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o Physical To convert from To metric
Quantity units in report (SI) units Multiply by
Mass pound kilogram (kg) .454
ton kilogram (kg) 103
kton kilogram (kg) 106
Energy ton joules (J) 4.2 x 10°
kton joules (J) 4.2 x 1012
Mton joules (J) 4.2 x 1013
Pressure bar* pascal (Pa) 10°
psi* pascal (Pa) 6895.
Density gm/cm kg/m 103
Length foot meter (m) .3048
*]1 bar = 14.5 psi
1 psi = .06895 bar
2
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SECTION 1 .
INTRODUCTION AND SUMMARY ’.'-;';Iljf
1.1 BACKGROUND tﬁi
The airblast from near-surface explosions can induce motions ;ﬁﬁ&
in the ground which will damage structures near the surface. $3§
Predictive calculations of airblast-induced ground motion have -
i
generally assumed that: (1) the air/ground interface acts as an o
impermeable membrane and (2) any effects of air contained in the :5
ground are incorporated in the pore crush-up portions of the lf
constitutive equations used to model the stress-strain response ?'
of the ground material. "
Observations and measurements from several field and
laboratory experiments suggest that a more complex multiphase ;;;
interaction between the air and soil occurs which may substan-— S
tially influence near-surface ground motion wave forms. In ;fj
particular, some vertical velocity records from several HE field ‘:f"
tests, e.g., MISERS BLUFF 11-2) and PRE-MINE THROW 1V-62, exhibit e
an enhanced upward velocity immediately following the initial ﬁff
airblast-induced downward motion. Also, laboratory experiments
show the development of upward soil motions during positive air jﬁi
overpressure loading3; this motion was shown to be related to the -
flow of the air through the soil pores. T
Porosities of soils may be 30-40%, which means that the :ig
solid soil particles form a "lattice" or connected network which {?
contains 30-40% pore volume filled with air and/or water. For N
LSRN
dry soils, pore-air effects refer to phenomena related to the }}:
E:

-
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s0il pores being filled with air and interacting with the solid
soil particles.

In this study, the effects of pore-air on ground motions in
dry porous soils are numerically simulated in one space dimension
and time. Also, experimentally observed ground motions involving
enhanced vertical velocities are explained using two-phase (soil
and air) physics including the flow of air through the soil
pores, and fluidization of the soil.

1.2 OBJECTIVES AND APPROACH

The numerical simulations use the multiphase DICE code4
which has previously been applied to nuclear burst problems
involving soil-air interactions above the ground surface.* The
mixing of solid/liquid soil particles with the atmosphere and
fireball generally involved dust/pebble concentrations which were
comparable to the air density (p ~10-° gm/cm’) or lower. Thus,
most of the soil-air flow/interactions were in the aerodynamic
drag regime. However, the current investigation involves the
near-surface soil material which has an initial soil density of

~2 gm/cm?3.

The research objectives were to:

1. Develop and implement a consistent flow/interaction
(i.e., generalized drag) model involving soil and
pore-air constituents for all soil to air density
ratios.

*The soil material was injected into the atmosphere as dust/pebble
particles using analytical models for crater ejecta (in surface
bursts) or surface sweep-up of soil particles (in air bursts).

14
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2. Numerically simulate and analyze the pore-air L
phenomenology and induced ground motions in one space ’
dimension at the 100 psi peak overpressure range after a Sl
1 Mt burst on porous soils with various permeabilities. ;

3. Perform and analyze cases which could be compared with
laboratory and field test experimental data.

A model describing the soil-air interaction and flow has 7 ;&
been developed and implemented in the multiphase DICE code. The ".
flow/interaction model specifies the internal mutual interaction o]
forces between the soil "lattice” and the pore-air as a function '
of relative velocity, soil porosity, and a characteristic soil ; _
particle size. The model is described in Section 2.3. _%fﬂ

Table 1.1 summarizes the five cases performed and analyzed. b4
In Cases 1 through 4, vertical ground motions are numerically S

simulated for homogeneous porous soils which vary in initial

permeability* by a factor of 8. The airblast history (100 psi
peak overpressure) applied to the soil surface is similar to a

the characteristic particle size (D,) as described in Section
2.3. Therefore, D, will be used to show differences in

permeability for the various cases, where k a D;.

.-
1 Mt ideal airblast history5 (see the bottom of Table 1.1). Case $S£
5 is a calculation of the vertical ground motions corresponding :EG:
to one location in the HE multiburst experiment MISERS BLUFF I[I1-2 EES
(see Section 4). Three ground material layers were modeled based -4
on measured material properties including hysteretic load-unload g
paths. The measured airblast loading used in the calculation is
also shown on Table 1l.1. ;

- 4

Cases 1 to 4 are described and compared to laboratory ;}

vertical shock tube tests3 in Section 3, and Case 5 is described 'ﬁﬁi
*Note that the soil permeability (k) depends on both porosity and ;;i

s
A
A )

s e
PR

P
. ‘e
alata’s

o

P
a 'l l. [)
.' l' vl e

) ’.,.:‘.'-.. .

)
.
o 'r
»

15 S

il

]




(338) 3IWIL (338) 3INIL

, 0 €°'0 c'o 1°0 0 9°0 ¥°0 rAM 1) 0 o
f S- 0 0 .
- T I _ T T T
f 0S- a o a
L a < a --.- <
™ a m 0z |- Tpeen i
3 L B - S— o 3 3 ﬂ D E 4
. ) e} v L c >
. - m =2 | (s "394) 114 $ m
- u 0§ T “ ﬂ ov ISPQULY 354ng .-. %
w c w 3304uNng N T -o
5 5 2 g o 1,5
m 00T} m 209 |- - e
m M U n oy m = ... m
o 0STH (1 »wmv SIUALIA mmmz_ 01l » v - . o
= sotNmm_.muwmﬂmmwﬁmw W m oe Buipeo? ume:t_w \ v 9 m“
G ase) - haad p-1 sase -
oozl | L 51 oork=_1 1 | 1
2 WO ¢_0T X £8°6 = Ad4eQ T«
a M
” LLoS 086 €00° 80° 0°1 90°¢ € J4afke]
! 9133433s4H 086 7769 ¥0° 9°¢¢ LTAN! 2 49he
pauafen 086 6€0" $000° 0t et 1 1 49he] g
p
.
S/u §09 = 9 0 8Y6 Nm¢ﬂ. m.mm o.H 14 v,
" - 086 L11 S0° 3 3 9°1 4
snoauabouoy 2
. 086 69% | £°¢ee 9°1 1 ‘o
(s/s/w2) x(Kd4eQ) (wo) (%) (gwo/b)
6 ) ao e, 0y v
A3L1Lqe | 9z1S 3|d134ed
-3ltMad 2135L4332e4RYy) | £3LS0U0d £31susg
JuawWwo?) £31Aeuy p sddjawedeqd |L0S |eL3Lu] ase)

‘pazf|euy/pauMojaad sase) °1°1 alqel




L
and compared to the MISERS BLUFF measured ground motions in }ﬁrﬁ

Section 4. Multiphase flow theory and DICE code modeling

techniques are described in Section 2.

1.3 SUMMARY OF RESULTS

Pore-air phenomena were studied by Zernow et 31.3 in a %fi%
series of laboratory experiments. The experiments involved the ;fgf
use of a shock tube to load the surface of a column of sand with ;fg;
overpressure histories similar to the pogsitive phase of the ideal {;*J
airblast at the 100 psi range from a 1 Mt nuclear burst. The jffﬁ
motion of the sand column was observed photographically. The l;iﬂ
DICE numerical simulation Cases 1 to 4 had a similar overpressure S

loading function applied at the soil surface.

Figure 1.1 shows the surface displacements observed in the
laboratory experiments compared to those calculated in DICE Cases
1l and 2. The 1.78" diameter orifice experiments (see Section 3)

had a faster decay rate in the airblast loading compared to the {;j

1.36" diameter orifice experiments, as shown below: ,if
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CALIFBANIA BESEARCH AND TECHNALAGY, INC.

: NAIN SURFACE DISPLACEMENT VS. TIME FOR 8-JNCH VERTJICAL SHOCK TUBE
: o5 g 1+36 IN. AND 1,79 IN. DIAMETER GRIFICE._ (ZERNOW ET AL. 1973)
: : 1 7 T T 1 T ] ] R ]
| DICE Case 1 o
) 22.5 — ase
| (D =0.1 cm) o h
p ®
®
20.0 S
.‘... ) .... .
_I 1.78" Diameter Orifice 8 e
: 17.5 I~ (Standard Sand) »
J:DI
o (Dp
15: 0 — ..' ..
i _ S8
= .
Q12,5 e
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= Je o0
x 10.0 i L
- m -
) G ‘e o
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A i} S0 o]
3 a 7.5 .0 o / ]
M 2 :. o
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i 0 74 7
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e/
] 0] == .
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TIME (SEC)

Figure 1.1. Main Surface Displacement Versus Time QObserved in
! Experiments (Zernow et al., 1973) and Calculated
by DICE (Cases 1 and 2).
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o The result is an earlier upward motion of the main sand column

ﬂ (~.200 8 compared to ~.400 s) and higher velocity (~75 cm/s
compared to ~45 cm/s) for the 1.78" diameter orifice experiments.
Maximum heights of nearly 20 cm are attained by the lofted sand.
In the absence of a sustained upward force acting on the sand,
the initial lofting velocity needed to reach 20 cm height is

V = /2gH ~200 cm/s. Thus, the experimental and numerical results

L .- e
DA A ]
% N,

provide convincing evidence of the sustained application of an
upward force associated with pore-air phenomena.

The surface displacement in Case 1 is similar to the 1.78"
diameter orifice experiment. Both surfaces start to move upward
at t ~.200 s and maintain an approximately constant upward
® velocity until t ~.400 s. The continuing rise of the soil

Yt

surface in Case 1 above the experimental curve is due to the R
longer duration of the airblast loading function used in the ;,iﬁ

numerical simulation.

Pl

The upward surface displacement in Case 2 also begins at
t ~.200 s, but a smaller constant upward velocity develops. The
g smaller displacements and velocities compared to Case 1 are
i' indicative of a smaller sustained upward force resulting from the
' permeability dependence of the internal interaction (drag)
forces. The factor of 2 smaller characteristic particle size

()

%y “e-mrty y Ty e
Y ty

used in Case 2 yields a factor of 4 decrease in modeled

2 permeability compared to Case 1.

The fact that the soil surface displaces upward during the

positive air overpressure loading on the surface is a pore-air

) flow phenomenon. High pressure air flows into the porous soil R
from the airblast loading on the surface. As air flows or T
permeates downward through the soil pores, the pore-air pressure Zi;f

) R

i
O
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increases and the total applied pressure load supported by the

Ptotal = Psoil + Pair‘

Fluidization of the goil occurs when the soil particles lose
contact with each other and the total pressure is entirely

. supported by the pore-air. Once fluidization occurs, the
li fluidized soil displaces upward (with respect to the unfluidized L ]

n solid soil particles decreases. Thus,

80il). These phenomena are described in more detail in Section
3.2 for Cases 1 to 4 and illustrated on Figures 1.2 and 1.3.

