
FAD-Ai54 340 BP (BASIC PROCESSOR) TRICOMP USER'S GUXDEMU NAVAL 1
SURFACE WEAPONS CENTER DRHLGREN VA JUL 84
NSWC/TR-84-93 SBI-AD-F3508 21

I UNCLASSIFIED F/G 9/2 N

11.

,:

III

-1m.25 II14 111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963A

- -. -- - - - - L - - - . "
- - -- - " -

.
-

.*-.* *. "aa. '.a .. * -*% .. , -: ,, ,. . -. - -. _.: - -u,. ,.. ,_- ..

AD-A154 340

0 0

0

0 0

0

9 0

0 0

0 0

UNCLASSIEIED
SIECuAITY CLASSIFICATION OF THIS PAGE (Whena Date Efntered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
I. RPOR REPRT OCUMNTAION AGEBEFORE COMPLETING FORM

IREOTNUMBER 2i. GOVT ACCESSION NO I. RECIPIENT'S CATALOG NUMBER

NSWC TR84-93 A-,f l
4. TITLE (and Subtitle) S. TYPE OF REPORT 4 PERIOD COVERED

BP TRICOMP USER'S GUIDE ia
6. PERFORMING OnG. REPORT NUMBER

7. AUTHOR(*) I. CONTRACT OR GRANT NUMBER(*)

The THLL Group, K53

9. PERFORMING ORGANIZATION NAME ANO ADDRESS SO. PROGRAM ELEMENT. PROJECT. TASKC
AREA & WORK UNI1T NUMBERS

Naval Surface Weapons Center (Code K53)
Dahigren, VA 22448 36~O

I I. CONrROLLING OFFICE NAUR AND ADDRESS 12. REPORT DATE

Strategic Systems Program Office Jul 1984
Washington, DC 20376 13. NUMBER OF PAGES

85
14. MONITORING AGENCY NAME &AOOREtSS(1I different Iat. Controlling Olfie*) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS&. OECLASSI FICATION/ DOWNGRADING

SCHEDULE

* 16. DISTRIBUTION STATEMENT (*I this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract enterod in Blck 20, if differetl howi Report)

* IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on rweve aide it n...eey wl didentify 6V block neon he)

TRIDENT Higher Level Language Compiler
THLL program
TRIDENT Digital Control Computer (TDCC) implementation
VAX 11/780 runtime system

20. ABSTRACT (Continue en reveree aide if necees end tdentlif by bleck numIer)

The TRIDENT Higher Level Language (THLL) is implemented on the VAX 11/780
based TRIDENT Software Generation System (SGS) for three target machines:
the TRIDENT Basic Processor (BP), the Motorola MC68000, and the VAX 11/ 780.
This document describes implementation features of THLL, which are unique
for the BP, and the runtime system for the BP.

DD 1473 EDITION OFl I Nov 65 is OBSOLETE
5A4 0102-LF-0146601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PG ~e aeRtrd

W.. '~ %.~a . ;. V.. .a ."* .~;.; ~a. a. *aa~"

17. . 1 . 1- - " .
-...-. ..'..-- - *'.

NSWC T 84-93

FOREWORD -,"

This document was written in the Operational Support Branch (K53),
Submarine Launched Ballistic Missile (SLBM) Software Development Division
(K50), of the Strategic Systems Department (K) at the Naval Surface Weapons
Center (NSWC), Dahlgren, Virginia.

The purpose of this document is to describe implementation features of
the TRIDENT Higher Level Language (THLL), which are unique for the TRIDENT BP,

* and the runtime support system for THLL on the BP. It supplements the THLL
Reference Manual for programs designed to run on the BP.

This report is based on NSWC Technical Report TR-3657 (Revised June
1978). Much of the material in TR-3657 was rewritten and reorganized. This
report was extensively reviewed by personnel in the Operational Support
Software Systems Group in K53, the Quality Assurance Branch (K52), and the
Operational Systems Branch (K54).'

This project was funded by the Strategic Systems Program Office,
Washington, DC 20376, under task number 36801.

Questions, comments, and suggestions concerning the material presented in
this document should be directed to the Commander, Naval Surface Weapons 1.-

Center, ATTN: K53, Dahlgren, Virginia 22448.

Approved by:

THOMAS A. CLARE, Head
Strategic Systems Department

Accps, '. °,For

ELECTE
APR 24 _5

B V iln1bility 7Cod*e3

V'ail a nd/or

it-~~ .. °II&f

9.9 .9.9.** .** .* ;.. 9 o9n 94:

.,. 9- * " . ., *4 *d o -- '-"-",
.. :...9.. .-.-.-.~*9 *~

NSWC TR 84-93

CONTENTS

CHAPTER 1 INTRODUCTION. 1-1

CHAPTER 2 BASIC ELEMENTS OF THLL. 2-1
2.1 THLL CHARACTER SET. 2-1
2.2 OPERATORS......................2-2
2.3 DELIMITERS.....................2-2 1
2.4 IDENTIFIERS 2-2
2.5 CONSTANTS.......... 2-2

*2.5.1 Integer and Double Constants. 2-2
2.5.2 Real Constants. 2-3
2.5.3 Pointer Constants 2-3
2.5.4 Boolean Constants... 2-3
2.5.5 Strings 2-3

CHAPTER 3 DATA DECLARATIONS 3-1
3.1 TYPES 3-1
3.2 BIT NUMBER CONVENTIONS. 3-1
3.3 STORAGE FORMAT. 3-1
3.4 ALLOCATION OF STORAGE.. 3-3
3.5 COMPONENTS. 3-4
3.5.1 Indexed Components. 4
3.5.2 Alpha Components. 3-4
3.6 PRESETS 3-5

CHAPTER 4 EXPRESSIONS AND STATEMENTS... 4-1
- ~4.1 EXPRESSION TYPES. 4-1

4.2 PROCEDURES.....................4-1
4.2.1 LINK and EXEC0Procedures...............
4.2.2 Optional Arguments. 4-2

CHAPTERS5 THLLI110ON THE BP. 5-1
5.1 TELL FILE CONTROLEBLOCK 5-1
5.2 READ AND WRITE POSTING CODES FOR LEVELS 1 AND 2 . 5-2
5.2.1 KBDSS Codes 5-2
5.2.2 CPRINT and SPRINT Codes.... 5-
5.2.3 MDF and NTF Codes. 5-3
5.2.4 ICL Codes 5-4
5.3 I/O OPTIONS FOR READ AND WRITE PROCEDURES 5-5
5.4 READ FROM KEYBOARD CODES. 5-7
5.5' READ/WRITE FORMAT ERRORS. 5-7

CHAPTER 6 STANDARD PROCEDURES.... 6-1
6.1 FIXE, FIXI, AND FIXD FUNCTIONS. 6-1
6.2 MATHEMATICAL FUNCTIONS... 6-1
6.3 SHIFT FUNCTIONS 6-1
6.4 BIT FUNCTIONS 6-2
6.5 SWA FUNCTION o...................6-2

9~v

NSWC fl 84-93

CHAPTER?7 UTILITY PROCEDURES.7-1
7.1 BLOCKIN7-1

7.2 BLOCKOUT 7-2
7.3 CONVALPH. 7-2
7.4 CONVINT 7-5

*7.5 PRINT7-7

7.6 EPRINT. 7-7
7.7 TERM.7-8

7.8 REGLINK 7-9
7.9 TRUNC7-9

7.10 TRUNCD 7-10

*CHAPTER 8 DATA COMMUNICATION PROCESSOR PROCEDURES 8-1
8.1 START I/0 PROCEDURES. 8-1
8.2 TEST I/0 PROCEDURES 8-2
8.3 HALT I/O PROCEDURES 8-3
8.4 RESTART I/0 PROCEDURE 8-3
8.5 WRITE DIRECT PROCEDURE. 8-4
8.6 READ DIRECT PROCEDURE 8-5
8.7 ACKNOWLEDGE STACK PROCEDURES. 8-6
8.8 ACTIVATE/DEACTIVATE PORT PROCEDURES 8-6
8.9 RESET PROCEDURES 8-7
8.10 STATUS PROCEDURE8-7
8.11 MITNOR PROCEDURE. 8-8
8.12 ACKNOWLEDGE DEDICATED INTERRUPT PROCEDURES .. 8-9

CHAPTER 9 REAL TIME OPERATING SYSTEM SERVICE PROCEDURES . 9-1
9.1 ATTACH PROCEDURE9-1

9.2 SCHEDULE PROCEDURE. 9-2 >
9.3 PURGE PROCEDURE 9-3
9.4 DETACH PROCEDURE. 9-4
9.5 EXIT PROGRAM PROCEDURE. 9-5
9.6 WAITE SERVICE MODULE PROCEDURES 9-6
9.6.1 MARKIIME. 9-6
9.6.2 WAITMEMO, WAITKBIN, WAITICL, WAITEXEC 9-6
9.6.3 WAITTASK.....................9-7
9.7 CONTINUE PROCEDURE.................9-7
9.8 ENABLE, DISABLE, ARM, DISARM, AND*TIlGER

PROCEDURES. 9-7
9.9 OVERLAY LOADER PROCEDURE. 9-8
9.10 ACQUIRE PROCEDURE..................9-9
9.11 RELEASE PROCEDURES -RELEASE * LMM......9-10
9.12 SETSTATUS PROCEDURE. 9-10
9.13 SYSERR PROCEDURE 9-12
9.14 DATASUM PROCEDURE. 9-13
9.15 EES PROCEDURE. 9-13

CHAPTERl10 REFERENCES 10-1

vi ..

NSWC TR 84-93

APPENDIX A ASCII CHARACTER SET A-

APPENDIX B RUNTIME ENVIRONMENT ON THE BP- 1
3.1 CONTROL SECTIONS..................B-1
B.2 ALLOCATION OF STACK FRAMES...............-1
B.2.1 Allocation of THLLPCB B-2
B.2.2 TemporariesB3

APPENDIX C USING BP TRICOMP. C-1
CA1 INTRODUCTION. C-1
c.2 ORGANIZATION OF A THLL PROGRAM. C-i
C.3 THE BP TRICOMP ENVIRONMENT. C-2
CA4 INPUT TO BP TRICOMP C-2
C.4.1 Compile Units (.THL Files). C-2
C.4.2 Insert Files (.THI Files) C-2
C.5 INVOCATION OF BP TRICOMP (.THL, .THI FILES) . .. C-3
CA6 OUTPUT FROM BP TRICOMP (.TLS, .BIN, .GXR, .TRE

FILES)........................C-3
C.7 INVOCATION OF TRILOAD (.BIN, .W.4, .LOD FILES) .C-4

C.8 RUNNING A PROGRAM (.LOD FILES). C-4
C.9 DEBUGGING (.LIS FILES). C-5
C.10 PRODUCING A GLOBAL CROSS REFERENCE REPORT (.GXR,

AWXD .MXR FILES). C-5
C.11 PRODUCING A PROCEDURE CALL TREE REPORT (.mE,

.MTD, .MTR FILES). C-6
C.12 PRODUCING A NESTED PROCEDURE CALL TREE REPORT

(.TRE, .MTD, .NTR FILES). C-6
C.13 DIAGRAM OF A THLL PROGRAM'S FILE RELATIONSHIPS .C-7

C.14 ADVANCED INVOCATIONS OF TRICOMP (OVERRIDING
DEFAULTS)......................C-7

C.14.1 Suppressing TRICOIIP Generated Files C-8
C.14.2 Parallel Directory Organization C-8
C.14.3 Overriding Default File Extensions. C-8
C.14.4 Example Compile and Library Command Procedure . C-9
C.14.5 $SEVERITY Returned from BP TRICOMP. C-9
C.15 EXAMPLE SESSION ON USING BP TRICOMP C-9
C.15.1 Example THLL Compile Unit (DEMOKAIN.THL FILE) C-13
C.15.2 Example THLL Compile Unit (DEMOPRIME.THL FILE) C-14
C.15.3 Example THLL Insert File (EXTEND.THI FILE) . C-16
C.15.4 Example Global Cross Reference Report (DEMO.MXR

FILE) C-17
C.15.5 Example Procedure Call* Tre Report (DEMO.MTR

FILE) C-18
C.15.6 Example Nested Procedure Call Tree Report

(DEMO.NTR FILE). C-19

DISTRIBUTION...................... ()

vii

4NSWC TR 84-93)R

INTRODUCTION "

* lt

BP TRICOMP is a compiler for the TRIDENT Higher Level Language (THLL) i
that runs on the VAX 11/780 and produces code for the TRIDENT Digital Control .-. .
Computer (TDCC), also referred to as the Basic Processor (BP). This document ",
describes implementation features of THLL, whith are unique for the BP, andt .-F-
the runtime support system for the BP. -

Differences between the BP compiler and other THLL compilers are due to . .
differences in the hardware of the target machines and differences in the..'
software runtime environment of the target machines. This document is not..-"
self-contained. It is to be used in combination with the "TH:LL Reference='"f"

Manual (Reference 1). Details about the BP architecture can be found in the .

BP TRICOP allows the use of THLL as a high le el p og a mi g.agu g

for the TRIDENT BP, which is included in the TRIDENT Fire Control System. It"-'
S supports the full THLL language. '

The BP architecture views data as 32-bit words and 64-bit doublewords.
: ~The address of the data is the word address of the first word of the data..'_"
", ~This maps directly into the THLL view of data. : -

% %

....* .
Oo"f,.

* b.+

,.'-f"

• ,

t',,CHAPTER "1

ft ftx".i

INTRODCTION

-.. .. .

