an update message that the
ickup controller did not. If so, the workstation's copy is "ahead" of the backup’s, and must
» undone; the backup either sends the workstation one or more "inverse" updates, if it has
corded these in a history, or else sends complete versions of objects for which the
orkstation is ahead. An alternative to this that does not lose updates is for the backup, on
scovering that a given workstation is ahead. to ask the workstation for the missing update

d bring the backup's version up-to-date; the missing update is also propagated to

181

T T T T T ¥ ™™ L

general-purpose procedure that works for any object; it takes care of situations where an
object moves many times during its lifetime, although a real-time conference will typically

move only a small number of times if at all.

Sites holding references to, or copies of, an object also remember a chain of sites
addresses that begins with the object’s birth site and includes in sequence every site to which
the object was moved; the last address in the chain is that of the site currently believed to be
the home site. A site may send location information about an object, i.e., the chain, to other
sites, either unilaterally because it believes the other site is likely to be interested, or in
response to an inquiry or an attempt to access the object. A site that receives location chains
about some object from more than one site retains the most recent, i.e., the longest of the

received chains.

After an object migrates from Cn to C'1 oy the new home site Cn” makes an attempt to

inform every previous home site, C0 (the birth site) through C, of the new location chain,

-1
because these are the sites that other sites holding obsolete location information will contact.
C, ., also sends C the updated location chain, to confirm a successful migration; until C,

receives thiy, confirmation, it should not inform other sites that Cn” is the new home site.

Cn , 1 May also inform other sites believed to be holding location information about the object,

e.g.. the workstations of participants in a conference.

Using the above, if a site is unable to contact the site that it currently believes to be the
home site of an object, the site may inquire of past home sites and may discover that the
object has since moved. The inquiring site may then make contact with a more recent home
site and either succeed or be informed of yet another migration of the object. If all past home
sites are down or inaccessible, a site may even ask any other site that it believes is likely to
know where the object has moved to. For example, a new participant’s workstation, unable to

contact the site that it believes to be the current controller, may ask other participants'’

workstations if they know whether the conference has since moved.?’ A site that is trying to
locate an object may even broadcast a query[10], or search an expanding "perimeter"”

[54] by querying a few neighboring sites each of which queries another few sites until the

object is found or the search aborted.

27In the case of a controller crash, discussed below in Section 5.2.5, a workstation may return information about a
new conference instead.

180

L

- - N
. - . . Lot .
. he - ARSI et et . N L ST, L. . . '« . B
c . - N S N - - . N . “ B I P e At . LAY ~ Tt - RPN P - *. . . et ceT - TR -
[P L IP AR L NP AT WS AL IR W DO WAL WD s Ui sy o o P PIRP RPN I AR R S S i S S i AP P

4. Cn . takes over the conference and sends updated conference "descriptions” to
all workstations, inviting them to "join".

5. When all workstations have replied, or when Cn r times out and decides to stop
waiting, Cn .y Starts processing input from the workstations.

Because of message transmission and retransmission delays, a workstation being invited

by the new controller Cn_ may not have received all prior updates sent by Cn. Therefore,

+1
each workstation on "joining" reports back to the new controller the version number(s) on its
copy of the conference object {or components thereof), so that the new controlier can send
the workstation any updates that it did not receive. If a workstation did not receive all prior
vpdates, or if Cn moved the conlerence before every workstation stopped sending input, a
workstation may be holding on to some input messages that are not known to have been
processed by Cn. Therefore, Cn on moving the conference informs Cn+1 of the last input

message it did process from each workstation; CM in turn informs each workstation as to

1
which input messages from that workstation have already been processed. A workstation can
thus determine which, if any, of its previous input messages were not processed by Cn. and

retransmit these to Cn o

It input messages are directly transmitted to all workstalions by "many-to-many"
multicast, as described in Section 4.7, moving the controller site to a different workstation is
even simpler. 3ince input messages are sent to all workstations anyway, there is no need to
stop sending to one controller and start sending to the other; instead, the previous controliler
stops issuing acknowledyging sequence numbers and the new controller starts doing so. ltis
not even necessary to explicitly inform every workstation of the new controller; they will learn
about the change in controller implicitly when they start receiving acknowledging sequence
numbers from a different site. Requests for retransmission of missing messages or
acknowledgments are muiticast, so that whichever site happens to be the controller at any

given time can respond to them.

5.2.4.2 Locating Migratory Objects

When objects such as conferences are allowed to migrate, there may be sites holding
obsolate location information that are not informed about the new home site. For example, a
user not in the conference may have obtained a slightly out of date conference description
from a "lookup server”, and may try to join the conference by sending a message to the

previous controller site. The following procedure deals with such situations. Again, this a

179

A R AT et e e e . SR e T e T
- e Y BP I Y lhmadnnsbunimadmaiabasivsinnalimboniatb: P W S S W S NP SR Welt S

. R I - - - e """ - .t'.. - - -'b"h P
PSR WRD R TRE IS S WAESR s PSP I AP AP G, I WL SRR O, G Sl Sl WY 10 W, O G U S Sl Yl

N N T e W S A i M i Y R R e
A R S S Il e - L . R

To describe how the controller site of a conference can be moved, we introduce a simple
extension to the object model of Section 4.1.2 that allows objects to migrate. An object’s
"home site”, where its primary copy resides, is initially its birth site, but the current home site

15 allowed to designate a new home site at any time as follows:

1. The current home site, say Cn. selects a new home site Cn
message indicaling Cn's desire to transfer the object.

2.C ,, returns a message indicating its willingness (it may refuse instead) and
specifying which version of the object it currently holds. (The version number will
be “zero" it Cn i has no copy of the object.)

o and sends Cn” a

3. Cn sends CrH , hecessary updates, absolute or relative, to bring the latter's copy

up-to-date, and then a message indicating that Cn . is now the new home site.

The problem of object migration has been studied before in the distributed systems
literature (e.g., [78, 40]). We describe below extensions that are needed in order to inform
and resynchronize with sites (e.g., workstations in a conference) that are interested in the

migrating object.

5.2.4.1 Resynchronizing with Workstations

The above procedure is used to move the home site of any object. For a real-time
conference, where the home site is the conference "controller”, a change of controller
requires additional interaction with the participants’ workstations. Specifically, workstations
send "input" messages to the current controller, and must be made to stop sending such
input and to start sending input to the new controller instead. This is accomplished using the
following procedure. (The procedure is an extension of the procedure used in Section 5.1.5
for negotiating a change in protocol; moving the controller site can in fact be viewed as a

special kind of "protocol” change.)

1. The current controller C" informs all workstations that it is considering moving
the conference. C does this at the same time that it tries to persuade Cn , to be
the new controller and brings it up-to-date; if Cn” is itself a workstation
supporting full replication, a single message will serve both functions.

2. Each workstation stops sending input messages and informs Cn that it has
stopped.

w

. Once all workstations have acknowlcdged and Cn has finished processing their

input and has no more updates to send, Cn informs C" 1 that it is the new
controller. (Cn may time out and go ahead with this step if one or more
workstations are slow in halting input; once C‘.n names Cn+1 to be the new
controller, Cn will simply discard any further input that it receives.)

178

."_..'.A“‘\.-.'{_-. e e e e e e et e e .

."

o

® 4
L

K|

L

"

.

!

!

5.2.3 Backup Controllers

A real-time conference may have one or more backup controller sites that are ready to
take over the conference if its current controller crashes or wishes to relinquish control.
(Takeover procedures are discussed below in the next two subsections.) A backup controller
must support "full replication”, i.e., maintain a complete copy of the entire conference object.
In some cases, certain information in the conference might he considered "volatile” and not
worth the expense of backing up, e.q., cursor positions and reservations. If so, this
information is lost when a backup takes over the conference; the backup might assign some

default cursor positions and let the participants take it from there.

Backup controllers may be added to a conference at any time, e.g., at the beginning of a
conference to provide crash protection, or dynamically when the current controller wishes to
transfer control of the conference. If the participants’ workstations do not support full
replication, the overhead of keeping separate backups and sending them all shared space
updates may be prohibitive. It may therefore not be worth the trouble of having a backup
controller, or one or two backups may be retained but sent updates very infrequentlty so as to
maintain adequate response for the participants’ commands. Again, there will be some loss

of state if the current controller crashes and a backup takes over.

If on the other hand all (or some) of the participants’ workstations do support full
replication, each can serve as a backup controller. (One of the workstations may be the
current controller as well.) Since a workstation receives updates from the controller in real
time, there will be little or no loss of state if the controller crashes and the workstation must

take over.

5.2.4 Moving the Controller Site

During a conference, it inay be desirable to select a different controller site, for any of
several reasons:

e The current controller site is anticipating a shutdown.

e The controller is a participant’s workstation, and that participant wishes to leave
the conference.

e To improve performance, e.q.. after the participant group changes over time, a
difterent controller site might he "cioser” to the workstations; or, a new
"chairperson” has been designated and it is desired to make his workstation the
conference controller.

177

rather than just the "chairperson’s”. The addresses of conference control server sites in the
system should be well-known to the workstations so that the latter may send a message

requesting that a new conference be started.?®

In some cases, a conference control "server” may not itself control any conferences but
provide a mechanism for dispatching new processes on its host machine to act as conference
controllers. This particularly useful when there are multiple conference "types"” in the system;
a single site can be the controller server for many or all of the different conference types, and
can load the appropriate code into the new process that it creates for each conference. (In
such cases, a wornstation should be prepared to be "invited" to a conference by a different
controller site than the one it initially contacted.) In a system without well-known conference
cuna ol servers, a user may have to use remote login to "manually” start a conference

controller on the desired host.

Once a contraller site has been selected for the new conference, the shared space of the
conference must be set up. First, some small amount of information (the conference
"description” and possibly other data that has been selected in advance) must be collected
by the participant’'s workstation outside of the conference and sent to the selected controller
when making the initial request to start the conference. The conference controller must be
supplied with at least one participant’'s workstation address in order for anything further to
happen; the initiating participant’s workstation therefore includes its own address in the
conference description. (If the workstation is the conference controller, then there already is
one participant in the conference.) Addresses of other participants tov invite may also be
provided to the coniroller in the conference description, or the controller may first make
contact with the initiating participant’s workstation {("inviting” it to "join") and then obtain
these addresses via commands issued within the conterence by the initiating participant. In
either case, it will be convenient to allow the initiating participant to supply participant names
rather than workstation addresses, and to let the controller site perform name lookup (Section

5.2.7.1) in order to obtain the addresses.

5|, some networks, broadcast can be used to locate servers without knowing their addresses [10, 9).

176

P R IR VAL WL S AL WP SO SOy SR LY Wy RN ouE R T WA U ST WS I VY SPNY L WU VA SN WG DL Joa W

PP

) .
L . .
St gt armbnd aba

el

L

A"E S B W e M e, S-eL S e et 4w s 2ot Sel M Srem Ihen it wsnan e aues soen Ml SLAR S e S ot e Sneb Shdat JO Jern e Srant s AT
P L SN . Pl I R . S

a very large number of object types and operations. (This is in keeping with the current trend
toward "integrated" user interfaces [112, 121, 77].) If the associated code modules for this
large application were to include routines for every possible object type and operation, they
would be enormously large and may not even fit in the address space of a controller or
workstation. This problen: - i1 be avoided if the system permits dynamic linking of routines.
A conference can then be si.wrted with the controller and workstations running only a "kernel"
conference module and then linking in additional routines for only those object types and
operalions actually used in the conference. When such dynamic linking is possible in a
conlerencing system, the protocol meta-information for a given workstation group will include
identifiers of the routines actually used by that group. When linking in a new routine, the
controller may use the negotiation procedure of Section 5.1.5 to check whether or not all
workstations already have the routine. Those workstations that do not have the routine may
lirst obtain it from a server and report back to the controller, at which point the negotiation
terminates successfully and the routine can be used in the prctocol for the group (i.e.,
invoked by input and update messages). (The controller may of course time out if a
workstation does not reply for a long time.) The controller may also "download" new routines
to the workstations, either unilaterally or after checking which workstations already have a

copy.

5.2.2 Selecting a Controller Site

When a user wishes to start a new real-time conference, the following sequence of steps
and decisions must be followed. Some or all of these may be automated, whereas others may
require action by the participant initiating the conference; the choice is up to the conference
system designer. It may even be possible to automate the initial decision to start a

conference, by previously instructing some site to start the conference at some specified time.

First, a controller site must be selected for the new conference. This may be based on
several criteria, such as processing capacity and proximity in the network to the desired
participants’ workstations or to data needed by the conference. (The controller might run on
the same physical host as a file server, for example.) The initiating participant's workstation
might be selected to be the conterer.ce controller if it has sulficient processing power. In
other cases. a "server"” site might be selected; this may be necessary if a trusted server is

needed in order to enforce an access control policy based on all participant's privileges

175

_ '._-. ..'._-.‘~ S e . .- L

. o O T P I T . S T IS
PR PLPCIP LTSN LT P A S GRS

.
s
e

9

Y PEN)

ool PP
da h PPN AL

.
‘

O o e
. . .
A AL Aoa

-

. - - - - . - . - < - "."-'- Y At e . . -
RS, - RN AR LTl R, o e e
LY PP SR ISP U PP I P Y P B P U S W TP U I U U Yl o Tl G Bl Uo Y U Tl Ui Wit TSl W S Pl ALY

e A Bl Ga s A S e an e o e N——r———

the controller's proposed new values will be based on its own internal resource constraints.
When terminating a conference, the controller issues a Propose-Protocol before actually
doing a Set-Protocol to "null”; this gives conference participants a chance to finish any
commands that they may be entering. A misbchaving workstation might not stop sending
input messages, but the controller can always time out the negotiation and terminate the

conference.

5.2 Conference Management

This section discusses several issues relating to the management of real-time conlerences

in the overall distributed system environment.

5.2.1 Multiple Conference Types and Applications

Most of our discussion has been oriented toward implementing a single real-time
conferencing system for one application. In an large distributed system, there may in fact be
many different real-time conferencing systems, tor different applications. To organize all of
these properly, it is useful to assign each such system a conference type, which is a globally
unigue string that identifies the associated code modules that controiler and workstation sites
must execute. Then, the conference type can be included in every conference object so that
a workstation or controller knows what code is needed to interpret the object and to join or
run the conference. If this code is not already available at a site, it can be retrieved from a
"server"” site (Section 5.2.7) by manual or automatic means. This can be further refined, as
described by Schmidt [109], by assigning version numbers to newer versions of the code for a
given conference type, and ensuring, when a workstation makes contact with a controller,
that the version numbers on the code that they are running match. (The types are of course
checked first to ensure that they match, i.e., the workstation and controller are not talking
about different applications.) Again, if the workstation has the wrong version of the code, or

no version at all, it can retrieve the correct version from a code server.

An improvement on the above, which may not be possible to implement in every
environment, is to allow many different "applications” to run in the same conference, e.g., a
circuit editor and a document editor and a project planning subsystem in different "windows".

We treat such a conferencing system as one integrated "application” that happens to include

174

. .o « e e

T T — — - e e . LJRCEAE il o aci Srun Ar-audarah S AU ande it ush A ERE AL RANE aiieh s - aidcaiC Eadias

In the rare case of an "incompatible” protocol change, that neither raises nor lowers the
protocol, it is useful to both "throttle” input messages from the workstations and elicit new
capabilities information from them. The controller can use the following negotiation

procedure:

1.Issue a Propose-Protocol operation, which instructs the workstations to
‘emporarily stop sending input messages and to issue a Set-Capabilities
operation in response. A workstation may try to adjust its capabilities based on
the proposed new protocol, or may bhe unable to; it will repeat its current
capabilities in the latter case. The selection of new capabilities may involve an
interaction with the participant, e.g., who may or may not wish to rearrange his
screen.

2. After waiting for all workstations to respond, or for some timeout interval, select a
new protocol! (and decide whether any workstations should be removed from the
group) and issue a Set-Protocol operation. The argument to Set-Protocol may be
the same as the proposed protocol, or the same as the current protocol (which in
effect "aborts” the proposed change), or some compromise. The designer can
program the controller code to use any decision criterion he wishes, or to interact
with a participant such as the chairperson in order to obtain a decision.?®
Workstations that are capable of supporting the new protocol can now resume
sending input and processing updates.

Note that raising and lowering the protocol, as described above, are special cases of this
negotiation procedure. A lowering of protocol generally does require halting input messages
but does not require workstations to adjust their capabilities; a workstation therefore stops
sending input but does repeat its current capabilities in a Set-Capabilities to acknowledge its
awareness of the proposed change. A raising of protocol does not require halting input, but

generally does require that new capabilities be specified.

"Starting" and "terminating" a conference are treated as extreme cases of raising and
lowering the protocol, where either the old protocol or the new one, respectively, is the "null"
protocol that does not permit any input and update messages. In JEDI-CONF, for example, a
conference starts in earnest when values are chosen for 1ine-1imit and
super-window-size (which are zero and Undefined, respectively, when the conference
object is created). The controller may propose new values of "infinity"” for these parameters,

indicating that it wishes to select values as high as the workstations will permit; more typically,

25" interaction with one or more participants is required during the negoltiation, some "activities" of the protocol

must remain unchanged so that the contioller can present the available options to the participants and obtain a
selection; the controller may also automatically "abort" the proposed change, or ask a new “"chairperson”, if no
decision is received for a long time.

173

e e

R

.AQL'L"-AL.LLL'M-L'.“_'-.A"_‘ PO WL WA W N WU W SN ST S R NP U vl WY W SN UL My o

V- -
=

L
s
®
%

.
. .
»

-
.

PP A T T T T ~ - RIS .
e el e e e e el e T ane e e P : s e S

commands.) If one aor more workstut.:ns are slow in responding to the controller's warning,
or the warning itself is delayed. the cortroller may receive some invalid input messages after it
has changed the protocol. The controller may still discard these messages; the important
point here is that warning the workstations first reduces the probability that this will be

necessary.

"Raising” the protocol in a group will in general improve either performance or
functionality. When one or the other is unsatisfactory, the controller may wish to raise the
protocol at the cost of accommaodating fewer workstations, because not all werkstations may
be able to support a higher protocol. (The controller might also raise the protocol when a
workstation leaves or is removed and there is a chance that the remaining workstations can

support a higher protocol.)

When raising the protocol, there is no need to halt the generation of messages because all
messages issued under the otd protoco! will continue to be valid under the new protocol.
However, not all workstations may be capable of supporting the desired new pratocol, and it
is useful (but not essential) to first determine whether or not they can. The controller may do
this by checking the capabilities information that it previously received from the workstation,; if
the capabilities of all workstations already match the desired new protocol, the protocol can
be raised immediately without any additional negotiation. Since the controller will usually
have set the protocol as high as the workstations’ capabilities allow, this situation will not
occur often, except after a workstation with lower capabilities than the others leaves the

group.