Figure 1.2 shows the pressure and velocity versus depth
profiles at t = .200 s for Cases 1 and 2. The pressure profiles 3};&
(at top of figure) show the extent of fluidization to be ~40 cm T
in Case 1 and ~25 cm in Case 2. The velocity profiles (at bottom

of Figure 1.2) indicate that there is an upward acceleration of

PRUAAE. L SR

CRRR ¥ .
i
oo

the soil material associated with fluidization. The soil is
moving downward at a constant velocity of ~23 cm/s below the o
fluidized region. The air is permeating down through the soil —
below the fluidized region, and is flowing up and out of the soil S
in the fluidized region. For the more permeable soil modeled in e
Case 1, the air has larger downward velocities and flows through ol
the soil pores to greater depths. A greater relative velocity ——
between the air and soil is also present in the fluidized region -Efij

for Case 1 as compared to the less permeable soil in Case 2.

Figure 1.3 shows the pore-air overpressure and soil particle
velocity versus time at various depths in the soil for Case 1.
At a given depth, the air overpressure gradually rises to a peak
and then decays to a level approximately equal to the applied e
surface overpressure at which time the soil becomes fluidized. _’ .‘
The soil velocity histories (Figure 1.3b) show that up to
t ~.100 s the entire soil column essentially moves downward as a
rigid body. Fluidization at each station depth becomes apparent

b 20
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after this time when the soil flowing at that depth suddenly
accelerates its velocity above the velocity of the soil column
below that depth.

The progression of fluidization down through the soil column
is shown on Figure l.4a for Cases 1 to 4. For Case 1 the
"fluidization front" moves down the soil at ~4 m/s. The
fluidization front moves more slowly at ~2 m/s for the less
permeable s80il modeled in Case 2. In Case 3, the soil at a given
depth is fluidized earlier than in Case 2 because there is no
lithostatic pressure distribution (g = 0) in the soil to be
overcoime by the pore-air before fluidization occurs. A fluidiza-
tion front velocity of ~7 m/s is predicted for the highly
permeable soil in Case 4.

Figure 1.4b shows the calculated peak air overpressure
arrival times versus depth for Cases 1 to 4; the experimental
data are also shown for comparison. The more permeable soils
allow air to travel faster down the soil pores, causing earlier
arrival times for the peak ovepressure. The slope of the peak
arrival time versus depth curves for Cases 1 to 4 are gquite
similar to the soil fluidization time versus depth curves in
Figure 1.4a. For each case there is a delay of ~.080 to .120 s
after the arrival of the peak overpressure at a given depth until
soil fluidization begins at that depth.

The MISERS BLUFF I1I-2 experiment involved the simultaneous
detonation of six high-explosive charges forming a hexagon 100 m

on a side. An approximation to the airblast measured at 25 m
radius from the center of the hexagon was used in Case 5 as the
overpressure loading function. 1In this case, the airblast

23
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Figure 1.4.

(a) Time of Fluidization Versus Depth for Cases 1 to 4

and (b) Comparison of Calculated (Cases 1 to 4) and

Observed (Zernow et al., 1973) Time of Arrival of Peak

Overpressure at Various Depths.
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included a negative overpressure phase beginning at t ~.150 s and
returning to zero overpressure at t ~.400 s. )

The material properties for the MISERS BLUFF 1I-2 calcula-
tion (Case 5) involved three soil layers including hysteresis and
the associated variation in load-unload constrained moduli. The
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initial soil permeabilities in Case 5 were much smaller than in
Cases 1 to 4 where the initial permeabilities were in the 102 -
10° Darcy range (1 Darcy = 9.87 x 107° cm?). In Case 5, the
initial permeabiities were different in each soil layer - k = .04 -
Darcy for the top layer, k = 69 Darcy for Layer 2 and k = .003
Darcy for Layer 3. The low permeability in the top layer limited
the amount of high pressure air which flowed into the soil. :
Also, the internal interaction forces between the air and soil ;{”
particles (i.e., drag) increased with the decrease in
permeability, so that the relative air-soil velocities were

nearly zero.

Sustained upward velocities and fluidization of the MISERS
BLUFF 11-2 soils occurred primarily because of the negative
overpressures in the airblast and the associated expangsion of the

pore-air in the soil; the pore-air expands so that pressure ;ii
equilibrium can be attained with the applied airblast pressure. e
If the soils were not hysteretic, this fluidization would begin
when the negative overpressures were first applied to the
incohesive soils. The hysteresis in the soils, however, permit
fluidization to occur at small positive overpressures since the
soil irreversibly compacts and cannot support stresses, upon
unloading, at soil densities slightly above the initial density.

Various ground motion gauges originally at 0.5 m depth and :f

: 25 m radius in MISERS BLUFF I1-2 measured the vertical velocity ki
» B
25 -




{and thus displacement) time histories. Figure 1.5 compares the
experimental vertical velocity and displacement data with the

Case 5 predictions of a tracer particle originally at 6.5 m

[
r
~

-

depth. The sustained upward velocity from t ~.150 s to beyond
t ~.400 s demonstrates the important role of pore-air phenomena
during the negative overpressure phase in low permeability soils.

1.4 CONCLUSIONS AND RECOMMENDATIONS

l. Large sustained upward velocities can develop in
near-surface soils subjected to airblast loading due to soil
fluidization caused by pore-air phenomena.

2. In the laboratory experiments3 involving relatively high
soil permeabiilties, the 100 psi peak overpressure airblast

caused air to flow through the soil pores, thereby increasing

pore—air pressures which resulted in soil fluidization during the
positive overpressure phase. Peak pore-air flow speeds of

~15 m/s are predicted, and the soil fluidization front propagates
at ~4 m/s (Case 1).

3. In the MISERS BLUFF 11-2 field experimentl involving low
soil permeabilities and almost no pore-air flow, soil fluidiza-
tion and sustained upward velocities occurred during the negative
overpressure phase as the pore-air in the soil expanded to reach
pressure equilibrium with the low airblast pressure.

4. The DICE code numerical simulations (Cases 1 to 5)
reproduced the phenomenology observed in the laboratory and field
experiments. The relatively simple models used for soil
permeability and internal interaction forces (drag) were adequate

for gquantitatively reproducing the experimental data; however,
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the in-sjitu soil]l permeabjlity is a sensitive physical parameter
and careful measurements and model calibrations will be necessary
before quantitative predictions and associated uncertainties of
ground motions can be made concerning strategic/tactical sites of

interest.

The following recommendations are suggested:

Evaluate the pore-air and associated soil fluidization
effects on ground motions for peak overpressures up to
1 kbar ~15,000 psi.

Obtain in-situ soil permeability measurements for
strategic and tactical sites of interest.

Extend the pore-air analysis capability to pore-air-water
environments since most soil pores contain some water;
and in fact, many cases of interest involve saturated or
nearly saturated soils below some depth.

Analyze the importance of pore-air and soil fluidization
phenomena in two space (2-D) dimensions for propagating
airblast waves which interact with surface dust/pebble
material. (See following sketch.) Both experimental and
theoretical analyses should be conducted.

Air Velocity Vectors Air Shock

Air-Only Airblast
egion

Oust Airblast

/

Undisturbed

/ Region /55\)\ sty
’/////// /// Air
’/ /5

/;5 / "Solid" Sor)
f.
/alxlent of Flu\d\zed So\l; i - Surface §¥
T

, Y
N .\?Awblast-!nduccd
Ground Shock

Extent of Pore-Air

Flow into Soil
Undrsturbed Sor!

Schematic of Two-Dimensional Soil-Air
Interactions Behind Air Shock
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SECTION 2

MULTIPHASE THEORY
2.1 GOVERNING PHYSICAL EQUATIONS - GENERAL FORMULATION

Consider a bounded volume N with surface area S which
contains physically distinct material phases. Distinct phases
can include solid, liquid and/or vapor phases as well as
individual phases distinguished by particle type/size. If the
volume of each phase is nk' where kX = 1 to K, then

T
A
H

E or
B Ak AL e
where
Ve = nk/n is the Volume Fraction. (2.1)

The continuum mechanics concept of a mass density for each phase

is assumed. Thus, as a test volume N~ and associated phase

-

k
densities are related by

volume 1, become small, the mass M£ and the average and local -

Py = é{mo(uiyn') PPy is average density
bk = lim (Mi/ng) = /vy bk is local density
N -0

D 29




The total mass density is then

,..-
LI
N .
'
. I
R R N f
L

F_v
s %
P

L
.

[ = L P= L PV 2.2
total = % P T b kK (2.2)

¢

The dynamic physical equations for each phase (and thus for
the entire multiphase system) involve identical considerations
concerning conservation of mass, momenta and energy. For
simplicity, and without any loss in generality, the subscript k
for each phase will be dropped in the following derivation.

Thus, the mass, momenta and energy of any one material phase in a

volume ! are given by

M(t) = JSpdv L
a .
moml (t) = spulav = spuav (2.3)
n n
EN(t) = /p(e + %uju
n

)dV = [pEAV
J n

where

p is the average density of one phase (p = pv),

u” is the local velocity vector of one phase,

e is local specific internal energy of one phase, and

E is gpecific total energy = e + %ului of one phase.

The summation convention on repeated indices is assumed, and a
comma preceding an index will indicate covariant differentiation.
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The dynamic equations of motion will be derived for arbi-
trary changes in the volume 2 = Q(t) since the DICE code uses an
expanding computational grid which is not coupled to the material
particle velocity. The horizontal and vertical grid lines are
permitted to move with arbitrary velocities, ué. Thus, in
general, the volume 0 and surface area S of the computational
cells will vary with time in a prescribed fashion. The following
fundamental equation relates the time derivative of a volume
integral to the arbitrary surface velocity ué (Ref. 6, Egn. 81.4):

d/dt Sedv = Sog/ot AV + frugdA. (2.4)
n n s J

where ¥ = r(xl,t) is an arbitrary tensor and dAj is the outward

surface vector.

Equations (2.3) and (2.4) can be used to obtain the dynamic

mass, momentum and energy equations in terms of volume and
surface integrals. The approach for the mass equation is

indicated below.

Letting ¥ = p in Eguation (2.4) gives

dM(t)/dt = /3p/3t AV + JpuldA, (2.5)
n s J
The usual global conservation of mass equation in integral
form is obtained by letting u; = ui, i.e., the surface S moves

with the particle velocity u' and therefore the mass contained in

fi(t) is constant if there are no mass sources. Thus,

EEC R S
- S et

0 = /3p/3t 4V + Jpulda, (no mass sources in }i
n s 3 Lagrangian frame) L
.

T

R

IOORRA
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If there are mass sources for this phase, for example from the
vaporization of a solid phase to . apor phase, then the mass
source term can be written as

dM(t)/dt = fé*dv (mass source term in (2.6a)
n Lagrangian frame)

where §+ is the mass source per unit volume. Thus, one form* of
the dynamic mass equation is

f§+dv = f3p/3t 4V + fpquAj (Lagrangian frame) (2.6Db)
n N S

Subtracting Equation (2.6b) from Equation (2.5) and rearranging
terms, we obtain

aM(t)/dt = d/dt SfpdV = fp(u; - uj)dA + rha (2.7)
a(t)  S(t) E)

Equation (2.7) is the integral form of the mass equation for
an arbitrary moving volume N(t).

