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ABSTRACT

A theoretical model has been developed to predict acoustic

radiation from a submerged, finite-cylindrical shell internally

stiffened by ring frames and with flat, movable end caps. Iterative ®
techniques are developed to solve the associated fluid-structure

coupled systems over a moderate range of frequencies which encompasses B

several fluid-loaded resonances. We demonstrate that such techniques
generate essentially the exact solution in a reasonably small number
of iterations. Comparison of computational costs to those for the

exact result shows iteration to be economically advantageous for all

frequencies considered.
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I. INTRODUCTION: THE MODEL IN CONTEXT

A. Statement of the Problem

The prediction of acoustic radiation from a general submerged
body requires, as an intermediate step, that two coupled systems of equa-
tions be solved simultaneously for the surface response and radiation
loading. One of the systems describes the in-vacuo dynamics of the
structure and so appears driven by unknown fluid pressures as well as
by known applied forces; the second describes the body-surface structure-
less dynamics of the fluid and in exact formulations is usually provided
by the Helrholtz integral, which also later yields far-field pressures
once its integrand has been fully determined. While the generation of the
latter fluid system may sometimes be expected to dominate computational costs,
a non-negligible part of the total expense must always be earmarked to the
coupled systems' solution process itself. The fluid system is again
mostly to blame since its effective contribution to the total impedance
is a fully populated matrix in contrast to that of the in~vacuo structure,

which is typically heavily banded and therefore relatively easy to invert.

A major objective here is the development and implementation of cost-
effective iterative methods to solve fluid-structure systems which arise
in the analysis of a finite, frame-stiffened c¢ylindrical shell with movable
end caps. The project is in part a follow-up to that of Ref. 1, where we
established that similar iterative techniques worked for the force-driven
spherical shell. The spherical structure, however, is a separahle geometry
which besides is modally compatible with its external medium. The iterations
performed where thus applied to scalar quantities and, though generally
successful, left unanswered the fundamental question regarding feasibility
of application to general nonseparable cases with fully populated matrices.
It will be recalled that when applicable, iteration methods for the solution
of a single linear system traditionally involve an order of magnitude fewer

operaticns than do exact methods.
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A second objective is to apply the model to an actual structure %{:‘d

and to compare exact far-field predictions to existing measurements. e 4

Summarizing the work, Chapter II contains the development of modal

structural and fluid systems for a submerged finite cylinder, and Chapter III J

that of the several iteration algorithms intended to solve them. In Chapter IV -
. ) . o

the theory is applied to an actual situation of interest and exact and iterated e

DRI

solutions are discussed and compared to measurement. e

B. Background ! xﬁi'}

The following is abrief review of recent developments in the area ® 4

of vibration of cylindrical structures, framed or unframed, submerged in a
heavy fluid which at times may substantially change the character of the in-

vacuo response. The use of iteration in past studies is also discussed briefly.

B.1 Treatment of the External Fluid Space

B.l.a "Exact" Models

As earlier stated, rigorous treatments of the
external fluid have tended to rely on the Helmholtz integral, the alternative
being a finite-element or finite-difference partitioning of a chosen fluid
volume enclosing the body and the enforcement of a radiation condition on the

outmost elements. The Helmholtz integral has the advantage that it yields

an integral equation which requircs pressure and displacements values only
on the body surface -- the values which completely determine an interaction

problem,

A major disadvantage however, is that by itself the Helmholtz integral
cannot be solved at the eigenfrequencies of its kernel, so that fluid im- ]
pedances are not always immediately available2 and therefore neither are values L
of the fluid pressure which would accompany a specified boundary motion.

This disadvantage is only apparent,however, since the fluid eigenproblem
is removed upon coupling to an interior problem posed for the body cavity
which complements the entire medium, and techniques such as those discussed

in Refs. 3,4 may be employed for a general impedance calculation; the

- LI R - '.. Y - '.~ .. Ve . . . . -' | '. . . . R . LT - . . - -, .. ..' ) .
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methods of Refs. 5 and 6 achieve the same end by coupling the Helmholtz
integral to the related equation resulting from differentiation. More-
over, in an interaction problem this apparent disadvantage is entirely
fictitious since, as pointed out by Huang7, fluid impedances need then
never be calculated as a bridging step. In effect, the fluid is then
automatically coupled to an "interior" structural system and the Helmholtz

eigenproblem does not come up.

Still, a number of useful and interesting studies have been ex-
clusively devoted to the calculation of fluid impedances for the cylin-
drical geometry, and thus to the mapping out of the radiation loading
over such structures. Chertock8 for example, has developed a general
computational scheme for obtaining solutions of the Helmholtz integral
equation corresponding to given or assumed velocity distributions. The
method is iterative and he observes that,while it converges easily for
low frequencies, higher frequencies demand certain modifications, e.q.,
averaging of two previous iterates for input in the current step. Slow
or nonconvergence of iterative technigques applied just to the fluid system
has been connected in Ref. 1 to the Helmholtz eigenfrequencies by recalling
the convergence constraints on the standard Neumann series for a Fredholm

.9
equation .

. C . 1
Sandman has investigated the finite but baffled cylinder O, and the

. 11
finite unbaffled cylinder with zero prescribed motion at the two flat ends.

His objective was to determine modal radiation loading magnitudes corre-
sponding to prescribed modal motions, with results which could be layed
out over those for the classical infinite cylinder solution to determine
the effect of the finite ends.12 Similarly, Kozyrev and Shenderov13'14
have calculated fluid impedances for a finite cylinder with rigid and soft
caps using a finite-difference approach; they applied Schenk's CHIEF3method
at the Helmholtz eigenfrequencies. However, Patel'slS like use of CHIEF as
part of his analysis of scattering from elastic structures is unnecessary

by the above argument since he ignores the fact that the in-vaauo structural

formulation represents interior-problem enough for the external fluid.

. YN
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The modal fluid model developed here is essentially an extension

of those by Sandman to include the effect of nonzero cap motion. Thus,
inversion of the fluid system derived in Chapter II would yield modal

impedances immediately suitable for comparison to those of Ref. 10.

Although such results were generated as part of the benchmark shake- ;ﬁf:“}

down of the present fluid model, for the sake of conciseness we do not ® B

report them here.

B.1l.b  Asymptotic Models

Earlier we stated that the total cost for ‘
solving the two coupled systems for a given arbitrary frequency is
sometimes dominated by the generation of the fluid system. Add to this ;;
the need to generate a new fluid system for each new frequency, and the
incentive for a rational substitute for the Helmholtz equation formulation o
becomes clear. Geers'16 Doubly-Asymptotic Approximation (DAA) requires
in effect that the fluid system be generatcd for only one frequency: the
zero frequency which yields the apparent mass matrix for the given geometry.

The method has been refined to give the exact fluid impedance not only at

the low and high frequency limits, but also at an additional midrange value

18,1,19

of choice.l7 DAA has been applied in a number of studies which

gauge its performance by comparing to exact, analytically available results.

.;.,..,.

. \ . . 2
In a more general application, Rantlet and DiMaggio 0 have used DAA to model

radiation loading for transient response to shock of a finite cylindrical .
shell for which the alternative would be the more expensive Helmholtz integral

formulation.

In Ref. 1 DAA was used as part of an iterative technique to compute 1
the exact structural response corresponding to an exact, Helmholtz~integral
fluid model. DAA's purpose was to stabilize iterations whose convergence ;fﬁ;ﬁ
71as otherwise either slow or impossible given the schemes devised. Con- -
vergence for the techniques here met with no such difficulties and a similar 4 4

recourse to DAA was therefore not necessary.
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B.2 Interation Models for Finite Cylinders using "Exact"

Two~ and Three-Dimensional Fluid Formulations

Chen and Schweikert21 have applied a general finite-
element methodology to a cylindrical shell and have modeled the three-
dimensional fluid interface as a superposition of sources of strengths
unknown a priori. BAn internal stiffening structure was also considered.

In accordance with the earlier discussion here, they met with no matrix
inversion problems. Baron, et. al.22 used a finite-difference description
of a solid elastic cylinder by dividing it into bands and assuming a modal
expansion in the circumferential direction. The two cap surfaces were
similarly divided into concentric bands. The three-dimensional fluid was
modeled using the Helmholtz integral. The final coupled system was obtained
by equating the surface-normal stress and displacement fields to the ex-
ternal fluid pressure and particle displacement, respectively. A later
model which includes the possibility of an internal void is in fact a
fluid~-loaded thick—éhell theory for the finite cylinder.23 Later yet, an
orthotropic shell model was developed to simulate stiffening-frame effects,

. . 2
and elastic end caps were incorporated.

Crighton's25 analysis of acoustic scattering by a finite cylindrical
bar not only models the fluid as two-dimensional, but has also adopted a
strip~theory, or locally-reacting, radiation approximation to eliminate
the cumbersome fluid loading integral. Such simplifications allowed him
to arrive at a simple and useful theoretical result for the ratio of res-

onant to nonresonant far-field levels.

rrough326, and Cole27 have also used two-dimensional fluid models
in thoo ralyses of force-driven framed cylindrical shells. Both studies
were in go agreement with experimental data. Cole models each stiffening
frame as a ing of finite thickness and width, and calculates in-and out-
of-plane dispiccements due to shell-reaction loads by means of Harari's2

equations.
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The familiar far-field approximation for the radical in the exponent

is then applied,

rcosa—zz}

2

2 -2
Yl+r +2rcoso+ (z-2z) © = R{ 1+
R

(IT.A-23)

which may be further simplified to just R for the radical in the denominator

of Eq. II.A-22, which becomes

. . L/2a . ~
KAk ) oikaR n+l az sin M2 (Gi1/0a) e KR(Z/RIZ
—— £ (r,z) = - (-1) 1

nm R
-L/2a
™
'J/~dacosna elka(r/R)cosa (IT.A-24)
0

The z integral is easily evaluated. For the o integral one recognizes that
m
i n ifcosa
J (&) = — dacosna e
n T
0

so that finally

(_i)n+l
N 2

(1) .
fnm () Jn(ka51n¢)

j imm/2 sin[{mwa/L-kacosyl}L./2a

—imn/2 sin[[mwa/L+kacosw)L/2a]}

1 © {mma/L~kacos|} -e {mna/Lt+kacosy}
(IT.A-25)
Applving a similar reasoning, one finds that
n
(2) (-i) . . . }
= ‘ ) +J .

tnm () 4 kasiny {Jn+l(ka51nq) In_1|(ka51n11,)
{ imn/2 sin[{mmra/L-kacosyl1./2a] _ -imm/2 sin[{mma/L+kacosypliL 2a]}

“ {mra/L-kacosyp} @ {mra/L+kacosyl

(T1.A-26)
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C
+ ika pc g3y L
n n
ikaR
e (I1.A-21)
= = z cosn¢w C
R n=0 + f(4) : L
n n
C
R
+ika pc £ ) v
n n
+ f(6) CR
L n Pn
: . . ikaR
where we have anulytically extracted out the free-field asymptotic factor e /R

(R nondimensional) of the three dimensional pressure field. The factor multi-
. ikaR . . . . _
plying e1ka /R on the right-hand-side of Eq. II.A-21 is the directivity

function for the vibrating shell with end caps as a complex radiator (the
(11 f(6)
nm

are functions of (r/R,z/R) (sin y, cos ) available analytically by approxi-

angles ¢, Yy are defined in Fig. II.l). Thus, the quantities f

cees
mating the integrals in Eg. II.A-7 resulting from substitution of Egs.II.A-9a
through II.A-9f. Each of their contribution to the total field has a simple
physical interpretation. For example, fé;), fsi) represent modal monopole
and dipole contributions over the shell surface since respectively they
appear multiplying Vnm and pnm' Similarly24fg3) represents the directivity

contribution of a left cap monopole, and fn that of a right cap dipole,

etc. The expressions given below clearly show all these features. To cal-
(1)

culate fnm (p), one starts with its exact, near-field, form: .
._J
\ L./2
ikaR (1) ] s2a _ —— .. -1
S— ¢ (r,z) = - — f dz sin —(z+L/2a) e
R nm 4n L SO
—L/.’_)El :v‘. .._'-:.

(IT1.A-22)

. /. .2 -2
Y ika/l+r +2rcosa+(z-z)
_,)(_l)nfdrxcosnd e

) 2 -2
0 1+r +2rcosa+(z~2)
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3 - 2w in L

. - . La nraz { cos[(m-m) 7 (l~az/L) ]-cos (m-m) n/2
m-f

. cos[(m+ﬁ)n(l~az/L)]-cos(m+ﬁ)n/2}
m+m

+

L/a mraz { sin[(m-m)w{l~az/L) }-sin (m-m) 7 /2
cos <
2T L m-m

sin[(m+ﬁ)ﬂ(l-az/L)]—sin(m+ﬁ)n/2)} for m £ W

=

m+m
(IT.A-18b)
where again, here
al. (z) = 2i:llz- dacosnaexp{ika¢é+22 /£:gcosa}
1n 3 (IT.A-19a)
/g+z 0 v/ 1+ Ecosa

o
2(—1)n ~/~ dacosna .(Ltcosa) [1-ika /§+22 /{+gcosd

a"1, (z) =
3/2
2n {2+22} / o {l+£cosa}3/2
-exp{ika /6+22 /&+gcosa} (II.A-19b)
with

2
£E = 2/(2+z )
2. Calculation of the Acoustic Field

Eq. II.A-7 is now used to calculate the acoustic far-field

pressure p.. defined as (with R=/r“+z%)

Pee = ;lmz T cosngp (r,z) = lim I cosn¢p (r,z) (II.2-20) |

Y +2Z oo R-»0
e 3
. 9
Y RARER
SIS
]
*
=
~ - .. [ -~ . . A . . ) - . - .".:]
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L/a mraz 2az ., 2mmaz
= < —_ - 222y 4 ==
'I'2 prp cos I {cos(mn/Z) [mm (1 L ) sin L. ]
+ sin(mn/2) [cos 1@%12- - (-l)m]}
L/a ., Wnaz Z2mmaz _ _..m
arm SiM T {cos (mn/2) [cos L (-1) '}
2 -
+sin(mn/2) o (1 - 522) ___2m2az] } for m = m
(II.A-17a)
and T = L/a cos Mmaz { s (BT, [51n(m—m) n/2—§ln(m—m)nza/L
2 2% 2 m-m
_ (sin(m+;n) n/2—sin(m+ffx)1rza/L) ]
m+m
+sin (_rp_T_r_) [cos {(m-m) "/2-808 (m-m) rza/L
2 m-m
_(Ses (m+m) 7/2-cos (m+m) nza/L) 1 }
m+m
L/a _,_ mmnza cos (m-m) 11/2—cos(m-r;1) ywza/L
+ ST 7 {cos(mw/2)[ p——
. cos (m+m) 7/2-cos (m+m) nza/L]
mHim
i - 2-si —m) L.
—sin(mn/2) [51n(m m) 1t/~ sin (m-m) wza/
m-m
i m -si m \
+ sin (m+m)w/2 §1n(m+m)1rza/L]?for m £ i
m+m -
(II.A-17b) ]
r = . L/a_, mmaz {cos 2mmaz _ (_1)“\} SN
3 4mm L e 1
L
+ Ha o mmaz {(1 - 23%Z) 0+ sin 33‘132—} for m = m (II.A-18a)
41m L L L
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the degree of computation is further reduced. Finally, all entries for
which m+tm is not an even integer may be shown to be identically zero. It
turns out therefore, that instead of M2 triple integrals for the MxM sub-
matrix, we actually have only M/2- (M/2+1) double integrals for M even, or
(M+1)2/4 double integrals for M odd. Thus, for example, if M=30 the

number of double integrals needed for the MxM submatrix becomes 15(15+1)=240
(not 900). If M=31, then (31+1)2/4 = 256 double integrals are required.