In the more common case where the controlier wishes to raise the protocol and not all
workstations' currently specified capabilities match, the controller can try to get the
workstations to raise their capabilities by "proposing” a change in protocol and waiting for
the workstations to issue new Sat-Capabilities operations. A workstation might not be able to
raise its capabilities, in which case it repeats its current capabilities in a new Set-Capabilities
operation. When a!l workstations have replied, or when the controller gets tired of waiting
after some timeout period, the controller can then make a decision to raise the protocol or
retain the current protocol. |f the protocol is raised, not all workstations may be capable of
supporting it, and the controller may remove such workstations from the group; in the case of
a workstation whose reply has not arrived, the controller may give it a little more time to

respond to the change in protocot before removingit.

172

e e e T T e e e e e e e e e e T T e T . S

P T T T T T T T W e W e e T e

prrr——

e — r—— PPy Al me s ocer ————

collection of operations, identically encoded, as well as some higher-level operations, then p1
dominates p2. Similarly, a protocol with a higher allowed message rate or storage limit
dominates a protocol that carries an identical set of messages (or a subsct) but with a lower
limit. Every protocol dominates the null protocol, which allows no input and update
messages. A change in protocol lowers the protocol if the old protoco! dominates the new
protocol, and raises the protocol if the new protocol dominates the old. A change in protocol

is incompatible if neither the old protocol nor the new one dominates the other.

"Lowering” the protocol for a group will in general result in degradation of either
performance (e.g, more verbose messages requiring more bandwidth and delay) or interface
functionality (e.g., smaller shared window or less interesting display formats). A plausible
reason for lowering the protocol and accepting such degradation is to accommodate as many
participant's workstations as possible; for example, the controller might consider lowering the
protocol prior to or after adding a new workstation that cannot support the current protocol.
Another reason for lowering the protocol is if the current performance is unacceptabie and
can be improved by reducing the functionality offered and thereby reducing the needed
bandwidth. (Performance can also be improved by removing one or more workstations, and

possibly raising the protocol.)

In general, lowering the protocol in a group does not require any consent from the
workstations in the group; if they are already capable of supporting the current protocol, they
are certainly capable of supporting a lower protocol. However, if the controller lowers the
protocal without giving the workstations a chance to react, the workstations may continue to
issue input messages using the old protocol that are no longer valid under the new protocol.
{When lowering the protocol, the old protocol permits a larger set of messages than the new
protocol.) The controller can of course discard any such invalid input that arrives after the
change of protocol, and inform the workstations of the "error”, but this will require that
participants retype commands that were thus rejected. A better approach is to first warn the
workstations that the protocol may change, so that they stop issuing input messages, and
then change the protocol after a briel interval. During the transient period, after the warning
but before learning that the protocol has been changed, a workstation may buffer its
participant’'s commands in a high-level form so that they can be later translated into input
messages using the new protocol. (If the transient period lasts too long or the workstation’s

buffer grows too large, the workstation may instruct its participant to temporarily stop entering

m

LA A N S L
S e
.. Lt te et T

— T

Please-Remove operation). If the warkstation does not change its capabilities or leave within

some period of time, the controller might then remove it from the group.

The controller removes a workstation from a group using the Remove-Workstation
operation; if the workstation is still up and accessible, it is informed of this. When the
controller decides to do remove a workstation may be any of the following, as chosen by the
designer:

e An authorized user (e.q., the chairperson) issues an explicit command to remove

the participant’s workstation.

e The workstation indicates its desire to leave by issuing a Please-Remove
operation.

e The controller times out on some needed response from the workstation and
needs to remove the workstation in crder for activity in the group to continue. An
example is when communications with the workstation are blocked due to "flow
control” (i.e., messages sent are not being processed and queues are full; the
workstation may in fact have crashed) for a long period of time.

The only prerequisite for removing a workstation from a group, under any of the above

circumstances, is that the workstation not be a member of any descendant groups.

5.1.5 Negotiating a Change in Protocol

The controller can change the protocol parameters for a given group using the Set-
Protocol operation; it may change only one activity of the protocol, or may issue several
Set-Protocol operations simultaneously. The new protocol parameters will then be available
to all immediate acestor groups (which include all sites in the given group) of the given
group. When the controller should choose to change the protocol, and whether it should do
so automatically or only on instruction from a user, is an issue for the designer to resolve; we

describe below some plausible reasons for changing protocols.

In order to discuss prerequisites and desirable conditions for changing the protocol, we
introduce some definitions regarding different types of changes. The intersection of two
protocols, p? and p2, is the set of messages, permissible under both protocols, that a
workstation could correctly send and interpret regardless of whether it believed the current
protocol to be p1 or p2. Protocol pt dominates protocol p2 if the intersection of p1 and p2 is
identical to p2, i.e.. every message in p2 can be correctly interpreted using p1. For example, if

protoco! p2 allows some collection of low-level update operations and p1 allows the same

| it et nalh aud Janm D Mae - math e ated st SN aual A A

e Actually combining the conferences. The controller of the winning conference instructs ',"-v R
the losing one to send the contents of its shared space. The winning controller then takes e
the "union" of the participant sets and of the data in the shared spaces. If thc same

object, e.g., a document, appears in both shared spaces, the more recent version will be

chosen; if the object has been modified in divergent directions in the two conferences, the
alternatives should be merged using an application-specific procedure. In either case,
"relative” updates may be sent to reduce the amount of data movement. During this
information transfer, all participants are informed of a merger in progress and input
messages from workstations are throttled in both conferences, except possibly for

commands to control the merger and to abort it. ®

e Terminating the losing conference, but retaining some information (e.g., a "superseded-
by" or "copied-to" field) in its conference description so that participants who try to join it

will be notitied of the winning conference instead.

e Continuiny the winning conlerence. The controller of the winning conference must now
select a protocol for the new workstation group (or decide whether and how to use

multiple groups) by conducting a negotiation to determine the capabilities of the

workstations and which versions of which abjects (from either conference) they hold. The
conference then proceeds ance all workstations (except for those that choose to leave, or
are removed) have been brought up-to-date for the new protocol.
In some cascs, detection of "similar" conferences may occur only after one or more of the PRI
conferences has terminated. It may still be useful to merge the "results" of the conferences,) ® " ‘

e.g.. permanent document versions written, in some manner specific to the application.

Two problems must be avoided in the above procedure: a deadlock, in which the

cantroller of each conference thinks the other one is the winner, and a race, in which each

controller thinks it is the winner and tries to take over the other. The standard solution (e.g.,
in [84]) is to associate a globally unigue priority (which may be simply the controller’s site-
address) with each conference and to always have the conference with higher priority be the
winner. We propose an extension that is more flexible, in particular allowing a user to e

arbitrarily select the winner and loser, that uses priorities only when needed to break a

deadlock or race.

Each controller, on learning about a possible merger with another conference, suggests

184

- ' P NPT M T Vol SRR Wl WY VAT AT VP W I W CLA W 1 S WA Wt Wy Wl

to the other controller which one should be the winner; the suggestion may be based on any
of the above criteria, or specified by an authorized participant. If the two controllers happen
to make the same suggestion, each acknowledges the other's suggestion to confirm the

winner and loser; data can then be transferred and so on as described above. If instead the

IRk Aun gk Pum AN

two suggestions are different, cach suggesting that it be the winner or each suggesting that it

be the loser, then priorities are compared. The controller that inade the “"wrong" suggestion,
’ i.e., suggested that the lower-priority conference be the winner, then reverses its suggestion

so that the two controllers agree. Note that the priority mechanism is invoked only when

{ needed. If, for example, the decision is made by a participant who is in both conferences, the . -." : '_: .
participant will (in a single command to his workstation) instruct one conterence to be the - f

winner and the other to be the loser; the "suggestions” of the two will therefore match, and

priorities are not checked. Or, if one controller makes a suggestion before the other

controller is aware of a possible conference merger, the second controller may simply agree

to the suggestion.

Either controller may at any time abort the merger and inform the other controller. This it
may do if the priority mechanism forces a choice that the controller, or a participant
authorized to abort, does not like, or if a timeout period expires during which no response is

received from the other controller.

5.2.7 Server Sites in a Conference
We describe some important functions that sites other than the controller and
workstations might perform for a conference. These functions include reading and writing of

objects or files from permanent storage, and lookup facilities for conferences and user

names; unlike participants’ commands, such functions will typically be invoked at discrete
puints in a conference rather than continuously. These functions are not strictly part of the
conference architecture itsclf, but are important components of the overall distributed system. T]

The techniques described below are standard in many modern distributed systems; our

intention here is to describe how they wouid be used for real-time conferences in particular.
Note also that different functions do not have to be performed by different sites; the same

server site can perform more than one server function, and it is even possible for a

participant's workstation to perform one or more server functions.

ST e L
LSO G

185

X
N

.
,
4
;
o,
?
-
’
.
.
3
L
»
A
'
h
o
s
L
.
s
X
b
b
1
-
-
h-
9
-
3
.l
.
-,
hl
3
~l
4
.
P
o
y
’.
X
A
-
4
p
SN

————

| S|

-
[

AN A0V P e S AN

5.2.7.1 Name Lookup

A name lookup server resolves user names into workstation addresses. (Phone numbers
might also be supplied, for manual or automatic dialing.) This chapter deals with participants
in terms of their workstation addresses only, because the structure and semantics of user
names will vary from system to system. But some form of user name lookup (such as provided
by Grapevine [9] and Clearinghouse [95]) is needed as an alternative to manually typing in
addresses supplied over the phone. A conference controller site can "invite" the user with a
given name to the conference by determining the user's workstation address trom a name
lookup server and sending a copy of the conference description to that address; the
workstation can then present the description information to the user and let him decide

whether or not he is interested in joining.

In a system with multiple conference types, a workstation will typically register only a
single "kernel” address with the name lookup server(s). On receiving a conference
description, the workstation can check the “type" of the conference and perhaps spawn a
new process ("site") that runs the associated code. Or, in an integrated system with dynamic
linking, the workstation can link in the necessary code. The conference controller should be
prepared for the response from a given user to arrive from a different address than the
address to which the description was sent. There are in tact other reasons why the controller
should be thus prepared, e.g., the address obtained by name lookup is obsolete and the user

is now at a different workstation address.

Becausn addresses obtained from a name server may be obsolete, or a manually entered

address may be incorrect, a workstation receiving a conference description from the :
controller should check that its user in fact has the same name as specified in the participant .
names array sent by the controller. How a name is determined to be the "same" we do not
specify. and it may not always involve an exact string match. For example, a nickname or first
or last name only may have been entered for the given participant. The user himself might
have to look at the conference description and judge whether it is really addressed to the right
person. Even when the user name does appear to match, the wrong person may have been
invited; e.g., the user name was misspelled, or the lookup was done on a different host where
the same user naine is assigned to a different person. In the extreme, the user may discover

this only after joining the conference and observing the information or speaking to the other

participants. Note that this problem is no different from that of misaddressed electronic mail;

186

At e e T e R -"-"';.'.‘ . “ . « ot '.-’..'. T ‘.."'-.. ‘.
. Te Tt " - LR L A I L I S I S U
PRI E ISP T N T T T TP . TV i GO S DS e IR I Y

"solutions" are beyond the scope of this research and usually require human judgment and

intervention.

The controller site in turn, on receiving a message from a participant who wishes to join,
may wish to verify that the participant is the person he claims to be, or that the participant is
the same user that was invited, or both. This may involve an authentication procedure, e.g.,
based on encryption [92]. This may not always be available or sulfficient, however, and
"authentication" of participants may often be performed manually, e.q., by speaking over lhe

phone with the joining participant.

5.2.7.2 Conference Lookup

A conference lookup server allows users to inquire about and discover conferences that
they may wish to join. A conference can thus be made known to users, other than the ones
explicitly "invited", by sending its description to a lookup server whose address is well-known
to users’ workstations. (More than one lookup server might be used for increased availability,
if instead the system’s lookup service has builtin replication, e.g., Grapevine or
Clearinghouse, only a single copy of the conference description need be sent.) A conference
lookup server will respond to queries about confers - 25 from users’ workstations; what kinds
of queries it supports and what access control restrictions it places on conference
descriptions will depend on the particular system. A conference lookup server may also
provide both "planning” and "recording” services (below), thus allowing uniform access to

information about all conferences past, present, and future.

5.2.7.3 Planning and Scheduling

A planning server keeps track of projects, tasks, appointiments, and so on, and may
perform automatic scheduling functions as well. Such a service, if available, can be used to
"call" and plan a real-time conference well in advance of its actually being held, without tying
up a controller site for several hours or days. Information that will ultimately go in the
conference “description”, e.g., allowed participants, scheduled times, or names of
documents, may be entered and updated as the planning and scheduling of the conference
evolves. This information could be used by a participant to browse over the information and
prepare comments and suggest alternatives in advance of the conference, or by the

participant's workstation to retrieve necessary code and copies of large objects in order to be

187

P AP

RS

i

DNLACRERRN
ala 4 4 s g

sind

) 4 Ll Jnas s s st At dusst s S e Jee) b bt Juteh ek e e enienad o L P A S et " AN Sanites_Shne SRR bt Seih Aie JRER i v

prepared for the conference. Addresses of participants' workstations could be entered in
advance, avoiding the need to perform name lookup when the conference actually starts. (If
an attempt to contact a given participant at the specified address fails when the conference
starts, name lookup can be performed again to determine if the participant's workstation
address has since changed.) Similarly, a set of backup controllers can be specified in
advance, one of which will probably be selected as the controller when the conference needs
to be started. Who can perform such updates and when, and whether concurrent updates to
distributed copies are allowed, will depend on the access and concurrency control facilities
available in the particular system. When it is time to start the conference, a controller site can
be selected and provided with the description information that has already been constructed.
(If by accident two or more users start conferences with the same description information,

these conferences can be "combined" as described in Section 5.2.6.)

5.2.7.4 Recording

A recording server maintains histories of objects, such as conferences, and makes these
available for lookup by users, perhaps according to specified access control restrictions. A
recording server is sent update messages but stores them in the history instead of processing
them against a current copy of the object. In some cases, a workstation, or the conference
controller, may itself act as recorder; these sites will both record the updates and update their

current copies.

5.2.7.5 Code Servers

A code server supplies, on request, code needed by controller and workstation sites for
different conference types and different objact types within a conference. How code modules
are named and versions tracked will depend on the particular system. It is assumed that code
servers have sufficient intelligence to send the appropriate compiled object code for different

processor types. (if not, the users may have to do this manually.)

5.2.7.6 File Servers

Finally, a file server provides permanent storage facilities; these are used from a
conference to read and write permanent versions of objects such as documents. A file server
may present a very low-level interface, e.g., read and write entire files having unique

"filenames"”, or may provide sophisticated database retrieval and update facilities. In the

188

R T S
I N

P N A S R LA B e e e T e e W e
LT SR YR P T WP P AL IS VIR Tt S B P TOAL W A T T N W U BhdP UiD U I Ul W D WY Woll A Tatll W S Al YaAs Vi 3

latter case, the "file" server may also be able to perform planning, recording. code, and
looktip services as described above. Or, in a system without such services, a file server could
be used to "simulate" them by definino file name conventions for the different services and
including sufficient intelligence in the controller and workstation code to tind. update. and

interpret the relevant files.

The file server for a given object is the site that carries access control information for the
object. and it alone grants and takes away "reservations™ on the document. The conference
controller must therefore interact with the file server(s) "on behalt” of the participants in order
to implement the desired access control policy. In JEDI, for example, the policy described in
Chapter 2 is to require at least one participant with read access in order to read a document,
and at least one participant with update access to set a reservation and write new versions. In
addition, a given participant can edit the controller's volatile copy of a document only if he has
update access to the document itself. As each participant joins the conference, and each
document is added to the working-set, the controller will therefore determine from the fite
servers which participants have read and update access to which documents. In addition, the
file server undertakes to inform the controller whenever any of this information changes as a
result of actions by a document's owner. The file server may also bias its granting of

reservations in favor of a conference, as described in Section 2.3.3.

In order for the above to work correctly, a file server must trust the conference controller
to properly "authenticate" the conference participants, which requires that the controller be
able to authenticate itself to the file server. The authentication problern is simpler if such
sophisticated access control policies are not being used. For example, if all file reading and
writing is done with the "chairperson’s” privileges, and the chairperson's workstation is the
controller of the conference, then the only authentication required is between the file server

and the chairperson’s workstation.

5.3 Decentralized Control

The implementation architccture and techniques we have presented arc based on the
assumption of a centralized controller site for each conference; this choice was made
because of the simplicity with which a consistent ordering is established for all participants'’

actions on the shared space. An alternative organization that is used in many distributed

189

.. . e . - ‘e R - e - A R T T - e e " N h
K R . - . . . - » o - - - . . -t e T et bl T T U P .ot
DRI G MERE WO S TS TR e 'W-.;._-.J L P PRI S PN R

sys.ems is decentralized control, where no single site is necessarily in charge. (We do not
consider many "distributed” techniques that in fact rely on a "primary copy™” for each object;
with the ability of the primary copy to move, and of backups to take over on a crash, these are
eftectively indistinguishable from our centralized organization.) We examine decentralized
methods in this section, and observe that they incur significantly greater communication
overhead than centralized control, and are therefore probably not a good choice for real-time
conferences. However, for the special case of two-person conferences this observation is
found not to hold, and decentralized control does appear to be a viable option for this

common special case.

We follow Bernstein and Goodman's classification [7] of decentralized concurrency
control methods into two main classes: locking, and timestamp ordering. We also brigfly
examine token -passing methods (such as [27, 76]) and then turn our attention to the special
case of two-person conferences. Our scenario for real-time conferences is somewhat
different from that assumed by Bernstein and Goodman for general distributed databases,
and our evaluation reflects these differing assumptions. A general distributed database
"transaction” typically reads data from one or more sites, performs some computation, and
then makes a decision to update some data. This model is not appropriate for operations in a
real-time conference that are typically much simpler and must be executed with minimum
delay. We instead assume that each transmitted operation in a real-time conference is self-
contained and can be executed by a receiving site on its copy of the shared space without
relying on some other site to compute the "results”. This implies full replication of the shared
space at participants’ workstations. Partial replication is not amenable to decentralized
control because of the delay involved in executing a distributed database transaction for each

operation.?®

Decentralized control is also not appropriate when the access control
requirements of a conference require a fixed controller site, e.g., the "chairperson's"”

workstation.

28" may be possible to construct a "hybrid” organization in which decentralized control is used among some
smalt group of workstations that support full replication, while the remaining workstations transmit commands to and
receive results from the workstations in this group. We have not worked out the details of such a scheme.

190

- AT . . L e gt gte T e gt et e e e T vt e e
PRI AP - PP PPN P URP U Uial S U UARY Whalt Wi WOl Vo Yo | ala o g - o & g

' &

(]
g

PPt S % 1

PRy

L Y

P SPR T |

5.3.1 Locking

Using decentralized locking, a workstation wishing to perform a command issued by its
participant must first obtain a lock (on the affected part of the shared space) from every other
site; some methods [38] relax this by requiring only a majority of "votes". The processing of

an operalion proceeds as follows:
1. The originating workstation sends the operation to all workstations.

2. Each workstation votes to grant or refuse the lock, depending on whether or not
some other uncommitted operation holds a conflicting lock. Each workstation
sends its vote to all workstations.

3. Each workstation on receiving every workstation’s vote decides whether or not a
sufficient number (all, or the required majority) approved, and executes or aborts
the operation accordingly. (An aborted operation may then be resubmitted by the
originating workstation.)

