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AFIT/GNE/ENP/85M
Abstract

The eigenvalue method, as presented by T. M. Shih and
J. T. Skladany, is evaluated to determine the advantages and
disadvantages of the method as compared to fully explicit,
fully implicit, and Crank-Nicolson methods. Time
comparisons and accuracy comparisons are made in an effort
to rank the eigenvalue method in relation to the comparison
schemes.

Shih and Skladany's original results are verified by
duplicating their efforts with the method. The eigenvalue
method is used to solve the parabloic heat eguation in
multidimensions with transient temperatures. Extensions
into three dimensions are made to determine the method's
feasibility in handling large geometry problems requiring
great numbers of internal mesh points.

The eigenvalue method proves to be slightly better in
accuracy than the comparison routines because of an exact
treatment, as opposed to a numerical approximation, of the
time derivative in the heat equation. It is an
unconditionally stable method. It has the potential of
being a very powerful routine in solving long transient type
problems. The m-thod is not well suited to finely meshed
grid arrays or large regions because of the time and memory
requirements necessary for calculating large sets of

eigenvalues and eigenvectors.
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EVALUATION OF THE EIGENVALUE METHOD IN
THE SOLUTION OF TRANSIENT HEAT CONDUCTION PROBLEMS

I. INTRODUCTION

Heat flow in solid bodies and across their boundaries
is a common engineering problem. The solution of these
problems can be found by direct calculation, experiment, or
by use of numerical techniques. Calculation is the most
preferred method, but analytical solutions may not exist in
many problems. Experimentation can be expensive and is
often inconvenient, if not impossible. Numerical analysis
becomes a very good alternative to the problem solver.

At first glance, numerical analysis of heat flow seems
"too complicated"” and "can't be trusted, as it is only an
approximation anyway" (9:viii). This is not a fair opinion,
as there are many useful, simple, and very accurate
techniques available. Among these are the fully explicit
(7:223-251), fully implicit (1:49-53), Crank-Nicolson
(8:50-67), and, a fairly new thechnique in heat transfer,
the eigenvalue method (19:409). These do not comprise a
complete list of techniques that are available, but, rather,
represent broad classes of approaches in discretized
solutions.

The eigenvalue method, "which has been used by

researchers in structure mechanics, but is relatively

unpopular in the heat transfer community"™ (19:409), can,

e
D




; indeed, be applied to heat transfer. It is especially well E-
} i | suited to heat transfer problems with long transient times :;
L until equilibrium is reached. It differs from the other ?
techniques in that eigenvalues and eigenvectors must be zi

calculated. Once this hurdle, albeit a substantial one, is E;

cleared, the eigenvalue method uses algebraic type equations F;

? to arrive at its solutions, thus avoiding time consuming :,
i array solving or iterations to converge to correct answers. }
PROBLEM 1

A recent (1983) article published by Shih and Skladany Eé

(19:409~-422) investigated the eigenvalue method to solve j;

transient heat flow problems. The problem investigated in Ei

. this study is independent verification of their results. ;§
: (j? Additionally, extensions of the eigenvalue method will be ;;
% made into three dimensions and the method will be used in an iﬁ‘
§ independent problem. Advantages and disadvantages of the Eé
B method will be identified. The method will be compared to ii
the fully implicit, fully explicit, and Crank-Nicolson ?i

methods and, finally, an overall rating will be given in -é

;z relation to these methods. ?7
SCOPE i

This study will use cartesian coordinates in two and ?;

three dimensions. 1In addition to the comparison routines, 2;

% each method's solution will be compared to the exact E;-
i - analytical solution using a least squares analysis. The %

s
-‘ %
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eigenvalue method will be extended to three dimensions and
compared to a three dimensions version of the fully implicit
method.

Cylindrical or spherical coordinates will not be
incorporated in the study. It is not the purpose of this
study to perform a detailed analysis of the comparison
routines. All problems investigated will consider only
Dirichlet boundary conditions to insure uniform comparisons.
Problems involving heat sources within the solid will not be

examined.

GENERAL APPROACH

The first objective will be to explain, in detail, what
the eigenvalue method (EM) is and why it works. Next, the
exact analytical solution to the two dimensional problem
presented in the Shih and Skladany article will be verified
(19:410).

Armed with this information, the results of the article
will be recomputed based upon the sample problem they
prepared. The same problem will be solved using the three
comparison techniques: fully explicit (EX), fully implicit
(IM), and Crank-Nicolson (CN).

Each run will be timed for wall clock times, user time
(time actually obeying commands), and central processor unit
time (CPU time) (16:473-474). Each method's output will be
compared against the exact solution and a least squares

analysis will be performed to produce an overall accuracy
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for each run (23:1021-1035). All runs will be made using
the AFIT VAX 11/780 computer system.

The sample problem will be extended into three

dimensions to investigate ease-of-use of the EM in
multidimensions and perform an problem independent from that
i‘ of the article. An additional three dimensional problem
will be performed to deliberately remove any symmetry for

. the purpose of evalutating the EM in these type cases.

ii Finally, the EM will be closely examined for

= enhancements, strengths, weaknesses, etc. An overall

performance rating, in relation to the comparison routines,

will be given.
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E II. EXISTING THEORY
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Heat conduction in solids has been the object of

investigation by engineers for quite some time. The heat

PR AP 4

diffusion equation is given (21:9-54) as

2t

eCv éTCx,q,z,t Y= &RSFT (X,g,Z,f) /QXZ 4 kT (¢ AY ,z,f.) /932
+ RFTxy ) /32* (1)

in three dimensions where

f = material density

Cy = specific heat

R = thermal condictivity

f ‘jr All problems examined in this study will be based upon
i this equation. Shih and Skladany used a two dimensional

3 form of Eq. (1) in their investigations (19:410-413). For
o simplicity, the following three comparison routines will be

; examined in just the two dimensions.

EXPLICIT

One of the simpler numerical techniques is the explicit
N formulation. The relative ease of setting the explicit
method up and the absence of large simultaneous equations
are clear advantages of this method (5:91). 1Its major

N disadvantage lies in the commonly know problem of stability

(19:409; 7:377). This problem links the time step of the
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method to the spatial step. This can prove to be
prohibitive in large transient type problems.

Use of standard finite differencing techniques will be
used in all formulations in this study (7:376-378; 5:59-63).
Assuming a forward difference approximation for the time
derivative and a central difference approximation for the

spatial derivatives, the explicit method can be written as

t
JTixyzt) At = (Ti,j‘-T::j)/A'!: + OChe) (2

FTyz0) A = ( Ti:.j‘ZT(:fi +'ﬁ-f;\\/sz + O( "53(3)
STl yzt) Ay = (T£,§+| -2TH, +T£:‘;-\\ /ag+ O(hG) )

and plugging into the heat equation (1)

ST/St = o« TAE + ETAY s

where

X = k/ ety

yields the explicit method algorithm. Placing all the

knowns on the right side, the remaining unknown is the

temperature at each node for the new time step.

-...
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Let &Ax = Ay = h, then

4H t t -4
-Tij = (D‘A&u/ﬁga)[?]ﬁﬁ) *'-ﬁ;hi + ‘i,J}l
¢ <
+ Tq't;.. - LITI‘,‘-.I + Ti (6)

This algorithm can be used to calculate temperatures at
any nodal point (i,j) at any time t, provided the At is
sufficiently small to meet the stability requirement.

To insure a bounded answer, but not necessarily

accuracy (15), the condition

« At/ hey S 1A ™

must be met (7:379-380). This method has truncation errors
with order O(he) + O(hfy) (5:59-63).

IMPLICIT

To avoid the serious stability criteria of the explicit
method, the engineer can turn to an implicit formulation.
The main principle of this scheme is that the temperature at
each point is found at all nodes simultaneously using the
temperature values from the previous time step (17:58).
This also gives rise to its disadvantage, in that large
systems of simultaneous equations must be solved to arrive

at a solution. For finely meshed problems with long

transient times this can become a significant problem.
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Formulation of the implicit scheme is similar to that E:

X of the explicit scheme except the spatial derivatives are E;
h evaluated at the new time step (evaluated at the current :i
time step in explicit). g"

The time derivative will remain unchanged and the g?

spatial derivatives will become (5:104; 1:49-53) :t

tH &

FT/a¢

(Tat:,'; -2Ta§'l +Tuj)/ax® + O(hs) (8
b &T/égz = (Tiﬁ:l - 2Tt.t;‘ +—ri?u )/Ayz + OCK:) (9)

& Plugging Eqs. (2), (8), and (9) into Eq. (5) and then ;;
% rearranging all the unknowns on one side yields :3
Y w4
S < 2 \ bt 4 1 ff'ifv
i G Tiy = - (& ot/b)dl Ty + Ty + Toju .
2 H _tn | =
5 + T~ 4Ty J + T, (10) o
[~ W W -
; -
i This method is well adapted to the computer because it -

is unconditionally stable, but it does generate the large

sets of simultaneous equations (11:455). This method has #;

truncation error on order of O(hg) + O(hfﬁ) (5:59-63). AT
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CRANK-NICOLSON
An attempt to avoid numerical instability led to the

implicit method. The method is unconditionally stable, but
the method still had truncation errors of O(he) + O(h£Q)
(5:59-63). This can be improved to O(HE) + O(h%‘) by
approximating the time derivative with a central difference
- (11:455). This method, it turns out, has problems with

- stability (11:455). Crank and Nicolson suggested to

'i overcome this by representing the derivative with an average

of a forward difference and a backward difference, each

weighted by 1/2 (8:50; 11:455-457). 1If

o At /hxat‘ = F (11)

then the Crank-Nicolson scheme is

“
T:E‘ = (l-2r) /(|+2r)T¢:,3' + {r/ C2(1+2n]

+H + -tﬂ —t
Ty + T + T i

+ _
* oy +Tir Tow 4T3l 02

Wi -y b Ry

This method also generates large systems of

simultaneous equations. The advantage comes from the

increase in the accuracy gained by the O(h%) term.




