RACK FOR TEMPORARY STORAGE OF 105 MM HEAT AMMUNITION

Philip M. Howe

March 1985

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND
The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.
SUBJECT: Rack for Temporary Storage of 105 mm HEAT Ammunition

See Distribution

1. References:
 a. Ballistic Research Laboratory Special Publication 46 entitled Rack for Temporary Storage of 105 mm HEAT Ammunition by Philip M. Howe, March 1986.
 b. Message from USASC (PESC-PR), Fort Rucker, AL, subject as above, 251500Z November 1985 (NOTAL).
 c. Message, USASC (PESC-PR), Fort Rucker, AL, subject as above, 011745Z May 1986 (NOTAL).

2. In response to reference c, it is recommended that the use of the rack as described in reference a and approved for use in reference b be temporarily suspended.

3. Recent tests by BRL indicate that a modification to the rack and its sandbagging is required to meet the 50-foot criteria for secondary fragments.

4. Detailed descriptions as to what modifications are required will be forthcoming as soon as safety approvals have been granted.

ROBERT B. FREY
Acting Chief
Explosive Effects Branch
SUBJECT: Rack for Temporary Storage of 105 mm HEAT Ammunition

Distribution:
Administrator, Defense Technical Info Center, ATTN: DTIC-DDA, Cameron Station, Alexandria, VA 22314
HQDA (DAMA-ART-M), Washington, DC 20310
Chairman, DOD Explosives Safety Board, ATTN: Dr. T. Zaker, COL O. Westry, Room 856-C, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331
Under Secretary of Defense for Research & Engineering, Department of Defense, Washington, DC 20301
Assistant Secretary of Defense (MRA+L) ATTN: EO&SP, Washington, DC 20301
HQDA (DAMA-CMS-CA/Mr. Lippi), Washington, DC 20310
HQDA (DAMO-NC/GEN R. D. Orton), Washington, DC 20310
HQDA (DAPE-HRS), Washington, DC 20310
HQDA (DCSLOG/Elliot Seard), Washington, DC 20310

Assistant Secretary of Army (I&L), Department of the Army, ATTN: Lewis D. Walker, John Nash, Room 3E606, Pentagon, Washington, DC 20310
Commander, USA Safety Center, ATTN: PESC-Z, Fort Rucker, AL 36360
Commander, US Army Materiel Command, ATTN: AMCDRA-ST, 5001 Eisenhower Avenue, Alexandria, VA 22333-0001
Commander, US Army Materiel Command, ATTN: AMCSF, 5001 Eisenhower Avenue, Alexandria, VA 22333

Director, AMC Field Safety Activity, Charlestown, IN 47111
Commander, Armament R&D Center, US Army AMCCOM, ATTN: SMCAR-TDC, Dover, NJ 07801
Commander, Armament R&D Center, US Army AMCCOM, ATTN: SMCAR-TSS, Dover, NJ 07801
Commander, Armament R&D Center, US Army AMCCOM, ATTN: SMCAR-LCM-SP, Dover, NJ 07801
Commander, Armament R&D Center, US Army AMCCOM, ATTN: SMCAR-IL, Dover, NJ 07801

Commander, US Army Armament, Munitions and Chemical Command, ATTN: SMCAR-ESP-L, Rock Island, IL 61299
Commander, US Army Armament, Munitions and Chemical Command, ATTN: SMCAR-SF, Rock Island, IL 61299
Commander, US Army Aviation Research and Development Command, ATTN: AMSAV-E, 4300 Goodfellow Boulevard, St. Louis, MO 63120
Director, Benet Weapons Laboratory, Armament R&D Center, US Army AMCCOM, ATTN: SMCAR-LCB-TL, Watervliet, NY 12189
Director, US Army Air Mobility Research and Development Laboratory, Ames Research Center, Moffett Field, CA 94035
Commander, US Army Communications-Electronics Command, ATTN: AMSEL-ED, Fort Monmouth, NJ 07703
Commander, US Army Missile Command, ATTN: AMSMI-R, Redstone arsenal, AL 35898
Commander, US Army Missile Command, ATTN: AMSMI-YDL, Redstone Arsenal, AL 35898
Commandant, US Army Missile Munitions Center and School, Redstone Arsenal, AL 35897
SUBJECT: Rack for Temporary Storage of 105 mm HEAT Ammunition