In a similar fashion, the momenta and energy equations are
obtained. However, surface and body forces acting on S(t) and in
Nn(t) must now be considered since these forces generate momenta
and energy. The surfaceigorces per unit area are obtained from a

material stress tensor o -, which for hydrodynamic problems is

*Using the Gauss divergence theorem to change the surface

integral to a volume integral, we find the usual differential
equation forms

5+ = op/ot + (puj).j -=p + pu?j

Y 1 Co o

A ma .l

a

»

P
g

)
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' 013 - —Pblj; thus, the surface force Fs is

- F; = follana, Surface Force (2.8)
e s J

I Note that only the stresses for the one phase being considered
- are integrated to get F; for that phase. See Section 2.2 for -
. further discussions of the partitioning of stresses. N
:i Body forces are of two types: ;"4
e External Gravitational Body Force 'J;;
- /pgtav e
» n R
- '
7 e Internal Body Force from the relative motions and L
- interactions with other phases (~drag force) A
N s

= et Qv e
i nln el

Thus, the body force Fé is O

‘ Fg = J(pg" + £1ne)aV Body Force (2.9)
.'.- n ———

i The surface and body forces in Equations (2.8) and (2.9)

o represent momenta source terms; in addition, there may be

;, additional momenta sources due to phase changes [analogous to the -
fif mass sources in Equation (2.6a)]. Thus, in the Lagrangian or L
3; material frame of reference, i.e., ué = ui, we have

i - wi i | _
dMOM ™ /4t FS + FB + fp+u+dV A
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where 5+ui are the momenta/volume source terms due to phase changes.
And finally, the integral form of the momenta eguation for an
arbitrarily moving volume 0i(t) is

aMoM/at = dsat Sputav - f(pui(u; - udy + oidyga,
n(t) S(t) J
(2.10)
+ f{pgi + f? + 5 ui)dv
a(t) int + 4+
Similarly, the energy equation is
EN/dt = d/dt [pEAV = [(pE(u) - ul) + Oijui}dA.
n(t) S(t) J
(2.11)

i i
+ [{pgtu, + £, . u,
ack) i int™1

+ Q+}dv
where é+ represents the energy/volume source terms due, in

general, to any combination of phase changes, heat conduction and
thermal radiation transport.

Equations (2.7), (2.10) and (2.11) represent the general
dynamic equations governing each phase in a mixed phase flow
contiguration. Before a solution to a specific problem can be
obtained, the initial and boundary conditions must be specified

as well as a complete set of constitutive equations including:

e Material Equatio?i of State (elastic-plastic-hydro
description of o7 -)

e Internal Interaction Forces (f} ) as a function of
relative velocity, pressure, pé?Ssity, etc.
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The generalized approach for material equations of state in
two-phase media is described in Section 2.2, and the specific
material parameters are described in Sections 3 and 4 with the
case descr@ptions and calculational results. The formulation

used for f% for all the cases is described in Section 2.3.

int
And, Sections 2.4 and 2.5 contain DICE test cases.

2.2 STRESS PARTITIONING IN A SOIL-AIR MEDIA
A small portion of a two-phase material consisting of a

solid soil phase and a pore-air phase is schematically shown

below:

If a loading force, Fioad' is applied to a surface, S, then

i i
Fload = sf"lgadd”‘j (2.12)
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The partitioning of the load stress, oigad’ into solid soil and
pore-air parts is accomplished by introducing the following
eguation and associated variables:

ij _ aij _ 5 Ri3
%10ad 95 Vg Pa6 Va (2.13)
where
VS and va are the soil and air area fractions (vs + va = 1);

these are often assumed to be egqual to the volume fractions, but
anisotropic pore/channeling configurations are possible which
would invalidate this assumption.

G;j and —?a613 are the local stresses* such that

f@;jvsdAj is the force contribution from the soil, and
S

/-P 513vadAj is the force contribution from the air.
S

The material equations of state (EOS) for {the air and the

soil complete the specification of Equation (2.13). The air EOS
is relatively straightforward:

Pa = Pa(pa' ea) General EOS (2.14)

*These local stresses Gk (force/area for one phase) are analogous

to the local density { (mass/volume for one phase). Note that
the particle velocity and specific internal energy are always
local variables in the current formulation and a u or e is
suppressed.
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For example,

b, = (v - L)pe, Ideal Gas EOS

. . ~17 .
The solid soil stress, 053, is generally not measured; however,

the measured soil stress can be identified by noting that for 1
relatively incompressible soil particles, the pore-air pressure
(P ) and the stresses supported by the touching soil particles
(olJ) both contribute to the local soil stress,

633 = gl _ 3 13 (2.15) e

13 . i3 _ ij
9)0ad g Vg ﬁab (2.16)

Thus experiments measuring oij ad performed on soils with pore

pressure P will provide the soil EOS (o J) where

old - 13y , and
S s 8
(2.17)
13 < ot _p 513

load S a

The measured soil EOS (Elj) can be a complicated function of many

variables, including density (ps), specific internal energy (es).

strain, and strain rate.

2.3 INTERNAL INTERACTION (OR DRAG) FORCE

The internal body force per unit volume, fint' for the
simple two-phase system consisting of air and soil particles of
radius R is modeled in this subsection. Note that in a two-phase
»
] 37 Rt
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system, the internal force acting on the soil by the air 1is
exactly opposite to the internal force acting on the air by the

soil.* Thus,

i i )
(‘mc) * (‘mt) -0 (2.18)
S a

In this exploratory study, Darcy's linear law7 1s used as the
basic equation relating the apparent volumetric fluid (air) flow

rate to the fluid pressure gradient, 1.e.,

N u;l_, == _2° (2.19)

where
v, 1is aix filled porosity of soii
ui 1s local relative velocity ui - ué
vaui is the apparent flow velocity of air
k is permeability

4 1s the air viscosity

And, since Darcy's law 1s for steady-state conditions, the
pressure gradient on the air 1s just equal to the internal drag

torce/volume on the air, thus

i v P -uv; i
(f. ) = = u (2.20)
a

int 0. k r
i

*In the general multipnase system L fint) = 0
k=1,K /k
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Drag formulations of the internal interaction force define

an effective gingle particle force, F;, which acts on a single |
47R . .
soil particle of radius R. Since ;v is the soil + air volume D
s AR
per soil particle, e
i 4nR? i e
F "3V <%int> (2.21) !:;
s a L
In the current study, a single particle drag formulation is .f?
used with three porosity regimes. The first regime applies to ;
relatively low porosities, Vair less than or equal to 0.5. In ';
this regime the flow of air through the soil is modeled using a :}j
drag formulation of Darcy's law derived by Br inkman®: i
i ; R , R? N
1 1 L L . iy
F] = 61rpurR (1 + e + 3k) ;i 0 < v, < 0.5 (2.22) i
h where R
."
- RS
[ L = viscosity
&;Z ul = relative velocity of air and soil particles,
_ a s
e R = Dp/2 = characteristic radius of soil particles T
- k = permeability :f:
In the derivation of Equation (2.22) it is assumed that the soil v
particles are rigid spheres and that the air flow is steady and j}i
incompressible. These assumptions may not be adequate for a i{
final model but they do permit a first-order assessment of the -
pore-air phenomena of interest. .
ha 39 N
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o The second regime is transitional and applies for
;l 0.5 ¢ va  0.8. 1In this regime the soil is distended and the
’ individual soil particles are not touching but are still
relatively close together. The interaction between the soil and
‘ air is a linear interpolation on va between Equation (2.22) and
I. the single particle aerodynamic drag interaction force [Equation
: (2.24) below]:

(0.8 - v.) . (v. - 0.5)
Fl=— 8 gt , _ 238 ¢ (2.23)

0.5 ¢ Va < 0.8

where F, is given by Equation (2.22) above and F, is given by
Equation (2.24).

In the third regime va > 0.8, the soil is highly distended,
s0il particles are relatively far apart and do not strongly
interact, and the soil-air interaction is modeled as single
particle drag:

¥; = %pannzcnuglugl ;i v. > 0.8 (2.24)

where CD is the variable drag coefficient which, in general, will
depend on the relative velocity and local Reynolds number.

In order to calculate the soil-air interaction in regimes 1
and 2, it is necessary to specify the permeability. The perme-
ability of the soil will change as the soil is compressed by the
airblast and pores collapse; also, soil cementation is broken and
thus the particle size distribution is altered. It is thus
essential that permeability be treated as a variable. As an
initial model, permeability is assumed to vary with porosity and
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characteristic particle size. For porosities less than or equal
to about 0.48, an empirically based eguation formulated by Carman

is used7.
k Va
a

For higher porosities, a theoretical formulation by Brinkman8 is

used.

kK _ 1 i 8 %
RZ 18P YT -y, 3(7= v 3)

(2.26) o

0.4785 < v_ < 0.8 o

a — S

l-- -

Figure 2.1 shows the quantity k/R? as a function of porosity as e
calculated from the Carman and Brinkman equations. ij;;
2.4 TWO-PHASE FLOW TEST CASE -

The details of the internal interaction (or drag) forces and
the associated relative velocities (ui) between the air and soil

phases will influence the wave propagation characteristics in the

soil-air medium. Under the special case of u% = 0 which occurs
as the permeability goes to zero, the sound speed in the
two~-phase medium is related to the soil and air densities, local
sound speeds, and volume fractions as shown on Table 2.1. Note
that when Vi T Vg = 0.5, the two-phase sound speed reaches a

minimum and is a small fraction of the air sound speedg, in fact ?fﬁ

C "2 Jpy/Pg C4

=

.Y

-:--‘

for v_ = v_ = 1/2 )
a 8 AR

‘.

" 3

=

o

<o

o q
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Figure 2.1. Normalized Permeability (k/R?) Versus Porosity
from the Carman and Brinkman Equations.
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Table 2.1. Sound Speed for Multiphase Mixture. ;jtﬁﬂ

(particles not in contact with one another and ul = 0)
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A test case was performed with the DICE code to approxi-
mately simulate the specialized condition just described and to
verify the ability to calculate low wave speeds in two-phase
mixtures. The problem configuration and soil/air volume

fractions are indicated below:

Air Only Soil-Air Mixture
- 1 bar -
}k‘ overpressure - vy = 1 vy = 3
i shock - v = 0 v =1
L conditions s
0 100

Distance (m)

A 1 bar overpressure shock wave travels through 100 m of air at
STP in a simulated shock tube and then interacts with the

soil/air mixture.

Figure 2.2 shows the overpressure versus distance profiles
at three times prior to the shock wave interaction with the
two-phase mixture. Figure 2.3 shows the overpressure profiles at
four times after the shock wave begins interacting with the
soil/air. Figure 2.4 is the related shock speed versus time
curve. The shock wave in the air propagates at ~463 m/s; when
the initial shock reaches the relative dense soil/air mixture
(p = 1 gm/cm®) at x = 100 m, a reflected shock wave travels back
into the air with a reflection factor of -~2.6.

The shock wave speed in the two-phase mixture is ~28 m/s or

about 6% of the air shock wave speed.
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Figure 2.4. Shock Wave Speed Versus Time for Shock Tube Test Case.
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2.5 AIR ONLY TEST CASE FOR WEAK SHOCK (AP = 0.1 bar)

- For some airblast problems of interest, the air overpressures
. are quite low. Therefore, a low overpressure test integration of

uE the DICE code was performed to demonstrate that the code can

II calculate shocks and rarefaction waves correctly at overpressures

of ~0.1 bar. The following sketch shows the initial pressure

conditions used:

symmetry overpressure = .2 bars standard atmospheric

plane ‘22_,_ conditions

0 Xo = 20 meters

Initial "Shock Tube" Conditions

Initially, the air was at rest in both regions and is assumed
to follow the ideal gas law (¥ = 1.4). The zoning consisted of a
uniform grid with one meter cells.