Two rounds of message transmission are involved, which is about the same delay as with
centralized control. (Response time can be reduced to one message delay, just as with
centralized control as described in Section 4.7, by immediate execution of a received
operation, and later undoing if necessary.) The number of messages sent, however, is
greater here than with centralized control. Assuming multicast communication, every
workstation sends one multicast message in the above, requiring N multicast messages to
execute an operation when there are N workstations. Centralized control on ttie other hand
requires only 2 multicast messages: one from the originating workstation, and one from the
controller. Without multicast, the situation is even worse; centralized control requires N

messages, while riecentralized control requires N‘(N-1).29

Except for the special case where N =2, which is discussed below in Section 5.3.4,
decentralized control imposes an unacceptable communication overhead; the additional
network load will degrade response time because of congestion or packet collisions,
especially for large N. Decentralized locking (and timestamping. below) techniques are best
suited for distributed databases in which most transactions affect only a small number of
sites; in a real-time conference, this is not the case because every operation on the shared

space must usually be seen by every workstation.

297h|s message overhead can be reduced to perhaps 3°(N-1) by having only the originating workstation collect
the votes. This saving however comes at the expense of one extra message transmission delay, for the originating
workstation to report the result to the other workstations. This same overall delay, of three message transmission
times, is incurred if partial replication and traditional distributed database transactions are used.

191

P s e s sask Sar auuh ASEN s et e e el Ml SR aveh e aset el send nad stal BUNS Beit aal sest sseel el aeaat Aemi asdl Jutth Shad Anti MMAL B Sntl e ArdE et AR dEL PR

(Note that the “locks” used in the above scheme are not the same as the "reservations™
described in Chapters 2 and 3. The locks described here are used, internal to the system and
invisible to the users, to ensure that each individual operation has the same effect at all
workstations. Reservations, while similar to locks, are a higher-level user-visible construct,
independent of the internal synchronization method, that protect sequences of user
operations from interlerence by other users' operations. Reservations are typically set
infrequently by the participants, and theretore do not impose a significant performance

penalty, whereas locks, if used by the system, are set and released with every operation.)

5.3.2 Timestamp Ordering

With this class of decentralized techniques, every operation is assigned a unique
timestamp, and it is required that those operations which are executed (i.e., not aborted) be
executed in increasing timestamp order. The timestamp for an operation is assigned by the
originating workstation, which appends some unique site identifier (e.g., network address, or
workstation number within the conference) to the value read from a monotonically increasing
local clock. Some rough degree of "fairness” is achieved by Lamport’s clock synchronization
methcd [72]): Whenever a site receives an cperation carrying a clock value greater than the
reading of its own local clock, the local clock is incremented to be at least as great as the
incoming clock value. This keeps site clocks approximately synchronized, in that no site's

clock strays far ahead of or far behind any other's.

"Basic" timestamp ordering, as described by Bernstein and Goodman [7], proceeds very
much like locking (described above): The originating wort.station sends the operation to all

workstations; each workstation sends its "vote" to all workstations; each workstation applies

the given decision procedure (unanimous approval, or a majority [118]) to execute or abort

the operation. The only difference here is that a workstation's vote is based on comparing

operation timestamps rather than on locks held by operations. The problems described C ‘_-1
above for decentralized locking, namely increased message overhead except when N=2, » 4
apply to this method as well. T
RS

4

A different method of using timestamps, referred to by Bernstein and Goodman‘as - @ 1

conservative timestamp ordering, does not require that each operation receive approval from
all or a majority of sites. Instead. a site receiving an operation with timestamp T, say, waits

until it is certain that no more operations will arrive with timestamps earlier than T, and only

192

EACELE e aC I AEEL AL LT She Sl A et Sl hth il it BrA -t el S e e i o A A = RS

hen performs the given operation. If sites are required to issue operations in increasing
imestamp order, and operations are received in the order sent without loss or duplication,
hen this condition will hold when an operation with timestamp greater than T has been
‘eceived from each site other than the originating site. A site that does not issue an operation
‘or longer than some specified interval should send a "nult" operation that simply carries a
imestamp but has no other effect; this will allow receiving sites to process waiting operations

‘hat have earlier timestamps.

The message overhead of this technique is in fact quite reasonable, since each operation
1ecds to be sent once to each destination site and no acknowledging or sequencing
mnessages are needed. With point-to-point communication, N-1 messages must be
ransmitted for each operation, while with muiticast communication only one message per
operation is needed. (In the latter case, an occasional retransmission will be needed to make
Jp for message loss; this will add some small fraction to the average cost per operation. Extra
"null” operations will also increase the message overhead somewhat, but not drastically

because they are needed only during periods of relative idleness.)

The problem with the conservative timestamp ordering scheme is not message overhead
(which is slightly better than with centralized control) but delay. In order to process a
received operation, a site must receive an gperation from every other site. The delay between
an operation being issued and its being performed therefore equals one message
transmission delay {(for transmission of the operation itself) plus the additional delay of the
receiving site waiting for operations from all other sites. The latter delay component will, to a
first approximation, be of the order of the interval between successive operations sent from a
site. Since the interval between sends is likely {0 be much larger than the transmission delay,
the total delay with this method is significantlv qgreater than the two message transmission
delays incurred with centralized centrol. This delay can be reduced by sending more frequent
"null” operations, but this will increase the message overhead and may severely overload the

network.

Timestamp ordering is a somewhat more plausible ~pproach if a receiving site executes
an operation immediately rather than waiting. This is possible if the site is prepared to undo
and redo the operation if an operation with carlier timestamp arrives later. This uses the
principle described in Section 4.7.3: participants see the effects of an operation after only one

message transmission delay, but the data they see may be inconsistent. (As also described in

193

DA W SPUPAI 2 SRP Sy AT S o P W WP ST SO |

T T

Py Lt e Gt Ar e e S A Ut Stul Shad SRl ISlh Al el o R W SR

Section 4.7.3, the probability of seeing inconsistent data can be reduced using
“reservations”.) This principle, of displaying the elfects of operations before they are known
to be correct. is independent of the method used to establish the correct ordering of
operations. The technique described in Section 4.7.3 used centralized control; using
timestamps instead achieves the same functionality with the following difterences in

implementation cost:

e Messaye overhead. Using limestamps, each operation carries all the information
necessary to determine its correct order relative to other operations; with centralized
control, the controller site must issue an additional message for each operation specifying
a sequence number. The message overhead using timestamps therefore appears to be
half of that using centralized control: N-1 messages instead of 2*(N-1) with point-to-point
communication, or one multicast message instead of two. However, the difference in
practice is much less drastic. As described in Section 4.7.3, the controller site is not
required to issue a sequence number immediately on receiving each operation; it can
defer doing this and "batch™ the acknowledging sequence numbers for multiple
operations into one network packet. The additional message overhead with a central
controller is therefore some fraction (the reciprocal of the number of acknowledging
sequence numbers that the controller sends in one packet) rather than a full hundred

percent.

e Delay. With either method, most operations are executed immediately on receipt, i.e.,
after one message transmission delay. (There is of course no such delay at the originating
site.) However, some operations may be "drastic" in that it is undesirable to execute them
immediately because undoing them may be expensive or disconcerting. For these
operationr 't is necessary to wait until the correct ordering is determined. This takes one
extra message transmission delay in the case of a central controller. With timestamps, a
site must wait for a higher-timestamped operation from every other site which may take
much longer as described above. This additional delay can be reduced to one message
transmission time (as with centralized control) if every site on receiving a drastic operation

issues a "null" operation with higher timestamp, allowing all sites to execute the given

operation. Because every site must do this, rather than a single controller, this increases
the message overhead and network load and is impractical. (It also raises the problem of
a "burst” of null messages being sent so close together that one (or more) is dropped by a

receiver which will then have to wait for a retransmission.)

194

- Sel e e e . . . Lt At Attt e Yt et
LIPS SO Y Ul ThiD S S Y)'4‘4.‘1'..‘!‘4'414'4"14‘-'* s e -

r those operations that can be executed immediately on receipt, delay is about the same
th centralized contral as with timestamps, and timestamps have a slight advantage in
assage overhead. For the occasional "drastic” operation, however, timestamps incur a

wger delay that can only be improved by an increase in message overhead.

The other distinguishing feature of decentralized timestamp ordering is its robustness.
ith centralized control, a crash of the controller site requires that the remaining sites select
new controller and resynchronize, as described in Section 5.2.5. With timestamps and
wcentralized control, a site crash causes no such disruption. (The only special care that
ust be taken is to ensure that all remaining sites eventually receive the same set of
serations from the crashed site; this can easily be done if a site can forward operations
ceived from other sites.) This may be a significant advantage with a large number of sites
id a high probability of site failure over the lifetime of the replicated database; this method is
fact used in replicated long-term name management systems such as Grapevine [9]. For
e briet duration and small size of a typical real-time conference. however, the probability of
site crashing is relatively small and the difference in robustness of the two methods will be

uch less significant.

3.3 Token-Passing

Token-passing is a hybrid of decentralized and centralized control, in that at any given
ne one site is the "controller”, but the controller site changes rapidly. Token-passing may
: used in a real-time conference, assuming full replication at all workstations, as follows.
1e workstations in a conference are arranged in a virtual ring, such that each workstation
immunicates only with the next workstation in the ring. At any given time, one workstation
Jids the token and is the current controller. A workstation can issue a message only when it
)lds the token, and when it does it sends the message to the next workstation in the ring
fore sending the token. Every message received is processed and forwarded to the next
orkstation in the ring, until it reaches the originating workstation where it is removed and
scarded. The ring structure and the circulating token ensure that every workstation sees all

essages in the same order.

This conceptually simple method has an obvious problem when applied to real-time
nferences, namely delay. A workstation wishing to perform an operation (a participant's

ymmand) must wait an average of half a trip around the ring before it receives the token, i.e.,

195

~ B . . L - aL o
IRPR AT RO SRy T e e T e T T T e e e e e e T A
. . PO G = a0 PRI S S A, Tl S AN - sia

LR DAL Ssh i s o S e~ O it S Cadiroline Padiaeh o il

N/2 message transmission delays when there are N workslations. After that, each successive
workstation around the ring sees the operation one additional message transmission delay
later. Rapid circulation of the token may overload the communication network, whereas less
frequent circulation {i.e., passing the token only after a brief wait interval) further increases

delay.

We note that token-passing has been a very successful synchronization technique in local
area networks [20]. This is because delay is not a factor when the token passing algorithm is
implemented in hardware; the question of "overloading” the network also does not arise
because the token does not competle with other signals for use of the links between sites.
When implemented in software, however, token-passing involves too much communication
overhead and delay to be practical for real-time conferences. (The same conclusion was

reached by Bernstein and Goodman for distributed databases [7].)

5.3.4 Two-Person Conferences
As described in Section 3.5, a two-person “"conference” is different to a user in some
ways than a conference with three or more participants. This section explores possible

differences in implementation. We assume here that the workstations of the two participants

are sufficiently powerful to conduct the conference by themselves without the services of a
separate controller site. We also assume that the conference is intended to have only the
same two participants for its duration; other users are not invited, nor is the conference

"announced” at a lookup server for others to try and join. A conference that is announced to

unnamed users, or to which more than two participants are invited, is not considered to be
"two-person” just because it happens to have only two participants at some given time; the

following will not apply.

With just two workstations interacting, only one point-to-point communication channel is e
needed, and many of the communication issues discussed in Chapter 4 become simpler.
Multicast, for example, is no longer interesting or useful when there is only one other site to
communicate with. A crash of either workstation, or a partition that prevents them from
communicating, simply aborts the conference; the issue of "removing” a workstation and . 9
continuing the conference with a subset does not arise. (After aborting the conference, a

workstation may still use its copy of the shared space for private interactions or to start a new

conference with other participants.)

196

RS B oy Pt P SSPCINE. SP W SPE P AP SE- Y SAE. WAL WL WL I I P, LIP U, PEAPILI. WL TE, WP, Do

» above simplifications, and a different user interface, can be implemented for two-
conferences using our centralized organization: One woikstation, presumably the
tiating the conference, plays the role of controller and is respionsible for updating the
space in response to its own and the other workstation's co-mmands. This, however,
s an asymmetry that seems unnatural for two-party communication. Most two-party
mication protocols, as well as two-party telephone connections, are symmetric in that
party has precedence over the other. We therefore consider decentralized methods
-person conferences, for which the criticisms of Section 5.3.1 no longer applv. (When
he number of messages sent per operation is the same with decentralized as with
ized control.) We will assume below that decentralized control is done using locking;
imps could be used with similar effect. Token-passing still does not seem appropriate,

ie a workstation issuing an operation must wait for the token if it does not already have

vorkstation, say W1, wishing to perform an operation on the shared space needs to
a lock from only one site other than itsell. W1 sets the needed lock(s) on its own copy
shared space, and sends an input message describing its operation to the other
ation W2, The receiving workstation W2 knows that if it can grant the lock(s) needed,
2 did not ssue a concurrent conflicting operation, then the operation must succeed.
ore, W2 can execute the operation immediately and inform W1. A total of two
jes are sent, as with a central controller. Response time for the originating wolrkstation
yove) can be improved by immediately executing the operation reversibly, needing to
ind redo it only if a concurrent conflicting operation is received from W2 t;efore the
vledgment of this operation. In the case of conflicting operations issued concurrently
two workstations, a "priority” mechanism can be used to determine which one is

ed first: only one workstation will have to undo and redo its operation.30

h the above decentralized method, neither workstation holds the "primary” copy of the
space. Consistency of the two copies not only requires that update operations be
ed in a consistent order (ensured by the above), but also that the initial copies be

tent. This can be ensured by having each workstation start with its copy of the shared

3 priority mechanism is the only source of asymmeltry in an otherwise symmetric protocol. The priosities do
: to be permanently biased in tavor of one site. e g, each site could assign priorities to its operations
y or from a clock. with only the least significant bt of the priorities biased to ensure unigueness and prevent

197

[V EN IR W AR RNV I GG SIS DU T C TN PG N N P SRS WP .

Sa ety

R

_AD-A154 723 INTERACTIVE ON-LINE CONFERENCES(U) MASSACHUSETTS INST

OF TECH CAMBRIDGE LAB FOR COMPUTER SCIE CE S K SARIN
DEC 84 MIT/LCS/TR-330 N88014 83-K-812!

UNCLASSIFIED F/G 1772

3/3 .

NL

END

Punip

e

T ‘ :i' N
‘ IO ll::: s lﬂ” \ .
————J O 3.2 L
""E E s 22 -
s

.| < Jj2o .._;'.:};
— e

lizs s e

rrre

3
Fe

T

i
MICROCOPY RESOLUTION TEST CHART] .,
NATIONAL BUREAU OF STANDARDS-1963-A

',
RN

A SO

. i , . - “w . N -
- . . . CEREY * N PR - - ..
L LT PR L PPN el W R P By B0 W S W 1 [RY ™

space in a standard state that is statically determined by the software, e.g., an empty "working
set". (This is the approach taken in the TELNET virtual terminal protocol [26]; the "shared
space” is however only a small set of option flags, not a complex application database.)
Information is then added to the shared space, by either or both workstations, using update
operations, and if concurrent conflicting operations are issued they are resolved by the above
mechanism. Some optimizations are possible, in that if both workstations concurrently issue
identical update operations each can acknowledge the other and the operation is executed

only once.

With neither workstation taking primary responsibility for the shared space, more flexibility
is possible in how information is replicated. Either workstation can add information to the
shared space, e.g., submit a document from the participant's private database, and can
"replicate” some or all of it at the other workstation, e.g., the other workstation need hold
copies of only those document lines actually displayed. This applies equally in both
directions, which means that each workstation may hold a subset of the information added by
the other. With a central controller, one workstation holds "the" entire shared space and the
other holds a subset; this is unnecessarily restrictive. (it may be argued that centralized
control is similarly restrictive with groups of more than two workstations, but in this case

decentralized control increases the message overhead as described in Section 5.3.1.)

The asymmetry of centralized control also introduces extra delay when conducting a
protoccl negotiation. When the controlling workstation proposes a change, the other
workstation returns its capabilities and must wait for the controller's final decision. With
decentralized control, a workstation can propose a change and specily its capabilities in a
single message, and the other workstation on receiving this proposal can make a decision

immediately based on its own and the first workstation's capabilities and preferences.

While we have not worked out the above in full detail, it appears that decentralized control
is a reasonable method for conferences that are intended to have two participants only.
Performance, in terms of message overhead and delay, is for most operations about the same
with decentralized and with centralized control, but the symmetry of decentralized control
allows faster negotiations and more flexibility in replicating data. Since decentralized
techniques are not appropriate for larger conferences, and would in any case require more
complex programming if they were used, a decentralized two-person conference cannot

"grow". If the participants in a two-person conference change their minds and wish to invite

198

<4
i
°

or add more participants, a new conference can be started using our centralized
implementation techniques, and the state of the first conference copied into the new one in

the same way as when “combining” conferences in Section 5.2.6.

199

[

Chapter Six

Prototype Implementations

This chapter describes two prototype real-time conferencing systems that we have
implemented. Our purpose in building these prototypes was to demonstrate the feasibility of
implementing real-time conferences using the techniques we have described, and to provide
some insight into the difficult problem of selecting a reasonable set of conferencing functions

and user interface.

The first prototype, RTCAL, supports the scheduling of a meeting by the exchange of
information from participants’ on-line calendars. This system was implemented in 1982 and,
although limited in functionality and architecture, was a major influence in the development of
the ideas presented in this thesis. The second prototype, MBlink, has just been completed
(June 1984), and supports real-time conferencing on more advanced workstations over a
network. Sections 6.1 and 6.2 describe RTCAL and MBIink, respectively, and Section 6.3

describes an extended version of MBlink that we designed but did not implement.

6.1 Meeting Scheduling in a Real-Time Conference

The prototype system RTCAL (for Real-Time CAlendar) allows a group of users to
exchange information from their calendar databases in order to select a suitable time for a
future meeting. The focus of RTCAL is to provide users with information and tools that they
may use to arrive at a decision in whatever manner they wish; it does not attempt to automate
the selection of a meeting time, which is an interesting but separate problem [42]. OQur
selection of meeting scheduling as an application area was partly motivated by the availability
of Greif's personal calendar system PCAL [47. 48]. RTCAL reads information from, and writes
meeting times into, the personal calendar databases that users create and maintain using
PCAL.

RTCAL was implemented in CLU[81] on a DecSystem-20™ mainframe. Although

participants’ "workstation" processes run on a single time-shared machine, we used

201

PREVIOUS p
1S BLANK CF

message-passing to simulate a distributed environment. The message-passing extension to

CLU was implemented by Maurice Herlihy using algorithms described in [57, 56].3'

6.1.1 RTCAL Functions

A user who wishes to schedule a future meeting using a real-time conlference takes on the
role of conference chairperson. The chairperson types in the names of the desired meeting
participants, the range of acceptable dates for the meeting, the desired meeting duration, and
a short description of the purpose of the meeting. A conference "invitation” message is then
sent to those participants who are currently on line and running their calendar programs.
(These participants could have been contacted by phone, and instructed to run their
programs, just prior to starting the conference, or a phone link could be established after
initial rendezvous has been made over the system with those participants who happen to be
available.) A participant who receives such an invitation is asked by his program whether or
not he wishes to join the conference. If the participant agrees, a message is returned to the
chairperson carrying an "outline" of the relevant range of dates extracted from the
participant’s personal calendar; this outline indicates which time slots are free and which are
not, without disclosing any additional information such as why the participant might be
unavailable at a given time. The participant may alternatively decline to join the scheduling
conference (which does not mean that he cannot come to the planned meeting, whenever it

may be held), and a message to that effect is accordingly sent to the chairperson’s program.

