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1. INTRODUCTION

LI

This final report consists of a summation of results of a

survey conducted by Control Dynamics Co. from December 1984
through February 1985. The purpose of this survey was to

determine the type of work being done in the field of wind ;
and turbulence modeling as related to the problems 4
encountered in the use of free-flight flat-fire rockets in -
the atmospheric boundary layer. In addition it was desired -
that the modeling techniques which seemed particularly -
relevant, be explained from an applied engineering point of -
view, -
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The first section of this report contains a summary of -
surveys of the available literature relevant to modeling low -
level winds. The second section to this report consists of
a summary of meetings and phone contacts between Control
Dynamics and various authorities in the fields of atmos-
pheric science. Section 3 consists of definitions of some b
commonly encountered terms used to described the assumptions
used in modeling turbulence. Sections 5 through 8 consist
= of discussions of specific work which appears relevant to
- the modeling of wind with regard to rocketry problems.
These topics include the approximation of the von Karman

R turbulence spectra with a rational function, effects of

R atmospheric stability on turbulence, data available on mean -
winds and standard deviations, and the spatial modeling of o
wind and turbulence. e
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2. SURVEY OF AVAILABLE LITERATURE

A survey of literature relevant to boundary layer wind effects
on flat fire rockets was conducted through several channels.
The majority of the survey consisted of literature searches
through the Redstone Scientific Information Center (RSIC) of
the following data bases.

1. Defense Technical Information Center (DTIC)
2. NASA Recon
3. Journals and reference material

Additional information was obtained from direct contacts with
several people working in the field of wind and turbulence
research.

Approximately 80-90 papers have been identified as having
some degree of relevance to this task. These documents fall
roughly into the following categories.

1. Handbooks

2. Terrain effects

3. Space - time relationships
4. Flat - fire trajectories

5. Wind profiles, studies, ect.
6. Modeling

7. General turbulence analysis
8. Misc.

The majority of these deal with the simulation, modeling, or
representation of various types of low - level turbulence.
A11 documents obtained by Control Dynamics have been listed
in an extensive bibliography in the last part of this report.
Because of the number of reports, the bibliography has been
broken down into sections roughly according to topic as shown
:bove. A1l references in this report will have the following
orm.

(category number . document number)

For example, (1.1) would refer to the document in the
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Handbooks section by Cole, Grantham, Gringorten, Kantor, and
Tattleman.

Copies of several of the more pertinent documents have been
included as attachments to this report. A list of attachments
follows the Appendix.
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3. MEETINGS AND PHONE CONTACTS

Several meetings and phone conversations have been held
regarding the wind project. These are listed in roughly
chronological order with the highlights of each contact.

MEETINGS

1. Dr. Oscar Essenwanger 12-4-84 MICOM - Research
Directorate

Discussed the availability of instrumentation capable
of measuring at high frequencies (> 1 Hz.). Best data
available from his office is at 1 second but is all
very low speed (< 4 m/s). Next best data is at 6
second intervals. Dr. Essenwanger considers terrain to
be the most important factor in low level turbulence.

2. Don Combs and Dick Dickson - 12/5/84 - MICOM

Discussed objectives of the contract and the delivered
scope of work. Basic objective was for a general study
which did not focus on a particular missile system. It
was desired to look at the flat fire scenario in the
atmosphere below 200 meters. Material was reviewed and
recgived from D. Dickson on some basic sources of infor-
mation.

3. Dr. Warren Campbell 1-8-85 Systems Dynamics Lab (MSFC/NASA)

A meeting was held with Dr. Campbell to discuss several
issues with which he is knowledgeable. These include the
Space Shuttle Turbulence Tapes (SSTT), rational approxi-
mation of the von Karman turbulence spectra, and the
inclusion of cross correlation factors into turbulence
models. The SSTT are available for use. Several points
regarding their applicability were discussed as follows:

1. The SSTT are generated over a frequency range
based on the size of the vehicle in question
(Space Shuttle), thus to be applied to short
tactical rockets the tapes would need to be
regenerated. If it was desired to use the tapes
with larger strategic missiles, the present
tapes would seem applicable.

2. SSTT data exists im six separate altitude bands
and was generated with differing sample rates in
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various bands. If the tapes were to be used for
simulation of lofted missile trajectories which
pass through more than one band, the variations
in sample rate would have to be allowed for.

3. Use of the tapes in simulation work requires the
use of a computer with sufficient storage capa-
bility to store the entire turbulence time series
needed for a simulation run in a file. The simu-
lation would then read data from mass storage as
it ran.

4. The SSTT time series have been analyzed statisti-
cally and have been shown to possess very good
spectral characteristics. The tapes exhibit a -5/3
rolloff as associated with the von Karman spectra.

A paper was received from Dr. Campbell regarding a
method for approximating the von Karman spectra by a
rational expression. The technique used shows
extremely good approximation to the theoretical von
Karman spectra. Use of an approximation would allow
the modeling of the more accurate von Karman spectra
without the associated difficulty of simulating the
irrational von Karman expressions. Dr. Campbell
delivered two computer programs to Contrel Dynamics
which use the approximate von Karman techniques to
produce turbulence time series. An elaboration on this
work will be presented in a following section.

A technique which is currently under study by Dr.
Campbell was presented for the inclusion of cross
correlation terms into the turbulence models. The
technique involves the process of filtering various
white noise inputs and summing the outputs through
filters to produce turbulence with the desired cross
correlation and spectra.

Two additional sources of information were suggested
as follows:

1. Models have been developed by Paul Reeves to
simulate the patchy or modulated characteristics
of turbulence.

2. It was suggested that Dr. Walter Frost in Tullahoma
Tenn. (UTSI - University of Tennessee Space Insti-
tute) be contacted for a knowledgeable source of
information on both flight mechanics and turbulence
modeling.
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4. Dr. Oscar Essenwanger 2-11-85 MICOM - Research
o Directorate
.
3 A follow-up meeting was held with Dr. Essenwanger to
" clarify information received in a meeting on 12-4-84.
It was also desired to obtain specific information on
the following topics.
a. Mean wind profiles and availability of data for
the lower atmosphere.
b. Information on relative stability of the
) atmosphere.
» c. Availability of any turbulence or any other wind
: model.
d. Information on any work done on correlation and
coherence of turbulence.
e. Any information relating to terrain influences
on wind and/or turbulence.
f. Any information concerning the non-gaussian
T nature of turbulence.
:i Work done by Dr. Essenwanger's office has been primarily
-4 limited to climatological studies with very little work

done on turbulence. Although two reports have been
received concerning turbulence representation, no models
are available from Dr. Essenwanger. The reports that
are avajlable do not seem to be useful in the current
modeling effort.

~ No significant work has been performed by Dr. Essenwanger's
' office in the area of terrain effects, correlation, coher-
‘ ence, or the non-gaussian nature of turbulence.

Two areas of work from Dr. Essenwanger's office appear

to have relevance to low-level wind modeling. The first

: area consists of description of mean winds encountered

y for various seasons and geographic locations. This data

- is available from Dr. Essenwanger in the form of numerical
- tables. Work has also been published compiling studies of
.. atmospheric stability observed in Frankfurt Germany and
Osan Korea. This study should provide insight into the

y relative occurrence of stable, unstable, and neutral condi-
tions in the atmosphere. This information will aid under-
standing the area of applicability of various turbulence
models.
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5. Dr. Warren Campbell 2-22-85 Systems Dynamics Lab

e (MSFC/NASA)

.,

b A second meeting was held with Dr. Campbell to discuss

& the spatial nature of turbulence. Various approaches

‘l for incorporating coherence into turbulence models were
discussed. Dr. Campbell 1is currently working on

- methods to model turbulence with coherence by the use

of Monte Carlo techniques using linear filters. These
techniques show promise of providing turbulence

- , simulations that approximate the von Karman spectra
. and include coherence.

Also discussed were the relative merits of Taylor's

hypothesis to describe the spatial characteristics of
> the wind. It has been shown that over uniform terrain
o Taylor's hypothesis is valid.

6. Dr. Walter Frost 2-25-85 UTSI - FWG Associates

- A meeting was held with Dr. Frost in order to discuss

¥ his work in the area of turbulence and atmospheric
science research. Dr. Frost has had a wide range of
experience in the field of atmospheric science -and

3 aerodynamic research. This work includes several

- programs in which experimental data was taken either
with tower arrays on the ground or using instrumented
aircraft. Dr. Frost also has developed extensive
simulation capabilities. The following 1ist contains
a2 brief summary of projects and capabilities available
from Dr. Frost.

1. Linear filter turbulence simulations.

2. Non-gaussian turbulence simulation.

3. Inter-level coherence modeling.

- 4, Diffusion models (particle tracking).
5. Models based on Kaimal spectra.

6. Test data taken at MSFC tower array to test
the validity of Taylor's hypothesis.

7. MWork simulating wind shear and microbursts.

8. Data was collected at the MSFC tower array.
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9. Work has been performed with the NASA gust
gradient program using an instrumented B-57
aircraft.

10. Studies of complex terrain using water tunnel
simulation and video taping facilities.

11. LIDAR turbulence measurements in conjunction
with the B-57 aircraft program.

12. Turbulence probability distribution studies to
determine non-gaussian nature of atmosphere.

13. Flight simulator modeling of turbulence and mean
wind. Turbulence and mean wind models for
various types of simulation.

Dr. Frost has accumulated experience in simulating
various aspects of turbulence such as occurrence of
various spectra, coherence, terrain effects, ect. Use
of Dr. Frost in a consulting role for future work in
the area of developing more accurate simulation
capabilities was discussed.

