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PREFACE

I have always been interested in fluid flows and ways
of analyzing them. When I was offered the opportunity by
Maj Hodge to investigate a method of analyzing the
nonisothermal wall effect in hypersonic flow, I was both
excited and interested in the project. The study itself was
intended to be a proof-of-concept for the numerical methods
used and a stage to show the aerospace industry that the
nonisothermal wall effect is important and can be included
in design analyses. While the results of the thesis have
shown that the particular method used is not the optimal
approach, I feel that the objectives of the study have been
met.

Attempting any project of this size creates a long list
of indebtedness; the fact that is was necessary for me to
continue the effort after leaving AFIT only lengthens that
list. One of the most important people, of course, has been
my advisor, Maj James K. Hodge. His insight, direction, and
especially patience have been invaluable to me in completing
this project. The help I received from Dr Urmilla Ghia of
the University of Cincinnati while she was at AFIT as a
Distinguished Visiting Professor, and from Dr Wilbur Hankey
and Dr Joseph Shang of the Flight Dynamics Laboratory at
Wright-Patterson AFB has been valuable and illuminating. I

thank Dr Ghia for introducing me to the rigor necessary to

ii




3; f&f wrest correct results from recalcitrant equations. Drs

f; . Hankey and Shang were invaluable in helping master the
:; nuances of computational fluid dynamics.

:; Finishing a thesis after leaving AFIT requires the
\ active support from the people you work with. First on this
:f list is my branch chief, Mr Ed Barth. Without his active

fi support of my studies, this thesis would not have been
‘ completed. Drs Phil Kessel and Joseph Baum have been very

. helpful in aiding and critiquing my efforts. Finally, the
E; people in my section, who understood when their section
j chief was somewhat preoccupied at times.

'; The most important acknowledgment has been saved for
: last. It is an oft-stated truism that "I couldn’t have done

B (e it without my wife." This is a truth that repetition cannot
il dim. Mary has been at my side throughout AFIT and after,

§ egging me on, supporting me, and showing me that someone
. else cared, too. More than anyone else, Mary, this one's
2: for you. And to David, who shouldn't have but did.

Eﬁ Timothy K. Roberts
.
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ABSTRACT

Wwind tunnel tests of Space Shuttle Orbiter insulating
articles have demonstrated the presence of a nonisothermal
wall effect, which is a lag in heat transfer recovery after
the flow passes over a surface temperature discontinuity
resulting in a downstream transport of energy. Theoretical
analyses and numerical simulations of hypersonic flow over
discontinuous nonisothermal surfaces using boundary layer
theory have also indicated the presence of this effect.

This thesis studies the nonisothermal wall effect by
modeling the hypersonic flow over an inclined wedge with a
discontinuous nonisothermal surface. The flow is modeled

Q. using the two-dimensional Navier-Stokes equations., MacCor-
mack's method is used to solve the Navier-Stokes equations.
The ,program used to implement these methodologies is discus-
sed and a listing given. A semi-adaptive grid is used to
represent the physical conditions of the problem. Heat
transfer is presented as a nondimensional ratio of the local

convective heat transfer coefficient to a reference heat

SR ”

transfer coefficient., _Z-s  «° = . . o ’ T ;/,m -
N »,"", !, )4 re , \‘<
The results of this study show that the nonisothermal
wall effect cn be successfully modeled using the two-dimen-

sional Navier-Stokes equations and MacCormack's explicit

method. The lag in the recovery of the convective heat

transfer coefficient is found to match lags seen in other
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analyses of the problem. Due to the high Mach number
modeled, a shock wave-boundary layer interaction is found to
have an effect on the heat transfer. A significant surface
pressure spike is found to occur downstream of the
discontinuity, which may be a result of the increase in size
of the momentum and thermal boundary layers at the
discontinuity.

The study concludes that the nonisothermal wall effect
can be adequately modeled by the two-dimensional Navier-
Stokes equations; that the shock wave-boundary layer
interaction does have an effect on the heat transfer; and
that the occurence of a spike in surface pressure may be a

unique result of the nonisothermal wall effect. Significant

Go

resommendations include the need for further study of the
nonisothermal wall effect, the need to use more optimal
grids and solution methods, the need to more thoroughly
investigate the shock wave-boundary layer effect, and the
need for further study of the surface pressure response to

the nonisothermal wall effect,
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A NUMERICAL SOLUTION OF A NONISOTHERMAL WALL

USING THE TWO-DIMENSIONAL NAVIER-~-STOKES EQUATIONS

CHAPTER I: INTRODUCTION

BACKGROUND

The development and use of the Space Transportation
System has given rise to some unanticipated problems in
reentry aerodynamics. The fact that the flow field over the
Orbiter is laminar during reentry down to Mach 8 permits
some phenomena usually masked by turbulent flow to become
evident. One such phenomenon which significantly affects
the flow and the heat transfer is the nonisothermal wall
effect. This effect occurs when flow passes over a surface
composed of two or more materials of different thermal
response, The nonisothermal wall effect occurs at numerous
locations on the Orbiter's surface. One such location is
the junction between the reusable carbon-carbon (RCC) nose-
cap and the reusable surface insulation (RSI) tiles. The
flow must pass over a discontinuity in wall temperature due
to different thermal responses. Similar discontinuities
exist at numerous other places on the Orbiter's surface.

During reentries of earlier space vehicles such as
Apollo or ballistic missile reentry vehicles, the flow over
the vehicle was turbulent. The mixing inherent in turbulent

flow, augmented by the surface roughness of these vehicles,
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reduces the dramatic change in the wall heat transfer in-

"

£
4

duced by a nonisothermal wall condition. However, an Orbi-

ety

ter reentry is characterized by a laminar flow field over
) much of the vehicle's surface until the Orbiter has
Sf decelerated to about Mach 8; at that point, transition to
?; turbulent flow is abrupt. Thus, the nonisothermal wall
effect becomes evident., 1In fact, the localized scorching
and discoloration seen on Columbia, Challenger, and Discove-

ry seem to be caused by the nonisothermal wall effect.
Studies of wind tunnel tests of Orbiter insulating
articles have demonstrated the presence of this effect.
Theoretical analyses using boundary layer theory of
(; hypersonic nonisothermal walls had indicated that the
discontinuity in wall temperature would induce changes in
the flow. Numerical simulations using classical boundary-
) layer theory backed up these findings. However, the wind
p} tunnel tests indicated that when the flow passed from a
steel surface to a surface of Orbiter insulation material,
wall temperature recovery was much slower than that
20 predicted by either Eckert high-speed plate theory or boun-
}. dary-layer simulations. The data gathered in these tests
é. would seem to indicate that some other effect is at least as
important as normal diffusion in transporting energy.
First, axial diffusion of energy at a location where there

L4 , is a discrete change in wall temperature over an axial

distance of order less than the normal boundary layer
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thickness is one possible effect. Second, the viscous shock
wave - boundary layer interaction at hypersonic speeds
changes the pressure and heat transfer in an axial direc-
tion. These two effects have not been investigated on a

nonisothermal wall.