The real-time conference begins in earnest when the chairperson’s program receives
replies from all invited participants, or when the chairperson instructs his program to stop
waiting for replies and commence the conference, which might be necessary if some replies
are not received after a long wait. At this point, the calendar outlines received from the
participants who joined the conference are "merged"” to identify time slots for which all
participants are available. The displays of the conference participants are initialized to show
a part of this aggregate view in a shared window. (An example of a participant’s display is

shown in Figure 6-1.) The shared window can be manipulated by commands to "scroll” over

3‘The existing message-passing implementation used the operating system's “inter-process communication
facility". which was found to be too slow for the large number of messages that are generated in a real-time
conference. Peitormance was improved by using the system's facilities for “sharing” memory pages among files and
process address spaces [91], and reimplementing Herlihy's message encoding and decoding algorithms using
shared pages. Shared pages would have provided an ideal mechanism for simulating "multicast”, but that was not
attempted.

202

W T w T

the range of dates, and by commands that select different combinations of participant

calendars for merging (which is useful if there are scheduling conflicts that cannot otherwise

be resolved). The effects of each such command are immediately displayed on every

participant's screen.

e T e R +
[RTCAL 3.2 use control-t+ 12-4-82 11:52:07 Load=8.7 SARIN|
B e e Rtk +
[scheduling "thesis" uncommitted (2hrs, 12-25 to 12-31-82})|
| With GREIF LICKLIDER SARIN HAMMER |
| IN-Session IN-Session IN-Session Absent |
| session Running chairperson: GREIF controller: SARIN |
B it e e e et +
JLICKLIDER joined - all replies received |
R e E L e i LT PR +
[Monday 27 December 1982	Private calendar
Merge of GREIF LICKLIDER SARIN	Joe's birthday
9:00 XXX	9:00
] 9:30 XXX	9:30
{10:00]10:00
10:30	10:30
j11:00 [11:00	
11:30	11:30
{12:00	12:00
]12:30 XXX]12:30 Tunch	
13:00 113:00	
113:30]13:30	
14:00 XXX	14:00 Arpa meeting
[14:30 XXX	14:30 XX
15:00 XXX	15:00
e R i T e it +	
COMMAND> propose 10:30_	
ettt e R e e e e + D
Figure 6-1:Example RTCAL Display U
At any given time, only one of the conference participants is allowed to enter commands -,-. - lﬂ
to manipulate the shared window; this participant, initially the chairperson, is said to be in 3
control.%? Special commands are provided to allow the participant currently in control to)

"give the floor" by passing control to another participant (or back to the chairperson). A

"request control" command is also provided; the system queues a!l participant requests, and

3

203

. K . - -
SRS - L e T e e e e e T e LTI L . .. e T e e T AT e .
LI R ThiP SRR E SEPE SR, S et IO SR T SR Sl Tl Wl ULa D'y LIPS P WA A U T T T S 15D G I TP T Yol S ST Wi Gl Yl Pl G, T 1

2RTCAL uses some terminology that is now obsolete. The "controlier” in Figure 8-1 is a person, not a site or
program as in Chapter 4, and what RTCAL calls a "session" we now call a "confe:ence”.

P T U T S S S L

~ L. P R TS

N T TR SR SR
e e, o Y

e e e L e e e e e e o e e L s L ges ara e Seda-n oo U ol e P

a list of requests that have not yet heen granted can be displayed on command. The
chairperson is given special powers in that he can at any time preempt control from the
participant who currently has it. These conference control commands, entered by typing a
special control character, have no effect on the shared window; they only determine who has

the ability to manipulate this window.

Each participant in a conference sees not only the shared window but also a private
window that shows more detailed information, such as descriptions of or comments about this
participant’'s appointments, that is truly private and is not visible to the other participants. The
purpose of showing this private data is to aid decision-making; seeing details of his private
appointments can help the participant decide whether or not he can agree to a proposed
meeting time (see below). The private window is displayed alongside the shared window and
1s always kept current (with respect to the shared window) by automatically scrolling the
private window whenever the shared window is updated to show a different date or time

interval.

Decision-making in a conference is supported by allowing participants to vote on a
proposal. The participant currently in control can propose a specific date and time for the
meeting, and each participant enters a Yes or No vote depending on whether or not he finds
the proposed meeting time agreeable. (A participant is not constrained to base his vote on
whether or not his personal calendar shows him as being available.} The votes are tabulated
and displayed to all participants as they arrive. A proposed meeting time can be committed by
the participant currently in control {(whether or not all participants voted Yes); the committed
time is written into every participant’s private calendar. A committed time can be "undone”,
and erased from the participants’' calendars, to permit recovery from mistakes. The
chairperson may terminate the conference at any time, whether or not a final meeting time has

been committed.

A participant may leave a conference permanently at any time (using a control command).
He may instead "escape” from the conference temporarily to perform some unrelated activity
at his terminal (such as read some newly-arrived mail). When he "returns” to the conference
(by resuming his conference program), his display is brought up to date to reflect the current
state of the conference; he is also informed of any important events that may have occurred in

his absence, namely votes on proposed times or the commitment of a final meeting time.

204

Va LWV W N

No facility was provided for allowing a participant to modify his personal calendar
database while in a conference. Instead, the participant may "escape” from the conference
and run the existing PCAL program to do this. If he updates his personal calendar in a way
that affects the range ot dates being considered for the meeting in question, an up-to-date
version of his calendar outline will be automatically submitted to the conference when he
returns. Thus, a participant might decide to free up some time for the meeting by canceling or
rescheduling some less important entry in his personal calendar, and the effect of this will be
made visible to the other conference participants when this participant’'s new calendar outline

is merged with the others’.

6.1.2 Experience with RTCAL

Several trial real-time conferences were conducted using RTCAL, in groups of up to four
users at a time. (Because all participants’ "workstations"” run on the same time-shared host, it
was difficult to support larger conferences.) While we did not conduct a scientific study, the
overall impression of our subjects was positive, that real-time conferencing was an interesting
new mode of interaction. There were several suggestions for improvement such as more
interesting and useful display and processing of calendar information. Many such features
were planned can could have been added with litle change to the structure of the
implementation, but were not because it was more important to move on to other applications

and develop the generic real-time conferencing ideas presented in this thesis.

By implementing RTCAL, we were able to take a first cut at conference implementation
techniques, in particular replication of data, transfer and sharing of information between
shared and private spaces, initiating a conference by "inviting" participants to "join", and
response-gathering for negotiations. The techniques used have since been generalized, as
described in Chapters 4 and 5.

The most important lesson learned from our experience with RTCAL is that designing the

user interface to a real-time conferencing system is a difficult task. A participant’s display

screen presents many different kinds of information, including status information about the
conference, shared and private application information, and command echo and feedback. e
On the 24x80-character alphanumeric displays that we used, there is no room for the
“borders” between windows that we showed in Figure 6-1, making it very hard for a

participant to sort out and understand the information. This would be less of a problem on

T ap———— e —

higher-resolution screens that would allow us to separate windows with borders, or if different
windows could be shown in different colors. The display would still be somewhat cluttered,
however, and it seems desirable to allow the users to suppress some of the displayed
information and call it up only when they want it. It was also found especially important to
notity participants (e.g., by ringing the terminal bell and displaying a message) of significant
asynchronous changes that they might otherwise not notice, such as a participant leaving or

joining or a passing of permission to enter commands.

6.2 Shared Bitmap System

The shared bitmap system that we have implemented is an extension of the concept of
"virtual terminal” that allows multiple workstations to share the same virtua!l terminal. It
provides input and display functions not available in most traditional virtual terminal
protocols, namely a bitmapped rather than an alphanumeric virtual screen, and pointing
device or "mouse"” input. It has the disadvantages of virtual terminals discussed in Section
1.6.3. especially the inability to transfer application data. For this prototype, however, we
decided that speed of impiementation was more important than demonstrating all of the
possible conferencing functions described. The general-purpose shared bitmap facility
allows easier development of a centralized rather than a distributed application program, and

can be reused for other prototype applications in the future.

Our choice of a shared bitmap was also influenced by the availability of an experimental
protocol named Blink, developed by David Reed for coordinating a copy of a bitmap between
a sinyle workstation and a remote host. Blink uses a "non-sequential” protocol of the kind
described in Section 4.6.4, and we retained the basic structure of the protocol while making
several extensions in order to support multiple workstations holding copies of the same
bitmap. The resulting protocol, and the shared bitmap system itself, we have named MBlink.
Because non-sequential protocols are not commonly found in practice (except in cpecialized

applications such as voice), MBlink is useful in providing a practical manifestation of the idea.

MBIlink will support any application that uses a bitmap for dispiay and processes input
from one or more mice. The architecture used is shown in Figure 6-2. The application
program generates updates to the shared bitmap, which the MBlink manager sends to the

workstations for display. Each workstation reports the position of its mouse and the status

206

Workstation

Multi-User MB1ink
Application Manager
(controller site)

Workstation

Figure 6-2:Architecture of Shared Bitmap System

(up or down) of the mouse buttons to the manager, which reports it to the application for
processing. The MBlink manager displays a "pointer" pattern on the bitmap that follows each
workstation mouse as it moves. The interface between application and manager also allows

for adding and removing workstations; details are discussed presently.

X™ machines as

MBlink, like its predecessor Blink, is implemented using DEC VA
controller sites and Xerox Alto personal computers [117] as workstations. The machines are
connected by 10Mb/s Proteon Pronet™ ring network and an 3Mb/s Xerox experimental
Ethernet. The underlying communication protocol is the "User Datagram Protocol" extension

[99] to the Darpa Internet Protocol [101).

6.2.1 The Blink Protocol

In order to provide a context for understanding MBIlink, we first describe Reed's original
Blink protocol for communication between a remote server and a single workstation. This
description is adapted from internal Blink documentation written by David Reed, and from the

actual code.

Blink allows an application program on a host machine to treat a block of memory as a
directly manipulable screen bitmap. whereas in actua: fact the screen is on a workstation
machine connected to the host via a network or internet; Blink provides the mechanism for
ensuring that the workstation’s screen is consistent with the host’s bitmap. Blink also allows
the position of the workstation's mouse, and the state of the buttons on the mouse, to be seen

by the application program at the host.

The screen bitmap (at both the workstation and the host) is treated as a collection of

ublocks ("unit blocks"), each of size 32 by 32 pixels. This size was chosen by Reed to allow

207

B P, RN, ST . -
e e e T e e Sy Te e
S ~

- - . PR “~
. s te T mY et =Tt T T A S LN > T PO PR Lot - - . L. . . .
DR NEIPE A SPUCIL S P RIPULIPULAL Gl S I Wil S VG Sl Sl Shi SIS, W KT Sl S V. Syt W S S, S S . . . S S S i .

i

R G ST S LA e PR

e o oo e o . ="

as many as four ublock updates, sufficient for mast sinall changes to the bitmap, to be
transmitted in a single internet user datagram. The choice of ublock size also implies that a
complete array of ublock version nuinbers, described below, from an Alto screen of size

640x800 pixels, will occupy 20x25 = 500 bytes and will also fit into a single datagram.

Each ublock of the bitmap has an 8-bit version number that is incremented by one
(modulo 256) whenever the application modifies the contents of one or more pixels in the
ublock.® Itis possible for a given ublock to be updated repeatedly and to thus cycle through
the finite version number space; it so, delayed duplicate packets still lurking in the network
may be mistaken for current ones. For an assumed "maximum packet lifetime" of one minute,
this will not happen if each individual ublock is updated no more frequently than every halt
second. (This maximum frequency is averaged over a minute; a ublock may be updated mcre
frequently in bursts.) No special care is taken to protect against more frequent wrap-around
of a ublock’'s version number space; it is simply assumed, with extremely high probability of

being correct, that this will not happen.

All bitmap updates are sent by the manager to the workstation in absolute form: a ublock
is identified by its X and Y coordinates, and a new version number and the new contents of all
32x32 = 1024 bits are included. Since such updates do not depend on previous ones, the
protocol is rcbust against the loss of old updates to a ublock because a new update supplies
the entire new contents. (If a given ublock update is lost and the same ublock is not
subsequently updated, the update can be retransmitted as described beiow.) The protocol is
also robust against packet duplication and reordering because the workstation will not install
a received ublock update unless the version number it carries is greater (modulo 256) than
the corresponding version number in the workstation's copy of the bitmap. Thus, updates are

sent as unreliable datagrams without the overhead of a "virtual circuit” or TCP connection.

To bring the workstation’s bitmap up-to-date in the face of lost update packets, the
manager periodically sends the workstation a pol/l message requesting the workstation to
return a packet carrying the version number of every ublock in the workstation's bitmap copy.

(The workstation's response also carries its mouse coordinates and button positions, which

33A set of subroutines, such as "RasterOp" or "BitBIt" and writing characters from fonts, are provided to the

apphcation for modifying the bitmap. This set can be arbitrarily extended, e g, to draw arcs. curves, and polygons,
with no change to the Blink protocol ot to the manager or wotkstation scftware. The only requirement is that each
subroutine correclly report to the Blink manager which ublocks it moditied.

208

v
)

T P ———

are made available to the application.) Each poll message from the manager carries a
timestamp, drawn from a 16-bit one-millisecond clock (which wraps around every 65 seconds,
greater than the expected maximum packet lifetime). The timestamp is repeated in the
response sent by the workstation, and the manager ignores a response that is not "current”,
i.e., does not carry the timestamp of the last poll message sent. This ensures that the
manager does not perform unnecessary retransmissions (below) on receiving an obsolete

response that may have heen delayed in the network.

When a current response is received from the workstation, the manager compares the
ublock version numbers in the response with the actual version numbers in the manager’s
copy. The manager retransmits updates (coordinates and version number and entire
contents) for eacn ublock for which the workstation's version number does not match. After
processing the warkstation’s response and performing necessary retransmissions, the
manager also sends updates for ublocks that have been modified by the application, followed
by a new poll message. If no current poll response is received from the workstation within
some conservative estimate of the round-trip delay, the manager sends new updates only and

a new poll message.

The "shape" of the workstation’s hardware cursor, which follows the movements of the
mouse, is a progrommable 16x16-pixel pattern. The application can modify the cursor
pattern, and changes to the cursor pattern are transmitted to the workstation in the same way
as with ubloch updates, i.e., complete new contents together with a version number. A cursor
update is retransmitted if the cursor version number returned by the workstation in its poll

response is out of date.

The manager also maintains a "flag" indicating whether or not the workstation's entire
copy of the bitmap is known to be up-to-date. This flag is reset whenever the bitmap is
updated and is set whenever all ublock version numbers in a received response match the
manager's ublock version numbers. If the application wishes to ensure that the workstation's
screen displays the current state of the bitmap, it can halt further updates to the bitmap until

the flag is set.

A Blink "connection"” between a given host and workstation is initiated by the manager
sending poll messages to the workstation until a response is received, at which point a bitmap

is created with the size and initial ublock version numbers specified in the workstation's

209

PSP ST

oy

response.

6.2.2 Handling Multipte Workstations

Our implementation of MBlink is a compatible extension of the above Blink

implementation, with the following properties:

e No change to the workstation software is needed in order to support MBlink; each
workstation in a conference interacts with the MBIlink manager using the original Blink
protoco! and is unaware that there may be other workstations at which the same bitmap is
replicated. (The MBlink manager is of course aware of the multiple workstations, and a
user at a workstation may also be thus aware.) This was done partly to save programming
time, the workstation software having been written in a different language and operating
system than the Blink manager. In addition, it provided a useful demonstration of how
much can be implemented with minimal change to existing software. Even the "echoing"
of mouse positions on all workstation screens can be implemented without the
workstation software being aware of it, albeit using a rather convoluted method described
below. Functions that could not be implemented within this constraint are described in
Section 6.3; tor example, Blink does not support keyboard input from the workstation and

neither does MBlink.

e The same set of functions available to the application in the original Blink application are
still available in MBlink. MBlink only adds new functions without changing the semantics
(including the procedure call and return interface) of any existing ones. Thus, an existing
Blink application that interacts with a single workstation can be run without any change if
MBIlink is used instead. (It is only necessary to relink the object code modules.) The
output from an existing Blink application can alsc be displayed on muitiple workstations
with minimal change to the application software by including a few commands for adding

and p- sibly removing workstations.

In ordes ~cribe how the above compatibility was achieved, we briefly examine the
application intunic . the existing Blink implementation. The procedures that are relevant

here are:

remotescreen$sync(rs:remotescreen):
Any changes made to the bitmap by the application are sent to the
workstation, and polling and retransmission is performed until the

210

Al e SVER I e ievan e St

AR e \
. L A

I ettt
POF U GraE G S

- > ——y w p— Yo ~—— WY
— Ly — L il i S e Lan < A

events with timestamp less than or equal to the most recent one already received.) |f the
workstation has no new input evenlts to generate and the manager has not acknowledged the

most recent one, the workstation retrunsmits the input event buffer as often as necessary.

The manager will not receive some input if every one of K successive input packets from a
workstation is lost; special action may be taken to protect against this rare possibility. That is,
if & workstation finds that it has new stream input to send and the manager has not yet
achnowledged any of the last K events, the new input is saved locally until the manager
returns an acknowledgment. (This is similar to the "window" flow control strategy of virtual
circuits, except that the window size is now fixed.) The participant is informed by his
workstation (in the private messages area) that his input is not being processed (which he
might also notice when the application fails to respond), and may choose to leave the
conference if input remains blocked for a long time. The participant may instead instruct his
workstation to discard all buffered input and only send newly-entered input. There is no

guarantee that the manager will get the new input quickly, nor is it known how much of the

previous input the manager did receive because it may have been the manager's

acknowledgment, not the workstation's input message, that was lost.

Because each input event also carries the position of the mouse at the time of the
keystroke or button click, some optimizations are possible. The timestamps on input events
and on mouse position reports are drawn from the same clock, allowing the manager to use
the mouse position from an input event if the event's timestamp is later than the most recently

received position report. This also means that the workstation need not generate a separate

mouse position report if there is a new stream input event within the time interval specified by
the reciprocal of ptr-frequency. If there is no new stream input and the time to send a new T B
mouse position report arrives, the workstation includes all unacknowledged input events in

the same packet as the position report.

6.3.4 Sample Application

We have designed a first application for XMBIlink, a game in which a group of users can

cooperate in solving a crossword puzzle. We chose a game because it has a predefined and ® 4
well-understood objective and allows users to try out the system with a minimum of training _".i
overhead. (Our experience with RTCAL was that contrived problem situations had to be L.‘.:- 1
constructed in order to test the system, and conferences tended to be relatively inactive S 1
* N

224 .