7. Dr. Walter Frost 2-27-85 UTSI - FWG Associates

A follow-up meeting was held with Dr. Frost at his

facility in Tullahoma Tennessee to discuss further his
capabilities with regard to tactical and other missile
systems. The simulation and modeling capabilities that

have been developed primarily for aircraft systems lend b
themselves very well to the simulation of wind effects :j
on missiles. The capability to provide various complex gj
computer models for turbulence and other wind effects "4
is augmented by water tunnel simulation and video tape }J
techniques. The ability to simulate in the water tunnel v
real terrain models along with missile firings and -
record the flow patterns on video tape provides insight L
into flow problems over complex terrains. This is an o
area which is very difficult to address with numerical i
modeling techniques. Dr. Frost's water tunnel work has o
been used in areas such as the following: K
LN

1. Prediction of the dispersion of the Space Shuttle )
exhaust plume and ground cloud at Yandenburg Air fl

Force Base. The water tunnel tape clearly shows >

how the cloud will dispurse over the mountainous o

areas around the base for varying wind speeds
and atmospheric stabilities.
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2. Simulation of the conditions surrounding the
crash of the Texasgulf jet star aircraft in a
wind shear related accident. The water tunnel
correctly predicted the complex wind flows and
turbulence in effect at the time of the crash
and was instrumental evidence in the ensuing
Taw suits.

3. Simulation of the exhaust plume released by a
missile between launch and impact to determine
whether an obscurity of the target is likely to
occur and to what extent.

The combination of the numerical modeling techniques with

water tunnel simulation of the terrains of interest would

seem to extend the insight into effects of wind on missile
pfrformance over that which is gained by numerical models

alone.

PHONE CONTACTS

Dr. Jim Halleck DOT-Trans. Systems Center 617/494-2199
Dr. Halleck suggested the following two sources of infor-
mation on low level wind and turbulence.

1. Lo-Cat data generated by the Air Force during low-
Jevel wind studies.

2. Boeing document produced for the FAA.

Barr,N.,Gangaas,D. and D.Schaeffer,1974, Wind Models
for Flight Simulator Certification of Landing and
Approach Guidance and Control Systems. FAA-RD-74-206.

Dr. Al Bedard NOAA-Boulder 303/497-3000 Dr. Bedard

is involved with the study of low-level organized wave
activity. This activity can produce large amplitude
wavetrains which cause 1ift forces on vehicles flying
turough the wavetrains. A study is currently concluding
at the Boulder tower in which data (taken at 10 Hz.) was
collected to study wave activity. Preliminary information
has been received from Dr. Bedard with additional infor-
mation to be available in approximately the March 1985
time frame.

Dr. Walter Frost UTSI 615/455-0631 Dr. Frost is the
Director of Atmospheric Sciences at the University of
Tennessee Space Institute in Tullahoma Tennessee. Dr.
Frost's primary work has been in the area of wind and
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turbulence simulation for use in flight simulators and
to study the effects of wind and turbulence on airfoils.
Work has also been done in the area of terrain effects
and terrain generated turbulence modeling. Much of the
terrain effects work is performed by using a water
tunnel to study flow patterns around specific terrain
models. Dr. Frost has also been involved with the B-57
aircraft turbulence tests and with the remote sensing of
turbulence using LIDAR.

Bi1l Rodgers - NWS - 772-9876 (now retired)
Suggested Kelly Hill or Mike Susko as possible contacts
at Atmospheric Sciences Lab at NASA.

Kelly Hi1l - At. Sc. NASA - 453-4175

Suggested Dr. George Fichtl (453-0875) or Dr. Warren
Campbell (453-1886) as contacts in the area of low -
level turbulence.

Dr. Warren Campbell - NASA - 453-1886

Dr. Campbell is primarily concerned with the spatial
modeling of turbulence in connection with space shuttle
flight simulation. He suggested several sources of
material and sent several reports concerning turbulence
modeling and the Space Shuttle Turbulence Tapes.

FAA/ATL - Suggested David Redhun as a point of contact.

David Redhun - FAA/DCA - (202)426-8714

Mr. Redhun is concerned with hardware installations of
low - level wind shear measurement equipment. He
suggested three possible contacts with DOT and NQAA.

DOT - Transportation Systems Center
Dr. Jim Halleck - (617)494-2199
Dr. David Burnham - (617)494-2579

NOAA - Boulder Tower
Dr. Al Bedard - (303)497-6508

Jim Bilbro - NASA - 453-1597
Mr. Bilbro suggested we contact William Cliff at
Battelle.

William C1iff - Battelle - (509)375-2024

Dr. Cliff sent two documents on the simulation of
turbulence (simple model) and the simulation of the
hourly wind at randomly dispersed sites.
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11. Orville E. Smith - NASA - 453-3101
Mr. Smith was retiring in a few days and no information
was available from him because all of his references
were packed away.

12. Tom Preis (505) 678-5421
Mr. Preis was unavailable for comment on repeated phone
contacts.
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4. TURBULENCE NOMENCLATURE

In any discussion of atmospheric turbulence there are several
terms which will be encountered. These terms are discussed in
order to provide insight into the information in following
sections.

1. Homogeneity - A turbulent flow is homogeneous if its
statistics do not vary in space. The presence of the
earth's surface is evidently important in two ways in
considering homogeneity. First, statistics will vary
with distance from the boundary so that it is unlikely
that homogeneity could prevail, even approximately,
except in the horizontal. Second, if the terrain is
inhomogeneous, with hills and valleys, or with cities,
fields, and forests, then the flow near the boundary
can hardly be expected to be horizontally homogeneous
because of the effects of the boundary on the flow
itself. Homogeneous flow can be valid over rough
terrain as well as over smooth terrain as long as the
terrain is consistently rough along the areas of
interest. It is often the case over flat and homo-
geneous terrain or over the ocean that small-scale
flows seem to be homogeneous(7.5).

The assumption of vertical homogeneity is almost never
valid near the ground. the mean wind and temperature
vary rapidly with height at first, and then somewhat
less rapidly at higher altitudes.

2. Stationarity - Stationarity implies that the statistical
properties of variables do not change with time. For
events with time scales of hours this presents a problem
due to the daily changes of the atmosphere. For scenarios
such as missile launches with flight times of minutes or
even seconds, the assumption of stationarity would seem to
be quite valid(7.5).

3. [Isotropy - Isotropy implies that the statistics of the
motions are invariant to changes in directions of the
coordinates, and is usually considered only when homo-
geneity is present in all directions. If isotropy pre-
vails, then the variance of the three velocity components

. must be equal, since the variance of one component changes

o~ into that of another as the coordinate system rotates by

.. 90 degrees. But in fact, the variances of the velocity

b components in the boundary layer are not the same, and for

this reason alone, it is clear that the small-scale motions
jn the lower atmosphere are not isotropic.
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Even though isotropy does not apply near the ground,
local isotropy does. Local isotropy implies that not
all the small-scale motions, but only the fluctuations
on the very smallest-scales, are isotropic. From this
hypothesis certain statistical properties of the high-
frequency fluctuations can be derived. Measurements

N of boundary-layer turbulence have shown that these

[ predictions are indeed satisfied, provided that the
size of the eddies involved is small compared to the
distance to the surface(7.5).
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5. SPACE SHUTTLE TURBULENCE TAPES

One area which appears promising is the use of the Space
Shuttle Turbulence Tapes (SSTT) developed by NASA for study-

Ch A
o a2 .

ing the effect of turbulence and gusts on the space shuttle. Sﬂ
SSTT consists of six magnetic tapes containing time series
of various types of gusts and gust gradients for six altitude =]
bands. The tapes contain gusts ul, u2, and u3 for the X, Y, and ;j
Z axes (1,2,3) and gust gradients du2/dxl(yaw), du3/dxi(pitch), -
and du3/dx2(roll). The tapes were produced by a non-recursive o
turbulence model based on von Karman spectra with finite upper e
limits corresponding to the dimension's of the space shuttle. E‘
These upper integration limits increase with altitude because 5
they are based on turbulence scale lengths (which increase with ]
altitude) and on characteristic vehicle length in each axis. o
The limits are calculated according to %:
Wijmax = 1.339 Li / 1j fj
Li = turbulence scale length :%
1j = characteristic vehicle length 0%
In typical use the tapes are scaled in a manner considered %:
i appropriate by the user for various standard deviation, -
- intensities, and times. The dimensional gust is obtained by =
% scaling the dimensionless gust by the appropriate standard -
- deviation as follows. :%
. ui* = si ui o
% ~
- ui = dimensionless gust fq
g ui* = dimensional gust o
si = standard deviation "
-
The dimensional gust gradient is obtained by scaling the s
dimensionless gust gradient by the appropriate standard >
deviation and turbulence scale length as follows. 1
v
dui* si dui o
R o
dxj* Li dxj i
si = standard deviation D
Li = turbulence scale 3
The dimensional time step is obtained by scaling the o
dimensionless time step by the turbulence scale length and ?d
the vehicle velocity as follows. F
3
- ti* = 1,339 LI Ti1 / V "
- ::i
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G
Li = turbulence scale
Ti = dimensionless time step

V = vehicle velocity

Spectral analysis of each tape reveals that the simulated
turbulence possesses the appropriate von Karman spectral
characteristics. Both the simulated gusts and gust gradients
are normally distributed with near zero means. The standard
deviation of each series is constant with the theoretical
energy content.(6.28429)

The tapes containing the turbulence data as generated for
the space shuttle are currently available from NASA. The
source code that would be needed to regenerate the data is
not currently available. New source code could easily be
written by Control Dynamics using its FFT (Fast Fourier
Transform) subprogram.
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6. VON KARMAN APPROXIMATION

Experimental data has shown that the velocity spectra of
atmospheric turbulence most closely corresponds to the
von Karman spectra which is of the following form.

