ASHMERE LAKE DAM
MA 00223

PHASE 1 INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION CORPS OF ENGINEERS
WALTHAM, MASS. 02154

AUGUST 1978
Cover Program Reads:
Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

Abstract
Ashmere Lake Dam is an earth embankment 1574 ft. long with a maximum height of 32.5 ft. A stone masonry spillway, 75 ft. long with a freeboard of 3.5 ft. is located at the east abutment. Since the dam is classified as intermediate in size with a high hazard potential, the test flood is the Probable Maximum Flood. There are a number of recommendations given in this report for implementation by the owner.
Honorable Edward J. King
Governor of the Commonwealth of
Massachusetts
State House
Boston, Massachusetts 02133

Dear Governor King:

I am forwarding to you a copy of the Ashmere Lake Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Department of Environmental Quality Engineering, the cooperating agency for the Commonwealth of Massachusetts. In addition, a copy of the report has also been furnished the owner, the Commonwealth of Massachusetts, Forests and Parks Department, Department of Environmental Management, Lee, Massachusetts 01238, ATTN: Mr. Douglas Poland, Regional Supervisor.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Quality Engineering for your cooperation in carrying out this program.

Sincerely yours,

[Signature]

John P. Chamberlain
Colonel, Corps of Engineers
Division Engineer
ASHMERE LAKE DAM
MA 00223

HOUSATONIC RIVER BASIN
HINSDALE, MASSACHUSETTS

PHASE 1 INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
PHASE I REPORT
NATIONAL DAM INSPECTION PROGRAM

Inventory No.: MA 00223
Name of Dam: ASHMERE LAKE DAM
Town Located: HINSDALE
County Located: BERKSHIRE
State Located: COMMONWEALTH OF MASSACHUSETTS
Stream: BENNETT BROOK
Date of Inspection: 22 JUNE 1978

BRIEF ASSESSMENT

Ashmere Lake Dam is an earth embankment 1574 feet long with a maximum height of 32.5 feet. The crest is "dog-legged" at an angle of about 138° with the east and west legs of the embankment being 710 and 864 feet, respectively. A stone masonry spillway, 75 feet long with a freeboard of 3.5 feet is located at the east abutment. A 24 inch diameter low level outlet pipe is located at the base of the dam at the maximum section. Discharges from the spillway and low level outlet are into Bennett Brook to the East Branch of the Housatonic River.

Phase I inspection and evaluation of Ashmere Lake Dam does not indicate conditions which would constitute an immediate hazard to human life or property. Based on engineering judgment and the performance of the earth embankment and outlet works, the project is considered to be in good condition. The project, however, does have a number of deficiencies which, if not remedied, have the potential for developing into hazardous conditions.

Because there are no data on Probable Maximum Floods for a drainage area of 4.0 square miles, it was necessary to synthesize a test flood hydrograph for the contributing area. Since the dam is classified as intermediate in size, with a high hazard potential, the test flood, in accordance with Corps of Engineers guidelines, is the Probable Maximum Flood (PMF). The PMF yields an outflow of 5170 cfs which is greater than the combined maximum discharge capacity of the spillway and low level outlet of 1650 cfs and would result in an overtopping of the dam by about 4.8 feet. Since the dam will be overtopped by the test flood, it is considered that the spillway is inadequate from a hydraulic and hydrologic viewpoint.

A number of recommendations are given for implementation by the owner within 12 months of receipt of this Phase I Inspection Report. One of the recommendations is that the owner retain a competent consulting engineer to conduct further studies to determine what measures are necessary to improve discharge capacities.
In addition, remedial measures are recommended for implementation by the owner within 24 months of receipt of this Phase I Inspection Report to improve overall conditions. These measures, in general, are as follows:

- Programs for observing and monitoring seepage
- Repairs to embankments and appurtenant structures
- Programs for operation, maintenance and inspection

O'Brien, P.E.
New York No. 29823
This Phase I Inspection Report on Ashmere Lake Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

Charles G. Tiersch
CHAIRMAN
Chief, Foundation and Materials Branch
Engineering Division

FRED J. RAVENS, Jr., Member
Chief, Design Branch
Engineering Division

Saul Cooper
SAUL COOPER, Member
Chief, Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

Joe B. Fryar
JOE B. FRYAR
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
HOUSATONIC RIVER BASIN
ASHMERE LAKE DAM
INVENTORY NO. MA 00223
PHASE I INSPECTION REPORT

CONTENTS

LETTER OF TRANSMITTAL

BRIEF ASSESSMENT

OVERVIEW PHOTOGRAPH

VICINITY MAP

TOPOGRAPHIC MAP

1 PROJECT INFORMATION

1.1 GENERAL
 a. Authority
 b. Purpose

1.2 DESCRIPTION OF THE PROJECT
 a. Description of the Dam & Appurtenances
 b. Location
 c. Ownership
 d. Purpose of Dam
 e. Design and Construction History
 f. Normal Operating Procedures
 g. Size Classification
 h. Hazard Classification
 i. Operator

1.3 PERTINENT DATA
 a. Drainage Area
 b. Discharges at Damsite
 c. Elevation
 d. Reservoir
 e. Storage
 f. Reservoir Surface
 g. Dam
 h. Diversion and Regulating Tunnel
 i. Spillway
 j. Regulating Outlets
ENGINEERING DATA

2.1 DESIGN
2.2 CONSTRUCTION RECORDS
2.3 OPERATION RECORDS
2.4 EVALUATION OF DATA
 a. Availability
 b. Adequacy
 c. Validity

VISUAL INSPECTION

3.1 FINDINGS
 a. General
 b. Embankment
 c. Appurtenant Structures
 d. Abutments
 e. Downstream Channel
 f. Reservoir Area

3.2 EVALUATION OF OBSERVATIONS

OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES
4.2 MAINTENANCE OF DAM
4.3 MAINTENANCE OF OPERATING FACILITIES
4.4 WARNING SYSTEMS IN EFFECT
4.5 EVALUATION

HYDRAULIC/HYDROLOGIC

5.1 DRAINAGE AREA CHARACTERISTICS
5.2 SPILLWAY CAPACITY
5.3 RESERVOIR CAPACITY
5.4 FLOODS OF RECORD
5.5 DESIGN FLOOD
Page No. 5 - 1

5.6 OVERTOPPING POTENTIAL
Page No. 5 - 2

5.7 EVALUATION
Page No. 5 - 3

6 STRUCTURAL STABILITY
Page No. 6 - 1

6.1 EVALUATION OF STRUCTURAL STABILITY
Page No. 6 - 1
- a. Visual Observations
- b. Design and Construction Data
- c. Operating Records
- d. Post-Construction Changes
- e. Seismic Stability

7 ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES
Page No. 7 - 1

7.1 DAM ASSESSMENT
Page No. 7 - 1
- a. Condition
- b. Adequacy of Information
- c. Urgency
- d. Necessity for Additional Investigations

7.2 RECOMMENDATIONS
Page No. 7 - 2

7.3 REMEDIAL MEASURES
Page No. 7 - 2
- a. Alternatives
- b. Operating & Maintenance Procedures

APPENDICES

A. VISUAL INSPECTION CHECKLIST

B. DRAWINGS AND INSPECTION REPORTS
1. Plan, Profile and Section
2. Past Inspection Reports

C. PHOTOGRAPHS

D. HYDROLOGIC DATA AND COMPUTATIONS

E. INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS
1A WEST LEG OF EMBANKMENT (Looking West)

1B EAST LEG OF EMBANKMENT (Looking West)

GENERAL OVERVIEW OF DAM
SECTION 4 - OPERATION AND MAINTENANCE PROCEDURES

.1 PROCEDURES

Operational procedures for the project are not formally established but are based on the experience of the operating personnel.