Analytical (closed form) solutions (see Ref. 10, pp. 181-191)
can be obtained in 1-D by considering the equations governing the
conservation of mass, momentum and energy plus the ideal gas
equation of state for air. The results for the initial conditions
considered are summarized in Figure 2.5. In this x-t diagram, the
theoretical positions of the shock front, contact discontinuity
and rarefaction fan are plotted as a function of time. The

physical parameters describing the properties of each of the

separate regions are-also shown.
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DICE code integration results at .030 s, as well as the
theoretical solution, are shown in Figures 2.6 through 2.9. Air ®
overpressure versus distance is shown in Figure 2.6. A shock wave

of 0.1 bar overpressure is seen to move forward into the undis-

Zi turbed region, while rarefaction waves move backward into the
initial overpressure region. These rarefaction waves comprise the ;
rarefaction fan. For both the shock front and rarefaction fan,
DICE is able to define the rapid variations with five cells. The
shock pressure is matched almost exactly. Similar accurate

results are seen for the discontinuities within the velocity,

L
temperature and density profiles shown in Figures 2.7, 2.8 and o
2.9, respectively. We conclude that DICE can handle shocks and )
rarefaction waves correctly for low overpressures at the 0.1 bar ﬂff{f
level. r
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SECTION 3

PORE-AIR PHENOMENA IN A SHOCK TUBE
3.1 LABORATORY EXPERIMENTS

Pore-air phenomena were studied by Zernow et gl.3 in a
series of laboratory experimente. The experiments involved the
use of a shock tube (Figure 3.1) to load the surface of a column
of sand with a known overpressure history. By breaking

diaphragms 1 and 2 at appropriate times, the surface of the

column of sand was exposed to air overpressure histories similar R,
to the positive phase of the airblast at the 100 psi range from a i;;{
1 Mt nuclear burst. No negative phase was simulated. The motion ;;
of the sand column was observed photographically and pore-air !Q-

pressure measurements were made at various depths in the sand.

Figure 3.2 shows the observed surface load overpressure time ;;;“
histories for the experiments conducted with a 8" diameter shock ljgj
tube. Two orifice diameters were used to control the overpres- :
sure decay rate. The 1.78" diameter orifice yielded a faster
decay rate with a shorter duration (~.450 s positive phase)

compared to 1.36" diameter orifice with a positive phase of
~.750 s. Also shown in the figure is an overpressure time

history described by a simple exponential decay function of the

" d

form

- -t/T RN
APL - APoe (3 - 1) :?:_:.‘-.-‘
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CALIFARN1AR RESERRCH AND TECHNGLOGY, INC,
COMPARISAON OF NBSERAVED GVERPRAESSURE-TIME CURVES FOBR B8-INCH VERTICAL
SHACK TUBE WITH LOROING FUNCTION USED IN NUMERICAL SIMULRTION.

1.0 I 1 T T T T x ™ J1oo
6.5 :
e
6.0 |
5.9 — 8c
5.0
— 70
~ 4.5 _
('3 ~-t
& Measured Overpressures — 60 @
o 4.0 e.
1.36" Diameter Orifice us
us e
3.5 I o 2
a7 1.78" Diameter Orifice — 50 o
0 W
& 3.0 (Reference 3) i @
n. - H m
i — 40 W
© 2.5 ©
2.0 \\ - -t/ — 30
\ \\ AP = OP e
I- 5 \'~ . = - 1
\ AP, = 6.89 bars = 100 psi _{ 20
1.0 — '\\‘_ . T=.174 s
~ i
| “ - 10
0.5 N,
9
R 0 | 1 | . 1 0
;; 0 0.1 0.2 0.3 0.4 0.5 6.8 0.7 0.8 6.9 11.¢
- TIME (SEC)

Figure 3.2. Overpressure Load to Surface of Sand Column Versus Time

- Observed in Experiments (Zernow et al., 1973) and Fit

e Exponentially (used in DICE Cases 1 to 4 Calculations).
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where

APL is the overpressure at time t

APo is the peak overpressure (at the shock front)

t is the elapsed time (after peak overpressure arrival)

1 is the decay parameter constant.

)
A value of 6.89 bars (100 psi) for APO and .174 s for 1 _A;¢£
results in an approximate fit to both of the experimentally K
observed time histories. This loading function is used in o
subsequent DICE code numerical simulations.

The average density of the standard sand used was found to

be 1.60 gm/cms. The estimated grain density of 2.40 gm/cm? .
corresponds to a porosity (or air void ratio) of 0.33. Figure ;:
3.3 shows the particle size distribution (% by weight) for the i;

|y

standard sand; the mass mean diameter is ~650 . Some of the @,
experiments were conducted with "coarse®” sand with particle :fﬁl-
diameters greater than 841 u sieved from the standard sand. The i,%?}
coarse sand had an average density of 1.55 gm/cm?® and porosity of e
0.354.

The bulk compressibility modulus was determined to be
85,000 psi (~5860 bars), which implies a compression wave
velocity of ~605 m/gs. For the 6 ft sand column this means that
the transit time for the initial shock to reach the bottom is
.003 s.

Note that in the experiments, the bottom of the sand column
(~6 ft) was restricted from moving downward. Ideally, the sand
column should be "infinitely long™ with respect to the physical
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effects which are being observed. In an ideal elastic material,

Ii the sand at a depth egquivalent to the bottom of the sand column

e would behave similar to the sand near the surface. A pressure

}f force applied to the sand surface would be felt 3 ms later at a

i- 6 ft depth, and would eventually cause the entire sand column to :
ii translate downward. However, the rigid bottom in the experiments ?;}g

prevents this downward translation at the surface as well as at ﬂiT"
the bottom since the sand is essentially elastic. To simulate an if%w
o infinitely long sand column with respect to pore-air phemonena, ;
a the bottom closure of the shock tube had small holes in it to .' .
allow restricted air flow. The intent was to approximate a

o
permeability similar to that of the sand above the bottom T
closure. “”’j

L L S
S MR
s y ror s a ',

-

4

4

A

Figure 3.4 shows the vertical displacement of the sand

surface as a function of time from the 1.36" and 1.78" diameter 3
orifice tests. The initial small displacements are considered to :
ii be a "precursor" sand cloud resulting from the shock tube induced !37?
; "initial large amplitude reverberation oscillations in the very
%} early portion of the shock pulse"™ affecting the top ~2 cm of the S
:' sand column. The main sand column starts to move upward at iaii
i. t ~.400 s for the standard sand 1.36" tests and maintains a nearly !ﬁfr
= constant velocity of ~43 cm/s for another .300 to .400 s. The
;3 1.78" tests with faster overpressure decay rates resulted in the
-f main sand column moving upward at an earlier time (~.200 s8) and 3
;: higher velocity (~77 cm/s). Both sets of curves for the standard ;¢7ﬁ
sand experiments indicate that the maximum height attained by the Ry
i? lofted sand is nearly 20 cm. If the only force acting on a sand
= particle projected upward were gravity, the initial lofting
;’ velocity needed to reach 20 cm height is V = V2gH ~200 cm/s.
L Including air drag effects would increase the needed initial
5 lofting velocity. The observed maximum velocity of 80 cm/s would
; > _
L o
-'
5 60 QL;_
P o
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CALJFGRANIA RESERRCH .AND TECHNGLAGY, INC.
MAIN SURFACE DISPLACEMENT. VS, TIME FOR 8-INCH VERTICAL SHOCK.TUBE Je
1.36 IN. . AND 1.78 IN. DIAMETER ORIFICE, (ZERNOW €7.AL. 1973). P
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Figure 3.4. Main Surface Displacement Versus Time for 8" Diameter
Shock Tube Experiments (Zernow et 7., 1973).
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project a sand particle less than 4 cm above the surface. Thus,
the experimental evidence points to the sustained application of
an additional upward force associated with pore-air phenomena.

Figure 3.4 also shows the main surface displacement for
experiments run with the coarse sand (particle diameter > 841 u).
The coarser sand particles yielded an increase in porosity and
permeability. And although the same 1.36" diameter orifice
pressure loading was used, there was a reduction in the main
column motion by a factor of 4 both in velocity and displacement
when compared to the standard sand cases. The coarse sand
characteristics are very uncertain; a possible explanation is

described in Section 3.3.

Figure 3.5 shows the position of the near-surface marked
sand layers as a function of time for the 1.78" and 1.36"
diameter orifice tests. Sustained upward motion is again seen
for the sand below the surface to depths of approximately
10 to 15 cm.

Additional experiments involved saturating the standard sand
100% with water so that the porosity and permeability were
esgsentially zero, and saturating the standard sand to 50%
saturation level. The result was either total or near total

elimination of main column motion.

3.2 NUMERICAL SIMULATIONS

Numerical simulations were performed with the multiphase
DICE code in order to examine the pore-air phenomenology in a
homogeneous porous soil. The calculations were designed using

one-dimensional (1-D) planar geometry to approximate the
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N laboratory shock tube experiments.3 The equations governing the ;Lﬁ
gi relevant physics are discussed in Section 2. %;;
L b
:: Figure 3.6 defines the physical parameters used in DICE f;%
;i; Cases 1 to 4. The overpressure loading function applied at the Lil
-E soil surface is the exponential fit shown in Figure 3.2, falling {:

between the two overpressure time histories measured in the
laboratory experiments. Its rate of decay is slower than for the i}j
1.78" diameter orifice tests but faster than for the 1.36" tests. L

B oo
-y

The soil model parameters are taken from Reference 3. The
- initial soil density is 1.6 gm/cm’ with a porosity of v, = 0.33.
: The soil is treated as a hydro-elastic material. The 605 m/s

B0 2 AN
Caa Ty

compression wave velocity implies a 3.3 ms transit time for the -
initial shock pulse at the surface to reach the bottom grid
boundary. A semi-infinitely long column is modeled by imposing a
continuum boundary at the grid bottom, allowing soil and air to
flow past the bottom; note that in the laboratory experiments, ’
the soil is rigidly constrained at the bottom of the shock tube.

In the calculation the soil is modeled using only one
characteristic particle size. Case 1 uses a characteristic "
particle size diameter of Dp = 0.1 cm (all particles assumed to -
be uniform spheres), while Case 2 uses Dp = 0.05 cm. The
permeability model described in Section 2.3 indicates that the
permeability increases with porosity, and for a given porosity, 2”_
the permeability varies as the square of the particle size. -
Thus, the permeabiity of the soil in Case 1 is four times larger
than in Case 2 for a given porosity. Cases 1 and 2 include
effects of a uniform gravitational field (g = 980 cm/s?). ?
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Pressure Loading APL = APO e
i 4P, = 6.89 bars = 100 psi
: T=174 ms = .174 s
I Porous
zm Soil -
i Soil Model 0g = 1.6 gm/cm?3
= 3
. P05 2.4 gm/cm
o
! vy =1 - === .33
r_———_—'__—T' Pos
! K = 5.86 kbars = 85,000 psi
C = 605 m/s
"Continuum T = 3.3 ms for a 2 meter transit
Boundary" .
Case Characteristic Permeability Gravity
Particle Size
Dp (cm) k (Darcy)* g (m/s?)
1 0.1 469 9.8
2 0.05 117 9.8
3 0.05 117 0.0
4 0.1422 948 0.0

*] Darcy = 9.87 x 107° cm?

Figure 3.6. Pressure Loading and Soil Parameters for 1-D Shock
Tube Calculations (Cases 1 to 4).
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Cases 2 and 3 compare the effect of gravity on the pore-air

ZI lofting process. Dp = 0.05 cm for each case; but in Case 3, zero
;ﬁ gravity is assumed. Case 4, which also has zero gravity, has a
f; factor of ~3 increase in particle size and a factor of -~8

increase in permeability from Case 3.