L T T ot it S Longitudinal
n  [1+(2valy£/V)%)1°/C

op? Ly 1+(8/3)(2nalaf/V)?
99 = mmmeee mmmmemcmcceeoeeos Lateral
v [1+(2malpf/v)2) 111 /8

Figure 1. Expressions for longitudinal and lateral von Karman spectra.

It can be seen that these spectra are irrational in form and
produce a -5/3 rolloff at high frequencies.

Attempts to model these forms have resulted in two basic
N simulation methods.

1. Construction of a turbulence time series from the von
Karman spectra requires the use of FFT (Fast Fourier
Transform) techniques to generate the turbulence and
storage on a mass storage device until it is needed in
a flight simulation.

- 2. The von Karman spectra is typically approximated to
the closest integer power (2) as in the Dryden
spectra, so that a set of difference equations can be
solved in real time during simulation to generate
turbulence as needed. This method is much more
efficient but provides turbulence that is less
accurate.

The approximation method used by Dr. Campbell provides a Y
higher order linear relation which closely approaches the |
-5/3 rolloff of the von Karman spectra as follows.
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A,
e

91 2
--S + 525 + 60 :
-5/6 ~ 12 >
(1+S) Z  memcmeeeesmmmmeecccceceae——a- Longitudinal ;Q
935 3 561 2 ~
—== S 4 --=S + 1025 + 60 -4
216 12 o

. 0o R S s
' ] 'n,n, '
. (o L NN

The above approximation was obtained by truncating at the ~
proper point the continued fraction expansion of the -
binomial function below.

v (1-v)S (1+V)S (2-v)S
(145) = 1 + VS + —----- L L
2 3 2
(N-V)S (N+V)S
N L
2 2N +1

For a detailed explanation of this procedure see "Monte
Carlo Turbulence Simulation Using Rational Approximations to
von Karman Spectra" by Dr. C.W.Campbell(6.6).

The filter function used in the transverse case is derived b:
in much the same manner and has the following form. j{’
O

91 2 172
--S + 525 + 60{ [1 + (8/3) S

12
H(S) = = e ez
936 3 561 2
--= S + ---S + 1025 + 60 <1 + S) 1
216 12
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The spectra of these approximations can be determined and
compared to the irrational von Karman in order to check the
validity of the approximation. Assume that a stationary
random signal with a power spectral density function ¢y(w)
is applied as an input to a system with a response function
H(w). The output from the system will be stationary random
signal with a power spectral density function ¢y(w) given by

oy(w) =1 HW) | 2 gx(w)

By multiplying the filter functions by their complex
conjugates the resulting spectra are obtained.

4 2
57.507w + 1794w + 3600

18.738w + 1302.507w + 479w + 3600

6 4 2
153.363w + 4841w + 11394.12w + 3600

18.74w + 1321.187w + 6096.447w + 8394w + 3600

2nfal/V

1.339

Turbulence scale length
Aircraft airspeed

where

w
a
L
v

The following plots show the approximate spectra above
plotted versus the theoretical von Karman spectra.
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1 Approx. vs Theor. Von Kaorman spectra
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. Two computer programs using this technique have been ]
» obtained by Control Dynamics Co. and modified to run on a o
- HP9000 computer. The programs use gaussian white noise to N
. drive a 1inear filter implemented as a set of difference o3
P equations corresponding to the von Karman approximation. i}
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. Figure 4. Turbulence generation scheme using linear filter to produce _
: turbulence having approximate von Karman spectra o
O The following plots show turbulence time series and their fﬁ
) calculated PSD's for both longitudinal and transverse cases. uiw
The turbulence was generated with gaussian white noise =
having standard deviation of 1.0 and mean of 0.0. The N
turbulence scale length was 500 meters and vehicle velocity ]
was 100 meters/second. A 5.0 Hz. sampling frequency was used G

to generate 1024 points of data.
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1 Approximate Von Karman Spectra
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Approx. Transverse Von Karman
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7. ATMOSPHERIC STABILITY

2 The consideration of atmospheric stability is important due
o to its effect on turbulence intensity. The intensity of

. turbulence has been shown by Frost(6.31) and others to
increase with respect to the neutral case for an unstable
atmosphere and to decrease for a stable atmosphere. The most It
commonly used turbulence spectra (such as the Dryden and von -
Karman) are valid for neutral conditions. B

Atmospheric stability is measured by the temperature profile
with altitude. A decrease in temperature with altitude is

referred to as a lapse rate. An increase in temper~ture ik
with altitude is referred to as an inversion.

During the daytime hours, solar radiation heats the earth
more than it does the atmosphere. Conduction from the earth
causes the air near the surface to be warmer than that
. above, and a lapse rate results. At night, with clear skies,
o the earth cools by radiating heat and the air next to the it
cools by conduction, thus leading to inversions(6.3).
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Atmospheric stability is measured by the tendency of air
displaced vertically from its equilibrium condition to
return to its original position. If the temperature of a
parcel of displaced air decreases at the adiabatic lapse
rate there exists no restoring force on the parcel and the
atmosphere is said to be neutral. When a parcel of
displaced air cools more quickly than the adiabatic lapse
rate there is a positive restoring force tending to move the
parcel, which is now cooler than the surrounding air, back
toward its original position. This represents a stable
atmosphere. If a parcel of displaced air cools more slowly
than the adiabatic lapse rate there is a negative restoring
force tending to move the parcel, which is now warmer than
the surrounding air, away from its original position. This
represents an unstable atmosphere.
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The relative occurrences of each stability category has not
been widely studied, although some data is available.
Essenwanger(5.2) compiled a set of data taken {in three
locations in which the observed atmospheric stability was
recorded for a one year period. Numerical tables were
presented for data concerning the number of occurrences of
each of six stability categories. The observations were
grouped by time of day (0000,0600,1200,1800 GMT or local),
city (Frankfurt, Hahn, Osan), and by month.
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Although this data is sufficient to show general trends
involved with the variation of observed atmospheric

-fﬁr stability, the format of the data made interpretation of the -
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data difficult. Control Dynamics has reduced the data to bar
chart form to allow easier interpretation of trends. The
charts use the following conventions.

Pl A S

1. Each chart represents the occurrences for one year at
one time of day for one city.

2. Six different criterion are established according to
the Pasquil (5.2) stability criterion, very unstable,
moderately unstable, slightly unstable, neutral,
moderately stable, and very stable. These categories
are distinguished by texture as shown on the charts
legend.

3. The number of occurrences in each observed stability
category is represented by the appropriately shaded
- region of each months bar chart. The total height of
1 the bar indicates total observations for the month,
~ with each textured region indicating the relative
occurrences of each stability category.

By studying the charts, it becomes apparent that there
- exists a pronounced diurnal variation (daily) in atmospheric
- stability, in addition to seasonal, and geographic variations.
g The general patterns are as follows.

1. In each city the atmosphere is neutral to stable at
midnight for all seasons.

2. In each city the atmosphere is neutral to unstable at
noon for all seasons.

3. Each city shows some seasonal variation for all times,
however this effect is more pronounced at 0600 and
2 1800 when the effect of the diurmal variation is not -
y as strong. e

4. Each city shows varying amounts of differences based
on geographic location.

In summary the diurnal variation shows the most pronounced

effect on stability, with the seasonal and geographic vl

effects of lesser importance respectively. o

\:-f

The following figure obtained from Frost(6.31) shows o

measured data for stable, unstable, and neutral o

atmosphere's. This plot indicates the changes in the shape .;i

1 of the observed spectrum. L
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Figure 9. Measured data for stable, neutral, and unstable atmospheres vs the
theoretical von Karman and Dryden spectra (Wave number K = w/v
normalized by ;he peak scale Km of the vertical spectra.)

Note: fp(f)/oc~ where o = standard deviation f = frequency.

As can be seen, the spectra of the stable, neutral, and
unstable data are the same and correspond to the von Karman
spectra at frequencies above the -5/3 slope break point. The
value of this break point is dependent upon turbulence scale
lengths and vehicle or reference velocity. At lower
frequencies the data diverges somewhat from the neutral
case. The figure clearly shows the effect of a stable
atmosphere decreasing turbulence intensity and an unstable
atmosphere increasing turbulence intensity. The neutral
atmosphere corresponds to the theoretical von Karman and
Dryden spectra.
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n ‘;; In order - simulate the effects of stable and unstable
atmospheres while using models with spectra corresponding to
a neutral atmosphere, some modifications need to be made.
One such modification that is particularly applicable to

- Monte Carlo simulations is the addition of a low pass filter
I path so that the desired lower frequencies could be scaled

by a chosen gain factor as below

Gaussian

White
Noise Turbulence

| .
}
1 Low Pass
i' Filter
2
L:.
Figure 10. Method for scaling turbulence spectra for effects of atmospheric ;?
stability. o
The design of this low pass filter would have to be —
carefully chosen so as not to overly distort the high e
frequency part of the turbulence spectrum. )
o
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Another method of accounting for the effects of atmospheric

stability on turbulence intensity involves the use of the .
Kaimal turbulence spectra as presented in Frost(6.31). The e
- Kaimal spectra consists of an empirical formula as follows. NG
F o> [0.164 (n/no) ]
l O(f) = cemmcmmcccmcmaecaeaa
) 5/3
: f [1 + 0.164(n/no0) ]
: -
f = cyclic frequency =
o = standard deviation L
n = the reduced frequency = fz/V n
z = height e
V = reference velocity o
The values of "no" recommended by Frost for neutral ol
conditions are =1
N
no; = 0.0144 »
noy = 0.0265 %
]
- noz = 0.0962. -4
;f By changing these values the shape of the Kaimal spectra may ﬁ?
- be taylored to different atmospheric stabilities. <