1.2 MAINTENANCE OF DAM

There is no formal maintenance manual for the project. Maintenance is carried out as needed. Important features such as the gate valve are repaired immediately, mowing and cutting of vegetation is done when time allows. There is no scheduled program of inspection by the Forest and Parks personnel, however, there is a statewide program of inspection established several years ago by the Department of Environmental Quality Engineering, Division of Waterways. A copy of their last inspection report, dated 27 October 1975, is given in the Appendix. Prior to this, the County of Berkshire conducted inspections, a copy of their last report, dated 10 October 1968 is also given in the Appendix. Included in the Appendix, for historical purposes only, is a letter inspection report of 5 August 1907 submitted by the Division Engineer, Massachusetts Highway Commission.

4.3 MAINTENANCE OF OPERATING FACILITIES

There is no established maintenance program for the operating facilities. Maintenance is carried out as needed.

4.4 WARNING SYSTEMS IN EFFECT

There is no warning system in effect nor one planned.

4.5 EVALUATION

The maintenance and operating procedures for the dam and appurtenant structures are, in some respects, deficient. Measures to improve these deficiencies are given in Section 7.
The spillway channel which is overgrown with low vegetation in the vicinity of the training walls becomes totally overgrown and blocked by debris further downstream. This channel converges with the low level outlet channel several hundred feet downstream.

f. Reservoir Area

In the vicinity of the dam there is no evidence of sloughing, potentially unstable slopes or other unusual conditions which would adversely affect the dam. The bridge crossings along Highway 143 will not cause any adverse affects because they apparently do not constrict flows between the two sections of the lake.

3.2 EVALUATION OF OBSERVATIONS

Visual observations made during the course of the investigation revealed several deficiencies which at present do not adversely affect the adequacy of the dam. However, these deficiencies do require attention and should be corrected before further deterioration leads to a hazardous condition. Recommended measures to improve these conditions are given in Section 7.
There is evidence of minor seepage along the toe of the embankment at several low lying locations. This is a condition which appears to have existed for some time as evidenced by the presence of limonitic staining and fluorescence on the seepage water surface. In addition there is a general dampness along the entire toe, however, this is probably due to runoff caused by the rainfall of the previous evening. (See Photograph Nos. 13 & 14).

c. Appurtenant Structures
The low level outlet pipe at the outfall end appears to be rusted but in good condition. The stone masonry head and wing walls of the outlet structure appear to be in fair condition with some loose and missing mortar. At the end of the east wing wall there is minor erosion of the wall foundation. The floor of the structure is in good condition with only minimal erosion. (See Photograph No. 5).

The low level gate valve operating stand is rusty but operable. The mechanism is chained and padlocked to prevent unauthorized operation. (See Photograph No. 4). The gatehouse was destroyed in a fire 10 March 1977. The gate valve stem is located within a circular shaft of cemented brick and stone. It is reported that the shaft is in need of repairs. The top of the shaft is covered by nailed wooden planking.

The stone masonry spillway sill appears in good condition but some of the mortar pointing is loose or missing. The top surface of the sill is only partially visible because of heavy vegetation. (See Photograph No. 9). Upstream of the sill, the approach channel is completely silted and overgrown with vegetation. Downstream of the sill, the spillway channel is filled to the spillway crest with cobbles and boulders, and heavy growth covers the area. (See Photograph No. 10). The stone of the training walls is in good condition, except that the mortar pointing is generally missing.

Minor seepage was noted in the center of the spillway channel about 40 feet downstream and about 4 feet below the sill.

d. Abutments
There were no signs of seepage or other unusual conditions at the abutments. There was some dampness probably caused by surface runoff.

e. Downstream Channel
There are effectively two downstream channels; from the low level outlet and from the spillway. The channel from the low level outlet, is a natural channel which is almost totally blocked by debris. (See Photograph No. 6). The discharges from the outlet have created a secondary channel which is clear, and converges with the primary channel downstream of the blockage. (See Photograph No. 7).
SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

A visual inspection of Ashmere Lake Dam was made on 22 June, 1978. The weather was sunny, temperature between 75° and 80°F. The last rainfall, a heavy thunderstorm of about four hours duration occurred the night before. At the time of the inspection, the lake level was about 12 inches below the spillway crest.

b. Embankment

The earth embankment appears to be in generally good conditions. The horizontal and vertical alignments of the crest are good with only minor rutting caused by vehicular traffic occurring near the west abutment. (See Photograph No. 2).

The downstream slope does not show any erosion, sloughing or signs of trespassing. The slope is completely covered with heavy ground cover, seedlings and shrubs. (See Photograph No. 3). It appears that this slope has not been mowed within the past year or two. It is reported that a more frequent cutting schedule is not followed because the steepness of the slope makes it inconvenient for hand mowing and slope mowers are awkward to handle and tie up equipment needed elsewhere.

The upstream slope does not exhibit any sloughing or signs of trespassing, but there are some areas which have been eroded at the water line. Most of the erosion occurs along the east leg of the embankment where displacements of the riprap, some as large as 2.5 feet, were observed. (See Photograph No. 12). Wave action, which seems to occur more intensely on this leg of the embankment, appears to be washing out material from under the riprap and causes the large displacements.

In addition to the erosion, there is a general vertical displacement of about 6 inches in the riprap zone above the water line and is most apparent along the east leg of the embankment. (See Photograph No. 8). In addition, all riprap above the water line has vegetation growing between the stones. It is reported that the vegetation is cut frequently. There are a few young saplings along the waterline which have not been cut.

The above mentioned wave action appears to have created, by siltation, a widening of the crest in the area adjacent to the west spillway approach wall. (See Photograph No. 4). This silted area has covered the riprap both above and below the water line.
c. **Validity**

In general, the information obtained from the conceptual drawing and the personal interviews, with exceptions noted above in Section 2.1, is consistent with observations made during the inspection and therefore considered reliable.
SECTION 2 - ENGINEERING DATA

2.1 DESIGN

Design data and specific memoranda are not available for the original construction of the dam. There is one drawing showing survey data for the reservoir and embankment. (See Appendix). The cross section of the dam shown on the drawing is not in accordance with the existing conditions. The location of the low level gate valve is not where shown, there is no service bridge, and the low level pipe is smaller, 24-inch rather than 36-inch diameter.

There is no information available on subsurface conditions.

2.2 CONSTRUCTION RECORDS

There are no construction records available.

2.3 OPERATION RECORDS

The operation of the low level gate valve are recorded and readings of the lake level are taken on a regular basis, about 2 to 4 times a week. These records are kept at the Regional Office of the Forest and Parks Department.

No records are kept of the rainfall at the dam site.

2.4 EVALUATION OF DATA

a. Availability

Existing information was made available by Department of Environmental Quality Engineering, Division of Waterways, Boston, Mass; District No. 1 Office, Department of Public Works, Executive Office of Transportation and Construction; Regional Office, Department of Forest and Parks, Pittsfield, Mass; and Crane and Company, Dalton, Mass.

b. Adequacy

The lack of in-depth engineering data did not allow for a definitive review. Therefore the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and sound engineering judgment.
j. **Regulating Outlets**

The regulating outlets consist of an uncontrolled spillway and a 24 inch inside diameter cast iron low level outlet.

