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Abstract

The eigenvalue method, as presented by T. M. Shih and

J. T. Skladany, is evaluated to determine the advantages and

disadvantages of the method as compared to fully explicit,

fully implicit, and Crank-Nicolson methods. Time

comparisons and accuracy comparisons are made in an effort

to rank the eigenvalue method in relation to the comparison

schemes.

Shih and Skladany's original results are verified by

duplicating their efforts with the method. The eigenvalue

method is used to solve the parabloic heat equation in

multidimensions with transient temperatures. Extensions

into three dimensions are made to determine the method's

feasibility in handling large geometry problems requiring

great numbers of internal mesh points.

The eigenvalue method proves to be slightly better in

accuracy than the comparison routines because of an exact

treatment, as opposed to a numerical approximation, of the

time derivative in the heat equation. It is an

unconditionally stable method. It has the potential of

being a very powerful routine in solving long transient type

problems. The u'thod is not well suited to finely meshed

grid arrays or large regions because of the time and memory

requirements necessary for calculating large sets of

eigenvalues and eigenvectors.
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EVALUATION OF THE EIGENVALUE METHOD IN
THE SOLUTION OF TRANSIENT HEAT CONDUCTION PROBLEMS

I. INTRODUCTION

Heat flow in solid bodies and across their boundaries

is a common engineering problem. The solution of these

problems can be found by direct calculation, experiment, or

by use of numerical techniques. Calculation is the most

preferred method, but analytical solutions may not exist in

many problems. Experimentation can be expensive and is

often inconvenient, if not impossible. Numerical analysis

becomes a very good alternative to the problem solver.

At first glance, numerical analysis of heat flow seems

"too complicated" and "can't be trusted, as it is only an

approximation anyway" (9:viii). This is not a fair opinion,

as there are many useful, simple, and very accurate

techniques available. Among these are the fully explicit

(7:223-251), fully implicit (1:49-53), Crank-Nicolson

(8:50-67), and, a fairly new thechnique in heat transfer,

the eigenvalue method (19:409). These do not comprise a

complete list of techniques that are available, but, rather,

represent broad classes of approaches in discretized

solutions.

The eigenvalue method, "which has been used by

researchers in structure mechanics, but is relatively

unpopular in the heat transfer community" (19:409), can,
1
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indeed, be applied to heat transfer. It is especially well

suited to heat transfer problems with long transient times

until equilibrium is reached. It differs from the other

. techniques in that eigenvalues and eigenvectors must be

calculated. Once this hurdle, albeit a substantial one, is

cleared, the eigenvalue method uses algebraic type equations

to arrive at its solutions, thus avoiding time consuming

array solving or iterations to converge to correct answers.

PROBLEM

A recent (1983) article published by Shih and Skladany

(19:409-422) investigated the eigenvalue method to solve

transient heat flow problems. The problem investigated in

this study is independent verification of their results.

Additionally, extensions of the eigenvalue method will be

made into three dimensions and the method will be used in an

independent problem. Advantages and disadvantages of the

method will be identified. The method will be compared to

the fully implicit, fully explicit, and Crank-Nicolson

methods and, finally, an overall rating will be given in

relation to these methods.

SCOPE

This study will use cartesian coordinates in two and

three dimensions. In addition to the comparison routines,

each method's solution will be compared to the exact

analytical solution using a least squares analysis. The

2



ilO- I_ - 7 - -:7. . . .7 o %' -7w

eigenvalue method will be extended to three dimensions and

compared to a three dimensions version of the fully implicit

method.

Cylindrical or spherical coordinates will not be

incorporated in the study. It is not the purpose of this

study to perform a detailed analysis of the comparison

routines. All problems investigated will consider only

Dirichlet boundary conditions to insure uniform comparisons.

Problems involving heat sources within the solid will not be

examined.

GENERAL APPROACH

The first objective will be to explain, in detail, what

the eigenvalue method (EM) is and why it works. Next, the

exact analytical solution to the two dimensional problem

presented in the Shih and Skladany article will be verified

(19:410). 4"

Armed with this information, the results of the article U

will be recomputed based upon the sample problem they

prepared. The same problem will be solved using the three

comparison techniques: fully explicit (EX), fully implicit

(IM), and Crank-Nicolson (CN).

Each run will be timed for wall clock times, user time

(time actually obeying commands), and central processor unit

time (CPU time) (16:473-474). Each method's output will be

compared against the exact solution and a least squares

analysis will be performed to produce an overall accuracy

3



for each run (23:1021-1035). All runs will be made using

the AFIT VAX 11/780 computer system.

The sample problem will be extended into three

dimensions to investigate ease-of-use of the EM in

multidimensions and perform an problem independent from that

of the article. An additional three dimensional problem

will be performed to deliberately remove any symmetry for

the purpose of evalutating the EM in these type cases.

Finally, the EM will be closely examined for

enhancements, strengths, weaknesses, etc. An overall

performance rating, in relation to the comparison routines,
"[..

will be given.

16
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II. EXISTING THEORY

Heat conduction in solids has been the object of

investigation by engineers for quite some time. The heat

diffusion equation is given (21:9-54) as

= 2 -++

in three dimensions where

- material density

C = specific heat

- thermal condictivity

All problems examined in this study will be based upon

this equation. Shih and Skladany used a two dimensional

form of Eq. (1) in their investigations (19:410-413). For

simplicity, the following three comparison routines will be

examined in just the two dimensions.

EXPLICIT

One of the simpler numerical techniques is the explicit

formulation. The relative ease of setting the explicit

method up and the absence of large simultaneous equations

are clear advantages of this method (5:91). Its major

disadvantage lies in the commonly know problem of stability

(19:4091 7:377). This problem links the time ntep of the

a 5.
A. .

[. .,



method to the spatial step. This can prove to be

prohibitive in large transient type problems.

Use of standard finite differencing techniques will be

used in all formulations in this study (7:376-3781 5:59-63).

Assuming a forward difference approximation for the time

derivative and a central difference approximation for the

spatial derivatives, the explicit method can be written as

- / -Te 1 1 )A+ 4 ON) (2 )

(Tc~~&A /q = Ti -2T/i + + O(hr( 3 )

44

and plugging into the heat equation (1)

"( 4 lT/4) 0 T/,,
" (5)

where

yields the explicit method algorithm. Placing all the

knowns on the right side, the remaining unknown is the

temperature at each node for the new time step.

6
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Let.x -&,y - h, then

T- (6)

This algorithm can be used to calculate temperatures at

any nodal point (ij) at any time t, provided the At is

sufficiently small to meet the stability requirement.

To insure a bounded answer, but not necessarily

accuracy (15), the condition

< i(7)

must be met (7:379-380). This method has truncation errors

with order O(ht) + O(h j) (5:59-63).

IMPLICIT

To avoid the serious stability criteria of the explicit

method, the engineer can turn to an implicit formulation.

The main principle of this scheme is that the temperature at

each point is found at all nodes simultaneously using the

temperature values from the previous time step (17:58).

This also gives rise to its disadvantage, in that large

systems of simultaneous equations must be solved to arrive

at a solution. For finely meshed problems with long

transient times this can become a significant problem.

7



Formulation of the implicit scheme is similar to that

of the explicit scheme except the spatial derivatives are

evaluated at the new time step (evaluated at the current

time step in explicit).

The time derivative will remain unchanged and the

spatial derivatives will become (5:104; 1:49-53)

I / = T- X , TL +T. .la x OW) (8)

,+0 (9)

Plugging Eqs. (2), (8), and (9) into Eq. (5) and then

rearranging all the unknowns on one side yields

4+'

T -a(c /k5-r, +T + T
1 4

+ + -MJ (10)

This method is well adapted to the computer because it

is unconditionally stable, but it does generate the large

sets of simultaneous equations (11:455). This method has

truncation error on order of O(h*) + O(h") (5:59-63).

-.

,
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CRANK-NICOLSON

F An attempt to avoid numerical instability led to the

implicit method. The method is unconditionally stable, but

the method still had truncation errors of O(ht) + O(hy)

(5:59-63). This can be improved to O(h*) + O(hh) by

approximating the time derivative with a central difference

(11:455). This method, it turns out, has problems with

stability (11:455). Crank and Nicolson suggested to

overcome this by representing the derivative with an average

of a forward difference and a backward difference, each

weighted by 1/2 (8:50; 11:455-457). If

S / a = I"(1)

then the Crank-Nicolson scheme is

4.'4

(-'/(i~zr)T~ (t4 ~ +r

++.4 Tcf-, +- I, 4 , (12)

This method also generates large systems of

simultaneous equations. The advantage comes from the

increase in the accuracy gained by the O(ht) term.