Other authors have suggested a much simpler although less

accurate method of accounting for stability effects on =4
turbulence.(5.2) The method involves the scaling of the

wind's standard deviation as a function of stability. Since
- the turbulence spectra is directly proportional to the

< standard deviation, this modification causes the spectra to S
- be shifted up or down with respect to the neutral case. This :
: results in a spectra which becomes more accurate at low

- frequencies but less accurate at high frequencies. Whether
- this method is acceptable to a given problem can only be

o determined through a knowledge of the frequency ranges that

- are of importance to the problem being considered.
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9. SPATIAL MODELING
The topic of spatial modeling of wind is one in which
significantly less work has been performed. The primary
topics of concern for spatial turbulence models are the
coherence of turbulence along with Tayl or's hypothesis.
Over somewhat short distances (< 100-200 m) turbulence can
be shown to be coherent to some degree in each axis. This
coherence is typically represented as an exponentially
decaying function such that the turbulence becomes more
rapidly less coherent as the separation distance increases.
- Typical coherence curves as taken from Armendariz(3.1) are
P shown in the following figures.
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Figure 11. Zero-lLag horizontal wind component correlation at a height of 1.5 :::L-_j
meter under unstable conditions as function of distance separa- i
tion for mean wind parallel and normal to sensor line. 4
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The rate at which the coherence decays is a function of
separation distance, frequency, mean wind speed, and some
decay constant as shown below.

-(awx/v)
coh = e
where a = decay constant
w = turbulence frequency
x = separation distance R
v = reference velocity -
o+

Each of these terms is relatively straightforward except for
the decay constant "a". While all authors include this term,
few if any agree on its value. It seems to be somewhat
arbitrarily chosen based on experience and data available.
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This expression for coherence allows the following generalizations:
1. Strong winds show greater coherence than light winds.

%
.. 2. Low frequency eddies show greater coherence than high
X frequencies.

3. Coherence decreases increasingly fast with separation
distance.

4. Coherence is greater in an unstable atmosphere.

The modeling of coherence generally incorporates the use of
many independent noise sources which are filtered and added
before driving some turbulence filter function. The
appropriate phase lagging of these input filters based on
separation distance, reference velocity, and frequency
produces correlated turbulent time series for a given
separation distance. The form of the inter-level coherence
model developed by Frost(6.31) is shown below.
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_ Figure 14. Inter-level coherence model g
While this type of turbulence will have a significant impact hep
on the study of structures or on the dynamics of large "]
vehicles, it would seem that of greater importance to o
rocketry problems is a discussion of Taylor's hypothesis. L
Taylor's hypothesis involves the assumption that turbulence =
¥ is frozen in the mean wind, because the turbulence decays R
™ slowly with respect to the speed at which the observer o)
- passes through it. In other words, we might obtain about the ¥
- same data by recording in time at a fixed location as we p
‘ would by rapidly moving upstream against the mean wind. ‘,1
o3
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To illustrate these ideas consider the record of an
atmospheric variable A, observed at a fixed point as
depicted in the following figure. On the assumption that
turbulent eddies are carried by the mean wind “U" and change
only slowly as they move, we could assume that the pattern
in the figure is produced by having a spatial pattern in the
"x" direction moving past the observer with speed "U*
without change of shape. In other words, the spatial pattern
could be depicted exactly as in the figure with the axis
relabeled as "x=Ut". This notion is called the frozen wave
hypothesis or Taylor's hypethesis(7.5).

t x=Ut

Figure 15. Illustration of Taylor's hypothesis

As is evident from the definition above, in order that
Taylor's hypothesis be valfd, it is necessary that the
turbulence be stationary in time and homogeneous in the x
direction. These conditions are often satisfied near the
boundary layer when the terrain is consistent in roughness.

Work on the experimental validation of Taylor's hypothesis
has been performed by Frost(5.9) at the Marshall Space
Flight Center boundary layer tower array. In this
experiment turbulence time series were taken at several
towers aligned with the wind. This actual data was then
compared tc data which was taken at the upwind tower and
scaled by the mean wind speed to produce a spatial
turbulence series. According to Frost(5.9), this frozen and

K) .:'.r-?‘ N IS !“ ) A -?.v;. -.-,.t"..-". R N A T Ce el CRL AN
. e »



\; . o .-_‘._'_—.'ﬁ_'.-".'.'vl.“ ~ :‘.."T_'T_EV“..‘ - ','-“'»:_‘_- -__\...\.. . Pl - i R :, ‘~_ ..\\ AP IC Ot e Sl L N M0t i Sl Al gt gl MWL and ol ghe il s & oAl oS w.‘.
?'.3-1
s
ol
1.0 - 53 - i~
v - _ .:
< -
o 0.8 ¢ 3
- N2
A Run=8624 D
Tower=1 e
0.6} Level=4 =
Component=2 o
N=8192 o
0.4} ]
B -3
U14Y54 =]
- ;,'_.:4
: 0.2} ]
0.0} q
- 1
e .. 9
- 0.2} .
. -
: . A . ,
- 5 10 15 20
= Lag Time, t (sec)
¥ Figure 16. Illustration of validity of Taylor's hypothesis o
(e spatial correlation converted to time ;"
correlation with the relationship £=wt). L
. .4
- scaled turbulence gave excellent agreement to what was -
- actually measured at various points downwind. The following i)
. figure from Frost illustrates the agreement between actual o
- data and data predicted by Taylor's hypothesis. N
Y Thus it would seem that for terrain that is homogeneous in éi
: nature, Taylor's hypothesis provides a useful tool for ey
: obtaining a spatial wind history from a wind measurement. o
- .\'
- A second point to be considered with Taylor's hypothesis fﬂ
o involves the simulation of a turbulent time series. For the Q‘
_ case in which a vehicle is moving through a turbulent field r
b rapidly, the turbulence can be considered frozen. Then K
SRRy
N
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scaling the time series by the vehicle airspeed produces a
spatial series. Therefore for this type of situation a

- turbulence time series can be considered as spatial

N turbulence simply by scaling.

In summary, the consideration of correlation and Taylor's
hypothesis are important for cases such as structure
loading, where the separation distance between points of
interest are relatively small. To expect a high correlation
of turbulence 2 to 3 kilometers from a measurement site is
however unrealistic. According to Armendariz(3.1), the
coherence decreases to almost negligible values with
horizontal separation greater than 200 meters even under
unstable conditions, except for the iong wavelength portion
(>3000m). This suggests that one can only extrapolate the
- long wave portion of the wind energy beyond a few seconds
* and for greater distance than perhaps 200 meters. The short
: wave or turbulent portion appears to be quite intractable.

It becomes apparent that to predict significantly the wind
conditions in the target area requires the use of remote
measurements. Perhaps the most promising method of
- obtaining remote measurements without the use of downrange
” instruments is the utilization of LIDAR. Frost(5.8) has
- reported on the use of LIDAR in conjunction with an
instrumented aircraft in the NASA gust gradient program.
The LIDAR was used to take remote measurements of
turbulence along the ILS approach path and was later
compared to the data taken aboard the aircraft flying the
approach. Good agreement was achieved between the LIDAR and
the aircraft measurements.

afalalolelae,
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10. FUTURE WORK

The next step would probably be the development of accurate mean
wind and turbulence models, suitable for implementation into a

6DOF guided missile simulation. Due to the variety of simulations,
the model would be incorporated into a designated system. The model
would be capable of handling stable, neutral, or unstable atmospheric
conditions, Gaussian or non-Gaussian distributed turbulence, general
. terrain roughness characterization, gust gradient effects, and

N coherent turbulence.

li Models can be developed for tree line created turbulence or other
X major obstacles and verified with a three dimensional water tunnel
- flow simulation capability such as can be performed by FWG.

To access accurately the effects of variable wind, the standard
equations of motion used to describe missile dynamics need to be
expanded since they typically assume either no wind or a constant
mean wind. The additional terms would include both temporal and .
spatial gradients of wind (Bowles and Frost 7.3). The relative ~
importance of these terms and related changes to input parameters o
for the aerodynamic coefficients need to be assessed on a missile .
by missile basis.

The incorporation of accurate wind turbulence models allows for a
more realistic assessment of dispersion of dumb rounds. One

- interesting possibility would be to try to optimize the design of
= the round to minimize the dispersion.

Since wind prediction based on correlation has been shown to be
unrealistic beyond one or two hundred meters, the alternative of
using LIDAR to measure data along the anticipated trajectory o
should be examined. Simulations would be used in the first phase i
to assess potential gains, followed by a subsequent phase that
would involve actual use of LIDAR with the RAKE or some similar

.
)

€S

- system that would allow for measurements to be taken at other than

the launch site. ~
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11. SUMMARY

Control Dynamics has performed as extensive survey of the
literature available and pertinent to the problems associated
with wind effects on free flight rockets. In addition to
surveying the available literature, meetings and phone contacts
have been held with individuals who are actively involved with
research in the field of atmospheric science. The primary
intent of these surveys and contacts has been to determine what
type of work is being performed that has an impact on design
and simulation of small missiles. It was also desired to
establish areas which seem to be particularly important and
which warrant further study.