The spillway is 75 feet long, 3.5 feet below the top of the training walls and with a crest width of 2.5 feet at El 1578.

The low level outlet pipe is 144 feet long with the invert at the outlet end estimated at El 1549. Discharges into Bennett Brook are controlled by a manually operated valve located on the crest of the dam. The gate valve is operable.
e. **Storage (acre-feet)**
 - Recreation pool: 2435 (est.)
 - Flood control pool: Not Applicable
 - Design surcharge: Unknown
 - Test Flood surcharge: 2017
 - Top of dam: 3220

f. **Reservoir Surface (acres)**
 - Top of dam: 264.4
 - Test Flood pool: 375
 - Flood-control pool: Not Applicable
 - Recreation pool: 184
 - Spillway crest: 184

g. **Dam**
 - **Type**: Earth
 - **Length**: 1574 feet
 - **Height**: 32.5 feet
 - **Top width**: 15 feet
 - **Side Slopes - Upstream**: 1 (V): 3 (H)
 - **Side Slopes - Downstream**: 1 (V): 2 (H)
 - **Zoning**: Unknown
 - **Impervious core**: 4 and 16 feet top and base width respectively; 4 feet below crest; puddled (according to available drawing)
 - **Cutoff**: Unknown
 - **Grout curtain**: Unknown
 - **Other**: None

h. **Diversion and Regulating Tunnel**
 - **Type**: Not Applicable
 - **Length**: Not Applicable
 - **Closure**: Not Applicable
 - **Access**: Not Applicable
 - **Regulating facilities**: Not Applicable

i. **Spillway**
 - **Type**: Broad-crested
 - **Length of weir**: 75.0 feet
 - **Crest elevation, feet**: 1578.0
 - **Gates**: None
 - **Upstream channel**: 75 feet wide; 30 feet long; flanked by stone masonry training walls
wood forests, and is drained by two small streams in the southeastern section, with a combined drainage area of about 1.92 square miles. The remaining 52 percent of the basin has no defined channels. The surface area of the lake, at spillway crest (184 acres), is about 7% of the total drainage area.

b. Discharges at Damsite
Discharges at the damsite are over a stone masonry spillway and through a low level outlet.

The spillway is 75 feet wide, 3.5 feet high with a 2.5 feet wide sill at about El 1578. The computed maximum discharge, at a head of 3.5 feet is 1,570 cfs.

The low level outlet is a 24-inch inside diameter cast iron pipe, 144 feet long, with the invert at the outlet end estimated at El 1549. The invert elevation of the inlet end is unknown. The computed maximum discharge from the pipe, with a head equivalent to the crest edge (El 1581.5) is 80 cfs.

There is no record of the maximum flood at the damsite but reportedly the dam has never been overtopped during a major flood.

c. Elevation (ft. above MSL)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of dam</td>
<td>1581.5+</td>
</tr>
<tr>
<td>Maximum pool-design surcharge</td>
<td>Unknown</td>
</tr>
<tr>
<td>Maximum pool-test flood</td>
<td>1586</td>
</tr>
<tr>
<td>Full flood control pool</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Recreation pool</td>
<td>1578+</td>
</tr>
<tr>
<td>Spillway crest (gated)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Upstream portal invert diversion tunnel</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Downstream portal invert diversion tunnel</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Streambed at centerline of dam</td>
<td>1549+</td>
</tr>
<tr>
<td>Maximum tailwater</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

d. Reservoir (feet)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of maximum pool</td>
<td>8000+</td>
</tr>
<tr>
<td>Length of recreation pool</td>
<td>8000+</td>
</tr>
<tr>
<td>Length of flood control pool</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
f. Normal Operating Procedures
The normal operating procedure is to keep the lake level about 12 and 60 inches below the spillway crest during the summer and winter months, respectively. The lake level is never lowered to more than 60 inches below the spillway crest because doing so would dry up local wells. The levels are monitored from a gage mark located on the eastern bridge which crosses the north end of the lake.

g. Size Classification
The dam is less than 40 feet high but has a storage capacity of more than 1000 acre-feet, therefore, it is classified as an "intermediate" dam.

h. Hazard Classification
The dam is in a "high" hazard potential category because 1.5 to 2 miles downstream from the dam along Middlefield Road there are about 10 homes. In the event of a failure, the resulting flood wave could cause substantial loss of life and property.

For details on the selection of the hazard potential category see Section 5.6.

i. Operator
The persons responsible for the day-to-day operation of the dam are:

1. Mr. Douglas Poland
 Supervisor, Regional Forest and Park Department
 Washington, Massachusetts
 Phone: (Home) 413-623-8348
 (Office) 413-442-8992

2. Mr. Carl Curtin
 Assistant Supervisor, Regional Forest and Park Dept.
 Margerie Street
 Lee, Massachusetts 01238
 Phone: (Home) 413-243-1820
 (Office) 413-442-8992

1.3 Pertinent Data
a. Drainage Area
 The total drainage area contributing to Ashmere Lake is 4 square miles and is located in the headwaters of the East Branch of the Housatonic River. The basin is covered mainly by well-established hard-
mately 1 foot, and is "dog-legged" at an angle of about 138°. The length of the east and west legs of the embankment are about 710 and 864 feet, respectively. The upstream and downstream slopes of the dam which are covered with vegetation are 1 (V): 3 (H) and 1 (V): 2 (H), respectively. The upstream slope is protected by riprap to within 4 feet of the crest's edge. According to an available drawing, the dam was designed having a puddled core. The core is shown to be 4 feet wide at the top, 16 feet wide at the base, and terminating 4 feet below the crest.

A 24-inch inside diameter cast iron pipe which serves as a low level outlet is located at the base of the dam at the maximum section. Discharges from the pipe are controlled by a manually-operated gate valve located on the crest of the dam. At the downstream terminus of the pipe there is a 7.5 feet high stone masonry headwall which is flanked on each side by a stepped stone masonry wing wall. The height, length and thickness of the wing wall are 6.5, 12 and 3.5 feet, respectively. The wing walls flare from 4 feet at the pipe to 5 feet at the end of the wall. The floor of the channel near the outlet structure is covered with large stones.

A stone masonry spillway, 75 ft by 3.5 ft, is located at the east abutment and flanked on each side by a stone masonry training wall. Each wall is 60 feet long, 2.5 feet thick and at the spillway sill, 3.5 feet high. The spillway sill is situated midway along the walls.

b. Location
The dam is located about 2 miles east of the Town of Hinsdale, Massachusetts. Route 143 crosses the north end of the lake at two bridge locations. The lake is fed by two unnamed brooks located at the north end of the lake. The outflow from the lake is carried by Bennett Brook to the East Branch of the Housatonic River.

c. Ownership
Ashmere Lake Dam is owned by the Commonwealth of Massachusetts, Department of Environmental Management. The day-to-day operation and maintenance is managed by the Department of Forest and Parks.

d. Purpose of Dam
The impoundment provided by the dam is for recreational purposes.

e. Design and Construction History
Original design and construction records are not available. It is reported that the dam was built in about 1875 for Crane and Company for use in paper manufacturing. There are no records of any alterations to the dam. It should be noted that the dam was not built as originally designed. This can be seen from study of a copy of an original drawing showing the cross section of the dam (See Appendix).
PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
HOUSATONIC RIVER BASIN
INVENTORY NO. MA 00223
ASHMERE LAKE DAM
TOWN OF HINSDALE
BERKSHIRE COUNTY, COMMONWEALTH OF MASSACHUSETTS

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority
Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of the dams within the New England Region. Tippetts-Abbett-McCarthy-Stratton has been retained by the New England Division to inspect and report on selected dams in the State of Massachusetts. Authorization and notice to proceed was issued to Tippetts-Abbett-McCarthy-Stratton under a letter of May 3, 1978, from Mr. Ralph T. Garver, Colonel, Corps of Engineers. Contract No. DACW 33-78-C-0298 has been assigned by the Corps of Engineers for this work.

b. Purpose
(1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) Encourage and prepare the States to initiate quickly effective dam safety programs for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.