IP TICOM isa copilr fo theTRIENT ighr Leel Lnguge .;LL
"e°. • that runs "°° - .- o " " onteVX1/8 -and produces coefo h TRDN Digital Control." +••• -- *'+

*. .- :+.:;. .+.,:. .> .;..-. Co p te.TD C ,. .. >... .,. . .. also '" re e re o as t e a i Pr ce so (EP)+ . Th °°' is" docum"
" I = " +e .

"
'

+
""

"

decie mlmntto"etrs o ."LL whi.ch are unique" . for.' the. -,B-, and , " ,'."- ,-+. " ,",-

NSWC Th 84-93

CHAPTER 2

BASIC ELEMENTS OF THLL

2.1 THLL CHARACTER SET

The THLL character set consists of the following ASCII subset:

Uppercase letters A-Z

Numerals 0-9

The following special characters: _

Character Name Character Name

Space Period
I Exclamation point / Slash

Quotation mark " Colon
Number sign Semicolon
$ Dollar sign Angle brackets .
% Percent sign = Equal sign
& Ampersand ? Question mark

Apostrophe @ At sign
O Parentheses] Square brackets
* Asterisk Backslash
+ Plus sign ^ Circumflex

Comma Underline
- Minus sign

There is no plus or minus sign (+) defined in ASCII and the circumflex
(A) is used to represent it. The TDCC devices KBDSS, CPRINT, and SPRINT

display the circumflex as the + character.

Not included in the THLL character set are the lowercase letters (codes
X'60' - X'7E') and the nonprintable characters (codes X'O' - X'lF' and
X'7E'). When these characters are used in a THLL source file they are treated
as follows:

A. Lowercase letters are converted to uppercase letters (codes X'40'
- X'5E') except when they appear in comments or remarks.

* 2-1

% %
•

.... "........'..'.'..' .'. . * *''..: ',.', ., . . -, -- :.'.'..'-,'.,'._'.X '.:,.;."..:.",".. . .".

NSWC TR 84-93 ti*' .o

B. Nonprintable characters are converted to question marks (?).

The listing file produced by BP TRICOMP reflects these character conversions.

A table of ASCII characters is included in Appendix A.

2.2 OPERATORS

The value of LOC X is the virtual address of the THLL word or doubleword
containing X. A virtual address is a 16-bit quantity of type POINTER. The
upper 4 bits identify a base register, and the lower 12 bits represent a
displacement.

The value of LOCA X is the absolute address of the THLL word or.-ei
doubleword containing X. The typo of the value is INTEGER. The bit patterns
of LOC X and LOCA X are, in general, different.

2.3 DELIMITERS

All THLL delimiters are implemented in B? TRICOP.

2.4 IDENTIFIERS

The first eight characters of identifiers are significant. The first
character of the identifier must be a letter. The remaining characters can be
either letters, numerals, or the special character dot (.). A dot is not
allowed as the last character of an identifier. A dot that occurs in an
external symbol is mapped into a dollar sign (S).

2.5 CONSTANTS

For a pictorial representation of the layout of the following constants, S
see Section 3

2.5.1 Intexer and Double Constants

In BP TRICOMP, any decimal integer that exceeds 31 bits of significance
is considered to be a double value. Binary, octal, and hexadecimal integers
are considered to be double when they exceed 32 bits of significance.

2-2

-. •.

-. *- -. -......-..--.-. '.---...,. .

--. ! 1 .q . --. *.

NSWC TR 84-93

An integer constant is kept in one THLL word (32-bit BP word). A double

constant is kept in a THLL doubleword (two 32-bit BP words).

2.5.2 Real Constants

BP TRICOMP uses the 64-bit BP floating point format for THLL real numbers
(see Reference 2). The range for real constants on the BP is approxinagsly .
.353E-9864 through .708E+9864. The precision for real constants on the BP is
approximately 15 decimal digits.

2.5.3 Pointer Constants S

The only legal pointer constant is 0. Pointer expressions built up using
THLL operators are valid at preset time and runtime. A pointer contains the
BP virtual address of the designated item. A virtual address on the BP is
specified in 16 bits. The upper 4 bits designate the base register, and the
lower 12 bits designate the displacement. Therefore, pointer components p

require at least 16 bits on the BP.

-- 2.5.4 Boolean Constants

TRUE is defined to be a 32-bit integer that has all 32 bits set;
however, any non-zero value tests as true. FALSE is represented as
X'oo000000o. .

2.5.5 Strings -

A string is represented by a header word followed by a block of words
holding the characters of the string. The characters are ASCII as definod for
the BP. Each character occupies one 8-bit byte. The characters are packed
from left to right within a THLL word.