OBJECTIVE

The objective of this thesis is to numerically model
hypersonic flow over an isothermal and a nonisothermal wall
using the two-dimensional Navier-Stokes equations. The use
of the Navier-Stokes equations allows accurate modeling of
the axial diffusion if there is sufficient axial grid reso-
lution, The nonisothermal wall effect should be very
noticeable. This paper will attempt to show the effects of

the shock wave-boundary layer interaction and axial diffu-

sion of energy on the nonisothermal wall effect.
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CHAPTER II: THEORETICAL DEVELOPMENT

OVERVIEW

The objective of this thesis is to numerically model
hypersonic flow over a wedge with and without a discontinui-
ty in surface temperature. This chapter will discuss the
theory behind the investigation. The problem will be
described and possible avenues of investigation proposed.
The best method of solution will be selected and reasons for

that selection will be discussed.

PROBLEM DESCRIPTION

The physical problem to be modeled is a wedge in a
hypersonic flow field. The problem is described in Cappela-
no (1:2-5), Hodge et al (2:2), and Woo (3). See Figure 1
for a picture. A steel test article has a 6 inch by 6 inch
test plate inserted in it 7 inches behind the leading edge
of the test article. Cappelano reviewed and interpreted
wind tunnel test data for three types of inserts: a thin
steel plate (for calibration), a piece of high temperature
reusable surface insulation (HRSI), and a piece of flexible
reusable surface insulation (FRSI). Woo reduced the data
for the HRSI and the FRSI test runs. Each insert was in-
strumented with varying numbers of surface thermocouples to
record the axial surface temperature distribution. The FRSI
insert had the most thermocouples and hence the most com-
plete set of axial surface temperature readings; thus, the

FRSI insert is modeled in this study. Only one angle of
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attack is simulated in this study; restrictions on computer
time required that excursions to other angles of attack be
deferred to later studies,

The flow conditions modeled were as follows: a
freestream Mach number of 14.24, freestream stagnation tem-
perature of 2000 degrees Rankine (deg R), and a wedge incli-
nation angle of 3 degrees. The combination of high Mach
number and stagnation temperature produce a very low
freestream static temperature of 48 deg R; several problems
will arise from this. One of the immediate ones is that
gradients will be very steep in the boundary layer,
requiring significant resolution over a very thin layer,
Another problem is that any numerically-induced waves could
easily cause temperatures just in front of the leading edge
to become negative in the computations, thus causing the

solution to stop.

AVENUES OF INVESTIGATION

Several avenues of investigation are available to solve
a problem such as this, depending on the desired results,
Approaches fall into two broad categories: boundary layer
solutions and Navier-Stokes solutions. Both approaches will
be examined in some detail below. Boundary-layer oriented
solutions offer a relatively fast solution, but at the
expense of some details of the flow. If the problem is such

that those approximations cannot be accepted, then the
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investigator must use methods of increasing complexity,
collectively known as the Navier-Stokes family of solutions.

There are several levels of complexity within the fami-
ly of Navier-Stokes solutions. Slightly more complicated,
but consequently more realistic, are the parabolized Navier-
Stokes equations. Beyond that are the "full" Navier-Stokes
equations in two or three dimensions. For reasons to be
explained in more detail below, a two-dimensional Navier-

Stokes solution was selected for this problem,

BOUNDARY LAYER SOLUTIONS

Boundary layer solutions depend on Prandtl's boundary

layer theory. The approximations made by this theory are

(;‘ such that, in most cases, the solution resulting from boun-
dary layer theory is very close to the actual flow field.
This is especially true in low Mach number or incompressible
flows. At hypersonic Mach numbers, the boundary layer ap-
proximations tend to give results that diverge somewhat from
the actual flow field, especially when there is an interac-
tion between the oblique shock and the viscous boundary
layer.

The boundary layer equations developed by Prandtl make
several important assumptions. These assumptions follow
from some basic observations about the nature of any flow
field. The boundary layer is defined as that region near

the surface of the body in which the flow velocity increases
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from zero at the wall (due to the viscous nature of fluids)
to the freestream velocity at some distance from the body.
Experimentation has shown that this distance, the boundary
layer thickness, is normally quite small compared to other
characteristic lengths of the problem, Prandtl's boun-
dary layer equations can be derived from the full set of the
two-dimensional Navier-Stokes equations using order of mag-
nitude analysis. The variables used will be assumed to be
in nondimensional form. For example, the axial velocity
component is nondimensionalized with respect to the
freestream velocity and has an order of magnitude of one.
Likewise, the axial length is nondimensionalized with
respect to the length of the wedge and is of order one. The
normal length is nondimensionalized with respect to the
boundary layer thickness, delta. Thus, it has an order of
magnitude of delta. With these building blocks, the two-
dimensional Navier-Stokes equations can be reduced to
Prandtl’s boundary layer equations.

Consider fgrst the continuity equation:
w) B) .
ol gy‘f’v) = 0 (2.1)

! ?

l (
The appropriate order of magnitude has been written below

each term. 1In order to maintain the continuity equation, it
can be seen that the order of magnitude of the normal velo-
city component, v, must be delta.

Next, consider the axial linear momentum equation:

Lt et w R Y P . R S T P
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The stress tensor terms 011 and ’tlz are defined as (4:61):

.- Logs duw _ ,z:c)\/_
On = P‘Re 3 I 3 —b—:{) (2.3a)
b e | dy (2.3b)
}\(7__ Re(d\( c)“)

Substituting these terms into Eq. 2.
i

2:
2 2 * L4y 2 v
TAtat e (f“*?"u(%ﬁ‘ 23]
2
b

\

—-l,—
on
!