9
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III. NEW THEORY

THE EIGENVALUE METHOD

The eigenvalue method (EM) is not really a "new" theory

or discovery. Shih and Skladany suggest in their article

that this method has been used extensively in structure

mechanics (19:405). The use of eigenvalues to solve systems

of equations has been studied in math text books for quite

some time. It is the application of the E to solutions of

the heat equation that is fairly new.

WHAT IS THE EN

Solving problems numerically requires the division of

the region in question into small grids. The intersection

of the grid lines (called nodal points), are, typically, the

points of interest in the study. If these grids are

sufficiently small, the exact behavior under study can be

quite accurately approximated.

Each node point is an unknown value and is generally

represented by a governing equation. A system of equations

such as these can be solved simultaneously to find these

unknowns. It takes n equations to find n unknowns.

Provided the equations can be found, all that remains is the

selection of a techinque to solve them. Several techniques

exist to do just that; among them is the EM.

10
.-
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WHY DOES THE EN WORK?

For clarity, the EM is applied to the transient heat

equation. This application demonstrates 
the method and why

it is a valid numerical technique.

The transient parabolic heat equation in three 
".

dimensions appears as

CvT kEaT/c +Tlq + 41A~ 2  (13)

Using standard central differences for the spatial

derivatives (7:376-378)

' kr(T M13f - ZT - 1 /A X#)

4-(T/,i - 2TcAOkTijh-i /6(14

and, again, let x -Ay -az - h.

L' •p

p..

11 "

-- ,% , - ." . -. % 
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Figure 1. Notation Convention for Discretizations.

Figure 1 depicts the notation convention used in this

report for all discretization schemes. Using this notation,

Eq. (14) can be written as

( /ha)- r-E+TW+TN +-

+ TS + T - "Ti3 (15)

where

p = 1, 2, 3, ... ,n.

DERIVATION OF THE METHOD

Borrowing mainly from the Shih and Skladany report

(19:409-422), the following is the derivation of the

eigenvalue method. Equation (15) can be expressed in matrix

12
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form as

=CI CK*1* (16)

where "CC3 is an nxn identity matrix multiplied by ChCy, EKJ

is an nxn sparse conductance matrix whose diagonal elements

are -4k/h" (-6k/h in three dimensions) (19:411). The vector

Fis of length n and incorporates the boundary conditions.

In general, all matrices have n characteristic

eigenvalues and associated eigenvectors (14:345). Most

discretization schemes do not make use of these. Along with

the appropriate multiplying constants determined from

boundary conditions, these eigenvalues and eigenvectors can

be used to solve the system of simultaneous equations from

V which they came (14:824). This is the basis of the EM and

why it works.

Use of some simple matrix algebra reveals the core of

the method. If Eq. (16) is pre-multiplied by EC "' to yield

(again, following Shih and Skladany) (19:411)

~ £CTC J 4 LcT-'{J (17)

and define

[K D (18)

- (19)

13
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to get

= EJJLT" +(20)

Now, let

JT (21)

where 40 is some arbitrary function of time and JTF  is

independent of time and represents the steady-state

solution. The derivative of Eq. (21) with respect to time

gives

{T~ (22)

and plugging Eqs. (21) and (22) into Eq. (20)

S+ 4 (23)

and if

- (24)

then Eq. (23) becomes just

[i1~0(+?(25)
14
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which is a set of "first-order, linear, ordinary

differential equations" (19:411). Appendix B details the

solution of Eq. (25) as applied to a system of two equations

(without loss of generality). Based upon this and assuming

the solution of Eq. (25) to be

ci I ieypfA { (26)
=: ..

where fC,] is the set of multiplying constants yet to be

determined and are the eigenvalues of the system. It

turns out the multiplying constants are actually a product

of the eigenvectors and another constant determined by the

boundary conditions of the particular problem. Once the

eigenvalues, eigenvectors, and the multiplying constants are

determined, the Eq. (25) can be solved. These results are

used in Eq. (21) to find the temperature at each nodal

point. In matrix form the EM can be written

fT ± Ef~1 (27)

where

i = j = 1, 2, 3, ... ,n.

and aL is the i-th multiplying coefficient determined by

boundary conditions and vilis the j-th component of the i-th-°.

eigenvector (see List of Symbols).

15
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ADVANTAGES AND DISADVANTAGES

. .From the previous derivation and the Shih and Skladany

* article several advantages and disadvantages seem possible.

Among the advantages are

1. Better accuracy; no time truncation error.
2. Efficient use with long transients.
3. Unconditionally stable method.
4. Rapid solution; few eigenvectors needed.

Two possible disadvantages could be

1. Difficulty in finding and using good
eigenvalue/vector routines.

2. Time consuming in fine mesh space problems.

The results of this study will verify or contradict

these and bring to light any others not mentioned.

1'
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IV. APPLICATION TO SPECIFIC PROBLEMS

One of the main purposes of this study is to verify

results achieved by Shih and Skladany in their article.

They presented a two dimensional sample problem (19:412).

For the purpose of brevity, they only examined this problem

by taking full advantage of the symmmetry involved. This

study does the same and will also examine the problem with

the assumption that not all problems will be symmetric.

THE TEST PROBLEM

Consider a square slab of length, L, on a side with

constant temperature, To , on each of the sides. Further,

let the region be governed by

fey (28)

subject to the boundary conditions

T(Oy,t) T

T(L,y,t) = To

T(x,O,t) =T o

T(x,L,t) =T o

and the initial condition

T(x,yO) T I

17
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Fig. 2. Domain for 2-D transient heat conduction problem.

Figure 2 shows graphically the sample problem. Shih

and Skladany maintain that the temperature at the node point

in the center is equal to the temperature at Tte (19:412).

It is not necessary to make this approximation to assure h

accuracy. A more accurate formulation is to make the

temperature at the center seperate and add an additional

equation to the resulting system.

The analytical solution to Eq. (28) can be found in

Appendix A by removing the z dependence. The normalized

solution will then be

". c',g,. , u.-) (29)

18
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b. ~',T . . . . . . .-°7 r. -F' ;C. .. +6-0-- - -i

.- .. where

- (~/nw~~p(~~rr /L~~nnrc/L (29a)

and

with

n a 1, 3, 5,

for both a and GL .

For simplicity let (19:412)

. 1 (30)

The reader is advised to refer to the list of symbols

found at the beginning of this report in order to keep track

of the normalized and real values. For generality, this

problem is done with normalized values.

In the interest of brevity, only a few of the 20

differential equations generated by Eq (15) (2-D version)

are listed

S.

19
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* -. . . . .
" N/' = 0 q-I - z.

:: • v.,',:(31)

T,, +T.,6+Ta-+.' q.I'

-,= -Tr-y,+1" +ii--, (32)

it, -Ts + aTn + -"o - 4-1 (33)

S .T- - To -" T (34)

/ -I- - 3To (35)

These 20 equations represent a matrix whose

coefficients are used to find the 20 eigenvalues and

eigenvectors for use in the EM.

This brings up a major criticism of this method. The

matrix formed by the above is not symmetric, banded, and is

not positive definite. These are not desireable

characteristics of a general matrix. This matrix required

the use of the IMSL routine EIGRF (10:EIGRF-1-EIGRF-2) to

find the eigenvalues and eigenvectors. This routine is

particularily difficult to use and did not interface well

with the VAX 11/780 computer.

20
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TABLE I

Comparison of EIGRF Output for First Eigenvalue.