2-3 . * -. . * .. .

* ~~~ °o *'

NSWC TR 84-93 0

CHAPTER 3

DATA DECLARATIONS

3.1 TYPES

There are six types f or classifying constants, variables, and procedures
in THLL. A type may be thought of as a class of values. In general, the user
should only have to know about the abstract properties of a type, the rules
f or the use of data types by operators and procedures, and the rules for type
conversion. For portability reasons, the user should make a conscious effort
to not take advantage of a particular implementation of types. In some cases,
however, it may be necessary to know about the internal representation of the
various types of values in memory.

Constants are assigned types as specified in Sections 2.5.1 through
*2.5.5. Symbol types are specified in the corresponding declarations.

Valueless items, such as statements, are assigned no type (N).

3.2 BIT NUMBER CONVENTIONS

THLL bit numbers run from 0 for the leftmost (most significant) bit to 31
for the rightmost (least significant) bit of a THLL word. For a doubleword
the bit numbers run from 0 to 63.

This convention is used for defining the meaning of a component "start
bit" and "number of bits." Functions such as TEST.BIT, CLR.BIT, SET.BIT,
TGL.BIT, and FIND.BIT use the THLL bit number as an input parameter, and-

* FIND.BIT can also output a THLL bit number.

3.3 STORAGE FORMAT

The types INTEGER (I), DOUBLE (D), and REAL (R) have a fixed format as to
number of bits, location of sign bit, and number of words required for
storage.

The type HALF (H) is equivalent to the type INTEGER for all data except
" arrays. The elements of a HALF array require only 16 bits of storage. Hence,

two such type values from an array can be stored in one word.

3-1

bit....... er....ts"..ncios s.h...ES .CL.TS......

NSWC TR 84-93 6

0 1 15 16 17 31 bit #

value S value word 1

S sign bit

Type INTEGER requires one word, 32 bits.

0 1 31 bit #

ISi value J word 1

Type DOUBLE requires two words, 64 bits.

0 1 31 bit #

high order value word 1
I.-°

32 63 bit #

low order value word 2 jo

Type REAL requires two words, 64 bits, separated into exponent and
mantissa fields. The exponent and the mantissa are both two's complement
values. For more information, see Reference 2.

0 1 15 16 17 31 bit #

S exponent IS high order manti word 1 "

32 63 bit #

low order mantissa word 2

! I-

Type ALPHA is stored as four characters per word plus one header word.
. Thus, the number of words required for a string of n characters is ((n+3)/4) +
, 1. However, the programmer does not need to allow for the header when

specifying string length.

3-2

..........- ----.... ,....,....-...-.......-,.......... .,.

[,..

NSWC TR 84-93 .

0 7 8 15 16 23 24 31 bit #

Char. #1 Char. #2 Char._#3 Char. #4

Eight characters of a string can also be stored in a variable of type DOUBLE.

0 7 8 15 16 23 24 31 bit #

Char. #1 Char. #2 Char. #3 Char. #4] word 1

32 39 40 47 48 55 56 63 bit #

SChar. #/5 Char. #6 Char. #7 Char. #8 word2

Type POINTER is stored as a full word with the value in the least
significant 16 bits.

0 15 16 31 bit #

T virtual address word 1

3.4 ALLOCATION OF STORAGE

Storage is allocated in the order in which data are declared. All THLL
data structures are allocated at THLL word or doubleword addresses. A
doubleword address is one which is a multiple of 2. All data structures of
type DOUBLE or REAL and all stacks and commons are allocated at doubleword
addresses. All other data structures are allocated at word addresses. All
constants are allocated at word addresses.

If in allocating a doubleword address, a "hole" arises, the "hole"
remains. No attempt is made to fill the hole.

. °.

The allocation of storage within a common is the same as the allocation
of storage outside the common.

The constant area, the OWN area, and the runtime stack all begin at
doubleword addresses. This guarantees that REAL and DOUBLE data structures,
as well as stacks and commons, start at doubleword addresses.

3 .

- ." 3- '..

3.3 N%

NSWC TR 84-93

3.5 COMPONENTS . .

THLL components are based on the concept of TELL words. The offset part
of the component declaration is in units of THLL words. When an integer

*" expression is added to the pointer in a component reference, it is also
*" considered to be in units of THLL words.

I-. .'- . , _

POINTER components require at least 16 bits.

REAL and DOUBLE components reference THLL doublewords. However, they do
not need to be aligned at doubleword addresses. The offset in the component
declaration is in units of THLL words. Thus, a DOUBLE or REAL component
occupies two offset values.

3.5.1 Indexed Components

Full word INTEGER and POINTER components index in units of THLL words,
* and DOUBLE and REAL components index in units of THLL doublewords.

Partial word indexed components run with increasing index from left to
right. For portability reasons, characters in ALPHA or DOUBLE variables
should not be accessed with INTEGER indexed components. Instead, ALPHA
components should be used.

, 3.5.2 Alpha Components

The ALPHA component provides a machine-independent method of accessing
character data. In effect, it is an indexed INTEGER component that indexes in

the same direction as character data on the target computer. The type of the
value of an alpha component is INTEGER, not ALPHA!

An ALPHA component variable must always be used as an indexed component
variable. The OFFSET information in the component declaration is in units of
THLL words. A particular character within the THLL word can be accessed by
using an appropriate character number as in the example below.

ALPHA COMPONENT CHR
OFFSET 0 FOR CHR ; /* OPTIONAL - 0 IF NOT SPECIFIED */

or
ALPHA COMPONENT CHR(OFFSET 0)

usage: CHR(P,I) /* P - POINTER TO FIRST WORD THAT
CONTAINS CHARACTER DATA /.

/* I - CHARACTER NUMBER */

3-4 -]

_... ,-~' ... - ..-, , , - -- - . - . .- . .1, .

NSWC TR 84-93

Note that the following two declarations are equivalent in BP TRICOMP:

ALPHA COMPONENT CHAR (OFFSET 0)
* INTEGER COMPONENT BYTE (FIELD(O,8) ,OFFSET 0)

*The two component variables CHAR(P,I) and BYTE(P,I) always have the same value
on the BP. However, the second method is not recomended.

3.6 PRESETS

Compile time expressions evaluated by BP TRICOMP are the same as runtime
expression evaluation on the BP. Presets using indexed components work the
same as runtime indexed components.

43-5

NSWC Ti 84-93

CHAPTER 4 '-'

EXPRESSIONS AND STATEMENTS

4.1 EXPRESSION TYPES

A POINTER value is the virtual address of a 32-bit THLL word. A half
value is a 16-bit quantity if the expression is a subscripted array variable,
a 32-bit quantify otherwise. Therefore, since two half array elements fit
into the same 32-bit word, both elements have the same virtual address.

4.2 PROCEDURES

A THLL procedure can be called from another THLL procedure, an assembly
program, or the operating system. A THLL procedure can call itself, other
THLL procedures, and assembly programs.

THLL allows recursion. THLL procedures running on the BP can be executed
in a recursive manner. Variables sensitive to each invocation of a procedure
must be shared (non-OWN).

A runtime interrupt occurs when a procedure references a missing
parameter passed by reference. This can happen when required actual
parameters are missing in the procedure call.

A subscripted array variable of type HALF can only be passed by value.

Appendix B contains details about the runtime environment on the BP.
Appendix C shows a method for preparing programs for the BP.

.0

4.2.1 LINK and EXEC Procedures

LINK and EXEC pro.edures are assumed to be GLOBAL. It is not considered
an error if they are also declared to be GLOBAL.

The entry point of a program must be a LINK procedure. Any procedure
that may be invoked from a different virtual space must be a LINK procedure.
See Sections 6.1, 6.6, and 7.1.5 of the TLL Reference Manual (Reference 1)
for complete information on LINK and EXEC procedures.

4-

'4-1 ~. --

, ,7. ".

* °

"..% ,,,, ', , °. ,. . * , . ' . e.° °'.. J .'° * ,' ' o. ' " .% ' - % . - *.. . . .; - - -, , ' ' . .

- ~-.~--c.--~..- .77 ..

NSWC TR 84-93

* 4.2.2 Optional Arguments

ARGSYNCL is used to determine the syntactic class of the I'th argument of
a call to a procedure using optional arguments. More information about
ARGSYNCL may be found in the THLL Reference Manual (Reference 1). For the BP, .

the meaning of the integer value returned by ARGSYNCL is:

4

Araument Class Value Returned

one-dimensional array 1
two-dimensional array 2
three-dimensional array 3
simple variable 0
stack 4
procedure 0
device 0
format0

4-2

NSWC TI 84-93

CHAPTER 5

THLL I/0 ON THE BP

5.1 THLL FILE CONTROL BLOCK"--

The THLL runtime system on the BP maintains a THLL File Control Block

(THLLFCB) that contains all information concerning the status of the file and
the most recent READ/WRITE transfer involving the file. OPEN, CLOSE, READ,

and WRITE have an effect on the THLLFCB.

The first word of the THLLFCB contains the level one and two posting
codes. The devices for which this code is meaningful are the Magnetic Disk
File (HDF) and Magnetic Tape File (HTF). The format of the posting areas and
the meaning of these codes for the OPEN procedure is as follows:

THLLFCB

0 15 16 31 bit #

Level one Level two
posting code posting code

Level one
Posting codes Meaning

0 Not Used

Level two
Posting codes Meaning

0 File open to the user

-1 File not found

It is the programer's responsibility to check posting returned from the
OPEN procedure. "-

The CLOSE procedure releases the THLLFCB for the file being closed. "'
After return from CLOSE(P), the pointer P no longer points to a valid data r :
structure that represents a runtime maintained THLLFCB.

5-1

* **%* *.j~*p~. ,r.~. -'~* * * **.-.'

.1 NSWC TR 84-93 6

*5.2 READ AND WRITE POSTING CODES FOR LEVELS l AND 2

The first word of the THLLFCB, contains the level one and level two
posting codes. Level one is found in bits 0-15; level two is found in bits

16-31. The meanings of these codes are found in the following sections.

5.2.1 KBDSS Codes

Level one

Posting codes Meanins for KBDSS

O Parameters Valid

-3 Currently Locked

-4 Currently Busy

-5 Not Connected

-53 Output Not Accepted by DCP

Level two

Posting codes Meaninz for KBDSS

+1 Processing Completed

O Processing Incomplete

-3 Has Been Locked

-5 Has Been Disconnected

-6 I/O Timeout

-7 Output Failure

-7 Input Failure

-14 Invalid Alert Interrupt

-53 Output Retry Not Accepted by the DCP

-53 Input Request Not Accepted by the DCP

5-2

NSWC TR 84-93
V

* >2 5.2.2 CPRINT and SPRINT Codes

Level one
Posting codes Meaning for CPRINT and SPRINT

0 All Parameters Valid

-3 Device Locked

-51 No Memory Available

-52 Device Queue Full

Level two

Posting codes Meaning for CPRINT and SPRINT

Processing Completed

0 Processing Incomplete

5.2.3 MDF and MTF Codes

Level one
Posting codes Meaning for MDF and MTF

0 Parameters Valid

-3 Device Locked

-5 Device Not Connected

-8 Device Not Normal

-13 Protect Area/Key in Protect

-51 No Memory Available

-52 Device Queue Full

-53 Command Not Accepted by DCP

-54 Disk Down (MDF)/Drive In-op or Illegal

Operation (MTF)

5-3

.% . '- A "- •-
• .* -* a " - , . °o .o .,' . -

*
- o ,o-

. . -
°

- %- , ..,, ,,., ,_/..,,5 ' . . .% .,,., ' ... lli-iijll|l~ld.M ni . . . • . _, . .., . .._-. ",.4... -. _ _* *''. .t ,, . _

NSWC TIt 84-936

Level two
Postina codes Meaning for MDF and HTF

I Processing Completed

0 Processing Incomplete

-5 Device Not Connected

-6 Device Time Out

-7 Unusual End

Z -8 Device Not Normal

I-10, -54 Disk Down (MDF)/Drive In-op or Illegal
Operation (MTF)

11 Header Failure

-12 Buffer Length Error

-13 Protect Area/Key in Protect

-53 Command Not Accepted

5.2.4 ICL Codes

Level one

Posting codes Meaning for ICL

0 Parameters Valid

-3 ICL Locked

-4 IL Sotwae (i thi copute) isBus

-4 ICL Software (in thisohe
computer) is Busy

-6 I/O Time Out

-6 Unusual End Encountered

-53 Command Not Accepted by DCP

5-4

NSWC TR &4-93 0

Level two
Posting codes Meaning for ICL

-+1 Process Completed

0 Process Incomplete

-6 I/0 Time Out in Sender Task

-6 I/0 Time Out in Receiver Task ,

-7 Unusual End Encountered for Sender Task

-7 Unusual End Encountered for Receiver Task

-9 Disk Failure (Sender) 9

-9 Disk Failure (Receiver)

-15 Invalid Parameter Table (Sender Task)

-15 Suncheck Failure

-15 Invalid Parameter Table (Receiver Task)

-50 Memory Not Available (Sender)
" -50 Memory Not Available (Receiver)

-53 Sender Command Not Accepted by DCP

-53 Receiver Command Not Accepted by DCP

5.3 I/O OPTIONS FOR READ AND WRITE PROCEDURES

The OPT expression (see the description of READ and WRITE in Reference 1)
is used to define certain I/0 options in a bit-wise manner. The meaning of
each bit is defined as follows:

Bit Meanin"

31 (Least significant bit) NOWAIT: waiting for an I/0 operation
to complete is not performed after the
initiation. Not applicable to ICL.

30 (for MDF) NOCOMP: there is no comparison of the
transferred data.

5-5

.. . .:.:

•-. -. .o....~ -,

" ."", "" ."". -'"''""-', ," ". . -".' ." ."." " " " ..''..''.' .'" " . . " .'.' ."- " " "- ." : - """ '".' ."',.." .-.. . .• -5'." -.-.--. ', t ,-' - ;, 3f .'- " ' '-- ;.",. .;.. . . . ". ".'. " "." " . " """ ," ' "" " " . .", , '"..-. '. ¢

NSWC Ti 84-93 6

29 (for MTF) NOBCKSP: the device is not backspaced
before the I/0 operation. -

29 (for CPRINT or SPRINT) FORMFEED: a form feed is issued before 0
title and message.

28 (for CPRINT or SPRINT) Periodic print is used--entire message
is queued.

The following codes are unique to the KBDSS.

28 OLDPGE: the old buffer is rewritten.-

27 Line Select 1 button is enabled.

26 Line Select 2 button is enabled. '

25 Line Select 3 button is enabled.

24 Line Select 4 button is enabled.

23 Line Select 5 button is enabled.

22 Line Select 6 button is enabled.

21 Line Select 7 button is enabled..-

20 Line Select 8 button is enabled. .-.-

19 Spare, always input 0.

18 Advance page button is enabled.

17 Back page button is enabled. P

16 Data Entry button is enabled.

15 Initialize button is enabled.

14 Spare, always input 0.

13 Execute button is enabled

12 Information/Action display. The current