. B "4 s PN P S e RSl e PP S AP T I -

———— o R R T T P T TRy m—e—y

The "message" object for a given workstation also carries a version number that is
incremented when the application wishes to send a new message. As with the above, the
manager keeps track of which message version number the workstation has acknowledged,
and retransmits the message until acknowledged by the workstation or replaced by a newer
message from the application. (If the application wishes to ensure that the workstation sees
every message, it can refrain from issuing a new message until it determines from the
ws-message-ackd array that the previous message has been acknowledged.) Updates to,

and acknowledgments of, own-pointer-pattern are handled similarly.

Updates to "ublocks" in the bitimap are handled in essentially the same way as in Blink
and MBlink. The bitmap size in XMBIlink is selected by the application, perhaps after a
“negotiation" that considers the workstations' screen sizes, rather than being automatically
determined by the first workstation response received by the manager. Version number
“zero” is never used by the manager, but may be returned in a response by a workstation that
has no knowledge of a ublock's contents; this will always trigger a retransmission of the

ublock regardless of its current version number.

Mouse input in XMBIink is transmitted unilaterally by the workstations, rather than only in
response to a pol, to speed up response. Every pointer position report from a workstation is
"timestamped” to ensure that the manager retains, and forwards to the other workstations,
only the most recent one that it receives. These position reports are never retransmitted
because new ones are generated by the workstation at the specified ptr-frequency. To
save communication bandwidth, the manager does not report a workstation's mouse position
to all other workstations immediately on receipt of a report. Instead, the manager periodically
(at about the specified ptr-frequency) sends every workstation's most recent mouse

position in a single packet.

"Stream” input, i.e., keystrokes and button clicks, is inherently sequential, and
transmitting it using a non-sequential protocol requires some extra work. Each input event
from a workstation carries a timestamp, and the manager returns acknowledgments to the
workstation specifying the timestamp of the last received input event. The workstation keeps
a buffer of the stream input events not yet acknowledged, up to some maximum number K.
Whenever the workstation has new input to send, it sends not just the new input event but
every unacknowledged one. Thus, if the manager did not receive the previous packet, the

missing input event will appear in the new packet. (The manager of course discards duplicate

223

L e - R . B e @t et et e - B e T
LSRR I S R R IR TN I I . A B B S R N ST, T I I N S A P S T L A Y

4
4
.
1

Byt e e - A Sel Jar i it ac ity S-S St e R Shuiec Mt ahd il SR A A

may change its mind and stop waiting after a timeout interval, just as at the beginning of

the conference.

6.3.3 Transport Protocol

XMBlink is uses a "non-sequential protocol” that is a modification and extension of that
used in Blink. Components of the conference object therefore have associated version
numbers which are transmitted in all update messages. These version numbers, together
with acknowledgment information that the manager collects from the workstations, have been

included in Figure 6-4 for completeness.

The conference description consists of the controller address, conference title,
bitmap height and width, and ptr-frequency. The description is sent by the manager
whenever "inviting” a workstation. An update to any of the components in the description
causes the description-v# to be incremented, and a descriplion update sent to all active

and invited workstations.

A workstation being i-nvited is also sent its corresponding elements of the workstation
"status" arrays, together with a version number that is incremented when any of these
change for that workstation (by virtue of the workstation being invited, accepted, or removed
by the application). A workstation receiving the conference description or its own status, or
both, returns an acknowledgment carrying the version numbers on its copy of the description
and of its own status. The manager keeps track of whether the workstation has
acknowledged the most recent version of each, and retransmits either or both until
acknowledgment is received. (On removal of a workstation, the new status of that workstation
is sent only once; it is not retransmitted unless the workstation attempts to communicate
further.) Workstations are not informed of other workstations' status, to reduce

d.%

communication traffic and manager bookkeeping overhea The application is expected to

display status information about all workstations if it needs to in the shared bitmap. (The 7
application may display the status information maintained by the manager, but will also - ©
usually include higher-level information such as user names, maintained by the application in ‘

“parallel” workstation arrays.) - ®

Py

35" multicast were available, it would be reasonable and efficient to send every workstations' status to all of them
at once.
| J

222

PO T . AP RPN PN - R T . ..
IR Tl Sl S IR T WS RSN S TR T WY SSa0 S JPUL HPAL WP S PRI P Y SRR

additional time the application is willing to wait if nothing new happens.

Having set the bitmap size, the application issues an Accept-Workstation signal for those
workstations with which it wishes to share the bitmap. (The application will typically
accept alt workstations that wish to join, but it can use other arbitrary access criteria.) The
manager informs the accepted workstations thereof. Each workstation on being informed
allocates and initializes a bit-array for the shared bitmap and displays it to the participant;
it also begins sending mouse position reports at the specified frequency. (The frequency
is initialized to some standard value; the manager autoratically reduces the frequency as
the number of active workstations grows large.) The application may also issue an
Enable-Input signal for one or more workstations; uniess it wishes to accept input from
only one participant at a time, the application will typically enable input for every active

workstation.

Keystrokes and mouse button commands arriving from active workstations cause the
manager to issue Input-Received signals to the application. The application processes
input according to its own syntax and semantics; it may even let input received from a
workstation remain on its queue (the corresponding element of streams) and process it
later. The manager issues an Input-Received signal for a given workstation only if there is

no input already in the workstation’s queue when new input arrives.

The application, in response to input or at any time when it has control, may update the
shared bitmap to display some information. When it has completed a batch of changes

and wishes to have them sent to the manager, the application Resumes the manager.

The manager on being Resumed sends update messages for all "dirty" ublocks to all

active workstations, as described below.

It the application issues an Accept-Workstation signal later in the conference, the

manager sends the new workstation an update message for every ublock in the bitmap.

If the application wishes to be certain that all workstations (at a "synchronization point"),

or a particular one, or some subset, have received all updates so far, it refrains from

updating the bitmap until the desired condition is met. The condition is tested by

examining the fields of the array ws-b{tmap-ackd for the workstation(s) of interest. (The

fields are automatically maintained by the manager as described below.) The application

221

A B R T I —_—— T e TN TSN U TN

i K St e e R S N Le s T T T L e T T T T T T s Lt e Lt e T e
WA PP U WL S LOUP AL I PRI S SR VI Gl WAl WP SR IPRE SAPNE ig DAL Wl Ul RIS WA A P . W

W T T W Y T T S T TR YT TG TN T .

before signalling a Resume in relurn; this forestalls a useless exchange of Resume signals

when there is nothing going on in either task.

The application obtains an object of type XMBLINK-CONF, i.e., a conference, by calling
the subroutine Create-Cont with the desired conference title as argument. (This is a simple
procedure call, not a task signal.) The conference object returned has no workstations and
has an empty bitmap. The subroutine Add-Workstation registers a new workslation address
and returns its "index" into the workstation arrays; no actual communication with the
workstation occurs until a signal (e.q., Invite-Workstation or Accept-Workstation, below) is
issued. The subroutine Set-Bitmap-Size, which can be called just once for a given
conference, sets the size of the shared bitmap and initializes its contents to all zeroes. 3
(Active waorkstations will be informed of the bitmap size when the manager next receives
control.) Subroutines are provided to allow the application to modify the bitmap contents, by
writing text characters from a font, or performing Boolean operations on the contents of
rectangular regions ("RasterOp" [93] or "BitBIt" [61]), or drawing lines, and so on. Each
such subroutine marks any “ublock"” that it modifies as being "dirty", so that the manager will

send update messages when it next receives control (as described in the next section).

A typical use of lhe signals provided, but not the only possible use, is the following. We
assume that the application has a list of addresses of the workstations it wishes to include in
the conference, obtained by some unspecified outside m~ans, and that it wishes to choose a

bitmap size that all workstations can accommodate.

o The application calls Create-Cont and Add-Workstation to include all the desired
workstations’ addresses in the conference. It then issues an Invite-Workstation signal for

eiach workstation, which causes the manager to send a conference "description” to each.

e Whenever the applicalion receives control (a Workstation-Requested or Warkstation-
Declined signal, or a simple Resume after a timeout), it checks the array ws-requested
to see if all workstations have requested to join or have declined. if there are no more
workstations from whom a reply is still awaited, or if the application decides it has waited
fong enough, it selects a suitable size and calls Set-Bitmap-Size. If the application wishes

to continue waiting, it Resumes the manager, with an argument equal to the amount of

MThe restriction on not allowing the bitmap size to change avoids problems of reallocating storage and moving
bits around; there is no conceptual reason why the bitmap size cannot change in a conterence.

220

P e

6.3.2 Application Program Interface

The application program and XMBIlink manager run as asynchronous (but not concurrent)
"tasks" in a single address space. Thus, the application can at any time examine the
components of the conference object created by the manager. The application may modify
some of the components of the conference object, using the subroutines described below;
other components are updated only by the manager. The application and manager pass
control to each other by means of signals that request specific actions (when the application
signals the manager) or report specific events (when the manager signals the application).
This passing of control is synchronous and symmetric (as with "coroutines”) in that the task

issuing the signal is suspended until the other task issues a signal in return.

Manager Signals from Application:
Invite-Workstation(conf,workstation#)
Remove-Workstation(conf,workstation#)
Accept-Workstation(conf ,workstation#)
Enable-Input(conf,workstation#)
Disable-Input(conf,workstation#)
Send-Message(conf ,workstation#,string)
Terminate-Conference(conf)

Application Signals from Manager:
Workstation-Requests-Join(conf ,workstation#)
Workstation-Declined(conf,workstation#)
Workstation-Size-Changed(conf ,workstation#)
Workstation-Input-Received(conf ,workstation#)

Figure 6-5:XMBlink Signals

The signals between the application and manager are listed in Figure 6-5. In addition, the

special signal Resume can be issued by either task when it wishes to yield control without

requesting a specific service or reporting a specific event. This is done when a task has
nothing further to do for the moment, or when it has a lengthy computation to perform which it
breaks up into shorter steps so as to give the other task a chance. (It is especially important
that the manager be allowed to run frequently, so that it can remain responsive to incoming -
messages.) Each task on yielding control maintains its own state information describing
unfinished work that is to be performed later. A Resume signal carries an argument which is

the approximate amount of time the other task should wait, if it has no other signals to issue,

219

B T Y SN SR U B L e e e T e e S . L e T e TN T e e T
AP ILIE S, B S E Il W S, T \.'\.’-,‘\.~.'s‘~‘-'~'-'-'g'-'-’-‘-"‘-l i'-‘. T LR P D A R P

which is of size nworks. The arrays include all workstations with whom any
communication about the conference occurred, whether or not they currently are or ever
were active; a given workstation therefore has a fixed "index"” into these arrays for the

duration of a conference.

o The bitmap itself is conceptually viewed as a rectangular array of the specified number of
ublocks. It is, however, implemented in the usual way as a single monglithic bit-array in

"row-major" order. The bitmap is replicated at "active" workstations only.

e FEach element of ypositions and xpositions is the lalest received pointer position
report, in pixel coordinates relative to the top left corner of the bitmap, from a given active
workstation. (The values are undefined, and the pointers not displayed, for workstations

that are not active, or whose mouse positions lie outside the shared bitmap.)

e Each element of streams is a queue of "input events" from a given active workstation.
Each input event is either a keystroke or a mouse button, and carries the position of the

mouse (in pixel coordinates) at the time the key or button was pressed by the participant.

e FEach element of ptr-shapes is the bit-pattern to be used for displaying the

corresponding workstation’s pointer.

e The pattern own-ptr-shape is the bit-pattern that each workstation should use, instead

of the pattern seen by the others, for displaying its own pointer.

e Fach element of messages is a text string that the corresponding workstation should
display to its participant in a private area of the physical screen. This is used by the
application to show participant-specific error reports or text messages, which cannot be

displayed in the shared bitmap because the latter is seen by all participants.

e The arrays ws-heights and ws-widths specify what height and width each workstation
is willing to allocate for displaying the shared bitmap. The application will usually (but is

not forced to) take this into account when selecting a bitmap size.

The remaining components of XMBLINK-CONF are version numbers for the above, and
bookkeeping information that the controller maintains about responses from the workstations.

We next describe how the application and manager interact in a conference.

218

D e

P

- - - . . . N - . . 1.".".’-‘ '~'-'-'-'.'»'n.'-.'-~‘.:.. PN
P A P PGP LIRS 5 I AL S S0 W WM AL I00 W Wt Mo T I Yo A

Te T e e et o e T e vt L PRI P R T T T
[PUC R AP SR Py PRI AP I WS < Wy Wy SO ST SIus § PR y's

version numbers

description-v#: int

ws-status-v#: array[1..nworks] of int
ws-requested-v#: array[1..nworks] of int
message-v#: array[1l..nworks] of 1int
own-pointer-v#: int

ublock-v#: array[1..height,1..width] of int
ptr-timestamps: array[1..nworks] of int
poli-timestamp: int last poll message sent

controller bookkeeping information
ws-description-ackd: array[1..nworks] of (yes,no)
ws-massage-ackd: array[1l..nworks] of (yes,no)
ws-pointer-ackd: array[l..nworks] of (yes,no)
ws-bitmap-ackd: array[1..nworks] of (yes,no)
ws-response-timestamp: array[1..nworks] of 1int
timestamp of last poll
to which workstation responded
ublock-dirty: array[1..height,1..width] of (yes,no)
ublock has changed
ublock-recent: array[1..height,1..width] of (yes,no)
ublock has been transinitted
since last poll

Figure 6-4, continued

.1'. ".,_.., ; ‘
. S L

217

type UBLOCK = array[1..M,1..N] of (on,off)

M= N = 32 in the implementation

type XMBLINK-CONF = record

conference description
controller: site-address
title: string

height: int number of ublocks
width: int
ptr-frequency: int per second

workstation information
nworks: int
ws-addresses: array[1..nworks] of site-address
ws-invited: array[1..nworks] of
(Invited,Removed,Undefined)
invited by application?
ws-requested: array[1..nworks] of
(Requested,Declinad,Undefined)
workstation requested to join?
ws-active: arrayf[1..nworks] of (yes,no)
active or not

information replicated at active workstations only
bitmap: array[1..height,1..width] of ublock
ypositions: array[1l..nworks] of int
xpositions: array[1..nworks] of int
ptr-shapes: array[1..nworks] of ublock
own-ptr-shape: ublock

messages: array[1..nworks] of string

information from workstations,
retained by controller only
streams: array[1l..nworks] of queue of record
event: key-or-button
mousey: 1int
mousex: int
timestamp: 1int
ws-heights: array[1..nworks] of int
ws-widths: array[1..nworks] of int

continued

Figure 6-4:XMBlink Conference Object Specification

216

P a ol el e il apdia gt A it AL N i R B -

R A
e

workstation’s local and remotely-tracked cursors overlapping. If the superimposition were
done locally, it would be very easy for the workstation software to suppress the remotely
tracked cursor whenever it overlaps the local cursor, or even to disable the workstation’s
remotely tracked cursor {while still showing the other workstation's cursors) if the user

finds it distracting to see two cursors following his mouse.

This section presents a design for an extended version of MBlink, which we shall call
XMBIlink, that overcomes the above limitations at the cost of having to modify the existing
workstation software. The design is presented below in the form that we originally intended to

implement it but were unable to for lack of time.

6.3.1 XMBlink Functions

XMBIink supports "conference objects” of the type XMBLINK-CONF shown in Figure 6-4.

The component objects are described below.

e The height and width of the shared bitmap are specified as the number of "ublocks" in
the vertical and horizontal directions, respectively. (The actual height and width of the
bitmap in pixels are therefore height*M and width*N, respectively.) The height and
width are included in the conference "description” that is transmitted initially to
workstations and lookup servers as described in Section 5.1.2. Prior to initialization of the

bitmap (below), the height and width are both zero.

e The component ptr-frequency specifies the maximum number of times per second a
workstation should send a pointer position report. This is included in the conference

description.

e The title is a descriptive text string supplied by the application. This is included in the

conference "description”; aside from the parameters listed above, the title is the only
information reteased outside the conference to prospective participants. Information R

about scheduled times, user names, access rights, and so on are implemented by the

application in whatever way it chooses. (Such information typically does not belong at the
level of a virtual terminal protocol. The crossword application at the end of this chapter

. provides an example of how these functions may be implemented.)

e The addresses and current status of the workstations in the conference are specified by

the arrays ws-addresses, ws-invited, ws-requested, and ws-active, each of

215

T T I IR N AT T R SR L IR PR Bt TR T B S S S SR LRI TS e e
NI e O T AT A S & X
[P IR IRAE APV LA T T T D AP ST Wil SAAP Sl T TRl Tt Uil S Wi Wl Gullt S G, T Wol |

6.3 Extended Bitmap System

The implementation of MBlink described above is adequate for some purposes, but it has

some limitations that arise from our unwillingness to modity the existing workstation software

used for Blink:

Because the workstation in Blink does not send keyboard input to the manager, the
application cannot process keyboard input from any of the workstations. (The application
may read keyboard input from the one terminal under which it is logged in, which may or
may not be 6ne of the workstations in the conference, and which cannot be changed even

if MBlink's “primary” workstation is changed.)

Response to mouse movements and button commands is somewhat sluggish (about a
second) because a workstation sends mouse information only when "polted” by the
manager. This could be improved by having the workstation unilaterally send its mouse
state to the manager at some reasonable frequency. (Care must be taken in this case not

to overload the manager or the network and cause response to degrade instead.)

The application cannot send "participant-specific” feedback that it wishes to display on
one workstation screen only and not the others. (At best, it may use the following
convoluted method: Remove all workstations except one, update the bitmap to display
the necessary feedback, wait until synchronization is achieved and the one workstation
displays the up-to-date bitmap, restore the bitmap to its original state, and add back the

workstations that were previously removed.)

The bitmap size is determined solely by the first response that the MBlink manager
receives; there is no possibility of negotiating a suitable bitmap size among a group of
workstations. (This is currently not a problem because the only workstations supporting

the protocol are Altos, which all have the same screen size.)

The method described above for tracking workstation mice may be a clever programming
trick, but it is inflexible and inefficient. It imposes considerable overhead on the MBlink
manager, which must repeatedly superimpose the pointer patterns and then turn them off
again before letting the application manjpulate the bitmap. The communication
bandwidth used is also greater than it would be if the manager simply sent all mouse
coordinates to the workstations and let the workstation software locally perform the

superimposition of pointer patterns. There is also the problem described above of a

214

T e W .

)

N A NI I i e L o gy i S e SRR TN > i i i A N e AL S TSR S RS A A ST Tl -1

A user at a workstation will see not only the mouse pointers "echoed" by the manager, but
also a locally-tracked hardware cursor. When the user moves his mouse, the pointer echoed
by the manager will lag behind the local cursor somewhat, as shown in Figure 6-3 for
participants 1 and 2. The echoed pointer will ultimately catch up with the local cursor if and
when the participant stops moving his mouée; the two patterns will then overlap, as shown for
participant 3. Seeing both a locally tracked and a remotely echoed cursor does have its uses,
in that a participant can roughly judge the response time of the system and can tell
approximately when the other participants can see his updated mouse position (at which
point the user may wish to say something over the voice channel in reference to the
information displayed in the region of the bitmap where he is pointing). On the other hand,
when the locally and remotely tracked cursors do coincide, the pattern seen by the user will
be somewhat fuzzy because of the superimposition. Given the constraint of no change to the
cxisting workstation software, there is no way to avoid this problem; it can be resoived only by
modifying the workstation software to do more local processing as described below in Section
6.3.