STUDY ARTICLE RATIO

EIGENVALUE -0.1399 -0.1400 0.9999

COEFFICIENT -821.28 -832.04 0.8812

V(1,1) 0.0269 0.0267 1.0075

v(1,2) 0.0520 0.1516 1.0078

v(1,3) 0.0734 0.0729 1.0069

v(1,4) 0.0898 0.0891 1.0090

V(1,5) 0.1000 0.0993 1.0070

v(,)0.1034 0.1027 1.0068

v(1,7) 0.1003 0.0996 1.0070

V(1,8) 0.1416 0.1406 1.0071

V(1,9) 0.1731 0.1719 1.0070

V(1,10) 0.1927 0.1913 1.0073

V(1,11) 0.1994 0.1979 1.0076

v(1,12) 0.1998 0.1984 1.0075

v(1,13) 0.2440 0.2423 1.0070

v(1,14) 0.2714 0.2695 1.0071

v(1,15) 0.2806 0.2786 1.0072

v(1,16) 0.2976 0.2955 1.0071

v(1,17) 0.3304 0.3281 1.0070

V(1,18) 0.3410 0.3386 1.0071

V(1,19) 0.3654 0.3628 1.0073

v(1,20) 0.3747 0.3720 1.0073
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Table I lists a partial comparison of the output of the

IMSL routine EIGRF. This is only a sample of the complete

output and clearly shows the results (19:414) Shih and

Skladany achieved are correct. The eigenvectors have an

average error 1 0.728%. The eigenvalues were the same as

the article (within 4 decimal places). The coefficient is a

little different from the Shih and Skladany coefficient

because of the slight differences in the system of

eigenvectors. Despite the difference, the errors are

compensating and account for a negligible difference in the

temperature histories. The coefficients were calculated

using the initial condition and solving the resulting matrix

by the IMSL routine LEQT2F (10:LEQT2F-1-LEQT2F-31 24). All

IMSL routines used in this study can be found in Appendix C.

RECURSION FORMULAE

With the eigenvalues, eigenvectors, and multiplying

coefficients known, the EM can be used to solve the problem

(19:413). The nodal point temperature histories can be

found by

~a~ T0 r +c vexp~t (36)

Table II presents a partial comparison of the results

of Eq. (36). Temperatures at point Tq are used as a sample

of the entire grid.
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TABLE II

Temperature History for Tq

TBAR STUDY EXACT RATIO

1.0 35.211 32.248 1.092

2.0 70.714 69.683 1.015

3.0 95.422 94.984 1.005

4.0 113.134 112.830 1.003

5.0 126.542 126.216 1.003

6.0 137.181 136.786 1.003

7.0 145.913 145.447 1.003

8.0 153.244 152.720 1.003

9.0 159.485 158.919 1.003

10.0 164.845 164.254 1.004

The above table shows the comparison at point Tq with

r= 1 as compared to the exact solution at the same node

point. When plotted as a graph, these values appear in

Figure 3 on the following page. From Table II and Fig. 3,

it is seen that the eigenvalue method compares very well

with the exact solution after T of 2 or more. After this

time the eigenvalue method was within *0.3% of the exact

answer. Before t = 2 the method differed considerably.

Shih and Skladany offer an explanation for this (19:417).
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Figure 3.History of temperature at nodal point T9
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*Since initially the heating rate JrAt and the
change of the heating rate r/40 are large, and
since OTAt is related to the space derivatives by

it follows that initially the value of V4T must be
large because

Io(T 2  "-"/t)
Now we already know that the fourth derivative is
embedded in the leading truncated term in the
second order accurate finite difference

This explanation also implies the truncation error will

be large in the initial heating in all three schemes.

Equation (36) was used as the recursion formula for the

EM. Using the notation of Figure 1, the following recursion

formulae were used in the study as the comparison routines.

The explicit method used

t t

-°

The implicit method used

44'= -<:+-r +-r'+7m:-,'

-r i

.
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. .°

and the Crank-Nicolson used

= C -2r) /C 2r)J TP~ 'Y2 +)
L

iw AT H4TE +7vT+T+ T(39)

where

O'- :/W

ERROR EVALUATIONS

An article written by Towler and Yang was the basis for

selection of an error routine (23:1021-1024). The desire

Sfor some overall way of determining a method's accuracy was

used as a criteria in the selection of the Root Mean Squared

(RMS) method. Stated simply, this finds the difference

between the temperature at each node and the exact

temperature, squares each point's differences, adds up all

of these, divides by the total number of inner node points,

and, finally, takes the square root of the answer. Written

mathematically as (23:1023)

- (U- (-4A0)a](40)
N-rT
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This provides a benchmark for each routine to base

accuracy evaluations upon.

The exact solution found in Appendix A is in the form

of a summation of terms involving exponentials, sines, and

cosines. When using normalized time (t = 1, 2, 3, ... ) the

exponential term will drive the magnitude of the individual

term's contribution. Thus, when n, m, and o become large,

the term will be small and add little to the summation.

When using normalized time it is found that only 15 terms in

the sum are required for convergence to 10-1 accuracy.

This degree of accuracy is seldom necessary in light of the

accuracy of such measured things as thermal conductivity,

specific heat, etc. To retain a reasonable amount of

accuracy of 3 or 4 significant digits, only 11 terms are

required in the summation. This translates into significant

time savings in the computation of the exact solution for

comparison purposes.

RESULTS OF 2-D PROBLEM

The sample problem in Shih and Skladany's article was

symmetric in the x-y plane (19:413). For this reason, they

elected to take full advantage of symmetry and, thus, make

the computational domain fairly small (a 20X20 matrix).

Full symmetry in everyday engineering problems is idealistic

(22:127). Without symmetry, the domain will be analyzed by

a full grid with pitch h. This study ran the test problem

both ways. Symmetry was used for the initial verification.
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The same problem was then solved using the full grid (same

h) without taking advantage of the symmmetry. This approach

brought out some interesting observations.

Taking advantage of symmetry produces a matrix that is

non-symmetric, non-banded, and is non-positive definite.

This type matrix required the use of a more time consuming

routine (EIGRF). It also required more core memory as the

matrix must be stored in its full form. The full grid

analysis produces a banded, symmetric, non-positive definite

matrix. This saved central processor time (CPU time) and

core memory as only the lower co-diagonals needed to be

stored to compute the eigenvalues/vectors.

Shih and Skladany did not do a time comparison to

determine if the EM approach was faster (and therefore, less

expensive) on computers than the other types of solving

schemes. This was accomplished in this study using the VAX

11/780 and the UNIX command TIME (16:473-474). This command

returned several pieces of information including wall clock

time and the CPU time.

Taking advantage of TIME and the RMS error routine, the

four methods were run in symmetry and, then, in full grid

forms. The results were then compared to the exact

solution.
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TIME COMPARISONS

The following tables represent the time comparisons of

the specific methods. The CPU times are accurate to within

1/10 second and the wall clock times are accurate to within

1/60 second (16:473-374). The wall clock times may not be

consistent because runs made during different times of the

day took more or less wall clock time according to the

computer's load. The CPU times will be consistent as this

is the time the central pocessor takes to execute the

program.

TABLE III

Time Comparison of Methods in Symmetry.

METHOD CPU(SEC) WALL(HR:MIN:SEC)

EIGENVALUE 0.8 0:00:42

EXPLICIT 0.7 0:02:13

IMPLICIT 4.2 0:16:34

CN 6.4 0:23:56

Here it is easy to see the EM is very comparable to the

explicit method and is clearly faster than the last two

methods. All programs were run to achieve similar

accuracies (three significant digits the same).
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TABLE IV

Time Comparison of Methods in Full Grid.

METHOD CPU(SEC) WALL(HR:MIN:SEC)

EIGENVALUE 40.1 3:04:19

EXPLICIT 15.1 1:44:47

IMPLICIT 6.1 0:41:41

CN 26.4 1:29:00

The value of the use of the full grid approach becomes

apparent. When comparing Tables III and IV the CPU times do

not seem consistent. The explicit time in Table IV can be

explained by realizing the time restriction in Eq. (7) must

be satisfied. In this case t= 1/1000 to achieve the

necessary accuracy. This requires 1000 incremental

calculations to get to t =1 1 The implicit time is less

than explicit because it does not require this sort of time

step. To achieve the same accuracy the it = 1/50 . The CN

scheme takes more time in both tables and is therefore

consistent.

The problem of having to find the eigenvalues and

eigenvectors starts to become clear here. Finding

eigenvalues/vectors in full grid results in nxn matricies

being formed. The full grid sample used 121 internal mesh

points (11Xll grid, 121X121 matrixl). In full grid mode the

method now takes 4 times as long to run. In this case all r
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of the other methods are preferable to the EM; just

considering the time required to execute.
N.

ACCURACY COMPARISONS

The following table represents the accuracy comparison

of the specific methods. Only the full grid form of the

problem was compared because the errors are symmetric as

well as the temperatures. Values given are in OK. All

problems were run with the same time step of t - 1/50.

TABLE V

Accuracy Comparison of Methods in Full Grid.