Several areas which seem to be of interest include the use

of the Space Shuttle Turbulence Tapes (SSTT), the approximation
of the von Karman spectra with a linear expression, the effects
of atmospheric stability on turbulence intensity, mean wind
data, and several issues concerning spatial modeling.

The Space Shuttle Turbulence Tapes provide a quick and rela-
tively simple means of incorporating high quality turbulence
data into current simulations. Reservations concerning the
lack of high frequency content, mass storage problems, and

555 necessity of always using the same turbulence would seem to
- . indicate that the SSTT are primarily valid for large and

~ slower vehicles.

The von Karman approximation method provides a compact, effi-
cient, means of generating turbulence. The code is efficient
enough to generate turbulence on an as needed basis instead
of storing large blocks of data in mass storage. This pro-
vides an added benefit of generating independent sets of
turbulence by changing the seeds on the random number genera-
tor. As shown in the plots in the body of this report, the
turbulence provides a very close fit to the von Karman at all
but very high frequencies.

A discussion of atmospheric stability along with data showing
the type of changes that occurs on a daily, seasonal, and
geographical basis has been included. This data has been
presented in a bar chart form instead of the original tabular
form in order to provide increased clarity and ease of inter-
\ pretation. The data shows that the changes in atmospheric

- stability are sufficient to warrant including in a realistic
J wind turbulent model. The effects of stability are typically
ignored in most turbulence models, but several methods exist
which would allow the accurate modeling of stability effects
on turbulence intensity. These include scaling the spectra

....................
............................
...........................
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- by a gain, low pass filtering the turbulence, or the use
y of an alternate spectra such as the Kaimal which includes
.:_-, stability terms.

7
. 8

Data for mean winds and standard deviations at 35 sites in
the northern hemisphere is available in tabular form. This
data was presented in bar chart form for 3 sites in order to
show a representative sample of the available data.

various topics have been discussed regarding spatial model-
ing of wind. These include the inclusion of coherence and
Taylor's hypothesis into a model and the usefulness of
& these techniques. The use of coherence modeling and Taylor's
T have been shown to be valid and important for situations
concerned with the modeling of wind over relatively short
distances(<200m). It becomes evident however, that at large
distances such as occur in rocketry problems (2-3km) these
techniques are no longer valid. The best that can be
R expected in wind prediction over long ranges is to
. characterize the general statistics of the wind.

= The local measurements allow the rough prediction of mean
. wind and turbulence intensity along with the basic spectra

- -~ that is being observed. This of course assumes homogeneous
- R terrain. If the terrain has large irregularities between
. launch and target sites, then it may be impossible to

. predict accurately the effects of wind on the rocket

" downrange. The basic problems involving long range wind

predictions are the following.

1. Turbulence degrades excessively as it moves downrange
due to the long time it takes to be blown downwind.

2. Terrain is more 1ikely to be inhomogeneous over long
distances.

3. Wind is unlikely to be aligned along the path of the
. missile. In this case the measurement may be biased by
o terrain near the launch site. This terrain is likely
- to be different from the terrain along the flight path.

Additional improvements in wind measurements could be made
by using advanced instrumentation such as LIDAR to give

.i directly measured downrange wind measurements. Additional

‘¢ sophistication in modeling could be obtained through the use
Z; of advanced numerical models in combination with water tunnel
7 simulation of complex terrain.
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13. APPENDIX

This appendix contains 1istings to the computer programs
used to produce the turbulence time series by approximation
of the von Karman spectra. These programs were written and
supplied by Dr. Warren Campbell at Marshall Space Flight
Center and were modified by Control Dynamics to run on a
HP9040.
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. PROGRAM DRATL ]
X Commmmmm et e s s e m e — -1
-, S c o
! ‘:: C diicpmkpiokdopbink  LONGITUDINAL ootk sokokok sk oo ook 4ok ok fj
‘s: C ,':-
o C THIS PROGRAM GENERATES “TURBULENCE" USING A 2-3 RATIONAL %:
& C APPROXIMATION TO THE YON KARMAHN SPECTRUM,. L
X c 5:.4
b C PROGRAMMER: OR. WARREN CAMPBELL (NASA MARSHALL SPACE FLIGHT CENTER) }J
: 1
C REVISOR: DAVID EDGEMON <(CONTROL DYNAMICS CO.> 9
e e e e e e e e e e e e e e - "
c DIMENSION IPAR(S) o
REAL*8 YO0,Y1,¥2,YN,¥0,X1,¥2,X3,ELS0,ELSY,ELSZ,ELS3,R0,R1,R2,R3 -~
& ,DT,PI,EX1,EX2,EX3,EX12,EX13,EX23,EX123 e
REAL*8 Pt{,P2,P3,21,22,A4,8B,C,D,XK1,SUM, SUNSQ, YBAR, Y2BAR '
- INTEGER=4 ITER,NPTS -
K integer irocw,ix,iy :
- real#+8 sig,xb,xdp,xp
- real*8 avk,alpha,el,sl,sigma,v,time,vup
< c
= integer nrec,icol,j
- real outv(2)
N c
Y COMMON/CFF/ SIGMA,Y,ITER,AYK,EL,DT,PI
.- COMMON/EXPBL, EX1,EX2,EX3,EX12,EX13,EX23,EX123
c .
g - open{unit=1,form="unformatted’,file="plot1.dat’,access="direct’
" e &,recl=4)
- openf{unit=2,file='plot2.dat’>
i openi{unit=3,file="time.dat >
. c
~ icol=2
irow=0
c ‘.
g write(6,*) ‘enter standard deviation for random numbers’ 0
o read(5,*) sig
o wurite(é,*) ‘enter mean of random numbers’ o)
- read(S,*) xb o
write(6,*) ‘enter seed for random numbers’ ¢
read(5,*) ix =1
" c e
c CALL EMPARCIPARD 'x
o e e e e e e - -
c LUPRT = IPAR(1) P
Cmm e e e o e o e e e e ¥
- c -~
N € SET UP COMNSTANTS *
: c ‘ o
x AVK = 1,339 R
- WRITE(6,5999) ‘*
, S999 FORMAT(’ ENTER NUMBER OF POINHTS ) s
i’ READ(S,w> NPTS i
SO WRITECE,7998) -
AR 7998 FORMAYC ‘’ ENTER DT IN DQUBLE PRECISION) o
4 READCS, > DT S
;.-'

L ORI

ORI R B I Rt P AT A I
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PI = 4.#DATANC1.DD)
- ITER = ©
- SUM = 0.D0
\ SUMSQ = ©§.0D0
WRITEC6,7999)
7999 FORMATC° ENTER DESIRED SIGMA~)
READ(S,*)> SIGMA

St = SIGHA
D WRITE(6,8999)> PI
8999 FORMATC” PI=",D15.10)
c
C INITIALIZE THE X°S AND Y°S
c
CALL INITalc¥u,¥Y1,Y2,X0,%1,.X2,X3,TIME,ITER,.sig,xb,xdp.xp,ix,iy)
D WRITEC6,8998) TIME
8998 FORMAT(” TIME=",F10.5>
c
C GET SIGMA, ¥V, AND TURBULENT LEMHGTH SCALE
c

100 CONTINUE
CALL SVL(DT,SIGMA,V.EL)
ALPHA = ¥U»DT/EL
SIGMA = S1/¢.8762*ALPHA%*0,.49626)

D WRITEC(E,8997)
8997 FORMATC® SYL "2
c

C CALCULATE POLES AND ZERCES
- c

CalL PANDZ2(P1,P2,P3,21,22)

D WRITEC6,8996)> P1,P2,P3,21,22
8926 FORMAT( " POLES=",3(2¥,D15.9)/° ZERQES=",3{(2¥,D15.9))
c
C CALCULATE COEFFICIENTS
c
CALL. COEFF(P1,P2,P3,21,22,A,B,C,D,XK1)
D WRITEC6,8995) A,B,C.D, XK1
8995 FORMAT( " COEFF A,B,C,D,XK1=",3¢(2¥,E15.9))
c
C CALCULATE RHS DIFFERENCE EQUATION COEFFICIENTS
c
CALL RI(Pt,P2,P3,A,B,C,D,RD,R1,R2,R3%
o] WRITE(6,8994) RO,R1,R2,R3
8994 FORMAT( " RI=",4(2%X,D15.9))
c
C CALCULATE DIFFERENCE EGN LEFT SIDE COEFFICIENTS
- c
- caLL LICP1,P2,P3,A,8,C,D,ELSO,.ELST, ELS2,ELS3)
2 D WRITECS,8993) ELSD, ELSY,ELS2,.ELS3
Xt 8992 FORMAT(® LI=",4¢2X.,D15.9))
- c
E € ITERATE
— c

YN = ELS1#Y2 - ELS2%*Y1 + ELS3#YD + ROxX3 - RIxX2 + R2#X1
, & - R3I=XD
o ITER = ITER + 1
SuUM = SUM + YN
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SUMSA = SUMSQ + YN+Y¥H
¥YBAR = SUM/ITER
(:: Y2BAR = DSART{SUMEZQ/ITER ~YBAR*%2)
D WRITEC(6,8900> Y2,¥Y1,Y0,X3,K2,%1,K0
8900 FORMATC ¥2,Y1,¥0=",3¢(2X,D15.9)>/° ¥3,K2,%1,X0=",4(2%X,D15.9))
Y0 = VY1
Y1 ya
Yz YN
X0 X1
Xt ®2
X2 ¥3
call random {(sig,xb,xdp,xp,ix,iy)
X3 = xdp
D WRITE(6,9998> K3
9998 FORMATC® RANDOM NUMBER=",F10.86>
TIME = TIME + DT
YP = YN
WRITE(6,9999) TIME,YP

c
c write data to plot files
c
outv(1)d=time
outv({2i=yp
do 1234 j=1,icol
nrec=nrec+!
write(],rec=nrec) outv(j>
1234 continue
bt c
RS c write data to file for psd program
c
write(3,'<el3.7)’) yp
irow=irow+!
c
c

