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RESEARCH OBJECTIVES

Numerous studies of the feasibility of applying catalytic combustion to
practical combustion systems have been made in recent years. This work has
been motivated by the potential advantages of high temperature catalytically
assisted combustion over conventional combustion. These studies include the
development of catalytic combustors for aircraft gas turbines [1-6], station-
ary gas turbines [7-12], highway vehicle gas turbines [13-17] and boilers
[11]. Other studies have focused on catalytic combustion of particular fuels
such as methane [18-20], low-BTU gases [9,21], No. 6 oil [22], heavy fuels
[23]) and coal derived liquids [24]. The potential for low conversion of
fuel-bound nitrogen to NOX has also been investigated [22,25-29]. The ad-
vantages of catalytic combustion which have been demonstrated by such stud-
ies include lower emissions, higher efficiency, increased operational
stability, stable operation at lower equivalence ratios, improved pattern
factor and wider fuel specifications. Still other work has been concerned
with catalvst durability [30,31] and with the development of mathematical
models which can be used to interpret experimental data and for combustor
design optimiczation [32-37].

Under typical catalytic combustion operating conditions there are a
number of physical and chemical processes which are important in terms of
the catalytic combustor performance [38-40]. These include axial and radial
convection of species, heat and momentum; axial and radial diffusion of
species, heat and momentum; axial heat transfer in the substrate by conduc-
tion and radiation; gas phase chemical reactions and surface chemical reac-
tions. The overall conversion efficiency of a catalytic combustor under
normal operating conditions is typicii;yrorgis?‘sogggp?fgrg }ri};nvi*tr%%’(‘, {‘%@a#ﬁ?‘wfm
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of the fuel being consumed near the channel entrance by surface reactions
and the remaining fuel being consumed near the channel exit by gas phase
reactions.

Specific studies have been made to elucidate the roles of the various
physical and chemical processes which effect catalytic combustion. For
example, Marteney and Kesten [41] diluted the reacting mixture with argon,
thereby limiting the temperature rise and making the surface reactions dom-
inant., Bruno et al. [42] ran with CO/Oz/inert mixtures and by changing the
inert (NZ’ A, He and CO2 were used) the diffusion characteristics of the flow
field were varied. Hiam et al. [43] and Schwartz et al. [44] have measured
the heterogeneous ignition temperatures as indicated by exothermic surface
Teactions on platinum and palladium filaments exposed to flows of various
hydrocarbon-oxygen mixtures. Ablow et al. [45] theoretically and experimen-
tally studied the relative importance of gas phase and surface reactions for
the case of catalytic combustion in a stagnation point boundary layer, the
advantage being that such a flow field is well understood thus simplifying
the formulation of the mathematical model which was used to interpret the
experimental results.

The objective of this research was to improve our understanding of the
role of catalytic surface reactions in determining the performance character-
istics of practical catalyvtic conbustors. It is generally acknowledged that
under typical fuel lean operating conditions, fuel and oxygen react on the
surface to form water and carbon dioxide and that the resultant heat release
and fuel consumption act to enhance and inhibit, respectively, the downstream

gas phase and surface reactions. Since the competition between these two
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processes is very important in determining the gas phase ignition characteristics
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for flow over a catalytic surface [46], part one of this research was to
experimentally characterize the ignition of lean propane/air mixtures over

a platinum catalyst. Although there had been several theoretical studies of
this process [33, 35, 46-48], prior to this work there had been no experimental
studies. The experiments conducted in this study consisted of measurements

of the catalyst substrate temperature profile and exhaust gas composition
during the transient ignition process that follows the sudden turn on of the
fuel.

The second part of this research was the investigation of the possibility
that intermediate or radical species generated by the catalytic wall reactions
can diffuse into the gas phase boundary layer and homogeneously catalyze the
gas phase reactions. That such an effect may play a role in catalytic com-
bustion is supported by low pressure studies of the oxidation of hydrogen on
platinum where the production of OH was observed above catalyst temperatures
of approximately 800°K [49-51]. It is also interesting that preliminary
results using detailed kinetics for CO/air mixtures at atmospheric pressure
indicate that H202 and HOZ’ present in finite amounts in the same tempera-
ture range, are good candidates as species easily decomposed by platinum to
form OH [52]. That significant OH production occurs at the catalytic wall
under catalytic combustion conditions is also consistent with the experimental
observations of Cattolica and Schefer [53,54] where they found net OH pro-
duction in the boundary layer near the leading edge of a heated platinum
plate in an Hz/air flow. Although the generation of radicals by catalytic
processes and the effect on gas phase reactions has been previously observed
[55], the importance of this phenomenon in catalytic combustion systems had

not been previously studied. Such a phenomenon could be particularly important
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in determining the ignition temperatures, flammability limits, emission

characteristics, sooting behavior and flame stabilization characteristics of
practical catalytic combustors.

