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SUMMARY

A simple constitutive law is proposed for the description of a ceramic
composite which undergoes stress induced martensitic transformation. This law
is used in finite element calculations to investigate the shear effect on the
transformation zone near a crack tip. A formula describing the stress
intensity factor change due to the shear contribution of the transformation is
given. Significant loss of toughness is observed in the case of a stationary
crack and is attributed entirely to the shear component of the transfor-
mation. On the contrary, the dilatant part brings about no change. As the
crack grows, the wake of the transformed material left behind the crack
constitutes a source of toughening. This toughening is due to both dilatancy
and shear in the phase change and rises to a maximum level just after a
propagation comparable with the zone height. Finally, it is shown that the
shear component can be important when prediction of the fracture toughness of

the transformation toughened ceramics are made.
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l. INTRODUCTION

Transformation tdughening is one of the mechanisms available to overcome
the inherent brittleness of ceramics. It is a phenomenon applicable to
ceramic matrices 1in which Zirconia (Zr0;) and perhaps some other materials can
be incorporateds To date it has been studied quite thoroughly [1-13].

An optimally-fabricated [13] partially stabilized zirconia (PSZ) is a
two-phase ceramic. Its microstructure [5) at room temperature consists of: a

cubic matrix which is a high solute content Zirconia 'alloy' containing one of

the stabilizers Mg0 Ca0, Y503 or any of the rare earth oxides: and fine

coherent metastable tetragonal precipitates of low solute content Zirconia

phase inside the cubic matrix. The stress induced martensitic transformation
of those metastably retained tetragonal particles to monoclinic symmetry in
the stress field of a crack tip is the mechanism responsible for the enhanced
toughness observed experimentally in PSZ. The phenomenon of transformation
toughening is also observed in the Al;03 and Zr0, system. The pure tetrogonal
2r0, particles are retained metastably in the Al,03 matrix by pressure.

There are two methods of analysis with regard to the phenomenon of
toughening. The first incorporates the energy changes accompanying the
transformation. The second concerns the stress intensity factor (SIF) changes
that take place during transformation.

Quantitative analysis from a continuum mechanies viewpoint, based only on
the dilatational component of the transformation with regard to the SIF
reduction was done first by McMeeking and Evans [19] and Budiansky, Hutchinson
and Lambropoulos [20]). The analysis of the latter workers is based on a
constitutive relation between the mean stress and the dilatation for the

composite ceramic. In both works mentioned, the predicted toughening is

comparable with the experimental data, however, it underestimates them.
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Recently, Lambropoulos [21] has suggested a promising constitutive law

for the composite including both parts of the transformation, dilatant and

B RS

shear. The treatment of the shear effect takes into consideration particle

P

size and orientation. The results predicted for spherical particles are quite

well in agreement with experimental observations but are based on a

transformation zone size and shape estimated from the standard crack tip

singular elastic field. That is, he assumes that the zone shape is the same

l as regions in the unperturbed elastic solution in which the transformation
criterion is met or exceeded. Changes in stress due to the transformation are
not addressed in detail.

' In this paper, we shall study the shear effect's influence on the
enhanced toughness through numerical calculations by means of a simple stress-
strain relation for the composite. The model is based on a constitutive

. relation along the lines introduced by Budiansky et al. [20] and the condition

‘ for transformation is dominated by the dilatational component. When the
hydrostatic stress reaches a critical level, the transformation takes place.

u This model is not entirely satisfactory as the shear effect is bound to

e influence the critical state for transformation. However, we regard this

f{ paper with the critical state determined solely by the hydrostatic stress as a
!; first step towards a complete theory. The analysis is carried out around the
;. crack tip of a long crack which is imbedded in a composite material rich in

gz tetragonal particles whose presence in the matrix is defined by a volume

!' concentration vg. As such, the composite can be modelled as a continuum of

transformable material.

l; In section 2 we discuss some aspects of the shear part of the

! transformation which are helpful in comprehending the nature of the shear

strain that the transforming particles undergo. In section 3 we propose a




congtitutive law for the composite. In section 4 we derive a formula for the

SIF change due to the shear component of the transformation. Based on that
formula, we make first estimates of the shearing contribution to SIF change by
using the transformation zone derived from the unperturbed elastic solution
[19]. 1In section 5 we formulate the boundary value problem for the stationary
crack and solve it by means of the finite element method in section 6. As a
result the transformation zone shape and size are estimated. In section 7 the
estimated zone and the fracture toughness calculations for the stationary and
for the propagating crack are presented. As it has already been proven in the
past, the toughness increase is due to the transformed particles left 1in the
wake of the crack tip. In sections 8 and 9 the discussion associated with the

model results and the closure are presented respectively.

2. STRESS INDUCED TRANSFORMATION

The aim of this section is to introduce basic features of the stress
induced transformation so that the shear component can be understood. The
transformation is martensitic and has been discussed extensively elsewhere
{1,16,17,18]. It involves a change from tetragonal to monoclinic symmetry in
particles in the composite ceramic. 1In the situation of interest to us, the
transformation is induced by critical conditions of stress. A component of
the transformation is a dilatation and if the particles were unconstrained
there would also be a substantial shear contribution. If we assume that the
process is driven by the reduction of free energy [1,7,13] then we deduce that
the shear strain component of the transformation would align itself to
maximize the work done by the loads applied to the particle [7,13]). In

addition, the critical state for transformation would arise just when the

applied loads are capable of delivering sufficient energy to the system to




compensate for the increase in the internal energy [7,13]. This implies a

transformation criterion involving some combination of hydrostatic and
deviatoric stress. This issue has been addressed by Lambropoulos [21].

It has been observed that the situation is more complicated when the
transforming particles are constrained in the composite matrix [12]}. The
particles are capable of twinning or undergoing some similar mode of
deformation during transformation. The twins form in such a way that the
average shear strain after transformation can be quite small compared with the
potential unconstrained shear transformation strain. In addition, the final
strain in the transformed particle differs because of the constraint of the
surrounding matrix. There is not yet a comprehensive theory that accounts for
transformation and twinning. However, it can be hypothesized that the
orientation of the net shear strain that results from transformation and
twinning will be aligned with the maximum shear stress applied by the matrix
to the particle. This will tend to maximize the external energy absorption
during transformation and suggests a critical state for the transformation
based on strain energy. Lambropoulos [21] has developed a constitutive law
for the constrained transformation along the above lines combining the effects
of hydrostatic and deviatoric stress and accounting for dilatational and shear
transformation.