Figure 3.7 shows the 1-D grid used in the calculations. The
surface soil cell is 2 cm, with each subsequent cell 10% larger
than the cell above it. All cells above the original surface

(z = 0) are of uniform size (2 cm).
3.2.1 case 1 (D, = 0.1 cm, g = 980 cm/s’)

Figure 3.8 shows the initial pressure distribution versus
depth for soil and air for Case 1. The total stress shown is the
sum of the pressure due to the pore air and the effective stress
contribution from the soil. The initial air pressure was taken
to be 1.013 bars (= 1 atm) throughout the so0il column depth. The
initial lithostatic pressure at depth in the soil column is the
pressure required to support the weight of the total amount of
soil above that depth. It increases essentially linearly from
zero at the surface to a value of 0.314 bars at a depth of

200 cm.

Figure 3.9 shows the pressure and velocity distributions for
soil and air at t = .001 s after the initial application of the
pressure loading function at the soil surface. The soil
compression wave velocity of 605 m/s implies a transit distance
of 60 cm by this time for the initial pressure loading impulse.
First principle shock theory for an elastic medium yields a soil
particle velocity of 71 cm/s behind the shock front for an
initial pressure of 6.89 bars. DICE gives good agreement with
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Figure 3.9. (a) Soil, Air and Total Stress Versus Depth, and
(b) Soil and Air Velocity Versus Depth at
t = .001 Seconds for Case 1 (Dp=0.1 cm).
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these theoretical
seen to travel to
transition region
the downward soil

values. The pressure loading shock front is
the theoretical depth (the numerically smeared
across the shock front is centered at ~60 cm);

velocity behind the front is approximately

70 cm/s.

At t
sure load
over 1500
is forced

thus pore

= .001 s, the soil is supporting all of the overpres-
except near the surface, where air traveling down at
cm/8 has begun to permeate into the soil. As the air
down into the soil matrix, the pore air density and

air pressure increases and the air supports a portion

of the pressure load.

Figure 3.10 shows that by t =
the soil surface has affected the entire column.

.050 s the pressure loading of
Below 100 cm

the entire overpressure load is supported by the soil (the air is
still at its initial value). Above this depth the pore air
At the

surface the pressure load is supported almost entirely by the

pressure increases nearly linearly to the surface.
airxr. At the surface the air is flowing down through the soil at
~200 cm/s. The peak downward air velocity of nearly 350 cm/s is
at a depth of ~50 cm.
downward at a velocity 54 cm/s8 consistent with the theoretical

Below 100 cm the so0il and air matrix move

velocity behind a shock front of overpressure APL(t = .050) =
6.89¢ %/-174 _ 5 17 pars.

The total pressure at any time will still contain the
initial air and soil contributions discussed previously (see

Figure 3.8). In addition, because of the decay in time of the

overpressure loading- function, there is a net overpressure
differential from the surface to any depth, due to the transit
time (at sound speed velocity C) required for information (the
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pressure load) from the surface to get to that depth. The
theoretical overpressure at depth z and time t due to the loading
function is thus AP(z,t) = 6.89e (.7Z/C)/-174 |\ o The

overpressure differential Ap from the surface to depth z (as a
function of time) is thus

-t/.174 ez/C/.l74

Ap(z,t) = 6.89%e

[ -1) bars. (3.2)

ji It is this net overpressure differential which provides the

- upward force which accelerates the soil and/or air upward, thus
decreasing its downward velocity. Note the exponential decay in
time which will result in weaker upward forces.

Figure 3.11 shows that by t = .100 s the air has begun to
flow through the soil at a depth of over 150 cm, with the peak
downward velocity of ~200 cm/s at ~80 cm depth. More
significantly, by t = .100 s the air is supporting the entire
presure load at the surface. The soil particles become
fluidized; they are no longer able to support any loads. The

soil particle motion in a fluidized state is dominated by gravity

and internal drag/permeability interactions with the air.

Figure 3.12 shows that at ¢t = .200 s the soil is fluidized
to a depth of ~40 cm and a pressure gradient causing upward
accelerations exists in this near-surface region. Much lower
sound speeds in the fluidized soil as compared to the unfluidized
soil (see Section 2.4) will result in larger upward pressure
forces as indicated by Equation (3.2). And because the air
density is about three orders of magnitude less than the soil

density, there is a larger increase in upward acceleration of the

air as compared to the soil particles. The results of this are
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Figure 3.12. (a) Soil, Air and Total Stress Versus Depth, and
(b) Soil and Air Velocity Versus Depth at
t = .200 Seconds for Case 1 (Dp=0.1 cm).
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seen in the velocity profiles in Figure 3.12. The air in the

fluidized region is moving upward relative to the soil. Internal o
force interactions with the soil particles is providing a
deceleration of the air, while causing the soil particles to

accelerate upward; the soil in the fluidized region is in fact

moving upward relative to the remainder of the soil column.

Figure 3.13 shows that by t = .400 s the region of
fluidization extends to ~115 cm depth. The soil column above 100
cm depth is moving upward, with a maximum velocity of 67 cm/s at »
the surface. The upward air velocity is also largest at the ﬂl%ﬁ

surface, with a value of over 100 cm/s.

Figure 3.14 shows that at t = .600 s the region of ;ﬁ
fluidization extends below 150 cm depth. The soil column above SIS
this depth is moving upward, with a maximum velocity of o
40 cm/s near the surface. The upward air velocity peaks at the

surface with a value of over 80 cm/s.

The progression of fluidization down the so0il column can be
seen in the soil density depth profiles at various times on
Figure 3.15. Up to t = .100 s the so0il density is still

essentially at its initial value of 1.6 gm/cm’. The region of

fluidization is clearly seen in the profiles at later times. The
soil density drops below 1.6 gm/cm’ as the soil becomes
increasingly distended. By t = .600 s porosities near the N

surface have increased to over 0.5.

During the numerical simulations various predicted physical
quantities are monitored at several station depths in the 1-D
grid. This allows for time histories of quantities such as air
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overpressure and soil velocity at the selected station depths to

be analyzed.

Figure 3.16 shows the air overpressure versus time for Case
1l at various station depths of the modeled soil column from 5 cm
to 175 cm. The peak overpressure decreases with depth while the
time of arrival of the peak overpressure increases with depth.
This figure shows that by t = .200 s, air overpressures down to
40 cm depth have become approximately equivalent to the over-

pressure loading applied at the surface. Thus, above 40 cm depth

the soil has become fluidized and is supported entirely by the

air.

Figure 3.17 shows the soil velocity versus time at various
station depths from 5 cm to 175 cm. Up to time t ~.100 s the
s0il column essentially moves downward as a rigid body.
Fluidization at each station depth becomes apparent after this
time when the soil flowing at that depth increases its velocity
above the velocity of the so0il column below that depth. At the
5 cm depth station a maximum upward velocity of ~65 cm/s is
achieved at t ~.400 s, after which time gravity becomes the

dominating force.
3.2.2 Case 2 (D = 0.05 cm, g = 980 cm/s?)

The effect of permeability of the modeled soil is examined
in Case 2 by using a characteristic particle size diameter of
Dp = 0.05 cm, which is half that used in Case 1. For a given
porosity, the soil permeability in Case 2 is four times smaller
thin in Case 1 (see the permeability model described in Section
2.3).

79

RN
.. - -‘
’l.’ AA'-1
RO
RN
-
.
",.-,' '--
L

R BRI T
\ R

TR
L.

B e

AR AN

.o ’ . . A

PRASILPLTLPAT AT I AP A

A

L

A
Sacatals n




A aa an s

CALIFORANIA RESEARCH AND TECHNABLOGY. INC.

DICE 3280 . CASE 1 .
A1R OVERPRESSURE VS. TIME FOR STATIONS 7-18

7.0 l | T l
6.5 |-

6.0 -

5.5 |-

s.o ff N
A

o

.

an
>

@ N
,L “n
g [ \
5 3.5 f
g ‘B o Station Depth (cm)
! /a—-u'.
T 3,0 . .
oo . I . \
[+ o ! ;
ud . o\
> : /
2.5 %
2-0 I / >
o. 80‘.-503-.‘.. \
' :. S -'.' o S
1.5 ; [‘ / :“ log.x‘x-x-x.x.-
. . o x’x‘ "\\
L.of & f X L2S e e m e xR
3 e K x’ oty
> 'x o’ 150 ..xxx.---xxx-- + .
6.5 '/ s X oxx*’ 175 .xxx.\o
I T R R L Lxnne
.: : '- x. .. 'ﬂx - xx..l

pu—

.‘f\' A ,‘.;. ’)&1‘.\.

R s S l
0] 0.1 0.2 0.3 0. 4
TIME (SEC)

Cepths for Case 1 (Dp = 0.1 cm).

80

.........

..................
........................
: el doadon b o fen Beon Send

Figure 3.16. Air Overpressure Versus Time at Various Station

N AT ST S T U AT S P S R O )
. EEUEN PR LAY

e
a0 et Tt et e te T . DRI EREE IY
. A ~|-l-. ,I. SN TN ol

0.5 0.6 R




r S e A R TSI SN N Pl S/ S S S Araf aoth /o s 2t oy ORI e a, i ——

CALIFORNIR RESERRCH AND TECHNOLOGY. INC.

DICE 3280 CASE 1 e
SOIL VELGCITY VS, TIME FOR STATIOGNS 7-18 .
80 -
| 1 [ [ ! -
Station Depth (cm)———5 ] e
AR
SR
KRAIOEN
) R
A 100 yeXoxaXey « ’ —
- ..t .l‘ x, S TS
[/p) u. .X.x
> a'. px 125 .xx‘oxx.*
LZJ i X Loux® 159
- X o ;.uxv;-ﬂ-m
x‘ .x"'.m'-‘..xx‘ see
b .x. W.. 175
- X %, paonrs®
Q
>}
o - _
-

l 1 | | |
-8
% : 0.2 0.3 0.4 0.5 0.6
TIME. ISEC)

Figure 3.17. Soil Velocity Versus Time at Various Station Depths
for Case 1 (Dp = 0.1 cm).
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Figure 3.18 shows the pressure and velocity distributions
for soil and air at t = .001 s for Case 2. Air is flowing down
through the soil at just over 200 cm/s for Case 2 as compared to
over 1500 cm/s for Case 1. There is also a corresponding
decrease in the amount of support of the overpressure load at the
surface by the air.

By £t = .050 s (Figure 3.19) the peak downward velocity of

shallower than the ~330 cm/s peak at 50 cm depth for Case 1. The
air pressure also indicates that there is a decrease in permea-
tion of the soil; air is supporting at least part of the pressure
loading down to almost 100 cm depth for Case 1, but only to 50 cm
for Case 2.

E

|

|

[

! ~200 cm/s is found at a depth of 25 cm for Case 2, slower and

Fluidization at the surface occurs near t = .100 s (Figure

3.20) for both Case 1 and Case 2, when the air is supporting the
entire pressure load at the surface. By t = .200 s, Figure 3.21

shows the soil fluidized to only ~25 cm depth for Case 2, com-

pared to ~40 cm depth for Case 1 (Figure 3.12). By t = .400 s

(Figure 3.22) the soil in Case 2 is fluidized to a depth of

~70 cm compared to ~120 cm for Case 1, indicating the effect of

the decrease in permeability for Case 2.

The air also achieves smaller upward velocities compared
with those of Case 1. This is seen in Figure 3.22 at t = .400 s
and Figure 3.23 at t = .600 s. Evidence of the increased
air/soil drag forces due to the decrease in permeability is found
in the smaller relative velocities between the air and soil

particles in the fluidized region.

........................