For large M therefore, roughly M2/4 double integrals are needed to generate
most of the fluid elements by the present modal method. Since finite dif-
ferences would require M2 (or perhaps M2/2 due to reciprocity), the present
method represents a net savings for this part of the calculation. However,
the matrix entries for the bottom two rows and rightmost two columns of [C]
and [D], require the evaluation of roughly 3M triple integrals for n=0 or

2M for n > 1 by the modal method and the same number of double integrals by
finite differences, so that, calling N the number of mesh points in the out-
most of our triple integrals, it follows that both techniques are roughly

. 2
equivalent in cost when 3MN = 3/4M".

. . 1
The double-integral versions of C( 1, D(lz turn out to be:
nmm’  nmm

L/2a
(L) 1 m+in 2 2
= = [1-(- + + +L/2
Cnmﬁ > [1-(-1) ] J/. dz UTl Ta)[a I2n(Z)] T2[a I2Az L/‘a)ﬂ
0
(I1.A-15a)
. ~ L/2a
(1)_ _ika m+m )
== ~ (- + +T +L/2
p =-22 n1-(-1)™") f dz (T +T ) [al, (2) 14T, [aT, (z+L/2a)]}
0 (II.A-15b)
where the quantities Ty, T,, Ty are functions of m,m and z:
L/a m ,  mmaz L/a mnaz ~
= Ll f1-(~ _— o —= f n o= IT.A-16
Tl 4TYm[l (~1) 1 sin L + 4 cos L or m m ( a)
and -
~ -t ~ + i ~ n
L/a ., mpaz (~1)(m m)-cos(m—m)1r/2 (—l)(m m)—cos(m+m)ﬂ/2
T, = sin - + =
1 2m L m~-m m+m
- L/a cos mnaz 51n(m—T)n/2 - 31n(m+T)n/2 for m # m; (IT.A-16Db)
27 L m-m m+m ,
15 0
T e e e ;-;u;n;aA-;a;;‘u‘n'n'u'upz'u;;;a;a;u;~_uiy;nyu;;;:;;,;;{;i;{;‘j-;ngu_u;u';:;s;:;.;
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C C
For n > 1 the present model has VnL = VnR = 0; so that the right side of
Egq. II.A-13 becomes then
(1) (1) (1) 7
D eo e
Ph11 nl2 Phim ( Vom=1)
(1) (1)
Dn2l e Dn2M < vnm=2‘>
" (1) (1) ‘
Dan eee DnMM Vnm=M
———————————————————————————————————— (II.A-14)
(2) (2) (2)
nm=1 nm=2 "7 nms
(2) (2) M+1_(2)
nm=1 nm=2 ot (-1) D m=M 4

where the last two columns have been deleted from the [D] matrix multiplying
{v}, which has been shortened accordingly. If {v} short above were known so
that the above product could be performed, thus yielding a M+2-element vector,
the system governing the {p} vector would still have rank M+2; its solution

would give EZe shell modal fluid loading Pome1i""" PLm=M

Cc
pressures pn ’ an. From the acoustic viewpoint, these cap pressures, whether

plus the fluid cap

or not there is cap motion, represent the modal strength of radiating cap di-

poles.

All constants in both [C] and [D] matrices require the evaluation of
a triple integral. Thus, the present modal formulation initially does not
appear economically advantageous compared to a similar finite-element or
finite difference calculation, e.g., that in Ref. 22 where only double in-
tegrals are required. However, we now show that the bulk of the matrix
elements, namely those composing the upper left MxM submatrix in both [C]
and [D] matrices which represent the coupling of m,i modes on the cylindrical
part of the surface, may be recast in terms of double integrals. Moreover,

these submatrices are symmetric, e.g. in Eq. II.A-11 C .~ = C ~', so that
nmm nmm
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Finally, if the modal sum m§

m+1l 2)

C(
nm

1

cast in the following matrix form:

is everywhere truncated to

m=1"'
an integer of sufficient size, and advantage is taken of certain symmetry

s . +
relations between some of the constants (e.g., it turns out that Déi)=(-l)m 1

52, 3,
nm nm

P ———"r
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M being

), the resulting set of fluid equations may then be

- ] ] h F 7
(1) (1) (1) Po@ (2)
Lrza+C 1) Cp127°" Chim I Tnm=1 | Chm=1 Pam=1
| [}
| ]
(1) (1) (1) A ) B (2)
Ch21 L/2a+Cn22... Cham : Chm=2 ! ~Chm=2 Prm=2
: : : | ! :
. . ] |
) i |
(1) (1) 1 (2) ), Ml _(2) —
nMl T L/2a+C | nm=M | D C ey Phm=
e A [
1 |
nm=1 nm=2 cet nm= ! 1/2 ! Cn Py
_______________________________________ RO NN I PR
- (2) - (2) Me1s(2) | =(3) | “r
- 1 |
nm=1 Cnm=2 cee DG M 1%, ! 1/2 L?n
r () (1) (1) ro(2) ! @ 1T ]
Ph11 Ph12 e nlM ' Phm=1 ! Prm=1 Vam=1
§ 1
[} |
(1) (1) (1) Po@ A (2)
Ph21 P22 Prom { Phm=2 | D m=2 nm=2
i !
. . [} - ] . -
. 1 . | .
pc | :
(1) (1) Lo (2 ] ML (2)
Pam1 e nMM | nm=M | (=1 D e nm=M
f t
----------------------------------- r k
[} i
(2) (2) ] | !
nm=1 nm=2 E i
--------------------------------------- F 3
(2) (2) | |
| nm=1 nm=2 : i )
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L/2a L/2a
(1) - _ iq . mma -, I_E_’l'_l’_é - o
Dnmﬁ = o ‘}r dzsin T (z+L/2a) J(' dzsin T (z+L/2a)[aIln(gl,r_1)]
—sza —L/2a
L/2a L/2a
(1 _ 1 {n T2 [ azsin®M@ (z 2 . r=
Cnmxﬁ = o u/ﬂ dzsin I, (z+L/2a) .}” dzsin I (z+L/2a) [a I2n(gl,r_1)]
-L/2a -L/2a
L/2a 1
(2) _ _ ika . [ iz .
Dnm = 2 ~/~ dzsin I, (z+L/2a)‘ drr[aI3n(£2,r-1)]
-L/2a 0
L/2a 1
(2)_ 1 in 072 . a3 .
Com = o v/P dzsin —— (z+L/2a) (z+L/2a)—/.drr[a I4n(g2'r_1)]
-L/2a 0
L/2a 1
p{3) o _ ika dzsin 22 (z+L/2a) | arrlal_ (£_;r=1)]
nm 27 L 5nte3’
-L/2a 0
L/2a 1
3 1 . - 3
Cém) =- o ~/~ dzsin E%i (z+L/2a)-(z—L/2a)-}.drr[a I6n(g3;r=1)] (IT.A-12)
-L/2a %)

The constants C(ll and Déig have been initially defined in terms of Cauchy-

Principal Value integrals which omit the point z=z for which £1=1 and for which
aI1n and a2I2n are therefore infinite. (Actually, it may be shown that the
resulting singularity is of the log type, and thus integrable so that the
Cauchy-Principal Value designation may be lifted. Such a result is consistent

with the discussion in Ref. 34.)

This procedure may be repeated for field points on the left and right
caps. For the point on the left cap, for example, the left-hand side of
Eq. II.A-7 becomes p:L and the second integral on the right-hand side must now
be written as
1

f

0

i.e., we return to Eq. II.A-7 and let z=-L/2a; multiply then by rdr and
integrate both sides of Fq. II.A-7 from O to 1. Constants similar to those in
Eqs. II.A-11 and II.A-12 may be defined; these are given in Appendix II.A.{1). A

similar calculation is performed for the right cap.
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CL
p (;,—L/Za)=Pn(-L/2a) = p, . a constant function of end-cap (I1.A-9¢)
® n radial coordinate r
CR
p (f,L/Za)::Pn(L/2a) =p, constant function of end-cap (IT.A-94)
n

radial coordinate r

o ‘L
v ., a constant function of end cap radial
coordinate for n=0

vn(E,-L/za) = (II.A-9e)

0 for n > 1

c ]
R L
v , a constant function of end cap radial ERRR

- i f = el
Vn(r,L/2a) - coordinate for n=0 (II.A-9f) e
0 for n > 1
¢
Similar expansions may be used for the field pressure pn(r,z) on the left-
hand side of Eq. II.A-7 as the point approaches the cylinder surface; e.g., for
a field point (r,z) now on the cylindrical shell surface (1,z) we have
@ L/2a
) . mma - 1 - . mra ,-
ﬁgl pnﬁ sin = (z+L/2a) = ﬁél 1kapcvna > .j[ dz sin T (z+L/2a)
-L/2a
L/2a
o lal, (£ ;r=1)1) + L a7 sin B (Girs2a)1a%I. (£, ;r=1)) :
in =17 %" Pom 2m z L ! 2n'c1i 7 e
-1./2a :f
... (II.A-10) "
¢ °
where now gl = 2/[2+(z-§)2l, and 52, 53 are similarly evaluated for r=1. ;':{Tj
Multiplying the above by sinmy:/L(z+L/2a) and integrating from -L/2a to :;f
+L/2a with respect to z yields
e
@ (1) 2 (1) REI
L/2a Pim = PC ﬁél Dnmﬁ\ Vnﬁ - ﬁél nmi Poi ¥ P%Pom Vi
(I1.A-11)
c c
_ (2) CL + cD(3) v L _ C(3) R
[ ) nm pn e nm n nm Pn
where
11
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L/2a
® p (r,z) = - = dz{ikapcV_(1,7) [al. (r.1,z,2)]
n'’ 4an n ' in '
~L/2a
+p (1,2)[a°1. (r,1,2,2)1}
n 1 2n ! 1 ’
o
1
€ o - _ - _
< an .I. drr{lkapcVn(r, L/2a)[aI3n(r,r,z, L/2a)] (I1.A-7)
0
® - 3 2
+(z+L/2a)pn(r,—L/2a)[a I4n(r,r,z,vL/2a)1
1
- f? .]. dii{ikapcvn(r,L/za)[a15n(r,§,z,L/2a)1
¢ 0

-(z-L/2a)p_(F,1/2a) [a’T__(r,,2,0/2a)]})

where, for example,

——

T ikaV1+r2+(z—E)2 /1+glcosa

2(-1)n dacosnage

»’1+r2+(z—2)2 0 1+Elcosa

axln(r,l,z,z) = (II.n-8)

with

2r
£ = —5—
1 1+r2+(z—z)2

on! aBI6n are given in Appendix II.A.

In Eqs. II.A-7 and II.A-8, all spatial variables have been normalized by the

The rest of the expressions for aZI

cylinder radius a. V (1,5) and p (1,5) stand for the normal velocity and pressure
n n

on the cylindrical part of the boundary; Vn(f,—L/za)and pn(;,—L/2a) stand for

corresponding quantities at the left cap; and Vn(E,L/Za) and pn(;,L/Za) stand for

those at the right cap. We now assume the following expansions: fﬁ{f;
S
- . mma -~ NN
Vn(l,z) = mgl Vnm sin I (z+L/2a) (I1.A-9a) ]
®

DR

- ., mma ,- o
= — + - RS
pn(l,z) mil P ., Sin I (z+L/2a) (II.A-9b) X
10 )
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A. The Fluid System A'i:'.'_'}-

1. Radiation Loading System

In a fluid the Helmholtz integral relates the velocity potential ¢

at a field point to boundary values of potential and velocity, both initially

unknown in an interaction problem:

e.ly~d§ %G 3% - 3% )
3 an an

©
1

(I1.a-1)

where € = 1,2 for points in the fluid and on the boundary, respectively. G is ? .
the free-field Green's function, i A
ikR S
G=-25 (II.A-2)
4mR . i_u -
where k is the acoustic wavenumber w/c, and R, the distance between field point ;;:
(r,$,z) and boundary point (r,a,z), is given by if;f:
R = r2+1?2-2rEcos(a-qs)+(z-£)2 (II.A-3) P
so that
aG . .
t — for points on the right cap (+) and left (-). :
9z -y
36 _ _ (1I1.a-4) !
an .y

~ for points on the curved, longitudinal part of the .
3r cylindrical surface. 3553.

The r,¢,z coordinate system is shown in Fig. II.1; (r,0.,z) correspond to R

running values of these variables in the integration.

The fluid pressure anywhere may be found from ¢ from the unsteady linearized {i%

Bernoulli equation
pP=-p == iwpd (II.A-5)

If one writes p in terms of circumferential n-modes as

(r,¢,z) = bt (1)(r z)cosng + 7 p(z)(r z)sinng (II.2-6)

pir. ¢, nzo Pn ! n31 *n ' :

. (1) (2) . .

it may be shown that both P, and P, satisfy the following form of the

Helmholtz integral: .
9
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II. FLUID AND STRUCTURAL MODELS FOR A FINITE, FRAME-STIFFENED CYLINDRICAL
SHELL WITH END CAPS

As earlier pointed out, the finite cylindrical geometry is nonseparable.
Because of this, the modal form chosen to describe pressure and displacement
variations along the axial, or curved, part of the surface will inevitably be
nonorthogonal to that chosen to describe these same variables over the cap
surfaces. The result is an elaborate set of linear equations which for both

structure and fluid couples one set of modes to the other.

Here we assume that the simply-supported set of sinmwz/L functions
adequately describes fluid and structural quantities over the longitudinal
part of the geometry--an assumption of course not met by displacements near
the ends of a freely suspended, or neutrally bouyant, cylinder but which
nevertheless has proven successful in predicting acoustic radiation from

such structures.27

Also, because the analysis is here ultimately applied to a case for which
the cylinder radius is much smaller than the shortest acoustic wavelength
considered, only the radially uniform mode is used for the caps; i.e., cap
displacements and pressures are given by the product of the "unit” mode and
the constants which denote their values. Should future need dictate a more
complete cap description, an expansion such as that of Ref. 20, Eq. 62 may be

used.