6.2.4 Experience with MBlink

At the time of completing this thesis, the only application that we have run using MBlink is
a network simulator written by Lixia Zhang for experimenting with congestion control
algorithms. This application was originally written by Zhang using Blink to display the status
of the network being simulated on a workstation screen, and this author was able to convert
the application to use MBIlink by modifying just a few lines of code to allow workstations to be
added and removed. Thus, a group of network researchers can hold a "design meeting” in
which they initiate and observe the simulation of one or more congestion control algorithms
using different network topologies and parameters. A user can also work alone from a single
workstation using the same program, with na change in interface from the original program
that ran with Blink instead of MBlink.

The retransmission procedure for MBIlink differs somewhat from Blink because of the
presence of mulliple workstations. "New" ublock updates caused by the application are
periodically sent to all workstations. (A separate, but identical, packet is needed for each
workstation, because broadcast and multicast are not currently supported by the IP datagram
protocol.) When a given workstation's response arrives, however, ublocks for which the
workstation is behind are retransmitted only to tha -orkstation. Unlike Blink, the MBlink
manager does not send a new poll message immediately after processing a workstation's
response, because other workstations may not yet have responded to the previous poll
message. A new poll message is therefore sent only after all workstations respond, or after a

suitable time interval {one second in the current implementation).

6.2.3 Remote Mouse-Tracking

The position of each workstation’s mouse can be shown on all workstation's screens,
without the application or the workstation software being aware of it, as follows. Whenever
the MBlink manager has control and is about to send a new set of updates to the
workstations, it first superimposes cach workstation’s pointer shape on the bitmap at the most
recent mouse position received from the workstation, using an exclusive-or (XOR) operation.
Ublock updates sent to the workstations will therefore show the pointers at the appropriate
positions on the bitmap. Whenever the MBlink manager returns control to the application, it
repeats the XOR operation to restore the madified pixels of the bitmap to their original state.
This works because XOR is a reversible operation that is its own inverse, and is necessary
because the application may be using the contents of the bitmap, e.g., in a "BitBIt" operation,

and must see the carrect bitmap contents without the pointers superimposed.

workstation 1 workstation 2 workstation 3

Figure 6-3:Tracking of Workstation Pointers

212

workstation's copy is known to be up-to-date.

remotescreen$get-mouse(rs:remotescreen) returns(int,int,buttons): .
The workstation is polled until it returns a response; the x- and y-positions e
of the workst:ition mouse and the state of the mouse buttons are extracted e
\ from the res;:ovnse and returned to the application.

) To provide a reasonable sema. s for the above in MBlink, when there may be multiple

workstations showing the bitmap and sending mouse input, we introduced the concept of a =

| primary workslation. The primary workstation is the first one to reply when an MBIlink -
connection is initiated. (While an existing Blink application will specify only one workstation '.-_:j'.'-‘_.
address when initiating the connection, MBlink provides an additional procedure that allows T
the application to supply more than one workstation address.) Subsequent calls by the - °
application to the above procedures apply to the primary workstation only, i.e., i
remotescresn$sync returns when the primary workstation is up-to-date regardless of the
state of other workstations, while remotescreen$get-mouse returns the coordinates and
buttons of the primary workstation’'s mouse. The application can designate a different v .
primary workstation at any time, using the procedure remotescreen$set-primary-ws. o
The notion of primary workstation was introduced solely for compatibility reasons, to B
support existing Blink applications. An MBlink application does not have to use the above _ _")
procedures, and can synchronize with and read mouse input from all workstations using the - _~.
foltowing new procedures: :
remotescreen$maybe-sync(rs:remotescreen,seconds:int): j.‘if_:;
Returns when all workstalions are known to have up-to-date copies of the o
bitmap, or when the given timeout period expires. whichever happens - '
first. When this procedure returns, the application may examine the state —
of rs to determine which workstations, if any. are behind, and may take
any action it wishes such as removing these workstations from the
conference.
remotescreen$read-ws-mouse(rs:remotescreen,ws:address) . e
returns(int,int,buttons):
Returns the mouse report last received from the given workstation. If the
application wishes to read the mouse postion and buttons for every
workstation, it must call remotescreen$read-ws-mouse repeatedly.
This procedure dnes no! poll the workstation and wait for a response i
because of the delay that would be incurred if invoked repeatedly for each - '

ditferent workstation. If the application wishes to read current mouse ~'_:Z-:-
positions rather than the last position received (which might be quite old), =
it first calls remotescrean$maybe-sync to request a response from all
waorkstations.

21

- .. S S N TP O Tt B S B .. T e e e Tt aTe et ot e e Tt s
e T e e M T et et s e L L e e e . . P R A AT TR R YL BRI SR AR
PR I R I I I S I PN PRI I c e gt e AT P I .

e A A i T A S S S Ao g v Sba P A i R B Il N M S - " Bt Mt g SRl Sl S el Sk Saage) v W Y T T Y W W — e — e =

because users had to learn commands and often received instruction over the phone.) Note

L o an 2 o g

that the crossword game as we describe it is not a competitive game, but a cooperative one in

the same vein as the real-time conferences addressed in this thesis. . @

The crossword application uses the shared bitmap provided by XMBIlink as shown in

Figure 6-6 (which is only a crude approximation of what would be shown on a bitmapped

screen; the crossword itself would also be larger and more interesting). The top region of the

bitmap shows information, in tabular form, about each participant:

e The participant's warkstation-address (in symbolic form if it appears in a host
name table).

¢ Name and phone number. These are entered manually by the participant himself
after joining, by selecting the region of the bitmap using his mouse and then
typing in the information. This information is purely for human use (e.g., to T
establish a phone connection if it has not already been made); the crossword L.
system does not force any participant to enter this information, and does not use
it in any way except to display it.

e Which participan?, if any, has the crossword board "reserved”, and the ranks of
requests, if any, in the queue. Requests are made by pointing at the region where
this is displayed and clicking a mouse button; releasing the reservation or
withdrawing a request is done similarly. The reservation is granted automatically
to the first request on the queue whenever no "words” are reserved (below).

e The flag "Waiting" indicates a workstation that was "invited” but from which no -~
response has yet been received. -

e The numbers on the left hand side are indexes into the workstation array. g --_‘.j:
Workstations of participants who left the conference, or declined to join, are not _-‘:':‘:'.
shown (e.g., number 3 in the figure). — i

[

An extra line (number 6 in the figure) is always included at the bottom of the table, which any
participant can select by pointing and then type in the address of a new workstation to invite. -

(Only one participant can do this at a time; an attempt to select this line while another

participant is using it will fail unless the other participant has exceeded the associated time

limit.) ..
The middle region of the bitmap displays a crossword board, with some of its cells filled :-.::}_'.
with characters typed by the users. Alongside the board is shown a caption for the crossword : T
and summary information about the current state of the game: current and elapsed time, and - ..,
fraction of cells and words filled in.
Each active participant has a cursor (not shown in the figure) which is located in some cell '.:‘:f::
®

225

A
-

‘w‘v.."“':‘ AL B /AR S e o e & el Suvel e sne aredt Bk seh et el RSl S b aoel SSh aeat Shad i)

1 ALTO-504 SMITH 253-5845 Req#1
2 ALT0-220 -- WAITING --
4 18.10.0.79 WESSON 5565-1212
5 ALTO-509 JONES -~ Reserved SRR
6 <enter new address here) SRR
F1-42-4- b=t 3-bod- =t 4+ "Animal House" by Sunil Sarin R
| CI Al T|##| F| R| O] 6] "o
e R D R Db it T N P S 19-Apr-1984 11:46am S
? | ##y CLA#) | T\un|nk] | played 11imi5s -
¢ HB-+--+7-+--+8-+9-+10+--+ 23/31chars 9/16words Opeeks
{ | Al T} EJ##] G| O] A] T|
. 1ttt =124 =4 -+ Tl
L1 ey 1) Flas ~ o
+13 44—t 14—t B A
| Of R El##] | L} T | R
R e R it Dt Ty .- .

ACROSS DOWN

1. Grown kitten * 2. Pretender

3. Grown tadpole 3. "... Leaf", Eden
* 5. Hello clothing

6. Finished eating * 4. Obtained, collogq.

8. Grown kid * 6. "Much ... about
*11. Not across nothing”

12. Suppose * 7. Grown female tamb

13. Mine product 9. Black gold
*14. Vocal part 10. Rear

Figure 6-6:Example Crossword Display

226

. IR N TN TR IS UL S B
) T gt gt T et e ; . e e e e e e YL e -
PPN T NI VLS T T W i I IR T N S 1 R BT W

and is oriented in some "direction”, across or down. A character typed by the participant will
be inserted into the current cell of his cursor, and the cursor advanced to the next cell in its
given direction. The cursor will not advance past the end of a word in this way, but can be
moved over the board using commands to move to the next or previous word, or to move to a
specified "clue” number, or to move to the cell in which the participant’s mouse pointer is

- currently located.

A character cannot be inserted into a cell that has already been filled, unless the cell is

first erased by an explicit command. This provides some protection against accidental
, interference of concurrent commands. (It also closely parallels what happens when solving a
l crossword on paper.) A different kind of protection is available, by a participant "reserving" - Qe)
‘ the current word of the cursor, i.e., the sequence of cells that includes the current cell in the

current direction of the cursor. While it is not necessary for a participant to hold a reservation

in order to modily (insert or erase) a given cell, holding a reservation on a word prevents other
participants from modifying any cell in the word. If no participant has any word reserved, a
participant may reserve the entire board, in which case only that participant can modify the
board. Timeouts are set on all reservations, similar to those described for the joint document
editor in Chapter 2.

The bottom region of the bitmap shows the clues for the given crosswords. Every clue for
which not all of the corresponding cells on the board have been filled is flagged with an
asterisk, to help the participants easily locate the clues that need work. (The absence of a
flag does not mean that the cells were filled correctly; this can only be checked using the
"peek" and "score" commands below.) The flags are on for all clues at the start of the game,

and are set and reset automatically by the system as characters are inserted and erased, an

amenity not available when solving a crossword on paper. Other amenities not available with
paper crossword puzzles are a Peek command that causes the system to insert the correct
solution character in a given cell, which may allow the participants to continue working if they
are stuck, and a Score command issued at the end of a game for checking the participants’
entries and filling in the solution for the entire board.

227

R PU PO
DRSS P L RTINS P

| AN A A et

»
»
.
’
»

T —_——— e, ey Mt I iie St S 20t e aetet Tl 20 200 e S T e

Chapter Seven

Summary and Conclusion

This thesis has addressed the problem of supporting a "real-time conlference"” in which a
group of users may view and manipulate a "shared space" of problem information from their
own workstations, possibly conducting a voice conversation at the same time. Starting with
this concept, we have examined in detail the issues that must be addressed in both designing
and implementing such conferences. Our objective has been to uncover the options available
and to determine their elfect on the user interface and on performance, so that a system
designer may make reasonable choices in developing a real-time conferencing system for his
particular applicatiori and user community. While our intention has been to develop concepts
and principles that are as generally applicable as possible, we used a particular example
application and developed it in detail in order to illustrate and justify the general concepts and

principles.

The problems we addressed in designing real-time conferences include the specification
of shared and private "spaces”, methods for controlling concurrent participant actions, and
overall conference management issues such as initiating and terminating a conference and
participants joining and leaving. Designing an appropriate user interface that includes all of
these functions is not a trivial task. There are many more "degrees of freedom" available to
the designer than when designing a single-user interface, e.g., whether and how much
concurrent activity to allow, or which activities should be private and not visible to the others
versus which should be shared. Consequently, there is also a greater danger of a user getting
confused and making errors, e.g., inadvertently performing an action that all other
participants see when in fact he meant to do it privately; such errors may have serious social
consequences that do not arise when a user is working alone.?® It is therefore critical that
sufficient feedback be presented to the user to indicate what information is shared and what

information only he can see (e.g., by clean separation of shared and private spaces on the

361\ user working alone can update shared data that others might then see; shared data, however, is usually
updated only at discrete points after an explicit command, and the user is often able to undo his changes before
anybody sees them.

229

TN T Y T v S

IS BLANK

PREVIOUS PAGE

-
A

R

PR
-

o Naa

display) and to indicate (perhaps by highlighting) which "mode", shared or private, he is

currently working in.

In designing a particular real-time conlferencing system, the designer may wish to restrict
some of the available degrees of freedom so that the complexity of the user interface is
manageable rather than overwhelming and the probability of user error is reduced. We have
tried to illustrate this design process by developing an example in considerable detail and
explaining our design decisions on the basis of common-sense observations about how
people interact in meetings. It is hoped that by systematically addressing the design issues
that we have listed, and making a reasoned choice in each case from the options presented, a
designer will be able to select a set of functions and an interface that is well-suited to his
particular application and user community. The designer might also wish to allow the users
themselves to select from a set of options based on their personal preferences. In this case, it
is desirable to provide a detault selection of options so that users who are unaware of the
distinctions are not burdened with having to make a choice. Or, one knowledgeable user
could make a selection of options for a given conference, freeing the others from this burden;
this would be particularly useful in an experimental system for "human factors" testing

(described below) of different options.

We have also examined how the real-time conference functions described might be
implemented. Various protocols for replicating and coordinating data at participants’
workstations were described, and compared on the basis of the response time perceived by
the participants to different operations. In particular, since consistency among a collection of
sites requires some synchronization and consequent delay (in the form of either a central
controller or a distributed locking or timestamp scheme), response time can be improved if
inconsistent data (updates that "never happened” and must be done over) is occasionally
tolerated at the user interface. Effective use of this method requires that such inconsistency
in fact happen only infrequently; this can be ensured using the interface design techniques
described ("reservations”) for minimizing concurrent conflict among participants’

commands.

Using the given implementation technigues effectively, when developing a particular
conferencing system for a particular computing and communication environment, requires
trading off user interface functionality (richness of the data displayed and operations on it)

against response time. In a heterogeneous environment, with networks and processors and

230

TNt e
- o

AR R S I U AT UL APl I RS ISP
MR S The? T T T TP . Sl Tl -3 WS T

T .- Py v Al A PR R A i st St

displays of varying capability, it is best to inake this tradeoff dynamically in order to obtain the
most effective use of the resources (workstations and communication links) involved in a
particular conference. We devised an architecture, named Ensemble, that permits the
exchange of as many levels of "meta-information”, describing run-time parameters, as are
needed in order to arrive at a reasonable choice of functions and implementation. Such
negotiations can be repeated as often as desired during a conference, as participants leave

and join and as network conditions change.

7.1 Future Directions

The main direction in which we see this research continuing is more extensive
implementation and testing of the ideas presented. We list the important research questions
that we think will need to be addressed.

First, the various design options and conference management policies we have presented
need to be evaluated in terms of their usefulness in practice. Short of prolonged
experimenting with a real-life implementation, such "human factors” testing would best be
done in a laboratory setting with high-bandwidth and low-delay connections among high-
pertormance workstations; a local area network or even dedicated wires would be suitable.
This would provide the ideal environment for evaluating design options based solely on their
perceived usefulness, without the complicating factors introduced by lengthy or variable
communication delays. This use of an "infinite bandwidth” and "zero delay” environment
has been applied by Chapanis [16] and others since for evaluating different communication
media. The effect of communication delay on user satisfaction and performance can be
separately tested by introducing artificial delays into the ideal system. User satisfaction and
anxiety can be estimated by questionnaire techniques, such as used by Good [43, 44], and
users' comprehension of conference functions can be judged by observing whether and how
often they use various commands, how often they make errors, and how well and how quickly
they respond to unexpected situations such as concurrent interfering commands by other
users. It may also be useful to measure "social” effects, such as how evenly or unevenly the
use of the system is distributed among the different participants (as has been done for face-
to-face meetings by Brecht [11]). Or, the length of time to reach a problem solution, and the

degree to which individual members are satisfied with that solution, may be measured in

231

............................
...
...................

ML AUl aEn- RS - o

A S e B o bt et A S A L s S S e T T T W T T TR e

comparison with other communication modes such as face-to-face, voice-only conterencing,
and video conlferencing. Such comparison of communication media has been performed in
the past [16], but the only form of computerized communication included in such studies is
teletype-based, not interactive manipulation of a "shared space” as we have described it. itis
important to use a well-understood problem or game, such as the crossword puzzle we chose
far our prototype, so that the measurements are not skewed by the subjects’ need to learn

and understand a complex application interface.

At the implementation tevel, more performance analysis and comparison of the various
available protocols is needed, in different implementation environments. Given an application
and an anticipated "load model", i.e., pattern of usage of different commands by the
participants, it should be possible to compute, analytically or by simulation, approximate
relationships between bandwidth, delay, and number of participants. This can be used to
determine how much bandwidth is needed to realize a given maximum delay with a given
number of participants, or how the delay increases with the number of participants given a
fixed available bandwidth. A major problem here is obtaining a reasonable load model for the
analysis; no such data is currently available because real-time conferencing is relatively new.
If a laboratory were set up as described above, it would be an ideal source of data for a load
mcdel. Such approximate analyses will not be sufficient to fully anticipate how a
conferencing system performs in an environment where a conference must compete for
resources with other applications and possibly other conferences; that will only be learned

through experience with an actual implementation.

Another important direction is the development of software that will make it easy to build
new real-time conferencing systems, both for the testing and measurement described above
and for use in actual applications. Providing a "shared virtual terminal" service such as
Augment's [30] will be important in the short run in allowing existing application programs to
be invoked from a real-time conference. But the functionality available with such a service is
limited (for reasons described in Section 1.6.3), and for the long run it will be necessary to
develop application-specific systems using design and implementation techniques such as
described in this thesis. The problem here is the programming cost of implementing each
new application from scratch. The cost per application can be greatly reduced if a set of
“generic” software modules is developed for performing common conferencing functions

such as initiation and termination, concurrency control, negotiations, input and update

I B R LI R I e Y Rl .‘\‘ l"r-_'-_" ._'._t.'" SN e T Ty s

message generation and interpretation, and so on. In order to be reusable for muitiple
applications, such software will have to be parameterizable to allow a conference system
designer to select from the various options available. (Or, conference participants may
dynamically select options at run-time.) In addition, it will be important to allow the software
to be reused with new application data types that cannot be anticipated from the outset;
modern software engineering techniques such as "object-oriented programming” [104] are

likely to be useful here.

Finally, the integration of real-time and asynchronous interaction facilities into a single
system needs to be addressed, at both the user interface and the implementation levels. We
note that the boundary between real-time and asynchronous commurtication is rather fuzzy,

and users may often wish to switch between these two modes of interaction, e.g.:

e Two (or more) users working asynchronously find that they are operating on the
same application object, and decide to work together in a real-time conference
instead.