Director, US Army TRADOC Systems Analysis Activity, ATTN: ATAA-SL, White Sands Missile Range, NM 88002
Project Manager, Ammunition Logistics, ATTN: COL P. Greenberg, Mr. G. Goble, Dover, NJ 07801
Commander, US Army Defense Ammo Center & School, ATTN: John Byrd, Savanna, IL 61074
HQ, 8th US Army, ATTN: DJ-AM-SS (McDowell), APO San Francisco 96301
Commander, US Army Europe, ATTN: Chief of Staff, APO New York, NY 09403
Commander, US Army Europe, ATTN: AEAGA-SE, APO New York, NY 09403
Commander, Naval Sea Systems Command, ATTN: SEA 64E (Mr. R. Beauregard), Washington, DC 20362
Commander, Naval Explosive Ordnance Disposal Facility, ATTN: Code 604 (Technical Library), Indian Head, MD 20640
Commander, Naval Surface Weapons Center, ATTN: R15 (J. Ward), Silver Spring, MD 20910
Commander, Fleet Marine Force, Atlantic, ATTN: C-4 (NSAP), Norfolk, VA 23511
Air Force Armament Laboratory, ATTN: AFATL/DLODL, Eglin AFB, FL 32542-5000
AFWL/SUL, Kirtland AFB, NM 87117
Commander, US Army Test and Evaluation Command, ATTN: AMSTE-TO-F, Aberdeen Proving Ground, MD 21005-5055
Director, US Army Human Engineering Laboratory, ATTN: Jack Waugh, Aberdeen Proving Ground, MD 21005-5001
Commander, Chemical Research and Development Command, AMCCOM, ATTN: SMCCR-RSP-A, SMCCR-MU, SMCCR-SPS-IL, Aberdeen Proving Ground, MD 21010-5423
RACK FOR TEMPORARY STORAGE OF 105 MM HEAT AMMUNITION

TITLE: RACK FOR TEMPORARY STORAGE OF 105 MM HEAT AMMUNITION

AUTHOR: PHILIP M. HOWE

PERFORMING ORGANIZATION NAME AND ADDRESS:
US Army Ballistic Research Laboratory
ATTN: AMXBR-TBD
Aberdeen Proving Ground, MD 21005-5066

REPORT DATE: March 1985

NUMBER OF PAGES: 11

DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited.

KEY WORDS: ammunition storage, explosives safety distance, 105 mm ammunition

This special publication describes the construction and use of a rack for the temporary storage of 105 mm tank ammunition in densely populated areas, consistent with explosive safety criteria. The rack, when properly fabricated and barricaded, reduces the blast distance for inhabited buildings and the hazardous fragment distance to 50 feet. Approval for siting must be obtained through channels, from the DOD Explosives Safety Board. It is intended that this document be used for construction guidance and as part of the documentation required for site approval.
I. INTRODUCTION

The purpose of this report is to outline requirements for construction of a rack which can be used for temporary storage of M456 heat ammunition and other 105 mm tank ammunition in congested areas, consistent with DOD explosives safety criteria.

II. BACKGROUND

Reference is made to DOD 6055.9STD, DOD Ammunition and Explosives Safety Standards\(^1\) and AR 385-64, Ammunition and Explosive Safety Standards\(^2\), which implements the Department of Defense Standards. Reference is also made to Ballistic Research Laboratory Memorandum Report entitled "Temporary Tank Ammunition Storage Facility"\(^3\) (in press).

Quantity-distance (Q-D) criteria for storage of conventional ammunition are designed to provide an appropriate level of protection against blast and fragment hazards. Explosives safety distance tables prescribe necessary separations and specify maximum quantities of the various classes of explosives permitted in any one location. These tables reflect acceptable minimum criteria for storage and handling of explosives. Such criteria provide reasonable safety within specified limits compatible with the risks of accidental explosion. Both the DOD 6055.9STD and the AR which implements this standard for Army installations and activities provide the opportunity for reduced hazard distances corresponding to reduced fragment and blast hazards, if it can indeed be demonstrated that the hazards are reduced. The burden of proof is upon the initiating activity to demonstrate an acceptable level of safety, however.

III. RATIONALE

The design of this storage rack was predicated upon the assumption that the rack should control explosion size, thus limiting the maximum credible event to some small fraction of the total stores, and should also control fragment hazards. The rack specified herein limits the maximum credible event to explosion or detonation of one warhead, with a corresponding blast radius (inhabited building distance) of 50 feet. With a 6 inch sand cover (as provided by one layer of sandbags), on the sides and roof, and with front and rear barricades, primary fragments are contained completely, kickouts are reduced to a minimum, and the fragment hazard radius, based upon one hazardous fragment per 600 square feet, is also less than 50 feet. Thus, when 105 mm M456 HEAT ammunition and other nonexplosive conventional antitank ammunition are stored, in their fiber shipping tubes, in the rack, warheads facing to the rear of the rack, the appropriate hazard distance is 50 feet, regardless of the total number of rounds stored at one site.