In this paper we shall use a simpler law as a first step towards studying
the interactions of shear transformation with the crack tip. The process will
be considered to take place on a continuum scale and the description of the
constitutive law applies to the composite ceramic. The criterion for
transformation will be taken to be the achievement of a critical average
hydrostatic stress in the composite. This neglects the contribution made by

the shear component to the work absorbed during transformation. However, the
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residual shear strains in constrained transformation particles are known to be
small and the shear strain in an unconstrained composite element would be
correspondingly small. The transformation will involve a deviatoric component
as well as a dilatational contribution. The deviatoric part of the
transformation strain for an unconstrained element of the composite ceramic
will be taken to be proportional to the dilatational component of the
unconstrained transformation. All calculations presented in this paper will
be for plane strain situations. In that case there is a fixed ratio between
the shear strain and the volumetric strain in the transformation. The
orientation of the shear strain will be taken as that of the maximum shear
stress when transformation commences (fig. 1). Once the transformation has
taken place this orientation will be locked in so that changes of direction of
the maximum shear stress will not cause rotation of the shear contribution of
the transformation. i
Finally, the transformation will be supercritical in the terminology of
Budiansky et al. [20]. That is, at critical state, the material transforms
completely without the existence of a partially transformed state. The

details of the counstitutive law are given in the next section.

3. THE CONSTITUTIVE LAW
The transformation of the composite occurs due to the martensitic
transformation of the particles. It takes place when the macroscopic average

stress in the composite is such that

oy - a w

o}
where dm =5 18 the mean stress, o;r is a critical value and °1j is

the macroscopic average stress tensor at a point in the composite.
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The unconstrained transformation strain of the composite is ei§ which
is partly dilatational and partly deviatoric in general. It can be estimated
to be the volume fraction vg of particles in the composite times the
unconstrained transformation strain of the transforming particles less the
deviatoric strain nullified by twinning [20]. The supercriticality of the
transformation implies that there is no transformation as long as oy < ogr
and complete transformation occurs if Um ? d;r « The transformation will be
assumed to be effectively irreversible in the conditions prevailing as
observed in experiment [19]. The amount of the deviatoric strain arising
during transformation is proportional to the amount of dilatation. We will
carry out calculations for a variety of values of this ratio. The principal
axes of the deviatoric strain will be taken to depend on the state of stress
at transformation as discussed below.

The stress which arises [22] in a constrained element of the composite is

T
5 = gkt (Brg T Sin) (2)

where ¢€;4 1s the final strain and 4 4k is the tensor of linear elastic

moduli of the composite material. For an isotropic composite

o,, = 24 (ei

T T
1j T oeyy) P BEy T g0y, (3)

3

where p 1is the shear modulus, B is the bulk modulus, eyy = €14 - %'Ekk 6ij

is the deviatoric strain, 6ij is the Kronecker delta and €’ {g the

dilatational part of the unconstrained transformation of the composite (ET =

T
€kk)
The calculations we have carried out are for plane strain. In this case

T

2z = 0 as there are no macroscopic transverse

€, = 0 and we assume that e

shear strains. As a consequence




———

2 T
= + - = +
o, v(oxx oyy) 3 u(l v) € (4)
where Vv 1s the poisson's ratio. The deviatoric transformation strain can be
written as

T T T
e =-e = - 7—-51029, %—-cosZQ

exy =
where Q 1is the angle between the x-axis and a principal axis of the
transformation shear. Thus, the transformation is determined by 3 parameters
eT, YT and Q. We will assume that Q is coincident with the angle to the
principal axes of shear stress in the macroscopic composite state of stress at
the instant of transformation as shown in fig. l. Calculations are carried

out for a variety of ratios A = yI/eT,

4, ESTIMATES OF THE SHEARING EFFECT AT THE CRACK TIP

Before proceeding to somewhat rigorous numerical calculations, we shall
consider some approximate results for shearing transformation at the crack
tip. The shape of the zone of transformed material at the crack tip is
determined by the interaction of the stresses generated by the applied load
and those generated by constraints on the transformed zone. If we neglect the
latter, we can estimate the zone shape as the locus of points at critical
state in the unperturbed linear elastic solution at the crack tip. This
proves to be quite an accurate estimate of shape for the case of small scale
dilatant transformation [20). As we have approximated the critical state as
one that depends only on hydrostatic stress, the zone shape will be given by
the locus of points of equal hydrostatic stress. We will restrict ourselves

to small scale transformation, so that the stresses of interest are given by

the singular elastic stresses at the crack tip due to the applied load

oo




K

(o] = .

LT (5)

where K, 1is the stress intensity due to the applied loads causing tensile
opening (Mode I) of the tip, (r,8) are polar coordinates measured from the
crack tip and fij is a given function which can be found for example in the
article by Rice [24]. The shape that results for a stationary crack is shown
in fig. 2.

Consider now, the material which transforms inside the zone. If it were
not constrained by the material outside the zone, a certain change of shape
would result. Tractions can be applied to the perimeter of this region of
material to return it exactly to the shape of the zone prior to transfor-
mation. After the material {s inserted into the crack tip location, the
tractions can be removed to give the final state. However, the forces
required to nullify the constraining tractions IF willl produce a change in
the SIF at the crack tip. It is this change of stress intensity AK which is
of interest.

As discussed by McMeeking and Fvans [19] the change of stress intensity

is given by
AR = [ I¢ ¢ h ds (6)
T

where h 1is the weight function [25] whose form is stated in McMeeking and
Evans [19] and used with the assumption that Ei§ is homogeneous in Ar , the
transforming area which has perimeter Sq. We shall consider now
transformations which are inhomogeneous Eig(z). With the area At removed

from constraint of the surrounding area, the displacements and strains [22]

that result will be 2§ and ES respectively due to transformation and self-
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sufficient in general to consider only the effect of very long wakes that
produce an asymptotic value for AK.

For A 1less than 1 the toughness enhancement 1is not as large as that
given by equation (18). 1In table 5 we present the greatest toughness enhance=-
ments found for several A wvalues and the amount of crack advance for which
they were obtained. This table shows that the toughness enhancement gets
larger when X gets larger. It should be mentioned that the values for AK
tend to certain asymptotic values as Aa/w > ® but these are less important
than the maxima prnsented in table 5. Finally, we should mention the facu
that the results of table 5 fit the curve for v = 0.25 of figure 4. This
means that the results taken in section 4 and those after having solved the

boundary value problem of the stationary crack are the same.