¢ Participants in a real-time conference decide to work individually (or even in
subgroups) for a short period of time, and then join together again to pool their
efforts. (Often, this kind of "semi-interactive” conference with sporadic
communication may be forced by bandwidth fimitations.)

A system that supports both modes of interaction should also allow transitions such as the
above to be made smoothly. The kinds of problems (such as concurrency control) that arise
in supporting real-time and asynchronous interaction are not very different, but the
appropriateness of available solutions (such as "reservations” and "validation") may ditfer.
Our "joint document editor” of Chapter 2 is meant to illustrate how a real-time conferencing
system might be designed not in isolation but in the larger context of long-term asynchronous
interaction among many users not all of whom may be present in a given conference; more

work on such integrated system design is needed.

7.2 Relevance to Distributed Computing

We have identified many services that a system should provide in order to make real-time
conferences a convenient and useful tool. These services are interesting and useful in their
own right, even in the absence of real-time conferences. While we have not made direct

contributions in these areas, we list them here in the hope that their usefulness for real-time

233

o . P T T L P .,
R T D BERR PIATIA R R A BRI "
PO TR Wt Wt Yt YA L EP, A TP SPag 1P PP AP IP S EPIAD. PV TP 1P Sl WLV S WP UL SE Sl Wl W V- PR,

)

: 1
x 2
RO
.

conferencing will provide further impetus for more widespread development of such services:

o Loaokup services, for finding resources, users, and objects.

e Recording the history of objects, using a combination of complete copies
("checkpoints”) and incremental or "relative” changes.

e Access control and authentication.

¢ Integrated systems providing uniform access to multiple applications and object
types, together with user interface software such as "windows" and "menus".

e Software orsion control, and dynamic loading and linking of code over a
network.
e "Non-s: ¢,. ial” communication protocols based on unreliable datagrams.

e Multicast communication, hoth at the network level and at higher levels ("reliable
multicast™).

The problem of distributing an application program between a workstation and a remote
host has been studied in contexts such as "satellite graphics” [49], "distributed editing"
[41.118], and "application downloading” {4]. The thrust of these systems has been to
unprove performance and response time by reducing communication between host and
workstation and by local execution of operations at the workstation. Our concept of "partial
replication” of the shared space of a conference is derived in part from this work. There is
one critical difference, in that past systems have addressed the problem in the context of a
single user's workstation and a remote host whereas a real-time conference involves multiple
workstations. This limits the freedom of individual workstations to perform actions on their
own before informing other sites, because consistency among the different workstations
requires a synchronization mechanism such as approval from a central controller site. We
have consiuared local execution of operations at a workstation in order to improve response
time, but unlike single-user distributed editing or graphics it is not acceptable for a
workstation in a real-time conference to "batch” several locally-executed operations before
informing the oiher sites; all other workstations must be informed quickly of each operation
(either directly or via the controller) so that they may update their displays. Batching of
operations may be necessary in cases of extremely limited bandwidth, but then the

conference would be somewhat less than "real-time”,

A slightly different approach to distributed application programming is the development of
“remote procedure call” techniques for programming languages [8, 80]. Many of these have

been found convenient and useful in practice. However, because of the inability to

234

A I
PR L
Ao g 2 b o o 2"k oo

» l"
N SIS

Ty [SAAPE A S SnEl sedh Soees i JUNL tui SWEL AL e Sri St e & el il SvAr Sum s ael vk LS aude e Aeul SuS sl oel Sm SBAR e M agarans T

meaningfully pass "pointers" between different address spaces, remote procedure call
mechanisms do not consider the problem of replicating data objects at two or more sites.
Either the same data must be transmitted repeatedly with each remote call, or the application
programmer must devise a "naming” mechanism so that data can be sent once and then
referred to in later calls using its name or "id". This problem, the naming of application
objects and the tracking of changes to and versions of such objects, is explicitly addressed by

the implementation techniques presented in this thesis.

Given some naming and replication scheme for a particular conferencing application,
remote procedure call might be considered to be a convenient tool for implementing it. There
are still some problems, however, that will limit the usefulness of remote procedure calls for

real-time conferences:

e The inability to perform "multicast”, i.e., one identical remote call to multiple
sites. Separate remote calls must be made to each remote site, which may be
acceptable for small conferences (e.g., two or three participants) but will degrade
performance for larger conferences. Part of the problem here is defining an
appropriate semantics for a call that expects several returns, some of which might
never happen or be delayed for much longer than the others.

¢ The inability to "pipeline" remote calls, i.e., issue a new call before the previous
one has returned, except by convoluted methods involving a separate process for
each pipelined call. This restricts the abilily of participanis to "type ahead".
(This problem is in fact not peculiar to real-time conferencing, but also applies to
single-user interactive communication such as remote login. For such
applications, lower-level protocols that do not enforce a strict call/return
discipline are typically used instead.)

e Remote procedure calls impose an inherent asymmetry in that a programmer
must decide which message is the "call” and which is the "return"; in many
cases, a given message may have characteristics of both a call and a return.

We have preferred to avoid the above problems altogether by dealing with communication at
a lower level than procedure calls, namely asynchronous messages where the sender of a
message does not block until a reply is received. (Where there is a direct relationship
between a given message and some previous one, in either direction of communication, it is
still possible for the message to indicate that it constitutes some form of "reply” to the
previous message. A given message can thus both provide a reply and ask for a reply, which
is not possible with remote procedure calls.) The problem with asynchronous message
communication, compared with remote procedure calls, is that it is too unstructured and

increases programming complexity. More research and practical experience is needed in

235

N P R R PR S S . L A N U . S S S R S
P . I @ et et . N et . -, T Y. D P
el el ale, PRI LIPS P LI T SR 1 S NP SN S PSP S P R A S IO S I R P SR,)

. o e e e W LI —
e T L e e R P U N R
T . LN it . . PO -
PN .~ LT st - .y e S el e 2
CI IR Py LA P . IR P L PR W T i ey W
'+ A Aa%aladataa Lonlion Bl Sl PRI WY WO V. S Sl

designing primitives that balance the programming ease of remote procedure calls against
the power and flexibility of asynchronous message communication, and that also allow for

multicast communication.a’

In the past, two main classes of distributed applications have been developed that can be
characterized as "multicast”, i.e., involving communication among more than two sites:®
network voice conferencing [21, 52], and distributed databases [7]. These represent opposite
extremes of the tradeofl between consistency (or reliability) and delay (or response time).
Voice conferencing is characterized by strict real-time delay requirements, which can only be
mel by sacrificing some consistency, i.e., a participant may not receive a given voice packet in
time, with some resulting loss of quality in the voice output that he hears. Except for a small
amount ot "conference control" information (addresses of participants in the conference,
who holds the "floor”, and so on), there is little lasting state information in a voice

conference.

A distributed database (or distributed file system), on the other hand, has a large amount
of state information with strong consistency requirements; considerable delay (as with "two-
phase cammit” [46, 74]) may be involved in achieving the desired consistency. Real-time
conlerencing lies somewhere in between these two extremes; while consistency of shared
information is necessary, iow delay is also important in order for a conference to be
interactive. We identified a particular method of trading one for the other, by allowing
occasional temporary inconsistency of displayed information while at the same time

preserving eventual consistency by not allowing such inconsistencies to persist.

Distributed databases also place particular emphasis on crash recovery, which is less of a
problem for the briet duration of a real-time conference. The same crash recovery techniques
used in distributed databases are applicable to real-time conferences, but again response
time requirements dictate that users see each others' updates before the system has forced

them to permanent storage and is certain that they will survive a crash. When crash recovery

37The distributed "V" kernel supports a form of high-level multicast communication [18] in which the sender of a

multicast message blocks until one reply is received, the sender can subsequently check, as often as it wishes, to see
it addibonal replies have arrived. This facility is a mixture of synchronous and asynchronous message-passing, and
experience with it 1s still limited.

%Multi-site communication is also used within computer networks for routing, locating servers, and so on [10].
These applications, however, are mainly broadcast, i.e., involve an unknown set of sites, rather than multicast.

236

PR T I T NP RO |

Py

is invoked, therefore, some updates that users saw may be lost.

The "database” in a real-time conference is characterized by the replication of identical
data at multiple sites. For this particular kind of distributed database, it appears that the
problems of initiation and negotiation and of ensuring consistency are solved with less
communication overhead and delay using centralized rather than decentralized control. This
result does not hold for the important special case of a conference or distributed database
with only two sites. {Nor does it apply to more conventional distributed databases where
different data is replicated at different sites.) For two-person conferences, decentralized
control performs slightly better but centralized control retains the virtue of simplicity; this
reflects the current status of two-party network protocols, most of which are decentralized but

some of which exhibit a "master-slave" relationship, i.e., use centralized control.

The database in a real-time conference is also highly dynamic in that information and sites
may be added and removed. Some distributed database systems support dynamic exchange
of "schema" [53, 82] or "catalog” [78] information describing what data is available; this is
similar to our notion of a conference "description” that is used for getting sites started in a
conference. However, sharing of data in the above distributed database systems is done by
pairwise negotiations between the site holding the data and the site wishing to access it, on
the assumption that not all data will necessarily be of interest to all sites. The opposite is in
fact true for real-time conferences, and our conference architecture therefore presents
methods for groups of sites to negatiate a data sharing protocol without requiring a separate

negotiation for each pair of sites.

The "concurrency control” problem that we have studied for real-time conferences differs
somewhat from the problem that most distributed database systems have addressed. The

[T

objectlive in a database system is usually to isolate different users' "transactions" from each
other, while in a real-time conference each user's actions are intended to be immediately
visible to all participants. For real-time conferences we have therefore assumed that each
individual operation by a user is itself atomic, and have concentrated on the problem of
longer-term concurrency control across a series of operations, i.e., ensuring that each
operation has the effect that the user intended based on what he saw at the time he entered
the operation. Similar problems are likely to arise with asynchronous communication as well,
considering that a user’s involvement with a given object (e.g., a document or a circuit

design) may last for days or weeks during which time it may not be desirable to prevent other

237

R -

IR P IR SR - T e P O I I SO P
CPRLAPRL R R I, Y, WS TP PR AP 1R AP VL I, SO WP W WA, WAL NI SR SR 1N SOUE SPul WAy iy ey

WU O DT W L)

e
VT
P G Py

o At ."..
I o
b oL

L e e e e e e o hd e moe e et NS DS MLaseL o cun man L ae ey ses s

users from working on the same object. Previous attempts at addressing this problem (e.g.,
Violet (39]) have been unduly restrictive in that either one user locks out all others for a long
period of time or a user loses a lot of work when his locks are "broken" by another user's
transaction. The methods we have presented for concurrency control, namely reservations
and validation, are extensions of locking [46] and "optimistic” methods {71}, respectively,
used in database systems. Our extensions allow more flexible policies for dealing with
concurrent conflict, including time limits on reservations, saving "alternatives” rather than
losing work when there is a conllict, and allowing users to decide how to deal with concurrent
conlflict. We have observed that validation, which detects rather than prevents conflicts, is
practical only when the probability of concurrent conflict is low. While this may not often be
the case in a real-time conference, it may well be true when users are acting asynchronously.
Various combinations of reservations and validation are likely to be useful for handting longer-
term interactions among users of a large distributed system, and the implementation and

evaluation of these appears to be an interesting avenue for further research.

238

Lt e - - . RPN e T e e - R A TN S
et et et at At At at AT PR ISP EREPRLIT Y TAAPEILIT DI S S RO G S 1 Lt CER W SR By G SEDW Y TS W SR ey

RROE
* 1

3]

1]

5]

6]

7]

8]

9]

10]

References

Proc. Human Factors in Computing Systems.
National Bureau ot Standards Institute for Computer Sciences and Technology,
Gaithersburg, MD., March 1982,

Proc. CHI'83 Human Factors in Computing Systems.
Boston, MA., December 1983.

Proc. ACM SIGPLAN/SIGOA Symposium on Text Manipulation.
Partland, Oregon, June 1981.

Balzer, R., Cooperband, A., Feather, M., L.ondon, P., and Wile, D.

Application Downloading.

In Proc. 5th International Conference on Software Engineering, pages 450-459. |IECE,
March, 1981.

Bayer, R., and McCreight, E.
Organization and Maintenance of Large Ordered Indexes.
Acta Informatica 1(3):173-189, 1972,

Berglund, Eric J., and Cheriton, David R.

Amaze: A Distributed Multi-Player Game Program using the Distributed V Kernel.

In Proc. 4th International Conference on Distributed Computing Systems. |EEE, May,
1984.

Bernstein, Philip A., and Goodman, Nathan.
Concurrency Control in Distributed Database Systems.
Computing Surveys 13(2):185-221, June, 1981.

Birrell, Andrew D., and Nelson, Bruce Jay.
implementing Remote Procedure Calls.
ACM Transactions on Computer Systems 2(1):39-59, February, 1984.

Birrell, Andrew D., Levin, Roy, Needham, Roger M., and Schroeder, Michael D.
Grapevine: An Exercise in Distributed Computing.
Communications of the ACM 25(4):260-274, April, 1982,

Boggs, David R.

Internet Broadcasting.

Technical Report CSL-83-3, Xerox Palo Alto Research Center, October, 1983.
(Ph.D. thesis, Stanford University, 1982.).

239

PR WAL PR P S P TS

FOPEY

'-Y‘v Sln 2 A g
t . l‘ o
e

[11] Brecht, Mark Allen.
A Study of Meeting and Conlerence Behavior.
Technical Report, Johns Hopkins University, Dept. of Psychology, July, 1979.
(Ph.D. thesis.).

Pty A
S AP
i . Lt

. . L

[12] Bury. K., Boyle, J., Evey, R.J., and Neal, A. e
- Windowing vs. Scrolling on a Visual Display Terminal. S
In Proc. Human Factors in Computing Systems, pages 41-44. Gaithersburg, MD.,
March, 1982. T

o 2 e
i

. o
[

[13] CCITT.
Interface Between Data Terminal and Data Circuit-Terminating Equipment for
Terminals Operating in the Packet Mode on Public Data Networks.
Recommendation X.25, CCITT, November, 1978.

[14] Cerf, V., and Kahn, R. 9
A Protocol for Packet Network Interconnection. ;
IEEE Transactions on Communication COM-22(5):637-648, May, 1974.

(15] Chang, Jo-Mei, and Maxemchuk, N.F, .
Reliable Broadcast Protocots. -
ACM Transactions on Computer Systems 2(3):251-273, August, 1984. .

[16] Chapanis, Alphonse, Ochsman, Robert B., Parrish, Robert N., and Weeks, Gerald D.
Studies in Interactive Communication: |. The Effects of Four Communication Modes
On the Behavior of Teams During Cooperative Problem-Solving. o

Human Factors 14(6):487-509, 1972. -

[17] Cheriton, David R.
The V Kernel: A Software Base for Distributed Systems.
IEEE Software 1(2):19-42, April, 1984,

[18] Cheriton, D.R., and Zwaenepoel, W. ‘
One-to-many interprocess Communication in the V-system. e

In Proc. Symposium on Communication Architectures and Protocols. ACM R
SIGCOMM, June, 1984. -

(To appear in ACM Transactions on Computer Systems.). <

[19] Cimral, John J. R
Integrating Coordination Support into Automated Information Systems. ®
Master's thasis, Massachusetts Institute of Technology Dept. Electrical Engineering

and Computer Science, May, 1983.

[20] Clark, David D., Pogran, Kenneth T., and Reed, David P.
An Introduction to Local Area Networks. L
Proceedings of the IEEE 66(11):1497-1517, November, 1978. _®

[21] Cohen, Dan. el
A Protocol for Packet-Switching Voice Communication.
Computer Networks 2(4/5):320-331, September/October, 1978.

240

[22]

[23]

[24)

[25]

(26]

{27]

(28]

[29]

[30]

[31]

[32]

Comer, Douglas.
The Ubiquitous B-Tree.
ACM Computing Surveys 11(2):121-137, June, 1979.

Cooper, Geoffrey H.

An Argument for Soft Layering of Protocols.

Technical Report 300, Massachusetts Institute of Technology Laboratory for
Computer Science, May, 1983.

(S.M. thesis.).

Dalal, Yogen K.
Use of Multiple Networks in the Xerox Network System.
IEEE Computer 15(10):82-92, October, 1982.

Dalal, Yogen K., and Metcalfe, Robert M.
Reverse Path Forwarding of Broadcast Packets.
Communications of the ACM 21(12):1040-1048, December, 1978.

Davidson, J., Hathaway, W., Postel, J., Mimno, N., Thomas, R., and Walden, D.

The Arpanet TELNET Protocol: Its Purpose, Principles, Implementation, and Impact on
Host Operating System Design.

In Proc. Fifth Data Communications Symposium, pages 4-10 to 4-18. September,
1977.

Ellis, Clarence A.

A Robust Algorithm for Updating Duplicate Databases.

In Proc. 2nd Berkeley Workshop on Distributed Data Management and Computer
Networks, pages 146-158. Lawrence Berkeley Labs, CA., May, 1977.

Ellis, Clarence A., and Bernal, Marc.

Officetalk-D: an Experimental Office Information System.

In Proc. Conference on Office Information Systems, pages 131-140. ACM,
Philadelphia, PA., June, 1982.

Engelbart, Douglas C.
NLS Teleconferencing Features: the Journal, and Shared-Screen Telephoning.
In Fall COMPCON 75 Digest of Papers, pages 173-177. September, 1975.

Engelbart, Douglas C.
Toward High-Performance Knowledge Workers.
In Oftice Automation Conference Digest, pages 279-290. AFIPS, April, 1982,

Engelbart, Douglas C., and English, William K.

A Research Center for Augmenting Human Intellect.

in Proc. Fall Joint Computing Conference, pages 395-410. AFIPS Conference
Proceedings Vol. 33, December, 1968.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L.
The Notions of Consistency and Predicate Locking in a Database System.
Communications of the ACM 19(11):624-633, November, 1976.

241

s S22 SR A BB - ha
B S R

[33]

(34]

(35]

(36}

[37]

(38]

[39]

[40]

[41]

(42]

[43]

Foley, James D. and van Dam, Andries.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley, 1982.

Forgie, James W.
ST - A Proposed Internet Stream Protocol.
Arpa Internet Experimental Note 1EN-119, M.1.T. Lincoln Laboratory, September, 1979,

Furuta, Richard, Scofield, Jeftrey, and Shaw, Alan.
Document Formatling Systems: Survey, Concepts, and Issues.
ACM Computing Surveys 14(3):417-472, September, 1982.

Garcia-Molina, Hector.
Elections in a Distributed Computer System.
IEEE Transactions on Computers C-31(1):48-59, January, 1982.

Gerla, Mario, and Kleinrock, Leonard.

Flow Control Protocols.

In P.E. Green (editor), Computer Network Architectures and Protocols, pages 361ff..
1982.

Gifford, David K.

Weighted Voting for Replicated Data.

In Proc. Seventh Symposium on Operating Systems Principles, pages 150-162. ACM,
November, 1979.

Gifford, David K.
Violet, an Experimental Decentralized System.
Computer Networks 5(6):423-433, December, 1981.

Giftord, David K.

Information Storage in a Decentralized Computer System.