I1I1. NEW THEORY

THE EIGENVALUE METHOD

The eigenvalue method (EM) is not really a "new" theory
or discovery. Shih and Skladany suggest in their article
that this method has been used extensively in structure
mechanics (19:405). The use of eigenvalues to solve systems
of equations has been studied in math text books for quite
some time. It is the application of the EM to solutions of

the heat equation that is fairly new.

WHAT IS THE EM

Solving problems numerically requires the division of
the region in question into small grids. The intersection
of the grid lines (called nodal points), are, typically, the
points of interest in the study. If these grids are
sufficiently small, the exact behavior under study can be
quite accurately approximated.

Each node point is an unknown value and is generally
represented by a governing equation. A system of equations
such as these can be solved simultaneously to find these
unknowns. It takes n equations to find n unknowns.

Provided the equations can be found, all that remains is the
selection of a techinque to solve them. Several techniques

exist to do just that; among them is the EM.

10 o




WHY DOES THE EM WORK?

.
‘..
)
R
"
.
2,
.

BN For clarity, the EM is applied to the transient heat
- equation. This application demonstrates the method and why

it is a valid numerical technique.

RO S DR Rl

-~ The transient parabolic heat equation in three

dimensions appears as

."_: -"n '.,

eCv TRt = RE T2 4 TA qz + PTAA] e

Using standard central differences for the spatial

R

» - - - -
[ Yt ST
PR ST A 9 ‘-'.', T

derivatives (7:376-378)

r e STAL = R (Tojh - 2Tijnt Tea ik AAX)

(Pl A LI T e T S v
'-1 eVl f O A .
LR -« ML AR N T KRR R AN

@ + (T e~ rATARY 4TL¢|, /Alj)

4 (Tt — 2Tegpt Tog A28) ]

and, again, let Ax = Ay =Az = h.

U )
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Figure 1. Notation Convention for Discretizations.

Figure 1 depicts the notation convention used in this

report for all discretization schemes.

Using this notation,

Eq. (14) can be written as
eevSTo/dt = (RZF)LTe+ Tw+ TN+ Tr
+ TR +T-6H s
where
p = 1' 2' 3' LI ] 'n-

DERIVATION OF THE METHOD =
Srony
Borrowing mainly from the Shih and Skladany report :3
(19:409-422), the following is the derivation of the ;ﬁ
eigenvalue method. Equation (15) can be expressed in matrix ?3
?-_1
12 8
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form as

[ = K+ e

where "[C] is an nxn identity matrix multiplied by ehCv., CK?
is an nxn sparse conductance matrix whose diagonal elements
are -4k/h" (-6k/h in three dimensions) (19:411). The vector
ﬁ% is of length n and incorporates the boundary conditions.

In general, all matrices have n characteristic
eigenvalues and associated eigenvectors (14:345). Most
discretization schemes do not make use of these. Along with
the appropriate multiplying constants determined from
boundary conditions, these eigenvalues and eigenvectors can
be used to solve the system of simultaneous equations from
which they came (14:824). This is the basis of the EM and
why it works.

Use of some simple matrix algebra reveals the core of
the method. 1If Eq. (16) is pre-multiplied by [C:I'l to yield
(again, following Shih and Skladany) (19:411)

ST - TR ¢ [

T = D]
l:c]-l{ Fz = fbl (19)

13
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(20)

Now, let

{T% = {OSCﬂg + Tf=§ (21)

where f«f\g is some arbitrary function of time and [Tp{ is
independent of time and represents the steady-state
solution. The derivative of Eq. (21) with respect to time

> gives

{fg = {é&(ﬂ? (22)

and plugging Egs. (21) and (22) into Egq. (20)

fémd = [o]{ees + [o]{®e+ {6

and if

- - [0

then Eg. (23) becomes just

(25)

]
(v
—d
A~
2
E
—

Ldch]

---------------




which is a set of "first-order, linear, ordinary

differential equations" (19:411). Appendix B details the

solution of Eq. (25) as applied to a system of two equations
(without loss of generality). Based upon this and assuming

the solution of Eq. (25) to be

{(ﬁ;(t)} = Z {C;fexP ({/\3{) (26)

¢

Bl ‘At v
e e
b . B s 4 e » a0

where ﬁg} is the set of multiplying constants yet to be
determined and {Ad are the eigenvalues of the system. It

turns out the multiplying constants are actually a product

m'.. e

of the eigenvectors and another constant determined by the

boundary conditions of the particular problem. Once the

eigenvalues, eigenvectors, and the multiplying constants are
determined, the Eq. (25) can be solved. These results are

used in Eg. (21) to f£ind the temperature at each nodal

point. In matrix form the EM can be written

i = "+ ) fad {v,-ifexp(ixm (27)
()4
where
i=j=1,2,3, ... ,n.
and a; is the i-th multiplying coefficient determined by

boundary conditions and vijis the j-th component of the i-th

eigenvector (see List of Symbols).
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ADVANTAGES AND DISADVANTAGES

From the previous derivation and the Shih and Skladany
article several advantages and disadvantages seem possible.

Among the advantages are

1. Better accuracy; no time truncation error.

2. Efficient use with long transients.

3. Unconditionally stable method.

4. Rapid solution; few eigenvectors needed.
Two possible disadvantages could be

1. Difficulty in finding and using good

eigenvalue/vector routines.
2. Time consuming in fine mesh space problems.
The results of this study will verify or contradict

these and bring to light any others not mentioned.

16
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N IV. APPLICATION TO SPECIFIC PROBLEMS

One of the main purposes of this study is to verify

- results achieved by Shih and Skladany in their article.
% They presented a two dimensional sample problem (19:412).
. For the purpose of brevity, they only examined this problem
by taking full advantage of the symmmetry involved. This
study does the same and will also examine the problem with
the assumption that not all problems will be symmetric.
_' THE TEST PROBLEM
f Consider a square slab of length, L, on a side with
3 constant temperature, Ty , on each of the sides. Further,
: let the region be governed by
"y
: e STAL = kIT/&% + RPT/QgE o
. subject to the boundary conditions
8 T(0,y,t) = T,
, T(L,Y,t) = To
; T(x,0,t) = Ty
T(x,L,t) = T
E and the initial condition
- T(x,y,0) = T,
4 ) N
17 2
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Fig. 2. Domain for 2-D transient heat conduction problem.

Figure 2 shows graphically the sample problem. Shih
and Skladany maintain that the temperature at the node point
in the center is equal to the temperature at Ty (19:412).

It is not necessary to make this approximation to assure h?

accuracy. A more accurate formulation is to make the

temperature at the center seperate and add an additional :~
equation to the resulting system. f;

The analytical solution to Eq. (28) can be found in i;
Appendix A by removing the z dependence. The normalized >

solution will then be

f' o,
»

MU S W "
A -A'c_".".'.l PP

O, y8 = O (%) Sy (29)

18




Ty e
= ' e St

) 'y .
ke -
Jy vt

»

1 P A

ISy

S A A A i, i g e

where

O1(x,t) = 2 (4 /nm) exp (- PEn® bt ZR)sin(nriL) (s,
and
€2 (yt)= g (1/nn)exp (Fn2htA)sin(nry L) (29
with
n=1,3, 5 ...

for both &, and ©; .
For simplicity let (19:412)

o({—_*/hz = | (30)

The reader is advised to refer to the list of symbols
found at the beginning of this report in order to keep track
of the normalized and real values. For generality, éhis
problem is done with normalized values.

In the interest of brevity, only a few of the 20
differential equations generated by Eq (15) (2-D version)

are listed

19
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INAQAT = 2T -4Tr + 2T 1)

/3t = Tu+ T+ I8 4+ (19=Y4Tn (32)

QWAL = Tis +28Tn + To-4Ti (33)

t§TXQI4§Z = 2Tt + 2Tse — HTia (34)
Qleo/dt = T + 2T - 3o (35)

These 20 equations represent a matrix whose
coefficients are used to find the 20 eigenvalues and
eigenvectors for use in the EM.

This brings up a major criticism of this method. The
matrix formed by the above is not symmetric, banded, and is
not positive definite. These are not desireable
characteristics of a general matrix. This matrix required
the use of the IMSL routine EIGRF (10:EIGRF-1-EIGRF-2) to
find the eigenvalues and eigenvectors. This routine is
particularily difficult to use and did not interface wvell
with the VAX 11/780 computer.

w
=
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TABLE I

P M I T e P e i S Tl Bt T e

Comparison of EIGRF Output for First Eigenvalue.