1.2 DESCRIPTION OF THE PROJECT

a. Description of the Dam & Appurtenances
Ashmere Lake Dam is an earth embankment 1574 feet long with a maximum height of 32.5 feet. The crest is 15 feet wide, crowned approxi-
VICINITY MAP
ASHMERE LAKE DAM

iv
SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 DRAINAGE AREA CHARACTERISTICS

The total drainage area contributing to Ashmere Lake is 4 square miles and is located in the headwaters of the East Branch of the Housatonic River. The basin is mainly covered by well-established hardwood forests, and it is drained by two small streams in the southeastern section, with a combined drainage area of about 1.92 square miles. The remaining 52 percent of the basin has no defined channels. The surface area of the lake, at spillway crest (184 acres), is about 7% of the total drainage area.

5.2 SPILLWAY CAPACITY

The spillway is uncontrolled 75.0 feet wide, with a flat masonry sill, 2.5 feet in width. The channels upstream and downstream of the sill are heavily overgrown with shrubs. The spillway is bordered by two training walls which are 3.5 feet higher than the sill. No head-discharge relation was available, therefore, it was necessary to estimate the discharge characteristics. It was assumed that the spillway would act as a broad-crested weir and the estimated maximum capacity, at a head of 3.5 feet, equivalent to the top of the training walls, is 1,570 cfs.

5.3 RESERVOIR CAPACITY

The maximum capacity of Ashmere Lake is 3,220 acre-feet, which includes a surcharge storage between El 1578 and El 1581.5 estimated to be 785 acre-feet. This surcharge storage is equivalent to 3.7 inches of runoff over the drainage area.

5.4 FLOODS OF RECORD

No flood records are available. The greatest flood peak discharges on the East Branch of the Housatonic River (drainage area, 57.1 square miles) were 6,000 cfs on March 21, 1936; 6,400 cfs on September 21, 1938; and 5,700 cfs on December 31, 1948.

5.5 DESIGN FLOOD

Because there are no data on Probable Maximum Floods (PMF) for an area of 4 square miles, it was necessary to synthesize a test flood hydrograph for the contributing area. Initially, a depth-duration relation for the maximum probable point rainfall (10 square mile area), for durations
from 6 to 24 hours was taken from U.S. Weather Bureau Sources.1 The
distribution of the rainfall was based on data in a publication of the World
Meteorological Organization.2 Increments of depth from the depth-dura-
tion relation, at 15 minute intervals, were arranged in the probable storm
sequence as shown in the Appendix.

The drainage area was divided into four sub-basins as follows:

The lake sub-basin of 184 acres, with no incremental losses and
no lag time, the unchanneled sub-basin of 1,147 acres, with a lag of one
hour and an assumed infiltration loss of 0.2 inches per hour, and the two
stream sub-basins of about 615 acres each, a lag time of 0.36 hours and
0.2 inches per hour infiltration loss. A test flood, equal to the Probable
Maximum Flood (PMF) was derived by summing the Probable Maximum Flood
hydrographs from each sub-basin as shown in the Appendix. The total PMF
inflow-peak was 13,970 cfs, with a runoff volume equivalent to 15.66 inches
in 6 hours.

5.6 OVERTOPPING POTENTIAL

The adequacy of the spillway was tested by routing the PMF
through the reservoir using a computerized routing technique. The water
surface was assumed to be at the spillway crest at the start of the storm.
The peak outflow from the routed test flood (PMF) was 5,770 cfs at a head
of 9.26 feet (El 1586.26 or 4.76 feet above the top of the training walls).

In order to estimate the downstream dam failure hydrograph, the
U.S. Corps of Engineers "Rule of Thumb" guidance was used. The estimate
assumes: (a) the reservoir surface is at the top of the dam at the time of the
breach, (b) a breach of 40% of the dam length occurs (639.6 feet) and (c)
the channel has an average roughness coefficient (n) of 0.07. It is estimated
that at a selected section, 8,000 feet downstream of the dam, the peak flood
wave discharge is 103,150 cfs with a wave height of about 32 feet. The visual
inspection corroborates the information shown on the U.S.G.S. Quadrangle
sheet for Peru, Mass. which indicates, at this section, about 10 houses
between El 1485 and El 1516. These houses would probably be destroyed or
damaged by the estimated flood wave.

1 Seasonal Variation of the Probable Maximum Precipitation East of the
105° Meridian for areas from 10 to 1,000 Square miles and Durations
of 6, 12, 24 and 48 hours, Hydrometerological Report No. 33, 1956.

2 Manual for Estimation of Probable Maximum Precipitation, World
5.7 EVALUATION

Since the dam is expected to be overtopped by about 4.8 feet with an inflow equal to the PMF (spillway capacity is 30% of peak outflow), it is considered that the spillway is inadequate from a hydraulic and hydrologic standpoint. It should be pointed out, however, that the dam supposedly has not been overtopped in about 100 years and has been adequate against the major floods in the region of 1936, 1938 and 1955. The flood used to test the adequacy of the spillway assumes that a 6-hour point rainfall, equivalent to twice the 100-year, 6-hour rainfall, will be centered over a 4 square mile area.
SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations
Visual observations did not indicate any serious structural problems with the embankment, spillway or low level outlet. The deficiencies described in Section 3 require attention and measures to improve these deficiencies are given in Section 7.

b. Design and Construction Data
No design computations or other data pertaining to the structural stability of the dam have been located.

On the basis of the performance experience, the visual inspection, as well as engineering judgment, the dam at present appears to be structurally adequate.

c. Operating Records
There are operating records available at the District Office of the Forest and Parks Department. There was only one operating problem noted; in February 1978 there was difficulty in operating the 24-inch gate valve. It was immediately repaired. There are no other records or reports of operational problems which would affect the stability of the dam.

d. Post-Construction Changes
It is reported the dam was built sometime around 1875. There are no records of any construction changes even though "as built" conditions vary from the drawing shown in the Appendix.

e. Seismic Stability
The dam is located in Seismic Zone No. 2 and in accordance with recommended Phase I guidelines does not warrant seismic analyses.
SECTION 7 - ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Conditions

Phase I investigation of Ashmere Lake Dam does not indicate conditions which would constitute an immediate hazard to human life or property. Based on engineering judgment and the performance of the earth embankment and outlet works, the project appears to be in good condition. The project however, does have inadequacies and deficiencies which, if not remedied, have the potential for developing into hazardous conditions.