9999 FORMATS(* TIME=’,E12.6,  Y¥Y=',E13.9?
IFCITER .LT. NPTS)> GO TO 100
WRITE(6,9980)> NPTS,YBAR,Y2BAR
9980 FORMAT(‘ NPTS=',18,° YBAR=",D015.9,  Y2BAR=’,D15.9)

c
' write(2, ‘'(2i5)’) icol,irou
- write(2,{(a8>’) ‘time’

- write(2,’'¢ag8)’) ‘turb’

S c

.o c IFCLUPRT .E@. 8> ENDFILE 8
= c
: closeCunit=1)

- closel{unit=2)

- c

~ sTOP
. END
= c

c

SUBROUTINE INITal(¥0,Y1,¥2,%0,K1,X2,X3, TIME, ITER
. &,8ig,xb,xdp,xp,ix,iy)
' REAL*8 YO0,Y1,Y2,K0,X1,%2,X3,time

INTEGER=4 ITER

A
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- real*8 sig,xb,xdp.xp o
o) . integer ix,iy 2
o X0 = 0.D0 o
. ) X1 = 0.D0
- X2 = 0.DD o
- call random (sig.xb,xdp,xp.ix,iy) oY
5 ¥3 = xdp v
5 Y0 = 0.D0 o
v Yt = 0.D0 ax
Y2 = 0.00 -
TIME = 9.
ITER = 0
RETURN
END
c )
c .
SUBROUTINE SVL(DT,.SIGHMA,V,EL)> .
- real*g dt,sigma,el,st,v -
S St = SIGMA -
- ¥ = 100, "
. EL = S00. o
) RETURN ..
.. END ‘&
~ c N
- _v c .\-_
. SUBROUTINE PANDZ2(P1,P2,P3,21.22) o
o COMMON/CFF/ SIGMA,V,ITER,AVK,EL,DT,PI . i~
] o~ REAL*8 P1,P2,P3,21.22.C,P1,DT
AL e real*8 avk,el,pip.p2p.p3p;sigma,v,zip.z2p R
= INTEGER#*4 ITER -$
K DATA Z21P/-1.,46821076/,22P/-5.388932143/,P1P/-1.02025059/ o
. *,P2P/-1.67661571/,P3P/ -8.10313370/ :}
a C = V/(AVK*EL) =
P1 = P1P#C
- P2 = P2PxC o
) P3 = P3P#C R
- 21 = ZiPx*C s
N 22 = Z2P#C o
D RETURM s
END
c
c X
. SUBROUTINE COEFF(P1,P2,P3,21,22,R,B,C,D, XK1) o
- COMMON/CFF/ SIGMA,V.ITER,AVK,EL,DT,PI =
t REAL*8 P{,P2,P3,21.22,A,B,C,D,.XK1.,DT,PI is
o real*8 avk,el,sigma,v ~g
u INTEGER*4 ITER o
2 XK1 = SIGMADSARTCEL/(Y#PI)) o
e XK1 = XK{*(-P1%P2%P3)/(Z1%22) o
‘ A = RKI»(P1-Z1)*(P1=22)5/CP1*(P1-P2)*%(P1~P3)) o
W B = XK1#(P2-21)>%(P2-22)/(P2%(P2~-P1)x»(P2-P3)) ;;
- C = XKt1*(P3-21)*(P3I-Z22)/CP3*(PI-P1)X>*(PI-P2)) _
g O = =XK1»%21222/¢P1%P2%P3) oo
v, RETURN D&
AR END .
. c \:
Eo3 'F“ 4
: &
. \._
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N o
. SUBROUTINE RI(CP1,P2,P3.A,B,C,D,R0,R1,R2,R3) 3
. éﬁ‘ REAL*8 DT,PI,P1.P2,P2,A,.B,C,D.R0,R1,R2,R3,EXT,EX2,EX3,EX12,E%13 o
& ,EX23.EX123 »,
>~ INTEGER*4 ITER -
~ real*8 avk,el,sigma,v ]
> COMMON/CFF/ SIGMA,V,ITER,AYK,EL,DT,PI o
. COMMON/ENPBL, EX1,EX2,EX3,EX12,EX13,EX23,E4123 =
- EX1 = DEXP(P1*DT) ed
D WRITEC6,9999) EXI .
9999 FORMATC’ EX1=-,D15,9) o
EX2 = DEXP(P2*DT) e
D WRITE(6,9998) EX2 -]
9992 FORMATC® EX2=",D15.9) e
EX3 = DEXP(P3*DT) <
D WRITE(6,9997) EX3 .
9997 FORMATC’ EX3=°,D15.9) T
EX12= DEXP(C(P1+P2%DT) 0
D WRITECE,9996) EX12 -
9996 FORMATC’ EX12=",D15.9) o
EX13= DEXPC(CP1+P33>*DT ) o
, D WRITE(6,9995)> EX13 .
- 9995 FORMAT(’ EX13=",D15.9) ]
. EX23= DEXPCC(P2+P3 »#[DT) ~
- D WRITECE,9994) EXZ3 ~)
9994 FORMATC( ° EX23=",D15.9) >
EX123= DEXPC(P1+P2+P3)>*DT) s
— D WRITEC6,9993) EX123 ~
O 99932 FORMAT(’ EX123=°,D15.9)> 1
- RO =A+B+C+ D -
A D WRITE(E,9989)> RU -
- 9989 FORMAT(‘ R3=,D15.9) -
- Rt = AXC{ . +EX2+4EXITD+B#C 1 +EXI+EXI I+Cx( 1 +EXN1+EX2)+ "
& DR(EXNT1+EX2+EXZ) :I
R2 = A*(EX2+EXI+EX23)+B*(EX1+EXI+EX13II+CH(ERX1+EX2+EX12)+ =
& D*(EX12+EX134EX23) v
R3 = AXEX23+BHEA13+CHEXT12+DH+EXT123 T
R D WRITEC6,9992) R1,R1,R2,R2 .
- 9992 FORMATC’ RO=°,D15.9,° Rt=",D15.9,° R2=",015.9,° R3=",D15.9) N
RETURN —
END . 7
[ o
- c o
- SUBROUTINE LICP1,P2,P3,A,B.C,0,ELS0,ELST,ELS2,ELS3) ~]
. REAL*8 EX1,EX2,EX3.EX12,EX13,.EX23,EX123,PI,0DT -
. REAL*8 P1,P2,P3,A,B,C,D,ELS0,.ELSt,ELS2,ELS3 -
~ real*8 avk,el,sigma,v o
. COMMON/CFF/ SIGMA,V,ITER,AVK,EL,DT,PI i
Ve COMMON/EXPBL, EX1,EX2,EX3I,EX12,EX13,EX23,EX123 X
L INTEGER*4 ITER
24 ELSO = 1,D0
ELS1 = EX1 + EX2 + EX3
. ELS2 = EX12 + EX13 + EX23
- i ELS3 = EX123
S RETURN
. END

.- .
---------
............
------------------
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r
c‘:-l
~d
c o~
fﬁ‘ BLOCK DATA EX o
REAL*8 DT,PI,E¥1,EXN2,ERXRI. ER12,EX13,EXH23,EX123 .
INTEGER*4 ITER o
real*8 avk,el,sigma,v <
COMMON/CFF/ SIGMA,Y,ITER,AVK,EL,DT,PI i
COMMON/EXPBL/ EX1,EX2,EX3,EX12,EX13.EX23,EX123 ﬁ
END :ﬂ
<
= : ~
c ]
subroutine random (sig,.xb,xdp,xp,ix, iy -
real*8 xp,a.xdp,sig.,xb o
integer iy.ix,j =
- c ..
o a=0.0 if
- do 30 j=1,12 T
= C .-

B iy=ix*65539 e
" ifdiy) 10,290,290 sl
) 10 iy=iy+2147483647+1

o 29 xp=iy "
s Xp=xp/2147483647.d1) -
o) ix=iy
3 30 a=a+xp

3

. . o
. xdp=C(a-6.0)*sig+xb o]

SR return 3
= end o

‘-‘."-f‘.‘ N Sy .\" o Hn".‘l' T '}:-' '-'_ ® AR A AR v Lo LN a"..‘_.-'...‘\-'.‘l‘. e
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PROGRAM DTRHNS

sopokoeokobolkokkokkokkkkx TREAMSVERSE  sorskokskkdokok kol sk b g

THIS PROGRAM GENERATES "TURBULENCE"™ USING A 3-4 RATIONAL
APPROXIMATION TO THE VOH KARMAN TRAMNSYERSE SPECTRUM.