write is for an information display or

operator action.

S

.-

1-7-e

NSWC TR 84-93

5.4 READ FROM KEYBOARD CODES

When reading from the keyboard, the following codes are returned in the
third word of the THLLFCB.

Code Meaning --

0 No buttons pressed

1 Line Select 1 pressed

2 Line Select 2 pressed

3 Line Select 3 pressed -

4 Line Select 4 pressed

5 Line Select 5 pressed

6 Line Select 6 pressed

7 Line Select 7 pressed

8 Line Select 8 pressed

**10 Advance page

11 Back page pressed

12 Execute pressed

13 Initialize pressed

5.5 READ/WRITE FORMAT ERRORS

When a format error occurs during a read, an error code is returned in

the fourth word of the THLLFCB. The meaning of this code follows:

Error Code Meaning

-N The N'th item in the expanded format contains an -
improper value.

0 No errors.

5-7

NSWC TR 84-93

During a write, if the converted value is too large for the field .-

specified in the format statement, the field is filled with asterisks.

0

S

NSWC TR 84-93 .

CHAPTER 6

STANDARD PROCEDURES

All standard procedures described in the THLL Reference Manual (Reference
1) are available on the BP.

Most of the standard functions and a number of operators such as ** are
implemented as routines in the THLL runtime library, SYSLIB. Appendix C shows
how to access this library.

The following sections describe BP machine dependencies for the standard
procedures.

"" 6.1 FIXH, FIXI, AND FIXD FUNCTIONS

The value returned is the greatest integer less than or equal to the
argument. Thus FIXI(-4.5) - -5 and FIXI(4.5) 4. This is also the case when
the compiler automatically generates a REAL to INTEGER type conversion.

6.2 MATHEMATICAL FUNCTIONS

The mathematical routines such as the trigonometric functions, SQRT, LN,
EXP, etc. are supported either by BP instructions or by the runtime library,
SYSLIB. If the arguments of these functions are not in the required THLL
range, the BP illegal operand fault is set.

The argument for SQRT must be greater than or equal to 0. The argument
of the trigonometric functions must be radians in the range -pi to pi. The
argument of ARCSIN and ARCCOS must be in the range -1 to 1. The argument of
LN must be greater than 0. The angle argument for POCA, ROAX, and ROTA must
be radians in the range -pi to pi.

6.3 SHIFT FUNCTIONS

A 16-bit operand of type HALF is extended to a 32-bit INTEGER quantity
and then shifted.

6-1

_ '. .,'..... ... ,'..' '.. .' '; .'" . . . - .. .,,.... - .. • - ,, • ., , -, . ., . . .

NSWC TR 84-936

6.4 BIT FUNCTIONS (*

If the bit number argument for any of the bit functions (TEST.BIT,
* CLR.BIT, etc.) is not in the range 0 to 31, the nonexistent bit fault is set.

6.5 SWA FUNCTION S

The argument N is an integer. The function value is N considered as a
pointer with base register N/(2**12) and displacement N MOD 2**12.

6-2

*" NSWC TR 84-93 i

CHAPTER 7

UTILITY PROCEDURES

Each utility procedure that is used must be declared external. The form
for that external declaration appears with each procedure. The effect,
restrictions, and applications are briefly defined. These procedures can be
found in the THLL runtime library, SYSLIB. Appendix C shows how to access
this library.

* 7.1 BLOCKIN

BLOCKIN is a procedure which calls the RTOS MONITOR to read a buffer of
specified length into a designated data area of the user's program.

The form of the procedure call is:

BLOCKIN (DEV,NAME,PTR,POST,SIZE, INDEX)

where

DEV - device identifier.

NAME - a character string of one to eight characters or a double
variable naming the file to be read.

PTR - pointer to data area to receive data.

POST - pointer to a posting buffer of at least 16 words.

SIZE - integer expression specifying number of words to be read. •

INDEX - integer expression specifying file index to be read.

The device argument is restricted to identifiers assigned to the HDF,

* MTF, or ICL. It is not necessary to open the device used in this procedure.

The external declaration is:

EXTERNAL PROCEDURE BLOCKIN(DEVICE,DOUBLE VALUE,POINTER VALUE,
POINTER VALUE, INTEGER VALUE,INTEGER VALUE)

7-1

e~'.. ,._.'.'.e,...,'.r.. ,.. ,.-..-... .. . " .- , . " . . .".-.-.. .-. .' " 'c - .

_6~~ T. -7. -

NSWC TR 84-93

See Sections 5.2, 5.2.3, and 5.2.4 for posting codes. "

7.2 BLOCKOUT

BLOCKOUT is a procedure which calls the RTOS MONITOR to write a buffer of
specified length from a designated area of the user's program.

The form of the procedure call is:

BLOCKOUT(DEV,NAME,PTR,POST,SIZE, INDEX)

* where

DEV -device identifier.

NAME - a character string of one to eight characters or a double
variable naming the file to receive the data.

PTR - pointer to data area to be written.

POST - pointer to a posting buffer of at least 16 words.

SIZE - integer expression specifying number of words to be written.

INDEX - integer expression specifying file index to be written.

The device argument is restricted to identifiers assigned to the HDF,

MTF, or ICL. It is not necessary to open the device used in this procedure.

The external declaration is:

EXTERNAL PROCEDURE BLOCKOUT (DEVICE,DOUBLE VALUE,POINTER VALUE,
POINTER VALUE,INTEGER VALUE, INTEGER VALUE)

See Sections 5.2, 5.2.3, and 5.2.4 for posting codes.

7.3 CONVALPH

CONVALPH is an integer procedure which converts a substring of an ALPHA
variable to an integer. This integer is returned as the value of the
procedure unless the substring is not convertible. A substring is convertible
if it contains only characters 0 through 9. The procedure allows the THLL
programmer to designate the character position P of the ALPHA string on which
to start the conversion and the length L of the ALPHA string to be converted.
If the position is not specified, then 0 is assumed. If the length is not
specified, then the current length of the entire ALPHA string minus P is

7-2

' ,',,,..- ,- , __.. ,, -...,.,, .,... ,.•. .: .- ..,. -.. .. .- , ,. -. .- . - .. .,.- ,..,,., .. . --,,-,
• ,. e - .*4. :.-. :'. . ::..'. -...- .. -... .. ,-....... .--- '-.,'--.....:., .--- : -: .-.---.. , .-.

NSWC TR 84-93

* assumed. If P+L exceeds the current length of the ALPHA variable, the string
is not convertible.

The form of the procedure call is:

CONVALPH (NAME [,P [,L]])

where

NAME -the identifier of the ALPHA string or a pointer to the ALPHA.

P -the start character position within the ALPHA at which to begin
conversion (first position is 0).

L -the number of characters to be converted.

The returned value of the procedure is:

Returned Value Condition

desired integer the ALPHA is convertible

-l the ALPHA is not convertible

The external declaration is:

EXTERNAL INTEGER PROCEDURE CONVALPH (ALPHA, OPTARG)F

For details on OPTARG see Reference 1. . &-

Examples of CONVALPH:

A. If the declaration is:

ALPHA NAME(13)

and the assignment is:

NAME-#/NUMBER IS 1234/;

then CONVALPH(NAME,10,4) returns 1234.

7-3

_IlL

l4SWC TR 84-93P

B. If the declaration is:

ALPHA NUNI3); .

and the assignment is: *

* NUMB-#/1234/

then CONVALPH(NUHB) returns 1234.

C. If the declaration is:

ALPHA MESSAGE(14)

and the assignment is:

MESSAGE-#/HEX VALUE IS D8/

then CONVALPH(MESSAGE,13,2) returns -1 because D8 is not
convertible.

D. If the declaration is:

ALPHA B(3

and the assignment is:

B-#/-250/

then CONVALPH(B) returns -1 because the negative sign is not
convertible.

E. If the declaration is:

ALPHA B(15);

0 and the assignment is:

B-#/SPEED IS 250 MPH/

then CONVALPH(B,9,3) returns 250.

7-4

NSWC Ti 84-93

7.4 CONVINT

CONVINT is a procedure which converts an integer INT into an ALPHA string
of a specified length L and substitutes it into a given ALPHA variable

*starting at a specified p-osition P. Only non-negative integers are
convertible. If the position P is not specified, then 0 is assumed. If the
length is not specified, then the current length of the ALPHA variable minus P
is assumed. If P+L exceeds the current length of the ALPHA variable, the
number is not convertible.

The string produced from INT is defined as follows:

If INT < 0 or INT > 0**L, then the string is a sequence of L
asterisks:

#/*...*

Otherwise, the string is a sequence of L characters consisting of the
right-justified decimal digits resulting from the conversion. If
necessary, the field is padded with leading zeros.

#/0 ... 0 dk ... dl dO/,

The di are the decimal digits of the number:

INT dO + dl *0 +... + dk *lO**k

The form of the procedure call is:

CONVINT(INT,NAME[,P[,L])

where

INT - the integer to be converted.

NAKE - the identifier of the ALPHA variable or a pointer to the ALPHA.

P - the start character position within the ALPHA.

L - the number of characters into which the integer is to be
converted.

The returned value of the procedure is:

Returned Value Condition

0 the integer is not convertible or the
string produced is #/*.*"

-1 the integer is convertible

7-5

• . . . • .-.. • .**%..**** •* o*

NSWC Th 84-93

The external declaration is:

EXTERNAL INTEGER PROCEDURE CONVINT (INTEGER VALUE, ALPHA, OPTARG);

* ~For details on OPTARG see Reference 1. I.

* Examples of CONVINT, (b indicates a blank)

A. If the declarations are:

INTEGER INT
ALPHA NOTE (8

and the assignments are:

INT -20

NOTE -#/MSLbNObbb/;

then CONVINT(INT,NOTE,7,2) produces NOTE -#/MSLbNOb2O/

B. If the declarations are:

INTEGER INT;
ALPHA NOTE (5)

and the assignments are:

INT -10

NOTE -#/bbbbbb/

then CONVINT(INT,NOTE) produces NOTE -#/000010/

C. If the declarations are:

INTEGER INT
ALPHA N(8);

and the assignments are:

INT -- 250
N #/bbbbbbbbb/

then CONVINT(INT,N) produces N

* 7-6

- .-. w r wr --- --.. -.- - r-r--.rr . * .-.- . - -. _* . - , . o. _ + ::.

NSWC TR 84-93 S

D. If the declarations are:

INTEGER INT
ALPHA M(8) ;

and the assignments are:
4.>

INT - 500;
M - #/bb/

then CONVINT(INT,M) produces M -
(.-

7.5 PRINT

PRINT calls an RTOS MONITOR service routine to print a message on a
designated device. A wait option is used.

The form of the procedure call is:

PRINT (DEV, POST,MSG)

where

DEV - device identifier.

POST - pointer to a posting buffer of at least 16 words.
'°.

MSG - the ALPHA string to be printed or a pointer to the ALPHA.

The device argument is restricted to identifiers assigned to either the
system printer SPRINT or the computer printer CPRINT. The programmer is
responsible for ensuring that the ALPHA string produces the desired appearance
(Reference 4).

The external declaration is:

EXTERNAL PROCEDURE PRINT(DEVICE,POINTER VALUEALPHA) ;

See Sections 5.2 and 5.2.2 for posting codes.

7.6 EPRINT

EPRINT calls an RTOS MONITOR service routine to print a message on a
designated device. The no-wait option is used.

7-7

* ~ *. . . 4.4* *** %~**,%.*

-' v:. -..

NSWC TR 84-93

The form of the procedure call is:

EPRINT (DEV,POST,HSG) * ''

where

DEV - device identifier.

POST - pointer to a posting buffer of at least 16 words.

MSG - the ALPHA string to be printed or a pointer to the ALPHA.

The device argument is restricted to identifiers assigned to either the
system printer SPRINT or the computer printer CPRINT. The programmer is
responsible for ensuring that the ALPHA string produces the desired appearance
(Reference 4).

The external declaration is:

EXTERNAL PROCEDURE EPRINT(DEVICE,POINTER VALUE,ALPHA)

See Sections 5.2 and 5.2.2 for posting codes.

7.7 TERM

TERM calls the RTOS MONITOR periodic print routines to print a message on
a designated device.

The form of the procedure call is:

TERM(DEV,POST,MSG)

where

DEV - device identifier. .

POST - pointer to a posting buffer of at least 16 words. S

MSG - the ALPHA string to be printed or a pointer to the ALPHA.

The device argument is restricted to identifiers assigned to either the
system printer SPRINT or the computer printer CPRINT. The ALPHA string must
be less than 160 characters in length, including printer control characters
(Reference 4).

.-

e' °~~~~.*. .-.. ,......-,... -•..........°.

NSWC TR 84-93

The external declaration is:

EXTERNAL PROCEDURE TERM (DEVICE,POINTER VALUE,ALPHA)

See Sections 5 -1 and 5.2.2 for posting codes.

7.8 REGLINK

REGLINK is an integer procedure whose value is the contents of the
specified register at the time the calling procedure is entered.

The form of the procedure call is:

REGLINK (N)

where

N - integer expression designating the general register (0-15).

The use of this procedure is restricted to EXEC procedures to obtain the

values contained in the registers when the procedure is called.

The external declaration is:

EXTERNAL INTEGER PROCEDURE REGLINK(INTEGER VALUE) ;

7.9 TRUNC

TRUNC is an integer procedure that can be used to obtain the singleword
representation of the integer portion of a real expression. For example,
TRUNC(2.5) is 2, and TRUNC(-2.5) is -2. This is in contrast to the FIX
functions described in Section 6.1.

The form of the procedure call is:

TRUNC (R)

where

R - any real valued expression

It should be noted that no attempt is made to determine whether the value of
the integer obtained can fit into a singleword.

7-9

..*~.

NSWC TR 84-93

The external declaration is:

EXTERNAL INTEGER PROCEDURE TRUNC (REAL VALUE)

* 7.10 TRUNCD

TRUNCD is a double procedure that can be used to obtain the doubleword
representation of the integer portion of a real expression.

The form of the procedure call is:

TRUNCD (R)

where

R -any real valued expression

The external declaration is:

EXTERNAL DOUBLE PROCEDURE TRUNCD(REAL VALUE)

7- 10

, ~ ~~~~~~ -7 1 ! pu n

NSWC TR 84-93

CHAPTER 8

%i DATA COMMUNICATION PROCESSOR PROCEDURES

A privileged program is able to communicate with the external equipment
through the interface provided by the Data Communication Processor (DCP). The
following procedures aid the THLL programmer in writing privileged state
programs by translating DCP-related I/O requests into DCC I/O instructions -"/

(Reference 3). Additional information on the DCP is also available in the DCP
Protocol document (Reference 4). The DCP related procedures are described in
the following sections. They can be found in the THLL runtime library,
SYSLIB. Appendix C shows how to access this library.

All DCP procedures are integer procedures. They return as value the
Condition Designator (CD) which is a 4-bit quantity. These bits are