STUDY ARTICLE RATIO

EIGENVALUE -0.1399 -0.1400 0.9999
COEFFICIENT -821.28 -832.04 0.8812
v(l,1) 0.0269 0.0267 1.0075
v(l,2) 0.0520 0.1516 1.0078
v(1l,3) 0.0734 0.0729 1.0069
v(l,4) 0.0898 0.0891 1.0090
v(l1,5) 0.1000 0.0993 1.0070
v(l,6) 0.1034 0.1027 1.0068
v(l,7) 0.1003 0.0996 1.0070
v(i,8) 0.1416 0.1406 1.0071
v(l,9) 0.1731 0.1719 1.0070
v(l,10) 0.1927 0.1913 1.0073
v(l,11) 0.1994 0.1979 1.0076
v(l,12) 0.1998 0.1984 1.0075
v(l,13) 0.2440 0.2423 1.0070
v(l,14) 0.2714 0.2695 1.0071
v(l,15) 0.2806 0.2786 1.0072
v(l,16) 0.2976 0.2955 1.0071
v(1,17) 0.3304 0.3281 1.0070
v(l,18) 0.3410 0.3386 1.0071
vi(l,19) 0.3654 0.3628 1.0073
v(1l,20) 0.3747 0.3720 1.0073

21




Table I lists a partial comparison of the output of the
IMSL routine EIGRF. This is only a sample of the complete
output and clearly shows the results (19:414) Shih and
Skladany achieved are correct. The eigenvectors have an
average error 2 0.728%. The eigenvalues were the same as
the article (within 4 decimal places). The coefficient is a
little different from the Shih and Skladany coefficient
because of the slight differences in the system of
eigenvectors. Despite the difference, the errors are
compensating and account for a negligible difference in the
temperature histories. The coefficients were calculated .-
using the initial condition and solving the resulting matrix
by the IMSL routine LEQT2F (10:LEQT2F-1-LEQT2F-3; 24). All

IMSL routines used in this study can be found in Appendix C.

Yy

RECURSION FORMULAE

With the eigenvalues, eigenvectors, and multiplying
coefficients known, the EM can be used to solve the problem
(19:413). The nodal point temperature histories can be

found by

n
TE® = T+ Lawiep(le g
b '

Table II1 presents a partial comparison of the results
of Eq. (36). Temperatures at point Tq are used as a sample
of the entire grid.
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TABLE II

L Pl e

Temperature History for Te

---------

TBAR STUDY EXACT RATIO
1.0 35.211 32.248 1.092
2.0 70.714 69.683 1.015
3.0 95.422 94.984 1.005
4.0 113.134 112.830 1.003
5.0 126.542 126.216 1.003
6.0 137.181 136.786 1.003
7.0 145.913 145.447 1.003
8.0 153.244 152.720 1.003
9.0 159.485 158.919 1.003

10.0 164.845 164.254 1.004

.............

The above table shows the comparison at point Te¢ with
* =1 as compared to the exact solution at the same node
point. When plotted as a graph, these values appear in
Figure 3 on the following page. From Table II and Fig. 3,
it is seen that the eigenvalue method compares very well
with the exact solution after t of 2 or more. After this
time the eigenvalue method was within 20.3% of the exact

answer. Before t = 2 the method differed considerably.

Shih and Skladany offer an explanation for this (19:417).
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Figure 3. History of temperature at nodal point T9.
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"Since initially the heating rate JTAt and the
change of the heating rate o%/3¢? are large, and
since JTAt is related to the space derivatives by

| JT/St = o VAT

; it follows that initially the value of V¥T must be
. large because

- 2

: XT A2 = V2 @TAL) = B vt T

i Now we already know that the fourth derivative is
7 embedded in the 1leading truncated term in the
- second order accurate finite difference

approximation.”
i This explanation also implies the truncation error will
be large in the initial heating in all three schemes.
Equation (36) was used as the recursion formula for the
i EM. Using the notation of Figure 1, the following recursion
formulae were used in the study as the comparison routines.

The explicit method used

i \3 t _t t

3 Te = (ot/B L Te+Tw+Tev W -4Tp I+ Tp @)
i The implicit method used

. oy

B T = - (/K [Te Tw + T + T 1

E 2 i

: + T+ 4 R/EY] Ty 38)
;

)

L4
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T TR . T e

and the Crank-Nicolson used

2

I $S T = [0 /)] Ts + {[r/Z( 2v) ]

: # oy

: CTe +Tw' T AT eI, o)
I

- where

| o ::'O(A'f/ha

E‘ ERROR EVALUATIONS
ﬂ: An article written by Towler and Yang was the basis for
? selection of an error routine (23:1021-1024). The desire
\5" for some overall way of determining a method's accuracy was
&l used as a criteria in the selection of the Root Mean Squared
:$' (RMS) method. Stated simply, this finds the difference
. between the temperature at each node and the exact
temperature, squares each point's differences, adds up all
of these, divides by the total number of inner node points,
f and, finally, takes the square root of the answer. Written
- mathematically as (23:1023)
N
- ¥\2
- ) (U, :=th:
.— EJ_ = [iﬂ‘i nhy ul,‘\) ] (40)
- NT
»
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This provides a benchmark for each routine to base
accuracy evaluations upon.

The exact solution found in Appendix A is in the form
of a summation of terms involving exponentials, sines, and
cosines. When using normalized time (t =1, 2, 3, ...) the
exponential term will drive the magnitude of the individual
term's contribution. Thus, when n, m, and o become large,
the term will be small and add little to the summation.

When using normalized time it is found that only 15 terms in
the sum are required for convergence to 10-'0 accuracy.

This degree of accuracy is seldom necessary in light of the
accuracy of such measured things as thermal conductivity,
specific heat, etc. To retain a reasonable amount of
accuracy of 3 or 4 significant digits, only 11 terms are
required in the summation. This translates into significant

time savings in the computation of the exact solution for

comparison purposes.

RESULTS OF 2-D PROBLEM

The sample problem in Shih and Skladany's article was

symmetric in the x-y plane (19:413). For this reason, they &

(22:127) . Without symmetry, the domain will be analyzed by

elected to take full advantage of symmetry and, thus, make :?
the computational domain fairly small (a 20X20 matrix). %f
Full symmetry in everyday engineering problems is idealistic ;4

a full grid with pitch h. This study ran the test problem

both ways. Symmetry was used for the initial verification.
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The same problem was then solved using the full grid (same
h) without taking advantage of the symmmetry. This approach
brought out some interesting observations.

Taking advantage of symmetry produces a matrix that is
non-symmetric, non-banded, and is non-positive definite.
This type matrix required the use of a more time consuming
routine (EIGRF). It also required more core memory as the
matrix must be stored in its full form. The full grid
' analysis produces a banded, symmetric, non-positive definite
| matrix. This saved central processor time (CPU time) and

core memory as only the lower co-diagonals needed to be

stored to compute the eigenvalues/vectors.

Shih and Skladany did not do a time comparison to
determine if the EM approach was faster (and therefore, less

(jr expensive) on computers than the other types of solving

schemes. This was accomplished in this study using the VAX
11/780 and the UNIX command TIME (16:473-474). This command
returned several pieces of information including wall clock
time and the CPU time.

Taking advantage of TIME and the RMS error routine, the
four methods were run in symmetry and, then, in full grid
forms. The results were then compared to the exact

solution.
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TIME COMPARISONS

The following tables represent the time comparisons of
the specific methods. The CPU times are accurate to within
1/10 second and the wall clock times are accurate to within
1/60 second (16:473~374). The wall clock times may not be
consistent because runs made during different times of the
day took more or less wall clock time according to the
computer's load. The CPU times will be consistent as this

is the time the central pocessor takes to execute the

program.
TABLE III

Time Comparison of Methods in Symmetry.
METHOD CPU(SEC) WALL (HR:MIN:SEC)
EIGENVALUE 0.8 0:00:42
EXPLICIT 0.7 0:02:13
IMPLICIT 4.2 0:16:34
CN 6.4 0:23:56

Here it is easy to see the EM is very comparable to

explicit method and is clearly faster than the last two

methods.

All programs were run to achieve similar

accuracies (three significant digits the same).
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TABLE 1V

Time Comparison of Methods in Full Grid.

METHOD CPU(SEC) | WALL(HR:MIN:SEC)

EIGENVALUE 40.1 3:04:19

2 EXPLICIT 15.1 1:44:47 <
IMPLICIT 6.1 0:41:41

: cN 26.4 1:29:00

The value of the use of the full grid approach becomes

: apparent. When comparing Tables III and IV the CPU times do
- not seem consistent. The explicit time in Table IV can be
E} explained by realizing the time restriction in Eq. (7) must
* ("’- be satisfied. In this case At = 1/1000 to achieve the
necessary accuracy. This requires 1000 incremental
calculations to get to T =11 The implicit time is less
than explicit because it does not require this sort of time
step. To achieve the same accuracy +the lfg = 1/50 . The CN
fi scheme takes more time in both tables and is therefore
consistent.

The problem of having to find the eigenvalues and
eigenvectors starts to become clear here. Finding
eigenvalues/vectors in full grid results in nxn matricies

being formed. The full grid sample used 121 internal mesh

. e o * i
LR A N

points (11X11 grid, 121X121 matrix!). 1In full grid mode the

method now takes 4 times as long to run. In this case all

30




- * o -~ * il 4 - ; y v » —p ey .
AR N M, T A Al Sl A S AR AT XK gL R A A SR A A St S i e gt i R A LA RTINS R T i S S R

of the other methods are preferable to the EM; just

considering the time required to execute.