) (2.4)

The appropriate order of magnitude has been written under
each term for which it is known. By discarding those terms
with orders of less than one (i.e., orders of delta and its

multiples), the axial linear momentum equation becomes:

dw o 9 PR 1 L
Hox TV T T T P Re By 23

Now consider the normal linear momentum equation:
3 b} 9 2 .
DR (R DR (pv=c;,) = 0 (2.6)

The new stress tensor term 612 is defined as (4:61):

4 v ;é\})

_ \
GZL: P*Re(ga—\; - 2 I (2.7)

Substituting for the stress tensor terms yields:

p) p) LS
S’t(f)\/) + S’;( [puv - ke(d\/ + % )]
2 \ b

2 Y Iv _ 2 Idw -
(et (3322 <o

where the orders of magnitude were again written under each
term, as usual. The only term to survive in this equation

is the partial derivative of pressure in the y-direction:

e

il




= (2.9)

Jy
Finally, consider the energy equation:

S LoaT N "
;R(PC)* [?Ut Pkiax"“°n’ Y oGo

» L ov ~ -
. Lovt'P( - _‘;‘I - WA <\L*\/Ln—] (2.10)

Subjtltutlng once more for the stress tensor terms:
2 ue - - 24 ig:_%'b/_
at(f)t) v [p ¢ \11 ()x ‘*{ RL 3 9%

33y
T % o vR
Lodw 9oV 2 . ALY 1ode Jy 2.11
V{Re(si 31 1 8 [ ve R 2y “‘*{Qe(??"?)i ( )
T 1 \ | - {
5 5 T 2 T b S S,Lg %
U4y _ Zow _
“\I(‘P *Re (3:;} BVa*)ﬁh] = 0
T
S S % :

the order of magnitude are once again listed under each term

for which they are known. The resulting equation is:

E*ua—t—,’* ae‘ ua? _' QIT

-

wn
ot dx 37 f’a* /;P,le.a * +!m(3—7-) (2.12)
This is equivalent to the usually accepted boundary layer
energy equation.

Egs. 2.1, 2.5, 2.9, and 2.12 show explicitly the major
assumptions in Prandtl's boundary layer theory. Eq. 2.1
shows that the dominant velocity term is in the axial direc-
tion; it will dominate the characteristics of the boundary
layer. Eq. 2.5 reinforces this point and, along with Eq.
2.9, shows that the pressure distribution in the boundary
layer varies only in an axial direction. The surface pres-

sure is virtually equal to the impressed freestream pres-

sure. Any shock wave-boundary layer interaction is ignored
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by this assumption. Finally, Eq. 2.12 shows that virtually

all the heat transfer occurs in the normal direction, with
almost no axial diffusion. The consequences of Eq. 2.12 are
that A x is of order one, But if Ax is of order delta, such
as across a discontinuity in wall temperature, the axial
diffusion of energy is neglected, It should be noted that
these results are best applied to incompressible or low-

speed compressible flow problems.

REASONS FOR DISCARDING BOUNDARY LAYER SOLUTIONS

Boundary-layer oriented solutions were discarded a
priori for this study for two basic reasons. First, the
temperature derivatives in the streamwise or axial direction
are ignored. Second, the boundary layer solutions do not
adequately model the shock wave-boundary layer interaction
that occurs at hypersonic Mach numbers.

The question of temperature derivatives is straightfor-
ward., Recall that this study wishes to investigate the
nonisothermal wall effect. One of the constituents of the
nonisothermal wall effect could be axial diffusion. Yet
boundary layer theory ignores axial diffusion. Therefore,
nonisothermal wall effect cannot be properly investigated
with a tool that ignores axial diffusion.

The interaction of the leading edge shock wave and the
boundary layer is a important part of the the flow field

structure, Such shock wave-boundary layer interactions have
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long been recognized as important; see, for example, an

early article by Nagamatsu and Sheer (4:454-462). In this
article, Nagamatsu described how induced surface pressures
from the interaction were as high as twelve times the
freestream pressure for a similar freestream Mach number.
Clearly, in such an environment, boundary layer assumptions
break down and more realistic models must be used. These
two factors were the greatest contributors to discarding

boundary layer solutions for this effort.

NAVIER-STOKES SOLUTIONS

The method of choice for solving fluid flow problems is
solving the Navier-Stokes equations. Unfortunately, a
general analytical solution is not available for the
majority of applications; numerical solutions must be
resorted to, as they were in this study. 'Small-scale’
effects such as the nonisothermal wall effect can be seen
and their importance evaluated.

The Navier-Stokes equations used here are written in
conservative form, that is, in terms of p, fht, fv,

and pe. The full set of equations used are:

—

. ~ _
¢ 20N
:
pu P T Yy
o + pUv =~ T
F U L B
Fe_ /)ue,"?‘b?e Sx T W v
L .Jt L _lx

11

.« g " -~




. W ubiha e - Aallo el ndt anit Aad o Sadi Al Al Al td AR o

e - -
2 f)\l
(2.13)
PUN - ¥ -
- ‘\" te - N
ﬁ)vl_ Cro
v v ax ~
PN = P Re 3y Y ha T Viza
where:
: I YL Y B B PSS AP 1V}
? Su - (*>Rt(~3 ox 2 :y)
A 2- ] ~l_ (é&;ﬁ_éﬁ_) {2.13a)
a7 Re NIy Jx
- . Lo y49v | Zow
Gy, = P« RQ(BQ\( 53»)

ot

The grid used in this study is semi-adaptive; a complete
discussion will be given below. The code used tranforms the

‘ (o equations internally.