right-justified (bits 28 through 31) in the returned value. Only the CD bits
that have meaning are described in the sections that follow.

8.1 START I/O PROCEDURES

The SIO1 and S102 integer procedures enable the THLL programmer to
initiate port activity. In particular, SIO1 initiates I/O on a single port.
S102 initiates I/O on a port pair. The forms for these procedure calls are:

SIOl (DCW,PORT)
S102 (DCW,PORT)

where

DCW - pointer to an array, stack, or subscripted variable which
contains the Data Control Words (DCWs) that indicate the
activity to be performed.

PORT - integer expression specifying the port or port pair on which
I/0 activity is to be initiated.

8-1

:7e.. . ..

.

NSWC TR 84-93 6

The meaning of the returned CD bits is as follows:

Bit SIO CD Meaning

30 If set, port number is in DCW stack

28 If set, port is busy

0

Bit S102 CD Meaning

28 If set, at least one port of pair is busy

8.2 TEST I/O PROCEDURES

The TIOl and T102 integer procedures enable the THLL programmer to test
the busy status of a single port (using TI01) or port pair (using TI02). The
forms of the procedure calls are:

TIOl (PORT)
T102 (PORT)

where

PORT - integer expression specifying the port or port pair being
tested.

The meaning of the returned CD bits is as follows:

Bit TIO1 CD Meaning

30 If set, port number is in DCW stack

29 If set, interrupt on specified port is pending S

28 If set, port is busy

Bit T102 CD Meaning

29 If set, output port is busy

28 If set, input port is busy

8

8-2-.2 -

. l~mm mmm NaJI.... -* ...

" -. ' . '. .' '. , . ,. .-,.r--. .w- - S * . .* -.. . C r C W

NSWC TR 84-93

8.3 HALT I/O PROCEDURES

The HIOl and H102 integer procedures enable the THLL programmer to halt
I/0 activity between the DCP and the DCC on either a single port or a port

pair. HIOl is used for a single port; HI02 is used for a port pair. The -

forms of the procedure calls are:

HIO (PORT)
HI02(PORT)

where

PORT - integer expression which specified the port or port pair on
which activity is to be halted.

The meaning of the returned CD bits is as follows:--

Bit HI01 CD Meaning

30 If set, port number is in DCW stack " -

28 If set, port is busy

Bit HI02 CD Meaning

29 If set, output port is busy

28 If set, input port is busy

N-

8.4 RESTART I/O PROCEDURE

The RSIO integer procedure enables the programmer to continue I/O
transfers that have been halted. The form of the RSIO procedure call is:

RSIO (PORT)

where

PORT -integer expression which specifies the port that is to be
restarted.

8-3

..

NSWC TR 84-93 S

The meaning of the returned CD bits is as follows:

Bit RSIO CD Meaning S

28 If set, port is busy

8.5 WRITE DIRECT PROCEDURE

The DOIO integer procedure enables the THLL programmer to transfer
information from the CPU controlled Executive Interface directly to a
peripheral. The form of the procedure call is:

DOIO(EXP,PORTTAG)

where

EXP - integer expression whose value is sent to the peripheral.

PORT -hinteger expression that specifies the output port over which
the transfer is made.

TAG - integer expression that represents the type of transfer to be
performed.

The allowable TAG values and their interpretations are listed below:

Value Meaning

0 Select Command Transfer (without interrupt)

1 Select Data Transfer (without interrupt)

2 Override Command Transfer (without interrupt)

3 Error

4 Select Command Transfer (with interrupt)

5 Select Data Transfer (with interrupt)

6 Override Command Transfer (with interrupt)

7 Error

* 8-4 ..- ,.- :'*

NSWC TR 84-93

Lo0L- The meaning of the returned CD bits is as follows: "

_ _ ___, I
Bit DOIO CD Meaninz

29 If set, TAG error detected

28 If set, port is busy ,i

8.6 READ DIRECT PROCEDURE

The DIIO integer procedure enables the THLL programmer to transfer
information from a peripheral directly into the CPU controlled Executive
Interface. The form of the DIIO procedure call is:

DIIO(RTN,PORT, TAG)

where

RTN - integer variable to contain the peripheral information.

PORT - integer expression that specifies the input port over which the
transfer is made.

TAG - integer expression that represents the type of transfer to be
performed.

The allowable values for TAG sad their meanings are: '.

Value Meaning

0 Without interrupt

1 With interrupt

The meaning of the returned CD bits is as follows:

Bit DIIO CD Meaning

28 If set, port is active, waiting for input transfer

8.5

°i ~8-5 ..,
• ". .*.I

* C
1- - 7 7

NSWC TR 84-93

8.7 ACKNOWLEDGE STACK PROCEDURES

The ASTK1, ASTK2, and ASTK3 integer procedures enable the THLL programer
to retrieve interrupt information that is held in the DCP stacks. In
particular, ASTKI acknowledges DCP interrupt stack one, ASTK2 acknowledges DCP
interrupt stack two, and ASTK3 acknowledges DCP interrupt stack three.

The forms of the procedure calls are:

ASTK1 (INTFOR)
ASTK2 (INTFOR)
ASTK3 (INTFOR)

*where

INTFOR - integer variable to contain the interrupt information that is
to be retrieved.

The meaning of the returned CD bits is as follows:

Bit CD Meaning

30 If set, at least one interrupt is pending

29 If set, more than one interrupt is pending

28 Should be set to indicate port is busy

8.8 ACTIVATE/DEACTIVATE PORT PROCEDURES

The APORT and DPORT integer procedures enable the THLL programmer to
activate (using APORT) or deactivate (using DPORT) a specific port. The forms
of these procedure calls are:

APORT (PORT)
DPORT(PORT)

where

PORT - integer expression which specifies the port to be activated or
deactivated.

8-6

8-6, - .,9

"- "'~~~~~~.° """ .. '" - - ", ' ""' "" ." "'" ,r" " ' " " " '
o

" -"-' '' " .o*
.

" ."'- "-"'. . -" o .

NSWC TR 84-93

The meaning of the returned CD bits is as follows:

Bit CD Meaning

30 If set, interrupt is pending

28 Should be set to indicate port is busy

. 8.9 RESET PROCEDURES

The RESETCIU, RESETDCP, and RESET integer procedures enable the THLL p
* programmer to initialize the CIU, initialize the DCP, or reset a port,

respectively. The forms of these procedure calls are:

RESETCIU
RESETDCP
RESET (PORT)

where

PORT - integer expression which specifies the port to be reset.

The returned values for RESETCIU and RESETDCP are meaningless. The
" meaning of the CD bits returned by RESET is as follows:

Bit RESET CD Meaning

30 Port is in DCW stack for RESET call

29 Error, if set

28 Indicates port is busy if set on RESET call
I

8.10 STATUS PROCEDURE

The STATUS integer procedure enables the THLL programmer to retrieve the
status indications that are internal to the DCP. The form of the procedure
call is:

STATUS (PORT,TAG, STAFOR)

where

8-7

Q.-7 7. 7

NSWC TR 84-93

PORT - integer expression which specifies the port from which the ... -

status is to be retrieved.

TAG - integer expression which indicates the type of information to -*- -

be returned. -

STAFOR - integer variable in which a status indication is returned.

The allowable values for TAG and their meanings are:

Value Meaning

0 X (not used) S

1 Device Code and Buffer's Next Address

2 Buffer Control and Current Buffer Count

3 Port Status and Next DCW Address .

4 Interrupt Status

5 X (not used)

6 Bootstrap information (77
7 Bootstrap information

The format of the integer variable 'STAFOR' for the various tag values is .o-

defined in Reference 4.

Additional special usage of the tag field for the special ports (EXEC,
SDS, IDLE) is also defined in Reference 4.

The meaning of the returned CD bits is as follows: S

Bit STATUS CD Meaning

29 TAG error, if set

8.11 MITNOR PROCEDURE

The MITNOR integer procedure enables the THLL programmer to prepare a DCP
input port for receiving unsolicited interrupt words from peripherals on the
port. The form of the procedure call is:

.-- ..,-:

8-8 -
'

. * . * ° • • S * *" S.

NSWC T1 84-93

MITNOR(EXP,PORT)

where

EXP - integer expression whose value (the Buffer control field) is
sent to the DCP.

PORT - integer expression which specifies the input port to be
affected.

The meaning of the returned CD bits is as follows:

Bit MITNOR CD Meaning

28 Indicates port busy status

8.12 ACKNOWLEDGE DEDICATED INTERRUPT PROCEDURES

The ADED1 and ADED2 integer procedures enable the THLL programmer to
retrieve interrupt information from ports that have been assigned interrupt
levels which are not associated with a DCP stack. In particular, ADED1
retrieves all 32 bits from the interrupting port. ADED2 retrieves 24 bits
from the interrupting port (most significant bits of the returned value) and
eight bits from the DCP (least significant bits of the returned value). The
forms for the ADEDI and ADED2 procedure calls are:

ADEDi (PORT, INTFOR)
ADED2 (PORT, INTFOR)

where

PORT - integer expression which specifies the port to be
acknowledged.

INTFOR - uinteger variable to contain the interrupt information
returned.

The meaning of the returned CD bits is as follows:

Bit CD Meaning

30 If set, interrupt is pending

28 Should be set indicating port is busy

8-9

. -.... -~ . "° - °

NSWC TR 84-93

CHAPTER 9

REAL TIME OPERATING SYSTEM SERVICE PROCEDURES

p.

The Real Time Operating System (RTOS) serves as the runtime interface
between a program and its external environment. The details of RTOS services
are documented in the Real Time Operating System Monitor Design Disclosure
Document (Reference 3). For the THLL programmer, this interface is
implemented as a set of service procedures. The descriptions of these service Op.
procedures follow. These procedures can be found in the THLL runtime library,
SYSLIB. Appendix C shows how to access this library.

9.1 ATTACH PROCEDURE P
.

The ATTACH procedure serves as the interface for the Attach Service
Module contained within the RTOS MONITOR and is used by a programmer whenever
a task is to be connected to the Multitask Set (MTS). The form for the ATTACH
procedure call is:

ATTACH (NAME, OPT,POST, LNKWD)

where .". ..
4. ...

NAME - a character string of from one to eight characters which
specifies the name of the task to be connected to the MTS.

- a double array element containing the name of the task to be
connected to the MTS.

- a double variable whose first word contains the number of
tasks to be connected to the MTS and whose second word
contains a pointer to the list of task names.

OPT - an integer expression which specifies certain ATTACH options.

POST - a pointer to a data area whose length is 16 + 2(N-1) where N
is the number of tasks being attached with this ATTACH call.

LNKWD - an integer identifier which defines the linkage word for exit
processing.

..-.. * .- .

9-I .
4"

9-1.

NSWC Ti 84-93

The OPT expression defines options in a bit-wise manner. The effect of a
bit being set is defined as follows:

0

Bit Effect

31 (least significant bit) LNKWD specifies an address of exit
processing.

30 NOLOAD: the loading of the task is to
be deferred.

The first word of the POST area contains the ATTACH processing codes.
The meaning of these codes is defined as follows.

Posting Code Meaning

0 Parameters Valid, Processing Complete

-1 Task Already Connected

-50 Insufficient Main Memory to Load Task

The second and third words of the POST area contain the name of the task.

'j 9.2 SCHEDULE PROCEDURE

The SCHEDULE procedure serves as the interface for the Schedule Service
Module contained within the RTOS MONITOR and is used by a programmer whenever
a task is to be initiated for execution. The form for the SCHEDULE procedure

-: call is:

SCHEDULE (NAMEOPT,POST, PREC)

where

NAME a character string of from one to eight characters which
specifies the name of the task to be initiated for execution.

- a double array element containing the name of the task to be
initiated for execution.

- a double variable whose first word contains the number of tasks
to be initiated for execution and whose second word contains a
pointer to the list of task names.

OPT - an integer expression which specifies certain SCHEDULE options.

9-2

is A .o

9.1

NSWC TR 84-93

4..

.% POST - a pointer to a data area whose length is 16 + 2(N-1) where N is
the number of tasks.

PREC - an integer value; each bit set in the binary representation of P.
this value indicates the rank of a predecessor task.

. -

The OPT expression defines options in a bit-wise manner. The effect of a
bit being set is defined below:

Bit Effect

30 PREC: the PREC expression is used to effect
predecessor requirements.

29 REL: the memory assigned to the task is released at
the end of its execution.

The first word of the POST area contains the SCHEDULE processing codes.
_ The meaning of these codes is defined as follows:

K Posting Code Meaning

0 Parameters Valid, Processing Complet%

-1, -2 Task Activity Already in Progress, where -1
indicates task already scheduled

-50 Insufficient Main Memory to Load Task

The second and third words of the POST area contain the name of the task.

9.3 PURGE PROCEDURE

The PURGE procedure serves as the interface for the Purge Service Module
contained within the RTOS MONITOR and is used by a programmer to indicate an
abnormal or forced end of execution for a task. The form for the PURGE
procedure call is:

PURGE (NAME,OPT,POST, FAULT)

where

9-3

...-.

4.. o ." ,o

NSWC TR 84-93 6

NAME - a character string of from one to eight characters which
specifies the name of the task to be purged from execution.

- a double array element containing the name of the task to be 0
purged from execution.

- a double variable whose first word contains the number of
tasks to be purged from execution and whose second word
contains a pointer to the list of task names.

OPT - an integer expression which specifies certain PURGE options.

POST - a pointer to a data area whose length is 16 + 2(N-1) where N
is the number of tasks.

FAULT - an integer expression in which bits 8 through 31 identify the -
nature of the abnormal end.

The OPT expression defines options in a bit-wise manner. The effect of a
bit being set is defined below:

Bit Effect

30 FAULT: the fault expression is used to specify the
nature of the abnormal end.

The first word of the POST area contains the PURGE processing codes. The
meaning of these codes is defined as follows:

Posting Code Meaning -

0 Parameters Valid; Processing Complete

-1 Attempt to PURGE a Non-Active Task

-2 Task Termination Already in Progress 0