. ACCURACY COMPARISONS ‘
% The following table represents the accuracy comparison g
; of the specific methods. Only the full grid form of the ?:
problem was compared because the errors are symmetric as ;
well as the temperatures. Values given are in ®K. All ;
problems were run with the same time step of At = 1/50. :"
TABLE V N
lﬂ Accuracy Comparison of Methods in Full Grid. ;'
' METHOD TBAR 5,
vy 1 2 3 4 5 6 1 8 9 10
.; EIGEN |2.24 1.42 1.14 0.93 0.73 0.56 0.42 0.32 0.23 0.17 ;
ﬁ EXPLICIT |6.86 4.34 3.49 2.84 2.23 1.71 1.30 0.98 0.72 0.52 §
- IMPLICIT |7.23 4.63 3.73 2.98 2.29 1.71 1.26 0.90 0.63 0.42
CN({7.20 4.59 3.73 3.06 2.44 1.92 1.50 1.16 0.89 0.68 f'
: :
Figure 4 on the following page is a plot of Table V.

This figure dramatically shows the improved accuracy of the
eigenvalue method over the more conventional methods. CQ
3 3
X 2
‘S
N -
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EXTENSION OF SAMPLE PROBLEM INTO 3-D E?
% i A literature search of the numerical techniques in :&
. solving the heat equation revealed very few sources that go él
E beyond a two dimensional case (17:45-48; 4:142-144; S?
$ 3:162-171). 1t is, therefore, instructive to examine a ti
=
3

problem in three dimensions.

. Several questions arrise immediately when considering
= the three dimensional case.

1. Does an analytical solution exist?

2. What boundary conditions are appropriate?

3. Does the method accuracy change in 3-D?
4. How much more time is required to run?

D P ) T

Answers to these questions are supplied in the

following sections.

w
A 'L' AN
N 8 AN

THE THREE DIMENSION PROBLEM STATEMENT

R

- s The simplest case to study is a cube of dimension L on

23 a side. A more general problem also worth considering is a

{3 parallelpiped (a box) with dimensions as show in Figure 4.

: The general case can be easily modified by making the

'; lengths a, b, and ¢ all equal to L and the cube case is

f back. The program written took advantage of this, thus

,-; [
X saving work and time. -~
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FIGURE 4. Three dimension test problem.

All the surfaces of the box will be at the same T, =
ﬁﬁf 200 °k. All the interior points are at 0 °K initially.
Therefore, the governing equation, boundary conditions, and

initial condition are

JT/3t = R ISTAC + FTAG +8T/2%] )

.% where

T(0,y,2,t) = Tg

8 T(a,y,z,t) = T,

T(x,0,z,t) = T
T(x,b,2,t) = T,
T(x,y,0,t) =T,

T(X,Y,C,t) = Ty
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T(x,y.,2,0) = T,
Using the same normalizations as the 2-D case and
refering to Appendix A, the solution to Eq. (41) is given by
Eq. (A-41). Indeed, the boundary conditions are appropriate

and there is an analytical solution to compare the methods

against.

? Time restrictions during the study only allowed for the
. implicit method to be developed in three dimensions as a

. comparison routine to the exact and eigenvalue methods. -
- Little is lost here because the 2-D results extend into the :
3-D case.

?i Recalling that the number of internal mesh points

- determines the n dimension of the eigenvector/value solving

routine, a balance must be met. Enough mesh points must be

e supplied to insure accuracy (not necessarilly stability)
(15) while at the same time too many mesh points cause the
problem to run extremely long. In the eigenvalue case, a
cube with 8 divisions (7 internal points) on a side was the
maximum number the VAX computer could handle before running
out of core memory. The core memory requires n® bytes (10)
available for the eigenvalue method to use even in full grid -
form (banded storage mode).

The EM is not an ideal method if computer memory space
is at a premium. This is another criticism of this method.
Shih and Skladany did not explore past the 20X20 matrix they
used and this aspect of the eigenvalue method was not made ‘§

apparent. This could present a definite problem to the user
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if he is trying to solve a heat problem for something large,

such as a nuclear reactor core.

THREE DIMENSIONAL TIME RESULTS

The three dimension time runs were very instructive.
The fact that 3-D is used is not important. What the 3-D
runs bring out is the use of many node points. It is in
this that the true nature of the eigenvalue time
requirements become apparent.

Both the EM and IM were run for cubes with L = 3, 4,

and 5. The times for each run are listed below

TABLE V1
Time Comparison in 3~D in Full Grid.

METHOD L=3 L=4 L=5
EM 3.0 4.9 40.1
IM 1.9 3.1 6.1

The time for the EM at L = 5 seemed extraordinarilly
large. An additional run verified the first number. A plot
of several runs at differing numbers of mesh points should
better describe the behavior of the method's time to execute

requirements.
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Figure 5. CPU time required to run the EM vs mesh points.
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Figure 6. CPU time required to run the IM vs mesh points.

38

PPy

k4
PP

“vou . “ e e v e e -
OSSR L RN
* e e L0,




™Y
U

RO
[ RO

AN

A AR RO AL Al A A N/ Sl iy A e N SN SR D hial S acling Bun Sha e SEStEFe S0 SR SRS Sne Pl S B e A B B At Bl Ao der g i g LA

Figures 5 and 6 are the plots of the EM and IM CPU time
requirements, respectively. It appears the EM is
exponential in nature with respect to the number of mesh
points while the IM is simply linear. The curves drawn in
the figure represent the mean value of the data points.

The first curve (Fig. 5) was drawn by developing the
following data:

TABLE VII

Data Used for the Determination of Ki.

GRID POINTS TIME (SEC)
3X3x3 27 3.0
5X4Xx3 60 5.0
4X4Xx4 64 6.2
11x11 121 40.1
5X5X5 125 55.4

The curve in Fig. 5 is a plot of

TIME = exp (K1xN) (42)

where
K1 = an averaged constant

n = number of mesh points.
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The value of K1 was arrived at by a simple, although
somewhat crude, technique of averages. Five runs were made
and timed, each with different numbers of mesh points. 1In
each case the log of the time was divided by the number of

mesh points. These five numbers are then averaged and yield

Kl = 0.0317

The behavior of the implicit with respect to time
required appears linear. Assuming this to be true, the

governing equation is simply

TIME = K2xN + I (43)

where

I = y intercept

A linear regression produced a slope of K2 = 0.0472

with an intercept of I = 0.4555 (18). The data used in the

plot are
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TABLE VIII o

Data Used in the Determination of K2. Eé

ﬁl
GRID POINTS TIME (SEC)
3X3Xx3 27 1.9
5X4Xx3 60 3.1
4X4X4 64 3.4
11x11 121 6.1
5X5X5 125 6.5

The exponential time requirement is a definite handicap
for the EM unless a coarse mesh is used in the original

problem.

ACCURACY OF 3-D RESULTS

Little was learned concerning the accuracy of the
methods except that the overall accuracy of both methods
improved with the addition of more internal mesh points.
This is not an unexpected result, but gratifying to know the
theory correctly predicts this. Table IX lists the results

of the accuracy run for the 7X7X7 grid cube.
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TABLE IX

Comparison of Accuracy for N=7 Cube. n

METHOD TBAR .:
1 2 3 4 s 6 1 8 9 10
EM | 2.32 0.15 0.11 0.03 0.01 0.00 0.00 0.00 0.00 0.00 —j

M | 3.63 1.79 0.73 0.21 0.03 0.10 0.12 0.11 0.09 0.07 -

Again, as in the 2-D case, the EM is more accurate that
the IM. The accuracy seems to get better after TBAR dgreater
than 5.0 . The problem now has temperatures on all surfaces
which, in turn, causes a rapid heating of the interior. The
material will therefore reach a steady state condition
faster than in the two dimensional case. This would account

for the apparent exactness of the answers at late times.

NON-SYMMETRIC 3-D PROBLEM

An additional 3-D problem was run to deliberately

remove any gain from symmetry. Very little was gained from

the exercise, except the knowledge the method still works.

The problem was to make a parallelpiped having

dimensions such that ‘
a=>5 R

-~

b =4 ;ﬁ

c =3 o

]

This box shape would make it very hard to take advantage of "]

€« o e .
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symmetry. Since the other problems were run with full grid _3

mode, this was a trivial problem to run. ;i

The accuracy results were as follows i

TABLE X __-;

Comparison of Accuracy for 5X4X3 Parallelpiped. s

i METHOD TBAR =
1 2 3 4 5 6 7 8 9 10 ]

g EM 1.43 0.07 0.07 0.04 0.02 0.01 0.00 0.00 0.00 0.00 K
- A
i; IM 1.15 0.14 0.16 0.08 0.03 0.01 0.00 0.00 0.00 0.00 o)
-

b j
b ‘::"
f =
’ k
‘j? The same behavior is exhibited here as in the cube in )
Table 1X. The answers do not appear symmetric because of 71

-

the lack of symmetry in the region, as expected. The e

answers also appear to be more accurate in Table X than o

Table IX. This is due in part to less numbers of node ;3

points. The 3-D geometry caused a good increase in accuracy fj

over the 2-D case, but the accuracy should improve a little fﬂ

if not as many calculations (roundoff error) are made. ??
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V. EVALUATION OF THE EIGENVALUE METHOD

Based upon results of the previous chapter, an overall

rating is made of the eigenvalue method.