Because there are no data on Probable Maximum Floods (PMF) for an area of 4 square miles, it was necessary to synthesize a test flood hydrograph for the contributing area. The drainage area was divided into four sub-basins and a test storm, equal to the Probable Maximum Flood (PMF) was derived by summing the Probable Maximum Flood hydrographs from each sub-basin. The PMF inflow-peak was 13,970 cfs, with a runoff volume equivalent to 15.56 inches in 6 hours.

The adequacy of the spillway was tested by routing the flood through the reservoir using a computerized routing technique. The water surface was assumed to be at the spillway crest at the start of the storm. The peak outflow from the routed flood (PMF) was 5,170 cfs at a head of 9.26 feet (El 1586.26 or about 4.76 feet above the crest edge and training walls).

Since the dam is expected to be overtopped with an inflow equal to the PMF, it is considered that the spillway is not adequate from a hydraulic and hydrologic standpoint. It should be pointed out however, that the dam supposedly has not been overtopped in about 100 years and has been adequate against the major floods in the region in 1936, 1938 and 1955. The design flood used to test the adequacy of the spillway assumes that a 6-hour rainfall, equivalent to twice the 100 year, 6-hour rainfall, will be centered over a 4 square mile area.

b. Adequacy of Information

The lack of in-depth engineering data did not allow for a definitive review. Therefore the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and sound engineering judgment.
c. **Urgency**
The recommendations and remedial measures described in subsequent paragraphs should be undertaken by the owner within the next 12 to 24 months, after receipt of this Phase I Inspection Report.

d. **Necessity for Additional Investigations**
Additional investigations to assess the adequacy of the dam and appurtenant structures appear necessary and are enumerated in the following paragraph.

7.2 RECOMMENDATIONS

It is recommended that the following measures be undertaken by the owner within 12 months after receipt of this Phase I Inspection Report:

1. A competent consulting engineer should be retained to conduct further hydraulic studies to determine what measures are necessary to improve discharge capacities.
2. A survey should be performed of the dam crest to locate low points which should then be filled to a required elevation with appropriate material.
3. Erosion areas along the upstream slope should be refilled and the riprap rebuilt on appropriate bedding material.
4. To remove runoff more efficiently, consideration should be given to construction of toe drains.

7.3 REMEDIAL MEASURES

a. **Alternatives**
The results of the additional investigations recommended above may indicate alternatives which will be needed to provide discharge adequacy under flood conditions. These alternatives can only be determined after the completion and evaluation of the additional investigations.

b. **Operating & Maintenance Procedures**
It is recommended that the following measures be undertaken by the owner within the next 24 months:

1. Establish a systematic program of observation and monitoring of changes in pattern and quantity of seepage. Observations can be accomplished by the installation of piezometers.
2. After removal of vegetation from riprap, a monitoring system should be established to determine whether the riprap above the water line is still settling.
3. Establish a formal program or operation and maintenance and initiate biannual inspections of the dam.

4. The owner should provide round the clock surveillance during periods of unusually heavy precipitation.

5. The owner should develop a formal system for warning downstream residents in case of emergency.

6. All vegetation on both slopes should be kept in a close cut condition.

7. All brush, shrubs, and young saplings should be removed from the spillway channel and the area immediately downstream of the embankment toe. In the area downstream of the toe, large conifers, but not deciduous hardwoods, should be removed and the remaining trees should be inventoried and their condition monitored. If a tree dies, the area around the tree should be closely monitored for seepage.

8. All masonry walls should be repointed.

9. Debris and overhanging trees should be removed and hauled away from all downstream channels.

10. Gatehouse should be replaced as soon as possible and gate operating mechanism greased and painted.

11. The low level valve access shaft should be repaired and a more secure decking be installed.

12. Crest rutting should be filled to grade and seeded. Measures should be taken to prevent unnecessary traffic on crest.
VISUAL INSPECTION CHECK LIST
VISUAL INSPECTION CHECK LIST
PARTY ORGANIZATION

PROJECT ASHMERE LAKE DAM DATE 6-22-78
TIME 10:00 AM WEATHER Sunny 75°-80°
W.S. ELEV. 1577' * U.S.

PARTY:
1. Harvey S. Feldman
2. Jyotindra H. Patel
3.
4.
5.

PROJECT FEATURE INSPECTED BY REMARKS
1. All project features inspected by party members.
2.
3.
4.
5.
6.
7.
8.
9.
10.

* Lake level taken from USGS topographic sheet which indicates El. 1578. It is assumed that this elevation is also of spillway sill. The water level in gauging point at Route 143 crossing lake, was 12" below this level at time of inspection. All elevation noted refers to this elevation.
PERIODIC INSPECTION CHECK LIST

OBJECT ASHMERE LAKE DAM DATE 6-22-78

OBJECT FEATURE NAME

SCIPLINE NAME

EMBANKMENT

West Elevation 1583 ±

Current Pool Elevation 1577 ± (See Note on Front Page of Check List)

Maximum Impoundment to Date

Surface Cracks None observed

Movement Condition No "pavement at crest.

Movement or Settlement of Crest None observed

Lateral Movement None observed

Vertical Alignment Generally good except slight settling on west end of crest.

Horizontal Alignment Generally Good

Condition at Abutment and at Concrete Structures Heavy vegetation at

Abutment. Surface runoff at contact with Abutment and Embankment.

Indications of Movement of Structural Items on Slopes None observed

Respassing on Slopes None

Erosion or Erosion of Slopes or Abutments

Excess at several locations in upstream slope due to wave action.

Rock Slope Protection - Riprap Failures Upstream slope riprap disturbed by wave action. Eastern leg of upstream slope riprap has settled 6".

None from waterline to top of riprap, and riprap completely missing with variation.

Inusual Movement or Cracking at or near Toes None observed. However, there is heavy vegetation.

Inusual Embankment or Downstream Seepage In located areas there is evidence of wet areas at downstream slope and toe. Some of these areas are Expanded and other areas could be seepage or due to previous runoff.
None observed

None

None

None

Scattered downstream slope have been recently mowed a short distance from frost line. It appears that remainder of downstream slope has not been cut some time (about 2 years) upstream slope recently mowed up to water line, however there are some young saplings at water line.
PERIODIC INSPECTION CHECK LIST

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>DISCIPLINE</th>
<th>OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORKS</td>
<td>WORKS</td>
<td>INTAKE CHANNEL AND INTAKE STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>WORKS</td>
<td>WORKS</td>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>WORKS</td>
<td>WORKS</td>
<td>b. Intake Structure</td>
<td></td>
</tr>
<tr>
<td>WORKS</td>
<td>WORKS</td>
<td>c. Intake Structure</td>
<td></td>
</tr>
<tr>
<td>WORKS</td>
<td>WORKS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECK LIST

PROJECT ASHMERE LAKE DAM DATE 6-22-78

PROJECT FEATURE ______________________ NAME ______________________

DISCIPLINE ______________________ NAME ______________________

UTLET WORKS - CONTROL TOWER

General Condition

Condition of Joints at joints

Spalling

Visible Reinforcing

Rusting or Staining of Concrete

Any Seepage or Efflorescence

Joint Alignment

Unusual Seepage or Leaks in Gate Chamber Not accessible therefore not determined

Cracks

Rusting or Corrosion of Steel Reported

Mechanical and Electrical None

Air Vents

Float Wells

Crane Hoist

Elevator

Controls for low level outlet were in a wooden gate house. The gate house was demolished in fire in March 1977. The gate house located at crest and highest embankment height.
Hydraulic System

Service Gates

Emergency Gates

Lightning Protection System

Emergency Power System

Wiring and Lighting System

24" Gate Valve operated from crest of dam manually.
PHOTOGRAPHS

APPENDIX C
seen that would indicate that the dams have changed any since they
constructed. The cross-section of both dams is considered necessary by authorities on earth dams, and so they
created a sufficiently long time for the development of any
from faulty construction, but as no such conditions can be discovered
believe they can be considered safe.