METHOD TBAR

1 2 3 4 5 6 7 8 9 10

EIGEN 2.24 1.42 1.14 0.93 0.73 0.56 0.42 0.32 0.23 0.17

EXPLICIT 6.86 4.34 3.49 2.84 2.23 1.71 1.30 0.98 0.72 0.52

IMPLICIT 7.23 4.63 3.73 2.98 2.29 1.71 1.26 0.90 0.63 0.42

CN 7.20 4.59 3.73 3.06 2.44 1.92 1.50 1.16 0.89 0.68

Figure 4 on the following page is a plot of Table V.

This figure dramatically shows the improved accuracy of the

eigenvalue method over the more conventional methods.
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Figure 4. Aceuraey soaparison of methods in full grid.
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EXTENSION OF SAMPLE PROBLEM INTO 3-D

.'. A literature search of the numerical techniques in

solving the heat equation revealed very few sources that go

beyond a two dimensional case (17:45-481 4:142-144;

3:162-171). It is, therefore, instructive to examine a

problem in three dimensions.

Several questions arrise immediately when considering

the three dimensional case.

1. Does an analytical solution exist?
2. What boundary conditions are appropriate?
3. Does the method accuracy change in 3-D?
4. How much more time is required to run?

Answers to these questions are supplied in the

following sections.

THE THREE DIMENSION PROBLEM STATEMENT

The simplest case to study is a cube of dimension L on
.,-

a side. A more general problem also worth considering is a

parallelpiped (a box) with dimensions as show in Figure 4.

The general case can be easily modified by making the

lengths a, b, and c all equal to L and the cube case is

back. The program written took advantage of this, thus

saving work and time.
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FIGURE 4. Three dimension test problem.

All the surfaces of the box will be at the same T.

200 'OK. All the interior points are at 0 OK initially.

Therefore, the governing equation, boundary conditions, and

* initial condition are

= ET/e2 4-1 ~/+ 2  (41)

where

*T(0,y,z,t) To

*T(a,y,z,t) T

T(x,0,z,t) To

T(x,b,z,t) To

T(x,y,0,t) To

T(x,ypc,t) To

~~1 34 a
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T(x,y,z,O) TL

Using the same normalizations as the 2-D case and

refering to Appendix A, the solution to Eq. (41) is given by

Eq. (A-41). Indeed, the boundary conditions are appropriate

and there is an analytical solution to compare the methods

against.

Time restrictions during the study only allowed for the

implicit method to be developed in three dimensions as a

comparison routine to the exact and eigenvalue methods.

Little is lost here because the 2-D results extend into the

3-D case.

Recalling that the number of internal mesh points

determines the n dimension of the eigenvector/value solving

routine, a balance must be met. Enough mesh points must be

supplied to insure accuracy (not necessarilly stability)

(15) while at the same time too many mesh points cause the

problem to run extremely long. In the eigenvalue case, a

cube with 8 divisions (7 internal points) on a side was the

maximum number the VAX computer could handle before running

out of core memory. The core memory requires n4 bytes (10)

available for the eigenvalue method to use even in full grid

form (banded storage mode).

The EM is not an ideal method if computer memory space

is at a premium. This is another criticism of this method.

Shih and Skladany did not explore past the 20X20 matrix they

used and this aspect of the eigenvalue method was not made

apparent. This could present a definite problem to the user
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if he is trying to solve a heat problem for something large,

such as a nuclear reactor core.

THREE DIMENSIONAL TIME RESULTS

The three dimension time runs were very instructive.

The fact that 3-D is used is not important. What the 3-D

runs bring out is the use of many node points. It is in

this that the true nature of the eigenvalue time

requirements become apparent.

Both the EN and IN were run for cubes with L - 3, 4,

and 5. The times for each run are listed below

TABLE VI

Time Comparison in 3-D in Full Grid.

METHOD L=3 L=4 L=5

EM 3.0 4.9 40.1

IN 1.9 3.1 6.1

The time for the EM at L = 5 seemed extraordinarilly

large. An additional run verified the first number. A plot

of several runs at differing numbers of mesh points should

better describe the behavior of the method's time to execute

requirements.
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Figure 5. CPU time required to run the EM vs mesh points.
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Figure 6. CPU time required to run the in vs mesh points.
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Figures 5 and 6 are the plots of the EM and IN CPU time

requirements, respectively. It appears the EM is

exponential in nature with respect to the number of mesh

points while the IN is simply linear. The curves drawn in

the figure represent the mean value of the data points.

The first curve (Fig. 5) was drawn by developing the

following data:

TABLE VII

Data Used for the Determination of Kl.

GRID POINTS TIME(SEC)

3X3X3 27 3.0

5X4X3 60 5.0

4X4X4 64 6.2

liXil 121 40.1

5X5X5 125 55.4

The curve in Fig. 5 is a plot of

TIME ; exp (KlxN) (42)

where

K1 = an averaged constant

n = number of mesh points.
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The value of KI was arrived at by a simple, although

somewhat crude, technique of averages. Five runs were made

and timed, each with different numbers of mesh points. In

each case the log of the time was divided by the number of

mesh points. These five numbers are then averaged and yield

K1 = 0.0317

The behavior of the implicit with respect to time

required appears linear. Assuming this to be true, the

governing equation is simply

TIME = K2xN I (43)

where

I = y intercept

A linear regression produced a slope of K2 = 0.0472

with an intercept of I = 0.4555 (18). The data used in the

plot are
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TABLE VIII

Data Used in the Determination of K2.

GRID POINTS TIME (SEC)

3X3X3 27 1.9

5X4X3 60 3.1

4X4X4 64 3.4

liXil 121 6.1

5XSX5 125 6.5

The exponential time requirement is a definite handicap

for the EM unless a coarse mesh is used in the original

problem.

ACCURACY OF 3-D RESULTS

Little was learned concerning the accuracy of the

methods except that the overall accuracy of both methods

improved with the addition of more internal mesh points.

This is not an unexpected result, but gratifying to know the

theory correctly predicts this. Table IX lists the results

of the accuracy run for the 7X7X7 grid cube.
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TABLE IX

Comparison of Accuracy for N=7 Cube.

METHOD TBAR

1 2 3 4 5 6 7 8 9 10

EM 2.32 0.15 0.11 0.03 0.01 0.00 0.00 0.00 0.00 0.00

IM 3.63 1.79 0.73 0.21 0.03 0.10 0.12 0.11 0.09 0.07

Again, as in the 2-D case, the EM is more accurate that

the IM. The accuracy seems to get better after TBAR greater

than 5.0 . The problem now has temperatures on all surfaces

which, in turn, causes a rapid heating of the interior. The

material will therefore reach a steady state condition

faster than in the two dimensional case. This would account

for the apparent exactness of the answers at late times.

NON-SYMMETRIC 3-D PROBLEM

An additional 3-D problem was run to deliberately

remove any gain from symmetry. Very little was gained from

the exercise, except the knowledge the method still works.

The problem was to make a parallelpiped having

dimensions such that

a=5

b= 4

c=3

This box shape would make it very hard to take advantage of
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symmetry. Since the other problems were run with full grid

~mode, this was a trivial problem to run.

The accuracy results were as follows

TABLE X

Comparison of Accuracy for 5X4X3 Parallelpiped.

METHOD TBAR

1 2 3 4 5 6 7 8 9 10

EM 1.43 0.07 0.07 0.04 0.02 0.01 0.00 0.00 0.00 0.00

IM 1.15 0.14 0.16 0.08 0.03 0.01 0.00 0.00 0.00 0.00

J The same behavior is exhibited here as in the cube in

Table IX. The answers do not appear symmetric because of

the lack of symmetry in the region, as expected. The

answers also appear to be more accurate in Table X than

Table IX. This is due in part to less numbers of node

points. The 3-D geometry caused a good increase in accuracy

over the 2-D case, but the accuracy should improve a little

if not as many calculations (roundoff error) are made.
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V. EVALUATION OF THE EIGENVALUE METHOD

Based upon results of the previous chapter, an overall

rating is made of the eigenvalue method.

THE STRONG POINTS

The accuracy of the EM is better than the other methods

(EX,IM,CN). Even at earlier times the EM is still strong.

This better accuracy remains throughout a transient,

regardless of duration.

The reason given for the improved accuracy is the

exactness of the time derivative in the heat equation. The

other methods are similarily derived with some form of

discretized approximation via Taylor series (2:347-348).

The EM is even more accurate then the best of the comparison

methods, CN, in the time derivative.

The appearance that the other methods approach the same

accuracy of the EM at later times is misleading. Figure 4

shows the error of the comparison methods to converge to

that of the EM. Mathematically, we know this to be untrue.

