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INTERNAL FLOW STUDIES OF A CLASS OF BALLISTIC LAUNCHER

by
Robert W, Courter

ABSTRACT

A simple time-dependent model of the internal
ballistics of a two-stage 1light gas gun is bziefly
described. The gasdynamic flow field between the driving
piston and the driven sabot is singled out for special
study. This flow regime is idealized as a quasi-one-
dimensional flow of an inviscid, compressible, real gas
with arbitrarily moving longitudinal boundaries. A method
of numerical solution of the governing partial differential
equations is suggested. In addition, a rezoning technique

for describing the time-dependent computational grid is

presented.
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I. INTRODUCTION

BPallistic testing in an instrumented f:ee-flight.
range is &n important part of the bro;a field of
experimental aerodynamics. Launcher technolegy, in turn,
is a vital part ol hallistic testing. Thé f£light speed,

initial acceleration history and exit flow environment are

all dependent on launcher design parameters. It 1is
important in ballistic testing, therefore, to have the
' capability of predicting launcher performance.

ﬁ The two-stage light gas gun is one example of a large

i class 9of compressed gas launchers. Such a gun is to be

{| used at the Air Force Armament Laboratory as a prfgqry :%x
E launcher for a variety of free-flight model configurations, :if

A satisfactory performance prediction program for this ?ﬁ?
§E launcher is required., One of the objectives of the ;;;

research pursued during this summer research program is to
develop such a procedure. A second objective is to
F’\ investigate the complex gasdynamic processes which occur s
= within the launcher during a firing cycle.

Eﬂa A licerature survey of DOD, NTIS and NASA data bases

; revealed only sparse information on important aspects of T
?f launcher performance such as piston extrusion behavior,

:; diaphragm rupture dynamics, launcher experimental data and e
~‘ internal flow field descriptions. Gun analysis programs

z . <54
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for other facilities have been developed (see References 1
through 4) which yield adequate predictions of internal
pressure and muzzle velocity. However, these codes are
either outdated or unavailable, or both. Also, they
apparently do not provide performance without considerable
computation expense, nor do they provide detailed
information on the internal flow field.

This fundamental data deficiency suggests that
the formulation of a very simple performance prediction
model would be beneficial and that detailed studies of
the internal flows would add to the understanding of
launcher performance.

In the present study, a simple, time-dependent
volumetric model of the gas gun operation is incorporated
into a computer program in a modular form which will permit
investigation of varicus aspects of the launcher cycle in
an independent manner. In addition, more detailed models
of the basic flow kinematics and thermodynamics are derived
which have promise in revealing the gas property

distributions during gun operation.

II. OBJECTIVES

The principal objective of the present work is to
develop a performance prediction model for a class of
ballistic launchers which includes the two-stage light gas

gun. A typical configuration of such a launcher is shown

in PFigure 1. It is intended not only to develop a model
25-5
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which can be useful immediately in assessing launcher 7&
performance as a function of launcher "and projectile

geometric characteristics and propellant charge weight, but

also- to investigate means of providing a more detailed
& description of the gasdynamics within the gun.
? : The author has assisted his graduate student, Mr.
ﬁill Raymond Patin, in the formulation of a ba;olinc launche:x
performance model which can be used in the initial
predictions. Parametric studies and comparisons with
4 experimental data indicate that this model is reasonable.
Details of the basic model are presented in Reference 5.
E', However, essential model features are outlined in this
1.- report to provide background for the discussion of flow
% analysis methods to be discussed here. In the p:‘icnt “
report details are given of the analytical procedures lé
- necessary to determine the quasi-one-dimensional 3£
E;q distributions of thermodynamic and kinematic properties of
a flow field confined by two boundaries moving at different

speeds,

III. THE BASELINE LAUNCHER PERFORMANCE MODEL
:T;T , In Pigure 1 are shown the physical details of a

o\ < 0 typical two-stage light gas gun. The gun operation
sequence begins with the ignition of a single-perforation
b propellant charge in the combustion chamber. The pressure

° rise created by gas generation during combustion forces

L the piston to move toward the diaphragm, compresgiing the
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;¢3 helium gas in the process. At some point during this j't
compression process, the scored metal diaphragm ruptures, -
exposing the base of the sabot to high-pressure gas. The :

», sabot is then propelled at high speed through the launch f‘

‘ tube. -

In Reference S a simple model of this launching :
process is described in detail. Only an outline of this o
performance model will be given  |here. The time-
dependent equations which are integrated to provide a .

o simulation of the launcher operation are listed in -

functional form in Table 1. The pressure variation in the

combustion chamber is described by a differential
equation derived by 0. K. Heiney in Reference 6. The
kinematics of the piston and sabot are determined
from the conventional translational momentum equations. ;Cf

The gas properties within the pump tube and launch

(R . A

tube chambers are determined by isentropic pressure/volume
relationships.