THE STRONG POINTS

The accuracy of the EM is better than the other methods
(EX,IM,CN). Even at earlier times the EM is still strong.
This better accuracy remains throughout a transient,
regardless of duration.

The reason given for the improved accuracy is the
exactness of the time derivative in the heat equation. The
other methods are similarily derived with some form of
discretized approximation via Taylor series (2:347-348).

The EM is even more accurate then the best of the comparison
methods, CN, in the time derivative.

The appearance that the other methods approach the same
accuracy of the EM at later times is misleading. Figure 4
shows the error of the comparison methods to converge to
that of the EM. Mathematically, we know this to be untrue.
The difference between the EM and the other methods accuracy
should remain constant. This convergence is brought about
by the region under consideration approaching the steady
state condition.

The efficiency of the EM must lie on the side of being
an asset. Consider a hypothetical problem. A small nuclear

reactor (as on a submarine) has a problem requiring a
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shutdown and subsequent cooling. Technical problems dictate
a slow cool down taking 1 week. What temperature behavior
happens 1 meter from center?

Using the EM and assuming a 1-D treatment (the reactor
is a symmetric cylinder with variation only in the radial
> direction), how long would it take the computer to determine
E reactor temperatures at the point at t = 1 week?
5 Assume each method divides the 1 meter length into 100

intervals for accuracy and allows the reference time, 6‘, to

i be 1 second. Using Fig. (5), we find the EM requires
approximately 20-25 seconds of CPU time to solve the
problem. This time includes determination of the
eigenvalues, eigenvectors, and coefficients. Figure 6 shows
t;. that it takes the IM approximately 5 seconds of CPU time (5
sec to reach T = 10). This means it requires 1/2 second to
reach t = 1.0. Since the reference time is unity, € = t
and the IM must iterate till it reaches 1 week, or 604,800
seconds. The IM would then require 302,400 CPU seconds to
reach the same solution found by the EM in 20-25 seconds CPU
,E time. There is little doubt which scheme the engineer on
the submarine will choose.

Two more assets are possessed by the eigenvalue method.

s o
[ RS )

The first is the unconditional stability of the method

EE brought about because of the analytical nature in the

‘f temporal domain. The second point is the omission of most

§ of the terms in Eg. (36). This is allowed because the

,E {zi coefficients become so small in some cases that most terms }
% :%

45 e




contribute very little to the overall answer and can be

eliminated without affecting the answer. Undoubtedly, a
solution requiring 5 terms runs faster than one requiring

: 100. This point is moot. The time saved in eliminating the

extra terms is often, as in the case of large numbers of
mesh points, negligible when compared to the time required

to find all the eigenvalues, eigenvectors, and coefficients.

THE WEAK POINTS

Paradoxically, one of the EM's strongest points can
also be its weakest point. It has been demonstrated the EM
performs poorly with large numbers of mesh points (requires
large CPU times). This may not be an insurmountable problem

tﬁf if one is using a very capable computer, but when restricted
to a machine such as the VAX 11/780, it is a definite
js problem.

The heart of the problem is the requirement to find

complete sets of eigenvalues, eigenvectors, and

coefficients. This study used standard IMSL routines.

-]
1

-
-
-~
K
-
L

These routines are widely available and are commonly used in
such studies (20; 23). The EM has potential of being very
powerful if better, faster routines were made available to
find these eigenvalues/vectors. An extensive literature

search (1; 3; 5; 6; 7; 11; 17), indicates this problem is

S b AN |

.
P '.‘l

being given top priority in the numerical analysis community

.
)
-

(12).

A

.'.-I
‘als i

o e
Lalaa- s b

Another weak point of the EM is the inability to hand

N




check any of the calculations. The nature of finding
eigenvalues and eigenvectors makes for extreme difficulty in
a hand check of the calculations, especially for a large
matrix. Imagine trying to hand calculate a 100X100
eigenvector/value problem. This discourages the novice user
from taking advantage of the EM. If the problem has no
analytical solution or is not easily approximated, the EM

user will have little confidence in his answers.
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VI. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The eigenvalue method is a good numerical technique
worthy of inclusion in any problem solver's collection of
numerical techniques. 1It is not a panacea capable of
solving problems other methods such as explicit, implicit,
or Crank-Nicolson cannot.

Like all things, the EM has its good points and its
bad points. It should be considered better in accuracy than
most discretization methods. It is expecially well suited
in large parametric studies. It does not lend itself well
to large spatial studies involving great numbers of mesh
points. The improved accuracy and the slower execution
times can be paired against one another to achieve a
reasonably fast and accurate method.

When used as a general problem solver the EM is about
the same as any other technique. It is when used in large
transient time applications that the EM is vastly superior.

The EM is unconditionally stable because of the
exactness of the time derivative of the temperature in the
heat equation.

The EM translates easily into three dimensions. It
follows the method should also work well in other coordinate
systems, such as cylindrical or spherical.

There is a potential of high CPU useage time in the EM

if large numbers of internal mesh points are encountered.
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The EM will always be slightly better in accuracy than
the standard discretization techniques used in this study.
This accuracy improvement is made available by the

analytical nature of the time derivative.

RECOMMENDAT IONS

It is recommended that a more detailed investigation be
made into the use of the eigenvalue method. Extensions of
the method in spherical and cylindrical coordinates should
be made. Also of interest would be how the EM performs on
regions with irregular boundaries.

It is further recommended that a better description of
the amount of CPU time required to execute the programs be
given. The one expressed in this study used only five data
points. More sophisticated curve fits should be employed to
verify or refute the exponential nature of the time
requirement of the EM.

Another recommendation is the use of the EM as
presented in this study with faster, more capable machines.
It would be interesting to reaccomplish this study on the
HARRIS 800, CYBER, or CRAY computers.

It is recommended that a better method be determined to
find eigenvalues and eigenvectors. If such methods do not
yet exist, then it is suggested that carefull review of the
existing methods (IMSL) be made with the goal of improving
their speeds and/or accuracies. Also in this area, it is

recommended that a carefull investigation be made to
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determine if all the eigenvalues and eigenvectors need to be

calculated in order to find the correct multiplying
coefficients for the solution of the problem.

It is recommended that a study be made to determine a
way to predict the balance between the EM accuracy and mesh
point spacing. This would save much time in trial and
error. Once this balance has been determined it would be
instructive to make a computer study to further explore long
transient problems.

It is recommended that an investigation of the method
of lines (Runge-Kutta) be made and results compared to the
eigenvalue method to identify similarities and differences.
A time comparison between the two methods would prove
extremely useful.

Finally, it is recommended that problems involving
radiative surfaces, heat sources, and differing material
properties (such as specific heat, thermal transmissivity,
etc.) be studied using the EM. Furthermore, differing
boundary conditions such as Neuman, Dirichlet, and Robins

should be examined and evaluated.
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APPENDIX A

DERIVATION OF THE ANALYTICAL SOLUTION

In this appendix, verification of the sample problem
presented by Shih and Skladany will be accomplished
(19:411). A three dimensional problem is also solved in
this report. Therefore, it is convenient to extend the

derivation to three dimensions. 'This was not done in the

previously mentioned article.

THE SAMPLE PROBLEM

Given the heat equation

v .'r—njijv.v
RO W AR
RN LT

0OdT/3t = RTAC +RFTAY +29Th2 (o

with boundary conditions and initial conditions as
T(0,y,z,t) = T,
T(a,y,z,t) = T,
T(x,0,z,t) = To
T(x,b,z,t) = Tg
T(x,y,0,t) = Te
T(x,y,c,t) = To
T(x,¥,2,0) = T

Now, let the normalized temperature be defined as

O y,zt) = LTxyzo~T 1/ (W) a2

ettt an
DTSRI I NN .
Lo e S
AT 1. R SRR




Then the normalized boundary conditions are now
e (0,y,z,t) = 0
O (a,y,z,t) = 0
e(x,0,z,t) = 0
© (x,b,z,t) = 0
® (x,y,0,t) =0
© (x,y,c,t) =0
© (x,¥,2,0) =1

In terms of the normalized temperature, Eq. (A-1l) now

o appears as

5 Wt = «L¥osR+ Yo +FosFl o

where

o= R/gCv

SEPARATION OF VARIABLES

Assuming the method of separation of variables
technique is valid (because of the same temperature on all

surfaces, then there exists some solution (4:34)

v ’ J Pl -" ..' N
. W
PUMTIIAN] . o

O, yzt) = X Y(q)Z(Z)—\_(t) (A-4)

‘-"f'l'."_'
»

o,
O
end,

and differentiating with respect to the appropriate
independent variable

v e o cgu
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0/t = XYZT’

(a-5)
Foxt = X"'YZT et
oY =XY"ZT .
FoL=XYZ"T (a-8)

Using these, Eq. (A-3) becomes
XYZT! =CX'YZT + XY'ZT + XYZ'T]) a9
aividing both sides by XYzT
T/T = T X7X +Y'AN+2"/7 ] (A-10)

rearranging gives the form

TY/RT =Y'/N-2"/7 = X"/X (A-11)

In typical separation of variables poblems, both sides

must also equal some constant, say, =\

X*/X = -2 (A-12)

considering the x dependence




X' + \X=o0 (A-13)

This equation typically has solutions of the form

Yy = CiSin VE X + Cz eos VX X (A-14)
applying the normalized boundary conditions

Xty = c,81n (6) 4 Cz2Cos(o) (A-15)
for this to be true C, = 0. Also,

X@) = ¢ Sin vaia =o (A-16)

to avoid the trival solution C} £ 0, therefore,

via = nn (A-17)
A= (nm /q) I/2 (A-18)
with ;E
& %
=
Xy = Z Cn S(n (nTX/a) (A-19) 2
nel 3
where ;i
n=1, 3,5, ... "':
3
o
>4 )

~Te ]
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Similar treatments of the y and z variables will yield

o)
Y(ﬂ) = 2,; Cn Sin (mTr,(j/bS (A=20)

©
/@ OZ;': Co SIN(omz/e) (A-21)

)

where n, m, and o are odd as from before. The time

dependence is found from
T4 kR Ant ,6m+?foyr=° (A-22)

where

An
Bm

Xo = z separation constant

Xx separation constant

y separation constant

and let

R(Xn+ Bt Yo )= fnmo

With these substitutions, Eq. (A~22) becomes

T+ fnmoT = O (A-23)
whose solution has the form
Tw= 9 exp (- famt) (-2




...................