HEAT TRANSFER MODELING

r . .
o Heat transfer is expressed in this study as the convec-
tj tive heat transfer coefficient, h, also known as the film
'ﬁ transfer coefficient. It is defined as:

' 31

2 -k 3
o = Y il
Vo, © Taw (2.14)

3 and is expressed in Btu/ftz-sec—deg R. To be able to com-
;f' pare results with Woo (3) and Hodge, the convective heat
o transfer coefficient is nondimensionalized with respect to a
’ ~ reference convective heat transfer coefficient based on
A 12
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freestream quantities:

M)O /Q;x; "L.XJ ‘/L
(F— )

h > -

¢.3372L Q

rc{ (2.15)

Note that the only variable is the distance along the wedge
in feet, x. Thus, href is truly a reference condition at
any point along the surface of the wedge. According to
Eckert, for an isothermal wall and no viscous shock-boundary
layer interaction, the ratio of h to hiref is independent of
X,

In both quantities, the coefficient of viscosity,//g is
determined by Sutherland's law:

30
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Although Sutherland's law is generally considered to be
valid down to about 180 deg R (4:19), Hodge et al have
determined that Sutherland's law can be applied to lower
temperature flows with minimal error (2:2). The thermal

conductivity of air is computed by:

1%
k = —&—L_T]S 3 = 7 i::;r{— (2.17)
C o

with units of Btu/ft-sec-deg R. The Prandtl number is taken
to be constant, Pr = 0.72. Both the coefficient of viscosi-
ty and thermal conductivity are computed at the wall condi-
tions.,

Eckert's reference temperature, T*, can be used to

validate the use of Sutherland's law for computation of the

......
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coefficent of viscosity. T* is defined as (6:304):
— % T - -
\ = - ( Tt)*o.’ll.(\aW - TC) (2.18)

where T, is the boundary layer edge temperature (also equal

to the freestream static temperature behind the shock), and

T is the wall temperature (which will vary for the

w

nonisothermal wall). Adiabatic wall temperature, T,., is

defined as (6:301):

T © Tx[*%(Y-!)M:J (2.19)

where the recovery factor, r, is taken to be a constant, r

i

0.9. This is not the generally accepted definition; the
recovery factor is usually defined as the square root of the
Prandtl number. However, this alternative definition sim-
plifies computations, causes only a few percent deviation
from convective heat transfer coefficient computed with the
"traditional" recovery factor, and allows direct comparison
with Hodge's and Woo's results. T* is an empirical
correcting factor. Eckert found that if one assumes the
specific heats to be constant, one can use T* to correlate
many "exact" laminar boundary layer solutions to within a
few percent. It is also apparent that if T* is greater than
180 deg R, Sutherland's law is appropriate for the coputa-
tion of the coefficient of viscosity. 1In this case, T* is

equal to over 765 deg R. Thus, the use of Sutherland’s law

is justified.

14
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CHAPTER III: NUMERICAL SOQLUTION METHODS

OVERVIEW

This chapter will consider the generation and use of
the numerical grid and the numerical implementation of the
Navier-Stokes equations in NONISOCODE using MacCormack's

explicit method.

NUMERICAL GRID

The numerical grid used in this study was a semi-
adaptive grid. It was generated in such a way so as to
achieve two goals: a) maintain about ten points in the
boundary layer at all positions along the plate, and b)
maintain thirty points in the normal direction at all sta-
tions along the plate. The combination of these two goals
led to the use of a semi-adaptive grid.

The normal grid distribution was found to be the solu-

tion of the following differential equation:
? P
9 ~+Q§—\L = 0
™ "

The solution to this equation is:

\/MOy V- e G""l)

¥ e Tl

(3.2)

where y is the solved physical location of the normal grid
point, ypax is the highest physical grid location, 41 is
athe number of the grid point being solved for, M max is

the maximum number of grid points, and Q is the stretching




exponent,

The primary goal was to maintain about ten points in
the boundary layer at all stations in the streamwise direc-
tion. This was required in order to adequately model the
temperature inversion that exists there. An earlier phase
of this effort had shown that it is very easy to miss that
inversion if the grid isn't carefully planned, thus
rendering the results useless. The limit of ten points in
the boundary layer was set to keep the required stretching
down; NONISOCODE will not run a grid that has a stretching
exponent much greater than -0.15. Ten points was considered
an acceptable compromise between desired level of detail and
the requirements of the parent code.

The secondary goal of maintaining thirty points in the
normal direction at all stations was an objective of
convenience. It would have been possible to use forty,
fifty, or more points in the normal direction to achieve any
desired level of detail; however, the price paid is that of
increased run time for the solution and increasingly
unwieldy arrays. Use of more than thirty points in the
normal direction was considered unneccesary for the level of
detail desired. To do so would have required more modifica-
tions to the code; simple enough in theory but prone to
error in application.

Generating the grid was a trial-and-error process.

There were several known constraints., One was the minimum

16
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Ny lfﬁ height of the grid needed at the downstream edge of the
computational domain in order to pass shock and Mach waves
(i.e., not have them reflect off the far-field boundary).
Another constraint was the compromise between the number of
points in the boundary layer and the total number of points
éj in the normal direction mentioned above. It was decided
- that the grid should grow in the normal direction
proportional to the boundary layer thickness. Allowing Ymax
to increase while maintaining the same exponential stretch

and total number of points was done using this equation:

e V2
== Xi
GRIDY; = GRIDYref( ) (3.3)

Xref

. The normal coordinate is proportional to the square root of
(. the ratio of the current streamwise coordinate to a
reference coordinate. The constant of proportionality is
the reference normal coordinate, The choice of the
F reference coordinate is somewhat arbitrary; the driving
" factor influencing it is the location of the closest point
to the leading edge that allows ten points in the tempera-
ture inversion. For an exponential stretching coefficient
of 0 = -0.15, that location was X/L = 0. The actual grid
growth began at the leading edge; prior to that, the grid
used was a rectangular, regular grid for the three points in
the freestream ahead of the wedge. The rationale here is

-~ that freestream conditions are not computationally severe

and hence can be accomodated in a regular grid. Beginning
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“he semi-adaptive grid at the leading edge accounts for the
growth of the boundary layer.

Figure 2 is a plot of the grid used in this study.
Note that the initial gradient of the parabolic grid is
quite steep. This is because the boundary layer is growing
very quickly near the leading edge. Note also that the
steepest grid gradients are in the most benign flow region,
Near the leading edge, the shock wave is very close to the
surface and the boundary layer is very thin. Thus, at the
far-field boundary, the flow is essentially inviscid and at
freestream conditions. The stagnation region, the area of
sharp turning in the flow, and the shock wave are all pre-
sent in a region of relatively small grid gradients, not
unlike the gradients found elsewhere in the computational

domain.

MACCORMACK'S EXPLICIT METHOD

NONISOCODE implements the Navier-Stokes equations using
MacCormack's explicit method. MacCormack’s method is one of
the best known methods for numerically solving supersonic
and hypersonic flow problems. Originally presented in 1969
(8), the method has become widely used for many high-speed
problems.