The second part of this research was an experimental study of the effect
of surface generated OH radicals during the combustion of propane-air mix-
tures over platinum coated catalysts under catalytic combustion conditions.
In particular, laser induced fluorescence was used to measure OH radical con-
centration immediately downstream of two catalytic plates in a stacked plate
catalyst bed. It is important to realize that the effect of surface gener-
ated radicals should be evaluated under catalytic combustion conditions. This
is because catalytic ignition, combustion and extinction involve the coupling
of chemistry and fluid dynamics through the processes of gaseous convection
and diffusion, substrate conduction and radiation, and gas and surface chem-
ical reactions. It is the relative importance and the interaction of these
phenomena which determine the overall performance characteristics such as

ignition temperature or blowout limit, of a given catalyst-fuel system.




STATUS OF THE RESEARCH

Description of the Experiment

Both the transient measurement and the OH radical measurements were
conducted in the same stacked plate catalytic combustor, which consisted of
nine flat catalytic plates (100 mm long, 50 mm wide, 1 mm thick), spaced
6 mm apart. The catalyst plates (supplied by W. Retallick) were made from
a steel alloy substrate, with an aluminum oxide barrier and an outer coating
of platinum. Six 0.75 mm diameter holes were drilled into the side of the
center piate at six axial locations and chromel-alumel thermocouples were
inserted into these holes fdr measurements of the plate's axial temperature
profile. A combination water cooled, gas sampling and thermcouple probe was
used to obtain gas composition and temperature measurements at the exit of
the catalyst bed. All experiments were with lean propane-air mixtures at
one atmosphere pressure. In the transient experiments the inlet temperature
and velocity were fixed, the fuel was turned on, and the transient response
of the catalyst axial temperature profile and of the exhaust gas temperature
and composition (i.e. carbon monoxide, carbon dioxide, propane, propylene,
ethane, ethylene and methane) were measured at several axial locations along
the length of the catalyst bed. The fuel transient, which was measured under
cold flow conditions with a hot wire anemometer, was less than one second.
The carbon monoxide and carbon dioxide measurements were made using non-
dispersive infrared gas analyzers, which have a characteristic response time
of less than five seconds. The hydrocarbon measurements were made using a
multi-loop gas sample storage system with subsequent analysis by gas chro-
matography. The characteristic response time of the multi-loop gas sample

system was less than ten seconds.
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Optical access was available at several axial locations along the length
of the catalyst bed through ten millimeter diameter windows located on oppo-
site sides of the test section. Based on a similar experiment by Cattolica
and Schefer [53,54], it was anticipated that the OH concentrations would be
large enough for detection by resonance absorption spectroscopy. Under the
conditions of our experiment the OH detection limit using the absorption tech-
nique was about 1016/cc, as compared to equilibrium OH concentrations of about
1013/cc (based on the overall equivalence ratio and the catalyst temperature).
Measurements were attempted in the stacked plate combustor using resonance
absorption and were unsuccessful, implving that the OH concentration was less
than 1016/cc but still possibly greater than the overall equilibrium concen-
tration. In order to extend the OH detection limits it was decided to use
laser induced fluorescence (LIF). Because of the limited optical access with
the stacked plate configuration, it was necessary to use 'forward scatter"
collection. The syatial resolution with this configuration is comparable to
that of the absorption measurements, which is adequate for the two dimensional
flow field between the catalyst plates. The main difficulty with this approach
is in separating the fluorescence from the laser light. The optical config-

uration that has becen successfully used is shown in Figure 1.