In Section II.A.1 the Helmholtz integral is used to develop a radiation
loading model for the finite-cylindrical geometry. In Section II.A.2 the
fluid system so generated is approximated analytically for an arbitrary far-
field point. The radiated pressure thus appears as a function of surface

pressure and displacement, both unknown at this stage in the analysis.

Section II.B contains the analysis for the dynamics of a submerged frame-
stiffened shell with end caps. The otherwise arbitrary external drive is
assumed axisymmetric in the circumferential direction. Together with the fluid
model of Section II.A, the structural system developed here defines the fluid-

structure interaction pioblem.
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Computational Fluid Dynamics almost by definition deals with very
large linear systems, and workers in that field have often resorted to
iterative techniques as the only practical means of solution. An example
of a predictor-corrector type of CFD application of iteration arises in
the time-domain description of the fluid medium bounded by a complex
structure in impulsive motion, a calculation which normally requires the
development of the solution over a large-volume grid of mesh points at
each time step, and the associated enforcement of continuity of particle
velocity at each instant over the contact surface. Chang and Wang31 have
used an iterative scheme in their transient boundary condition calculation.
At the end of each time step the estimated fluid pressure was used to cal-
culate structural displacements, which then generally did not agree with
those for the fluid particles at the interface. These were then corrected
and the fluid medium recalculated to yield the new radiation load vector,

etc.

Belytschko32 has discussed the role of iteration in the implicit
time integration of system equations for the general transient fluid-
structure interaction problem. Whitlow and Harris33 have done essentially
the same for unsteady transonic flow in their discussion of similar numer-
ical techniques commonly used in that field. Transonic flow over an oscil-
lating airfoil is governed by a nonlinear potential equation which gives rise
to shocks in the gas medium; since the positions of these vary with time,

a fine local mesh is usually required.

As will be discussed in Chapter ITII, in developing some of the
iteration techniques here we have emphasized the convergence role of
system subpartitioning rather than the application of methods known to

accelerate convergence.
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The present structural model is essentially this same model with
rational simplifications to reduce the number of deqrees of freedom
matched between shell and frames (here only radial and circumferential
displacements are uscd whereas Cole also matches axial displacements and
out-of-plane rotations). Fundamental differences between the model here
and that in Ref. 27 are therefore really confined to just the fluid-loading
system, for which the present study may be viewed as providing the three-

dimensional extension.

Y B.3 Fluid~Structure Interation Studies using Iteration Models

Chertock8 has used an iterative technique to effectively
invert the fluid system for a general body of revolution, in essence, to
find its impedance matrix. As discussed earlier, he generally found that
while the method converges easily at low frequencies, it later becomes un-
stable with increasing frequency. He circumvented this difficulty by alter-
ing his basic scheme to use an average value of previous iterates where
before, for the lower frequencies, he had used only the most recently avail-
able value. Ref. 29, Chapter 11's general discussion on such summability
techniques provides the rationale behind their potential stabilizing effect.
We too applied this basic idea in our iterative treatment cof the fluid-

loaded driven sphere.l

For the low-frequency limit, where the externally unbounded fluid
medium has a purely inertial effect on the vibrating surface, Au—Yang3
has used an iteration algorithm to find the fluid-loaded resonances of a
cylindrical shell. He starts it out by assuming each resonance's value
and then uses the fluid system to calculate the fluid loading at that
frequency. Next, this pressure solution is introduced into the otherwise
homogeneous structural system, which yields a new root, and so on. He
found the technique to converge nicely for most of the frequencies cal-

culated.
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As previously discusseqd, féi)(w) stands for the contribution of dipoles

on the cylindrical part of the boundary; for every n-m combination we note

the factor siny in the above expression. The rest of the modal directivity

(3) f(6)

contributions fn geeos turn out to be

1
¢ .
£y = - L2 Jdkall/2a)cosy de  J_(kasinyr) (I1.A-27)
n 2 0 n
1
. n+l ,
fé4)(w) = - l:£%~—— kacos¢elka(L/2a)Cosw_}rd; rJ (kasinwf)
0 n (I1.3-28)
1
D 4§ N
friS) W) = - (Zgl o 1ka(L/2a) cosy f ar ¥ J_(kasinyr) (1I.A-29)
0
g6 (-1)"*! -ika (L/2a) cos o -
n (y) = T kacosye d’f dr rJn(kasimpr)
0

(II.A-30)

Again,f;3), féS) account for monopoles at the left and right caps (acting

: 6 .
only for n=0 in the present model); and f(4) and fé ) represent dipoles also
at the caps (hence the extra cosy factor for fé4),fé6)).

The grouping mwa/L + ka cosy appearing as argument of sin{}/{} in
Egqs. II.A-25, 26 to a large extent determines the far-field effect of sources
distributed along the shell part of the cylinder. Physically, supersonic
axial modes may be expected to radiate efficiently and in the ray direction y*
given by cosy* = l/Mm, where Mm denotes axial Mach number for the m mode.
Since the modal solution is of the form sin mrmaz/L exp(—iwt)~exp[-iw(t-za/cm)],
with cm=mL/mn,it follows that modal Mach numbers Mm are given by wL/mmw-.1l/c=

ka/(mma/L) so that

Egi + kacosy = ka {%-i_cosw} (I1.A-31)

m
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Sirnce the sin {}/{} group has its maximum value of unity at the null y*

of Eq. II.A-31, the analytical solution embodies the physical regquirement e
of preferred radiation in the theoretical ray direction. Subsonic axial '
modes (for which Eg. II.A-31 never vanishes) lack a clear preferred radia-
tion direction and in fact would have an identically zero far-field were
the cylinder infinite in length. Their acoustic effect for the finite ®
geometry is that of a pair of sources, one for each end of the cylinder, '
and thus a contribution which may be expected to be generally low in comparison

to that of supersonic sources distributed over the entire surface, all reach-

ing the far-field since their Mach lines (acoustic wavefronts) never intersect. ®

Similar statements may be made about radiation in the circumferential
direction and the mathematical behavior of Jn(kasinw) as a function of order 7
pe and argument. It may be easily shown that the rotary speed of circumferential -
modes satisfying n§ka is respectively supersonic and subsonic. Subsonic con-
tributions instead of being attributed to finite-end effects are due now to the :?
sources' felt acceleration as they travel in a circle. Such is the prediction
® of the general FFowcs-Williams Hawkins equation36 which, incidentally, also --
provides the theoretical foundation for Gutin noise -- the sound radiated by
steady blade forces in a subsonic propeller. Acoustic radiation from the sub- S

sonic n>ka circumferential modes is here really due to the same mechanism of

IR ]

® acceleration due to rotary motion.

An important feature of the preceding far-field calculation is that it
accounts for possible source noncompactness in both circumferential and axial
directions. This is necessary because in Chapter IV the model will be applied
o to a very high-aspect ratio cylinder for which the condition kL>>1 is satisfied °
over much of the frequency range investigated. 1In fact, although the far-
field condition kR>>1 is always strictly satisfied, the ratio R/L of field
point distance to cylinder length turns out to be only about 4 (here for

0 convenience R is dimensional). 2

However, we argue that by keeping just the zz term (and no higher- :;
order contributions) in Eg. II.A-23 the theory adequately accounts for phase ..
differences along the cylinder axis, or equivalently in the time domain, for -

the E—dependence of retarded times T = t ~ R/c = T(2) for sources distributed
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along the cylindrical axis. Given that the approximation's neglected =
term inside the parenthesis of Eq. II.A-23 is known to be 1/2(2/R)2, one ®

may readily estimate its possible impact on the phase information for

parameters of interest here. First, we note that axial noncompactness
will have greatest effect for field points along the cylinder axis =0 }Q:
or 1800. For these, zE/R2=cosw.E/R=E/R, so that the percent error of ®
the neglected term is 1/2(z/R). Thus, for the Chapter IV values of

Emax= L/2=9.58 ft and aR=45 ft,the upper bound of the phase error is about

12%, which should not seriously affect the character of signal cancellation

or reinforcement at these two far-Sield points. ®

As explained immediately after Eq. II.A-23, the radical which appears
in all denominators has been even more simply approximated to yield the

three-dimensional spreading factor 1/R. For the cylinder of interest here -

the greatest "true" source-field distance is /452+(9.58)2 = 46, which ,;x
implies that in using R=45 ft as measured from the cylinder's centroid an iﬂi
error of less than 2.3% (or .2 dB) is incurred in so estimating the level i:}
for that "worst" source. o
’
B. The Structural System o
In Section A we have derived the fluid system modal equations. Here k{i
we develop similar equations for the structural system, i.e., for a framed, ;i“
simply-supported, finite cylindrical shell with end caps. The shell is i“?
submerged and thus loaded by the fluid pressure vector of Section A, which f:'
we recall provides for radiation loading at the cap ends. Consistent with i{?
the analysis in Section A we assume that cap motion takes plase only for E?f
n=0, so that as earlier stated, computed cap pressures for n > 1 are due !__
only to diffraction from the cylindrical part of the shell surface and may E;;
be expected therefore to yield a far-field on-axis level of modal radiated aﬂ:
pressure significantly below that for n=0. The system is driven by a force ?
distribution applied either at one of the frames or directly anywhere on b,
the shell skin. The structure may also be driven axially by a load acting -
at the end cap. Shell frames, caps,and the applied drives are all assumed f;f:
circumferentially axisymmetric and thus describable by the cosn¢ series. {:f
?

22

T .
PRI T Y AT IS PR AL I
U S A S A . LG I, . Y A X oo &




RAMEER R S AL L A " -
¢ - CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.
Sections B.1l,2 develop the model for an unframed shell with end caps. i:;:‘
® Section B.3 covers the inclusion of stiffening frames.
Methods for solving the structural-fluid coupled systems will be
discussed in Chapter III.
® 1. Unframed, Capped Cylindrical Shell with Fluid Loading
The equations of motion for a finite, simply-supported cylindrical
shell appear in a number of standard references, e.g., Ref. 35,
¢ a®(1-w? f n R o
+L, g+ = - = - - .B- R
Llu qu Lw —_ {pz (¢) 8 (z+L/2a) P, ($)6(z L/2a)} (II.B-1la) e
L u+L =0 (II.B-1b) gt
AW g TthgW = : RN
. 1
a® (1-v2) o
L7u+L8q+L9w = - = {Fr(zr‘b)“Pr(z:‘i’)} (II.B-1c)

et
Lt AR
LN

A Lt atat e

where u, q, w stand respectively for axial, tangential (or circumferential),
and radial displacements; the shell has radius a, Poisson ratio v, thickness h,
and Young's modulus E. Figure II.2 shows the generic geometry. The effect

of the caps on the shell has been modeled as a set of (unknown) reaction

pressures sz’ R

in Eq. II.B-la; shortly, sz'R will be expressed in terms
of cap displacements through the dynamic equation for cap motion. Fr and
p. are respectively the externally applied drive and radiation loading on

the axial surface of the cylinder. The operators L ,...,L9 given in Appen-

1
dix II.B correspond to the Donnell-Mushtari thin-shell theory.

For a simply supported cylinder, we let

u=g3xu cosng cos I-n%il (z+L/2a) (II.B-2a)
q =% g9 sinng sin m—Eﬁ (z+1/2a) (I1I.B-2b)
.
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w=2X% 2L w cosn¢ sin mra (z+L/2a) (IT.B-2¢)
A m nm L
®
and also
C C
L,R
P " (¢)8(z+L/2a) = £ I p L, cosng cos mra (z+L/2a) (IT.B-3a)
4 — nnvz L
] nm
mra
F = F t — 2
P,/ r(4>,Z) r‘z}l%(pr Fo ) cosn¢ sin I (z+L /2a) (II.B-3b)
nm nm
] Substituting Eqs. II.B-2,3 into II.B-1 one obtains
o N C C
( L L
A A A -
1 2 3 Ynm P P,
nm nm
2 2 1
a (1-y7)
A - —— 0 .B-
¢ B4 5 Bg ’qnm ’ Eh q ) (arB-a)
A A -
A, 8 9 Yhm \ Fr Py )
L - nm nm
® where the quantities Al through A9 are given in Appendix II.B(1l).
2. Equation for Cap Motion
Each of the two end caps is assumed to have mass Mc and to move
® rigidly in the axial direction under cap fluid loading, drive and shell
reaction forces. The fluid loading on the caps is assumed evenly distri-
buted and thus constant over the radius as measured from the caps' center,
whereas shell reaction forces are taken as acting only at the shell-cap
« circumferential interface. For example, for the left cap at z=-L/2a.
C
L
¢ 2 / ‘L ’ n—oa(r—ro) °L.f
—ioM v 7 = a /dr r{p, §(r-1) + " + pz' (II.B-5)
¢ n=0 ) =0
0
where we have accounted for the possibility of an externally applied drive
C
at radial position i p L,f Jenotes fluid loading, and sz the reaction
( n=0 n=0
24
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with the shell structure; MC = psEna2, t = cap thickness, and Pg = density

of metal. Eq. II.B-5 thus becomes

C

~cap L L 1

c 2 v = + F + = I.B-6
o n=o0 ~ P, 2 5P (1 )

. . ~ca .
where for convenience of later analysis we expressed 2 p' the cap reactive

impedance normalized by c¢, as

p
7°P = - ika (??ﬁ(t/a)ﬂ (I1.B-7)
where Pe is cap material density. A similar expression may be derived for
C
ano, the axial velocity for the right cap. Again, the present model allows

for a finite left side in Eq. II.B-6 only for n=0. As discussed in Section II.A,
more complex cap modes could be modeled to match higher n shell modes but for
simplicity and tractability this is not pursued here. Letting now z = +L/2a

in Eq. II.B-2a we observe that

CL
Vn=0 = - m§0 U(nzo)m (I1.B-8a)
Cc
R m
= U -
n=0 m§o (n=0),m( 1) (IT1.B-8b)
where []nm = - imunm which from the system in Egq. II.B-4 has solution
2 2 C C
. oa (1-v) L L
= S A - + - I1.B-9
Unm iw h Bl(pz P, ) B3(Fr P, ) ( )
nm nm nm “nm
Constants Bl' B3 are given in Appendix II.B(2).
Since
2Em(—1)rn mra
- = +L/2 II.B-10a
§ (z-L/2a) nZo Ta cos — (z+L/2a) ( )
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2e
- __m myra -
§(z+L/2a) = m§0 I/a cos I (z+L/2a) (I1.B~10b)

where

1/2 for m = 0

1 for m>1

Thus, it follows that

C 2¢ C
L m L
= m— .B" 1

P, T/a Pz (II.B-1la)

nm n

m

‘R _ Ef!é:}l_. R (II.B-11b)
P, =7 1i/a P, :

nm n

C

L,R
where P, !

are the same shell-cap reaction forces appearing in the equation

for the gap dynamics, e.g., Eq. II.B-6. These mag be eliminated by substituting

Eqs. II.B-11 into II.B-9. Using Egq. II.B-6 for V Loand the corresponding right-
n:

cap equation yields:

N Ve EVS I Y= s IV T
Eh L/a m&0 1%m n=0

iwaz(l—vz) chﬁcap (5 B (_1)m€ )VCR
Eh L/a m=0 1 m n=0
c c
2 L 2 m R
+—=— (I B.e)F - ==—( X B_(-1) e )F
L/a m=0 1m z(n=0) L/a m=0 1 z(n=0)
C C
1 m R
* L/a (m£0 B1Em)pn - L/a(mgo Bl( b €m)pn
- L. B_F
mel 3 r  * ol By Py }' (II.B-12a)
nm nm
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;j
L iwa® (1-v2) | 2pe2°%P (3 Be) SR ]
Eh T 7a ‘nfo Bifn) | Vn=o [
ivs” 1v") {2”20@ (3 Be) vE -2 (3 B () p
Eh L/a 'm0 "1°m’ "n=0 L/a '‘m=0 1 ®m’ " z (n=0)
C C
2 R 1 m L
+ F - = -
L/a (mEO Blem) z L/a (mEO Bl( L €m)2n -

“(n=0) .
1 Cr m m -
+ - F - - ®
+ L/ ( Z B (- l) € )p mgl( 1) B3 c mgl( 1) B3pr g
nm nm 1
(1I.B~12b) T

c C ‘ C o)

where we have simplified the notation by calling p B.£ ZL’f simply p R, P L——the
n
Eluid pressures on the right and left caps as denoted in Sect101 IT1.A; and

similarly replaced P, by Pl the modal pressures for the shell part.
nm

From the system in Eq. II.B~4 one may also solve for velocities

Vnm=—iwwnm on the cylindrical part of the surface. Substituting all we

know so far into that solution yields that

. 2 2 2¢ C C
_iwa (1-v7) m _scap ( L R )
- ; B, [pk.z LRSI ES DR AR

v(n=0)m Eh L/a
b C . C C
R 1
LSt LN I PRRTEIL S | R $
(n=0) 2 (n=0) nm

(II.B-13)

In the above €m = 1 always since m > 1. For n > 1 the cap velocities :ﬁf
L R are 1dentlca11y zero and the cap fluid loading does not affect the ‘i“i
motion of the cylindrical surface. Thus for n > 1, Eq. II.B-13 simplifies to 232:
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\' = iﬂéfii:!il B_(F -p ) (I1.B-14)
n>1,m Eh 9 rm M :
We now collect the results in Egs. II.B-1l2a, b and B-13 for n=0,
and II.B-14 for n>) into structural systems for n=0, >l respectively.
We recognize that imaz(l-vz)/Eh = iw(a/h) (pscp(l-in)) (see Appendix II.B(1)},
and define the following three constants

Ky

1l

2iQ(a/h)(p/os)(c/cp)(a/L)icap

K2 = mgo Blam

K3

m
m§o Bl(—l) E:m

Then for n=0 we have that

: m=1 m=1 f 3
1 0 o0 0 | KB, : KB, Vone1
] [}
{ {
| m=2 1 _ m=1
0 1 o | K, B : KB, Voo
| |
0 0 . o .| l
! !
. .. 0| . '
pe ! ! { . L:
| |
. o 1 o ' .
) |
: :
m=M M+l _m=M
. 0 ! ! -~ B
0 1 E KB 5 -b 177 nm=M
o . . . o1 1k | k. W
: 12 } 13 =0
| Stk T S===STomemeEs T —C};_-
! ~K_K ! + J
° - . 0 13 1 1K (h=0
28 '.'_j:"
Lo
R
. .
. R o S O T S I R AR R
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B m=1 i m=] 1 m=1 ~ 3
By o . o {8 /(L/a) |- /(L/a) (pnmzl
] ]
] |
m==2 1 m=2 i m=2
0 B9 E —B7 /(L/a) i +B7 /(L/a) Pl =2
, | |
. . i I
1 - 3
| )
] [}
| 1
. 0 ! : .
| : < >
m=M 1 m=M 1 M_m=M
0] . 0 Bg E —B7 /(L/a) i (-1) B7 (L/a) Pl m=M
- ' !
— o —— o ———— ——— . —— T —— ——— : ————————————— .:.. ————————————————— ;_—_
m=1 m=2 m=M ! ! L
-Bj B, . B E K,/ (L/a) E K,/ (L/a) P,
_______________________________ %,___-___-_____,'L_______________ ————
BT g ( 1) Mg i -K_/(L/a) i K_/(L/a) R
|73 3 : 30173 } 2 IR J
" = = =1 ( 3
=1 o . 0 28" /(Lsa) | -28" F
9 | 7 ( r
: : nm=1
| - ] :
0 g2 \ 28™ 2/ (L/a) | +28™ 2/ (L/a) F
9 | 7 1 7 r
. 1 | nm=2
| !
. . | i
0 | i .
[} ]
] 1
: | < . >
_ I _ 1
0 0 I b -nM2m_sval| F
3 | 7 | 7
| | nm=M
_______________________________ r_____-_______r___-____-___-__d o
c
~ 1 |
g™t 8™ 2, -B" Lok /(L/a) | 2K_/(L/a) P
3 3 3 ! 2 ] 3 z
L- n=0
_______________________________ r____________-r____-___________ _.-n=v
C
=1 m=2 M m=M | ! R
- -2 2K/ (1, F
! 83 +B3 (-1) B3 : K3/(L/a) : 2/( /a) ] L 2 ne0 )
(I1.B-15)
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For n > 1 the structural system is purely diagonal

) o]
nm=1
pc 1 Vnm=2 =
LO .1. nm=M
B b
m=1
B . . 0
9 0 th=1
-ifGa/m) (/o ) (e/c ) |0 B2 ¢ P
S P . 9. . nm=2
° ° =M .
-1 . 0. . .
V1 in 0 B9 pnm=M
- -
I ]
™. . o F
9
-5 . nm=1
+i F . .B-
ifi(ash) (p/p ) (C/CR) 0 By 0 r =2 (I1.B-16)
V/1-in 0. .0 . .Bm=M F_ -
9 i r -
" nm=M
3. The Frame-Stiffened Cylindrical Shell

The effect of Nf internal stiffening ring-shaped frawes is modeled

here as a set of Nf initially unknown, radially directed (normal to the shell

surface) modal reaction forces. The true drive may be taken as acting on the

shell through a particular ring frame, or as acting directly on the shell skin.

The procedure for the solution of the frame reactions requires that displace-

ments at every axial frame location be computed due to each virtual load in »
the presence of fluid loading. An opposite system of virtual reaction forces

acts on the ring frames, for which a second set of equations relating frame
displacements to reactions may be written with knowledge of each frame's

structural impedance. Finally, equating shell and frame displacements at ._

their interface yields a linear system of equations for the unknown reactions.

In the present model we enforce continuity of radial and tangential
displacements between shell and frames (w and g in Eq. II.B-1); so that for

the shell not only must we calculate the radial influence of the superposed
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system of virtual radial loads, but also the radial influence of virtual

tangential forces (equal by reciprocity to also needed tangential dis-

placements due to radial forces), and tangential displacements for virtual
tangential forces. However, for typical submarine shell parameters the - ’fd
latter may be assumed to be negligible relative to the others. Therefore, o
if N_ is used to denote the number of stiffening frames, the order of the

£
system to obtain the reaction vector is 2N_; and each of the 2N_ x 2N

i
system entries is a combined fluid-loaded zdmittance coefficieni for ihe . ) :
shell and frames. The known right-hand side is a function of the actual
applied drive. After the radial components of the frame reactions have
been so determined, they are used together with the external drive (if
applied directly to shell skin) in Egs. II.B-lc as the total system of

Fr(¢,z) external forces driving the shell.

2 a

We calculate the modal radial velocity and surface pressure vectors -:f E:

for the cylindrical part of the boundary by solving the coupled systems ;ﬁk f;
in Egs. II.A-13, 14 and II.B-15, 16 for a virtual n-modal load Fg acting ;“““4
1

in frame location j. Thus,

J j 3 T
’ o IT.B-
l-Vn =1 ' Vnm=2 ! ! Vnm=M ] (11 17a)
3 j j T i
[pnm=1 ! pnm=2 Pt pnm:M] (II .B 17b)

is known due to

3

Fr/a s >

8§(z-z.,) T n cosn¢ . -
i’ n\ pc R

where the r subscript on Fi denotes the radial direction. o
. j ] °
The corresponding tangential modal velocity vector [Vnm=1' Vim=2’ - x’

v ]T may be calculated from the relationship (v =-iwg )
nm=M nm nm

.o ’
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ig(a/h) (3 3
- V —_——ne NG _ B-
Ps A9\) —_— —— {r, /a-p  } (I1.B-18)

pscﬁ/l—ln n

w
g
Jood
ul
<
o
5
1
>

so that radial and tangential velocities may be computed at axial frame

locations zs i=1, ... , Nf , through

. mna
. , - — . + . -
Vn(zl), vn(zl) P} (Vn v ) sin T (z1 L/2a) (I11.B-19)
Thus, defining the admittance coefficients cn c by

Vi(zi)
c = " (II.B-20a)
i3 [F? /a
r
n
pc

v (z,)
- - _n_ i (I1.B-20b)

n. . Jj
ij Fr /a

(I1.B-20c)

[oX]
1]
1

e}

n,. j
F a
ij ./ )

where the t subscript on Fi denotes tangential, we may therefore write that

the total velocity at a shell surface point z; is given by

3 3
Ne [Fr /a N Ftn/a }
vV (z,) = g\ — c  + .3 -] ¢ (I1.B-21a)
n i 3=1\ pc n, . J=1 pcC n. .,
1] 1)
j
Nf Fr /a
v (z,) = s \——] ¢ (I1.B-21b)
n i j=1\ pc n,.
1)
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In the above it is assumed that the applied external drive acts

[ PN SR G S8 YO NI WU W

shell displacements to yield the final system for the unknown reactions in

. . . comb SO
terms of a combined admittance matrix [A] : DN

indirectly on the shell through a frame so that all shell forces are ., B
virtual. For the case when a radial drive distribution acts directly on ‘::ii:
]
the shell the right sides of Egs. II.B-2la,b would contain respectively e
the additional terms Lftﬂd
L
F F ]
o o
rn o rn —o T
c.,, ——c_,
pc ni pc ni
where cni denotes the loading distribution's radial influence at position i, j
and Ezi the tangential influence. .
4. Frame Equations )
) .th d
The statement of Newton's second law for the j frame takes . f;
the form ®
"n j . B
= 7z v (z,)+2 v {z,) (IT1.B-22a) .
pc 11 n j 13 n j .
n n v e
o
~3 ' 1
F .
tn/a . .
=zl v (z)+z). v (z) (I1.B-22b)
pc 3. n 3 33 n Jj
D n
. . .28 :
where the frame impedances le PR 233 have been derived by Harari , and -i.-~4
are listed here in Appendix II'B(2). The Net force ?r is given by f.rﬂ
n f}f‘fﬂ
F - Fr for drive on frame ST
7 _ 'no n .
r o
-F, for drive not on frame AN
n o
A similar expression applies for Et . Equations II.B-22a,b may be inverted :4jjﬂ}
in order to obtain explicit forms £0r Vn,vn, which then may be set equal to ; ) W
4
-]
R
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As earlier stated, iteration schemes such as those proposed here

. . . 2
require also a number of operations proportional to N

, the precise numbeus
2
BN

depending on the convergence rate, i.e., on the number of matrix-vector
products required to achieve the desired level of accuracy (each matrix-

. 2 .
vector product is an N~ operation). On the other hand, exact standard solvers

. . . . 3 . .
such as Gaussian elimination require CN~ operations, with C=0(1).

The following ratio of Total Computational Efforts (TCE) therefore

describes the savings potential of iterative methods over exact:

) 2
(TCF)Iteration AN2+BN
(TCE) =T 5 3 (I1I.E-1la)
Exact AN+ CN
A+B
(= )T as Noe (TTI.E-1b)
TN

where, again, the first term in both numerator and denominator is a measure

of system generation effort, and the second terms denote actual system-solving

times. Thus, substantial savings could result wherever the needed number of

iteration steps 1s much less than the system order N.

~ - - CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.
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where

(A] = (c]] - [13—82’1[1/cj1 (I11.D-8)

From here on the iteration technique follows the pattern of technique 2
previously discussed for n=0: For the k=0 starting step we set x2(M+1) =
x2(M+2) = 0 and obtain {xi}k=0 from Egq. IITI.D-7 by solving the latter in K,
(innex) Jacobi steps with the [BA]-matrix corresponding to [A] above. The cap
mode Eq. III.D-5c¢ is then solved either exactly or approximately, depending for
a more general case on the order of the partitioned-off [C) subsystem. For
the present case, [C] is 2x2 and an exact solution is used in Chapter 1V
applications. With these values of [x2(M+1), xz(M+1)]T k=0 on the RHS of
Eq. III.D-7, a new {xi}k=1 vector is obtained in K, iteration steps and so on.
As in Method 2 for n=0, the whole procedure here is repeated K1 outer steps.
Also, as the alternate algorithm for n=0, this one for n>1 appears to be
nonstationary but again with a necessary convergence criterion: S(BA) < 1.

This second algorithm for n>1 was applied successfully whenever Method 1 was

found to diverge.

E. Economic Advantage of the Iterative Methods

The total cost of solving fluid-structure interaction problems has two
clearly separate contributions: (1) the generation of the systems, i.e.,
filling up every matrix entry; and (2) the solution process applied to these
systems. In a finite-difference or finite-element formulation N control
points are chosen to represent the surface of the structure and the generated
fluid and structural systems therefore contain NxN elements. The work needed
to fill up each entry depends on the character of the differential equation
describing the structure and on the numerical integration techniques chosen
to perform local evaluations of the Helmholtz integral; hopefully, both oper-

ations can be accomplished with many fewer than N multiplications and additions

for typically large systems. Thus, the total cost of system generation may be

2 .
denoted by AN , where A is a constant.
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2. Method 2

Referring back to Eq. II.B-16, we recall that matrix [Ci], the
structural modal admittance matrix for modes on the shell surface alone '}3!;{
excluding cap modes, is diagonal and thus readily invertible if necessary. 32<;f:
This is due to the separability of this part of the geometry. The second ® :
iterative algorithm for n>1 presented next explcits this feature of the model
formulation without invalidating our basic policy of noninversion, since the
latter is cost-effective mostly, and thus strictly observed, for the fluid
system. More importantly, since structural systems resulting from the in-vacuo ®
finite-element analysis of a general structure normally are in terms of an
impedance rather than an admittance matrix,no inversion is necessary. Also, :‘ J
because such matrices are typically heavily banded, the product [I—B2][1/Ci]
that arises in the following analysis would involve many fewer operations than .'

the N3 otherwise required if the impedance matrix [1/Ci] were fully populated.