Applications

Next, we proceed to see how the maximum toughness enhancement results
compare with the experimental data. We shall consider v = 0.3 even though
our shearing contribution results have beaen taken by considering v = 0.25.
Figure 4 indicates that no significant difference results. In the case of the

A1203 toughened Zirconia whose material and transformation parameters are

[21]: E = 315 GPa, €T = 0.04, w = 107%m, v, = 0.03 one has

i) with purely dilatant transformation
AR = - 1,19 Mpa /m

11) with both parts of the transformation and A = 1
AK = - 1.89 MPa /m

111) Lambropoulos' result (both part of the transformation, spherical

particles and K;. =5 MPa /m)
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based on equation (16). Such "R curves” are those shown in figures 12 and 13
for A =0 and A =1 respectively. Observing those curves and the tables 2
through 4 we deduce that the wake of the transformed material left behind the
propagating crack is a source of fracture toughness enhancement. First,
figure 12 shows that the toughness enhancement found for A = 0 ccincides
with that found by McMeeking and Evans {19]. +(his coincidence becomes more
pronounced for large values of crack advance.

The important result of this paper is the AKg component that behaves as
for examaple figure 13 shows for A = 1. As mentioned previously, the crack
will start to propagate sooner than in the absence of transfcrmation because
AK 1is initially positive due to AKg. As the crack grows, AK diminishes
and eventually becomes negative at about Aa/w = O.l. This means that the
applied loads must be increased to sustain crack growth and in a stiff loading
system the crack will propagate stably under rising load. This will continue

until Aa/w is about 0.7 and the SIF change is then given by

a-v) &

E ET vf Yw

= - 0-35. (23)

This expression represents the toughness enhancement and is larger than that
given by equation (18). After this amount of crack growth, AK 1increases and
so {f the loads are kept constant or increased, the applied K will exceed
Kic+ Thereafter the propagation will become unstable. Thus the maximum
magnitude of AK represented by equation (23) is equivalent to the asymptotic
value of AK due to dilatation alone observed by McMeeking and Evans [19].

It is interesting to note that the asymptotic value of AK due to dilatation

plus shear 1is not the relevant quantity. The useful toughness enhancement is

due to the minimum in the curve for AK at Aa/w = 0.7. Thus it may not be
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been extended to the cases when M\ # 0 .

In contrast with AKp, AKg is not zero and it does depend on the value
of A. In fact, AKg Increases as M 1increases. Equation (16) indicates
that the shearing effect results in fracture toughness reduction because AKS
is positive. This reduction for A =1 1is comparable to the fracture
toughness enhancement in the case of a purely dilatant transformation given by
equation (18) when the crack has advanced Aa = 5w . The AKg results in
table 1 can almost be reproduced by the equation (17) for the respective
values of A. This means that the transformed material and the shearing
contribution do not affect the features of the transformation zone as it is
found from the unperturbed elastic crack tip field. Therefore, the fact that
AKg 1is positive is a consequence of the nature of the equation (16). An
attempt to justify this may be made by regarding the range of the positive
contribution to the integral of equation (16). Since for the stationary crack
Q= %2 , the integral sign depends on the sign of the integrand sin(28).
Hence, it is positive when 6 < %- and negative when 6 > %-. Therefore, it
can be said that the positive contribution comes from a large sector and can
very likely override the negative contribution.

The consequence of the computed AKg values would be that crack
propagation may take place sooner than when there 1s no transformation. This
is because AKg 1is positive for the stationary crack and K, can become
greater than Klé earlier than otherwise. However, this growth is likely to
be stable, a point which 18 elucidated in what follows.

Propagating crack

In order for the crack to advance quasi-statically it is required that

the applied loads K, be such that K, = Klé where KIé is given by

equation (16). Therefore, by knowing AK , we can produce an "R curve” [15]
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zones are developed inside a circle centered at the crack tip whose area is
less than 0.15% of the mesh. Indeed, these numbers fall within the
corresponding length range, set for small scale ylelding condition in the
elastic-plastic fracture analysis by Rice and Tracey [23). 1In addition, the
fact that the displacements of the elements near the perimeter of the domain
(fig. 5) are the unperturbed elastic crack tip field displacements, ensures
the small scale condition too. In figure 9, it can be seen that the zone
taken numerically for A = 0 1is almost identical with that used by McMeeking
and Evans [19] as predicted by Budiansky et al. {20]. This means that the
transformed material does not affect the linear elastic crack tip field given
by equation (5). The same argument applies to the case when A =1 (fig.
11). However, the shearing contribution affects the zone shape especially at
small angles of ©. It is also worth mentioning that the zone height w is
the same for all values of A as shown in table 1.

Consider now the SIF change AKpe It can be deduced from table 1 that
MKp = 0 if we take into account the numerical error involved in the
calculations. Therefore, for A > 0 no AKp 1is observed even though the
zone boundaries differ from that with A = 0, This independence of AKD from
N can be justified by observing equation (13). The sign of the integral
depends on the sign of the cos(%g). The integral is positive for 6 < %- and
negative for o > %-. Thus, the positive contribution to the integral value
comes from a much smaller section than the sector of the negative
contribution. It 1s this wider ranging source of the negative effect which
dominates the integral value. Therefore, the larger range of r for small ©
when A deviates from zero cannot be cause of a significant disturbance of

the final result. This remark has already been made before [19], but only

within the frame of a purely dilatant transformation. The argument now has
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Propagating crack

The crack has been assumed to propagate quasi-statically under the
conditions mentioned in section 4. The SIF change calculations AKp and
AKg were carried out numerically for a given crack advance Aa. The formulae
(13) and (14) were used again. The results are shown in tables 2 through 4.
In figures 12 and 13 the changes AKp and AKg are plotted against the crack
advance Aa for A =0 and A =1 respectively. In table 5 the symptotic,

i.e. the maximum SIF change AK = AKp + AKg 1s shown.

8. DISCUSSION

In this discussion of the results quoted in the previous section, we
shall focus mainly on how the shear component of the transformation influences
the fracture toughness behavior of the material. It should be borne in mind
that the shearing contribution is characterized by the parameter X\ = YT/ET .
Large values of A\ denote large transformation shear strains for a given

volume dilatationm.

Stationary crack

It has been mentioned before that the dilatant part of the transformation
does not affect the material fracture toughness, i.e. ARy = O. Furthermore,
Lambropoulos [21] based on a transformation zone derived from the unperturbed
linear elastic crack tip field, concluded that AKg = 0 too. Our analysis'
predictions are in accord with the above results only as far as AKD is
concerned. Table 1 shows that AKg 1s not zero. However, we have used a
different constitutive law from Lambropoulos.

Before discussing the nature of A4Kp and AKS we should emphasize that

the small scale transformation condition is satisfied. This is because the

RO (TR e L L e e e e T T s e .,-\"""‘\ N R I SR AR T T
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Stationary crack

The transformation zone for A = 0 1is shown in fig. 8. There is no

shearing effect because YT = 0. The asterisks indicate the element
integration stations where the condition for transformation was met. The
transformed zone covers an area only 0.1Z of the mesh. The nodal displace-
ments of the elements near the external boundary of the domain (fig. 5) are
identical within 3 significant figures to the linear elastic ones when
transformation does not take place. The periphery of the transformation zone
is shown in fig. 9. The curve denoted by the letter D is the periphery of the
transformation zone used by McMeeking and Evans [19]. This last zone is given
by r = 'j%: w cos2 (%J where the helght w has been taken to agree with the

3/3
height of the finite element zone.