PROGRAMMER: DR. WARREM CAMPBELL <(MASA MARSHALL SPACE FLIGHT CENTER)

REVISOR: DAVID EDGEMON CCONTROL DYMAMICS CO.)
DIMENSION IPAR(S) .
s REAL*8 YO0,Y1,Y2,Y3, YH, X0, X1,42, X3, %4, ELSN,ELS1,ELS2, ELS3, ELS4 ]
i= & LRD,R1,R2,R3,R4 B
& ,OT,PL.EN1,EX2,EX3,ExX4,EX12,.EX13,EX14,EX23, EX24,EX34,EX123,EX124

COOO0O00O0O00

2

hoa

.- & LEX134,EX234,X1234

-~ REAL*8 P1,P2,P3,P4,21,22,23,A4,B,C.D,F,XK1,5UM,SUMSQA, YBAR, YZ2BAR
real#*8 avk,alpha,el,si.sigma,v,time,yp

INTEGER*4 ITER,NPTS

P
e A A Al

AR 5 I
P

c
. real*8 sig,xb,xdp.xp Li
) integer ix,iv,irow,icol o

c L
integer nrec,j ::

real outv(2) e

c : o

~~ COMMON/CFF/ SIGHMA,V.ITER,AVYK.EL,DT,PI -
- COMMONA/EAPBLY EXR1,EX2,EX3,ERX4,EX12,EX13,EX14,EX23,EX24 -
&,EX34,.EX123,EX124,EX134,EXZ234,¥1234 -

c CalL RMPARCIPARY n

e il e atatabte et e add )

c LUPRT = IPARC1? R

L e e e - -

- o
. c -
- open(unit=1,form="unformatted’,file="plott.dat’,access="direct” -
- &,recl=4) -
- openfunit=2,file="plot2.dat "> g
- open(unit=3,file="time.dat”’) o

c

- irow=90 -

2 icol=2 "

N < 3
{ write(é,*}) ‘enter standard deviation for random numbers’ P

read(5,*) sig

writel(6,*} ‘enter mean of random numbers’
read(S5,*) xb

write(s,%) ‘enter seed for random numbers’
read{S,*) ix

P
L N N

.
-

c
WRITEC6,5999)

5999 FORMAT( " EMTER MPOINTS )

READ(S,*)> NPTS

.
.\"‘r"r "- ... .’-.'-: g oW

.
L]
ele )

" o c
Y C SET UP CONSTANTS

o e
o

T

el
. A.‘l
a el t

rd
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AvVK = 1.339

. WRITE(H,7998)

(: F998 FORMATC " EMTER DT IN COUBLE PRECISIONT?
READ(S.*) DT
PI = 4.%DATANCT . DY)
ITER = 0
sSuM = 0.D0
sSuMsR = 0.00D)
WRITE(6,7999)

7999 FORMAT( " ENTER SIGHMA )

READCS, * > SIGHMA
St = SIGHA

D WRITEC6,8999) PI
8999 FORMATC PI=",D15.10)
c
C INITIALIZE THE XS AND Y'S
c
CALL IMITaldy¥Yn,¥1,¥Y2,¥3.%¥0,X1,X2,X3,X4,TIME, ITER)
D WRITE(6,8998 TIME
8998 FORMATC " TIME="',Ft0.5)
c
C GET SIGHMA, V¥V, AND TURBULEMY LENGTH SCALE
c
1950 CONMTINUE

CALL SVL{(SIGMA,V,ELZ
ALPHA = V*DT/EL
SIGHA = S1/C¢1.233*ALPHA**B, 45978

- D WRITECE,8997)

e 8997 FORMATC * SVL )
c
C CALCULATE POLES AHD ZERDES
c

CalLL PANDZ(P1,P2,P3,P4,21,22,23)

D WRITEC6.8996) P1,P2,P3,P4,21,22,23
8996 FORMAT(’ POLES=’,4¢2%,D15.9)>/° ZEROES=",3¢(2X,D15.9))
c
C CALCULATE COEFFICIENTS
c
CALL COEFF(P1,P2,P2,P4,21.,22.23,A,B,C,D,F,XK1)
D WRITE(6,8995> A,B,C.D.F, %K1
- 8995 FORMATC* COEFF A,B,C.D,F.XKi=",6C2KX,E15.9,>
|: . c
Eg C CALCULATE RHS DIFFERENCE EQUATIOM COEFFICIENTS
o c
b CALL RICP1,P2,P2,P4,A.B,C,D.F,RD,R1,R2,R3,R4>
p D WRITE(6,8994) RD,R1,R2,R3,R4
o 8994 FORMAT(  RI=",5¢(24%.D15.9))
e c
P C CALCULATE DIFFERENCE EON LEFT SIDE COEFFICIENTS
e c
;* CALL LICP1,P2,P3,P4,A,B,C,D,F,ELSD,ELSY,ELS2.ELSZ, ELS4)
e ] WRITEC6,89932) ELSD,.ELST,ELS2 ELS3,ELSY
e 8992 FORMATC " LI=",5¢24,015.97)
] Cc
o C ITERATE
. c
b
NI I IE ST IEIEN e e g L N N o e e e i ey

D A N
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YN = ELST1*Y3 - ELS2aY2 + ELSIZ#Y1 - ELS4%Y) + RO*X4 - RI1%43 + R2xK2
) & ~ R3w*X1 + R4*¥1)
on ITER = ITER + 1
(;. SUM = SUM + YN

SUMSQ = SUMSQR + YMN*YH

YeakR = SUM/ITER

Y2BAR = DSQRT(SUMER/ITER -YBAR*#2)

D WRITECE,.8900) ¥3,¥Y2,.¥1,YD,X4,X3,H2,X1,¥0

8300 FORMATC " ¥Y3,¥2,Y1,Y0=",4C2%,D135.9)/°,X4,.4K3,%2,X1,¥0=",5C2X,D15.9)>
Yo = Y1 -
Y1 = y2 =
Y2 = Y3 .
Y3 = YN o
Xy = Xt -]
X1 = X2 ]
®2 = ¥3 .
H3 = X4 e

call random (sig,xb,.xdp,xp.ix,iy) o

X4 = udp e

b WRITECE,9998) X4 -}

9992 FORMATC( " RAMNDOM HUMBER=",F1D.6) ;;

TIME = TIME + DT
YP = YN
WRITE(6,999%) TIME,YP

v
.

N

write data to plot files

nn

- outw(i)=time

T outvw({2)i=yp
do 1234 j=1,icol
nrec=nrec+i
writel(l,rec=nrec) outv(jd

1234 continue

write(3, (212.737) vp
irow=irou+i

]

c v
9999 FORMAT!® TIME=",E12.6,° =',E15.9) :{
IFCITER .LT. NFTSJ GO TD 100 =4
WRITE(H,9980 ) MPTS, YBAR,Y2EAR
9988 FORMATC” NPTS=",18," YBAR=",D15.9,° Y2BAR=",D15.9) 7
[ IFCLUPRY EG@. B> EMDFILE 8 :ﬁ
[ *0
write(2, ‘¢2i5)°) icol,irow Ii
write(2, ‘Cag)’ ) “time” é}
write(2,°CaB’’ ) ‘turb’ —
c <
STOP N
END :;
c 4
c ¢4
SUBROUTINE INITald¥YN,¥1,Y2,¥Y3,40,%1,%2,X3,%4, TIME, ITERD —
REAL#*8 Y0,Y1,Y2,Y3,X0,%1,X2,%3,%4, time e
o INTEGER*4 ITER R
ot X0 = 0.D0 3
X1 = 0.D0 %
B
DRTE TP PR Rt S R R R TSI
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PR RPN

TR

X2 = 0.DV
- ®3 = 0.0D0
. Yo = 0.D0
Y1 = 0.D0
¥2 = 0.DD
Y3 0.0D0
TIME = 0.
ITER = 0
RETURN
END

SUBRDUTINE SVL(SIGMA,V.EL)
real*8 sigma.el.,v

V = 100,
EL = S500.
RETURN
EMD s
c
c
SUBRDUTINE PANDZ2(P1,P2,P3,P4,21,22,23)
COMMOM/CFF/ SIGHMA,V.ITER,AVK.EL,DT,PI
REAL*8 P1,P2,P3,P4,21,22,23,C,P1,DT,PIP,P2P,F3P,F4FP,21P,22P,23P
real*8 avk,el.sigma,v
INTEGER#*4 ITER
DATA Z21P/-1.46821076D00/,22P/-5.388932143D0/,23P/-0.61237243¢D0/
& ,P1P/-1.,02025052D0/
P9P/ 1.67661537100/,P3P/-8, 104133:00Ua,P4Pr 1.00/
C = V/CAVK*EL)D
P1 = Pi1P%xC
P2 = P2PxC
FP3 = P3P*C
P4 = P4PxC
21 = 2iP*C
22 = 22P=%C
23 = 23P*»C
RETURN
END
c
c
SUBRDUTIME COEFFCF1,P2,P3,P4,21,22,23.A,B,C.D,F,XK1)} o
COMMOM/CFF/ SIGHMA.V,ITER,AVK,EL,DT,.PI N
REAL*8 P{,P2,P3,P4,21,22,23.A,B,C,D,F,XKt,DT,PI o
realx8 avk,el,sigma,v N
INTEGER*4 ITER "
AK1 = SIGHA*DSRRTCEL/C(V*PI)) —
K1 = RK1%{-P1%P2»P3%P4)>/(21%22%23) e
A = XKI*(P1=-21)%(P1-22%(P1=-23 2/ (P1*(P1-P2)>*%(P1-P3)>*(FP1-P4)) f:
B = XKKI(F2-Z21 ) % (P2~22)%(P2-23)/(P2*(P2-P1»*(P2-P3»{P2-FPd4)) =
C = XKI#(P3I-21)>%(P3-22)%(P3-23)/C(P3*(PI3-P1>*(P3I-P2O%(P3-FP4)) ]
D = XKKi1*(P4-21)>%(P4~22)%(P4~-23)/(P4%x(P4-P1 Y*(P4-P2#(P4-P3 ) }}
F = =XK1%21%22+23/(P1*P2+2F3+%F4) 11
RETURH oy
END .::
c N
&)
c Y
r'.]
Aoy
o
4