CALIFORNIR RESEARCH AND TECHNGLOGY

yg, DICE 3280 CASE 2 (OP.05 CM)

. INC,
PRESSURES VS. DEPTH

: o AR R N A
| Initial Pressure Louding
8. |
a .o .
2 . ) Total ‘ RO
m 8. — AN —
- ! Soil/‘-, ( L
e AN R
o PN :4
g 4- f_"— .‘\ - - -_:¢i
b L o .
@« TN ]
a. ‘ _‘.:.
2. — SRS
' \‘ Air ~ '_-:._-:'.‘_--.
——— e e ,-,__.___ o -—— e . ——— 4 ————d ,'._-;:r;;_‘
g - I ] | NS EERTTTY STITE B AARIAAD S i,
=25 L] 25 50 75 {00 125 t150 175 200 P
o UICE 3280 CASE 2 (OP=.05 CM) VELBCITIES VS, OEPTH .
7 | T e T T { T
a‘/
/ |
« |
-50 — So0i] ¢ ‘
LY v 7
w cor.oc.&/ t
2} .
S _100 l | |
l\ i ::f\';
: * ) .'.:: :4
= 150 — [ — O
[ >} | . Air !
—3 s~
wf I .~:‘.._. -]
=3 Ted
-200 = 4 — _:
\
-250 ¢ J | ) | 1 | ]
-25 0 25 50 75 100 125 150 175 200
DEPTH (cm) 1. 000 MSEC
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t = .600 Seconds for Case 2 (Dp= 0.05 cm).
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Figure 3.24 shows the air overpressure time histories at
various station depths for Case 2. The peak overpressure at a
particular depth is smaller than in Case 1 and also arrives
later.

Figure 3.25 shows the soil velocity time histories at

various station depths for Case 2. Fluidization is indicated by
the increase in velocity at a particular depth above the velocity
of the soil column below that depth. Fluidization at a partic- L
ular depth below the surface occurs at later times for Case 2 R
than for Case 1. Equation 3.2 indicates that the later time
leads to a weaker upward pressure force at that depth for the
fluidized soil in Case 2. At the 5 cm depth station a maximum
upward velocity of -~35 cm/s is achieved at t ~.400 s. This peak
velocity is less than in Case 1 by about a factor of two.
However, the time at which the peak occurs is approximately the
same in both cases.

3.2.3 Case 3 (Dp = 0.05 cm, g = 0)

The effect of gravity on the modeled soil column is examined

in Case 3 by setting g = 0 instead of 980 cm/s’ as used in Cases
1l and 2. A characteristic particle size of diameter Dp = 0.05 cm
is used so that this case compares directly to Case 2. 1In the

absence of gravity there is no initial lithostatic pressure at
- depth in the soil column reguired to support the soil weight

i above that depth. There is only an initial pore air pressure of
1.013 bars (= 1 atm) taken throughout the soil column depth.

Figures 3.26 through 3.31 show the pressure and velocity
distributions for soil and air from times t = .00l s to

t = .600 s for Case 3. Up to t = .100 s the air pressure and the
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Figure 3.26. (a) Soil, Air and Total Stress Versus Depth, and
(b) Soil and Air Velocity Versus Depth at
t = .001 Seconds for Case 3 (Dp=0.05 cm).

92 O

I‘h

................ . -'. - - - - -® . - .~ .\

....................... e T A TN T T T T T T T e e e
............................... P T e e T e et e T e T T e T A

A @ e e Nt iia PR PR PR P PPy e Bt PEVE LY SO STS, P, PR




AD-A154 326 SOIL RIR INTERRCTIDNS DURING RIRBLRST INDUCED GROUND &2
MOTIONSCU> CALIFORNIA RESEARCH AND TECHNOLOGY INC
CHATSWORTH M ROSENBLATT ET RL 91 JAN 82 CRT 34?9F
UNCLASSIFIED DNA-TR-81-183 DNAGB1-81-C-0247




BARAC AR art N NP ¢ e e a2 o he-b o - -
DU T A 1..;- O TR Ty
o . . AR A I I ] S L,

- M TR a4 DA N L LW 2 ls

s
e 1
+
d
-
1

3 . ._

L]
. “
) ]
o
ht :
* L
a - '
P, o
' ’
3 ;
A . ¥
— -
v\n
.
L)
4
)
e
4

3 K EEFE

. Rl o ~m - 3
- K EEFEFEETH

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

A ot . .* SRS
. . . R A ] .
St @ et e v el e

it e e e B bt it al it comimiildonsiatiabito




L T AL AN B e e i ave -

CALIFORNIA RESERRCH 8ND TECHNOLCGY. INC.
DICE 3280 CRSE 3 1DP=.05 CM . G=0) PRESSURES VS. DEPTH
C= B SRy

(a)

e
)

‘ I R A R 1 R 1
7.0 — —
, Total .
8-0 ‘f_" . — 3
a \ A- !".-'
ES-O {_._ X 1r ...‘.‘.lll".' lllll Psedsstosr o I‘..‘.“lll‘."l: :_:‘.;:‘:.
E 4.0 — . _.“ —
& \/ 0
n 3.0 — '.' - L
& A\ wie
o, .' . :_.

g
o
]

o
]

.
,‘\SO'i] \.—-‘——u » . . . . ¢-—-—1

|

i

! l ]
I R IR N G N SR S i
0 0 S

4]
25 50 75 160 125 180 175 2

=25

OICE 3280 CASE 3 10P=.05 CM . G=05  VELGBCITIES VS. DEPTH

(b) 0 AN He B S R B

|

Soil i

_ “50 — --..---no--c--.y... - . . -"«07-1,

vyt 1

¢ ! |

-100 ~ .

5 / |

. j |

— -150 — \Air ; _
) s
o A i
> v o
~200 - n -
-25 0 25 50 75 1006 125 150 175 200 Ll
DEPTH (cm) 49.98 MSEC o

-
.I‘l

o Figure 3.27. (a) Soil, Air and Total Stress Versus Depth, and
o (b) Soil and Air Velocity Versus Depth at e
S t = .050 Seconds for Case 3 (Dp=0.05 cm). e

%

..............................

e et P e T E o
st e tetet. o el e e

CRUE RSN A R T IR TSP P YN
et et L e Lt as T et e e e e




CALIFOANIR RESERRCH AND TECHNCLCGGY. INC..

BICE 3280 CASE 3 (DP=.05 CM . G=0J PRESSURES VS. DEPTH
(a) Go 0 - T T ’j "] - ‘j. B “7 - "[ '—.[ T
c g Total
' T.
24'0 — \ as s esasoesssesscenssasente ssvsssssae s d '.-'_‘"
& ” \
- Air 3 e
w 3.0 — K — s
é \ RN
g 2.0 — .':\, -~ \!q:
a 3 e
- Soil=s  \ 5
(.0 — s N e, . . i— P “'
0 i | 1 I 1 1
-25 0 25 50 75 100 125 150 {75 240
DICE 3280 CASE 3 DP=.05 CM . G=0J VELGCITIES VS. DEPTH
(b) -20 STy T Ty T TY Y T - Y

|
Soil !

_40 — -.........-.--.....---/-,-. - - - - ow«]
/ |

2
-850 — . .
5 /
=
=4 \ .
-80 — / i
- ) !
'(:; i \ATY‘ /
8 -100 f— \ . —
: .
-120 — \\/ -
-140 ‘. l ! | J Bl 1 J
-25 0 25 50 15 100 125 150 175 200
DEPTH (cm) N.100 SEC
Figure 3.28. (a) Soil, Air and Total Stress Versus Depth, and i X
(b) Soil and Air Velocity Versus Depth at SN
t = .100 Seconds for Case 3 (Dp=0.05 cm). g;-.:::::jx
AR RS
ISR
AR




o R i s it e ause . e

CALIFORN1A BRESEARCH AND TECHNGLEGY. INC,
(a) D1CE 3280 CASE 3 0P=,C5 CM . G=0) PRESSURES VS, BEPTH
L0 ey ey e T T T

w
12
-
1

Total
™~ —

3.0"'—— .
o N\
o5 — Air—s B
lclé2-0r— \ .o". T
oD ! ‘\'.
@ 1.5 — “N\ T
s

1.0 T

0 et L4
-25 0 25 50 75 100 125 150 175 200

(b) o DICE 3280 CASE 3 W0P=.05 CM . G=0J VELOCITIES VS. DEPTH

I e

"
@

{
i

S |
. .\~'..'{
i A
i PR
._ ...l
! : {}:-:\;
. KRS
20 Soil — SRR
L s"t.
J .’....----..----.o-;a-.-.a-?..‘ - . "% WS ¢ SN
.

'

. Ve
\ / i L

\ e/ i
| N/
-60 r_ \\.//. —

(CM/SEC)

S
T

VELGCITY

80 I N N R M
25 0 25 50 75 1006 125 150 175 200
DEPTH (cm) 0.200 SEC

-
, -
-
..
.,
.
-
,
9
-
-
-

A
&

A Figure 3.29. (a) Soil, Air and Total Stress Versus Depth, and
. (b) Soil and Air Velocity Versus Depth at
- t = .200 Seconds for Case 3 (Dp=0.05 cm).

95

L IR AL SR P R T T T T B R T P S N




CALIFORNIA RESEARCH AND TECHNOLGGY.  1NC.

(a) .5 DICE 3280 CASE 3 (DP=.05 CM . G=0J  PRESSURES VS, DEPTH
’ T 1 1 1T T T
2.0 — ]
-~ Total
o ln 5 - S —
- Air-;lu\
us N
g '\a
“n 1.0 — T e
(2]
us
-
a. ey sssess sttt
0.5 - Soil—a." - ]
0 — Al e L L
-25 0 25 50 75 {00 125 t50 175 200
DICE 3280 CASE 3 0P=,05 CM , G=0) VELGCITIES VS. DEPTH
(b) 60 L e e
40 — e : —
. Air
5 vl
& 5,
= 20 — 2 —
5 SOi1—""%
= "
> N,
5 0 -
S \.:."."l'l'lllll'lﬂl.'li‘.wjlwt‘O“'n
E N
-20 — N —
1
-40 l l | l I 1 |
=25 0 25 50 75 100 125 150 175 200
DEPTH (cm) 0.400 SEC
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soil and air velocity distributions are essentially the same as
those of Case 2. The soil pressure differences reflect the
initial lithostatic pressure field imposed in Case 2.

By t = .200 s the soil is fluidized to ~25 cm depth for both
Case 3 and Case 2. For Case 3 the relative velocity between the
air and soil in this region is almost zero, the air being
slightly larger in the upward direction. The relative velocity
is larger for Case 2 due to gravity, which accelerates the soil
downward in the opposite direction from the upward accelerating
air. Internal interaction forces will influence the motion until
there is no relative velocity between the soil and air.

By t = .400 s, the so0il is fluidized to ~75 cm depth for
Case 3 compared to ~70 cm depth for Case 2. The difference
becomes larger with increasing depth because for Case 2, the air
pressure at a particular depth must overcome the initial litho-

static pressure as well as the pressure in the soil resulting e |
from the surface pressure loading before the soil becomes i{aﬁ-
RYANA Y

fluidized. SN
-\ I\ ‘-'

TS

]

The upward velocity of the air in the fluidized region is =

approximately the same for both cases at t = .400 s and

t = .600 s. But again, the relative velocity is larger for Case
2 as gravity acts on the soil. By t = .600 s the soil particles
are in fact moving upward faster than the air for Case 3.