The transformation zone for A = 1 is shown in fig. 10. The boundary of

the zone is shown in fig. l1 along with the zone used by McMeeking and Evans
as described before. The zones have the same height as the zone for A = 0.
However, its leading front appears to be elongated along the x axis as y + 0
compared to the other zone. As a result, an inflection point is observed.
The zone boundary to the left of this point tends to be concave whereas the
boundary to the right tends to be convex. It is worth noting that this
tendency for elongation increases with increasing values of A. This
observation has been confirmed by the appearance of the zone boundaries that
we generated for intermediate values of A,

The SIF change calculations were carried out numerically by using the

formulae (13) and (14) for the AKp and AKg changes respectively. These

changes are shown in Table 1.
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ig where [C] is the linear elastic stress-strain matrix for plane strain, for the
o
H! composite, {T} 1s the two-dimensional traction vector, {uN} is the nodal
L;: displacements and {ET} is the element transformation strain vector given by
3 2(14v) T _ T
.n I0=2v) € Yy sin2Q

- - 2(l+v) T T

:_ {ET} m € + Y sinZQ (22)

- YT cos2Q
! It is worth noting that the stiffness matrix [K] is independent of the

~ transformation since it involves only the elasticity tensor [C] and the

interpolation matrix [B)}. The same is true for the vector {Fb} . However,
o the quantity (FT} depends on the transformation through {ET} .

An iterative method was used to solve equations (21) as stated in section
i 5. All calculations were carried out for Poisson's ratio v = 0.25. Solutions
were obtained for A equal to 0, 0.25, 0.5, 0.75 and l. Extremely rapid
convergence was achieved with 3 iterations when the computed displacements

were found to converge to within 3 significant figures.

e 7. RESULTS

: In this section we shall discuss the results of the finite element
analysis for the stationary crack problem. We shall also give the SIF changes
?i for both stationary crack and quasi-statically advancing crack deduced through

a model for that case. The shape and features of the transformation zone for

f the propagating crack are determined as discussed in section 4 starting from
:{ the stationary crack zone. However, the stationary crack zone is now the one
;' deduced via the finite element calculations.
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dA = | T1 6u

5&1 dA (20)
S

{ €en Cigia %61y 1987 { ket Ciyrn €1y

Equation (20) illustrates the nonlinearity of the problem. That is, the
second integral on the right hand side can only be determined after the
solution is found. Thus, the solution procedure will involve iteration.
Assuming a solution we determine the transformation zone. Next, we solve the
resulting linear problem arising from equation (20) with the second integral
on the right hand side evaluated and compare the solution with the assumed
one. The process continues until convergence is achieved. The linear elastic

solution can be used to initiate the process with el = 0 i.e. with no

transformed region. This method is addressed in detail in the next section.

6. FINITE ELEMENT CALCULATIONS

The finite element method was used to solve the boundary value problem as
stated in the previous section. The domain (fig. 5) was discretized into 554
4-noded quadrilateral isoparametric elements with 4 integration stations. 1In
figures 6 and 7 the 224 element near tip mesh and the 320 element far field
mesh are shown respectively. The second mesh surrounds the first one. The
fine near tip discretization was used in order to ensure that the
transformation zone is determined fairly reliably. By using the standard
element displacement and strain interpolation matrices [A] and [B]

respectively, we rewrite the governing equation (20) as follows

[K] {uy} = {Fb} + {Fp) (21a)

with [K] = f [B]T [c] [B] 4dA (stiffness matrix) (21b)
A

{Fb} = [ [A]'r {T} ds (applied load vector) (21e)
A

{FT} = (8)T {ET} ds (transformation load vector) (21d)
A
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transformation zone appropriately. This is accomplished by taking into
account the perturbation of the linear elastic crack field induced by the

transformation. This subject is addressed in the next section.

5. THE BOUNDARY VALUE PROBLEM FOR THE STATIONARY CRACK

We are concerned with the stresses and deformations near the tip of a
long crack in plain strain. The body is loaded so that only mode I (tensile
opening mode) stresses arise at the tip. We are concerned with "small scale
transformation” where the transformation zone is confined to a region very
close to the crack tip. This can be achieved by imposing tractions on a
circular boundary far from the tip in agreement with the standard singular
linear elastic solution given by equation (5). Symmetry permits the analysis
to be confined to a semi-circular domain as shown in fig. 5. The crack
surface is traction free and the symmetry line 1s free of shear traction and
displacements normal to the line.

The governing equations in the plane can be stated by the principle of

virtual work in the absence of body forces.
/ o, be . dA = [ Ty bu  ds (19)

where A 1is the area and S 1is the perimeter of the domain, T; the
tractions on S and uy the displacements in A. The symbol & 1indicates
an arbitrary virtual variation of the quantity it precedes. 1In addition the
stresses are related to the strains by the constitutive law given by equation

(2). As a result, the governing equation (19) can be rewritten as follows




8
o
N
E: function of Aa , the amount of crack propagation. The slope versus Aa
f:‘ decreases continuously and the curve appears to approach an asymptote for
i? large values of Aa. At that stage [19,20]
r
o (1-v) &K
T = - 0,22 (18)
i} E € Ve /v
13 To maintain the critical propagation value of K = K;» for the material at
) the crack tip the loads would have to be increased with Aa. This will mean
Ez an apparent higher value of K = K, computed from the applied loads. The
t; material will appear to be toughened as a result.
{T Consider now the shearing contribution to AK. According to our
fi hypothesis, particles enter the transformation zone ahead of the crack and the
% direction of shearing transformation will be determined by the state of stress
| theres We assume still that the stress field is unperturbed by the presence
ii of a zone and so R equals to current value of %ﬂ measured from the crack
.é tip. As the crack propagates by, this value of Q will remain unchanged for
. that particle. Thus all particles on a line parallel to the crack will have
le the same value of Q , except those in the zone created before the crack
fi propagated (fig. 3). The resulting contribution AKg from such a wake zone
: is negative. The maximum of the absolute value of AKg for all N {is
_Eﬁ achieved when the crack propagates 0.5w whereas the maximum of the absolute
:z' value of AKp as found from equation (18), is achieved at Aa = 5w. In
.! ) figure 4 the ratio lAKS|max/|AKDImax is shown plotted against the ratio A.