The spillways for both dams are of good size and in good condi-
The one at Ashmore reservoir is slightly out of level thereby
the overflow towards the eru channel and possibly along the
lope of the dam. No sign of any water erosion can be seen on
or slope but it might be well to have the spillway well extended
0 feet as a precautionary measure.

This inspecting and reporting on dams with no knowledge of the
followed in their construction is rather unsatisfactory, yet, as
said before, I believe the three dams are safe.

When the dams were inspected the Ashmore reservoir had the
ravin off and the Blackett and Ashmore reservoirs were nearly

It might be well to have a further inspection made when the
is full and the Ashmore and Blackett low.

Yours respectfully,

F.H. Joyner
rank H. Cande,

Clerk of County Commissioners.

Sir:-

In accordance with your written instructions of July 8th, and instructions of an earlier date I have made an inspection of the
at Windsor, Plunkett and Ashmore reservoirs, and report as follows.

Not having been present when either of the dams were erected of course impossible for me to report on more than their present normal appearance.

The Windsor reservoir dam is built in the form of an arch, of rubble masonry apparently well laid and bonded. There are no of any weakness at any point, and as the dimensions of the dam are for the work required I see no reason why the dam should not be dered safe.

The Ashmore and Plunkett dams are built of earth, 15 feet in at top with slope of about 2 to 1 on inside and 1 1/2 to 1 on out-

The inner slope of both dams is faced with a good heavy rip-rap ed well above high water, and undoubtedly carried down to toe of , although this could not be seen through the water. All slopes ven and in good line, and excepting where rip-rapped, are well d. There are no signs of any leaks or other defects, and nothi
COUNTY OF BERKSHIRE, MASS.

INSPECTION OF DAMS

y or Town of: Hinsdale
Date: October 10, 1968

Name of Dam: Ashmere Lake
Inspector: William A. Haughy

Owner: Crane and Co.
Address: Dalton, Mass.
Tel.: 684-2600

Retaker: Robert E. Crouchwell
Address: 124 Crane Ave., Dalton, Mass.
Tel.: 684-0089

Station: About 3 miles east of Hinsdale, at southeast end of reservoir

Pe and Dimensions: Embankment, about 1400' long, 30' to 40' high.

Face of dam: Riprapped

Revetment, type and size: Stone sidewalls, 75' long, riprapped, waterway and vertical core

walls of stone masonry, 3.5' high

Outlet, type and size: 24" cast iron pipe and gate

GB징, type and height: None

Built: About 1875
Condition: Good

Last repaired: By whose order?

Future of Repairs:

Purpose of Dam: Formerly storage for manufacturing firms downstream

Proximate storage of water: About 200 acres

Proximate area of water shed:

Sensible damage due to failure of dam: To woods and farmlands, and possible some damage to town roads.

Marks: Water level 5' below spillway, heavy growth on upstream and downstream slopes, and spillway section, with partially opened.

Recommendations: Study of stable, consider side slope covering, check spillway.
Tippettts-Abett-McCarrthy-Stratton
Engineers and Architects
345 Park Avenue
New York, New York 10022

Att'n: H. S. Feldman

Dear Sir:

Enclosed herewith is a copy of the latest dam reports that I have pertaining to Pontoosuc Lake in Pittsfield, Ashmere Lake in Hinsdale and Windsor Lake in North Adams. As you probably know, the Commonwealth of Massachusetts took over inspection of dams from the county about eight years ago.

Also, I am enclosing a print of the Pontoosuc Dam that we had in our files. There is also a copy of a report of inspection of dams made in 1907 by one Mr. Joyner of the Massachusetts Highway Commission, which includes Ashmere Lake. This report, which I realize is very old, may be of little value to you.

I have searched the records here but can find nothing further on the aforementioned dams.

Very truly yours,

William A. Heaphy
County Engineer

WAll/dd
Enclosure
SUBJECT Waterways - Dam Inspection Reports
Pittsfield - Pontoosuc Dam #1-2-236-9
Windsor - Dam #1-2-345-2
Hinsdale - Ashmere Lake Dam #1-2-132-1

Tippetts, Abbott, McCarthy, Stratton
345 Park Avenue
New York, N. Y. 100022

Gentlemen

Enclosed are copies of dam inspection reports for the
above named dams. I have also enclosed sections of topographical
maps showing their location which I think will be of some help to
you.

Very truly yours

Dean P. Amidon, P. E.
District Highway Engineer
DRAWINGS AND INSPECTION REPORTS

APPENDIX B
Floor of Channel: Within zone of downstream headwalls, floor is of large cobbles and sandbars completed rounded shape. Silt and vegetation.

Other Obstructions: As noted above and minor debris.
PERIODIC INSPECTION CHECK LIST

PROJECT ASHMORE LAKE DAM DATE 6-22-78
PROJECT FEATURE _______________ NAME ___________________
DISCIPLINE __________________________ NAME ___________________

OUTLET WORKS - SPILLWAY WEIR, APPROACH
AND DISCHARGE CHANNELS

a. Approach Channel
 General Condition poor
 Loose Rock Overhanging Channel None observed
 Trees Overhanging Channel None observed
 Floor of Approach Channel Completely overgrown with vegetation and siltation also minor debris

b. Weir and Training Walls
 General Condition of Masonry Stone in Generally Good condition and some mortar at joints loose and missing
 Rust or Staining
 Spalling
 Any Visible Reinforcing None
 Any Seepage or Efflorescence In area of spillway about 10 feet downstream of weir minor seepage flowing in downstream channel None

c. Discharge Channel
 General Condition Extremely poor condition
 Loose Rock Overhanging Channel None observed
 Trees Overhanging Channel Heavy tree growth about 10 feet of weir in addition entire channel covered with thick vegetation make it impossible to inspect.
PERIODIC INSPECTION CHECK LIST

PROJECT ASHMERE LAKE DAM DATE 6-22-78
PROJECT FEATURE ___________________ NAME ___________________
DISCIPLINE ___________________ NAME ___________________

OUTLET WORKS - OUTLET STRUCTURE AND
OUTLET CHANNEL Masonry headwall and wingwall
and Masonry floor
General Condition of Generally Fair to Good
Some mortar pointing loose and missing.
Rust or Staining ___
Spalling __
Erosion or Cavitation ___
Visible Reinforcing __
Any Seepage or Efflorescence None observed
Condition at Joints Some mortar loose and missing
Drain Holes None observed

Channel is a natural gravel, cobbled & bunched and divided
two branches which converge downstream.
Loose Rock or Trees Overhanging Channel Heavy trees
in and around channel.
Condition of Discharge Channel one branch completely
blocked by debris apparently second channel
has been forced as natural diversion around
blockage
PERIODIC INSPECTION CHECK LIST

PROJECT ______________________ DATE 6-22-78
PROJECT FEATURE ______________________ NAME ______________________
DISCIPLINE ______________________ NAME ______________________

OUTLET WORKS - TRANSITION AND CONDUIT

24 Inch Cast Iron Conduit

General Condition of ___
condition of 24 inch cast iron conduit cannot be determined.