The adjective 'explicit' refers to the fact that a

solution at any point in the flow is independent of the

solution at any other point at that time step. One of the

18
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distinguishing characteristics of super- and hypersonic
problems is that information cannot travel upstream, since
the flow velocity everywhere {(except in a very thin region
is

within the boundary layer) greater than the speed at

which flow information can travel - the speed of sound. 1In
the problem under consideration, the vast majority of the
flow to be solved is in the hypersonic flow regime with only
(but region in the subsonic regime.

a small important)

Thus, a solution method that is efficient in the hypersonic
regime is desirable. MacCormack's explicit method is an
efficient method at high velocities (i.e., super- and hyper-
sonic). It is true that a very important portion of the
flow to be solved is subsonic (the boundary layer where the
bulk of the heat transfer occurs). It is also true that
implicit methods are more efficient in subsonic regimes,
MacCormack's ex-

However, since the overall flow is mixed,

plicit method is the more advantageous overall,

DERIVATION OF MACCORMACK'S EXPLICIT METHOD
Recall the two-dimensional Navier-Stokes equations

derived earlier:

—

Mg dF 9 296 96 =
Y Sx g *“’(,341 g\’ 3¢ * 77571 = 0 (3.4)
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j MacCormack's method states that, if the solution Un .3 is
~.:J
- _ known at time t=n A t at each point in the mesh, then at
o . :
( time t=(n+l)AaAt the solution can be described as:
. n+l | n,
. ol o= Lo vy (3.5)
where £ ( At) defines these operations-
/i) "‘{ n At n BN
e - .,--—-F.,-~.
',\_k utd uL.J /5;( LJ Fl.\ (F \'lq
i
'.:: ne~\ \ . n '\' At “‘;l. "'%, (3.6)
Q RIS ITIIRS TS R
e R R vty
! \
wt e n
- = [(F . - z
AN ( Lt ‘:’( 3 )]
An example of the application of MacCormack's explicit
- method is shown by considering the computation of density:
,' Nnel n (3 7)
= PL,J' - i(ﬁt)P;J )
- Now we write Equation 3.7 in terms of its components:
o
[~ i f +
ne ‘ t ) At n
- - b _ "\' _ ot [()u) -G, ‘] {:f:u) - ((’m _ ] (3.8a)
L ij Pl-J ¢y Ay
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Thus, the two computations should proceed simultaneously.

TRUNCATION ERROR OF MACCORMACK'S EXPLICIT METHOD
The truncation error of MacCormack's explicit method is
second order, as mentioned earlier. This is true only of

the combined form:

O [T J) £ (w0 R
' At Leg d .1.:; Iut A ) (3.10)
T X (Fu‘ F ) - (FLJu F

By themséﬁbes,Jthe p&edlctor and cor{ec or are only first
order accurate. The use of backward space differencing in
the predictor and forward space differencing in the correc-
tor (or vice versa; as long as the directions are different)

allow the method to achieve second order accuracy.

STABILITY OF MACCORMACK'S EXPLICIT METHOD

The stability of MacCormack's explicit method has not
been analytically demonstrated yet. According to MacCormack
((9:3) and (9:152-154)), some insight could be derived from
approximations. For instance, one could linearize the Na-
vier-Stokes equations and then study the amplification of
Fourier components of the solution (9:152). Alternatively,

one could examine three separate parts of the Navier-Stokes

equations (inviscid, viscous, and mixed derivatives) and
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find stability conditions for each part (9:3). MacCormack

did postulate stability criteria as follows:

o%
sl = L2 Y /__.__—1- (3.11)
0 .=~ [ & Y
lulve P ( e an __&%_—)

This condition is usually called the Courant-Friedrich-Levy
(CFL) condition. The implementation of MacCormack's method
in NONISOCODE uses a form of the CFL condition computed at
each streamwise strip for different Ay's which ignores the
viscous contributions. The implementation in NONISOCODE is
also in transformed coordinates, so that its form is

somewhat different from that of Eq. 3.11.
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CHAPTER IV: PROGRAM DESCRIPTION

OVERVIEW

This chapter will discuss the t!''- primary codes used in
this study, NONISOCODE and STEADY. Each code will be
discussed in some detail. Listings of both programs can be

found in the Appendix A.

NONISQOCODE

The Navier-Stokes simulation code used in this study,
NONISOCODE, is a derivative of a code written by Dr J. S.
(.. Shang et al at the Flight Dynamics Laboratory (AFWAL/FIM),

- Wright-Patterson AFB, Ohio, A copy of the program listing
is found in Appendix A. This section will describe the

major parts of NONISOCODE and discuss special features in

the code developed for this study.

Program Overview

NONISOCODE is a two-dimensional Navier-Stokes simula-
tion designed for use with super- or hypersonic flows. It
uses MacCormack's explicit method to compute flow quantities
and includes a pressure damping subroutine to allow damping
of Gibbs phenomena. The code from which NONISOCODE was
adapted was originally designed to analyze three-dimensional

flow problems; the basic structure of NONISOCODE still
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reflects this. The original program was designed to compute
flow conditions for an axial 'page’ and then sum all the
'pages’' together for a three-dimensional flow solution,
This structure facilitated vectorization of the code for
parallel processor computers; however, it does run on 'sca-
lar' machines as well. NONISOCODE only computes two-dimen-
sional flows, but still retains the three-dimensional struc-
ture; thus, flow variables will be written as P(K,J,l1). The
inclusion of the unitary third dimension reflects the actual
two-dimensional nature of the problem. A brief discussion

of each subroutine follows.

Subroutine MAIN

This portion of NONISOCODE is the executive. It ac-
cepts input values, directs most subroutine calls, and out-
puts results. There are three output files., The first is
used to restart the computation from a given point in time,
This is done because a converged solution generally requires
about 40,000 iterations; most computer operating systems
have much lower time limits than implied by that number.
The second output file is tied to this restart capability.
In order to get a quick look at the state of the computed
flow field, this output file holds the most important flow
variables at each point in the field: density, velocity
components, pressure, temperature, and turbulent eddy

viscosity. In addition, there is a list of surface condi-
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tions for each grid point along the surface. The final file
is a graphical output file which is designed to interface
with several common graphics packages. This file contains
velocity components, temperature, pressure ratios, Mach

number, and density for each grid point in the field.