\(^1\) DOD 6055.9STD, DOD Ammunition and Explosives Safety Standards, July 1984.
\(^2\) AR 385-64, Ammunition and Explosive Safety Standards.
IV. RACK DESCRIPTION

A shop drawing of the rack is shown in Figure 1. The rack consists of a steel frame made of angle iron, welded or bolted together, and steel spacer rods welded or bolted in position to hold the fiber tubes. The depth of the rack should be at least 45 inches deep, so that the complete round is contained within the rack. Spacing between tiers (vertical) must be at least 10 inches. Steel spacers must be positioned as in Figure 1, with separations of 6 inches, center to center, alternating with spacings of 3 inches, center to center. The support rods on 3 inch centers locate the shipping tubes with respect to each other. On the top of the rack, angle iron or rebar roof supports may be welded in place, as in Figure 1. A sheet of corrugated steel or fiberglass can be used as a rain cover and as a support for the sand cover. A sand cover of one sand bag thickness or 6 inches of loose sand is adequate for fragment protection. Note that cinder blocks, bricks, and concrete blocks are not acceptable for this application, as they serve as a source of secondary hazardous fragments. Sides of the structure are to be barricaded with a minimum of 6 inches of sand (one sandbag thickness), with the barrier joining the roof in such a way that continuous fragment protection is provided. If a natural barricade such as a berm or bank is not located behind the rack, then a sand barrier at least 3 feet thick will be placed behind the rack. The barricade may be placed in contact with the rack or it may be placed an arbitrary distance from the rack. If access to the rear of the rack is desired, a walkway space of at least 32 inches between the rack and rear barrier should be provided. In front of the rack, a barricade of sandbags (6 inches thick), cinder blocks, railroad ties, or other materials must be erected to provide protection from kickouts. The distance of this barricade from the front of the rack may be chosen for operational convenience. The minimum height of both the front and rear barricades must be equal to the top of the rack. An additional foot of height is required for both front and rear barricades for each yard of separation. Breadth of the rack is unlimited. The topmost tier of rounds shall not be more than 79 inches center of the round to ground to insure standing functional reach. This results in a round to round surface separation of 3 inches, which is sufficient to prevent round to round propagation of detonation. Significant deviations in design require approval by the DOD Explosives Safety Board. The rack, with sand covers and side barriers in place, is shown in Figure 2a. Several collocated racks are shown in Figure 2b. Note that the hazard radii are still 50 feet for the larger configuration.

V. USE OF THE RACK

The rack may be used to provide temporary storage of 105 mm tank ammunition, provided the rack is configured as described above, the ammunition is stored in the original shipping tubes, and the tubes are placed in the racks such that the warheads face towards the rear of the rack, provided the rack is located in excess of 50 feet from the nearest inhabited building, and provided express approval for siting is obtained from the DOD Explosives Safety Board.
ACKNOWLEDGEMENTS