This basic prediction program appears to describe the
trends of launcher operation correctly. However, to date,
insufficient comparisons of the model predictions with '

experimental data have been made to declare it a valid and

versatile model. One of the weaknesses of this baseline g

prediction method is that it cannot account for the details :ﬁf

of the gasdynamics within the pump tube of the launcher. '
[

In the following sections of this report methods for

25-7




~~~~~~~~~~~~~

detailed analysis of this flow regime will be discussed.

1v, GASDYNAMICS ANALYSIS METHODS

The flow field in the pump tube section of a two-

stage light gas gun can be idealized as a guasi-one
dimensional flow in a tube of variable . area with
longitudinal boundaries which are moving at different
rates. Of particular interest in this cla‘n of flows are
the characteristics in any regions of variable area and
in the vicinity of the moving boundaries. In the case of
the light gas gun this latter aspect is further complicated
by the fact that one of the boundaries (the piston) may
intrude into a region of decreasing area (extzude),
resulting in a surface velocity which is not the same as
the velocity of the center of mass of the piston. In any
flow involving high pressures and temperatures the effects
of departures of gas behavior from the ideal gas law model
must also be evaluated.

In this section of the report an anlytical model for
the flow of a real gas in a variable area tube with moving
longitudinal boundaries is presented. No attempt is made
to solve the equations at this time, butn a method of
solution is presented and discussed. .

The quasi-one- dimensional equations of flow for an
inviscid, compressible fluid can be written in conservative

form as follows:

CONSERVATION OF MASS

- - K &
N e
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CONSERVATION OF MOMENTUM
2 2
m m- dA

%’9¢+§;<(P+s)+-g—& =0 (2)

CONSERVATION OF ENERGY
m m(&+p) dA
2£ + ﬁ[g‘(ﬂp)]—t— A ax =0 (3)

where ¢ is the mass density (mass per unit volume), m is
the translational momentum per unit volume, e is the
total energy per unit volume, p is the thermodynamic
pressure, X 1is the axial coordinate, t is the time and
A is the cross-sectional area of the tube. The total

energy, e , is given by

m2
e=¢(L+ 295) (4)
where i is the internal energy per unit mass of
the gas, The gas in the confined chamber is assumed to be
helium, An appropriate real gas model for helium at high
pressure and temperature, given by Harrison in Reference 7,
is proposed for use here. This model is a fourth order

virial formulation given as follows:

P = gRT[I + B(T)e + C(T)fzx\ D('T)g’g_'{ (5)

where R is the engineering gas constant and B(T), C(T) and
D(T) are empirical functions of the temperature.
Equations (1) through (5) govern the quasi-one-

dimensional, unsteady, inviscid flow of a real gas
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(helium). The boundary conditions for the flow of interest

here are as follows:

At X = Xp , the boundary moves with velocity Xp

At X =L + Xs , the boundary moves with velocity ﬁs

where L is the initial separation of piston and
sabot.

The solution of the partial differential
equations and boundary conditions which govern this flow
situation must be effected by numerical methods. In the
following section an appropriate method of numerical
integration for the equations is given. Also, a procedure
for dealing with computational grid dynamics by rezoning is

presented.

1v, NUMERICAL METHODS

In 1969 MacCormack published a second-order accurate
numerical technique for the solution of a class of partial
differential equations (see Reference 8). The method, used
successfully by the author in a multidimensional gasdynamic
analysis (Reference 9), is applicable to the set of
hyperbolic partial differential equations which govern the
present flow study. In general terms, the two-=level

technique can be written:

Governing Equation
Q OF
th'-\-'a';-l-G“O (6)
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where U is the conserved function vector and F and G

are the flux vectors.

Numerical Solution

Predictor F" Fe. "
U'?ﬂ = UJ - At ( _——i— + G )
Corrector fn _nn —
N F!“ F,; )
U;‘“s lz[U)'i' UJ -At( ax T G )] (7)

where n is the time index and j is the space index.
This explicit method is very simple to set up for the

particular set of equations to be solved in the present

case. These equations are:

CONSERVATION OF MASS
— f n n
Predictor 1'\+| n (ml" o My Q_A)

= 6 - At
Corrector .-..,. 2[g +§J ‘At(m“?!‘ -l\"-"'*_ ﬂl_ #)] (8)

CONSERVATION OE' MOMENTUM

redicto ) : ndA N
Predi ;\'}ﬁz m"~ [(P"’?) (P‘V‘?’m + (EA)J ]

CO:rec'slor.!.{m . -At[(P""!“‘ (P*g' " +( )ng‘é_,]} (9

CONSERVATION OF BNERGY

Predicte?;' ’en At{h ‘E-H}_)l: l'l"‘g ﬂl [ }
Correcto:i €+€ -At{lm:(eﬂ)lm mﬁl [r_eﬁﬂ] gfﬂ (18)

The particular solution of interest here involves a

flow field between boundaries which are moving at

.
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arbitrary, different speeds. This presents some
computational difficulties, The computational grid which

must be established to effect the numerical solution of

Equations (8) through (1) must, necessarily, be in motion.’

In order to produce a result which is accurate the grid
must deform and move simultaneously. This effect can
be achieved by the formulation of an "adaptive" grid. One