Subroutine EDDY

This subroutine computes the eddy viscosity matrix for
the flow field using the Baldwin-Lomax viscosity model.
However, since wind tunnel tests have shown that the flow
over the wedges modeled is laminar, this subroutine 1is
superfluous and is bypassed. Subroutine MAIN loads zero
values into the eddy viscosity matrix and does not call

EDDY.

Subroutine PREAMB

PREAMB is used to establish the initial conditions for
the solution of the Navier-Stokes equations. PREAMB estab-
lishes the freestream flow field over the entire
computational domain, thus giving an impulsive start to the
solution. As will be discussed later, the initial condi-
tions at the upstream boundaries permit the use of a wedge
angle. There is a provision for three points in the
freestream to allow the fourth-order damping routine to

operate in the stagnation region. The surface initial con-

ditions are no-slip. The downstream boundary is nonreflec-




tive, allowing waves to pass out. None of the other
boundaries are; this can be a cause of many problems if the

grid is improperly designed.

Subroutine TMSTEP

TMSTEP computes the CFL condition required for stabili-
ty of the solution. The CFL condition is computed for each
space step in a streamwise row of grid points. The minimum
time step in each row is selected and compared to other
minimum time steps 1in the grid from the surface to the far-
field boundary. The minimum CFL condition is then chosen as
the CFL condition for the entire flow field. It is then
multiplied by an input CFL factor (always less than one) to
guarantee numerical stability. A CFL factor is required
because the CFL condition only guarantees neutral numerical
stability and because the diffusion terms weren't included.
From this description, it can be seen that such a scheme is
inefficient with grids that are irregular or are highly
stretched, The minimum CFL condition will be based on the
smallest space step but will drive the integration step size
for the largest space step. Consequently, the solution will
slow down proportionally. This was the case in this study;
the grid used is semi-adaptive and exponentially stretched
in the normal direction. The CFL condition will be based on

space step sizes near the wall, while space steps at the far

field boundary are an order of magnitude larger.
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Subroutine BC

This subroutine sets the boundary conditions for the
solution, It is called for each iteration. The surface
boundary condition is the classical no-slip boundary condi-
tion; this prevents the investigation of possible slip flow
in the stagnation region of the wedge. All inflow boundary
conditions are Dirichlet boundary conditions where the
values of the flow properties are specified. The outflow
boundary (downstream) uses Neumann boundary conditions,
where the gradients of the flow properties are zeroc. Thus,
all inflow boundaries do not permit waves to reflect from
them (which isn't physically correct and can cause numerical
problems); having a shock wave impinge on the far-field
boundary, for instance, is a sure way to bomb the solution.
The downstream boundary does permit waves to be absorbed and
not reflected; a shock can 'exit' the downstream boundary
and not affect the solution. The use of Dirichlet boundary
conditions for inflow boundaries (upstream and far-field)
specify the minimum height of the normal grid; it must be

higher at the trailing edge than any waves that might impinge.

Subroutine TRANS

TRANS is used to transform the physical coordinate
system into a regular, rectangular grid for computation. A

generalized transformation is derived using the chain rule
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(assuming that a transformation exists, i.e., the Jacobian
A of the transformation is nonzero and positive). The
transformation scale factors (derivatives) are approximated

using second order central differences. The cutput from

[
. i

TRANS is a transformed grid matrix of scale factors used in

' RN}
et

all subsequent computations.

Subroutines PAGE, LETA(J), LZETA(J), SUM

This set of subroutines represents the application of
MacCormack's explicit method to the solution of the two-
dimensional Navier-Stokes equations. PAGE is a holdover
from the original three-dimensional version of the code; it
is essentially a controller for the following subroutines.
cy . LETA(J) computes the flow derivatives with respect to the
streamwise transformed coordinate eta; LZETA(J) does the
same with respect to the tranformed normal coordinate zeta.
SUM(J) sums both of those sets of derivatives for a final
solution. SUM(J) also calls the final subroutine, when

appropriate.

Subroutine DAMPING

DAMPING is used to control the generation of Gibb's
- phenomena (oscillations) in the solution. The type of pres-
sure damping used is an artificial viscosity. Although the
o Mach number modeled is quite high, the pressure damping

required turned out to be rather low, on the order of 0.4.
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SPECIAL FEATURES

Two special features were incorporated into NONISOCODE
in order to analyze the nonisothermal wall, The first is
the incorporation of the wedge angle. The original code
from which NONISOCODE was adapted could only consider
axisymmetric, zero angle flows. 1In order to perform this
study, wedge angles had to be included in subroutines PREAMB
and BC. In those subroutines, the velocity components U and
V were replaced by U cos 8 and -U sin §. Once the wedge
angle is included in PREAMB and BC, the flow solution will
include it from then on.

(‘ The other special feature included in NONISOCODE was
the ability to enter a step in wall temperature at any point
along the surface of the wedge. This required two modifica-
tions. The first was a major change in some of the logic in
PREAMB and BC. The step in wall temperature was included
with IF statements that keyed on where along the surface the
solution was. Before a certain point, T, would be T ;;
after that point, T,,- The second modification installed a
key, KG, which corresponds to the station of the wall
temperature discontinuity, in the input files and the code.
Thus, a user can set Tyir Twpr and KG to whatever is de-
sired; the wall temperatures can be the same (as was done in
this study for the isothermal wedge) or, for the same ef-

fect, KG can specify the trailing edge of the surface. Or,
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as was done for the nonisothermal portion of the study, the

discontinuity can be placed anywhere on the surface. 1In
order to preserve the generality of the code, Tw1 and Tyw2
are specified in separate statements that determine T,

which is then used.

STEADY

STEADY is the heat transfer code developed specifically
for this study. It is a simple code, but it does
incorporate some interesting points. A listing of STEADY
can be found in Appendix A.

STEADY is designed to read the restart files of NONISO-
CODE and extract the field temperature from them. It then
computes the reference convective heat transfer coefficient
to be used to nondimensionalize the convective heat transfer
coefficient. The convective heat transfer coefficient is
then computed. Again, the change in wall temperature is
accounted for (if the wedge is nonisothermal; if not, an
input value bypasses those lines). The coefficient of vis-
cosity is computed based on the wall temperature. Thermal
conductivity thus includes the varying wall temperature.