Following an approach similar to that for n=0's second technique, we

write that now for n>1

{7} = 1€]1{x5} + (6%} (1I1.D-5a)

[Is—le{x;} # U(T7BY) ;g 1R, 00D + ((T-B,) )%, (M2)

M M

(III.D-5b) ..“,4

5] S
[Cz]{xl}

M .
s (8 i) - (I- ' RS

X, (M+1) il (Colmer, i ¥ = ImBylyy,y y %, () s

-  J
(& =< (II1.D-5¢) .
5 C i) - (I- i .
X, (M+2) 121 Clupn, i ¥ = (ImBylyys 5 %03
Eg. III.D-5a now is inverted to solve for {xg};
]

]
(x5} = (1/c51{x3) - 11/eS1(p%) (III.D-6) )
2 AR 1 o)
\_‘ _‘1
which upon substitution into III.D-5b yields SRR
L ,. v 1
~ Sy _ _ S_.S s s _ e
[A]{Xl} = {1 82][1/C1]{b P+ {(1 B2)j.,M+1}x2(M+]') R
(III.D-7) R
- -
+ {(1 B2)i,M+2}x2(M+2) T
a5 >

et e e B T R N S S SR - S A R A S T IR
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where [B2] is still given by Eq. III.B-4c. The nonsquare matrix [62] is
given by [DY]_l[gl; [Cf] is simply [Bi] of Eq. III.B-2a, a diagonal matrix
containing shell-surface modal structural admittances as defined by Eq. II.B~16.
1. Method 1
Analogous to Egs. III.C-la and III.C-1b for n=0, for n>1 we
have
x5 K oS S KL s (III.D-2a)
1 172 .
k k-1 - s k-1
= + . o L=
x2 82 x2 C2 Xy (II1.D-2b)
for which a convergence criterion is established by writing Egs. III.D-2a and
II1.D-2b in equivalent combined form:
M M 2
F&\lr_)\ A
' 0 O
M{ Isl—c§{¢¢ xi b
| l 0 o0
————— e () R S (R (III.D-3)
]
M+2d | =& | I-B x 0
2 2 2 +
0
With {x} = [xi,x2]T, iterations Egs. ITII.D-2a and III.D-2b may be shown to be
equivalent to the Jacobi method,
gl (III.D~4a)
where
t 1 0 O
0 | cfl Vv
. ! 1 0 0
(B] = -——-:r---—'- ------- (II1.D~4b)
oo
€21 By
and x = [xi,leT. Convergence is obtained when all eigenvalues of [B] have

magnitude less than 1, i.e., S(é) < 1.
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s s s k=1 k=1
I < X1 9
= (III.C-13)
s s _s s
L_Cz I -B2 x2 g2

Eg. III.C-13 may now be solved iteratively as was Eq. III.C-11, i.e.,

in K2 iteration steps. The procedure is stopped when k=K  steps.

1
We note that while [és] is the same matrix as for the k=0 iteration,
the effective drjive vector {Bs}k=1 is now clearly different. The method
therefore is non-stationary. As indicated in Ref. 29 , however, the fact that
[ﬁs] is constant vs. k keeps the convergence analysis for this subsystem simple,
and a necessary condition to converge now is that S(ﬁs) < 1, which is a
different criterion from that obtained previously for method 1 given the basic
differences in system matriy partitioning and the fact that the total scheme
may now actually be semi-exact. We note that this second iteration scheme uses

two nested algorithms: The outer is performed K. times and corresponds to the

1

k counter; the inner one is executed K2 times for each value of k.

D. Iteration Algorithms for n > 1

Two iteration procedures also are developed for the systems of
Egs. III.B-2a and III.B-2b. The first of these, however, is fundamentally no
different from the method 1 for n=0, and the only purpose here is to show
briefly how the analysis for convergence still follows the earlier format
though the pressure and velocity vectors now differ in order, and also one of
the coupling matrices, the [GS] matrix of Eq. III.B-26, is nonsquare. The
second algorithm for n>1 similarly involves some of the same elements as
method 2 for n=0, but also applies a novel manipulation not previously employed
for one of the system submatrices. In actual applications, this second algorithm

was observed to converge when the first one did not.

Following earlier nomenclature, we now write Eqs. III.B-2a and III.B-2b in

equivalent form suitable for iteration:

Sy _ 8,8 s ~
{xl) = [Cll{xz} + {p”} (II1.D-1a)
fx,} = (B,1{x,} [ézl{xi’} (ITI.D-1b)
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To start, [;1’;2]T is set to zero so that the k=0 iterate of [gl,g2]T,

denoted [gi,g;]T, becomes[gi,gg]T = [bs,O]T in Eq. III.C-8a, which then reads
s s s 0 k= s
I -C1 x1 gl b
= = (III.C-10)
s s _s s
—C2 I -B2 x2 g2 0

Eq. III.C-10 may then be solved by Jacobi's method (or by other, more

sophisticated techniques) in a set of K, J-iteration steps. We write,

2

k=0 k=0
X Xs
1 N 1 =0
= [B7] + {p7} (I11.C-11)
xs Xs
2 27,
B j-1
where
~— -
s —ci’
(851 = 5171 < 1p%1- (IIT.C-12a)
S S S
c; 1°-8
bS
(65} = 857! (II1.C-12b)
0

and where [651 is a diagonal matrix containing Eq. III.C-10's diagonal elements.

Again, the iteration in Eq. III.C-11 is carried out K2 steps, after which the
results so obtained for [xf,xi]Tk:o are used to computed [él,élek=o from

Egs. III.C-9e and III.C-9f for use in Egs. III.C-8b. The latter may now be
§]Tk=0’ or, if this subsystem
is conveniently chosen to be small enough as in the present case, where it

contains only the two cap unknowns, an exact solution for [il,ilek=0 may be

solved iteratively in the same fashion as was [xi,x

% -~ ~ =
just as economical. These values of [xl,x2]Tk 0 are then used to calculate,

= =1
using Egs. III.C-9c and II1.C-9d, new values of 90950 denoted gt 1, gt for

another k-iteration with Egs. III.C-8a, which then reads:
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[}
S } S S
rI : —C1 xl g1
----- %-———-—- ———p = - (III.C-8a)
S 1 <] S S
L-Cz i I -B2 X2 gz
“« G =1 9
i - S = deae (I1I.C-8b)
:C2 I-B X2 92
where
) xl(M+1)
{xl} = (III.C-9a)
xl(M+2)
) x2(M+1)
{x2} = (II1.C-9b)
x2(M+2)
gy} = - o\t 41y = foy o e (42) + {C); mep (D)
(III.C-9¢c)
S
‘ + {(Cl)i,M+2}x2(M+2) + {p”}
{g,} = - {(I—Bz)i,M+1}x2(M+1) - {(I_Bz)i,M+2}x2(M+2)
(ITI.C-94d)
1
+ {(Cz)i,M+1}x1(M+l) + {‘Cz)i,m+2’x1(M+2)
M
£, (C.) x° (1)
i1 C1M+1,i %2
g.} = III.C-%e
{gl} M ] ( )
181 €l peo,; XpH)
M M D
5. (I-B.) xS (i) $.(C.) x> (i) el
i=1 2'M+1,1 T2 i=1 2'M+1,i71 ,.“-_,.‘-.‘ '
. }=- + III.C-9f :
{g,} M ] M ( ) S
- H sS,.
k1 (1 B2)M+2,i x, (1) 151 “’2)M+2,ix1(1) ] e
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s, .
+
xl(M 1) x2(M+1) igl (CI)M+1,i x2(1)
(o] = [C1] + M ] (I11.C-7b)
M+2 M+ i
X, (M+2) X, (M+2) i1 Cilygg,q %)
(15-851{x%} + {(1-B,) L} ox,01) + {(1-B) }ox, (M+2)
2 2 2°1i,M+ 2°1i,M+2 2
(III.C-7¢)
= + M
ey ]{x P+ licy, ,M+1} x, (M41) + {(Cz)i,mz} x, (M+2) :
S
M s o ]
+ i Lt
X, (M+1) iZy (TmBydyyy,; X AR
[1-B,] "y m s o
X, (M+2) 121 (7Bl yyq, 5 X5 (4D . ]
(III.C-7d) e ]
M
s, ., e
* (M) 81 Colyer,s ¥ @) e
* (M+2) iE1 (Coluep,y ¥ S
where {a, ,M+1} {al,M+2} are M-element vectors made up of the first M entries of
the [oa] matrix's (M+1)th column (Eq. III.B-la). Similar definitions apply to -q
{(C ). ,M+1} {(z-B ) M+2} etc. Egs. III.C-7a and III.C-7c have order M. *f?
Also, it will be recalled that the upper left MxM submatrix [IS—Bi] of [a] is e {{
the identity matrix since [Bi] z 0. Systems III.C-7b and I1I1.C~7d have, for the if?{ﬁ
. M s,. RN
present problem, an order of 2. A summation such as igl (I- B2)M+1 x2(1) AN

denotes the inner product of the (M+1)th

The 2x2 matrices G I B ,& C contain

ll

(M+1,V-2), (M+2,M+1),

point out that such partitioning of the two original systems should be

mathematically completely arbitrary.

such splitting sets aside the M-subvector of shell-surface effects from the

two-element cap subvector by placing these quantities on opposite sides of

the equations. If more cap modes had

subsystems would have been augmented accordingly. Egs. III.C-7a through III.C~7c
may also be written in combined form:
40
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row of matrix [I—82] with vector {xz}.
the bottom rightmost four elements(M+1,M+1),

/C

1 It is important to

2 2°

For the physical problem at hand, however,

been used in the model, the two smaller
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one realizes that expansions III.C-2 through III.C-4 are also obtained, to the

identical order of error indicated, by simple Jacobi iteration of the combined

system:
k | k-1
Xy B G ™ b
—p ==t 2] d-- +d-- (I1I.C-5)
]
al

X, Crt By | %2
oY

N (III.C-6)

where x is now a 2(M+l)-element vector, etc. Thus identifying the equivalence
of algorithm III.C-1 to that corresponding to Eq. III.C-5 establishes its
convergence criterion, which is now clearly that S(B)<1. In summary, fixed-
point iteration of joint structure-fluid systems converges if the matrix B,

composed of the "self" matrices Bl’B2 along its diagonal blocks, and of the

"coupling" matrices Cl,C2 as off-diagonals, has a spectrum all less than one
in magnitude. Consistency proof of algorithm III.C-1 (i.e., that if for some
* * * *
k=k , xk ,xk = (X,,X )exact, then xk>k = xexaCt also) follows trivially from
1 2 1772 1,2 1,2

the standard single-system proof. Similarly, although at first algorithm

IIT.C-1 does not appear to be stationary, i.e., that for both x. and Xy the

1

effective "self" matrix Beff and associated known RHS beff appear to be

functions of the iteration counter k rather than being k-independent quantities,
the equivalent system of Eqs. III.C-5 and III.C-6 in fact shows that the

algorithm is stationary and that for the combined system éeff’g are just

eff
the constants é, [b,o]T, where T denotes transpose. As previously stated, once

the iteration scheme has been recast in terms of Eq. III.C-5, the latter may be

changed to other techniques with accelerated convergence, e.g., SOR.
2. Method 2

Eqs. III.B-3a and TII.B-3b may also be written as

s s S
(1 -Bll{xl} + {ai }xl(M+1) + {“i, +2}x1(M+2)

+M+1 M

(I11.C-7a)

= S S s
= [Cll{xz} + {(Cl)i,M+1}x2(M+1) + {(Cl)i’M+2}x2(M+2) + {b"}
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C. Iteration Algorithms for n=0

1. Method 1

To simplify the nomenclature, we drop, in some of what follows
next, the curly and square brackets from quantities defined in Egs. III.B-3,
III.B-4 and III.B-5. The first algorithm we wish to explore for Egs. III.B-3a and
III.B-3b, is

k k-1 k-1
x1 = le1 + Clx2 + b (III.C-1la)
k k-1 k-1
x2 = B2x2 + C2x1 (I11.C-1b)

To begin, one sets xg = 0 and xi = b. The solution xi = b does not really

correspond to the in-vacuo response of the structure because b is not a_lf, but

instead only Dglf. The first few iterations go as follows:

k=1 : x = (I+3)b (III.C-2a)
xf = c.b (III.C-2b)
2= & .
k=2 : x2= (148 4B°)b+C.C.b (I1I.C-3a)
St 1¥By P+ €y .
x2 = (C.+C_B.+B.C.)b (1II.C-3b)
2 21C,B1¥BCy .
k=3 : x> = (I+B.+B°+BJ)b + (C.C_+B.C.C.+C.B.C_+C.C.B.)b (III.C-4a)
- : 1 17717 1727717172 12 2 2R -Lmda
%2 = (C.+C.B.+B.C.+B%C_+B_C.B.+C.B24C_C.C.)b (III.C-4b)
2 21C B #B CotB C B C B +C B +CC 6, .

At first the analysis for convergence of X, and X, given the expansions

Egs. III.C-2 through I1I1I.C-4 appears complicated due to their coupling. For

example, although the B?b part of the solution for x, is reminiscent of

nEO 1

iteration by Jacobi's method, there is also the C1C2b + ... part which

necessarily changes the criterion of convergence from S(B1)<1 to something else
(we follow the standard nomenclature of Ref. 29, where S(Bl) stands for the

spectrum of matrix B thus S(B1)<1 states that all eigenvalues of B, must be

1! 1
less than 1 in magnitude). This situation is greatly simplified, however, when
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purposes of iteration, Egs. III.B-la and III.B-1lb for n=0 are now written as

follows:
{xl} = [Bll{xl} + [cll{xz} + {b} (III.B-3a)
{x2} = [le{xz} + [Czl{xl} (I1I.B-3b)
where
[B.] = [D 17 YID -al (TII.B-4a)
1 a o
[c.1 = 0.1 tip,1 I1.B-4b)
s o Bl (I1I.B-
{p} = [D ]—1[8 J{£} (III1.B-4c)
o 2
-1
B.1 = [D D - II.B-4d
f 2] [ Y] [ Y vl (I )
[c,] = b 17 (6] (II1.B-4e)
Y

where Da stands for the diagonal matrix composed of the diagonal elements of

[a], and [DY] for that corresponding to {y].

For n>1, one may similarly write

{x.}

1 [Cf]{xz} + {b°} (III.B-5a)

{xz}

I}

(8,1 {x,} + [é2l{xf} (I1I.B-5b)

where {b°} = {£°}, and [B2] is still given by Eq. III.B-4d. The (M+2)xM matrix

[62] is given by the product [DY]-llés].

For both the n=0 and n>1 formulations we now develop two separate iteration

algorithms and discuss their convergence. For example, for the n=0 problem we ‘:-'1
show that the two algorithms place upon the joint system different analytically ]
derived convergence criteria, so that if one algorithm fails the other may x__}:

Bt

possibly converge. The n>1 problem is treated similarly. We will show in
Chapter IV that over the frequency range explored at least one of the iteration

techniques always converged to the exact solution.
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which contains a free convergence-optimization parameter not analytically
available in the J-method. However, no attempt is made here to adapt such SOR-
type techniques to the basic algorithms, and we merely note that the savings
realized as reported in Chapter IV, while significant, could thereby be made

even greater.