This work was sponsored by the DOD Explosives Safety Board. The final rack design was engineered by members of the US Army Human Engineering Laboratory's HELFAST Team, led by Mr. John D. Waugh. The shop drawing was prepared by members of the Engineering Design Division, USAHEL.
Figure 1. Rack
Figure 2. (a) Rack with Sand Covers and Side Barriers in Place. (b) Several Collocated Racks.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 12 | Administrator
Defense Technical Info Center
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22314 |
| 1 | HQDA
DAMA-ART-M
Washington, DC 20310 |
| 5 | Chairman
DOD Explosives Safety Board
ATTN: Dr. T. Zaker
COL O. Westry
Room 856-C
Hoffman Bldg 1
2461 Eisenhower Avenue
Alexandria, VA 22331 |
| 1 | Under Secretary of Defense for Research & Engineering
Department of Defense
Washington, DC 20301 |
| 1 | Assistant Secretary of Defense (MRA+L)
ATTN: EO&SP
Washington, DC 20301 |
| 1 | Chief of Research, Development, & Acquisition
Department of the Army
ATTN: DAMA-CMS-CA, Mr. Lippi
Washington, DC 20310 |
| 1 | HQDA (DAMO-NC)
ATTN: COL R. D. Orton
Washington, DC 20310 |
| 1 | HQDA (DCSLOG)
ATTN: Elliot Seard
Room 1D563, Pentagon
Washington, DC 20310 |
| 2 | Assistant Secretary of Army (I&L)
Department of the Army
ATTN: Lewis D. Walker
John Nash
Room 3E606, Pentagon
Washington, DC 20310 |
| 1 | Commander
USA Safety Center
ATTN: PESC-Z
Fort Rucker, AL 36360 |
| 1 | Commander
US Army Materiel Command
ATTN: AMCDRA-ST
5001 Eisenhower Avenue
Alexandria, VA 22333-0001 |
| 1 | Commander
US Army Materiel Command
ATTN: AMCSP
5001 Eisenhower Avenue
Alexandria, VA 22333 |
| 1 | Director
AMC Field Safety Activity
Charlestown, IN 47111 |
| 1 | HQDA (DAPE-HRS)
Washington, DC 20310 |
| 1 | Commander
Armament R&D Center
US Army AMCOM
ATTN: SMCAR-TDC
Dover, NJ 07801 |
| 1 | Commander
Armament R&D Center
US Army AMCOM
ATTN: SMCAR-TSS
Dover, NJ 07801 |
| 1 | Commander
Armament R&D Center
US Army AMCOM
ATTN: SMCAR-LCM-SP
Dover, NJ 07801 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 Commander | Armament R&D Center
US Army AMCCOM
ATTN: SMCAR-IL
Dover, NJ 07801 |
| 1 Commander | US Army Armament, Munitions and Chemical Command
ATTN: SMCAR-ESP-L
Rock Island, IL 61299 |
| 1 Commander | US Army Armament, Munitions and Chemical Command
ATTN: SMCAR-SF
Rock Island, IL 61299 |
| 1 Commander | US Army Aviation Research and Development Command
ATTN: AMSAV-E
4300 Goodfellow Boulevard
St. Louis, MO 63120 |
| 1 Director | Benet Weapons Laboratory
Armament R&D Center
US Army AMCCOM
ATTN: SMCAR-LCB-TL
Watervliet, NY 12189 |
| 1 Director | US Army Air Mobility Research and Development Laboratory
Ames Research Center
Moffett Field, CA 94035 |
| 1 Commander | US Army Communications-Electronics Command
ATTN: AMSSEL-ED
Fort Monmouth, NJ 07703 |
| 1 Commander | Commander
US Army Electronics Research and Development Command
Technical Support Activity
ATTN: DELSD-L
Fort Monmouth, NJ 07703-5301 |
| 1 Commander | US Army Missile Command
ATTN: AMSMI-R
Redstone arsenal, AL 35898 |
| 1 Commander | US Army Missile Command
ATTN: AMSMI-YDL
Redstone arsenal, AL 35898 |
| 1 Commandant | US Army Missile Munitions Center & School
Redstone Arsenal, AL 35897 |
| 1 Commander | US Army Tank Automotive Command
ATTN: AMSTA-TSL
Warren, MI 48090 |
| 1 Director | US Army TRADOC Systems Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002 |
| 2 Project Manager | Ammunition Logistics
ATTN: COL P. Greenberg
Mr. G. Goble
Mr. G. Goble
Dover, NJ 07801 |
| 1 Commandant | US Army Infantry School
ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | Commander US Army Defense Ammo Center & School
ATTN: John Byrd
Savanna, IL 61074 |
| 1 | Commander US Army Development & Employment Agency
ATTN: MODE-TED-SAB
Fort Lewis, WA 98433 |
| 1 | HQ, 8th US Army
ATTN: DJ-AM-SS (McDowell)
APO San Francisco 96301 |
| 1 | Commander US Army Europe
ATTN: Chief of Staff
APO New York, NY 09403 |
| 1 | Commander US Army Europe
ATTN: AEAGA-SE
APO New York, NY 09403 |
| 1 | Commander US Army Europe
ATTN: G-4
APO New York, NY 09403 |
| 1 | Commander Naval Sea Systems Command
ATTN: Mr. R. Beauregard,
SEA 64E
Washington, DC 20362 |
| 1 | Commander Naval Explosive Ordnance Disposal Facility
ATTN: Technical Library,
Code 604
Indian Head, MD 20640 |
| 1 | Commander Naval Surface Weapons Center
ATTN: J. Ward, R15
Silver Spring, MD 20910 |
| 1 | Commander Fleet Marine Force, Atlantic
ATTN: G-4 (NSAP)
Norfolk, VA 23511 |
| 1 | Air Force Armament Laboratory
ATTN: AFATL/DLODL
Eglin AFB, FL 32542-5000 |
| 1 | AFWL/SUL
Kirtland AFB, NM 87117 |
| 1 | Aberdeen Proving Ground
Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen
AMXSY-R, R. Simmons
Cdr, USAICEOM
ATTN: AMSTE-TO-F
Cdr, USAHEL
ATTN: Jack Waugh
Cdr, CRDC, AMCCOM
ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-SPS-IL |
This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number ___________________________ Date of Report ______

2. Date Report Received ____________________________

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Name ___

CURRENT ADDRESS

Organization ___
Address ___
City, State, Zip ___

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name ___

OLD ADDRESS

Organization ___
Address ___
City, State, Zip ___

(Remove this sheet along the perforation, fold as indicated, staple or tape closed, and mail.)