- As it is seen, the amount of the shearing contribution to the toughening can
become the same as that of the dilatant contribution when A approaches 1.

In conclusion, the importance of the shearing contribution raises the need for

a more rigorous estimation. Therefore, it is required that we compute the

e YO ANE " 1R
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Results for stationary crack

In this case, the transformed zone has a perimeter which is the locus of
points of equal hydrostatic stress. McMeeking and Evans [19] and Budiansky et
al. [20] have shown that AKp = 0 for this case.

As far as the shearing contribution is concerned, Q 1is taken to be the
angle to the principal shearing direction when the material transformed, i.e.
at the edge of the zone then prevailing., The stress state is taken to be the

unperturbed linear crack tip field and thus R = %2 « As a result

(1-v) AK

——T———§—- = 0.15\ 7)
Ee’ v, e

where w 1s the height of the transformation zone as shown in fig. 2, A\ 1is
the ratio YT/ET and v = 0.3, The transformation strain has been rewritten
as vg yg where yg is the unconstrained transformation strain after
twinning for an individual particle.

Equations (16) and (17) indicate that the shearing effect causes fracture
toughness reduction. This reduction becomes larger as A 1increases i.e. the
eT

shear strain YT increases for a given . As a consequence, crack

propagation may occur more readily than in the absence of transformation.

Results for propagating crack

If the crack propagates quasi-statically and there is no reverse
transformation, a wake of transformed material is left along the newly created )
crack surfaces. This wake will be parallel to the crack surfaces if we assume

that the tip propagates at a constant value of XK (fig. 3). The dilatant

contribution to AK due to such a transformed zone has been studied by

McMeeking and Evans [19] and has been found to be a monotonically decreasing
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McMeeking and Evans [19] have shown that

A E €T f - ( A
Ky = ———— r cos T) d (13)

6 YIn (1-v) AT

(X )

where E 1is the Young's modulus. From the form of the weight function h
and g? it can be deduced that
-3
2

T
AKS = 3E ¥ f r cos(2Q - %90 sind® dA (14)
8/_(1-v)A

The fact that cos(%g) is an even function of © allows the integral in
equation (13) to be computed in the region 0 < 8 < n (figures 2,3). The
same argument applies to equation (14) because YT sin® 1is an even function
of ©. That is because both YT and sin® are odd functions of 0.
The SIF change AK 1s related to the applied field K, as follows

Ky = Ky + AK (15)
where K, 1s the S.I.F. that actually describes the crack tip field when the
transformation has taken place. If AK 1is negative equation (15) implies
that the stress intensity at the crack tip is lower than that associated with
the applied loads. In particular, since the crack propagates when K,
becomes equal to the fracture toughness Kjo of the pretransformed material

{14] the apparent fracture toughness Klé is given by

K?C = KIC - &K (16)

If AK 1s negative the material appears to be tougher than the pretransformed

one.
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principle of virtual work
AR =~-f R n, 4
Ai 1§ "§,1 °° (9)
Substitution of (8a) into (9) furnishes
T R _ .S
8K = [ (egy =€y =€) Cojuq By A (10)

Ar

As further noted by Rice (25] Cijka bg,x 1s a stress field in equilibrium
in Ap hbecause h 1is related to the difference between two displacement

fields each possessing equilibrium stress fields. This means that the virtual

work principle can be used to show

R S _ R, .S
| (g3 * ©13) Cijen Pk ¥ = sf ny Cyypn By pluy +uy) ds
T

Ap

=0 due to (8c)

This means that equation (10) is written as

T
AK = £13 Cigen Pok G (11)

Ap

For isotropic material, equation (l1) becomes

AK = AKD + AKS (12a)
where 4K =B [ el h | dA (dilatational contribution)  (12b)
AT ?
AKS = 2n f eT h1 1 dA (shearing contribution) (12¢)
’

o
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constraint within Ap. This will give rise to an elastic stress such that

s S T
903 " Cigka Cra T Sip)
S, =0 in (7
14,1 Ap
S
ni Uij 0 on ST

3 S
S %3
where n 1is the unit outward normal to Sy and © = with x4
- 13,1 bxi
denoting position in a fixed cartesian coordinate system. Tractions are now

applied around Ay producing further displacements BF and strains ER so

that Ay has its original shape prior to transformation. As a result

R R s _.T
91 = Cogr Crn t S T S (8a)
R . =0 in (8b)
14,1 Ay
R, S
ug + uy 0 on ST' (8¢c)

Thus, equation (6) becomes

R
A AK Sf ny cij hj ds
L T

As noted by Rice [25], h can be treated as a displacement and so by the
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AK = - 1,70 MPa /m

iv) experimentally measured value
AK = - 2.4  MPa /m (implies A = 1,7)

For another system whose the parameters are [21]: E = 470 GPa, el = 0,04 w =
5.10'6m, vg = 0.3 one has

1) with purely dilatant transformation
AK = - 3.96 MPa /m

ii) with both parts of the transformation and A = ]
AR = ~ 6.30 MPa Ym

iii) Lanmbropoulos' result (both parts of the transformation, spherical

particles and Kfc = 6 MPa Ym)
OK = - 4,5 MPa /m
iv) experimentally measured value
AK = - 6 MPa Ym (implies A = 0.9)

In the case of the Mg0 partially stabilized Zirconia whose parameters are

[19]: E = 200 GPa, el = 0.058, w = 6.107°m, V¢ = 0.3 one has:

i) with purely dilatant transformation
AK = -0.85 MPa /m

ii) with both parts of the trausformation and A = ]
AK = - 1,35 MPa Ym

111) Lambropoulos' result (both parts of the tranformation, spherical

particles and K;. = 1.97 MPa vm)

AK = - 1,04 MPa vm
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iv) experimentally measured value
AK = - 2,3 MPa Ym (implies A = 3)

The preceding toughness enhancement calculations should be regarded

tentative because of the uncertainties involved in the material parameters.
Nevertheless, it is clear that the predicted toughness Increase may be in
agreement with the experimental data when the shearing contribution is
considered in the transformation mechanism analysis. An important role is
played by the parameter A which determines the amount of the shearing
contribution. We have arbitrarily used 1 because we have no information on
what values may be realistic. Alternately, we can compute a value of X\
necesssary to bring our estimates into agreement with the experimental values.
These are the implied values of X\ 1listed. Some of these values are rather
large. However, the amount of shear strain during transformation is typically
quite large compared to the dilatation. Even if substantial amounts of this
are nullified by twinning, this could still leave values of A of the order

implied.