B. System Equations

Equations II.A-13 and II.A-14 relate surface modes of fluid pressure
to surface modes of fluid particle velocity for the nonseparable finite-cylinder
geometry. Eqgs. II.B-15 and II1.B-16 relate, for the structure,vibrational
response to an applied drive in the presence of the surrounding fluid, which
contributes an unknown load distributed over the axial surface of the shell
and end caps. Equating the surface response vector to the surface fluid
particle velocity yields the final coupled systems from which {v} and {p} may
be solved for a given drive load configuration {f}. Egs. II.A-13 and II.B-15
apply for circumferential n-mode n=0, and Egs. TI.A-14 and 1I.B-16 apply for

nzl. Thus in summary, we have that for n=0,

[al{v}

[Bll{p} + [le{f} (II1.B-1a)

[y1{p} [61{v} (III.B-1b)

where every matrix contains (M+2)x(M+2) elements (each row and column contains
M shell surface models plus one cap mode for each end of the cylinder, and each

vector contains M+2 elements. For n>1, we have

(v®} = [Bi]{ps} + [Sgl{fs} (I11.B-2a)

tyl{p} = (6%1{v®} (I1I.B-2b)

where [y] and {p} still have (M+2)x(M+2), and M+2 elements, respectively, but
where now {vs} denotes the shortened M-element modal velocity vector which
contains only shell-surface modes; we recall that this is the result of
assuming that for n21 the caps are rigid. Similarly, the s-superscript on 81,
82, and f indicate a rank of M rather than M+2. Matrix [dsl contains M+2 rows,
one for each of the M+2 pressure modes, for which a "diffracted" cap mode
exists; and it contains M columns, one for the effect of each of the M shell-

surface velocity modes on each pressure mode, including cap pressures. For
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ITII. ITERATION TECHNIQUES FOR COUPLED STRUCTURAL-FLUID SYSTEMS FOR A FINITE
CYLINDER

A. Introduction

The main purpose of the present study is to show whether fully
populated structural-fluid systems as would arise from a finite-element or
modal analysis of a nonseparable geometry may be solved iteratively and thus
more economically than by the standard exact method, which effectively requires
the inversion of at least one large matrix. For N-order coupled systems the
exact solution requires a number of operations proportional to N3, while the
corresponding number for iterative techniques is only N2. In our earlier
investigation for the spherical shell1 we demonstrated that well-established
iterative techniques, e.g., Richardson's method and the so-called method of
summability (Ref. 29, p. 345), could be applied to solve those versions of the
Helmholtz and dynamic response equations. However, due to the separability of
the spherical geometry, all matrices were effectively diagonal and the viability
of this promising approach went untested for the more fundamentally complex

general case.

In this chapter we develop iterative schemes to solve the finite cylinder
problem as a representative of a wider class containing off-diagcial elements.
For each procedure we discuss qualitatively conditions for successful iteration
and attempt to explain why a specific technique may work when another fails.
Actual numerical results and comparison to exact solutions are deferred to
Chapter IV, where we also tabulate computational times vs. number and type of
iterations. We find that the stability of computations often hinges on
judicious system subpartitioning, a concept which has been commonly applied,
though in somewhat different context, to the otherwise difficult treatment of

. . . , 38,
certain ill-conditioned matr1ces.37' 39

One general comment applies to the convergence rate of essentially all
the algorithms developed. 1Initially we show that the resulting expansion for
parts of the iteration algorithms may be interpreted, after proper partitioning
of matrices and vectors, as an application of fixed-point, or Jacobi, iteration
(Ref. 29, p. 71). 1In some cases, the convergence rate of such J-method solutions
could be improved substantially by a recasting to yield equivalent expansions

corresponding to the Successive-Over-Relaxation (SOR) method (Ref. 29, p. 73),
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comb _1 2 Nf 2 £f.7T
[A] [F s F ... ,F ; B s, F .o, v, F 71
® r r r t t
n r n n n n
[0,0,..,A,%,0...,050,..,8.%,0,...,01"
i i
= Fr (I1.B-23)
no [_Co =co _co . _706 _-o _-o ]T
‘ l’ 2,.., N ; cl, 02,..., CN
f f
where
i
Z
e . 3
A, =531 T3 (I11.B-~24)
Z -~ VA
le 33 Z13 31
n
i
¢ _ BN
B, = 73 T3 (I11.B-25)
211 %33 "3 %31
n n n n
: . . . . , *th
® The right sides of Eq. II.B-23 are, (1) radial drive applied to the i frame,
(2) radial drive acting directly on the shell. In the former case the model
assumes that the applied drive distribution is concentrated at an axial lo-
cation, while in the latter the radial drive has an arbitrary axial distri-
® bution. For both cases the circumferential drive distribution is arbitrary.
Again, upon solution of Eq. II.B-23, the combined radial loading system
on the shell (reactions plus drive) becomes the effective shell drive which
together with fluid loading appears forcing the structural systems of
L Egs. II.B-15 and 16).
]
¢
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Iv. APPLICATION OF THEORY

A, Introduction

The modal solution technique developed in Chapter II is now
applied to the idealization of an actual structure for which extensive
® far-field measurements exist. Comparisons are made between theory and

experiment. The iterative techniques of Chapter III are also applied

and their results are compared to the

The cylindrical structure shown

® equal segments spliced to make up the

exact solution.

in Fiqgures IV.la,b is one of five

total physical model in Ref. 40,

which is a recent compilation of related experimental acoustic and re-
sponse data collected by the Penn State group of Burroughs, Hayek,
Hallander, in coordination with the ONR.

and Bostian, Figure IV. 2

] shows the simplified structure used for our calculations. Only the
large joint-band frames have been kept as structural discontinuities,
while all non-axisymmetric details, including axial stringers, have been
eliminated. The simplified structure models what Ref. 40 calls the single,
L or inner, shell configuration. The predictions reported here are for a

radial point drive applied either directly to the shell skin at the cylinder's
Structural

midsection point, or at on- f the two frames nearest the center.

parameters corresponding to Figure IV.2 are listed in Table IV.1.

For reasons outlined below having to do with system size and a limited
computational budget, calculations were not carried out by the present method
beyond 500 Hz. In order to continue the comparison of measurement to pre-
diction to 2500 Hz, the fluid model was replaced by that for an infinite

cylinder.

For clarity of presentation, the discussion and physical interpretation
of predictions are given first at some length using the results obtained from
¢ solving the coupled systems exactly. We demonstrate subsequently that in
fact all such exact results are also obtainable by iteration; thus, they may
be viewed as converged solutions. The calculations describing just the
iteration process are then displayed, both in frequency-sweep form and for

¢ directivity patterns. 1In order to present as many results as possible with
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a minimum of repetition, some of the directivity patterns for the iterated
solution correspond to frequencies which are different from those shown

under the section for the exact results. We conclude that the iterative

solution of fluid-loaded structural systems is both feasible and cost
effective, at least in the low-frequency range where fluid loading has e

a global effect and is therefore less amenable to local modeling.

Since, as pointed out in Chapter III, convergence rates do not de-
pend on the coupled systems' forcing function, iterated solutions will be
) presented only for the drive-on-skin case. Iterated solutions for the PY

driven frame may be assumed to converge similarly.

B. System Size vs. Frequency

The modal theory of Chapter II requires that the series of
simply-supported axial modes be truncated to yield coupled systems of
finite rank. Here we determine quantitatively the minimum needed number M
of such modes in terms of the frequency-dependent flexural wavenumber k

f
for the shell plating. The minimum system size M must capture the shell

flexural wavenumber kf and if possible overshoot it by a certain margin.

The inclusion of kf in the m sum allows a fair representation of the

structural far-field effect of each frame on the others, as required by

off-diagonal frame admittance coefficients in Eg. II.B-20; while the {;“m
additional modes are needed to calculate the diagonal, self admittance

elements. Thus, we have that

M>—— . k_a (IV.B-1)

L/a S
T £ R

With Fg. IV.B-1 serving as the criterion for system size, the minimum

matrix order M vs frequency is given on the second column of Table 1IV.2.
For reasons of economy, only the range 20 Hz<f<500 Hz was investigated 1;3

¢ here and the value M was kept fixed at 30 for all calculations. -!»f

Values of the normalized acoustic wavenumber ka are given on the

third column of Table IV.2. We note that for every frequency the below-
coincidence condition kfa<ka is satisfied, so that every plating wavenumber

listed has a subsonic trace speed and thus does not contribute directly to
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{. the far-field. The coincidence frequency for the shell skin is approx-
imately 35.3 kHz and therefore well above the range of interest here.

However, for the shell in question the axial modal wavenumber mn/(L/a)

is given roughly by m-(.14), so that for example 500 Hz contains m=1,2,3

modes which are supersonic and therefore radiative; the rest, 4<m<30=M,

7. are subsonic. The relative contribution of subsonic and supersonic modes
to the acoustic field has been discussed qualitatively in some detail in

Chapter II, Section A.

C. Choice of Number of Circumferential Modes <

In the theoretical model, stiffening frames represent axial
structural discontinuities; however, since no circumferential discontin-
uities which would render the structure nonaxisymmetric are considered
¢ here either for the framing or for the skin, a structural criterion ana-~
logous to that of Eq. IV.1l need not be imposed on the circumferential
mode n. The only requirement on the number of n modes is that they in-
clude all those which radiate efficiently, i.e., all n satisfying n<ka.
o Here we have used the n=0,1 and 2 modes, of which according to Table 1V.2
column 3, only the first is supersonic over 20 Hz <£f<500 Hz. However,
strong n=0 response is not anticipated for the low frequencies considered
and all three modes may in some cases contribute comparably to the far-
o field signal. Acoustical radiation from subsonic and supersonic circum-

ferential modes was also discussed gqualitatively in Chapter II, Section A.

D. The Effect of Stiffening Frames on Acoustic Radiation

° In the low frequency limit frame structural impedances become
inertial and thus vanishingly small. 1Internal frame-skin reactions are
similarly zero as the entire structure moves in its fundamental beam mode.
As the frequency increases, frame-shell impedance mismatches grow and so
Py must reaction forces. Frame reactions may be expected to be greater for

those frames positioned away from the nodes of an excited m shell mode;
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e.g., an m=]1 resonant mode will generally cause greater reactions for

[ the two frames near the shell middle than for those near the two ends.
Conversely, the m=5, 10,15...resonances should have associated smaller
reactions since the four frame positions coincide naturally with modal nodes.
Given sufficient structural damping, at higher frequencies frame reactions
!‘ become acoustic points (or rings) of origin wherever the shell-plating

structural far field they excite is below coincidence.

E. Exact Solutions: Numerical Results

U] E.1l Summary

All far-field predictions presented here use the
spherical coordinate system of Figure II.1l. The field position defined
by ¢=0, w=90o (beam aspect) is in line with the drive direction; ¢=180°,
¢ w=90o points in the direction opposite the drive. Preliminary spot
checks on the shape of the acoustic directivity revealed that for most
frequencies in the range investigated pressure maxima occurred within
elevation angles ¢=65o and 850, typically in the vicinity of ¢=800.
Far-field results are presented at 20° intervals for both circumferential
and elevation angles. Since directivity patterns were fairly smooth, the
levels shown for w=80o are in essence equal to those for w=900, which are
not shown. The dimensional distance Ra from the cylinder's center to the
far-field point is 45 ft; thus, k°-Ra varies in value from about 1 at 20 Hz
to just over 25 at 500 Hz. The pressure has been normalized by the quantity

2 . . .
¥/a , where F is the magnitude of the applied drive.

E.2 Exact Solution: Frequency Sweeps

Figure IV.3 shows frequency sweeps at ¢=800, ¢$=0 and at
w=800, ¢=180o for the drive on the shell. Figure IV.4 shows similar results

for the drive on the frame. The acoustic field for the drive acting directly

on the fluid is given in both by the force-dipole curve. The latter far
field is antisymmetric with respect to the ¢=900 plane and its levels for

¢=0 and 180o are identical. In Figure IV.3 the spectrum for ¢=0 generally
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stays above the dipole curve, while that for ¢=18Oo seems to oscillate
about it. For lower frequencies the ¢=0, 1800 curves merge in agreement
with the expectation that the structural response should then be primarily
rigid body with an associated dipole-like far field. 1In the extreme low-
frequency range bounded above by the fluid-loaded fundamental, the system's
total impedance is stiffness-controlled and some departure from the dipole
curve should be expected. This, however, is an artifact of the model since

the subject actually was a freely suspended hull.

Figure IV.4 corresponds to the driven-frame case. The relatively
. o . . .. .
small differences between the ¢=0, 180 curves indicate rigid-body motion

over most of the spectrum.

E.3 Exact Solution: Directivity Patterns for Drive on Shell

Figures IV.5-8, corresponding to the drive-on-shell case,
show predicted directivity patterns for a few of the peaks in Fiqure IV.3,
¢=0 spectrum. Each figure shows three curves corresponding to three
different elevation angles; each curve shows far-field pressure vs. circum-
ferential angle ¢ on a plane normal to the cylinder axis. Thus for example,
the ¢=0 value of the w=80o curve on Figure IV.5, roughly -64 dB, corresponds
to the local peak at 100 Hz in Figure IV.3. Similarly, the ¢=180°value for
(p=80o corresponds to that for ¢=180o at 100 Hz in Figure IV.3. The low
values obtained near ¢=90O (direction perpendicular to the drive at every
elevation angle) further confirms the dipole-like behavior of the acoustic
field. Since the drive acts at the cylinder's exact center, the directivity
patterns of Figures IV. 5-8 are symmetric about the tp=90o plane; e.g., the
pattern for 1p=100o is the same as that for w=800, and that for q;=140o is
equal to that for 1p=40°.

o .
The gap at 200 Hz between the ¢=0, 180 curves has been attributed
to n=0,2 contributions comparable in magnitude to that of n=1l. Figure IV.6

shows the 200 Hz far-field pattern. We note that while the largest pressure
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still belongs to the w=80o elevation, other elevations may dominate at

other ¢ positions.

Figure IV.7 and 8, respectively for 300 and 400 Hz, continue the
trend towards increased complexity with increasing frequency, especially

for lower elevations.

Figure IV.9 shows the directivity pattern on the plane containing
the cylinder axis and the ¢=0 point. The circumferential angle is fixed
at ¢=0 and the elevation angle varies from the position =0, which looking
to the cylinder sees only the right cap, to ¢=180o which sees only the
left cap. Curves are shown for the four peak frequencies displayed in
Figures IV.5-8. As previously stated, all curves are symmetric with re-
spect to ¢=9OO. For each curve, the =0, 180° values denote predicted
radiation levels at the two far-field points which coincide with the
cylinder axis. These levels increase with frequency (as expected), though

apparently not monotonically.