Rust or Staining of Concrete ___
Some rusting observed at downstream outlet.

Spalling

Erosion or Cavitation

Cracking

Alignment of Monoliths

Alignment of Joints Cannot be determined because of inaccessibility.

Numbering of Monoliths
2) CREST OF DAM NEAR WEST ABUTMENT,
NOTE RUTTING DUE TO TRAFFIC AND VEGETATION ON UPSTREAM RIPRAP

3) VIEW OF DOWNSTREAM SLOPE (LOOKING EAST)
NOTE HEAVY TREE GROWTH AT TOE OF EMBANKMENT AND VEGETATION ON SLOPE
4) GATE VALVE OPERATING MECHANISM FOR LOW LEVEL OUTLET AND FOUNDATION OF DESTROYED GATE HOUSE

5) LOW LEVEL OUTLET PIPE, OUTLET STRUCTURE AND CHANNEL FLOOR
DOWNSTREAM LOW LEVEL OUTLET CHANNEL BLOCKED BY DEBRIS

DOWNSTREAM LOW LEVEL OUTLET - SECONDARY CHANNEL
8. UPSTREAM SLOPE OF EMBANKMENT LOOKING EAST
 NOTE SETTLEMENT OF RIPRAP BETWEEN
 WATERLINE AND LINE OF DEMARKATION INDICATED
 BY GEOLOGIC HAMMER

9. VIEW ACROSS SPILLWAY LOOKING EAST
 NOTE HEADWALL IN BACKGROUND,
 SPILLWAY CREST AND HEAVY VEGETATION
DOWNSTREAM VIEW OF SPILLWAY CHANNEL
NOTE EXTREMELY HEAVY VEGETATION

SILTATION BETWEEN UPSTREAM SLOPE OF EMBANKMENT
AND WEST SPILLWAY UPSTREAM APPROACH WALL
12 EROSION AND DISPLACEMENT OF RIPRAP

13 SEEPAGE AREA AT DOWNSTREAM TOE
NOTE EXTREMELY HEAVY SWAMP LIKE VEGETATION
SEEPAGE AREA AT DOWNSTREAM TOE
NOTE EXTREMELY HEAVY SWAMP LIKE VEGETATION
HYDROLOGIC DATA & COMPUTATIONS

APPENDIX D
Unit Hydrograph computation for Stream Basin.

Δ EL. 550 ft
Basin length 1400 ft
Drainage Area = 0.70
Ave Basin Slope 550/1400 = 0.39
or 3.9%

Time of Concentration

\(T_c = \frac{K_h \cdot D}{S_{ave}} \) (Krey & Denison 1971)
Length = 14,000 ft, 550 ft
\(T_c = 0.6 \) hrs.

Lag Time

\(L = 0.6 T_c \)
\(= 0.36 \) hrs

\(D = 0.25 \) hrs (15 mins.)

\(T_p = \frac{D}{2} + 6 T_c = \frac{0.25}{2} + (0.6)(0.36) \)
\(= 0.125 + 0.216 \)
\(T_p = 0.341 \) hrs

\(T_b = 67 T_p = (2.67)(0.485) \)
\(= 1.26 \) hrs

\(Q_p = \frac{484 A}{T_p} = \frac{(484)(0.485)}{1.26} \)
\(= 157 \) ft/s
TAMS

1497-03

Inspection
Ashmere Lake Dam

Sheet 2 of

Date 7/13/78

By D.L.C.

Ch'k. by

950 cfs.
Ashmore Lake Unit Hydrograph for unchanneled basin area

Average Area 1.79 Sq.miles

Lag 1 hour \(D = 1 \) hour

\[\dot{Q} = \frac{D}{2} + 0.6 T_c \quad T_c \cdot \frac{1}{D} = 1.67 \]

\[= 0.5 + 1 = 1.0 \text{ in.} \]

\[= 2.67 T_p = (2.67) \cdot \text{in.} \]

\[= 4 \text{ in.} \]

\[Q_p = \frac{484 A}{T_p} = \frac{484(1.79)}{1.6} = 578 \text{ cfs} \]
TAMS

197-03

DAM INSPECTION

ASHMORE LAKE - P.M.P calculations

Excess Rainfall

Assuming 0.2" loss per hour over land
No losses on lake

<table>
<thead>
<tr>
<th>Excess Rainfall (ins)</th>
<th>Stream Unit</th>
<th>Basin Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>475</td>
<td>97</td>
</tr>
<tr>
<td>0.323</td>
<td>949</td>
<td>193</td>
</tr>
<tr>
<td>0.323</td>
<td>650</td>
<td>289</td>
</tr>
<tr>
<td>0.341</td>
<td>350</td>
<td>386</td>
</tr>
<tr>
<td>0.376</td>
<td>50</td>
<td>482</td>
</tr>
<tr>
<td>0.518</td>
<td>0</td>
<td>578</td>
</tr>
<tr>
<td>0.607</td>
<td>280</td>
<td>620</td>
</tr>
<tr>
<td>0.678</td>
<td>203</td>
<td>462</td>
</tr>
<tr>
<td>0.803</td>
<td>405</td>
<td>457</td>
</tr>
<tr>
<td>0.767</td>
<td>347</td>
<td>289</td>
</tr>
<tr>
<td>0.891</td>
<td>231</td>
<td>283</td>
</tr>
<tr>
<td>0.891</td>
<td>172</td>
<td>116</td>
</tr>
<tr>
<td>1.016</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>1.175</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>1.371</td>
<td>116</td>
<td>58</td>
</tr>
<tr>
<td>2.205</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.620</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.448</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.394</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.394</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.358</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.267</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.270</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.269</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.235</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

16.56" Total

Table 1
TAMS

Job No. **1497-03**

Project: Ashmore Lake Dam - Spillway Head-Discharge Relationship computation

Date: July 18, 1978

By: D.L.C.

Subject: Ashmore Lake Dam - Spillway Head-Discharge Relationship computation

L = 75.0 feet

<table>
<thead>
<tr>
<th>Head (feet)</th>
<th>Elevation (feet)</th>
<th>C</th>
<th>(Q^2/CH^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1578.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1578.5</td>
<td>2.6</td>
<td>68.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1579.0</td>
<td>2.64</td>
<td>19.8</td>
</tr>
<tr>
<td>1.5</td>
<td>1579.5</td>
<td>2.72</td>
<td>37.4</td>
</tr>
<tr>
<td>2.0</td>
<td>1580.0</td>
<td>2.76</td>
<td>59.5</td>
</tr>
<tr>
<td>2.5</td>
<td>1580.5</td>
<td>2.89</td>
<td>85.6</td>
</tr>
<tr>
<td>3.0</td>
<td>1581.0</td>
<td>3.05</td>
<td>1188.0</td>
</tr>
<tr>
<td>3.5</td>
<td>1581.5</td>
<td>3.10</td>
<td>1566.0</td>
</tr>
</tbody>
</table>

Table 2
TAMS

Job No. 1497-03
Project Inspection Ashmeke Lake Dam
Subject Inflow Hydrograph Computation (1/2 PM F)
Date July 20, 78