. The second and third words of the POST area contain the name of the task.

9.4 DETACH PROCEDURE

"" The DETACH procedure serves as the interface for the Detach Service
* Module contained within the RTOS MONITOR and is used by a programmer whenever

a task is to be disconnected from the MTS. The form for the DETACH procedure
call is:

9-4

. z
I

NSWC TR 84-93 0

DETACH (NAME,POST)

where

NAME - a character string of from one to eight characters which
specifies the name of the task to be detached from the MTS. .-

- a double array element containing the name of the task to be
detached from the MTS.

- a double variable whose first word contains the number of tasks
to be detached from the MTS and whose second word contains a
pointer to the list of task names.

POST - a pointer to a data area whose length is 16 + 2(N-l) where N -

is the number of tasks.

The first word of the POST area contains the DETACH processing codes.
The meaning of these codes is defined as follows:

Posting Code Meaning

0 Parameters Valid; Processing Complete

-2 Task Termination Already in Progress

The second and third words of the POST area contain the name of the task.

9.5 EXIT PROGRAM PROCEDURE

The EXITPGM procedure serves as the interface for the Exit Service Module
- contained within the RTOS MONITOR and is used by a programmer to relinquish BP

control or to signal normal end of execution. The form for the EXITPGM
" procedure call is:

EXITPGM

This procedure should NEVER be used within an interrupt procedure as it
_ - is designed to signal the end of task execution.

9-5 L %

NSWC TR 84-93 0

9.6 WAITE SERVICE MODULE PROCEDURES

The MARKTIME, WAITMEMO, WAITKBIN, WAITICL, WAITTASK, and WAITEXEC
procedures serve as the interface for the Waite Service Module contained 0
within the RTOS MONITOR and are used by a programmer to suspend a program's
activity until a selected event has occurred. The event that is selected for
each procedure is as follows:

Procedure Event 0

MARKTIME Time Interval Elapse

WAITMEMO Main Memory Availability

WAITKBIN Keyboard Input from Operator

WAITICL Completion of ICL Transfer

WAITTASK Completion of another Task

WAITEXEC Executive Action .

The form for each procedure call follows.

9.6.1 MARKTIME

MARKTIME (DELTA [,WS])

where 0

DELTA - a real expression which indicates the number of seconds that
are to elapse until that task can be continued.

WS - an optional pointer to a working storage area with a length of
at least 16 words. _

9.6.2 WAITMEMO, WAITKBIN, WAITICL, WAITEXEC

WAITMEMO (WS)"
WAITKBIN [(WS)'
WAITICL [(WS)]
WAITEXEC [(WS)-

9-6

o I

.

NSWC TR 84-93.9.°

-' "where

WS - an optional pointer to a working storage area with a length of
at least 16 words. e

9.6.3 WAITTASK

WAITTASK (TECKEY [,WS])

where

TECKEY - an integer value; each bit set in the binary representation
of this value indicates the rank of a predecessor task.

WS - an optional pointer to a working storage area with a length
of at least 16 words.

9.7 CONTINUE PROCEDURE

0 The CONTINUE procedure serves as the interface for the Continue Service
Module contained within the RTOS MONITOR and is used by a STATE EXECUTIVE .
programmer to continue the execution of those tasks that are waiting for
Executive Action. The form for the CONTINUE procedure call is:

CONTINUE (PGM [,WS])

where S

PGM - an integer value; each bit set in the binary representation of
this value indicates the rank of a task to be continued.

WS - an optional pointer to a working storage area with a length of
at least 16 words. 0

9.8 ENABLE, DISABLE, ARM, DISARM, AND TRIGGER PROCEDURES

The ENABLE, DISABLE, ARM, DISARM, and TRIGGER procedures serve as the
interfaces to the Enable, Disable, Arm, Disarm, and Trigger RTOS MONITOR
Service Modules, respectively. They are used by a programmer to change the
interrupt characteristics of the DCC by manipulating the contents of the
Interrupt Disable Register, the Interrupt Mask Register, and the Interrupt
Occurrence Register. The particular characteristic of each procedure is:

9-7

NSWC TR 84-93

Procedure Characteristic

ENABLE Enable Interrupts

DISABLE Disable Interrupts

ARM Arm Interrupts

DISARM Disarm Interrupts

TRIGGER Simulate the Occurrence of Interrupts

The form for each procedure call is:

ENABLE(MASK[,WSJ)
DISABLE(MASK[,WSI)
ARM (MASK [, WS])
DISARM(MASK[,WS])
TRIGGER(MASK[,WS])

where .

MASK - a double expression which indicates the interrupt levels that
are to be affected.

WS - an optional pointer to a working storage area with a length of "-
at least 16 words. - -

The MASK expression indicates, in a bit-wise manner, the interrupt levels
to be affected. Each bit set in this doubleword indicates action for the
corresponding interrupt level. The format of this double expression is as
follows:

0 16 31 bit #

Levels 16 through 47 word 1

Levels 0 through 15 word 2

9.9 OVERLAY LOADER PROCEDURE

The OVLOAD procedure serves as the interface for the Overlay Loader
contained within the RTOS MONITOR and is used by a Task programmer to request
the loading of secondary overlays. The form of the OVLOAD procedure call is:

9-8

NSWC TR 84-93 'S

.. OVLOAD(OVLY,POST)

where

OVLY - an integer expression which indicates the overlay number of the
overlay that is to be loaded.

POST - a pointer to a data area with a length of at least 36 words.

The first word of the POST area contains the OVLOAD processing summary
codes. The meaning of these codes is defined as follows:

Code Meaning -. -

0 Parameter Valid; Processing Complete

-9 DIO to KDF Failure

The second word of the Post area contains the level one and level two DIO
processing codes. These codes are the same as those for the MDF READ and
WRITE procedures (see Section 5.2.3).

9.10 ACQUIRE PROCEDURE

The ACQUIRE procedure serves as the interface to the Acquire Service
Module contained within the RTOS MONITOR and is used by a programmer whenever ":.-
main memory must be allocated. The form of the ACQUIRE procedure call is:

ACQUIRE (MEM, SIZE [,WSI)

where

MEM - an integer variable to contain the absolute address of the
memory block allocated.

SIZE - an integer expression which specifies the number of words to be
allocated.

WS - an optional pointer to a working storage area which contains at
least 16 words.

If main memory cannot be allocated, then a value of -1 is returned in
MEM.

* ... -:

•""9-9 I9.

-%

=-'; ""- " " ' " "'" . .. "" " .. ,, ' ' / ''"" " ' " "" ''" '" " /'" '""" "":"* '' ', '' '.-''.' .. .e 0 '!.

NSWC TR 84-93

9.11 RELEASE PROCEDURES RELEASE ALLMEM

The RELEASE and ALLMEM procedures serve as interfaces to the Release
Service Module contained within the RTOS MONITOR. The RELEASE procedure is
used to return a main memory block that was dynamically acquired. The form of
the RELEASE procedure call is:

RELEASE(HEM [, S ..-

where

EM- an integer variable which contains the absolute address of the
main memory block to be deallocated.

WS - an optional pointer to a working storage area which contains at
least 16 words.

The ALLMEM procedure is used to return or deallocate all main memory
allocated to the program via the ACQUIRE procedure. The form of the ALLMEM
procedure call is:

ALLMEM[(WS)]

". where

WS - an optional pointer to a working storage area which contains at
least 16 words.

.* 9.12 SETSTATUS PROCEDURE

The SETSTATUS integer procedure serves as the interface for the F/C
Status Service Module. The value of the procedure is the posting code. It
enables the THLL programmer to change a status controlled by the MONITOR. The
form of the SETSTATUS procedure call is:

SETSTATUS (ICODE, ISUB [,POST)) 0

where

ICODE - an integer expression which specifies the device for which the
status is to be changed.

ISUB - an integer expression which specifies the condition for which
status is to be modified.

POST - an optional pointer to a data area with a length of at least
16 words.

9-10 .5...

B...

.. ".o-.

r. 7. -

NSWC TR 84-93

- . The values for ICODE and the device each represents are defined below:

ICODE Value Device

1 DCG - Data Control Group

2 DCC - Digital Control Computer

3 lIDF - Magnetic Disk File

4 DCSS -Data Converter Subsystem/
Time of Day Subsystem

5 SPR System printer

6 CPR -Computer printer

The values for ISUB are device-dependent.

Device ISUB Value Condition .-

DCG 1 DCG Equipment Failure

2 DCG Configuration Incomplete

3 DCG Alert

4 DCG Task Control Bus Alarm

5 DCG System Mode Bus Alarm

6 DCG Peripheral Configuration Alarm

7 DCG Peripheral Equipment Failure

DCC 0 DCC Normal

I DCC Hardware Fault

2 Computations Invalid

MDF MDF Normal

1 MD? Alarm

DCSS 0 DCSS Normal

1 DCSS Alarm

9-11

NSWC TI 84-93

SPR 1 System Printer Alert

CPR 1 Computer Printer Alert

4N.

The first word of the optional POST area also contains the SETSTATUS .
'.4. posting code. The meaning of these codes are defined as follows:

Posting Cude Meaning

0 All Parameters Valid, Processing Complete

-1 Requested Status Already Set i1J
-2 Invalid Code Specified

-3 Invalid Device Specified

9.13 SYSERR PROCEDURE

SYSERR is a procedure which calls the RTOS MONITOR system error printout
routine.

The form of the SYSERR procedure call is: r-

SYSERR (TYPE, FAULT[,SUBFAULT])

where dg i t er

TYPE - an integer expression which indicates the software
diagnosing the error. -,

0 MONITOR diagnosed system error

otherwise Assignment of this integer is mode executive
dependent.

FAULT - an integer expression which specifies the fault code number.

SUBFAULT - an optional integer expression which specifies the subfault
code number.

,...

9-12
6. ,

,a ,.-

"--- ", .-' -'. "- - "--. "- "- "- .,' .'- " , -', -", " ".- "- ' " "." "-" ,- h , .,, " .-.- ," ," , -'<,' ," "_- .." - • .. .", .,

NSWC TR 84-93

S9, * 9.14 DATASUM PROCEDURE

The DATASUM integer procedure serves as the interface to the RTOS SUM
routine. It enables the THLL programmer to sum a block of data. The value of
the procedure is the sum of all' words in the data block specified. The form
of the DATASUM procedure call is: '.

DATASUM(PTR,SIZE [,POST])

where

PTR - a pointer to the data block to be summed.

SIZE - an integer expression for the number of words to be summed.

POST - an optional pointer to a data buffer of at least 16 words.

The first word of the optional POST area also contains the sum of the
data block.

9.15 EES PROCEDURE

The Enter Executive State (EES) procedure enables the THLL programmer to
call any RTOS EES service routine or write his own EES handler. The form of
the EES procedure call is:

EES(N,FPT)

where

N - integer number of the EES procedure to be called.

PPT - pointer to the Function Parameter Table (FPT) to be used by the
EES procedure.

Many of the RTOS EES routines have been implemented for THLL and are
described in Sections 9.1 through 9.14. This procedure provides the mechanism
for a programmer to write his own handler after studying the RTOS
requirements. See Reference 3, paragraph 6.14.6 for information on EES
functions.

Table 6.14-1 of Reference 3 contains the values which N may assume.
Additional information on FPTs is also available in Reference 3.

..-1.

9-13 .-

.- -".?.. ::.':.::.-: :..:.:..'.::,:.. .. , ; ;.' , :. :, . .;..:.; ,.. ., ,.> -;:. >-.. :.... ., : : . .,- : - :, - : --. -- '

.7~~~o 7 " 1 Zozw*

**1 NSIEC TR 84-93 P

CHAPTER 10

REFERENCES

1. Hartmut G. Huber, THLL Reference Manual, NSWC TR 84-101, Jul 1984.

2. TRIDENT Basic Processor Programmers Reference Manual, Hughes Aircraft
Company, Jul 1974.

3. NAVSEA OD 45601, Volume II, Part 1, TRIDENT-I and TRIDENT-I Backfit
Fire Control Software Real Time Operatin& System Monitor Design
Disclosure Document, Nov 1976.

4. NAVSEA OD 46359, Revision 2, Subset, Data Communication Processor
Protocol.

5. Hartmut G. Huber, TRILOAD Reference Manual, 1984. (To be published)

6. J. Gaines, N. Raines, J. Schneider, and W. McCoy, TRIDENT On-Line
CI t Aid in Debugging Compiler (TOADC) User's Guide, NSWC/DL TR 3757,

November 1977 (Revised August 1979).

...

• "" 10-1

NSWC Th' 84-93

APPENDIX A'-'"

ASCII CHARACTER SET

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P € p

1 SOH DC1 I 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c a .

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y y

A LF SUB * J Z j -

B VT ESC + K [k {
C FF FS , L 1
D CR GS - M H] a .

E SO RS N n

F SI US / ? 0 o DEL

NUL Null DLE Data Link Escape

SOH Start of Heading DC1 Device Control 1

STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL B61l ETB End of Transmission Block

BS Backspace CAN Cancel

HiT Horizontal Tabulation EM End of Medium

LF Line Feed SUB Substitute
VT Vertical Tab ESC Escape

FF Form Feed FS File Separator

CR Carriage Return GS Group Separator

SO Shift Out RS Record Separator

SI Shift In US Unit Separator

SP Space DEL Delete

The table above represents the ASCII character set. At the top of the

table are hexadecimal digits (0 to 7), and to the left of the table are

hexadecimal digits (0 to F); To determine the hexadecimal value of an ASCII

• .A-

A-1 .""

~'*' .** 5. * *~**%**S* *~ %.~ ~,,.* -.S

NSWC TR 84-930

character, use the hexadecimal digit that corresponds to the row in the
"funits" position, and use the hexadecimal digit that corresponds to the column
in the "16's" position. For example, the value of the character representing
the equal sign is 3D.

0

A-2

• • •.- ...".'. *
O-7'

NSWC TR 84-93

APPENDIX B

RUNTIME ENVIRONMENT ON THE BP

B.1 CONTROL SECTIONS

THLL programs for the BP are broken into three control sections. Control
sections are used to identify characteristics associated with a data area or
instruction area of a program. The following table defines the BP control .
sections and also indicates the memory alignment and protections associated
with each section.

Section Purpose Alignment Protections

0$ Own Data Area doubleword address readuwrite
I$$ Executable Area word address execute only
C$$ Constant Area doubleword address read only

Each control section is relocatable. The BP loader, TRILOAD, concatenates the
same control section from all compile units.

Argument lists are constant on the BP. Either the called procedure
evaluates the address of the argument (passed by reference) or it copies the
value of the argument (passed by value). These values are placed in the