Since the theoretical model allows cap motion only for n=0, low
levels at y=0, 180o for 100 Hz are consistent with the earlier assertion
that the structure primarily responds then as a rigid beam; for n=1 the
caps are assumed rigid, and low but nonzero levels at y=0, 180O are due
then to diffraction of signals emanating from the shell surface. The
higher levels observed for the other curves point indirectly to the greater
participation of the breathing mode as frequency increases. Finally, as
previously mentioned, the highast absolute levels were predicted near

¢=800 for most frequencies.

E.4 Exact Solution: Directivity Patterns for Drive on Frame

o .

The peaks in the calculated spectrum at ¢=80 shown in
Figure IV.4 for the drive-on-frame case correspond approximately to fre-
quencies 100, 200, 350, and 500 Hz. Por these, directivity patterns are

shown in Figures TV, 10-14. Figures IV. 10-13 show patterns on planes
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normal to the cylinder axis; Figure IV. 14 shows patterns on the plane
defined by the cylinder axis and the point ¢=0. Unlike the drive-on-
shell (middle) case, these radiation patterns are not symmetric relative
to the 1p=90o plane. Thus, to provide a better overall picture of the
acoustic field, the elevations angles displayed have been changed to

w=400, 800, and 1400; 40O and 140o are of course equidistant from the

cylinder axis.

For 100 Hz, Figure IV.10 shows characteristic dipole patterns for

e I
all three elevations. As before, y=80 provides the highest levels. The o

small differences between the \p=40o and the 140o curves suggest that for A
low frequencies the rigid-body structural response is insensitive to the

precise axial position of the frame being driven.

In Figure IV.1l1l for 200 Hz, the departure observed from the dipole
pattern is consistent with the gap between the two curves on Figure 1IV.4
widening at that frequency. The §=80° elevation no longer dominates

the acoustic field; also, the differences between the 40o and 1400 curves

appear more pronounced in the lower hemisphere.

.n Figure IV.12 for 350 Hz the highest levels return to w=800.
However, substantial asymmetry is indicated by the curves for the other

two elevations.

Figure IV.13 again shows a dipole pattern at all elevations with

lb=80o containing the highest levels.

Figure 1IV.14 shows the Y~ dependence of the acoustic field for
increasing frequency; the 500 Hz curve contains the largest value --
roughly -45 dB at w=1000; 350 Hz follows with a level of about -51 dB
at ¢=Gd)and so on. The predicted on-axis values are also observed to
increase with frequency. Interestingly, these values seem fairly symmetric
relative to tp=90o even if the rest of the field obviously is not; i.e.,
two far-field observers, one facing the right cap and the other the left,

would hear roughly the same -69 dB at 500 Hz,the same -78 dB at 350 Hz, etc.
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F. Iterated Solutions: Drive on Shell
F.l Summary

In Chapter III iteration algorithms were formulated to
solve the coupled fluid-structure systems for the frame-stiffened, finite

cylindrical shell. It will be recalled that for n=0 the resulting

pressure and velocity modal vectors are equal in rank, and that for n3l
the pressure vector is two ent:r:2s longer than the velocity vector be- ';:{"f

cause cap element motion is then taken to be identically zero. For both

1
A

n=0, n21, the first technigue was the standard Jacobi iteration (J) method

adapted to coupled systems. As previously discussed, Jacobi iteration

‘A‘.l)L

uses a single iteration counter and convergence (or divergence) occurs giT*
after applying the algorithm a prescribed number of steps. The second

form of iteration for both n=0 and n2l equation sets is actually a two-

counter process which uses an algorithm nested within another. As was
pointed out in Chapter III, part of the partitioned subsystems could be
solved either exactly or approximately (Egs. III.C-8b and D-5c). Here
we use the exact option so that these two-step algorithms fall in that
category of linear-system iterative solution techniques which Ref. 29

terms "semi-exact."

Iterated solutions were attempted here first by the J technique
for every n mode of every frequency. Successful convergence was usually
observed for the lower frequencies between 20 and 100 Hz. However, as
frequency increased, the J method was found to diverge often. For such
cases the two-step algorithms were applied with both counter limits set
to 3 and convergence to an acceptable solution was always observed. Thus,
in the following presentation of iterated results the figure label "iteration
counter(s)=3" states that the approximate solution was obtained either in
three J steps, or in three steps of the two-step processes; "iteration
counter(s)=1" always refers to the solution after a single J step, which,
as discussed in Chapter III, is the quasi in-vacuo result obtained by
approximating the structural impedance matrix by its diagonal, which is
then inverted. The results shown were chosen as representative of the

body of data generated.
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F.2 Iterated Solution: Frequency Sweeps

Figure IV. 15 shows exact and approximate solutions for the
frequency sweep at w=80°, $=0 for the drive-on-shell. The exact curve
is the same as that on Figure IV.3 with ¢=0. Although the first J step
yields a poor estimate, an excellent approximation is obtained in three
generally nested steps for all frequencies except perhaps 400 and 450 Hz.
The directivity patterns will show, however, that such close agreement

was not obtained at other orientations in the acoustic field.

Figure IV. 16 shows the frequency sweep at the two far-field positions
coinciding with the cylinder axis (¢=0,¢=0 and ¢=0, w=1800). Below 200 Hz
even the one-step solution appears adequate. The iterated solution using

counter(s) set to 3 is again for all practical purposes the exact solution.

F.3 Directivity Patterns: Iterated Sclutions

Figure 1IV. 17 shows exact and approximate directivity patterns
on the plane defined by (p=800 with ¢ varying from 0 to 3600. The exact
solution is taken from Figure IV.5 (different scale). We note that the
degree of improvement vs number of iterations appears to be global in that

convergence is equally good for all values of circumferential angle.

Figure IV. 18 shows pattern and convergence behavior for 300 Hz. The
convergence rate for this case appears greater than that for 100 Hz since

the zeroth solution is now a worse first estimate.

In Figure IV. 19 for 400 Hz convergence ceases to be globally mono-
tonic. Thus, after three steps the solution for ¢=180o seems to be down
about 8 dB and that for ¢=0 up 4 dB; this 4 dB overshoot was seen in
Figure IV. 15 at 400 Hz. Figure IV. 20 shows the pattern for 500 Hz.

Figures IV. 21-24 show directivity patterns on the plane containing
the cylinder and ¢=0 axes. For all figures the circumferential angle ¢
has value 0 and the elevation angle y varies from 0 to 180°. Convergence
was observed to be fairly good over the frequency spectrum investigated

by the method.
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It should be pointed out that within the frequency range investigated
here, i.e., below 500 Hz, several fluid-loaded resonances were measured in
Ref. 40, part 2; and that although only far-field predictions have been
presented here, the iterative algorithms were observed to converge for all
n modes to the correct structural response (and associated near-field sur-

face pressure) within this resonant range.

G. Comparison to Experiment

Figure IV. 25 shows measured beam-aspect (w=900, $=0) levels
for the cylindrical structure of which Figure IV.la, b shows one of five
equal segments.40 Also shown are predictions by the present model for
frequencies up to 500 Hz, and by a simpler infinite-cylinder fluid model
for frequencies between 500 and 2500 Hz. The force-dipole solution is

also indicated.

As previously pointed out, and as again the figure shows, predictions
for the low frequency range hover about the force dipole with more con-
sistent departures taking place as frequency increases. Except for the
measured anti-resonance dip at 1 kHz for the drive-on-frame case, pre-
dictions and the dipole curve would seem to underestimate the mean of the

data by about 25 dB.

However, the results of previous experimental and theoretical

studies 1,42

strongly suggest that beam-aspect acoustic spectra of force-
driven cylindrical structures similar to that investigated here are

closely approximated by the force dipole at the lower frequencies, and,

at higher frequencies below coincidence, by the infinite plate solution
known classically to be 6 dB above the force dipole. Junger 42 for example,
has identified three primary frequency ranges for a typical heavy-framed
submarine hull. 1In the lower of these the ship behaves as a rigid beam

and the force-dipole solution is roughly valid. For the next higher,
compartment-resonance, range he has established structural damping criteria
under which bounding frames play a subdominant role in the response function
which then corresponds to the infinite-plate solution; although at fluid-

loaded resonances peak levels may otherwise far exceed those by analytic
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asymptotic formulae, he finds that the latter nevertheless provide

good mean-value curves. Finally, above the hull's ring resonance he
determines that if the shell plating is treated as an infinite system,
its acoustic field closely approximates the frequency-averaged measured

data.

Therefore, the discrepancy in overall behavior between present
and earlier measurements plus theoretical conclusions remains to be

explained.

H. Computational Times for Exact vs Iterated Solutions

We end the discussion here with a brief summary of the time-
savings advantage of approximate solutions. 1In all fairness, however,
it should be pointed out that for the present modal formulation total
computational costs were dominated by the generation of matrix elements
for the fluid system rather than by the solution technique applied to
effect its inversion. 1In effect, the A constant in Eg. III.E-la had a
large value as a result of the integration routines used here. Neverthe-
less, if for the moment the AN2 system-generation contribution is ignored
in Eq.III.E-la, one may calculate part of the N»= asymptotic wvalue of the
savings ratio between iterated and exact solution, i.e.,the (B/C)-1/N part

of Eq. III.B-1lb (N=M+2 here). This measure of savings is quantified next.

Table IV.3 shows computational times needed to solve a given, gen-—
erated coupled system. Percent time savings over the exact solution are

tabulated. The first of the approximate solution entries, K1=l' K2=l,

refers to the J method with Kl and K2 as defined in Chapter III. The

second entry, K1=K2=3, refers to the nested, two-step iteration process,

for which a set of Kl' K2

of accuracy ranging from the generally acceptable (K1=K2=3), to the generally

combinations were also applied yielding solutions

L Te et
PV ML VY

unacceptable (K1=K2=1),
Had a technique such as DAA been used to model the fluid in the

present problem, the ratio of total matrix inversion to matrix generation
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costs would have been essentially given by (B/C)IAMN. The reason for this
of course is that DAA requires a single fluid calculation valid for all
frequencies and thus eliminates much of the system-generation effort.

However, the final solution would then be doubly approximate because the
approximate inversion process would then operate on an approximate fluid

model.

Finally, as discussed in Chapter III, SOR-type recasting of fluid
and structural systems should be expected to improve convergence rates
without significant computational penalties. Comparison of exact and
iterated solutions should appear then even more in favor of the approximate

method.
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V. SUMMARY AND CONCLUSIONS

A theoretical model has been developed to predict acoustic
radiation from a submerged, finite-cylindrical shell internally
stiffened by ring frames and with flat, movable end caps. The model
has been applied to a structure for which recent acoustic data has
been collected. Predictions differ from existing measurements by
roughly 25 dB; however, they appear consistent with the results of

a number of previous experimental and theoretical studies.

Iterative schemes have been developed to solve the associated
fluid-structure coupled systems over a moderate range of frequencies
encompassing several fluid-loaded resonances. We have demonstrated
that such techniques may be applied to generate essentially the
exact solution in a reasonably small number of iterations. By com-

paring computational costs to those for the exact result, we found

iteration to be economically advantageous for all frequencies considered.

Lastly, we have noted that, for an arbitrary fluid-loaded struc-

ture modeled using finite differences or elements, the ratio of total
computing cost by iteration to that using exact inversion should de-
crease with system size. The development and implementation of tech-

niques such as those used here is therefore recommended.
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APPENDIX II.A

n
(1) aZI = 22(—11 >3
{14r"+(z~2) "}

2n /2

/ = —_— ) / P
JF dAacosno (l+rcosa) [1-ika l+r2+(z-z)2 /1+Elcosa] exp{ika l+r2+(z—z) /1+£lcosa}

n {1+glcosa}3/2
where

£, = 2r/[1+r2+(z—2)2]

1
n m . /2 -2 P v ——
al. = 2(-1) dacosna exp{ika Vr +r"+(z+L/2a) 1+g2cosa}
3n VERT 2
r +r +{z+L/2a) 0 Vl+£2cosa
n
a3I _ 2(-1)

4n 2}3/2

{r2+}2+(z+L/2a)

n
- —_— - 2
.f dacosna [l-ika/£2+r2+(z+L/2a)2 /l+£2005a] ekp {ika/£2+r2+(z+L/2a)Vl+£2005u}

0 {1+§2cosa}3/2

where

52 = 2r;/[r2+;2+(z+L/2a)2]

- 2
2(_l)n 7:dgcosna exp{ika /§2+r2+(z—L/a) ¢1+g3cosa}
j Vl+£3cosa

al =
2 - 2
on /Q +r2+(z—L/2a) 0
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CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

TABLE IV.2
STRUCTURAL AND ACOUSTIC WAVENUMBERS, AND REQUIRED SYSTEM SIZE

f (Hz) kfa(=.188/25 M(>£§§ 'kfa) ka(z£/1000)
20 .84 6 .02
50 1.32 9.3 .05

100 1.88 13.2 .1
200 2.66 18.6 .2
500 4.20 29.4 .5

1000 5.95 41.6 1.

2000 8.41 59.0 2.

5000 13.30 93.0 5.
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TABLE IV.1
CYLINDER STRUCTURAL PARAMETERS

Cylinder length 230"

Shell thickness .3125" (Aluminum)
Shell radius 10. 344"

Caps' thickness 1.5" (Steel)

No. of frames 4 (Aluminum)
Inter-frame spacing 46"

Frame height 1.0625"

Frame width 3.25"

Assumed Loss factor for all structures .05
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TOP VIEW

LONGITUDINAL
RAIL 1 116" 516"
S = —
- [~
:L [
2 1/4” - = 1() ‘18“-
I |
: t | 10 31— -
JOINT - \ 93/4" —A
BAND -
-

//L | h
Access” R A8 4\ A== N\ AN/
HOLE l___ 7" —fe— g —te- : LU, DU 7||> —e g Je— 8" _.I

(a)
SIDE VIEW
10 3/4"— — 10 1/4"
1916 [} 9 3/4"—+
1 | l“ - L /
2 2\ u ' ::'74__
T IR s
- 1 38"
rl2 14 -' HoLE 2
} —{l— 3/ HOLE
- LONGI-
w3 | —%L: VAL R F 19 1/8"
! )
Al L/ 1124

-

o e ek Yk F“")("“F")("]F“)("“F—“ﬂ_
L)) ‘
7 E . L || -
ACCESS l‘_ 7“ —tie—— 8" 8" 7" —-OIQ— 8“ —i— 8“ —
HOLE

(b)

Figure 1IV.la,b From Ref. 40; Top and Side Views of a Typical AL Interframe
Cylinder Section of the Experimental Model (AL=46" in Fig. IV.2)
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CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

where "det" denotes the determinant of the matrix in Eq. II.B-4.

(2)  Modal Impedances for Ring Frames

Modal impedances Z , etc., have been given Harari28 in dimensional

nll
form and relate net frame forces to frame displacements rather than velocities.