9. CLOSURE

For further and more elaborate treatment of the shear effect one may need

to incorporate size and particle orientation effects via a more realistic
constitutive law for the composite. This must include a consideration of the
effect of twinning during the transformation. However, our simple
calculations have indicated that shear strain effects may be significant and

that further work on the mechanics of the phenomenon may be profitable.
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TABLE CAPTIONS

Stress intensity factor changes for the stationary crack calculated
by the finite element method.

Stres% intensity factor changes for the propagating crack when
A=y /eT = 0 deduced from the finite element calculations.

Stres§ igtensity factor changes for the propagating crack when
A=y /e" = 0.5 deduced from the finite element calculations.

Stres§ 1¥tensity factor changes for the propagating crack when
A=Yy /e- =1 deduced from the finite element calculations.

Maximum fracture toughness changes achieved after the crack has
advanced quasi-statically.
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Table 1

Stress Intensity Factor Changes for the Stationary Crack

N . (1-v) AKD (1-v) AKS
(zone height) E eT ve v E el ve e
0.00 2.14 -0.0085 0.0000
0.25 2.14 -0.0066 0.0381
0.50 2.14 -0.0066 0.0762
= 0.75 2,14 -0.0049 0.1145
E 1.00 2.14 -0.0049 0.1527
ki AKp = Dilatational SIF change
; AKg = Shearing SIF change
{
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Stress Intensity Factor Changes for the Advancing Crack When A = 0
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Table 2

0.0

0.2

0.5

0.8

2.0

3.0

4.0

5.0

7.0

10.0

15.0

20.0

30.0

(1-v) AKD (1-v) AKS

E eT Ve v E eT Ve /v
-0.0085 0
-0.0780 0
-0.1270 0
-0.1550 0
-0.1723 0
-0.1961 0
-0.2055 0
-0.2097 0
-0.2119 0
-0.2142 0
-0.2157 0
-0.2167 V]
-0.2171 0
-0.2174 0

Dimensionless crack advance

Dilatational SIF change
Shearing SIF change
Total SIF change

E

(1-v) AK

el Ve /w
-0.0085
-0.0780
-0.1270
-0.1550
-0.1723
-0.1961
-0.2055
-0.2097
-0.2119
-0.2142
-0.2157
-0.2167
-0.2171

-0.2174
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Table 3

Stress Intensity Factor Changes for the Advancing Crack When A = 0.5

L TRE Y R YA
S R
. S M

&
L3

;; Aa (1-v) AKy (1-v) 8K (1-v) AK
;i v E eT Ve /v E eT ve /v E eT Ve Jw
ﬂ 0.0 -0.0066 0.0762 0.0695
‘ 0.3 -0.0961 -0.0954 -0.1915
\ 0.6 -0.1362 -0.1057 -0.2419
. 1.0 -0.1656 -0.0860 -0.2516
2.0 -0.1943 -0.0376 -0.2319
3.0 -0.2037 -0.0312 -0.2348
[ 4.0 -0.2079 -0.0298 -0.2377
5.0 ~0.2101 -0.0287 -0.2388
_' 10.0 -0.2139 -0.0268 -0.2407
. 15.0 -0.2149 -0.0258 -0.2406
20.0 -0.2153 -0.0247 ~0.2400
30.0 -0.2156 -0.0230 -0.2386
!I Aa

f: v - Dimensionless crack advance

;ff MK, = Dilatational SIF change

;j 0Kg = Shearing SIF change

i; (AK) = Total SIF change

’

<
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Table 4

the Advancing Crack When A =1

Aa

w

0.0

0.3

0.6

1.0

2.0

3-0

4,0

5.0

10.0

15.0

20.0

30.0

Aa

AKD =
AKS =

AK =

(1-v) AKD

Dimensionless crack advance

Dilatati
Shearing

Total

E eT Ve
-0.0049
-0.0944
-0.1344
-0.1638
-0.1925
-0.2019
-0.2061
-0.2084
-0.2121
-0.2131
-0.2135

-0.,2138

onal

/v

SIF change

SIF change

SIF change

(1-v) AKS

E eT vf /v

0.1527
-0.1904
-0.2110
-0.1718
-0.0744
-0.0620
-0.0592
-0.0570
-0.0532
~0.0512
-0.0492

-0.0455

(1-v) AK
E el ve /v
0.1479
-0.2848
-0.3454
-0.3356
-0.2669
-0,2638
-0.2653
-0.2653
-0.2653
-0.2643
-0.2626

~0.2594
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Table 5

“"Asymptotic” Fracture Toughness Changes for the

Quasi-Statically Advancing Crack

A Aa (1-v) AK
w - T =
E e vf v
0.00 5.0 -0.2119
00 25 3-2 “0.2202
0050 009 _0.2527
0.75 0.8 -002991
1-00 0.7 "0.3494
- YT/eT
Aa
v = Dimensionless crack advance

AK = SIF change

--------------
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Figure Captions

a. Direction Q of the maximum shear stress <

b. Shape change of an unconstrained transforming element. The
shearing direction is along the maximum shear stress direction.

Transformation zone shape based on critical hydrostatic stress
transformation and the unperturbed elastic solution for the
stationary crack. The maximum height w of the zone appears at ¢
= 60°, The shearing direction Q at transformation 1s also
indicated at an arbitrary point (r,0).

Transformation zone shape for the quasi-statically advancing crack.
The flank of the zone is parallel to the crack surface and tangent
to the leading front of the zone at 8 = 60°., The shearing
direction of the newly transforming elements is determined by the
angle Q at the leading front of the zone. The initially
transformed elements retain their own shearing directions.

Comparison of the maximum shearing contribution to the toughness
enhancement with the maximum dilatant contribution. Those
contributlons are derived from a zone shape shown in fig. 3 when
the crack propagated. The zone for the stationary crack is shown
in fige 1. The AKg 1s achieved after Aa = 0.5w whereas the
AKp 1is achieved after 8a = 5w.

Domain and boundary conditions for the boundary value problem for
the stationary crack.

Near tip finite element mesh.

Far field finite element mesh which surrounds the mesh shown in
fig. 6.

Transformation zone for th% stationary crack in the case of purely
dilatant transformation (Y' = 0) derived by solving the boundary
value problem by the finite element method.

Comparison of the zone boundary of fig. 8 with the zone boundary
derived by McMeeking and Evans [19] for the purely dilatational
transformation and marked D. (fig. 2).
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Transformation zone for the stationary crack when the unconstrained
shear transformation strain is equal to the unconstrained volume
dilatation. The zone has been derived by solving the boundary
value problem by the finite element method.

Comparison of the zone boundary of fig. 10 with the zone boundary
derived by McMeeking and Evans [19] for the purely dilatational
transformation (fig. 2) (D).

The R-curve predicted from the stress intensity factor analysis in
the case of purely dilatational transformation.