Figure 3.32 shows the air overpressure time histories at
various station depths for Case 3. When compared to Case 2
(Figure 3.23) they appear almost identical. However, for Case 3
the overpressures all fall along the same decay path once the
soil has been fluidized at the various depths. 1In Case 2, each
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Depths for Case 3 (Dp = 0.05 cm).
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successively deeper station required a larger air overpressure to
fluidize the soil, due to the initial lithostatic field.

Figure 3.33 shows the soil velocity time histories at
various station depths for Case 3. The fluidized soil velocities
are larger than in Case 2, again due to the lack of gravity in
Case 3. The peak soil velocity for the 5 cm station depth is
~45 cm/s8 in Case 3 compared to ~35 cm/s in Case 2.

3.2.4 Case 4 (Dp = 0.142 cm, g = 0)

The effect of increased permeability of the soil column
without the effects of gravity is examined in Case 4 by using a
characteristic particle size diameter of Dp = 0.142 cm. For a
given porosity, the permeability model described in Section 2
yields a soil permeability in Case 4 which is over eight times

larger than in Case 3.

Figures 3.34 through 3.39 show the pressure and velocity
distributions for soil and air from time t = .001 s to t = .400 s
for Case 4. The increase in permeability is seen immediately at
t = .001 sec. Air is flowing down through the soil at almost
5000 cm/s compared to ~200 cm/s for Case 3. Air is supporting at
least part of the pressure loading down to ~20 cm depth for Case
4, compared to ~5 cm for Case 3.

By t = .050 s (Figure 3.35) the peak downward velocity of
~450 cm/s is at a depth of 75 cm for Case 4, faster and deeper
than the ~200 cm/s peak at 25 cm depth for Case 3. The air
pressure also indicates the increase in permeation of the soil;

the air is supporting at least part of the pressure loading down
to over 125 cm depth for Case 4, but only to 50 cm for Case 3.
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By t = .100 s pore air pressure has increased to over 175 cm

depth compared to ~75 cm depth for Case 3.

Figure 3.37 shows that by t = .200 s fluidization of the
soil has occurred to ~60 cm depth for Case 4 compared to only
~25 cm depth for Case 3. By t = .300 s Figure 3.38 shows
fluidization down to almost 140 cm depth.

At t = .400 s the entire 200 cm depth column is fluidized in
Case 4, compared to ~70 cm for Case 3. Figure 3.39 shows that
air is supporting the entire load; the entire fluidized column is
moving upward, with peak velocity at the surface of ~190 cm/s for
the air and almost 150 cm/s for the soil particles. For Case 3
both the air and soil is moving upward at ~40 cm/s at the

surface.

Figure 3.40 shows the air overpressure time histories at
various station depths for Case 4. Each station realizes higher
peak air overpressures than in Case 3, and at earlier times. The
larger particle size (and thus increased permeability) in Case 4

allows the air to permeate the soil faster and to greater depths

for the same surface pressure loading. This allows the soil to

be fluidized at earlier times, which is seen in the soil velocity e
time histories in Figure 3.41. Equation 3.2 indicates that the 5£ﬁ;§
earlier time leads to a stronger upward pressure force at that :
depth for the fluidized soil in Case 4. The resulting upward T
soil velocities are over three times larger than calculated in L

Case 3.
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3.3 COMPARISON OF NUMERICAL SIMULATIONS WITH EXPERIMENTS

Although the DICE simulations were not performed in order to
duplicate the laboratory experiments of Zernow et g;.3, qualita-
tive comparisons can be made. Both are one-dimensional in nature
with similar pressure loading characteristics at the soil/sand
surface.

Figure 3.2 shows the observed surface load overpressure time
histories used for the two types of laboratory experiments and
the overpressure loading function used in Cases 1 to 4. While
the initial peak overpressure is 6.89 bars for all three, the
decay in time varies. The exponential decay function used in the
numerical simulation has a decay rate which puts it between the
1.36" diameter orifice experiments and the 1.78" experiments up
to time t = .600 s. The 1.78" experiments have the fastest decay
rate with a positive phase duration of ~.450 s.

In the laboratory experiments, the bottom of the sand column
(~6 ft) was restricted from moving downward. In the numerical
simulation a continuum boundary condition is imposed at the grid
bottom (~200 cm), allowing soil and air to flow through the
bottom. Case 1 showed that the unfluidized soil essentially
moves downward as a rigid body (see Figure 3.17). The fluidized
soil can then be thought of as moving upward relative to the
unfluidized soil.

Figure 3.42a shows the time histories of the positions (or
trace) of various soil marker points for Case 1. These tracer
points move with the local soil velocity at any given time. Up
to t = .200 s there is an apparent uniform downward translation
of the tracer points throughout the column. The actual soil
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surface (represented by the tracer initially at 0 cm depth) is
depressed 7.5 cm by t = .200 s. The depth of fluidization is

40 cm at this time; below 40 cm all tracer points have moved

8.4 cm indicating that the unfluidized soil behaves uniformly at
the modeled depths.

A measure of the fluidized soil motion with respect to the
unfluidized soil can be obtained by measuring the tracer point
positions against the tracer point which started at 175 cm depth
(and remains in essentially unfluidized soil). Figure 3.42b
shows the tracer positions with the adjustment made to all tracer
points. The depth to which significant motion due to fluidiza-
tion occurs is now seen more clearly. The surface tracer point
moves up almost 25 cm with respect to the unfluidized soil; the
tracer point ianitially at 100 cm depth moves up ~2 cm.

Figure 3.43 shows the unadjusted and adjusted surface tracer
point positions versus time for Cases 1 to 4. The same adjust-
ment made in Case 1 is also made in Cases 2 and 3. For Case 4
there was no adjustment made because by t = .400 s the entire
modeled soil column was fluidized. Figure 3.43 reveals the
essential differences between the DICE cases. Increased soil
permeability (due to increased characteristic particle size
diameter) results in larger surface displacements due to the pore
air phenomena. In the absence of gravity (Case 3) there is also
increased surface displacement for a given permeability.

The adjustment of the tracer positions allows comparison of
the relative motion of the fluidized soil in the calculations to
the motion of the soil observed in the experiments. Figure 3.44
compares the surface displacement observed in the experiments
with the adjusted surface positions calculated in Cases 1 and 2.
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CALIFORNIA AESERRCH AND TECHNALAGY, INC,

MAIN SURFACE DISPLACEMENT VS. TIME FOR B-INCH VERTICAL SHACK TUBE
1.36 IN. AND 1.78 1IN, DIAMETER GRIFICE, (ZERNGW ET AL. 1873)

—  (Standard Sand)

! L i l I I 1 |

- DICE Case 1 o
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o ..., -~
e, % 4 ‘l,‘
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- Figure 3.44. Main Surface Displacement Versus Time Observed in

E Experiments (Zernow et al., 1973) and Calculated

5 by DICE (Cases 1 and 2).
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) Case 1 is remarkably similar to the 1.78" test. Both surfaces
start to move upward at t ~.200 s and maintain an approximately
L constant upward velocity until t ~.400 s. By t = .450 s the
1.78" tests no longer have any surface pressure loading (see
Figure 3.2). Since there is no longer a decrease in pressure at
the surface, the upward pressure force is no longer sustained
since the upward moving pore air serves to balance out the pore
air pressure differential. Eventually the sand motion is
dominated by gravity as the air can no longer drag the fluidized
sand with it. By t ~.550 s the sand starts to fall back. On the
other hand, the surface pressure loading in Case 1 is still
decaying with time having not decayed quite as rapidly at the
1.78" experiments up to t ~.400 s. Thus, there is still an
upward pressure force experienced by the air to at least

t ~.600 s.

The surface tracer for Case 2 also started to rise at
£t ~.200 8, but maintained a smaller constant upward velocity to
t ~.500 s. However, the smaller displacements and velocities
compared to Case 1 are indicative of a smaller sustained upward
pressure force resulting from the permeability dependence of the

pore-air phenomena.

The surface displacements for the 1.36" experiments do not
start to rise significantly until nearly t ~.400 s due to the
slower rate of decay of the surface pressure loading than in the
1.78" experiments. However, the 1.36" experiments also exhibit a

constant upward velocity for a substantial length of time due to

the pore-air phenomena. SO

* y ]
e
“ W

Figure 3.45 shows the position of the near-surface marked
sand layers in time for the 1.78" experiments compared to the
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equivalent adjusted soil tracer positions for Case 1. Again,
there are similarities between the two sets of curves. There is
a uniform rise of the near-surface layers beginning after

t = .200 s and continuing beyond t = .400 s. In the 1.78"
experiments the sand starts to move upward more abruptly and
faster than in Case 1, probably due to the more rapid decay rate
of the surface pressure loading. The deeper layers for both
appear to start moving upward at slightly later times than those
at the surface, indicating the downward progression of fluidiza-
tion. After t = .500 s the soil is continuing to rise for Case
1, although decelerating, whereas in the 1.78" tests the sand is
beginning to fall downward due to the end of any surface pressure
loading at t ~.450 s.

Figure 3.46 compares the adjusted near-surface soil tracer
positions of Cases 1 and 2. Evident is the slower rise of the
soil in Case 2. The surface tracers begin to move upward just
after t ~.150 s for both cases, while the tracer originally near
15 cm depth starts moving upward near t ~.200 s for Case 1 and
t ~.300 s for Case 2, indicating a slower downward progression of
fluidization in Case 2.

Figure 3.47 shows the time of fluidization at various depths
for Cases 1 to 4. Fluidization as defined here occurs when the
soil particles are supported entirely by air, i.e., the pressure
associated with the particles supporting each other is zero. For
Case 1 the "fluidization front" moves down through the soil at
~4 m/s. The fluidization front moves more slowly at ~2 m/s for
the less permeable soil modeled in Cases 2 and 3. 1In Case 3, the
soil at a given depth is fluidized earlier than in Case 2 because

there is no initial lithostatic pressure distribution in the soil
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" to be overcome by the air before fluidization occurs. The highly E%&
permeable Case 4 yields a fluidization front velocity of ~7 m/s. e

Some measurements of overpressure time histories were

obtained at selected depths in the sand column for the laboratory }{i

experiments. The available data is summarized in Table 3.1. ;*i

These can be compared with similar data from Cases 1 to 4.

Figure 3.48 shows the calculated peak air overpressures
versus depth for Cases 1 to 4 compared to the observed experi-

:', " St ’." "’

mental data. The more permeable modeled soils (larger particle el

size) allow more air to penetrate to a given depth, yielding ﬁ?

higher overpressures. All cases display an exponential decay Z;
with depth of the peak overpressure related to the decay of the ;?L

surface loading. The less permeable modeled soils yield more %ﬁﬁ

rapid decay rates with depth. The Case 2 and Case 3 curves

indicate that down to 200 cm depth there is essentially no e
gravity dependence on the peak pore-air overpressure attained at ;ﬁ;
a particular depth. ey
o
The 1.36" standard sand tests appear to exhibit a decay in :igf
peak overpressure similar to that of Case 1l; the observed peak ;52
overpressures are slightly lower than calculated for Case 1. The ;?ﬁ

observed peak overpressure for the 1.78" tests at 152 cm depth is i%_
comparatively lower than for the 1.36" standard sand tests at ;;E

146 cm depth. With the more rapid decay (and thus shorter o

duration) of the surface pressure loading for the 1.78" tests, ;T;

less air is forced into the sand column than for the longer -

duration 1.36" tests over an equivalent length of time. Less air .