One particularly interesting aspect of STEADY is the
way the partial derivative of temperature with respect to
normal distance is computed. T, must be computed in the

Yy

transformed plane to maintain second order accuracy. As
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o noted before, T, can be represented as:
s o T T
[ ", ol ., 3 é;
I Y %

.o ;{' = (4.1)
Due to the physical grid used,

= 0, Thus, T, 1s now

¥~L y
- represented as:
. T ovV/d
- 5; - A (4.2)
7 29/ dm

l; This derivative can be computed as the quotient of two
three-point, one-sided differences with respect to eta.
Those differences are second order accurate.

There are two output files. The first prints a listing
of X/L, reference convective heat transfer coefficient,
[ local convective heat transfer coefficient, and the
_.5 nondimensional ratio H/H e g, The second output file is a
- . listing of X/L and H/H o¢ for use in plotting.

Convergence is determined by comparing the convective
heat transfer coefficient between NONISOCODE runs, which are

;“ usually 2000 iterations apart. If the percent difference

s between the two convective heat transfer coefficients is
less than 2%, the solution is considered to have converged.
o The difference between isothermal and nonisothermal convec-
tive heat transfer coefficients is determined in essentially

the same fashion. The equation used is:

o A - A
® ( new old

1}

) X 100% Difference (4.3)

Acld
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CHAPTER V: RESULTS

OVERVIEW

This chapter will discuss the results of the numerical
simulation of the isothermal and nonisothermal wedges.
There will be a brief discussion of the limitations of the
results, due primarily to the analytical technique used.
The heat transfer solution for both the isothermal and the
nonisothermal surfaces will be discussed. The flow field
conditions at convergence will be described. The presence of
shock wave-boundary layer interaction will be discussed
briefly, also. 1Its possible effect on the solution will be
considered. Finally some peculiarities of the NONISOCODE

N solution will be discussed

FLOW CONDITIONS

Both the isothermal and nonisothermal wedges were
modeled under the same conditions. The freestream Mach
number was 14.24 and the freestream stagnation temperature
was 2000 deg R. As a result, the freestream static tempera-
ture is only 48.13 deg R and the freestream static pressure
is only 0.4981 1lbs/sq ft. The speed of sound is 340 ft/sec.
The wedges were modeled with a three degree deflection
angle, the lowest angle discussed in Cappelano (1:14).

These conditions guarantee that boundary layer gradients

will be quite steep and the stagnation area conditions

severe., The surface temperatures were as follows. For the
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isothermal wedge, the surface was considered to be at a

uniform temperature of 540 deg R. The nonisothermal wedge
had a leading edge temperature of 540 deg R and a trailing

edge temperature (after the discontinuity) of 700 deg R.

LIMITATIONS OF THE RESULTS

The chief limitation in this study is the size of the
streamwise integration step, delta x. Considerable time was
spent on determining and applying the correct distribution
of normal grid points. This was necessary in order to
sufficiently resolve the temperature inversion layer in the
region of interest near the discontinuity. In the course
of that investigation, it was found that NONISOCODE did not
handle a highly stretched grid well; in fact, if the
exponential stretch factor, Q, exceeded about -0.15, this
particular problem wouldn't run at all., That is due to a
combination of the grid and the particular initial condi-
tions (high Mach number, steep gradients, etc.). Due to the
time spent on the normal grid, there was insufficient time
to properly investigate the streamwise grid distributiomn,
Because a discontinuity in surface temperature is beinqg
investigated, it would be desirable to have a high concen-

tration of grid points in the vicinity of the discontinuity.

In fact, at one point, a double exponential stretch was

considered, with the first stretch in the normal direction
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and the second extending both up- and downstream from the
b discontinuity. However, the limitations of NONISOCODE and
the lack of time available forced the use of a constant grid
:{- distribution in the streamwise direction. Thus, the solu-
t tion in the immediate vicinity of the discontinuity suffers
e from truncation error and subsequent ’'smearing’'. As will be
ﬁﬁ noted later, this effect can be seen in the plots of the
: , nonisothermal convective heat transfer coefficient.

: Another limitation to the results to be discussed is
the modeling of the leading edge. When the normal grid
distribution was established, it was determined that a semi-
L; adaptive grid would be used, one that grew in relation to
: the growth of the boundary layer. It was desired to main-
'ﬁ (6 tain about ten points in the boundary layer to sufficiently
' resclve the temperature inversion. The profile that the
grid was based on was at X/L = 0.2, This was done in order
to escape the direct effects of the shock wave-boundary
'E: layer interaction and the stagnation region and to avoid a

more stringent stability criterion., As a result, from X/L =

. Ty
. »
| .

0 to X/L = 0.2, the normal grid distribution is constant and
will not necessarily contain enough points in the boundary
s layer to accurately model the temperature inversion. When
heat transfer is computed, the partial derivative QV97 is
computed using three point, one-sided differences in‘gw}jand
Qi This requires at least three points inside the tempe-

o

‘. : rature inversion to approximate the slope. Those points are
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0.2. Thus, no results are

not guaranteed prior to X/L
é presented for the leading edge region; the numbers would be
inaccurate and misleading.

Another point to consider in interpreting the results
f. is the format in which the results are presented. Strictly
speaking, this isn't a limitation, but it is important to
f: correctly interpreting the results. Consider Figures 4 and
5; they are representative surface and contour plots,
jf respectively, Note that in Figure 4, the data appears to
¥ stop along a parabolic curve, nowhere near the apparent far-
j; field boundary shown in the plot. 1In fact, the parabolic
‘ curve is the far-field boundary of the computational domain,
'Qf as explained earlier. The appearance of the plot is an
(; artifact of the plotting program, DISPLAA. DISPLAA only
recognizes a rectangular grid, so that data presented for
the parabolic semi-adaptive grid shows up superimposed on a

zero-value rectangular background.
:Q The same effect is visible in Figure 5, the representa-
tive contour plot, Here, the edge of the computational
[ domain is shown by a very close clustering of contours,
", showing the drop from free-stream values to an artificial
zero value, 1In both cases, the zero-value data had to be
! inserted to allow DISPLAA to plot the semi-adaptive grid
results. As a beneficial side effect, the presence of the
- zero-value data serves to constantly highlight the shape of

e s the physical computational domain,
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HEAT TRANSFER SOLUTIONS

The first results to be discussed are the heat transfer
solutions. Figure 3 is a plot of the nondimensionalized
convective heat transfer coefficients for the isothermal and
the nonisothermal surfaces and experimental data from Hodge
et al (2:8, 10). Nondimensionalization was accomplished by
ratioing the dimensional convective heat transfer coeffi-
cients to a reference convective heat transfer coefficient
described earlier. Hodge's data was already
nondimensionalized in the same fashion; the only correction
that needed to be made was to shift his data points
downstream to account for the presence of three grid points
in the freestream ahead of the leading edge in this study.