The R-curve predicted from the stress intensity factor analysis in
the case when the unconstrained shear transformation strain is
equal to the unconstrained volume dilatation.
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SUMMARY

A continuum mechanics description, of the phenomenon of stress induced
microcracking has been used to study the near tip stress and strain fields and
the size and shape of a small scale damaged zone for a stationary mode I crack
in an elastic body. The material model 1is characterized by a microcracking
criterion, which 1s an extension and simplification of the generalized
microcracking criterion proposed by Fu and Evans [10] for the case of thermal
stress—induced microcracking. That together with approximate expressions
relating the effective composite moduli to the elastic properties of the
brittle material, via the microcrack density € first introduced by Budiansky
and O'Connell [1], yield a self consistent approach to the stress induced
microcracking phenomenon.

The microcrack density was found to characterize thr-e regions of
interest. In the outer region the microcrack density 1is zero and the stress
and strain fields are purely those for 1linear elastic deformation. This
elastic field constrains the microcracking deformation which in combination
with material weakening due to microcracking causes stress relaxation in a
region of intermediate microcracking. Very close to the crack tip the
microcrack density {s saturated and the stress field becomes agalin singular
but with a lower stress 1intensity than would prevall 1in the absence of
microcracking. In the case where very rapid microcracking occurs as the
strain 1s increased, the 1intermediate microcracking zone 1s still present
providing continuity of the strain field and a smooth transition of the stress
field from the purely elastic region to the region with saturated microcrack
density. It appears that the existance of the region of 1intermediate
microcrack density 1is essential to preserving the assumption of a continuum

composite because it helps to avoid any strain and stress discontinuity.
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INTRODUCTION

The self consistent aproach to the stress-induced wmicrocracking of
brittle materials, as already mentioned, 1is based on two major notions. The
notion of a microcracking criterion and that of effective elastic properties
of the microcracked material. The microcracking criterion relates the induced

microcrack density € to the existing stress magnitude. The effective elastic

L properties of the microcracked material are then functions of the 1initial

3
E elastic properties and the microcrack density. Budansky and O0'Connell [1],
2 introduced the microcrack density parameter € given by equation (1)
2
2N A

where N=number of microcracks per unit volume, A is the area of the microcrack
surface and P 1is the perimeter of the microcrack. Using energy balance

considerations and fracture mechan. s analysis they were able to derive

N mathematical expressions relating the effective elastic properties of the
actual state to those of the wunmicrocracked elastic state, through the
microcracking density €. We will make use of the work of Fu and Evans [10] to
construct a microcracking criterion which will relate 1increases 1n the
microcracking density to increases in stress magnitudes. Together with the
self consistent results of Budiansky and O'Connell [1], the microcracking

criterion can be used to develop a constitutive law for the inelastic behavior

et

of a microcracking continuum.

Nur interest is in the development of microcracks near the tips of major

cracks. To study this phenomenon 1in an approximate way, we use the
constitutive law for the microcracking material in finite element rcalculiations

of either plane strain or plane stress deformation near the crack tip. These
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results are relevant to the question of microcrack toughening in brittle
materials. Before we proceed to describe these results we will discuss
briefly some previous work on this prohlem.

Hoagland, et al. [2], proposed a simplified method for estimating the

density of microcracks in the vicinity ¢° a major crack tip. They assume a
set of randomly oriented 1lines, which are the traces of the potential
microcrack planes, and which become microcracks when the stress normal to the
line exceed a critical value. They also assume that the dimension of the
microcracks 1is very much less than the major crack size of the model. 1In
determining the stress intensity, they used the singular elastic stress field
near the crack tip. Later studies done by Evans [3], suggest that the uniform
microcrack density analysis presented by Hoagland et al. is inaccurate because
there is an increased density of microcracks at the higher stress levels,
which more strongly bilases the microcrack density towards the crack tip.

In 1980 Hoagland and Embury [4]), suggested a numerical procedure for
modeling the number and distribution of microcracks around a crack tip, as a
function of the applied stress 1intensity. The procedure accounts
approximately for microcrack-microcrack and microcrack—-crack interactions.
This work 1is actually an extension of their original concept of nucleating
microcracks based on a uniform fracture stress by adding new stress fields,
whenever a new microcrack is nucleated. Although Hoagland and Embury arrived
at some useful conclusions concerning the stress induced microcracking in the
vicinity of a major crack, their results are restricted to a two-dimensional
problem with through thickness microcracks extended along the third
dimension. In contrast to that the theory developed by Budiansky and

0'Connell accounts for microcracks with finite third dimension (i.e.,
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circular, elliptical, etc.) and allows this effect to be introduced in an
approximate way.

A more thorough investigation of the mechanics of microcrack toughening
was carried out by Fu and Evans [10]. 1In their work they established the
basis of a continuum mechanics description of the microcrack toughening
process. The constitutive behavior of the microcrack zone 1s based on the
overall strain response of a microcracking medium, subject to a uniform stress
field. A generalized microcracking criterion for microcracking at facets
subject to general stress 1s proposed. Stress induced microcracking 1is
initiated at a threshold 1load. Above the threshold load, the stress/strain
behavior becomes nonlinear. During unloading, 1linearity resumes and

hysteresis is present, corresponding to dissipation of strain energy.

THE MICROCRACKING CRITERION AND CONSTITUTIVE LAW

Fu and Evans [10] studied the phenomenon of stress induced microcracking
of grain boundary facets, These facets are generally subject to residual
stresses caused by thermal expansion anisotropy of the neighboring grains.
When a high tensile stress 1is applied, favorably orlented facets crack. The
crack is confined to that facet and it takes a much higher stress to cause it
to propagate out of 1its initial grain boundary interface. As a consequence,
the process of microcracking is at least 1initially stable, with a steadily
Increasing stress causing the nucleation of more cracks rather than the
propagation of existing ones.

From experiments and fracture mechanics analysis, Fu and Evans concluded
that a particular facet will crack {f it is larger than a critical size which
depends on the resolved applied stress and the residual stress on the

interface. In this notion is implicit the idea that facets can microcrack due
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to the residual stress alone if the facet exceeds a critical size. Fu and
Evans were able to phrase their results in terms of a parameter £ introduced
by Budiansky and O'Connell [1] to describe microcrack density. When there are
N circular microcracks per unit volume and the microcracks are of uniform
size with radius a then € = Na3. Fu and Evans studied microcracking due to
macroscopically uniform biaxial stress fields (with principal stresses

0120y, 0120, k=02/01). From their analysis and observations, they proposed

€ = k(g)(cl - cC) for o, > o, (2)

where A 1is a parameter that depends on stress state and material properties
but independent of stress magnitude. For example A for k=1 is twice the value
of A for k=0. The parameter € represents the density of mwmicrocracks
introduced by the applied stress that 1is in excess of any initial density.
Thus the microcrack density € increases linearly with stress and does so up to
a saturation level, after which it remains constant. € 1s wunchanged by a
reduction of stress.