.......

applying the initial condition

T = 9 exP (o) = |

(A=~25)
which implies that g= 1. Therefore,
Tx) = éexp (- fnmof) (A~26)
;% Combining all the constants thus far as
Kame =  CnCpCq (A-27)

& and using Eqs. (A-19), (A-20), (A-21), and (A-24) and
F

recalling Eg. (A-3) one gets the normalized temperature

solution

o %0 00

@(X,g,zlt\ = Zzz Xl\mo GXPE' (r\a/a2

Nl M= 01

F /B + 0%/c?) RT2t ] SInC nix/a)

Sih(M7 g/b) 3In (e Tr2/C) (A-28)

FOURIER SERIES :

o Let f£(x,y¥,z,0) = 1 . From Fourier series, any

" function may be expanded as a sine series (4:110). R
)
.




© .
fxym = 2 Ansin (amx/a) (A-29) :
|‘1\ m:) -—
and
a L
An = (2ra) So‘(:(x,g,z) Sm(nrrx/q\dx (A-30) -
h An = (2/a) So 1  Sin (nmx/a) C‘X (A-31) -
but, An can also be expanded as
o :
m= =
where ’_
Bom = @/B) § AnSIn(mTysb)dy -39 3
and, like above, B,, can also be expanded as '”
o
Bnm = Ozj: Xnﬂt\o Sin (OTTZ./C\ (A-34)
=) -
where
C

Kome = (240) S; Bnam S1n(aTrz/c) dZ (A-35) =

plugging Eqs. (A-31) and (A-33) into Eq. (A-35) yields
57
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abe
Kamo = (8/abc) §§£ sin(nx/a) sin(mmy/b)

sin(otmrz/c) dz-d_‘j dx (A-36)

The integral

L
,i 3in (Mm@ /L) d¢ (A-37)
has value only when n is odd and is equal to
2L / nTf (A-38)

With this integral appearing three times in Eq. (A-36) the

constant is clearly

Komo = (8/&‘50\(ZQA\‘IT)CZ{)/m'Iﬂ(ZC/éTT) (A-39)

Kamo = 64 7 (nmoTr3) (A~40)

..............................
.................
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THE NORMALIZED SOLUTION

Oonce the value for the constant is known, it is used in

Eq. (A-28) to give the result

e(x,g)z’t) = §§§ Ced/thmom) Jexp L
— (PR/aR+ me/b?4+CR/c%) ket]

(A-41)
Sinenmx /) § 1n (m 4/bYSin(otrz £c)
This is an extended version of the solution found in the
Shih and Skladany article and verifies their exact solution
(19:410). This solution is valid only for terms where n, m,

and o are odd and not equal to zero.
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APPENDIX B

APPLICATION OF THE EIGENVALUE METHOD f:

TO A SMALL SYSTEM OF EQUATIONS

The core of the eigenvalue method is the vector

;f representation of the heat equation as
L {pm] < [p]{ew] -

where

F du di2

D = (B-2)
[ ] dar  dez

Shih and Skladany applied the above to a 2x2 matrix

system (19:412). This appendix will do the same,

paralleling their development with a few extra steps allowed

for clarity.

Temporarily dropping the vector and matrix notation and a
looking only at the equations of the sample matrix, Eq. ﬁ
(B-1) can be written E

- - B-3
o@)y - D@E) = O (B=3)
=
this type differential equation is recognized as having N
solutions of the form _;
;‘-
Bt) = XiexpOut) + yiexpldet) (-4 %
60 3




Bole) = Xeexp (At) + YeexP(Aet) (&5

differentiation with respect to time

él 3

MXepit)+ Aayexplet) (8-6)

éa@:) = MXzexP(At)+ AoYye exp( Azt) (B~7)

plugging Egs. (B-6) and (B-7) into (B-4) and (B-5) gets

>\|X|€XP(>\|‘E)+ )\aHIC\(P(Azt)f' du[(xnCKP()\rt)

+ Y Sxp( Net)] *&z[()ﬁelp().’c) ‘“jzeKP( AitU (B-8)

AXpexXP(Act) + daYe exp(hat) = chy [(xexp (aet)
+yexp (M) J+dz [(eeup(At)+ Yexp(At)] -9 1

O= expAt)dn¥i4di¥e- A + exp(Aze\(dnw*anrz\z':jt) (o
0= eQ(N)daXi+drye- \o) +exp () oy~ Aage) >21 ﬂ

are
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n-& die [\(.] e did Y
X O-= e\(p()’{;) ds, dZZ‘I\! X, J-CXP(AZ\‘.) dai del'r\ ,& {B-12) :
2 from Eq. (B-2) _-“{;.
) fD] - d“ dlz

|dar dz

which implies ), and ), are the eigenvalues of [b] and Cx, X 17

. and Ty, 5;]1' are the corresponding eigenvectors. The terms

- exp( Mt) and exp(X;t) are just multiplying scalars. If A,z o
s TX X237 , and [ )T can be determined, Eq. (B-1) is ™

i solved.
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T APPENDIX C

STANDARD IMSL ROUTINES USED IN THE STUDY

5 This appendix contains copies of the standard IMSL

% routines used in the various programs in the study. This

; appendix is provided to the reader to aide in the evaluation

- of the solving routines used. Any questions concerning
method of solution once the programs called these routines

- should be refered to the subroutine author.
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IMSL ROUTINZE

PURPOSE

USAGE

.AﬁGUMBNTS

NAME

A

N
IA

IJ0B

Iz

= EIGRF

= EIGENVALUES AND (OPTIONALLY) EIGENVECTORS OF
A REAL GENERAL MATRIX IN FULL STORAGEZ MODE

CALL EIGRF (A,N,IA,IJOB,W,Z,IZ,WK,IER)

THE INPUT RSAL GENERAL MATRIX OF ORDER N
WHOSE EIGENVALUES AND EIGENVECTORS ARE
TO BE COMPUTED. INPUT A IS DESTROYED IF
IJOB IS EQUAL TO 0 OR 1.

THE INPUT ORDER OF TEEZ MATRIX A.

THE INPUT ROW DIMENSION OF MATRIX A EXACTLY
AS SPECIFIZD IN THE DIMENSION STATEMENT IN
THE CALLING PRCGRAM.

THE INPUT OPTION PARAMETER. WHEN
IJ0B = .0, COMPUTE EIGENVALUES ONLY
IJOB = l, CCMPUTE EIGENVALUES AND EIGEN=-

VECTORS.

IJOB = 2, COMPUTE EIGENVALUZES, EIGENVECTORS

AND PERFORMANCE INDEX.
IJOB = 3, CCMPUTE PERFORMANCZE INDEX CNLY.

IF THE PERFORMANCE INDEX IS COMPUTED, IT IS

RETURNED IN WK(l). THE ROUTINES HAVE

PERFORMED (WELL, SATISFACTORILY, POORLY) IF

WK(l) IS (LESS THAN 1, BETWEEN 1 AND 100,
GREATER THAN 100;.

= THE QUT?UT COMPLEX VECTOR OF L=ENGTHE N,

CONTAINING THE EIGENVALUES OF A.

NOTE - THE ROUTINZ TREATS W AS A REAL VZCTOR
OF LENGTE 2*N. AN APPROPRIATE EQUIVALENCE
STATEMENT MAY BE REQUIRED. SZE COCUMENT
EXAMPLE.

- THE OUTPUT N BY N COMPLEX MATRIX CONTAIVIVG

THE EIGENVECTORS OF A.

THE EIGENVECTOR IN COLUMN J OF Z CORRES~
PONDS TO THE EIGENVALUE W(J).

IF IJOB = 0, Z IS NOT USED.

NOTE - THE ROUTINE TREATS Z AS A REAL VEZCTOR
OF LENGTH 2*N*N. AN APPRCPRIATE EQUIVALENCE
STATEMENT MAY BE REQUIRED. SEE DOCUMENT
EXAMPLE.

- THE INPUT ROW DIMENSION OF MATRIX Z EXACTLY

AS SPECIFIED IN THE DIMENSICN STATEMENT I
THE CALLING ZRCGRAM. IZ MUST BE GREATER
THAN OR EQUAL TO N IF IJOB IS NOT EQUAL TO
ZERQ.

= WORK AREA, *HE LENGTH OF WK DEPENDS

ON TEE VALUE QF IJOB, WEEM

IJOB = Q, THE LENGTH QF WK IS AT LEAST N.