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Lake Inflow</th>
<th>2 River Basins Inflow</th>
<th>Unchannelled Basin Inflow</th>
<th>Total Inflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>137.3</td>
<td>153.4</td>
<td>15.7</td>
<td>306.4</td>
</tr>
<tr>
<td>30</td>
<td>137.3</td>
<td>459.9</td>
<td>46.8</td>
<td>644.0</td>
</tr>
<tr>
<td>60</td>
<td>156.8</td>
<td>678.5</td>
<td>94.4</td>
<td>916.8</td>
</tr>
<tr>
<td>90</td>
<td>320.5</td>
<td>825.2</td>
<td>160.2</td>
<td>1142.2</td>
</tr>
<tr>
<td>120</td>
<td>346.3</td>
<td>1072.0</td>
<td>262.9</td>
<td>1655.4</td>
</tr>
<tr>
<td>150</td>
<td>346.3</td>
<td>1531.0</td>
<td>466.6</td>
<td>2285.9</td>
</tr>
<tr>
<td>180</td>
<td>292.3</td>
<td>1975.4</td>
<td>579.2</td>
<td>2803.9</td>
</tr>
<tr>
<td>210</td>
<td>289.2</td>
<td>2388.7</td>
<td>779.6</td>
<td>3560.6</td>
</tr>
<tr>
<td>240</td>
<td>238.8</td>
<td>2885.2</td>
<td>1032.9</td>
<td>4378.9</td>
</tr>
<tr>
<td>270</td>
<td>284.8</td>
<td>3748.7</td>
<td>1363.5</td>
<td>5724.8</td>
</tr>
<tr>
<td>300</td>
<td>241.8</td>
<td>4258.8</td>
<td>1700.5</td>
<td>6780.2</td>
</tr>
<tr>
<td>330</td>
<td>313.9</td>
<td>2828.0</td>
<td>2007.4</td>
<td>5411.1</td>
</tr>
<tr>
<td>360</td>
<td>267.9</td>
<td>3741.5</td>
<td>2569.1</td>
<td>4784.1</td>
</tr>
</tbody>
</table>

Chk. by
<table>
<thead>
<tr>
<th>ELEV.</th>
<th>AREA</th>
<th>MEAN AREA</th>
<th>Δ VOL.</th>
<th>SURCHARGE VOL (AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1578.0</td>
<td>184</td>
<td>189.7</td>
<td>94.85</td>
<td>0</td>
</tr>
<tr>
<td>1578.5</td>
<td>195.9</td>
<td>201.2</td>
<td>100.75</td>
<td>94.85</td>
</tr>
<tr>
<td>1579.0</td>
<td>206.9</td>
<td>212.7</td>
<td>106.35</td>
<td>195.60</td>
</tr>
<tr>
<td>1579.5</td>
<td>218.4</td>
<td>224.2</td>
<td>112.10</td>
<td>301.95</td>
</tr>
<tr>
<td>1580.0</td>
<td>229.9</td>
<td>235.7</td>
<td>117.85</td>
<td>414.05</td>
</tr>
<tr>
<td>1580.5</td>
<td>241.4</td>
<td>247.2</td>
<td>123.6</td>
<td>531.90</td>
</tr>
<tr>
<td>1581.0</td>
<td>252.9</td>
<td>258.7</td>
<td>129.35</td>
<td>655.50</td>
</tr>
<tr>
<td>1581.5</td>
<td>264.4</td>
<td></td>
<td></td>
<td>784.85</td>
</tr>
</tbody>
</table>

\[
\frac{784}{833 \times 4} = 3.7 \text{ inches} = 0.0922\]
INPUT PARAMETERS

<table>
<thead>
<tr>
<th>STARTING ELEV (FT.)</th>
<th>TIME INTERVAL (HOURS)</th>
<th>STARTING TIME (HOURS)</th>
<th>ENDING TIME (HOURS)</th>
<th>PRINT INTERVAL OPTION</th>
<th>GATE OPTION</th>
<th>PLOT STORAGE COEF.</th>
<th>OUTFLOW COEF.</th>
<th>INFLOW COEF.</th>
<th>TIME BREAK (HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1578.00</td>
<td>0.08</td>
<td>0.00</td>
<td>9.74</td>
<td>1</td>
<td>NO</td>
<td>YES</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

RESERVOIR ELEVATION (FT.)

<table>
<thead>
<tr>
<th>ELEV.</th>
<th>STORAGE (ACFT)</th>
<th>OUTFLOW (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1578.00</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>1578.50</td>
<td>94.8500</td>
<td>68.90</td>
</tr>
<tr>
<td>1579.00</td>
<td>195.6000</td>
<td>198.00</td>
</tr>
<tr>
<td>1579.50</td>
<td>301.9500</td>
<td>374.80</td>
</tr>
<tr>
<td>1580.00</td>
<td>414.0500</td>
<td>585.50</td>
</tr>
<tr>
<td>1580.50</td>
<td>531.9000</td>
<td>856.80</td>
</tr>
<tr>
<td>1581.00</td>
<td>655.5001</td>
<td>1188.60</td>
</tr>
<tr>
<td>1581.50</td>
<td>784.8500</td>
<td>1566.60</td>
</tr>
</tbody>
</table>
APPENDIX E

INFORMATION AS CONTAINED IN

THE NATIONAL INVENTORY OF DAMS
<table>
<thead>
<tr>
<th>STATE</th>
<th>IDENTITY NUMBER</th>
<th>DIVISION</th>
<th>STATE COUNTY</th>
<th>COUNTY</th>
<th>NAME</th>
<th>LATITUDE (NORTH)</th>
<th>LONGITUDE (WEST)</th>
<th>REPORT DATE DAY</th>
<th>MO</th>
<th>YR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>223</td>
<td>NED</td>
<td>MA</td>
<td>003.01</td>
<td>ASHMERE LAKE DAM</td>
<td>4226.2</td>
<td>7305.0</td>
<td>15AUG78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POPULAR NAME</th>
<th>NAME OF IMPOUNDMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASHMERE LAKE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGION BASIN</th>
<th>RIVER OR STREAM</th>
<th>NEAREST DOWNSTREAM CITY-TOWN-VILLAGE</th>
<th>DIST FROM DAM (M.I)</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.07</td>
<td>BENNETT BROOK</td>
<td>HINSDALE</td>
<td>3</td>
<td>1600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF DAM</th>
<th>YEAR COMPLETED</th>
<th>PURPOSES</th>
<th>STATUS</th>
<th>HYDRAULIC</th>
<th>IMPOUNDING CAPACITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1875</td>
<td>R</td>
<td></td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5220</td>
<td>2435</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIST OWN</th>
<th>FED R</th>
<th>PRV/FED</th>
<th>SEQ A</th>
<th>VER/DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>10AUG78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DIS</th>
<th>SPILLWAY</th>
<th>CREST</th>
<th>MAXIMUM DISCHARGE</th>
<th>VOLUME OF DAM</th>
<th>POWER CAPACITY</th>
<th>NAVIGATION LOCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HAS</td>
<td></td>
<td>(CNF)</td>
<td>(CF)</td>
<td>(CNF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1576</td>
<td>U</td>
<td>75</td>
<td>1570</td>
<td>160000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNER</th>
<th>ENGINEERING BY</th>
<th>CONSTRUCTION BY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMM OF MASSACHUSETTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGULATORY AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSPECTION BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPPETT=ABBOTT=MCCARTHY=STRATTON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSPECTION DATE</th>
<th>AUTHORITY FOR INSPECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>27OCT75</td>
<td>PL 92-347</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
END

FILMED

7–85

DTIC