runtime stack frame for that procedure invocation.

B.2 ALLOCATION OF STACK FRAMES

On entry to a procedure, a stack frame is allocated providing memory
space for parameters, local variables, and temporaries. On exit from the
procedure, the stack frame is released. X7 contains the address of the stack
frame. X6 contains half the address of the stack frame (for accessing DOUBLE
and REAL values).

The first 16 THLL words on the stack frame are used to support the THLL
procedure environment. This area also serves as a scratch area for THLL
library routines. The parameters to a procedure start at offset 16 on the
stack frame. Shared variables are next on the stack frame, and temporary
variables are normally last on each stack frame. The cross reference for a
procedure indicates the hexadecimal byte offset of all user-defined items on
the stack frame.

B-1

- . - - . -- -.- t*--".*-

•
-

NSWC Th 84-93

Stack frames on the BP are adjacent to each other in a memory block known
as RSTACK$. The interrupt stack, ISTACK$, is used to keep track of all
currently active stack frames and of the next available stack frame. The BP
executive stack is used to store procedure linkage information, such as the
return address. ".-

The following diagram describes the structure of the stack frame. The

offsets shown are in terms of THLL words.

0 pointer to previous stack frame

1 spare

2 pointer to argument list

3 environment pointer

4 pointer to procedure id block

temporary locations used by runtime
library routines

15

16
"*- copy or address of actual parameters

shared variables

temporary locations used by compiler

S".

B.2.1 Allocation of THLLFCB

Before a file can be used for reading or writing, it must be opened by
calling the procedure OPEN. This procedure opens the file, creates a THLL
File Control Block (THLLFCB), and returns the address of the THLLFCB as its
value.

Eight words for the THLLFCB are allocated by extending the stack frame of
the procedure in which the call to OPEN appears. This means that this storage
area is released on exit from that procedure. Therefore, all read and write
operations on the opened file must be done before returning from that

B-2

• -~~~~~~~~~~~~~~~~~~.-.-...%,. .. •......... %.. .--..-... ,... ,.-.-.-..* ,.- *•.-., .*. ..*.

NSWC TR 84-93 •

procedure. For more information on OPEN, see the THLL Reference Nanual
(Reference 1).

_ B.2.2 Temporaries

During the compilation process, it sometimes becomes necessary to employ
temporary locations on the runtime stack (as shown in the diagram in Section
B.2) for storage of intermediate results. Normally the temporaries follow the P
shared variables. However, if the amount of storage required for the whole
stack frame exceeds 4096 words, the area for the temporaries is moved before
the formal parameter area and the other areas are moved to higher
displacements. This is done to ensure 'easy' access for temporaries since a
base register can span only 4096 words.

%°%

*** .0 o.

B-3

:.- Z --2".-.

* ..-...

NSWC TR 84-93 0

APPENDIX C

USING BP TRICOMP

C.l INTRODUCTION

By default, BP TRICOMP translates THLL code into BP binary code. This
implies a two-step process in order to create an executable file. These steps
are:

1. Compile THLL code producing BP binary code.

2. Link the binary code into an executable file.

This appendix explains these steps. Additionally, it briefly describes how to
produce the various reports available for THLL programs.

Note that filenames under VMS have the format Basename.EXT. Basename is
the base filename for a set of related files that have different .EXT's
extensions. Most VAX programs have a set of conventions governing the .EXT
extensions. This is true for BP TRICOMP also. The user can override these
conventions, but this is discouraged for configuration management reasons.
The organization of a THLL program as presented in this appendix is not the
only organization, but it is a logical one that should be considered seriously
before deviating to another.

C.2 ORGANIZATION OF A THLL PROGRAM

A program written in THLL (targeted for the BP) consists of one or more
compile units, all of which must be compiled, assembled, linked, and then
executed. One usually thinks of a compile unit as a module, that is, a set of
related procedures and data that can be compiled separately. On the VAX, a
single compile unit maps nicely into a single EDT file having a ,THL
extension. Just as a compile unit maps into a file, a program (which is a
collection of compile units) maps into a directory (which is a collection of
files). Thus, on the VAX, a program written in THLL consists of one or more
,THL files (each of which contains one compile unit) in a common directory.
These .THL files are then compiled, assembled, linked, and then executed.
Each step of this process creates additional files, most of which have the
same base filenames as the .THL files.

C- 1
W J0 -- Mbt

-" ". "T"'- " " "" " " - - - 7 :-. . ". -. . - :- "-" "

NSWC TR 84-93 0

C.3 THE BP TRICOMP ENVIRONMENT

The BP TRICOMP environment is part of the VAX/VMS environment. It
consists of a set of commands to produce an executable THLL program, a global S
cross reference report, and procedure call tree reports. The set of commands
consists of the following:

1. TRICOMP - The command used to compile a THLL compile unit.

2. TRILOAD - The command used to link the BP binary files into an
executable image.

3. GXRUPDATE - The command used to combine .GXR files into a .MXD file.

4. GXRREPORT - The command used to produce a global cross reference

report (.MXR file) from a .MXD file.

5. TREUPDATE - The command used to combine .TRE files into a .MTD file.

6. TREREPORT - The command used to produce a procedure call tree report
(.MTR file) from a •MTD file.

7. NTREREPORT - The command used to produce a nested procedure call tree

report (.NTR file) from a •MTD file.

These commands are available as all VMS commands are available. The THLL
Reference Manual (Reference 1) and the VMS HELP command may be used to receive
additional information about the above commands.

C.4 INPUT TO BP TRICOMP

C.4.1 Compile Units (.THL Files)

By default BP TRICOMP expects a compile unit in a file with a •THL
extension. Each .THL file contains one THLL compile unit. A .THL file is an

input source file that can be maintained with a VAX editor. It is recommended
that each •THL file have a base filename corresponding to the compile unit
name contained in the file. 0

C.4.2 Insert Files (.THI Files)

In addition to the .THL files that correspond to compile units, a THLL P
program often includes INSERT files. An insert file is an input source file

" that must have a •THI extension. It can be created simply by editing a file.
In order to locate a THI file associated with the insert declaration:

INSERT FILENAME (DIRNAME)

C-2

A7....-

a .

-* .. . *a -a .. a-

.'. . .. - :' •' ".:'. .. . " ' ". %,' . ,,' . . - .. ;.. . - , ... -, ° * '.. -. ..- - . • , - . , -. - '

NSWC TR 84-93

BP TRICOMP searches for DIRNAME in the following order:

1. The VMS logical name table is searched for a definition of DIRNAME.
If it exists, that name is the name of the directory that contains 0..
the FILENAME.THI file. The DEFINE command in VMS is used to
establish this relationship in the logical name table.

2. If DIRNAME is the default identifier, DEFAULT, the current default
directory contains the FILENAME.THI file. DEFAULT could be defined
in the logical name table in which case the check above would have
associated DEFAULT to a (possibly different) directory.

3. Finally, it is assumed that DIRNAME is a subdirectory in the current
default directory.

DIRNAME and FILENAME are truncated to 8 characters. This approach gives the
program designer quite a bit of flexibility.

C.5 INVOCATION OF BP TRICOMP (.THL, .THI FILES)

After having created .THL and .THI files, BP TRICOMP can be invoked by
the following command:

$ TRICOMP/BP Filename

where Filename is the base filename of a .THL file. It is recommended that 9K-
the current default directory is set to be the directory containing the .THL

* file before invoking BP TRICOMP. Otherwise, the association is lost between
the .THL file and the files generated by BP TRICOMP.

C.6 OUTPUT FROM BP TRICOMP (.TLS, .BIN, .GXR, .TRE FILES)

The two file types, .THL and .THI, described above are created by the
users as they develop their program. A .THL file contains a compile unit and
it is the inpht file to a single invocation of BP TRICOMP. The .THI files
contain information to be INSERTed into .THL files during a THLL compilation.
BP TRICOMP compiles a single .THL file containing a single compile unit and
produces four files. The default file extensions of the four files created by
BP TRICOMP are:

.TLS - Compiled listing produced by BP TRICOMP

.BIN - BP binary code file corresponding to the THLL compile
unit

.GXR - Global cross reference data for the THLL compile unit

.TRE - Procedure call tree data for the THLL compile unit

C-3

-- . - .• ."7

NSWC TR 84-93 .

By default the base filename of each of these files is that of the .THL file
containing the compile unit. B TRICOMP creates the four output filenames by
appending the above extensions to the base filename of the .THL f;le. See
Section C.14 for ways to override the defaults.

The .TLS files produced by BP TRICOMP can be examined by the programmers
• .to ensure that their development is proceeding as planned. The .BIN, .GXR,

and .TRE files produced by BP TRICOMP are used as input to other programs.

. C.7 INVOCATION OF TRILOAD (.BIN, .MAP, .LOD FILES)

The .BIN files created by BP TRICOMP contain BP binary code corresponding
to the THLL compile units contained in the .THL files. The .BIN files are
input to the BP linker-loader, TRILOAD, which collects them into an executable

" load module. Using TRILOAD has many variations. All (or part) of the .BIN
files can be combined into an object library (via the LIBRARY command) and
TRILOAD can select them from there, or TRILOAD can simply link the .BIN files.

*. The details of using TRILOAD can be found in the TRILOAD Reference Manual
(Reference 5). .

The following is an example invocation of TRILOAD in which several .BIN
files (FILE1, FILE2, FILE3) are collected into an executable load module.

Forthcoming.

This example selects the base filename of the executable load module and the
map file to be OUT. Thus, the output of this command is two files with the
base filename OUT. The default file extensions of these two files are:

.LOD This file is an executable load module which may be transported
to the BP for execution

MAP This file contains the program's load map

Note that up until this .LOD file, four files have accumulated for each
compile unit. For each Basename.THL file containing a compile unit, the THLL
user derives Basename.TLS, Basename.GXR, Basename.TRE, and Basename.BIN. The

* ultimate goal is to combine a collection of .THL files into one executable
load module. Thus, even starting with three .THL files in a directory, only
one .LOD file results (in the same directory).

C.8 RUNNING A PROGRAM (.LOD FILES)

After having created the .LOD file on the VAX, it must be transported to
the BP for execution. The process of going from an executable load module on
the VAX to actually executing on the BP is long and complicated.

C-4

- .-:'.S

- -: -. 7.--
.*. . -77 " -'-: 77V - - ., -

NSWC Ti 84-93 '.

C.9 DEBUGGING (.LIS FILES)

For information on debugging, see the TOADC User's Guide (Reference 6).

C.10 PRODUCING A GLOBAL CROSS REFERENCE REPORT (.GXR, .MXD, .MXR FILES)

The global cross reference report presents an overview of the global
symbols of a program. The actual individual compile unit line references for
those symbols (as well as symbols local to a compile unit) can be found in the
local cross reference at the end of the .TLS file. The global cross reference
report is useful in determining which procedures and modules reference a
particular global symbol. Symbols defined within an insert file are in a
sense global; thus they are also included in the global cross reference
report. The global cross reference report is developed from •GXR files in a -
two-step process.

The first step is to combine the •GXR files into a master cross reference
data file (.MXD). This is done by invoking GXRUPDATE. The details of
GXRUPDATE are presented in the THLL Reference Manual (Reference 1). The
following command invokes GXRUPDATE:

$ GXRUPDATE Filename

where Filename is the base filename of the desired •MXD file. GXRUPDATE
(I combines the •GXR; files into the Filename.MXD file. The Filename.MXD file

is the input file to the second step of this process.

The second step is to transform the .MXD file into a readable global
cross reference report. This is done by invoking GXRREPORT. The details of
GXRREPORT are presented in the THLL Reference Manual. The following command

invokes GXRREPORT:

$ GXRREPORT Filename

where Filename is the base filename of the .MXD file. The file produced by
GXRREPORT is Filename.MXR. This report can be examined and/or printed.

This two-step process allows for incremental updates to the global cross
reference data. As the need arises to change selected compile units, the .THL
files are changed, compiled using BP TRICOMP, assembled, and linked. Later,
the global cross reference data files are gathered by invoking GXRUPDATE to do
a partial update to the .MXD file. GXRREPORT is used to form the new report.
The changed compile units are reflected accordingly in the new report.

I " -

C-5

.-
o-t P .F140%

NSWC TR 84-93

C.11 PRODUCING A PROCEDURE CALL TREE REPORT (.TRE, .MTD, .MTR FILES)

The procedure call tree report shows which procedures call which
procedures. This report is produced in a two-step process that mirrors the
two-step process for producing the global cross reference report.

The first step is to combine the .TRE files into a master procedure call
tree data file (.MTD). This is done by invoking TREUPDATE. The details of
TREUPDATE are presented in the THLL Reference Manual. The following command
invokes TREUPDATE:

$ TREUPDATE Filename

where Filename is the base filename of the desired .MTD file. TREUPDATE