BEAM WINDOW WINDOW
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Figure 1. Laser Induced Fluorescence experimental configuration for catalytic
comhustion measurements.
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The absorption transition is v=0 to v=1 at 2820 & and the fluorescence

from v=1 to v=0 at 3090 & is detected. The use of polarization rejection
and a 0.25 meter double monochrometer effectively blocks the laser light.
The detection limit with the "forward scatter' LIF was approximately 1012
The laser used for the OH measurements was a Nd:YAG pumped dye laser
which was frequency doubled to obtain the required ultraviolet wavelengths.
The dyve laser used a diffraction grating at grazing incidence. The
resultant linewidth after frequency doubling was approximately 0.1 cmhl. A
typical OH excitation spectra obtained with this laser system and the "for-
ward scatter” LIF in a methane-air flat flame burner is shown in Figure 2.

The OH concentraticn mecasurements were made with the laser wavelength fixed

on the Q](B) line and a spectrometer slit function of 201,
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Figure 2. OH excitation spectra from methane-air flat flame.
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Transient Measurement Results

The transient response of the substrate temperature profile is shown
in Figures 3 and 4 where it can be seen that the front of the catalyst heats

up first due to heat release by the catalytic surface reactions.
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Figure 5. Substrate temperaturc profile transient: Inlet temperature =
700°K, propane/air equivalence ratio = 0.25,

These reactions however consume fuel and therefore the downstream sections
of the catalyst are exposed to a lower equivalence ratio. The subsequent

heat up of the back of the catlyst is strongly dependent on convective heat
transfer from the front of the catalyst as can be seen by the fact that the

back ~f the catalyst heats up more quickly when the reference velocity is
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Figure 4. Substrate temperature profile transient: Inlet temperaturc =
T00°K, propane/air equivalence ratio = 0.3.

increased from 6 m/s to 10 m/s. The steady state temperature profile appears
to be relatively insensitive to a change in reference velocity from 6 m/s to
10 m/s when the equivalence ratio is 0.3. However, when the equivalence ratio
is lowered to 0.25 this same change in reference velocity has a pronounced
effect on the steady state substrate temperature profile.

The transient exhaust gas composition measurements for the 6 m/s refer-
ence velocity, 700°K inlet temperature, 0.3 equivalence ratio case are shown
in Figures 5 and 6. These measurements were made 25 mm downstream of the

catalyst bed exit. The CO., concentration (Figure 5) is found to increase
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Figure 5. Transient exhaust gas carbon monoxide and carboii dioxide concen-
trations and temperature: Inlet temperature = 700°K, propane/
air equivalencc ratio = 0.3, reference velocity = 6 m/s.
immediately after the fuel is turned on, due to the oxidation of the propane
on the catalyst surface, to a value of 6000 PPM which corresponds to a pro-
pane conversion efficiency of 5%. After this sudden increase in CO2 the
catalyst surface is totally covered and the conversion becomes controlled by
the surface reaction rate. As the surface temperature increases (TC #5) the

surface reaction rate increases resulting in a slow increase in the CO2 emis-

sions. It is not clear from these results when and to what extent the cata-

lyst's performance becomes diffusion controlled before it reaches steady state.
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Figure 6. Transient exhaust gas hyvdrocarbon concentrations: Inlet temper-
ature = 700°K, propane/air equivalence ratio = 0.3, reference
velocity = 6 m/s.

At approximately 550 seconds after the fuel is turned on, CO appears in the
exhaust (Figure 5). The CO concentration increases to a maximum of 5000 PPM
at 800 seconds and then decreases to a steady state level of less than 1000
PPM. The appearance and subsequent disappearance of CO are due to gas phase
reactions, since under these conditions it is well established that propane
oxidizes directly to water and carbon dioxide on platinum catalysts.

The transient hydrocarbon emissions (Figure 6) are consistent with the

explanation for CO and CO, emissions. The propane concentration decreases
P 2 pProp
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without any significant intermediate hydrocarbon concentrations until approx-
imately 500 seconds when the gas temperature becomes sufficiently high for

the gas phase reactions to begin. Once the gas phase reactions begin, some

of the propane breaks down into Cl to C3 hydrocarbons. As the gas tempera-

ture increases, but slightly before the CO peak in Figure 5, the intermediate

hydrocarbon concentrations peak. As the gas temperature increases further

the intermediate hydrocarbons are oxidized to form water and carbon monoxide.
And as shown in Figure 5 the carbon monoxide is then oxidized to form carbon
dioxide. This behavior of the carbon monoxide and intermediate hydrocarbons

is very similar to what has been observed by others in purely gas phase

reactions under nearly identical conditions. Similar even in terms of the

relative concentrations of the intermediate hydrocarbons and the fact that

the hydrocarbons peaks before the carbon monoxide. This similarlity suggests

that there is not a strong or pronounced effect of the surface reactions on
the gas phase reactions.