The difference between the EM and the other methods accuracy

should remain constant. This convergence is brought about

by the region under consideration approaching the steady

state condition.

The efficiency of the EM must lie on the side of being

an asset. Consider a hypothetical problem. A small nuclear

• .'-. reactor (as on a submarine) has a problem requiring a
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shutdown and subsequent cooling. Technical problems dictate

i a slow cool down taking 1 week. What temperature behavior

happens 1 meter from center?

Using the EM and assuming a 1-D treatment (the reactor

is a symmetric cylinder with variation only in the radial

direction), how long would it take the computer to determine

reactor temperatures at the point at t 1 1 week?

Assume each method divides the 1 meter length into 100

intervals for accuracy and allows the reference time, t , to

be 1 second. Using Fig. (5), we find the EM requires

approximately 20-25 seconds of CPU time to solve the

problem. This time includes determination of the

eigenvalues, eigenvectors, and coefficients. Figure 6 shows

that it takes the IN approximately 5 seconds of CPU time (5

sec to reach T - 10). This means it requires 1/2 second to

reach t - 1.0. Since the reference time is unity, E = t

and the IN must iterate till it reaches 1 week, or 604,800

seconds. The IN would then require 302,400 CPU seconds to

reach the same solution found by the EM in 20-25 seconds CPU

time. There is little doubt which scheme the engineer on

the submarine will choose.

Two more assets are possessed by the eigenvalue method.

The first is the unconditional stability of the method

brought about because of the analytical nature in the

temporal domain. The second point is the omission of most

of the terms in Eq. (36). This is allowed because the

coefficients become so small in some cases that most terms
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contribute very little to the overall answer and can be

" eliminated without affecting the answer. Undoubtedly, a

solution requiring 5 terms runs faster than one requiring

100. This point is moot. The time saved in eliminating the

extra terms is often, as in the case of large numbers of

mesh points, negligible when compared to the time required

to find all the eigenvalues, eigenvectors, and coefficients.

THE WEAK POINTS

Paradoxically, one of the EM's strongest points can

also be its weakest point. It has been demonstrated the EM

performs poorly with large numbers of mesh points (requires

large CPU times). This may not be an insurmountable problem

if one is using a very capable computer, but when restricted

to a machine such as the VAX 11/780, it is a definite

problem.

The heart of the problem is the requirement to find

complete sets of eigenvalues, eigenvectors, and

coefficients. This study used standard IMSL routines.

These routines are widely available and are commonly used in

such studies (20; 23). The EM has potential of being very

powerful if better, faster routines were made available to

find these eigenvalues/vectors. An extensive literature
U,

search (1M 31 5; 6; 71 11; 17), indicates this problem is

being given top priority in the numerical analysis community

(12).

Another weak point of the EM is the inability to hand
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check any of the calculations. The nature of finding

eigenvalues and eigenvectors makes for extreme difficulty in

*I a hand check of the calculations, especially for a large

matrix. Imagine trying to hand calculate a 10OX100

eigenvector/value problem. This discourages the novice user

from taking advantage of the EM. If the problem has no

analytical solution or is not easily approximated, the EM

user will have little confidence in his answers.
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VI. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The eigenvalue method is a good numerical technique

worthy of inclusion in any problem solver's collection of

numerical techniques. It is not a panacea capable of

solving problems other methods such as explicit, implicit,

or Crank-Nicolson cannot.

Like all things, the EM has its good points and its

bad points. It should be considered better in accuracy than

most discretization methods. It is expecially well suited

in large parametric studies. It does not lend itself well

to large spatial studies involving great numbers of mesh

points. The improved accuracy and the slower execution

times can be paired against one another to achieve a

reasonably fast and accurate method.

When used as a general problem solver the EM is about

the same as any other technique. It is when used in large

transient time applications that the EM is vastly superior.

The EM is unconditionally stable because of the

exactness of the time derivative of the temperature in the

heat equation.

The EM translates easily into three dimensions. It

follows the method should also work well in other coordinate

systems, such as cylindrical or spherical.

There is a potential of high CPU useage time in the EM

if large numbers of internal mesh points are encountered.
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The EX will always be slightly better in accuracy than

the standard discretization techniques used in this study.

This accuracy improvement is made available by the

analytical nature of the time derivative.

RECOMMENDATIONS

It is recommended that a more detailed investigation be

made into the use of the eigenvalue method. Extensions of

the method in spherical and cylindrical coordinates should

be made. Also of interest would be how the EM performs on

regions with irregular boundaries.

It is further recommended that a better description of

the amount of CPU time required to execute the programs be

given. The one expressed in this study used only five data

points. More sophisticated curve fits should be employed to

verify or refute the exponential nature of the time

requirement of the EM.

Another recommendation is the use of the EM as

presented in this study with faster, more capable machines.

It would be interesting to reaccomplish this study on the

HARRIS 800, CYBER, or CRAY computers.

It is recommended that a better method be determined to

find eigenvalues and eigenvectors. If such methods do not

yet exist, then it is suggested that carefull review of the

existing methods (IMSL) be made with the goal of improving

their speeds and/or accuracies. Also in this area, it is

recommended that a carefull investigation be made to
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determine if all the eigenvalues and eigenvectors need to be

calculated in order to find the correct multiplying

coefficients for the solution of the problem.

It is recommended that a study be made to determine a

way to predict the balance between the EM accuracy and mesh

point spacing. This would save much time in trial and

error. Once this balance has been determined it would be

instructive to make a computer study to further explore long

transient problems.

It is recommended that an investigation of the method

of lines (Runge-Kutta) be made and results compared to the

eigenvalue method to identify similarities and differences.

A time comparison between the two methods would prove

extremely useful.

Finally, it is recommended that problems involving

radiative surfaces, heat sources, and differing material

properties (such as specific heat, thermal transmissivity,

etc.) be studied using the EM. Furthermore, differing

boundary conditions such as Neuman, Dirichlet, and Robins

should be examined and evaluated.
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APPENDIX A

DERIVATION OF THE ANALYTICAL SOLUTION

In this appendix, verification of the sample problem

presented by Shih and Skladany will be accomplished

(19:411). A three dimensional problem is also solved in

this report. Therefore, it is convenient to extend the

derivation to three dimensions. This was not done in the

previously mentioned article.

THE SAMPLE PROBLEM

Given the heat equation

WcvTT/x + kUT/+"i ?TOzl (A-1)

with boundary conditions and initial conditions as

T(O,y,z,t) a To

T(a,y,z,t) -

T(x,O,z,t) = To

T(x,b,z,t) =To

T(x,y,O,t) =To

T(x,y,c,t) = To

T(x,y,z,O) - TL

Now, let the normalized temperature be defined as

- ~ T~i~j,~).i~l(iT (A-2)
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I. -KThen the normalized boundary conditions are now

e (0,y,z,t) " 0

e (a,y,z,t) = 0

9 e(x,O,z,t) = 0

9 (x,b,z,t) = 0

- (x,y,0,t) = 0

(x,y,c,t) 0

e (x,y,z,0) = 1

In terms of the normalized temperature, Eq. (A-i) now

appears as

t)A. OT 4( +=EA O 2- (A-3)

where

ae.

SEPARATION OF VARIABLES

Assuming the method of separation of variables

technique is valid (because of the same temperature on all

surfaces, then there exists some solution (4:34)

)(~ cc-Z( c't (A-4)

and differentiating with respect to the appropriate

independent variable
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o~a/ x X"YZT

164-ZXYNZ.

e/~J~XyZ"T(A-7)

Using these, Eq. (A-3) becomes

XYT' dC'YZT XYVZT+)(YzAT-j (A-9)

V."

dividing both sides by XYZT

T"T o([ XI"X + Y"/Y-i Z"/z] (A-10)

rearranging gives the form

TrAT -"A'- 7" 1/z = (-l

In typical separation of variables poblems, both sides

must also equal some constant, say, .