IJOB = 1, THE LENGTH OF WK IS AT LEAST 2N.

IJOB = 2, TEE LENGTH OF WK IS AT LEAST ‘
(2+N) N.

IJOB = 3, THE LENGTHE OF WK IS AT LEAST 1.
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IER = ERROR PARAMETER. (OUTPUT)
TERMINAL ERROR
IER = 128+J, INDICATES THAT ZQRH3F FAILED
TO CONVERGE ON EIGEZNVALUEZ J. EIGENVALUES
J+1,J+2,...,N BAVE BEEN COMPUTED CORRZCTLY.
EIGENVALUES 1,...,J ARE SET TO ZERO.
IF IJOB = 1 OR 2 EIGENVECTORS ARE SET TO
. - ZERO. THE PERFORMANCE INDEX IS SET TO 1000.
WARNING ERROR (WITH FIX)
IER = 66, INDICATES IJOB IS LESS THAN 0 OR
IJOB IS GREATER THAN 3. IJOB SET TO 1.
IER = 67, INDICATES IJOB IS NOT EQUAL TO
ZERO, AND IZ IS LESS THAN TEE ORDER OF
}ﬂMERIX A. IJOB IS SET TO 2ZERO.

PRECISION/EARDWARE - SINGLE AND DOUBLE/H32
- SINGLE/H36,H48,H60

REQD. IMSL ROUTINES - EBALAF,EBBCKF,EHBCKF,EHESSF,EQRH3F,UERTST,
UGETIO

NOTATION = INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE URELP

Algorithm

EIGRF computes eigenvalues and (opticﬁally) eigenvectors of a real
matrix. It can also compute a performance index.

EIGRF calls IMSL routine ESALAF to balance the matrix. Then, ﬁHESSF
anéd EQRH3F are called to compute eigenvalues and (optionally) eigen-

vectors. When eigenvectors are computed, EEBCXT and EBBCXF are called
to backt:ansbo:m the eigenvectors.

The performance index is defined as follows

P - max . l 'uj-wjzj l l l ’ . . . "-‘:1
= 4 -y
19 y(ajly 112711, 100 (zes)

where the max is taken over the ] cigehvalues wj and associated eigen-

vectors zj. EPS specifies the relative precision of floating point ' of
arithmetic. When P is less than 1, the performance of the routines is NS
considered to be excellent in the sense that the residuals Az-wz are as :
small as can be expected. When P is between 1 and 100 the performance o
is good. When P is greater than 100 the performance is considered poor.

’ "
'.

The performance index was first developed and used by the EISPACX pro-
- ject at Argonne National Laboratory. (jE>
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See references:

U Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon
G Press, Oxford, 1965. —

2. Smith, 8. T., 3Boyle, J. M., Garbow, B. S., Ikebe, Y., Klema, V. C.,
and Moler, C. B., Matrix Eigensystem Routines, Springer-Verlagq,
1974. . )

Progra.mming Notes

1. A is éreserved when IJOB=2 or 3 and N=IA. When N<IA, rows
N+l, N+2, ..., IA of A are destroyed. 1In all other cases A
is destroyed.

2. The eigenvalues are unordered except that complex conjugate pairs
of eigenvalues appear consacutively with the eigenvalue having the
positive imaginary part first.

3. The eigenvectoré are not normalized.

» 4. When IJOB=3 (i.e., to compute a performance index only) the eigen-
E values, W, and eigenvectors, 2, are assumed to be input.

Example 1

/\ ., In this example, EIGRF is called to compute eigenvalues, eigenvectors
ol and a performance index by setting input IJOB=2. After the call to
"8 EIGRF, the eigenvectcrs are normalized. For machines which reguire
d equivalencing, see example 2.

o INTEGER N,IA,IJ0B,IZ,IER
REAL A(4,4) ,WK(24)
COMPLEX W(4),2(4,4),2N

Input:

IA = 4
Iz = 4
N a 4
IJOB = 2
4.0 -500 °o° 3.0
0.0 4.0 =3.0 =5.0
A = J|s.0 -3.0 4.0 0.0
3.0 0.0 5.0 4.0
CALL EIGRF (A,N,IA,IJOB,W,32,IZ,WK,IER)
c NORMALIZE EIGENVECTORS
DO S Js=1,N .
2N = 2(1,J)
DO S I=l,N

z2(Z,J) = 2(I,J)/2N
C ) CONTINUE
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Output: ﬁ
':.' R IER = 0 -
RS
w = (12.0,1.0+5.04,1.0-5.0i,2.0) (eigenvalues)
1.0 1.0 0.0 1.0 0.0 1.0 3
Z = 'i’g ’ gg +i :ig ’ gg +i ig ' _ig (eigenvectors)
" 1.0 "1.0 0.0 "1.0 0.0 1-0 -
5 WK(l) < 1.0 (performance index)
©  Example 2 . b
For machines which regquire an equivalence statement in situations where :
an array is of one type in the calling program but of another type in
the subroutine, EIGRF should be called as follows. -
INTEGER ¥, IA,IJOB,1Z,IER
. "COMPLEX wW(4),2(4,4),2N "
EQUIVALENCE (W(1l),RW(1)),(2(1,1),RZ(1))
: Input:
. IA = 4 :\
I2 = 4
‘LR - 4 .
— 7 IJOB = 2 =
- . W
:- . 4.0 ‘5.0 000 3.0 t-:
< 0.0 4.0 -300 -500 - \:'
A " |s5.0 <3.0 4.0 0.0
3.0 0.0 5.0 4.0
o CALL ZIGRF (A,N,IA,IJOB,RW,RZ,IZ,WK,IER)
. C NORMALIZE EIGENVECTORS :
:- DO 5 J"l,N ) v ° '_.
ZN = 2(1,J) } ;~
DO § I=l,N
- 2(1,J) = Z2(I,J)/2N .
2 S CONTINUE ‘ -
& Output: ‘o A -
) - e
IZR = O , .o
2 W = (12.0,1.0+5.0i,1.0-5.0i,2.0) (eigenvalues) ' >
P g
.?- 1.0 1.0 0.0 1.0 0.0} 1.0 k;
= -1.0 0.0 -1.0 0.0 1.0 1.0 -
ol 10|00 |-tia| | 00| 10| [-1.0| (eigenvectors) o
:1 "":i’; 1.0 -1.0 0.0 -1.0 0.0 1.0 . . ) “:'
oY e . ’ r_‘.
: WK(l) < 1.0 (performance index) ‘::‘_:
) L
~s 67 'S
EIGRP~4 ' A "
o
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IMSL ROUTINE NAME
PURPOSE

USAGE
ARGUMENTS Y

-2

" IDGT

IER

PRECISION/HARDWARE

' REQD. IMSL ROUTINES

NOTATION

LEQT2F

LINEAR EQUATION SOLUTION -.FULL.STORAGE
MODE - HIGH ACCURACY SOLUTION -

CALL LEQT2F (A,M,N,IA,B,IDGT,WKAREA,IER)

INPUT MATRIX OF DIMENSION N BY N CONTAINING
THE, COEFFICIENT MATRIX OF THE EQUATION
AX = B. :

NUMBER OF RIGHT-HAND SIDES. (INPUT)

ORDER OF A AND NUMBER OF ROWS IN B. (INPUT)
ROW DIMENSION OF A AND B EXACTLY AS SPECIFIED
IN THE DIMENSION STATEMENT IN THE CALLING

PROGRAM. (INPUT)

INPUT MATRIX OF DIMENSION N BY M CONTAINING -
THE RIGHT-HAND SIDES OF THE EQUATION AX = B.

ON OUTPUT, THE N BY M MATRIX OF SOLUTIONS
REPLACES B.

INPUT OPTION.

IF IDGT IS GREATER THAN 0, THE ELEMENTS OF
A AND B ARE ASSUMED TO BE CORRECT TO IDGT
DECIMAL DIGITS AND THE ROUTINE PERFORMS
AN ACCURACY TEST.

IF IDGT EQUALS 0, THE ACCURACY TEST IS
BYPASSED.

ON OUTPUT, IDGT CONTAINS THE APPROXIMATE
NUMBER OF DIGITS IN THE ANSWER WHICH
WERE UNCHANGED AFTER IMPROVEMENT.

WORK AREA OF DIMENSION GREATER THAN OR EQUAL
TO N*#*2+3N. ’

ERROR PARAMETER. (OUTPUT)

WARNING ERROR
IER = 34 INDICATES THAT THE ACCURACY TEST

FAILED. THE COMPUTED SOLUTION MAY BE IN
ERROR BY MORE THAN CAN BE ACCOUNTED FOR
BY THE UNCERTAINTY OF THE DATA. THIS
WARNING CAN BE PRODUCED ONLY IF IDGT IS
GREATER THAN 0 ON INPUT. (SEE THE

CHAPTER L PRELUDE FOR FURTHER DISCUSSION.)

TERMINAL ERROR

"IER = 129 INDICATES THAT THE MATRIX IS
ALGORITHMICALLY SINGULAR. (SEE THE
CHAPTER L PRELUDE). '

IER = 131 INDICATES THAT THE MATRIX IS TOO
, ILL-CONDITIONED FOR ITERATIVE IMPROVEMENT
TO BE EFTECTIVE.