(‘ Consider first the isothermal convective heat transfer
coefficient, plotted as a solid line in Figure 3. It is

fairly constant about the value h/h 1.741 for the

ref
region from X/L = 0.2 to X/L = 0.9. There is only a 3.4%
variation from this value over this range. Note that the
ratio does tend to trail off somewhat towards the trailing
edge of the wedge. The theoretical value for an isothermal
h/h,of is constant; the variation shown is probably due to
truncation error in the computations.

The nonisothermal h/h, ¢ is shown by the dotted line in
Figure 3. Up to about X/L = 0.42, the nonisothermal and the

isothermal values are identical, which is to be expected.

At X/L = 0.42, the nonisothermal curve begins to oscillate
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somewhat in the immediate vicinity of the temperature
discontinuity on the wedge. Immediately thereafter, h/h, o¢
plummets to 0.64 and then recovers slowly to values about
17% below the isothermal values. This difference between
the isothermal and the nonisothermal values after the
discontinuity is expected due to the higher temperature of
the trailing edge's surface, 160 deg R hotter than for the
isothermal wall.

The slow recovery of the nonisothermal h/h, . ¢ is due in
part to truncation error ‘smearing’' the convective heat
transfer coefficient. However, some of the lag in recovery
is due to the axial diffusion of energy. Within the scope
of this study, it is impossible to separate the contribu-
tions of truncation error and axial diffusion to the h/href
recovery lag; it is, however, clear that axial diffusion of
energy is occuring, that the nonisothermal wall effect is
present. The lack of recovery indicates that some of the
energy is being convected downstream and is consequently
reducing the local convective heat trarsfer,

Hodge's experimental data are also presented in Fig. 3.
The isothermal data is for a thin stainless steel plate
(2:2, 5); the nonisothermal data is for an FRSI test sample
(2:2, 6). The isothermal data, plotted as +'s, shows a
close correlation with the isothermal Navier-Stokes predic-
tion, with only a 2.3% average variation from the computed

data over the trailing edge portion of the plate. The
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agreement is best for the first five points; as the trailing
edge is approached, the experimental data diverges slightly.
The reason for this divergence is unknown. There are only
three data points available for the nonisothermal FRSI test
article. Fig. 3 shows these points, plotted as O's,
reflecting the same trend of recovery after the discontinui-
ty as the Navier-Stokes prediction. The magnitudes of the
computed and experimental convective heat transfer
coefficients match fairly well for the first and third
experimental pcints; the middle experimental point is well
off the computed curve., The reason for this disagreement is
unknown, Note, however, that the behavior of the two
computed curves and the isothermal thin-skin points is

0. similar; they all seem to have a "hump" between X/L = 0.6 and
X/L = 0.75.

Finally, note that the behavior of the computed and
experimental curves is quite different. The computed
isothermal and nonisothermal curves tend to follow on
another after the discontinuity, allowing for the 17%
difference. The slope and shape of the two curves are quite
similar. The isothermal and nonisothermal experimental
curves do not tend to mirror one another. As noted above,
the nonisothermal data tends to approach the isothermal data
as the trailing edge of the wedge is approached. 1Indeed,
the last values show only a 7.6% difference between them. It

has been suggested, in another context, that what 1is
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:j fﬁ. happening in the experimental data near the trailing edge is
a three-dimensional effect, While there is very little
concrete evidence to go on in this study, it is safe to say
that the experimental and computed nonisothermal values near
the trailing edge are in fairly close agreement. This would

seem to mitigate against any three-dimensional effects.

FLOW FIELD SOLUTIONS

Results of NONISOCODE simulations are plotted in Fi-
gures 4 through 27. The results for the isothermal wall are
shown in Figures 4 through 15; the nonisothermal wall in
Figures 16 through 27, The surface plots for pressure and

(. density clearly show the leading edge shock wave. The shock
angle is in the vicinity of 6 degrees, agreeing with theory. ﬂ
The pressures behind the shock are about 50% higher than
predicted by Rankine-Hugoniot shock jump equations; this is
due to the shock wave-boundary layer interaction. Behind
the shock, outside of the boundary layer, the freestream
static temperature is close to the 64.95 deg R predicted by
Rankine-Hugoniot theory. As these examples show, NONISOCODE
has done a good job of modeling the flow field. Cne
interesting point is the size of the temperature inversion.
The surface plots of temperature, Figures 10 and 22, show
the inversion clearly defined by the ridge near the bottom
edge of the plot. It can be seen that the inversion is only

about 0.0096 ft tall (about 0.1 in). This is a very small
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region for such a large temperature rise.

Another interesting point is the surface pressure dis-
tribution. Figure 28 shows the isothermal and nonisothermal
surface pressure distributions, as well as a theoretical
Rankine-Hugoniot line. The analytical curves are identical
prior to X/L=0.6, but after the flow crosses the thermal
discontinuity, the nonisothermal surface pressure
experiences a pressure spike of about 0.2 lbs/sq ft. The
spike occurs about 3/4 inch (0.0632 ft) behind the
discontinuity. After this spike, the nonisothermal surface
pressure decays in a similar fashion to the isothermal
surface pressure, but at a value about 4% above it.

The pressure spike can be explained in terms of the
thermal boundary layer. At the discontinuity, the surface
temperature jumps from 540 deg R to 700 deg R; this will
cause a corresponding increase in the thickness of the
thermal boundary layer. When this "bloom" occurs, compres-
sion waves are generated in the flow field. Assuming that
the Mach cone for these compression waves is centered at the
edge of the boundary layer at the discontinuity, the Mach
angle (defined as the inverse sine of the reciprocal of the
edge Mach number) is a little greater than 4 degrees. The
compression wave will impinge the surface of the wedge about
0.6 inches behind the discontinuity. Referring to Figure
28, it can be seen that this is where the pressure spike

occurs. The actual calculated point of impingment is at X/L
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= 0.69564; the computed pressure spike occurs at X/L =
0.6681. This 4% discrepancy can be explained by the fact
that, as the compression wave goes deeper in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>