9999

9398

9937

9980

9996

.V,
KRR N N

9995
RS 9989

9994

9970
i 9969
9993
9968
9967
9966

9965
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SUBROUTINE RICPY,PZ,P3,P4,A,B,C,D,F,R0,R1,R2,R3,R4)
COMMON/CFF/ SIGHMA,Y,ITER,AYK,EL,DT,PI1
COMMON/EXPBLZ EXY,EXZ,EX3,EX4,EX12,EX13,EX14,EX23,EX24
&,EX34,EX123,EX124,EX134,EX234,K1234
real*8 avk,el,sigma,v
REAL*8 DT.P1l,Pt,P2,P3,P4,A,B,C,D,F,R0O0,R1,R2,R3,R4,EX1,EX2,EX3,
& EX4,EX12,EXI3,EX14,EXK23,EX24,EX34,EX123,EX124,EX134,EXK234,K1234

INTEGER*4 ITER

EX1 = DEXP{PI1%DT)
WRITEC(E,9599) EX1
FORMATC * EX1=",D15.9)>
EX2 = DEXP{(P2%DT)
WRITE(6,9998) EX2
FORMATC © EX2=",D15.9)
EX3 = DEXP(P3%*DT)
WRITE(6,9997 ) EX3
FORMATC © EX3=",D135.9)
EX4 = DEXP(P4%DT>
WRITE(6,9980) EX4
FORMATC * EX4=",D15.9)
EX12= DEXP((P1+P2)+DT)
WRITE(6,9996> EXt2
FORMAT( © EXt2=",D15.9)>
EX13= DEXP((P1+P3)>%DT>
WRITE(6,9995) EX13
FORMATC © EXt13=",015.90

EX14 = DEKP({PI+P4)*DT>

WRITEC(S,9989) EXid
FORMATC © EX14=°,D15.9)
EX23= DEXP{(P2+P3>*DT)>
WRITE(S,9994) EX23
FORMATS © EX23=",D15.9)>

EX24 = DEXP({P2+P4)%DT)

WRITE(6,9970) EX24
FORMATC © EX24=°,D15,9)

EX34 = DEXP({P3+P4)%DT)

WRITEC6,9969) EX34
FORMATC ° EX34=",D15.9)

EX123= DEXP({P1+P2+P3>*DT)

WRITE(S,9993) EX123

FORMATC * EX123=",D15.9)
EX124 = DEXP{(P1+P2+P4)%DT)

WRITE(6,9968) EX124

FORMATC © EX124=°,015.9)
EX134 = DEXP{(P1+P3+P4)%DT)

WRITE(6,9967) EX134

FORMATC © EX134=",015,9>
EX234 = DEXP{(P2+P3+P4)«DT)

WRITE(6,9966) EX234

FORMAT( * EX234=',D15.9)
X1234 = DEXPIC(P1+P2+P3+P4)%DT)

WRITE(6,99865) X1234

FORMATC © X1234=°,D15.9>

RO = A +B +C + D+ F
WRITEC6,9960) RO

...............
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Y
3
9960 FORMATC® RO=',D15.9) ¥
. [ o
(:f RI = A%(1, + EX2 + EX3 + EX4) + Bx(1. + EX1 + EX3 + EXd4) Y
& + C*(1. + EXY + EX2 + EX4) + Dx¢1, + EX1 + EX2 + EX3) .
& + F#(EX1 + EX2 + EX3 + EX4) N
D WRITEC(6,9959) RI Y
9959 FORMAT(’ Ri=’,D15.9) ;}
c o
R2 = A*C(EX2 + EX3 + EX4 + EX23 + EX24 + EX34) el
& + B#(EX! + ENX3 + EX4 + EN¥13 + EX14 + EX34) :j
&  + C#(EX! + EXZ + EX4 + EX12 + EX14 + EX24) B
& 4+ D#CEX1 + EXZ + EX3 + EX¥12 + EX13 + EX23) "
& + F#CEX12 + EN13 + EX14 + EX23 + EX24 + EX34) -
D WRITE(6,9958) R2 v
9958 FORMAT(  R2=‘,D15.9) N4
[ a9 :'.:
R3 = A*CERX23 + EX24 + EX34 + EX234) -
& + B#(EX13 + EX)4 + EX34 + EX134) A
& + CxCEX12Z + EX14 + EX24 + EX124) g
& + D#CEX12 + EX13 + EX23 + EX123> 3
& 4+ F#CEX123 + EX124 + EX134 + EX234)
D WRITE(6,9957) R3
9957 FORMAT(‘ R3=',D15.9)
[
R4 = A*EX234 + B4EX134 + C*EX124 + D*EX123 + F#X1234
[ g
D WRITE¢6,9992) RO,R},R2,R3,R4 .
-~ 9932 FORMAT(® RO=°,D15.9,° Ri=‘,D15.9,° R2=°',D15.9,° R3=°
e &,015.9,° R4=’,D15,9)
RETURN
END
c
[
SUBROUTIMNE LICF1,P2,P3,P4,A,B,C,0,F,ELSO,ELS!,ELS2,ELS3,ELSY)
COMMON/CFF/ SIGMA,V,ITER,AY¥,EL,DT,PI -
COMMON/EXPBL/ EX1 ,EX2,EX3,EX4,EX12,EX13,EX14,EX23,EX24 o
&,EX34,EX123,EX124,EX134,EX234, %1234 B
real*8 avk,el,sigma,v -
REAL#*8 EX1,EX2,EX3,EX4,EX12,EX13,EX14,EX23,EX24,EX34,EX123 .
& ,EX124,EX134,EX234,%1234,PI,DT "
REAL*S8 Pt ,P2,P3,P4,A,B,C,D,F,ELSO,ELSY,ELS2,ELS3,ELSY
INTEGER*4 ITER
ELSO = 1.D0
ELSt = EXY + EX2 + EX3 + EX4
ELS2 = EX12 + EX13 + EX14 + EX23 + EX24 + EX34
ELS3 = EX123 + EX124 + EX134 + EX234
ELS4 = X1234
RETURN
END
c
c
BLOCK DATA EX
COMMOMN/CFF/ SIGMA,Y,I1TER,AVYK,EL,DT.PI
o COMMOMN/EXPBL/ EX1,EX2,EX3,EN4,EX12,EX13,EX14,EX23,EX24
e &,EX34,EX123,EX124,EX134 ,EX234,%1234

real«8 avk,el,sigma,v

..........................
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REAL*8 DT,PI1,EX1,EXZ,EX3, EX4,EX12,EX13,EX14,EX23,EX24 ,EX34,EK123
& ,EX124,EX134,EX234,X1234

INTEGER%*4 ITER

END

subroutine random (sig,xb,xdp,xp,ix,iy)
real+*8 xp,a,xdp,sig,xb
integer iy,ix,J

a=0.0
do 30 j=t1,12

iy=ix*65539

if{iy> 10,20,20
iy=iy+2147433647+1
xp=iy
Xp=xp/2147483647.d0
ix=iy

a=a+xp
xdp=Ca-6.0)4#sig+xb

return
end

e % e e ”

*, LN A

v
W
AT

B Y Y
i

oo r,
.
o ¢
S

."‘-‘:.I I '-".’l‘.";"‘.'.‘r". " I_'. L",l"s"‘.. "'.:I - t’. ‘v“_l‘.-.;-‘:.‘

N
LN

e r
o v e

RS Al ¢
‘-‘v.-_;"

L PR

a

1

.'_.‘..‘_.71 S
a2ty o 'elel0 e 0

l-..‘

T

(9]

T’




B S — - - T v v
A A R S R T R R T T W P W PV o o T r e r e v —v

’
k<
.
-

: - 82 -
L |
- 14, LIST OF ATTACHMENTS 5
< 1. Barr,N.M.,Gangaas,D. and Schaeffer,D.R.,1974, Wind : ﬁ;
- Models for Flight Simulator Certification of Landing -~
and Approach Guidance and Control Systems, Boeing B
Commercial Aircraft Co., TRAIS-45149 <3
'7,:
2. Campbell,W.C.,Monte Carlo Approximations to von Karman qf
Spectra, Systems Dynamics Laboratory, NASA, Marshall -
Space Flight Center =
3. Essenwanger,0.M and D.A.Stewart,1983. Wind Speed, ;4
Stability Category, and Atmospheric Turbulence at b
Selected Locations, Research Directorate U.S. Army :
Missile Laboratory Technical Report RR-83-2 .
4. Turner,R.E. and C.K.Hi11,1982,Terrestrial Environment -
(Climatic) Criteria Guidelines for Use in Aerospace
Vehicle Development 1982 Revision, NASA, NASA
: Technical Memorandum 82473
3 5. Wang,S.T. and W.Frost,1980. Atmospheric turbulence
- Simulation Techniques With Application to Flight
- - Analysis, NASA Contractor Report 3309

-
pd

R |

vt

o 1" ." "~

I
[ o

‘,

. . "‘-.‘-v. L,
RIS B AR

P A 0 IR A S
-."' SR .Jn)

A
»

O AR A | MU
_.l )

o, 4

KRS D7

L/

s \ft,o\.l."\.
*
A0

-----------------------------------
---------------------------------------------
..........
...........




A IO SR L
2 U(u.F‘h Py GUVEISNMON D b AT NS&

- END

“

T e e ‘-,.;}},-“, AEIASISOAN .\.'-A.\..\,.\..\..s.l

v «© r e
B DOSDEND

T
o b ‘e

Y

FILMED

- 6—-85

TY

.

¢

A

O
-
o

s
[

3.
ey
LN

>
’

A rad s

ot s SO LA R S T O

et *e .t e te w L L aCa L A "t