SINGLE AND DOUBLE/H32
SINGLE/H36 ,H48,d60

SINGLE/LUDATN, LUELMN, LUREFN, UERTST,UGETIO *
DOUBLE/LUDATN, LUELMN, LUREFN,UERTST ,UGETIO,
VXADD , VXMUL , VXSTO

INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP

June, 1982 LEQT2F-1
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’ Algorithm

. LEQT2F solves the set of linear equations AX=B for X, where A is the
T N by N matrix and is in full storage mode. B is N by M. The differenc.
o Q;y- between this routine and routine LEQTLF is that LEQT2F invokes iterative

. improvement if necessary, in order to merove the accuracy of the
n solution X.

o The routine performs Gaussian elimination (Crout algorithm) witth equi-
o libration, partial pivoting, and iterative improvement as required.

See reference:

Forsythe, George and Mcler, Cleve B., Computer Solution of Linear

Algebraic Systems, Englewood Cliffs, N. J., Prentice-Hall, Inc., 1967,
Chapters 9, 13, 24. .

Programming Notes

1. Iterative xmprovement is costly in both computer time and storage.

If When high accuracy is not needed, subroutine LEQT1F may be used to
. advantage. .

3 2. When IA is greater than N, elements of A in rows N+l to IA are
Ii used as workspace and are destroyed. However, the first N rows
> of A are restored to their original content on exit from LEQT2F.
j3 Accuracy

; s, If IDGT is greater than zero, elements of A are assumed to be correct
Ei QEQ to IDGT decimal digits. The solution X will be the exact solution,

. without any roundoff error, to a matrix A whose elemehts agree with

. the elements of A in the first IDGT decimal digits. The program first
- attempts such a solution without iterative improvement. Then iterative
. improvement is performed if necessary. If this also fails, solution is
not possible and the program exits. Upon exit, the first columns of B
will have been replaced by the best solution that the computer can
generate and IDGT is set to the approximate number of digits in the.
answer which were unchanged by the merovement (see IMSL routine LUREFF) .
The other columns of B are left unchanged in this case and IER is set to

131. If irput IDGT equals zero, iterative improvement is automatically
performed.

.
s T le e e

P i

: -

Example

This example inputs the 3 by 3 matrix A and the 3 by 4 matrix B solving
for the 3 by 4 matrix X of AX=B. X overwrites B on output.

S _
Input: . . ’

REAL A(4,4),B(4,4) ,WKAREA(18)
INTEGER M, N, IA, IDGT, IER

'!":' ‘.' e .

N = 3 3
M - 4 *:
IA = 4 e
IDGT = 3 . w
LEQT2F-2 ' 69 < -
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CALL LEQT2F(A,M,N, IA,B, IDGT,WKAREA, IER)

Output:
IDGT = 3
IER = O
-9.66666 -2.66667 -32. 1.
B - 8.0 2.5 25.5 =2,
2.66667 .666667 9. -5.

X X X X '

Note: x indicates elements not used by LEQT2F.

'
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IMSL ROUTINE NAME - EIGRS

s PURPOSE - EIGENVALUES AND (OPTIONALLY) EIGENVECTORS OF

- A REAL SYMMETRIC MATRIX

i{ (;; USAGE - CALL EIGRS (A,N,JOBN,D,Z,IZ,WK,IER) -
e ARGUMENTS A - INPUT REAL SYMMETRIC MATRIX OF ORDER N, f

. WHOSE EIGENVALUES AND EIGENVECTORS .
R ARE TO BE COMPUTED. INPUT A IS =
DESTROYED IF IJOB IS EQUAL TO 0 OR 1.

N - INPUT ORDER OF THE MATRIX A. =~

JOBN - INPUT OPTION PARAMETER. IF JOBN.GE.1l0 .

A IS ASSUMED TO BE IN FULL STORAGE MODE

(IN THIS CASE, A MUST BE DIMENSIONED EXACTLY

N BY N IN THE CALLING PROGRAM).

IF JOBN.LT.10 THEN A IS ASSUMED TO BE IN .

SYMMETRIC STORAGE MODE. DEFINE -

IJOB=MOD (JOBN,10). THEN WHEN :
IJOB = 0, COMPUTE EIGENVALUES ONLY
IJOB = 1, COMPUTE EIGENVALUES AND EIGEN-

VECTORS.
IJOB = 2, COMPUTE EIGENVALUES, EIGENVECTORS -
AND PERFORMANCE INDEX. -
IJOB = 3, COMPUTE PERFORMANCE INDEX ONLY. x
IF THE PERFORMANCE INDEX IS COMPUTED, IT IS
RETURNED IN WK(l). THE ROUTINES HAVE
PERFORMED (WELL, SATISFACTORILY, POORLY) IF
WK(l) IS (LESS THAN 1, BETWEEN 1 AND 100, .
GREATER THAN 100). *
D ~ OUTPUT VECTOR OF LENGTH N, .
CONTAINING THE EIGENVALUES OF A IN ASCENDING .
ORDER. N

OUTPUT N BY N MATRIX CONTAINING . "
THE EIGENVECTORS OF A. :
THE EIGENVECTOR IN COLUMN J OF 2 CORRES- ‘
PONDS TO THE EIGENVALUE D(J).

IF 1J0B = 0, Z IS NOT USED.

INPUT ROW DIMENSION OF MATRIX Z EXACTLY AS
SPECIFIED IN THE DIMENSION STATEMENT IN THE
CALLING PROGRAM.

WK - WORK AREA, THE LENGTH OF WK DEPENDS

ON THE VALUE OF IJOB, WHEN :

IJOB = 0, THE LENGTH OF WK IS AT LEAST N

IJOB = 1, THE LENGTH OF WK IS AT LEAST N.

IJOB = 2, THE LENGTH OF WK IS AT LEAST
N(N+1)/2+N.

IJOB = 3, THE LENGTH OF WK IS AT LEAST 1.

IER - ERROR PARAMETER (OUTPUT)

TERMINAL ERROR
IER = 128+J, INDICATES THAT EQRT2S FAILED
TO CONVERGE ON EIGENVALUE J. EIGENVALUES
AND EIGENVECTORS 1,...,J-1 HAVE BEEN
COMPUTED CORRECTLY, BUT THE EIGENVALUES
ARE UNORDERED. THE PERFORMANCE INDEX
IS SET TO 1000.0

FN

[
[}

Iz

November, 1984 EIGRS=-1
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WARNING ERROR (WITH FIX)
IN THE FOLLOWING, IJOB = MOD(JOBN,10).
"IER = 66, INDICATES IJOB IS LESS THAN 0 OR
- IJOB IS GREATER THAN 3, IJOB SET TO 1.
(i} IER = 67, INDICATES IJOB IS NOT EQUAL TO
ZERO, AND IZ IS LESS THAN THE ORDER OF
MATRIX A. IJOB IS SET TO ZERO.

" PRECISION/HARDWARE SINGLE AND DOUBLE/H32
N SINGLE/H36,H48 ,H60

- REQD. IMSL ROUTINES EHOBKS, EHOUSS ,EQRT2S ,UERTST, UGETIO

-~ NOTATION INFORMATION ON SPECIAL NOTATION AND

- CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP

Algorithm

EIGRS calls IMSL routine EHOUSS and EQRT2S to compute eigenvalues and
. (optionally) eigenvectors. When eigenvectors are computed, EHOBKS is
~ called to backtransform the eigenvectors.

. The performance index is defined as follows:

max
1<j<n

|1azd-a,231 1

[ally 112211, 1008 (EPS)

*Ji}ie the max is taken over the n eigenvalues dj and associated eigen-

.- vectors zJ. EPS specifies the relative precision of floating point

. arithmetic. When P is less than 1, the performance of the routines is

-~ considered to be excellent in the sense that the residuals Az-dz are as

- small as can be expected. When P is between 1 and 100 the performance
is good. When P is greater than 100 the performance is considered poor.

- The performance index was first developed and used by the EISPACK pro-
- ject at Argonne National Laboratory.

- See references: o

1. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford, 1965.

f12. Smith, B. T., Boyle, J. M., Garbow, B. S., Ikebe, Y., Klema, V. C., fﬁ
' and Moler, C. B., Matrix Eigensystem Routines, Springer-Verlag, . "
1974. - =~

':Programming Notes

1. A is preserved when IJOB=2 or 3 (IJOB=MOD(JOBN,10)). In all
-~ other cases A is destroyed. _ ~

;12::; The computed eigenvectors are normalized to each have Euclidean
-~ 7+ length 1. N

EIGRS-2 June, 1980 72 —
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Inputi

INTEGER N,JOBN, IZ,IER

REAL A(l0),D(4),2(4,4) ,WK(14)
N = 4 '
IZ = ¢4
5.0
4.0 5.0 .
A = 1.0 1.0 4.0 In symmetric storage mode A(1l)=5.0,
1.0 1.0 2.0 4.0 A(2)=4.0,A(3)=5.0,...,A(10)=4.0
JOBN = 2
CALL EIGRS(A,N,JOBN,D,Z,I7,WK,IER)
Output:
IER = 0

D = (1.0, 2.0, 5.0, 10.0) (eigenvalues)

-0.70710 0.00000 -~0.31622 0.63245
0.70710 0.00000 -0.31622 0.63245

= 0.00000 0.707L0 0.63245 0.31622 (eigenvectors)
0.00000 =0.70710 0.63245 0.31622
WK(l) < 1 (performance index)

Note: 2 is unique to within a sign change for each column.
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