method of constructing such a grid for a one-dimensional
problem is by the rezoning technique which will be used in
the present solution, "Rezoning” implies that at the
end of each computation step, the computational grid is
adjusted to conform to the new boundary conditions. sSuch
adjustments may involve tedious calculations at each time
step to prevent the transmission of numerically-induced
flow perturbations, but they ensure a solution with
appropriate resolution. Consider the sketches of
Figure 2. Ir part (a) is shown the grid structure which
was used to advance the solution from time step "n" to time
step "n+l", In that time interval the computational
boundaries were altered by the boundary motion, In part
(b) is shown the adjusted structure (the rezoned structure)
for time step, "n+l". The equations which describe the
grid distribution and the corresponding values of the state
variables can be given as follows (refer to Piggzo 2):

COMPUTATION DOMAIN
N

L™ = L" - (Xp-Xs) St
i 25-12
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CELL SIZE X ey xm-n
1404 n — )
ax™ = axp - (R
CELL BOUNDARY LOCATION

X = Xp +.‘ZAxh (13)
al
STATE VARIABLE ALLOCATION (Typical Internal Cell)

o n
‘bj _ (G ¢ *l bvm m')/AX, a0
where Q XP + Z (Ax“‘" AXL)
Z axf - B axet- xg

(12)

Ras
and <b21l il the state variable value at the new
grid point for time, t™ ,
4,’}"‘ is the state variable value at the old
3 grid point for time, t™',

These equations are a typical set. A different set |is
required for each different pattern of boundary motion.
These equations have been established based on a uniform
grid, Grid clustering, which may be necessary in some
cases, will be discussed in the next section of the
report.

It is important to establish the sequence of solution

of the above set of equations. The computational steps to

be employed at each grid point in advancing the solution -

from one time step to the next are:

l. Determine the computational domain and establish the
grid size.

2. Determine the computational ¢time step by invoking
the Courant condition.

3. Advance the state variables to the next time by
25-13
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E~ application of the MacCormack algorithm, -

g 4. .solve the dynamic equations of the boundaries for
: the given time step. (For the case of the 1light
s gas gun this involves solving the kinematic L s
[ equations which are listed in Table 1.) i
h S. Perform the rezoning operations. -:

6. Continue with the solution.

L B e b o

V. ADVANCED COMSIDERATIONS . S

‘ The foregoing computational methods have been . -
functional, but not elegant. There are other methods which |
will result ia a more efficient code and, consequently,

' give better and quicker results. The MacCormack e
integration algorithm, like all second order systems, has a e
serious deficiency in regions of rapid change of the state

é] variables (such as near shock waves) ... it becomes

divergent. The use of artificial diffusive terms in the

equations prevents the divergence, but it results in an P
oscillatory solution and tends to smear the effective Effi
discontinuities over several grid points. The flux- %l
corrected transport (FCT) algorithm (see Reference 10)

circumvents this difficulty by a clever computational ?;);
scheme. The application of this method to the present B
problem would provide benefits in dealing with shock waves ,333
and flow perturbations induced by area change. ) ;

The grid structure of the present problem could be

streamline by constructing a truly adaptive grid, This

. o

would involve transforming the governing equations with a

time~dependent grid transformation equation which
. 25-14
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adequately describes the grid evolution to be expected for
the present flow field, An algorithm to cluster grid
points at locations of large change could be included here.
These grid calculations would require the solution of an
additional partial differential equation, assuring the
continuity of the transformation. These concepts are

discussed in References 1l and 12,

Vi. RECOMMENDATIONS

The internal flow fields of the light gas gun are of
interest from both operational and physical viewpoints.
1t is recommended that the Dbaseline performance
prediction model discussed in Reference 5 be developed
to its full potential by comprehensive comparisons with
experimental data for many test <conditions. Further,
detailed studies of the flow fields within the various
launcher chambers, in the manner suggested in this report,

should be continued.
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COMBUSTION PRESSURE RATE ar, £3( Pe, Ny, ;{p) -
— ’ 9
dat
PROPELLANT WEIGHT RATE WM 1 Be) ;
a .
PISTON VELOCITY RATE & . £3( Pes By)
at
PISTON DISPLACEMENT RATE e IR ;‘p) -
dt 5
[
, SABOT VELOCITY RATE X . 25( Py, Py)
3 at
" .
F' -
L ® SABOT DISPLACEMENT RATE X o ¢ 6 Xs) —
at '
PRESSURE-VOLUME RELATIONS Ppo= o X, ¥) <

Po = Combustion Chanber Pressure

N, = Propellent Weight Burned \
% X, = Piston Velocity s
P . xp = Pisgton Displacement *
‘“ s = Sabot Velocity
* X, = Sabot Displacement
;:'.'-_,, Py = Pump Tube Pressure o
Pp = Launch Tube Pressure
l"_f{: ¥ = Cas Specific Heat Ratio
3 TABLE 1. BASELINE PERFORMANCE PREDICTION EQUATIONS 2
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