) will result in lower peak air overpressures at a given depth for ;P?
N sands of equivalent permeability and porosity. o
' :
' o~
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For the same surface pressure loading the peak air over-

pressures are expected to be larger for the more permeable coarse h-;HA'
sand than for the standard sand. At the 146 cm depth this is R
true. The 83 cm depth data point for coarse sand appears to be
anomalous in this regard, and is left unexplained by

Zernow et g;.3

Related to this anomoly could be the drastically reduced
main surface displacement for the coarse sand experiment when Eilﬂfk
compared to the standard sand (see Figure 3.4). The DICE f:‘:LE
calculations assume homogeneous soil mixtures whose perme- '
abilities are determined by the soil porosity and the character-
istic particle size diameter. The calculations showed that
increased permeabilities result in increased surface lofting as
well as higher peak pore-air overpressures at a given depth. In
the coarse sand experiments, however, a breakdown in the homo-
geneous sand lattice during the surface pressure loading or
during subsequent soil expansion could cause relatively large
diameter air channels to develop. This would allow the pore-air
to vent more readily and directly upward through the channels.
Thus, there would be a decrease in the sustained upward internal
force (drag) available to loft the sand upward.

Figure 3.49 shows the calculated peak air overpressure

arrival times versus depth for Cases 1 to 4 and the observed
experimental data from Table 3.1. Figure 3.50 compares the times
at which the air overpressure first achieves 10% of its peak at a
particular depth. The more permeable modeled soils allow air to
travel faster down through the soil, yielding earlier arrival
times for both the peak overpressure and 10% level. The slope of
the peak arrival time versus depth for each case is remarkably
similar to those in Figure 3.47 which shows the soil fluidization
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gi time versus depth. For Case 1 the peak air overpressure appears
.. to move down through the soil at ~4 m/s. The less permeable .
f{ soils of Cases 2 and 3 yield ~2 m/s, while the highly permeable e
:: Case 4 yields ~6 to 7 m/s. For each case there is also a delay 3 ﬁ
ii of ~.080 to .120 s after the arrival of the peak overpressure at ;i;f
a given depth until soil fluidization begins at that depth. The L -
L 1.36" experiments also yield earlier arrival times for the more o]
- permeable coarse sand as compared to the standard sand. The data ;ff}
- fall around the curves for Case 1 but the slopes of lines through '.ff
F; the data would indicate faster velocities for the peak over- ;__:
L pressure and 10% level. f"?
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i SECTION 4

“ MISERS BLUFF 11-2
. 4.1 EXPERIMENTAL RESULTS

The MISERS BLUFF I11-2 experiment involved the simultaneous
detonation of six high-explosive charges (120 ton) forming a
hexagon 100 m on a side. Figure 4.1 shows the experimental
configuration and the measurement gauge locations for data used

Ry

in this report. Details of the experiment can be found in
Reference 1.

Figure 4.2 shows the overpressure time history (after
detonation) measured at various azimuthal angles, all 25 m from
the center of the hexagon. Three separate peaks are evident at
each angle, although not as distinct at 0°. The time histories
for the two gauges at 30° and 210° are very similar. By

EBR L e

5 t = .150 s the positive phase has ended for each, and a small
- negative phase is sustained until t ~.400 s.

i Figure 4.3 shows various vertical velocity time histories of
ground motion gauges originally at 0.5 m depth and 25 m radius.
The azimuthal angles are different from those for the overpres-

7 sure time histories. Figure 4.4 shows the corresponding vertical
) displacement of each gauge as a function of time. The velocities ;QA;_
) and displacements are very similar for each gauge. Up to tg;;gj

t ~.125 s the ground motion is downward, corresponding to the

airblast pressure load pushing down at the surface. Peak .fffﬁ
) downward velocities are 5 to 10 m/s. From t ~.125 8 to t ~.450 s TQ?;
the ground motion is upward, with peak velocities of ~5 m/s at :
t ~.300 s. Peak upward displacements of ~1 m are achieved. This
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Figure 4.4, Vertical Displacements Measured in MISERS BLUFF [I-2
from Ground Motion Gauges Originally at 0.5 m Depth.
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sustained upward motion is similar to the motion seen in the
laboratory experiments described in Section 3; however, now the
upward velocities are associated with negative pressures. From
t ~.450 s to t ~.850 8 the ground motion is again downward, after
which time the velocities oscillate about zero.

4.2 NUMERICAL SIMULATION

A numerical calculation (Case 5) was performed with the
multiphase DICE code in order to examine the apparent pore-air
phenomenology seen in the ground motion data of MISERS BLUFF
I1-2. The calculation was designed using one-dimensional (1-D)

planar geometry in the vertical direction, with a surface
overpressure loading function defined by an approximation to the

airblast measured at 25 m radius from the center of the array.

Figure 4.5 shows the overpressure loading function used in
Case 5, along with the airblast measured at 30° and 210° for
comparison. There are three distinct peaks which occur in the
loading function before t ~.110 s after detonation; the magni-
tudes are 6.5 bars at t = .045 g, 12.8 bars at t = .063 s, and
7.7 bars at t = .102 s. The measurements showed larger peaks
occurring a couple of milliseconds earlier than the assumed
loading function. A negative phase occurs after t ~.150 s with
overpressures reaching -0.8 bars. By t ~.400 s the overpressure

loading function becomes zero.

Figure 4.6 shows the recommended calculational soil profiles
from Reference 11 developed to characterize the subsurface
layering beneath the 120° and 300° radials of MISERS BLUFF I11-2.

Figure 4.7 shows the same for the single charge event MISERS
BLUFF 11-1, held ~400 m away from event 2. It is this profile
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..
which was used in determining the soil layer thicknesses used in I%ﬂ;
Case 5. —
"
Figure 4.8 shows the 1-D grid used in the calculation. T
Three soil layers are used to model the site. The top soil layer 3&3]
consists of five 0.12 m cells. Each subsequent cell in Layer 2 ;;;'
is 10% larger than the cell above it, down to 7.35 m depth. T
Thereafter the cells are uniform (0.73 m) down through Layer 3. fir
Table 4.1 defines the MISERS BLUFF I1-2 material properties :flf

used to model each of the three soil layers. Each soil layer is
modeled using only one characteristic particle size, which is
estimated from data found in Reference 12. The permeability
model discussed in Section 2.3 yields permeability as a function
-3; of porosity and particle size. The remaining material properties
*f? are from Reference 11. The initial densities increase with
depth, with the corresponding initial porosities decreasing with
depth from 44% to 1%. In addition, hysteresis effects are
included and the modeling is described on Table 4.1. The loading
and unloading constrained moduli for each layer were determined

from the stress-strain curves in Reference 1ll.

The initial modeled permeabilities for Case 5 are much
smaller than in Cases 1 to 4. In Cases 1 to 4 the initial
permeabilities were in the 10° - 10° Darcy range. In Case 5, the

» initial permeabilities are different in each modeled soil layer -
k ~.04 Darcy for the top layer, k ~70 Darcy for Layer 2 and 'f?]
k ~.003 Darcy for Layer 3. One of the results of a decrease in fﬁ{?
permeability was seen in the Case 3 and Case 4 comparison, which tﬁil
demonstrated that the air would permeate the soil slower and to R
shallower depths for the same surface pressure loading and ng
equivalent porosities. In effect, the internal interaction '§$§
137 R
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Figure 4.8. Grid Used for DICE 1-D MISERS BLUFF II-2
Calculation, Case 5.
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forces between the air and soil particles (i.e., drag) are
increased with a decrease in permeability, so that the relative
velocities will be smaller.

Case 5 includes the effects of a uniform gravitational field
(g = 980 cm/sz). This requires an initial lithostatic soil
pressure at depth to support the weight of the total amount of
soil above that depth. The initial pore-air pressure was taken
to be 1 atm, uniform in each layer.

Figure 4.9 to 4.13 shows the pressure and velocity distri-
butions for soil and air from t = .047 s after detonation to
t = .600 s. The first airblast peak (6.5 bars overpressure) in
the loading function occurs at t = .043 s. Figure 4.9 shows that
the relative velocity between the soil and air is essentially
zero, due to the low permeability of the top soil layer. This
contrasts with the large relative velocities seen in Case 1 (see
Figure 3.9) shortly after the initial application of the surface
pressure load. For Case 5, the soil is supporting virtually all
of the overpressure load, except for a small amount supported by
the air which has barely begun to permeate the soil near the

surface.

Figure 4.10 shows that by t = .101 s all modeled soil layers
have been affected by the airblast, which is at its third and
final peak of the positive phase. The soil and air are moving
downward together - almost 1 m/s at the surface and ~0.4 m/s at
13 m depth. At the interfaces between each soil layer (~0.6 m
and ~4.8 m depths) discontinuities in the material properties
cause propagation of reflected/transmitted pressure and velocity
waves.
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(a) Soil, Air and Total Stress Versus Depth, and
(b) Soil and Air Velocity Versus Depth at
.101 Seconds for Case 5 (MBII-2).
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By t = .203 s the airblast is in its negative phase (-0.8 ;4¥$
Hl bar overpressure). Figure 4.11 shows that all of the soil in '5Q‘

Layer 1 and part of Layer 2 (to ~2.0 m depth) is fluidized. The

soil and air are moving upward above ~1 m depth in the soil with

a peak velocity of over 12 m/s at the surface; the surface has S

°®
risen ~0.5 m by this time. T
For DICE Cases 1 to 4, fluidization at depth occurred as a
result of enough air permeating the soil for the pore-air to -
]

support the positive (decaying) overpressure load applied at the
surface. The same effect is achieved when a negative overpres-
sure load is applied, even in the absence of a positive phase.
The negative overpressure permits the pore-air to support the
reduced pressure locad. And, the pore-air expands to reach

pressure equilibrium with the applied surface "underpressure".

By t = .400 s the surface overpressure loading has returned
Lo zero. Figure 4.12 shows an air pressure minimum at ~1 m above
the original ground surface. The resulting pressure gradient
causes downward acceleration for the near-surface material.

Peak downward velocities of almost 5 m/s exist at the surface,

which has been raised almost 2 m above the original surface.
Peak upward velocities of ~7 m/s are present at ~1.0 m above the
original ground surface. The difference in velocities, although
still small, between the soil and air in the 0 to 2 m depth
region occurs in soil Layer 2, where the permeability is 10° -

times larger than in Layer 1.

The surface overpressure load remains at zero after
t = .400 s. Figure 4.13 shows that by t = .600 s the pressure
minimum has moved down to ~1.5 m depth, where the peak upward
velocities are ~2 m/s for the soil and air. A peak downward
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velocity of over 4 m/s is seen at the surface. All of soil
Layer 2 is moving upward at this time; below the interface
between Layer 2 and 3 the velocities are relativey small.

The use of an approximate airblast function based on data

measured in MISERS BLUFF 11-2 permits direct comparison with

measured ground motion data. In Figures 4.14 and 4.15 the SR
velocity and displacement time histories of the tracer point ‘
originally at 0.5 m depth are compared with the ground motion

data measured with the four gauges originally at 0.5 m depth. i,
Phenomenologically the agreement appears good. Up to t ~.150 s o
the calculation and data show downward motion, though the i
calculated motion is not as large as measured. This could he due f
to the smaller peak pressures assumed in the loading function i?i1
(see Figures 4.2 and 4.5). Both curves show a sustained upward L]
velocity (in the negative overpressure phase) from t ~.150 s to i3€ﬁ
t ~.400 s, with the calculated velocities and displacements being :;ig
somewhat larger than measured. After this time the motion is gﬁﬁi
again downward for both. Results from the Case 5 calculation i;?s
indicate the primary role of pore-air phenomena in causing the :Egi
RRRE

sustained upward ground motion data measured in MISERS BLUFF

-2, (==
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