-

Figure 7 shows the effect of lowering the equivalence ratio to 0.25 on

the transient hydrocarbon emissions. We see the onset of gas phase reactions
as indicated by the rise in the intermediate hydrocarbon concentrations, how-

ever, the reactions do not go to completion and there are significant unburned

hydrocarbon emissions at steady state. This result shows the important role

of gas phase reactions in achieving high combustion efficiency in catalytic

combustors.

The effect of reference velocity on CO and CO2 emission is shown in

Figure 8. As the gas velocity increases the CO2 emissions are found to de-

crease which is primarily due to the shortened residence time. The 3 m/s

and 6 m/s cases show evidence of the onset of gas phase reactions by the
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Figure 7. Transient exhaust gas hvdrocarbon concentrations: Inlet tempera-
ture = 700°K, propane/air equivalence ratio = 0.25, reference
velocity = 6 m/s.
increase in CO emissions at approximately 600 seconds and 300 seconds, respec-
tively. As the gas velocity is increased from 3 m/s to 6 m/s, the convective
heat transfer from the front of the catalyst bed increases causing the gas
phase reactions to begin earlier. However, as the gas velocity is further
increased to 12 m/s the effect of shortened residence time dominates and the
onset of gas phase reactions is not observed. These CO results demonstrate
the valuable insights that can be gained from the transient ignition measure-

ments. Attempting to explain the steady state CO emissions results without

the transient results would have been very difficult.
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OH Measurement Results

no success.
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Attempts were made to detect OH radicals within and at the exit of the
catalyst bed at propane in air equivalence ratios of 0.25 and 0.3, reference
velocities of 3, 6 and 12 m/s, and at inlet temperatures up to 700°K with
It was only by increasing the equivalence ratio to 0.35 at an
inlet temperature of 700°K and reference velocity of 3 m/s that we were able

to detect OH at the exit of the catalyst bed. The transient CO, CO2 and
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hydrocarbon emissions for this case are shown in Figures 9 and 10.
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Figure 9. Transient exhaust gas carbon monoxide and carbon dioxide concen-
trations: Inlet temperature = 700°K, propane/air equivalence
ratio = 0.35, reference velocity = 3 m/s,

As observed previously the occurrence of gas phase reactions is evident by

the peak and subsequent consumption of the intermediate hydrocarbons and

carbon monoxide. The corresponding transient OH concentration measurement

is shown in Figure 11. As has been observed under gas phase conditions the

OH concentration begins to increase in the post-flame region after the dis-

appearance of the intermediate hydrocarbons and carbon monoxide, reaching a

steady state level in the downstream post-flame gases which corresponds to
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Figure 10. Transient exhaust gas hvdrocarbon concentrations: Inlet temper-
ature = 700°K, propane/air equivalence ratio = 0.35, reference

- velocity = 3 m/s.

.

E;; its equilibrium valuc. The LIF measurement from which Figure 11 was obtained
o was calibrated by assuming that the steady state OH concentration was equal
;fz to the equilibrium OH concentration based on the overall equivalence ratio
?i; and the exhaust gas temperature. One notable discrepancy between this result
§;> and the purely gas phase reaction result is the absence of an OH radical

E? overshoot. This suggests the possibility that the platinum catalyst is act-
EE ing as a source of OH radicals, which is very reasonable given the presence
L~

of water and the high surface temperature, and that the steady state OH
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Figure 11. Transient exhaust gas hydroxyl radical concentration: Inlet
temperature = 700°K, propane/air equivalence ratio = 0.35,
reference velocity = 3 m/s.

concentration is actually in excess of the equilibrium concentration. Un-
fortunately independent calibration of the OH measurement requires an absorp-
tion measurement but this was not possible because of the low OH concentra-

tions.
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