Technical Report CSL-81-8, Xerox Palo Alto Research Center, March, 1982.
(Ph.D. thesis, Stanford University, 1981.).

Goldberg, Robert N.

Software Design Issues in the Architecture and Implementation of Distributed Text
Editors.

Technical Report DCS-TR-110, Rutgers University Dept. Computer Science, 1981.

(Ph.D. thesis.).

Goldstein, Ira P., and Roberts, R. Bruce.

NUDGE, A Knowledge-Based Scheduling Program.

in Proc. International Joint Conference on Artificial Intelligence, pages 257-263,
Cambridge, MA., August, 1977.

Good, Michael D.

An Ease of Use Evaluation of an Integrated Editor and Formatter.

Technical Report 266, Massachusetts Institute of Technology Laboratory for
Computer Science, August, 1981.

(S-M. thesis.).

242

[44] Good, Michael D.
An Ease of Use Evaluation of an Integrated Document Processing System.
In Proc. Human Factors in Compulting Systems, pages 142-147. Gaithersburg, MD.,
March, 1982,

[45] Gosling, James.
A Redisplay Algorithm.
In Proc. Symposium on Text Manipulation, pages 123-129. ACM SIGPLAN/SIGOA,
June, 1981.

[46] Gray, James N.
Notes on Data Base Operating Systems.
In Lecture Notes on Computer Science, Vol. 60, pages 393-481. Springer-Verlag,
1978.

l [47] Greil, Irene.

PCAL: A Personal Calendar.

Technical Memo TM-213, Massachusetts Institute of Technology Laboratory for
Computer Science, January, 1982.

[48] Greif, Irene.

] The User Interface of a Personal Calendar Program.

) In Proceedings of the NYU Symposium on User Interfaces. New York University, May,
1982.

{Reprinted in MIT/LCS/TM-218, 1982.).

[49] Hamlin, Griffith, and Foley, James D.

i Contigurable Applications for Graphics Employing Satellites (CAGES).

- In SIGGRAPH '75 Proceedings, pages 9-19. ACM Computer Graphics 9(1), Spring,

; 1975.

5 [50] Hammer, M., lison, R., Anderson, T., Good, M., Rosenstein, L., Niamir, B., Schoichet,
- S., and Gilbert, E.

i The Implementation of ETUDE, an Integrated and Interactive Document Preparation
System.

In Proc. Symposium on Text Manipulation, pages 137-146. ACM SIGPLAN/SIGOA,

' June, 1981.

[51] Heart, F.E., Kahn, R.E., Ornstein, S.M., Crowther, W.R., and Walden, D.C.
The Interface Message Processor for the ARPA Computer Network.
In Proc. Spring Joint Computing Conference, pages 551-567. AFIPS Conference
Proceedings Vol. 36, 1970.

T ey

- {52] Heggestad, Harold M., and Weinstein, Clifford J.
;" Voice and Data Communication Experiments on a Wideband Satellite/Terrestrial
» Internetwork System.

_ In Proc. International Conference on Communications, pages A1.1.1-A1.1.8. |IEEE,
- June, 1983.

243

A R R - " et S et i o TPt e At i S Jen A S e hes fve Juitiuie e Mt

[53]

[54]

[55]

(56]

(571

(s8]

[59]

[60]

(61)

[62]

(63]

- .
-t s -
o e e g e

et et st e

A N T e .
e N e
et anas

Heimbigner, Dennis M.

A Federated Architecture for Database Systems.

Technical Report TR-114, University of Southern California Dept. Computer Science,
August, 1982,

(Ph.D. thesis.).

Henderson, Cecelia E.

Locating Migratory Objects in an Internet.

Master's thesis, Massachusetts Institute of Technology Dept. Electrical Engineering
and Computer Science, August, 1982.

(Available as M.I.T. Computation Structures Group Memo 224.).

Henderson, D.A., and Myer, T.H.
Issues in Message Technology.
In Proc. Filth Data Communications Symposium, pages 6-1 to 6-9. September, 1977.

Herlihy, Maurice P,

Transmitting Abstract Values in Message.

Technical Report 234, Massachusetts Institute of Technology Laboratory for
Computer Science, May, 1980.

(S.M. thesis.).

Herlihy, Maurice, and Liskov, Barbara.

A Value Transmission Method for Abstract Data Types.

ACM Trancactions on Programming Languages and Systems 4(4):527-551, October,
1982.

Hiltz, Starr Roxanne and Turoff, Murray.
The Network Nation: Human Communication via Computer.
Addison-Wesley, 1978.

Hiltz, Starr Roxanne and Turoff, Murray.
The Evolution of User Behavior in a Computerized Conferencing System.
Communications of the ACM 24(11):739-751, November, 1981.

Hoare, C.A.R.
Monitors: An Operating Systems Structuring Concept.
Communications of the ACM 17(10):549-557, October, 1974.

Ingalis, D.
The Smalitalk Graphics Kernel.
BYTE 6(8):168-194, August, 1981.

International Standards Organization ISO/TC97/SC16/WGS6.

Information Processing Systems - Open Systems Interconnection - Transport Protocol
Specification, 1982.

Reprinted in ACM Computer Communication Review 12, 3-4 (July/Oct 1982).

International Standards Organization ISO/TC97/SC16/WG1,2,3.
Reference Model of Open Systems Architecture, version 3, November 1978.

244

R s s 2 Al Sadh SadThadr It Iadh 4

Cmm e e et

L}

* U
l'..

»
J‘J [

-~ -'\‘--"‘-VV.v~v\-'—v-rrv'\l'~_?-|.v. T T r—r——rm— SN T W TN TN Y

[64}

[65]

(66]

(671

(68]

[69]

[70]

(71]

(72]

(73]

[74)

[75]

Israel, Jay E., and Linden, Theodore A.
Authentication in Office System Internetworks.
ACM Transactions on Office Information Systems 1(3):193-210, July, 1983.

Jacobs, Irwin M., Binder, Richard, and Hoversten, Estil V.
General Purpose Packet Satellite Networks.
Proceedings of the IEEE 66(11):1448-1467, November, 1978.

Jensen, Kathleen, and Wirth, Niklaus.
PASCAL User Manual and Report.
Springer-Verlag, 1978.

Johnson, Paul R., and Thomas, Robert H.
The Maintenance of Duplicate Databases.
Arpanet RFC 677, Bolt, Beranek and Newman, January, 1975.

Kamae, T., Ohtsuka, S., and Sato, Y.

Sketchfax - A Terminal Having Telewriting and Facsimile Capabilities.

In Proc. International Conterence on Communications, pages D3.4.1-D3.4.5, |EEE,
June, 1983.

Kedziersky, Beverly .

Communication and Management Support in System Development Environments.

In Proc. Human Factors in Computing Systems, pages 163-168. Gaithersburg, MD.,
March, 1982,

Kernighan, Brian W., and Mashey, John R.
The Unix Programming Environment.
IEEE Computer 14(4):12-24, April, 1981.

Kung, H.T., and Robinson, John T.
On Optimistic Methods for Concurrency Control.
ACM Transactions on Database Systems 6(2):213-226, June, 1981.

Lamport, Leslie.
Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7):558-5685, July, 1978.

Lampson, Butler W., and Redell, David D.
Experience with Processes and Monitors in Mesa.
Communications of the ACM 23(2):105-117, February, 1980.

Lampson, Butler W., and Sturgis, Howard E.
Crash Recovery in a Distributed Data Storage System.
Draft Report, Xerox Palo Alto Research Center, April 1979.

Lantz, Keith A., and Rashid, Richard F.

Virtual Terminal Management in a Multiple Process Environment.

In Proc. Seventh Symposium on Operating Systems Principles, pages 86-97. ACM,
November, 1979.

245

...............
......

1‘ [3
PRIV s

Yy
e

'

.. .I v .. .
LA SN

[76]

[77]

(78]

[79]

[80]

(81]

[82]

(83]

{84}

(85]

(86]

Lk oeh drh Jam i Mt~ i~ S ot S Ji 2 A SAE Al
R ST - . R

LeLann, Gerard.

Algorithms for Distributed Data-Sharing Systems which use Tickets.

In Proc. 3rd Berkeley Workshop on Distributed Data Management and Computer
Networks, pages 259-272. Lawrence Berkeley Labs, CA., August, 1978.

Lemmons, P.
A Guided Tour of Visi On.
BYTE 8(6):256 ff., June, 1983.

Lindsay, Bruce G.

Object Naming and Catalog Management for a Distributed Database Manager.

In Proc. 2nd International Conference on Distributed Computing Systems, pages
31-40. Paris, France, April, 1981.

Lipinski, Hubert, and Adler, Richard.

Electronic Communication for Interactive Group Modeling.

In S. Schoemaker (editor), Computer Networks and Simufation I, pages 251-277.
North-Holland, 1982.

Liskov, Barbara, and Scheifler, Robert.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J.C., Scheifler, R., and
Snyder, A.

CLU Reference Manual.

Lecture Notes on Computer Science Volume 114, Springer-Verlag, 1981.

MclLeod, Dennis, and Heimbigner, Dennis.

A Federated Architecture for Database Systems.

in Proc. National Computer Conference, pages 283-289. AFIPS Conference
Proceedings Vol. 49, May, 1980.

Medhekar, R.A., Singh, H., Winchell, D.F., and Salchenberger, S.N.

A Layered Operational Software Architecture for Audiographics Conferencing.

In Proc. International Conference on Communications, pages C7.2.1-C7.2.7. |EEE,
June, 1983.

Menasce, Daniel A., Popek, Gerald J., and Muntz, Richard R. IR
A Locking Protocol for Resource Coordination in Distributed Databases. J
ACM Transactions on Database Systems 5(2):103-138, June, 1980. e

Metcalfe, Robert M., and Boggs, David R.
Ethernet: Distributed Packet Switching for Local Computer Networks.
Communications of the ACM 19(7):395-404, July, 1976.

Meyrowitz, Norman, and van Dam, Andries.
Interactive Editir-, Systems (Parts 1 and).
ACM Computing Surveys 14(3):321-415, September, 1982,

248

..............
.................
. D)

[87] Miller, Robert B.
Response Time in Man-Computer Conversational Transactions.
In Proc. Fall Joint Computer Conference, pages 267-277. AFIPS Conference
Proceedings Vol. 33, December, 1968.

[88] Mitchell, Neal B., and McLean, Michael.
Demonstration of Palette Teleconferencing Software, American Saciety of Civil
Engineers Annual Conference, New Orleans, October 1982.
(Reported in Computerworld, November 1, 1982.).

[89] Mockapetris, Paul V.
Analysis of Reliable Multicast Algorithms for Local Networks.
In Proc. 9th Data Communications Symposium, pages 150-157. October, 1983.

[90] Montgomery, Warren A.
Robust Concurrency Control for a Distributed Information System.
Technical Report 207, Massachusetts Institute of Technology Laboratory for
Computer Science, December, 1978.
(Ph.D. thesis.).

[91] Murphy, Daniel L.
- Storage Organization and Management in TENEX.
In Proc. Fall Joint Computer Conference, pages 23-31. AFIPS Conference
Proceedings Vol. 41, 1972,

[92] Needham, Roger M., and Schroeder, Michael D.
Using Encryption for Authentication in Large Networks of Computers.
Communications of the ACM 21(12).983-999, December, 1978.

[93] Newman, William M., and Sproull, RobertF.
Principles of Interactive Computer Graphics, second edition.
McGraw-Hill, 1979.

[94] O'Brien, Michael T.
A Network Graphical Conferencing System.
Note N-1250-ARPA, Rand Corporation, August, 1979.

[95] Oppen, Derek C., and Dalal, Yogen K.
The Clearinghouse: A Decentralized Agent for Locating Named Objects in a
Distributed Environment.
ACM Transactions on Office Information Systems 1(3):230-253, July, 1983.

[96] Lorne Parker, editor.
Teleconferencing and Interactive Media.
University of Wisconsin Extension, Madison, 1980.

[97] Parker, D.S., Popek, G.J, Rudisin, G, Stoughton, A., Walker, B.J., Walton, E., Chow,
J.M,, Edwards, D., Kiser, S., and Kline, C.
Detection of Mutual Inconsistency in Distributed Systems.
IEEE Transactions on Software Engineering SE-9(3):240-246, May, 1983.

247

(98]

[99]

[100]

[101]

[102)

[103]

[104]

[105]

{106}

[107]

[108]

P T

c A

BT P S TS TN S I S S

Pterd, W., Peralta, L. A, and Prendergast, F. X.
interactive Graphics Teleconferencing.
IEEE Computer 12(11):62-72, November, 1979.

Postel, Jon.
User Datagram Protocol.
Arpanet RFC 768, USC/Information Sciences Institute, August, 1980.

Postel, Jon (editor).
Transmission Control Protocol - DARPA Internel Program Protocol Specification.
Arpanet RFC 793, USC/Information Sciences Institute, September, 1981,

Postel, Jon (editor).
Internet Protocol - DARPA Internet Program Protocol Specification.
Arpanet RFC 791, USC/Information Sciences Institute, September, 1981.

Reed, David P.

Naming and Synchronization in a Decentralized Computer System.

Technical Report 205, Massachusetts institute of Technology Laboratory for
Computer Science, September, 1978.

(Ph.D. thesis.).

Reed, David P.
implementing Atomic Actions on Decentralized Data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

Robson, David.
Object-Oriented Software Systems.
BYTE 6(8):74-86, August, 1981.

Rubin, D., Craighill, E., and Rom, R.

Topics in the Design of a Natural Teleconferencing System.

In National Telecommunications Conference Record, pages 12.4.1-12.4.5. IEEE,
1978.

Saltzer, Jerome H., and Schroeder, Michael D.
The Protection of Information in Computer Systems.
Proceedings of the IEEE 63(9):1278-1308, September, 1975,

Sarin, Sunil K,

Interactive On-Line Conferences.

PhD thesis, M.I.T. Department of Electrical Engineering and Computer Science, June,
1984.

(To appear as M.I.T. Laboratory for Computer Science Technical Report.).

Sarin, Sunil, and Greif, Irene.

Software for Interactive On-Line Conferences.

In Proc. 2nd Conference on Oftice Information Systems, pages 46-58. ACM, Toronto,
Canada, June, 1984,

248

SRS .
PR AP PTS N

(109]

(110]

[111]

(112

[113]

[114]

[115]

[1186]

[(117]

[118]

f119]

Schmidt, Eric E.

Controlling Large Software Development in a Distributed Environment,
Technical Report CSL-82-7, Xerox Palo Alto Research Center, December, 1982.
(Ph.D. thesis, University of Calitornia, Berkeley.).

Schneider, Fred B., Gries, David, and Schlichting, Richard B.

Fault-Tolerant Broadcasts.

Technical Report 83-519, Cornell University Dept. Computer Science, August, 1983.
(To appear in Science of Computer Programming.).

Shoch, John F., Dalal, Yogen K., Redell, David D., and Crane, Ronald C.
Evolution of the Ethernet Local Computer Network.
IEEE Computer 15(8):10-28, August, 1982,

Smith, D.C., Irby, C., Kimball, R., and Harslem, E.

The Star User Interface: An Overview.

In Proc. National Computer Conference, pages 515-528. AFIPS Conference
Proceedings Vol. 51, June, 1982,

Solomon, Marvin, Landweber, Lawrence H., and Neuhengen, Donald.
The CSNET Name Server.
Computer Networks 6(3):161-172, July, 1982.

Sproull, Richard F., and Cohen, Dan.
High-Level Protocols.
Proceedings of the IEEE 66(11):1371-1386, November, 1978.

Stallman, Richard M.

EMACS, the Extensible, Customizable Self-Documenting Display Editor.

In Proc. Symposium on Text Manipulation, pages 147-156. ACM SIGPLAN/SIGOA,
June, 1981.

Stallman, Richard M.

A Local Front End for Remote Editing.

Memo 643, Massachusetts Institute of Technology Artificial Intelligence t_aboratory,
February, 1982,

Thacker, C.P., McCreight, E.M., Lampson, B.W., Sproull, R.F., and Boggs, D.R.

Alto: A Personal Computer.

In D. Sieworek, G. Bell, and A.M. Newell (editors), Computer Structures: Readings and
Examples, 2nd ed.. McGraw-Hill, 1981.

(Also Xerox PARC Technical Report CSL-79-11, 1979.).

Thomas, Robert H.
A Majority Consensus Approach to Concurrency Control for Multiple Copy Databases.
ACM Transactions on Database Systems 4(2):180-208, June, 1979,

Tsichritzis, D.
Form Management.
Communications of the ACM 25(7):453-478, July, 1982,

249

...........

ot Wt T e T e e T VLT LN L NN ‘. R
A A B Rt B e 2 e R B e o s KRR Yol P TS S U SRS 20 R St i S W ST S AP UL

[120] Wall, David W.
Selective Broadcast in Packet-Switched Networks.
In Proc. 6th Berkeley Workshop on Distributed Data Management and Computer
Networks, pages 239-258. Lawrence Berkeley Labs, CA., February, 1982.

[121] Williams, G.
The Lisa Computer System.
BYTL 8(2):33 ff., February, 1983.

[122] Xerox Corporation.
Courier: The Remote Procedure Call Protocol.
System Integration Standard XSIS-038112, Xerox, December, 1981.

[123] Xerox Corporation.
Internet Transport Protocols.
System Integration Standard XSI1S-028112, Xerox, December, 1981.

[124] Zdonik, Stanley B.
Object Management System Concepts.
in Proc. 2nd Conference on Office Information Systems, pages 13-19. ACM, Toronto,
Canada, June, 1984.

e e e e e e T e T e e B T Tt e LT T T
- ~ . o T m e T e T T T T T T e ey .. RIS -
AT RIS DRI N T, PR Py Py TR s e e P 'y R .

> Ralinth A A St S et e B g e e P — o Al s T - ~.‘,-‘r.,—_;.,v(,-.,.—‘.-‘rv_,,_,.r

R |

o

CrTICIAL DISTRIBUTION LIST

1985

Director 2 Copies
Information Processinag Techniques Office

Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, VA 22209

[\

Office of Naval Research

B00 North Quincy Street
Arlinaton, VA 22217

Attn: Dr. R. Grafton, Code 433

Copies

Director, Code 2627 6 Cories
Naval Research Laboratory
washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Founcdation 2 Cories
Office cf Computinag Activities

1800 G. Street, N.W.

washincton, DC 20550

Attn: Program Director

Dr. E.B. Rovce, Code 38 1 Copy

Head, Research Department

Naval Weapons Center [
China Lake, CA 93E55 ’

Dr. G. Hopper, USHh~T 1 Copry
NAVDAC-0O0H

Department of the Novy

Washington, DC 2277

Ta o R T e T T T T e, T e e et e T e e e
.......

« 2% e ot T . e . o e T “w T e e e e e Tt
ata AL AR S I N A S ST P S P P R L A P o A N CT SO IR . ShOV R S

7—85

-
)~
PPV PRL P P e =

- .) - - ..
Y s -~ - - L - . . “ . .
Lt et - . " - - T - - = " - - . T . T N P PR A A W -
P O TR Vg DN AU PR AP L I, A S A SO SLAW SR e