The relationship between Harari's "impedance" ZH and our normalized gquantity

nll
anl is
H
z _ A nll
nll ka pc2

and similarly for the rest. Thus they are given by

i(Df/p)(cp /c)/l-inf

f n452 nZS
2.y = bs L. L, L1 _sg9?
nll Qf 1 1252 s 52 27f
2 2
ns.S n3s S ns
i 5 28 Wit N I WO U AT W R
2 2 \2 123,) o272 7t
2 2
1
1(Df/p)(cpf/c)/l-1nf , nzsi ,
Z = - S.s + -
n33 2 PSS, 4™ (! 2 (5,9,
£ S
2
i(pf/p)(cpf/c)/l—inf i (nsl)z s,
Z = bS.n |1 +{— - — 2
nl3 Qf 1 i 82 282 n33
ilp./p) (c /c)V 1-in A
P £ _
£ 2 1 sl Sl 2
= - = - +== (S
2531 Q. bSnfl-mns |3 12s, ) "2 (ZQE)]

where b is the frame width as defined in Fig. II.2, which also shows Sl'SZ;pf

is the frame material density, c its compressional wave speed, and Ne its ?i:f;

P
structural loss factor; also,

= /_'

Qf (wa/cp YL ing
f

In the above equations all spatial quantities appear normalized by the shell

radius a.
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where

The constants B., B_, B_, B

WP, AP WL

n

B

- (1tv mra
= 3 ) n ( I )
=v (E%E)

- ‘(1*3 ){n + (l v) m;a)z}

mwa 2

= ‘n[1+8 {n + ()
= A,
= A
- Q _1- 62[(m11a 2 + n2]2

= (ma/cp)/Vl—in ;
= shell compressional wave speed;

= structural loss factor; and
= (h/a)/v12

are given by

1 3 7 9

A5A9 A6A8

det

_ BPe™RiAs

det

A4A8 A5A7

det

]

_ AlAs A2A4

det
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APPENDIX II.B

o
(1) Structural Operators and Constants
The thin-shell theory operators Ll,...,L9 in Egs. II.B-la are given
o by (Refs. 34, and 12). .
d 1-v 3 2 -
L =5+ > > +Q .
3z 9¢ -
[
L = 1+y 82 o
2 2 3z3¢
- M3 :
Iy = 3z ®
L4 = L2 ; .
2 2 e
- 2 .
L, = (1—23) (1+8°) —85 + (1489 3—-5 +Q e
3z 3¢ L2
3
L = i - 82( a + _3_.>
2
6 9 52206 3¢°
Ly = 7L L
bg T g e
o
4 4 4
Ly = '1'32( a4 * 22 g " a4>+ o’ 2
9z oz 3¢ ¢ -
The constants A ,..., Ay in Eq. II.B-4 are, ;fi‘
2 mra 2 1-y, 2 '?.:
Al =Q - (-Efﬂ -~ (—5—)n i ‘
»
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n e
3 2(-1) o
I a’r. = — -
én {r2+r2+(z-L/2a) 2 }3/2 .
PY fdacosna[l—lkaA +r +(z L/2a) V1+& | cosa] exp {ika »/r +r +(z L/2a) /1+g cosa} o
®
{l+£; cosa} 3/2
£y = 2%/ [r 4124 (z-L/2a) 2]
L L/2a 1 '.
(2) _ 1 . mTa . . - = 3 e .
(2) Cnm = ou f dz sin I (z+L/2a) * (z+L/2a) f dr r [a I4n(€2,r—1)] .
-L/2a o
. 1 L/2a
~(2) _ 1 - . nmra,- 2 e L
Cnm = o f dr r f dz sin =N (z+L/2a) [a Izn(El,r—l)] e
0 -L/2a o
1 1 S
~(3) L/a - -3 .-
® Cn = S fdr r fdr ria I6n(£3;z=—L/2a)] )
0 0 :’l.
1 1 -
p{¥ =- L"—jf dr rf dr rlal, (£,;z=-1/2a)] =
o 0 0 e
1 1 L
~(4) __ ika - = e ae
Dn = 5 dr rf dr r[aI3n(£2,z +L/2a) ] _:?.
0 0 -
' J
¢ .
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TABLE IV. 3
. COMPUTATIONAL TIME COMPARISON BETWEEN EXACT AND ITERATED SOLUTIONS VS.
ITERATION COUNTERS I& , 13
[ ]
. Execution Time % Time Savings
Solution # K1 K2 {secs) Over Exact

1 (exact) - - 75.1 0
b 2 3 3 64.2 14.5

3 3 2 62.3 17.0

4 3 1 62.0 17.4

5 2 3 60.9 18.9
- 6 1 1 58.9 21.6
7]
®
"3
®

93
- . Tl T "u" R TR A h ° ’.-‘ -'-., '..‘-- - - » -'. . -
M : et e et e e e e e U e e T e e s';‘ixg“ﬂ._’]




asr bt it Mot Sttt Jabo i St St S T AR S PSS - el IR M i e e i g SIS AR A LT Pale M e P

170 -

160

150

140

130

Im PER NEWTON INPUT FORCE

A — — — MIDDLE OF SHELL
TN ——— ON ‘JOINT BAND

\ ) — -— MIDDLE OF END SHELL

\; {experimental only)

SOUND PRESSURE LEVEL-dB RE 1. Pa AT

120

. A/'
R C"Force Dipole
—~N
NTOTL N TN WE {

\C ’ 4 5
FREQUENLY (kHz) S

-1

—
ey
—

Figure IV. 25 Comparison of Predicted to Measured Spectrum (from Ref. 40} at
=0, ¢=90°; Predictions for £>500 Hz use an Infinite Cylinder

4

s

) Model for the Fluid. 94 : !{TTW
g

4

..............................................
..............................................................

---------
o" . o’




LAl

CMI ANt A A ol UL Sl - arh /- e a i St g AU et et Sadie e A At B T FI i Sy jevas Saun BNSA b4

10

REFERENCES

R. Martinez and J. M. Garrelick, "An Exact Analysis of the Force-
Excited Submerged Spherical Shell using Iterative Techniques,"”

CAA Rept. C-911-288, Feb. 1983.

L.G. Copley, "Fundamental Results Concerning Integral Represen-

tations in Acoustic Radiation," JASA 44 (1), 1968, pp. 28-32.

H.A. Schenck, "Improved Iategral Formulation for Acoustic Radiation

Problems,” JASA 44 (1), 1968, pp. 41-58.

K. Brod, "On the Uniqueness of Solution for all Wavenumbers in

Acoustic Radiation," 76 (4), 1984, pp. 1238-1243.

I. Mathews and D. Hitchings, "Acoustic Radiation from Three-
Dimensional Elastic Structures,”" Innovative Numerical Analysis

for the Engineering Sciences, UVA Press, 1980, pp. 69-78.

G.T. Schuster and L.C. Smith, "A Comparison Among Four Direct

Boundary Integral Methods," Jasa, 77 (3), 1985, pp. 850-864.

H. Huang, "Helmholtz Integral Equations for Fluid-Structure
Interaction," Advances in Fluid-Structure Interaction - 1984,
presented at the 1984 Pressure Vessel and Piping Conference and

Exhibition, San Antonio, Tx., June 17-21, 1984.

G. Chertock, "Sound Radiation from Vibrating Surfaces," JASA

36 (7), 1964, pp. 1305-1313.

R. Courant and D. Hilbert, Methods of Mathematical Physics,
Vol. I, Interscience, 1966, p. 136.

B.E. Sandman, "Numerical Fluid Loading Coefficients for the Modal
Velocities of a Cylindrical Shell," Comp. & Struc., 6, 1976, pp.
467-473.

a5

. R T B R T TS
PO T SRR VAR TR YAl CGll VEOK VAL Sl SN UL VoA Tl SOtk ST ST Wty SR Al il Sl WA e

CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

Lt ATt et .
Yl S WL SHRPLIE U S 3

'
!
tad

..
Oy

TR

. . PN

' L

P o

. .
h o

e e
WP S )




LTSN AT Al AT S N S SR S i e S S S aPuls aP UL SIPS it S SR RSN R i i AR i AR AT i R M

11 B.E. Sandman, "Fluid-Loading Influencec Coefficients for a Finite

Cylindrical Shell," JASA 60 (6), 1976, pp. 1256-1264.

12 M.C. Junger and D. Feit, Sound, Structures, and Their Interaction,

1st, ed., MIT Press, 1972, p. 207.

13 V.A. Kozyrev and E.L. Shenderov, "Radiation Impedance of a Cylinder

of Finite Height, "Sov. Phys. Acous., 26 (3), 1980, pp. 230-236.

14 V..A. Kozyrev and E.L. Shenderov, "Radiation Impedance of a Cylinder
with Acoustically Compliant Ends," Sov. .Phys. Acous., 27 (3), 1981,
pp. 247-248.

15 J.S. Patel, "Radiation and Scattering from an Arbitrary Elastic
Structure using Consistent Fluid Structure Formulation,“ Computers

& Struct., 9, 1978, pp. 287-291.

16 T.L. Geers, "Transient Response Analysis of Submerged Structures,"
Finite-Element Analysis of Transient Nonlinear Structural Behavior,

edited by T. Belytschko, et.al., ASME, N.Y., 1975, pp. 59-84.

17 T.L. Geers, "Doubly Asymptotic Approximations for Transient Motion

of Submerged Structures," JASA, 64(5), 1978, pp. 1500-1508.

18 T.L. Geers and C.A. Felippa, "Doubly Asymptotic Approximations for

Vibration Analysis of Submerged Structures," Lockheed Palo Alto

Research Laboratory Rept. prepared for DTNSRDC/Annapolis, Sept. 1981.

19 H. Huang and Y.F. Wang, "Asymptotic Fluid-Structure Interaction A

X . ®
Theories for Acoustic Radiation Prediction," Advances in Fluid- - -4
Structure Interactions -~ 1984, see. ref. 7 for details. L;;:
20 D. Ranlet, F.L. Dimmagio, H.H. Bleich and M.L. Baron, "Elastic RN
Response of Submerged Shells with Internally Attached Structures .‘;";}

.
»
PO

to Shock Loading,” Comp. & Struct., 7, 1977, pp. 355-364. -fiff

96




21

22

23

24

25

26

27

28

29

30

PR S S

".:' ", B -’

KR R et . .
e T . e et
PR R I DRI AT SR IR D W Y

L.H. Chen and D. G. Schweikert, "Sound Radiation from an Arbitrary
Body," JasA, 35 (1), 1963, pp. 1626-1632.

M.L. Baron, L.A. Matthews, and H. H. Bleich, "Forced Vibrations of
an Elastic Circular Cylindrical Body of Finite Length Submerged in
an Acoustic Medium," Weidlinger Tech. Rept. 1, prepared for ONR,

June 1962.

J. M. McCormick and M.L. Baron, "Sound Radiation from Submerged
Cylindrical Shells of Finite Length,"” Weidlinger Tech. Rept. 3,
prepared for ONR, June 1964.

J. M. McCormick and M. L. Baron, "Sound Radiation from Submerged
Stiffened Cylindrical Shells of Finite Length with Flexible End

Caps,”" Weidlinger Tech. Rept. 9, prepared for ONR, Aug. 1970.

D. G. Crighton, "Resonant Oscillations of Fluid-Loaded Struts,"”
J. of Sound & Vib., 87 (3), 1983, pp. 429-437.

C.B. Burroughs, "Acoustic Radiation from Fluid-Loaded Infinite
Circular Cylinders with Periodic Ring Supports," JASA, 75, (3),
1984, pp. 715-722.

J.E. Cole, "Parametric Study and Design Implications of the Low
Frequency Response and Radiated Noise of a Submarine Hull,"” CAA
Rept. C-938+274,13E, prepared for Naval Sea Systems Command,
Aug,. 1983,

A. Harari, "Wave Propagation in Cylindrical Shells with Finite
Regions of Structural Discontinuity,” JASA, 62 (5), 1977, pp. 1196-
1205,

D.M. Young, Iterative Solution of Large Linear Systems, Academic

Press, N.Y., 1971.

M.K. Au-Yang, "Natural Frequencies of Cylindrical Shells and Panels

in Vacuum and in a Fluid," JASA, 57 (3), 1978, pp. 341-355.

97

Ba et e Tt T T e (T T T e e e e e T T e Tt T e Tt e e Tt et et et
DT T A P e ST I SRt R T Tk S
B e T N N Y N N W O A U R RS

CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

ST .
e d bk o aia

X ,
. .
F SN NORISA

,'r

LB
R
T
]

B

R

LA




31

32

33

34

35

36

37

38

39

40

41

42

Y.W. Chang and C.Y. Wang, "An Eulerian Method for Large Displacement
Fluid Structure Interaction in Reactor Containment," Computational
Methods for Fluid-Structure Interaction Problems, AMD Vol. 26,
Winter Annual Meeting of the ASME, Atlanta, Ga., Nov. 27-Dec. 2,
1977, pp. 1-14.

T. Belytschko, "Fluid-Structure Interaction," Comp. & Struc., 12,
1980, pp. 459-469.

W. Whitlow and W. L. Harris, "Lifting Airfoils in Transonic Flow
in Parametric Differentiation," AIAA Paper 80-1394. Presented at

the 13th AIAA Fluid and Plasma Conf., Snowmass Col., July 14-16, 1980.
0.D. Kellog, Foundations of Potential Theory, Dover, N.Y., 1953, p. 299.

A. W. Leissa, Vibration of Shells, NASA SP-288, 1973; for Donnell-

Mushtari theory see p. 32.
M.E. Goldstein, Aeroacoustics, McGraw-Hill, N.Y., 1976, p. 119.

A.A. Cannarozzi and E. D'Anna, "A Routine for Solving Sparse Linear

Systems in Structural Analysis," Comp. & Struc., 6, 1976, pp. 99-105.

H. Peterson and E. P. Popov, "Substructuring and Equation System
Solutions in Finite-Element Analysis,"” Comp. & Struc., 7, 1977,

pp. 197-206.

A. Maher, P.G. Kessel, and R.D. Cook, "A Partitioned Finite-Element

Method for Dynamical Systems," Comp. & Struc., 18, pp. 81-91.

C. B. Burroughs, S.I, Hayek, D.A. Bostain, and J.E. Hallander,
"Acoustic Radiation from Single and Double Ribbed Circular Cylin-
drical Shells," Penn. State ARL TM 84-76, March 1984; also, "Resonant
Frequencies and Mode Shapes for Single and Double Cylindrical Shells,"

Penn. State ARL TM 83-169, Sept. 1983.

H.B. Ali and D. Feit, "Acoustic Measurements and Prediction for a
Submarine Model - A Heuristic Appraisal,” DTNSRDC Rept. 78/042,
May 1978.

M.C. Junger, "Force Dipole Noise Radiation by Submarine Hulls,"
CAA Rept. C-890-274, 13A prepared for Naval Sea Systems Command,

July 1983.
98

CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

L
S
®

8

7

- 4
R
-9

- 4
» .




' PN . . ‘) .
v : ...r.\.LAV.n

s“\t

. I
g letale ema

7—85