~Al'J

" -"(A-12)

considering the x dependence
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0(A-13)

This equation typically has solutions of the form

J gc -- c, sin VAX + e os "
~ CimnV+~oosv'XK(A-14)

applying the normalized boundary conditions

C I -in (o) + CZaCosCo) (A-15)

for this to be true C= 0. Also,

V~g nIIl\ . o (A-16)

to avoid the trival solution C1 j 0, therefore,

(= n7 (A-17)

--- T /a)i (A-18) U

with

Xw. c r% sin (rarx/a) (-9

where

n = 1, 3, 5,
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Similar treatments of the y and z variables will yield

~ ~C, sin (miTvj/ (A-20)

zw c. sinl cTr z/c~) (A-21)

where n, m, and o are odd as from before. The time

dependence is found from

T'"4 16( n 4A -oT (A-22)

where

= x separation constant

- - y separation constant

- z separation constant

and let

(Xh ++Y' fno

With these substitutions, Eq. (A-22) becomes

T1-j I, 0 (A-23)

whose solution has the form

TC-ex P 4nn+ (A-24)
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applying the initial condition

T(o) CO (A-25)

which implies that = 1. Therefore,

T'.) - e p (( inno) (A-26)

Combining all the constants thus far as

} rCnCno - 0 ~ (A-27)

and using Eqs. (A-19), (A-20), (A-21), and (A-24) and

recalling Eq. (A-3) one gets the normalized temperature

solution

-- ~(' O~,)z =xi xp E- n/ ::

S l?/j, +A os/cz ki rr/c -tii(r;.

FOURIER SERIES

Let f(x,y,z,O) = 1 . From Fourier series, any

function may be expanded as a sine series (4:110).
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X " .) At sin( nx/4c (A-29)

and

An (a~) S.4 c x,i) Sf n(Ar/xct)d (A- 30)

An ~ t3 I.. sin (n/ adJ( (A- 31)

but, Af can also be expanded as

' smAnnl r/b) (A -32)

and, like above, B.,, can also be expanded as

0:1

where

CI

G (a/c) S6 b S ,,,Ts n z Ce) 87- (A-35)

plugging Eqs. (A-31) and (A-33) into Eq. (A-35) yields
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": ~O..b a.Sn = (S) S n ,xn(nrxlc) s nmy/

S -" - 000

,-si(orz/c) Jdd (A-36)

The integral

L

has value only when n is odd and is equal to

2L /fl" (A-38)

With this integral appearing three times in Eq. (A-36) the

constant is clearly

= /,tcc)(ZQ/nlt)(ab(Tr/ )(2C/,rr) (A-39)

~MO L/((ofS) (A- 40)
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THE NORMALIZED SOLUTION

Once the value for the constant is known, it is used inr Eq. (A-28) to give the result

-' ( nn/o si~+ a/a /a)in~rzl

This is an extended version of the solution found in the

Shih and Skiadany article and verifies their exact solution

(19:410). This solution is valid only for terms where n, m,

and o are odd and not equal to zero.
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APPENDIX B

APPLICATION OF THE EIGENVALUE METHOD

TO A SMALL SYSTEM OF EQUATIONS

The core of the eigenvalue method is the vector

representation of the heat equation as

{0c~ = D]~0t~3(B-i)

where

dadial
de~ J(B-2)

Shih and Skladany applied the above to a 2x2 matrix

system (19:412). This appendix will do the same,

paralleling their development with a few extra steps allowed

for clarity.

Temporarily dropping the vector and matrix notation and

looking only at the equations of the sample matrix, Eq.

(B-i) can be written

(B-3)

this type differential equation is recognized as having

solutions of the form

" X, e p(,jjj + e (B-4)
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Oz k. )(ecp (Ai-) + a eep (&t) (B-5)

differentiation with respect to time

of (( ,ecp .)Lj excp(XaO (B-6)

?ac) : Xz exp (Ar)+ AzL exp(Ar) (B-7)

plugging Eqs. (B-6) and (B-7) into (B-4) and (B-5) gets

iXX1 exp( z+ Xayeep(A) : d,(xeIOexp(A 1-)

A- j GQtJY74-dZ, [(X?.e~p (W~t + (B-9)(ro

placing everything on the right side and simplifying

O=~(~~ &lz-A~ +e)(PW( )k rJdjL- A Bi)

Equations (B-10) and (B-11) when written in matrix form

are
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from Eq. (B-2)

S[o] : ritd,,<,.l
jdz1 dzz 1

which implies It and I& are the eigenvalues of b3 and Ci, XL"IT

and tE Oj T are the corresponding eigenvectors. The terms

exp( Nit) and exp(At) are just multiplying scalars. If i

E, , and [ 3L T  can be determined, Eq. (B-1) is

solved.
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APPENDIX C

STANDARD INSL ROUTINES USED IN THE STUDY

This appendix contains copies of the standard IMSL

routines used in the various programs in the study. This

appendix is provided to the reader to aide in the evaluation

of the solving routines used. Any questions concerning

method of solution once the programs called these routines

should be refered to the subroutine author.
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°" ML ROUTINE NAME - EIGRF

PURPOSE EIGENVALUES AND (OPTIONALLY) EIGZ.V-CTORS OF
": A REAL GENEBRAL MATRIX IN FULL STORAGE MODE

USAGE - CALL EIGRF (A,N,IA,IJOB,W,Z,IZ,WK,IER)

ARGUMENTS A - THE INPUT REAL GENERAL MATRIX OF ORDER N
WHOSE EIGENVALUES AND EIGENVECTORS ARE
TO BE COMPUTED. INPUT A IS DESTROYED IF
IJOB IS EQUAL TO 0 OR 1.

N - THE INPUT ORDER OF THE MATRIX A.
IA - THE INPUT ROW DIMENSION OF MATRIX A EXACTLY

AS SPECIFIED IN THE DIMENSION STATEMENT IN
THE CALLING PROGRAM.

IJOB - THE INPUT OPTION PARAMETER. WHEN
IJOB -%0, COMPUTE EIGENVALUES ONLY
IJOB - 1, COMPUTE EIGENVALUES AND EIGEN-

VECTORS.
IJOB - 2, COMPUTE EIGENVALUES, EIGENVECTORS
AND PERFORMANCE INDEX.

IJOB - 3, COMPUTE PERFORMANCE INDEX ONLY.
IF THE PERFORMANCE INDE= IS COMPUTED, IT IS
RETURNED IN WK (1). THE ROUTINES HAVE
PERFORMED (WELL, SATISFACTORILY, POORLY) IF
WK(l) IS (LESS THAN !, BETWEEN 1 AND 100,
GREATER THAN 100).

V THE OUTPUT COMPLEX VECTOR OF LENGTH N,
CONTAINING THE EIGENVALUES OF A.

NOTE - THE ROUTINE TREATS W AS A REAL VECTOROF LENGTH 2*N. AN APPROPRIATE EQUIVALENCE

STATEMENT MAY BE REQUIRED. SEE DOCUMENT
EXAMPLE.

z - THE OUTPUT N BY N COMPLEX MATRIX CONTAINING
THE EIGENVECTORS OF A.
TEE EIGENVECTOR IN COLUMN J OF Z CORRES-
PONDS TO THE EIGENVALUE W(J).
IF IJOB - 0, Z IS NOT USED.

NOTE - THE ROUTINE TREATS Z AS A REAL VECTOR
OF LENGTH 2*N*N. AN APPROPRIATE EQUIVALENCE
STATEMENT MAY BE REQUIRED. SEE DOCUMENT
EXAMPLE.

Z - THE INPUT ROW DIMENSION OF MATRIX Z EXACTLY
AS SPECIFIED IN THE DIMENSICN STATE-MENT IN
THE CALLING PROGRA M. IZ MUST BE GREATER
THAN OR EQUAL TO N IF IJOB IS NOT EQUAL TO
ZERO.

I - WORK AREA, THE LENGTH OF WK DEPENDS
ON THE VALUE OF JOB, WHEN
IJOB - 0, THE LENGTH OF WK IS AT LEAST N.
IJOB - 1, THE LENGTH OF WK IS AT LEAST 2N.

3JOB - 2, THE LENGTH OF W. IS AT LEAST
(2+N)N.

JOB - 3, THE LENGTH OF WK IS AT LEAST 1.
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XE - ERROR PARAMER. (OUTPUT)
TERMINAL ERROR

IER -128+J, INDICATES THAT 3QRH3F FAILED
TO CONVERGE ON EIGENVALLUE J. EIGENVALUES
J+1,J 2,...,N HAVE BEEN COMPUTED CORRECTLY.
EIGENVALUES 1,...,J ARE SET TO ZERO.
IF IJOB = 1 OR 2 EIGENVECTORS ARE SET TO
ZERO. THE PERFORMANCE INDEX IS SET TO 1000.