combines the .TRE; files into the Filename.MTD file. The Filename.MTD file
is the input file to the second step of this process.

* The second step is to transform the .MTD file into a readable procedure
* call tree report. This is done by invoking TREREPORT. The details of

TREREPORT are presented in the THLL Reference Manual. The following command
invokes TREREPORT:

$ TREREPORT Filename

where Filename is the base filename of the .MTD file. The file produced by
TREREPORT is Filename.MTR. This report can be examined and/or printed.

This two-step process allows for incremental updates to the procedure
call tree data. As the need arises to change selected compile units, the .THL
files are changed, compiled using BP TRICOMP, assembled, and linked. Later,
the procedure call tree data files are gathered by invoking TREUPDATE to do a
partial update to the .MTD file. TREREPORT is used to form the new report.
The changed compile units are reflected accordingly in the new report.

C.12 PRODUCING A NESTED PROCEDURE CALL TREE REPORT (.TRE, .MTD, .NTR FILES)

The nested procedure call tree report shows which procedures call which
procedures in a nested format. This report is produced in a two-step process
that mirrors the two-step process for producing the regular procedure call
tree report.

The first step is exactly the same as the first step of producing a
procedure call tree report. The first step is to combine the .TRE files into
a master procedure call tree data file (.MTD). This is done by invoking
TREUPDATE as shown above. If the .MTD file has been created for a regular
procedure call tree report, it can be used for a nested procedure call tree
report.

C-6 -'.

'• °% o ' o - °. '- .' ° . '. o' • o' . • .- • • ° ° • o . • • o . - . - , * • • . • - • . • • • - . - • . . ° - •° - • -a .

.° -. • . •°° -% " -. .•'° .".°,, " " "% . , % " % % " "% ' , " • " •

NSWC TI 84-93 0

The second step is to transform the .MTD file into a readable nested
procedure call tree report. This is done by invoking NTREREPORT. The details
of NTREREPORT are presented in the THLL Reference Manual. The following
command invokes NTREREPORT:

$ NTREREPORT Filename

where Filename is the base filename of the .MTD file. The file produced by
NTREREPORT is Filename.NTR. This report can be examined and/or printed.

As in producing a regular procedure call tree report, this two-step
process allows for incremental updates to the nested procedure call tree data.

C.13 DIAGRAM OF A THLL PROGRAM'S FILE RELATIONSHIPS

The preceding description is summarized pictorially in the following

diagram. Flow is downward.

.THL - .THI

tricomp -- TLS

.GXR .BIN .TRE

gxrupdate triload .MAP treupdate

* MXD .LOD .MTD

gxrreport trereport ntrereportII I S

'R MTR .NTR

C.14 ADVANCED INVOCATIONS OF TRICOMP (OVERRIDING DEFAULTS)

The preceding sections of this appendix describe how to use BP TRICOMP,
accepting the defaults. Sometimes defaults are not sufficient and sometimes
defaults constrict a programmer's creativity. If the need arises, BP TRICOMP
provides, in the form command qualifiers, ways to override the defaults. All

C-7

";...%

**.~. * ** * ~ .*. * . . * %,5 *~ ~ . ! ,. :*a - .

NSWC TR 84-93

command qualifiers can be seen in the TELL Reference Manual or via the HELP c
TRICOMP command.

C.14.1 Suppressing TRICOMP Generated Files

Often utility programs consist of a small number (sometimes one) of
compile units. In these cases, the .GXR and .TRE files are cumbersome (or not
necessary). The following command does not produce a .GXR and a .TRE file.

$ TRICOMP/BP/NOGXR/NOTRE UTIL

* C.14.2 Parallel Directory Organization

* Sometimes a program is so large that keeping all of the files in the same
* directory would be unmanageable. A valid approach is to view a program as a

collection of parallel directories where:

1. (PROGRAM.THL] contains the .THL files,

2. (PROGRAM.TLS) contains the .TLS files,

3. (PROGRAM.BIN] contains the .BIN files,

*4. EPROGRAM.GXR] contains the .GXR files, and -

5. [PROGRAM.TREJ contains the .TRE files.

* The following command sprays the .TLS, .BIN, .GXR, and .TRE files into the
appropriate directories for [PROGRAM.THLJFILE1.THL.

$ TRICOMP/BP/TLS- (PROGRAM. TLS] /EIN- (PROGRAM.BINJ]-
$I/GXR- (PROGRAM. GXRI /TRE-(PROGRAM. TREI (PROGRAM. THL FILEl

C.14.3 Overriding Default File Extensions

* Occasionally programmers believe that their own conventions are more
* expressive than the default conventions. The following command compiles a

THLL compile unit contained in file PROG.SRC and places the BP binary code in
*file PROG.BNY.

$ TRICOMP/BP/NOTRE/NOGXR/BIN- .BNY FROG. SRC

Note that the THLL listing is placed in the default PROG.TLS file.

C-8

NSWC TR 84-93 '0

C.14.4 Example Compile and Library Command Procedure

BP TRICOMP produces BP binary code which must be linked by TRILOAD into I
an executable load module. Very often, binary libraries are used to collect
the .BIN files, which implies there is an intermediate step of placing the '.
.BIN files into a library prior to creating the executable load module. If
there are no compile errors in the .THL file, the following command procedure
places the .BIN file into the THLL library PROGRAM.TLB.

$ ON WARNING THEN EXIT P
$ TRICOMP/BP/NOGXR/NOTRE 'PI'
$.NAME - F$PARSE(P,,,"NAME")
$ LIBRARY/TEXT PROGRAM 'MNAME'.BIN
$ DEL 'HNAME'.BIN;
$ EXIT

" C.14.5 $SEVERITY Returned from BP TRICOMP

The preceding example command file relies upon the $SEVERITY system
symbol. When TRICOMP exits to VMS, $SEVERITY is set to indicate how the
c ompilation went. The following values can be found in $SEVERITY.

1. $SEVERITY 1 implies a normal compilation

2. $SEVERITY = 0 implies normal compilation with compile errors

3. $SEVERITY - 2 implies abnormal compilation

4. $SEVERITY - 4 implies one of the pertinent files could not be found
or opened

Note that if the \\ ABORT directive is contained within a compile unit, then a
$SEVERITY of 0 becomes a 2 and a $SEVERITY of 2 becomes a 4.

C.15 EXAMPLE SESSION ON USING BP TRICOMP

The following is an example session using the BP TRICOMP environment.
All of the features discussed above are covered in the example. Users
confused by the above descriptions may want to create the necessary files and
actually perform this session. The necessary files are DEOMAIN.THL,
DEMOPRIME.THL, and EXTEND.THI. These files are listed in this appendix
following this example. An understanding of VAX facilities for creating files
is assumed. A slight twist on the example is to try putting the EXTEND.THI
file in the same (or parallel) directory as the .THL files.

$ SD.

C-9

*1#%
*~%**~* . * -. %b.~% *% -.- *

NSWC TR 84-93

* UDISKl:(username]

$CREATE/DIR [.DEMO]
$ SD.DEHO

UDISKI: [usrnam.DEMO]

.5 $
$ 1 create DEMOKAIN.THL and DEMOPRINE.THL (listed in appendix)
$ 1 using one of the VAX editors IP.

$DIR

Directory UDISKi: [username.DEMOJ

DEMOMAIN.THL; 1 DEMOPRIME.THL;l

Total of 2 files.
$CREATE/DIR [.INSERTS]
$ SD.INSERTS

UDISKl: [usernae.DEHO. INSERTS]

1 create EXTEND.THI (listed in appendix) using one of the
$1 VAX editors

$
$ SD. I sets home directory as default directory

UDISKl: [username]

$ SD [.DEMO)

UDISKl: (us ername .DEMOJ

$ 1 show the program's structure

$ DIR

Directory UDISK1: (username.DENO]

DEMOMAIN. THL; 1 DENOPRIME. THL; 1 INSERTS. THI; 1

Total of 3 files.
$ SD.INSERTS I subdirectory containing insert files

UDISKl: [usernaae.DEMO. INSERTS]

$DIR

Directory UDISKi: (username.DENO.INSERTS]

* CU10

1% IN:.,

NSWC Ti 84-93

EXTEND.THI;1

Total of 1 file.
$ SDA

UDISKi: [usernane.DEMO]

$ 1 compile .THL files (each has one compile unit)
$p
$TRICOMP/IP DEMOMAIN
BEGIN BP TRICOMP
NORMAL COMPILATION DEMOMAIN
END BP TRICOMP
$ TRICOMP/BP DEMOPRIME
BEGIN BP TRICOMP
NORMAL COMPILATION DEMOPRIME
END BP TRICOMP
$DIR

Directory UDISKi: (usernane.DEMO]

DEMOMAIN .BIN; 1 DEMOMAIN.GXR; 1 DEMOMAIN. THL; 1 DEMOMAIN. TLS; 1
DEMOMAIN.TRE;l DEMOPRIME.BIN;l DEMOPRIME.GXR;l DEMOPRIME.THL;l
DEMOPRIME.TLS;l DEMOPRIME.TRE;l INSERTS.DIR;l

Total of 11 files.
$

$ 1 Invoke TRILOAD to produce an executable load module.
$ 1 TRILOAD is forthcoming.
$ 1 The process creates files DEMO.MAP and DEHO.LOD.

$ 1 Produce a Global Cross Reference Report

$ GXRUPDATE DEMO
$ DEL *.GXR; I Not needed after the update

$DIR

Directory UDISK1: [usernase.DEI

DEMO.LOD;l DEMO.MAP;l DEMO.MXD;l DEMOMAIN.BIN;l
DEMOMAIN.THL;l DEMOMAIN.TLS;1 DEMOMAIN.TRE;l DEMOPRIME.BIN;l
DEMOPRIME.THL;l DEMOPRIME.TLS;l DEMOPRIME.TRE;l INSERTS.DIR;l

Total of 12 files.
$ GXRREPORT/TITLE-"Demonstration Use of BP TRICOMP" DEMO
$SDIR

Directory UDISKl: [username.DEMOJ

C-1l

.4

6~'"%*Z'*
% *-

NSWC TR 84-93

*DEMO.LOD;l DEMO.MAP;l DEMO. MXD;lI DEMO. MXR;l1
DENOMAIN.BIN;l DEMOJIAIN.THL;l DENOHAIN.TLS;l DEMOMAIN.TRE;l
DEMOPRIHE.BIN;l DEMOPRIME.THL;1 DEMOPIIIME.TLS;l DEMOPRIME.TRE;l
INSERTS.DIR; 1

Total of 13 files.

$ 1 Produce a Procedure Call Tree Report
$
$ TREUPDATE DEMO
$ DEL *.TRE; I Not needed after the update
$ DIR

Directory UDISKi: [username.DEMOJ

DEMO. LOD;l1 DEMO.MAP;l DEMO.MTD;l DEMO.14xD;l
DEHO.HXR; DEHOMAIN.BIN; 1 DEMOMAIN. THL; 1 DEHOMAIN. TLS; 1
DEI4OPRIME.BIN;l DEHOPRIME.THL;l DEMOPRIME.TLS;l INSERTS.DIR;l

Total of 12 files.
$ TREREPORT/TITLE-"Deuonstration Use of BP TRICOMP" DEMO
$ DIR

Directory LJDISKI: (usernaue.DEMO]

DEMO.LOD;l DEMO.MAP;l DEHO.MTD;l DEMO.MTR;l
DEMO.MXD; DEMO.MXR; DEHOHAIN. BIN; 1 DEHOHAIN. THL; 1

DEHOMAIN.TLS;l DEHOPRIHE.BIN;l DEHOPRIHE.THL;l DEMOPRIHE.TLS; 1
INSERTS. DIR; 1

Total of 13 files.

$ 1 Produce a Nested Procedure Call Tree Report
$ 1 Note the .HTD file already exists

$ NTREREPORT/TITLE-"Defonstration Use of BP TRICOMP" DEMO
$ DIR

Directory UDISK1: [us~rnaa..DEHOJ

DEMO.LOD;l DEMO. MAP; 1 DEMO.HTM; 1 DEHO.HTR;l
DEMO.HXD; DEHO.MXR; DEHO.NTR;l DEHOHAIN.BIN;l
DEMOMAIN.THL;l DENOMAIN.TLS;l DEHOPRIME.BIN;l DEHOPRIME.THL;l .*-

DEHOPRIHE.TLS; 1 INSERTS.DIR; 1

Total of 14 files.

C-12

To9*ro - .1- 1.1' --I

NSWC TR 84-93

C.15.1 Example THLL Compile Unit (DEMOMAIN.THL FILE)

DEMOMAIN
BEGIN .

COMMENT THIS PROGRAM DETERMINES THE PRIME NUMBERS FROM 2 TO 63.
THE METHOD USED IS A FORMI OF SIEVE ERATOSTHENES. THE
NUMBERS TO SEARCH ARE IN THE ARRAY NUM. EACH BIT IN
THE ARRAY CAND CORRESPONDS TO AN ENTRY IN NUM. AS LONG
AS THE CAN]) BIT IS SET, THE NUM ENTRY IS A CANDIDATE
FOR A PRIME NUMBER. IF AN ENTRY IN NUM IS FOUND TO BE
A COMPOSITE NUMBER, ITS BIT IN CAND IS CLEARED.;

INSERT EXTEND(INSERTS); *-

GLOBAL CAN), NUN

OWN INTEGER ARRAY CAND(l),NUM(63)

EXTERNAL PROCEDURE PRIME, .-

EXTERNAL PROCEDURE PRTINT(INTEGER)

INTEGER COMPONENT PRIMECAND (OFFSET O,FIELD(O, 1))

GLOBAL MAIN;

DEFINE PROCEDURE MAIN
BEGIN
INTEGER I
POINTER P
FOR I-0 STEP 1 UNTIL 63 DO

NUM(I) - 1+2
ENDDO
FOR 1-0 STEP 1 UNTIL 1 DO

CAND(I) - X'FFFFPFFF'
ENDDO;
PRIME
P - LOC CAND(O)
FOR I-0 STEP I UNTIL 63 DO

IF PRIMECAND(PI) EQL 1 THEN
PRTINT (NUM(I))

IFEND
ENDDO
END

END FINIS

C-13

- t.. v-2,2% -

NSWC TR 84-93

C.15.2 Example THLL Compile Unit (DEMOPRIME.THL FILE) i:

DEMOPRIME
BEGIN
COMMENT THIS MODULE CONTAINS THE PROCEDURE FOR CALCULATING THE

PRIME NUMBERS, ALONG WITH THE MODULE USED FOR PRINTING
THE RESULTS.

INSERT EXTEND(INSERTS);

EXTERNAL PROCEDURE TERM(DEVICE,POINTER VALUE,ALPIIA)

EXTERNAL INTEGER ARRAY CAND(l)

EXTERNAL INTEGER ARRAY NUM (63)

ALPHA COMPONENT AO (OFFSET 1);
INTEGER COMPONENT PO(FIELD(O,4),OFFSET 0);
INTEGER COMPONENT PRIMECAND(OFFSET 0, FIELD (0,1));

GLOBAL PRIME

DEFINE PROCEDURE PRIME
BEGIN
INTEGER CURPRIME,J,STOPVAL
POINTER P;
P - LOC CAND(O)
STOPVAL - 8 ; * SQRT(64)-8 *
CURPRIME - 0
WHILE NUM(CURPRIME) LEQ STOPYAL DO

BEGIN
/* REMOVE MULTIPLES OF CURRENT PRIME FROM CANDIDATES ~
FOR J - CURPRIME+l STEP 1 UNTIL 63 DO

IF PRIMECAND(P,J) EQL 1 THEN
IF (NUM(J) MOD NUM(CURPRIME)) EQL 0 THEN

PRIMECAND(P,J) -0

IFEND
IFEND

ENDDO;
/* FIND NEXT PRIME TO PROCESS ~
CURPRIME CURPRIME + 1
END

ENDDO
END

GLOBAL PRTINT;

DEFINE PROCEDURE PRTINT(INT);
VALUE INT;
INTEGER INT;

BEGIN
DEVICE SPR-SPRINT;

C-14

NSWC TR 84-93

OWN ALPHA PRTBUF(7M
OWN POINTER PTR,PTR1
OWN INTEGER I;
OWIN INTEGER TEMP;
OWN INTEGER ARRAY POSTBUF(15)
PRESET PRTBUF-#'12345678'
PTR -LOC TNT;

PTR1 =LOC PRTBUF
FOR I1 0 STEP 1 UNTIL 7 DO

BEGIN
TEMP - POPMR, I)
IF TEMP GRT 9 THEN

AO(PTRI,I) =TEMP +55

ELSE
AO(PTR1,I) -TEMP + 48

I FEND; 0
END

ENDDO
TERM (SPR, LOC POSTBUF (0),PRTBUF);
END;

END FINIS

C- 15

-' NSWC TR 84-93

*C.15.3 Example THLL Insert File (EXTEND.THI FILE)

\BOUNDS - 0 , XREF - 3

COMMENT THESE SYNONYM DECLARATIONS ARE USED TO EXTEND THLL;

SYNONYM

BEGIN9
NEXTCASE-/ /;
ELSEIF-/,/
BOOLEAN -/INTEGER/

ENDDO //
END

C-16

-I -A-

NSWC TR 84-93

C.15.4 Example Global Cross Reference Report (DEMO.MXR FILE).

GLOBAL CROSS REFERENCE Demonstration Use of BP TRICOMP PAGE 1

SYMBOL ATTRIBUTES DEFINED USED IN USED IN REFERENCES

NAME IN DECK DECK PROCEDURE USED CHNG

CAND IA(l) DEMOMAIN DEMOMAIN MAIN 1 1
DEMOPRIME PRIME 1

ENDDO SYNONYM EXTEND I DEMOMAIN MAIN 3
DEMOPRIME PRIME 2

PRTINT 1

GEM SYNONYM EXTEND I DEMOMAIN 1
DEMOPRIME 1

MAIN P (0) DEMOMAIN

NUM IA(63) DEMOMAIN DEMOMAIN MAIN 1I
DEMOPRIME PRIME 3

PRIME P(O) DEMOPRIME
DEMOMAIN MAIN 1

PRTINT P (1) DEMOPRIME
DEMOMAIN MAIN1

toTERM x DEMOPRIME PRTINT1

C-i?

NSWC TR 84-930

* C.15.5 Exaple Procedure Call Tree Report (DEMO.MTR FILE)

PROCEDURE CALL TREE Demonstration Use of BP TRICOMp PAGE

MAIN G DEMOMAIN
PRIME *

PRTINT

PRIME G DEMOPRIME

PRTINT G DEMOPRIHE
TERM X

C-18

77 74 . .1 o

NSWC TR 84-93
-

-. C.15.6 Example Nested Procedure Call Tree Report (DEMO.NTR FILE)

PROCEDURE CALL TREE Demonstration Use of BP
TRICOMP- PAGE 1

MAIN TREE
10-JUL-1984 10:18:01

LINE LEVEL ROUTINE
.-

1 1 MAIN
2 2 PRIME

3 3 PRTINT
4 4 -TERM

5 2 PRTINT (3)

C-19

NSWC TR 84-93

DISTRIBUTION

* Library of Congress
Attn: Gift and Exchange Division

Washington, DC 20540 (4)

* General Electric Company
Ordnance Systems

* 100 Plastics AvenueP
Pittsfield, MA 01201

*Attn: G. Desmarais (6)
J. Fenton(6

Strategic Systems Program Office
Department of the Navy
Washington, DC 20376

- Attn: SP-23115 (C. Chappell)()
SP-23423 (H. Cook)(1

EG&G Washington Analytical
'~ Services Center

P.O. Box 552
Dahigren VA 22448
Attn: IMC (2)

Local:
K50-GE (1)

K51 (2)
K52 (12).
K 53 (50)
K54 (20)

-

E31 (GIDEP Office) (1)
*E431 (10)

FILMED

6-85

DTICi ~i,

FIME

DTI

.l.C

%7-S