WARNING ERROR (WITH FIX)
IER - 66, INDICATES IJOB IS LESS THAN 0 OR

IJOB IS GREATER THAN 3. IJOB SET TO 1.
IER - 67, INDICATES IJOB IS NOT EQUAL TO

ZERO, AND IZ IS LESS THAN THE ORDER OF
MATRIX A. IJOB IS SET TO ZERO.

" PRECISION/HARDWARE - SINGLE AND DOUBLE/H32
- SINGLE/H36,H48,H60

REQD. IMSL ROUTINES - EBALAF,EBBCKF,EHEBCKF,EHESSF,EQRE3F,UERTST,
UGETIO

NOTATION - INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH LMSL ROUTINE UHELP

Algorithm

EIGRF computes eigenvalues and (optionally) eigenvectors of a real
mat.ix. It can also compute a performance index.

EIGRF calls IMSL routine EBALAF to balance the matrix. Then, EEESSF
and EQRH3F are called to compute eigenvalues and (optionally) eigen-
vectors. When eigenvectors are computed, EHBC.F and EBBCKF are called
to baicktansform the eigenvectors.

The performance index is defined as follows

" maxItAzJ-wzj I.- = '!Jl-- I JAI 1 11 I~ 1' 1 0 (N) (EPS)

where the max is taken over the j eigenvalues w and associated eigen-

vectors z . EPS specifies the relative precision of floating point
arithmetic. When P is less than 1, the performance of the routines is
considered to be excellent in the sense that the residuals Az-wz are as
small as can be expected. When P is between 1 and 100 the performance
is good. When P is greater than 100 the performance is considered poor.

The performance index was first developed and used by the EISPACX pro-
ject at Argonne National Laboratory.
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See references:

1. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon
Press, Oxford, 1965-7

2. Smith, B. T., Boyle, J. M., Garbow, B. S., Ikebe, Y., Klema, V. C.,
and %oler, C4 B., Matrix Eigensystem Routines, Springer-Verlag,
1974.

Programmning Notes

1. A is preserved when IJOB-2 or 3 and N-IA. When N<IA, rows
N+l, N+2, ..., IA of A are destroyed. In all other cases A
is destroyed.

2. The eigenvalues are =iordered except that complex conjugate pairs
of eigenvalues appear consecutively with the eigenvalue having the
positive imaginary part first.

" 3. The eigenvectors are not normalized.

- 4. When IJOBw3 (i.e., to compute a performance index only) the eigen-
values, W, and eigenvectors, Z, are assumed to be input.

Examle 1

in this example, EIGRF is called to compute eigenvalues, eigenvectors
" and a performance index by setting input IJOB-2. After the call to
'- EZGRF, the eigenvectors are normalized. For machines which require

equivalencing, see example 2.

L 2TEGER N, IA, ZJOB, IZ, ZR-
R EAL A(4,4),WX(24)
COMPLEX W(4),Z(4,4),ZN;

Input:

IA a 4
Iz n 4 :"

* II - 4
* N -4

LTOB - 2

F4.0 -5.0 0.0 3.01
0.0 4.0 -3.0 -5.0
5.0 -3.0 4.0

L3.0 0.0 5.0 4.0

CALL EIGRF (A,,IZA,IJOB,W,Z,IZ,WK,IER)
C NORM4ALI ZE EIGI TECTORS,,. DO S 7-L,N -l

ZN = Z(UJ)::: 00 5 I=1,

C O Z(I,J) Z(I,J)/ZNCONTMNE
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-* Output:

-ER 0

W -(12.0,1.0+5.0i,1.0-5.0_,2.0) (eigenvalues)

.0 +i -.. +i '-..|(ei4genvectors)

WK(I) < 1.0 (performance index)
Examle 2

For machines which require an equivalence statement in situations where
an array is of one type in the calling program but of another type in
the subroutine, EZGRF should be called as follows.

- INTEGER 4,IA,IJOB,IZ,IER
* REAL A(4,4),WK(24),RW(8),RZ(32)
- COMPLEX W(4),Z(4,4),ZN

EQUIVALENCE (W(1) ,RW(l) ), (Z(l,l) ,RZ(l))

WO 2;

* Input: .

"- IA -4.

4.0 -t.0 0.9 3.0 .00 4.0 -30 -5.0-

0 4.0 .0

CALL EIGRF (A,N,IA,IJOB,RW,RZ,IZ,WK,IER)
* C NORMALIZE EIGENVECTORS

S 00 5 Jml,N
- - Z(1,J)

DO S I-1,N
2(I,J) - Z(1,J)/ZN":: s cown=

Output:

W ( (12.0,1.0+5.0i,1.0-5.0i,2.0) (eigenvalues)
1"IZ.0/ / . .o.o/ I-... a'

S.0 0.0 + 1.0 0]0 ] 1.0 ['1] (eigevectors).,.,1. : L.0j .0:zo O.j:

.WI) c 1.0 (performance index)
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IMSL ROUTINE NAME - LEQT2F -

PURPOSE - LINEAR EQUATION SOLUTION - FULL STORAGE
MODE -. HIGH ACCURACY SOLUTION

USAGE - CALL LEQT2F (A,M,N,IA,B,IDGT,WKAREA,IER)

ARGUME .:TS A - INPUT MATRIX OF DIMENSION N BY N CONTAINING
THE, COEFFICIENT MATRIX OF THE EQUATION
"AX B.

M - NUMBER OF RIGHT-HAND SIDES. (INPUT)
N - ORDER OF A AND NUMBER 'OF ROWS IN B. (INPUT)
IA - ROW DIMENSION OF A AND B EXACTLY AS SPECIFIED

IN THE DIMENSION STATEMENT IN THE CALLING
PROGRAM. (INPUT)

B - INPUT MATRIX OF DIMENSION N BY M CONTAINING.
THE RIGHT-HAND SIDES OF THE EQUATION AX = B.

ON OUTPUT, THE N BY M MATRIX OF SOLUTIONS
REPLACES B.

IDGT - INPUT OPTION.
IF IDGT IS GREATER THAN 0, THE ELEMENTS OF

A AND B ARE ASSUMED TO BE CORRECT TO IDGT
DECIMAL DIGITS AND THE ROUTINE PERFORMS
AN ACCURACY TEST.

IF IDGT EQUALS 0, THE ACCURACY TEST IS.
BYPASSED.

ON OUTPUT, IDGT CONTAINS THE APPROXIMATE
NUMBER OF DIGITS IN THE ANSWER WHICH
WERE UNCHANGED AFTER IMPROVEMENT.

WKAREA - WORK AREA OF DIMENSION GREATER THAN OR EQUAL
TO N**2+3N.

IER - ERROR PARAMETER. (OUTPUT)
WARNING ERROR

IER = 34 INDICATES THAT THE ACCURACY TEST
FAILED. THE COMPUTED SOLUTION MAY BE IN .
ERROR BY MORE THAN CAN BE ACCOUNTED FOR
BY THE UNCERTAINTY OF THE DATA' THIS
WARNING CAN BE PRODUCED ONLY IF IDGT IS
GREATER THAN 0 ON INPUT. (SEE THE
CHAPTER L PRELUDE FOR FURTHER DISCUSSION.)

TERMINAL ERROR
IER - 129 INDICATES THAT THE MATRIX IS

ALGORITHMICALLY. SINGULAR. (SEE THE
CHAPTER L PRELUDE).

IER - 131 INDICATES THAT THE MATRIX IS TOO
ILL-CONDITIONED FOR ITERATIVE IMPROVEMENT
TO BE EFFECTIVE.

PRECISION/HARDWARE - SINGLE AND DOUBLE/H32
- SINGLE/H36,H48,H60

REQD. IMSL ROUTINES - SINGLE/LUDATN,LUELMNLUREN,UERTST,UGETIO"
- DOUBLE/LUDATN, LUELMN, LtREFN, UERTST ,UGETIO,

VXADD, VXMUL,VXSTO

NOTATION - INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP
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Algorithm

LEQT2F solves the set of linear equations AX-B for X, where A is the
N by N matrix and is in full storage mode. B is N by M. The differens_C between this routine and routine LEQTIF is that LEQT2F invokes iterative
improvement if necessary, in order to improve the accuracy of the
solution X.

The routine performs Gaussian elimination '(Crout algorithm) w1(th equi-

libration, partial pivoting, and iterative improvement as required.

See reference :

Forsythe, George and Mcler, Cleve B., Computer Solution of Linear
Algebraic Systems, Englewood Cliffs, N. J., Prentice-Hall, Inc., 1967,Chapters 9, 13, 24. •'"

Programming Notes

1. Iterative improvement is costly in both computer time and storage.
When high accuracy is not needed, subroutine LEQTlF may be used to
advantage.

2. When IA is greater than N, elements of A in rows N+l to IA are
used as workspace and are destroyed. However, the first N rows
of A are restored to their original content on exit from LEQT2F.

Accuracy

If IDGT is greater than zero, elements of A are assumed to be correct
- to IDGT decimal digits. The solution X will be the exact solution,

without any roundoff error, to a matrix X whose elemehts agree with
the elements of A in the first IDGT decimal digits. The program first
attempts such a solution without iterative improvement. Then iterative
improvement is performed if necessary. If this also fails, solution is
not possible and the program exits. Upon exit, the first columns of B
will have been replaced by the best solution that the computer can
generate and IDGT is set to the approximate number of digits in the.
answer which were unchanged by the improvement (see IMSL routine LUREFF).
The other columns of B are left unchanged in this case and IER is set to
131. If input -!DGT equals zero, iterative improvement is automatically
performed.

Example

This example inputs the 3 by 3 matrix A and the 3 by 4 matrix B solving
• for the 3 by 4 matrix X of AX-B. X overwrites B on output.

Input:

• "REAL A(4,4),B(4,4),WKAREA(l8)
.-. INTEGER M, N, IA, IDGT, IER

N -3
H -4

IA -4
IDGTW 3

LZQT2F- 2 69
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33.000 16.0 72.0 x
A-24.000 -10.0 -57.0 x

- 8 .00 0  - 4.0 -17.0 x

1.0 0.•0 0. 0 -359.0 il
0.0 1.0 0.0 281.0 '"2

0.0 0.0 1.0 85.0]x x x x .-

CALL LEQT2F(A,M,N, IA,B, IDGTWKAREA, IER)

Output:

IDGT = 3
IER = 0

-- 2.66667 -32.
.02.5 25.5 -2B 2 [ 66667 .666667 9. -5

x x x

Note: x indicates elements not used by LEQT2F.
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IMSL ROUTINE NAME - EIGRS

PURPOSE - EIGENVALUES AND (OPTIONALLY) EIGENVECTORS OF
A REAL SYMMETRIC MATRIX

(7' USAGE - CALL EIGRS (A,N,JOBN,D,Z,IZ,WK,IER)

ARGUMENTS A - INPUT REAL SYMMETRIC MATRIX OF ORDER N,
WHOSE EIGENVALUES AND EIGENVECTORS
ARE TO BE COMPUTED. INPUT A IS
DESTROYED IF IJOB IS EQUAL TO 0 OR 1.

N - INPUT ORDER OF THE MATRIX A.
JOBN - INPUT OPTION PARAMETER. IF JOBN.GE.10

A IS ASSUMED TO BE IN FULL STORAGE MODE
(IN THIS CASE, A MUST BE DIMENSIONED EXACTLY
N BY N IN THE CALLING PROGRAM).
IF JOBN.LT.10 THEN A IS ASSUMED TO BE IN
SYMMETRIC STORAGE MODE. DEFINE
IJOB=MOD(JOBN,10). THEN WHEN

IJOB = 0, COMPUTE EIGENVALUES ONLY
IJOB = 1, COMPUTE EIGENVALUES AND EIGEN-
VECTORS.

IJOB = 2, COMPUTE EIGENVALUES, EIGENVECTORS
AND PERFORMANCE INDEX.

IJOB = 3, COMPUTE PERFORMANCE INDEX ONLY.
IF THE PERFORMANCE INDEX IS COMPUTED, IT IS
RETURNED IN WK(i). THE ROUTINES HAVE
PERFORMED (WELL, SATISFACTORILY, POORLY) IF
WK(1) IS (LESS THAN 1, BETWEEN I AND 100,
GREATER THAN 100).

D - OUTPUT VECTOR OF LENGTH N,
CONTAINING THE EIGENVALUES OF A IN ASCENDING '
ORDER. I:

Z --OUTPUT N BY N MATRIX CONTAINING
THE EIGENVECTORS OF A.
THE EIGENVECTOR IN COLUMN J OF Z CORRES-
PONDS TO THE EIGENVALUE D(J).
IF IJOB = 0, Z IS NOT USED.

IZ - INPUT ROW DIMENSION OF MATRIX Z EXACTLY AS
SPECIFIED IN THE DIMENSION STATEMENT IN THE
CALLING PROGRAM.

WK - WORK AREA, THE LENGTH OF WK DEPENDS
ON THE VALUE OF IJOB, WHEN
IJOB = 0, THE LENGTH OF WK IS AT LEAST N.
IJOB = 1, THE LENGTH OF WK IS AT LEAST N.
IJOB = 2, THE LENGTH OF WK IS AT LEAST

N (N+1)/2+N.
IJOB = 3, THE LENGTH OF WK IS AT LEAST 1.

IER - ERROR PARAMETER (OUTPUT)
TERMINAL ERROR

IER = 128+J, INDICATES THAT EQRT2S FAILED
TO CONVERGE ON EIGENVALUE J. EIGENVALUES
AND EIGENVECTORS 1,...,J-1 HAVE BEEN
COMPUTED CORRECTLY, BUT THE EIGENVALUES
ARE UNORDERED. THE PERFORMANCE INDEX
IS SET TO 1000.0

November, 1984 EIGRS-i
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WARNING ERROR (WITH FIX)
IN THE FOLLOWING, IJOB = MOD(JOBN,10).
IER = 66, INDICATES IJOB IS LESS THAN 0 OR

IJOB IS GREATER THAN 3. IJOB SET TO 1.
IER = 67, INDICATES IJOB IS NOT EQUAL TO

ZERO, AND IZ IS LESS THAN THE ORDER OF
MATRIX A. IJOB IS SET TO ZERO.

" PRECISION/HARDWARE - SINGLE AND DOUBLE/H32

- SINGLE/H36,H48,H60

' REQD. IMSL ROUTINES - EHOBKS,EHOUSS,EQRT2S,UERTST,UGETIO

NOTATION - INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUgTION OR THROUGH IMSL ROUTINE UHELP

Algorithm

EIGRS calls IMSL routine EHOUSS and EQRT2S to compute eigenvalues and
(optionally) eigenvectors. When eigenvectors are computed, EHOBKS is
called to backtransform the eigenvectors.

The performance index is defined as follows:

- max IIAzJ-d zI 31
l1jn hAi lizilll lO(N)(EPS)

w-- e the max is taken over the n eigenvalues d. and associated eigen-J

..vectors z3. EPS specifies the relative precision of floating point
arithmetic. When P is less than 1, the performance of the routines is

-. considered to be excellent in the sense that the residuals Az-dz are as
small as can be expected. When P is between 1 and 100 the performance
is good. When P is greater than 100 the performance is considered poor.

The performance index was first developed and used by the EISPACK pro-
- ject at Argonne National Laboratory.

.-See references:

1. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford, 1965.

.-.2. Smith, B. T., Boyle, J. Ii., Garbow, B. S., Ikebe, Y., Klema, V. C.,
and Moler, C. B., Matrix Eigensystem Routines, Springer-Verlag,
1974.

SProgram~ln± Notes

'. I. A is preserved when IJOB=2 or 3 (IJOB=MOD(JOBN,10)). In all
other cases A is destroyed.

2%... The computed eigenvectors are normalized to each have Euclidean
. "length 1.

EIGRS-2 June, 1980 72
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Input: JONIIE

IN TEGER N, JOBN, I Z, MER
REAL A(10) ,D(4) ,Z(4, 4) ,WK (14)

*N 4-"IZ " 4

15.0
14.0 5.0IA0 1.0 4.0 In symmetric storage mode A1-5.0,
1.0 1.0 2.0 4.0 A(2)-4.0,A(3)-5.0, A(10)-4.0

JOBN 2
CALL EIGRS (A, U, JOBN, D, Z, I ,WK, IER)

Output:

XER 0
D -(1.0, 2.0, 5.0, 10.0) (eigenvalues)

-0.70710 0.00000 -0.31622 0.63245 10.70710 0.00000 -0.31622 0.63245
0.00000 0.70710 0.63245 0.31622 (eigenvectors)

0.00000 -0.70710 0.63245 0.31622

WK(1) < 1 (performance index)

Note: Z is unique to within a sign change for each column.

'rune, P 80 EIR-3
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