We require a criterion for wmicrocracking which can be used in more
general states of multiaxial stress. For this purpose we will modify equation
(2) to become.

if o, >0 (3)

£ = X(cR ~0 R c

C)
where op = /oijoij {s an effective stress, o 1is the critical stress for
microcracking initiation and A is a material constant independent of stress
state. Of course equation (3) only applies when the largest principal stress
is tensile and 1increases monotonically. The criterion (3) 1is somewhat

different from that proposed by Fu and Evans [10]. 1If we take the uniaxial
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stress case with dl =0 as a datum then both criteria give € = ku(c - dc)
where Ku is the value of A from Fu and Evans theory for uniaxial tension. For
equal biaxial tension (01 =0, = 0), Fu and Evans' criterion gives
€ = Zku(o - oc) whereas the one we have proposed leads to ¢ = ku(/ib - cc) .
Thus our criterion shows a reduced rate of microcracking in biaxial tension
compared to the rate suggested by Fu and Evans but microcracking starts at a
lower stress according to our criterion. It can be argued that the microcrack
density in biaxial tension would not be double that for uniaxial stress, since
a given facet cannot be cracked twice. That 1is, unless the families of facets
cracked by each applied stress component are mutually exclusive. However we
are interested mainly in a simple constitutive 1law with appropriate
characteristics for microcracking to illustrate what will occur near major
crack tips. We will develop more exact microcracking laws in future work.

We summarize our microcracking criterion as follows.

For monotonically increasing stress, 1if

%r < % then € =0 Material remains unmicrocracked
% < %% < %y then € = k(cR - dc) The microcrack density {is

increasing linearly with o (4)
og Oy then e = )\(cM - oc) = €y The microcrack density is saturated.
Furthermore € cannot decrease. The stress/strain relation given for a

macroscopic element of material is linear for non-microcracked regions (e=0),
becomes nonlinear for regions with increasing microcrack density 0<e<ey and
again becomes 1linear for fully microcracked regions (¢ = Ep)s During
unloading 1linearity resumes and when material unloads to zero stress no

permanent strains are present as shown in fig. (l).
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It should be noted that the microcrack distribution produced by a
deviatoric applied stress coupled with the residual stress will be
anisotropic. However, Fu and Evans 1sed the isotropic theory of Budiansky and

O'Connell [l] to determine macroscopic moduli for the microcracked material.
that is they used € as if it represented a random distribution of microcracks
rather than an oriented one. We will follow Fu and Evans in this regard to
obtain an approximate continuum theory for microcracking.

We have found that we can approximate Budiansky and O'Connell's results

as follows.

E_v.,_l6, _1
BVl ¢ (3)

where E, v and E; vV are Young's moduli and Poisson's ratio for the material
before and after stress induced microcracking respectively. Note that E and

vV are

defined at constant ¢. Thus the constitutive equation for the
microcracking solid becomes
f+v v
4 “F %1y " E %k 13 (6)

where g is the macroscopic strain, g is the macroscopic stress, 5ij is the
kronecker delta and rules for f are given by equations (3), (4) and (5).

The cunstitutive equation (6) is only wvalid for values of the

microcracking parameter f within the interval I<{f<=, fig (3). This together

with equation (S5) defines the limiting values of the microcracking density €,
0 <e (< %Z (See fig (3)). The upper bound of € with the aid of equation (3)

yield a relation between the critical stresses Oc» Oy and the parameter A

9

fees, 0, - 0. < 7g * {- (See fig (4)).
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FORMULATION OF CRACK TIP PROBLEM

The high stresses near the tip of a long crack will cause microcracking
in the near tip region 1in the material of interest to us, as shown in fig
(5). We will restrict our attention to the situation where the zone of
microcrack damage is very small compared to the body containing the crack. We
will refer to this situation as small scale microcracking. In this case, the
microcrack zone will lie within a reglon of uncracked material. some distance
outside the zone, the stresses will be almost the same as when the material

does not microcrack. When small scale microcracking prevails, these stresses

r

3 will be the singular linear elastic crack tip stresses.

P

? It follows that the plane small scale microcracking problem can be solved
:'.:' by considering a plane region around the crack tip to which are applied
3

boundary tractions given by the linear elastic stress field, i.e.

K

ng Eij(e) (7

nr

where T are the boundary tractions, n is the outward unit normal to the
region boundary, Ky is the mode I (tensile opening mode) stress intensity
factor and (r,®) are polar coordinates originating at the crack tip as shown
in fig (6). The function Z determines the angular distribution of stress and
its form can be found in the article by Rice [23]. The crack surfaces are :
traction free. To ensure small scale wicrocracking, KI must be limited to a

,. ' level low enough that the zone size is small compared to the region for which

the analysis is being carried out

The governing equations of equilibrium and compatibility are enforced

..- through the principle of virtual work
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IA Oy 6e1j dA = JST T, bu, ds (8)
in the absence of body forces, where A is the plane area being analyzed, Sp 1s
the perimeter where tractions are prescribed, y are the displacements and the

symbol & indicates a virtual variation of the quantity following it and the

variation disappears on S - Sy.
The constitutive law for the material has been described in the previous

section. However, we will find it useful to state the following form.

_ - E Eev
3 T Cigk1 Ck1 T EW C13 Y TEWERY ke 013 (9)

where f = ———ng—— and € = €(g) as in equation (3)

ey = [Gaﬁ - v*oYY 6aB] a, B, Yy =1, 2 (10a)
__E v
“ap = v (%ap ¥ T Cyy Cup! (108)

v
where V¥ = %-for plane strain and v* = F+v for plane stress. The governing

equations, together with the appropriate boundary conditions corresponding to
a specified geometry, define a boundary value problem whose solution we will

obtain numerically.

THE FINITE ELEMENT EQUATIONS

The finite element equations can be derived from the principle of virtual

work given by equation (8). Finite element interpolations together with
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equation (8) and the constitutive law (9) and (10.8), give rise to the
nonlinear finite element equations

[k(u )1{u } = {F} (11)
where [k] is the stiffness matrix, {un} the nodal displacement vector and {F}
the force vector. The notation [k(u,)] indicates the dependence of the
stiffness on the nodal displacements due to the nonlinear constitutive law.

In the finite element analysis, a 4 noded quadrilateral isoparametric
element with 4 stations for the integration of stiffness was used. The finite
element equations (11) were solved using an interative method updating the
stiffness matrix in every iteration. The microcracking parameter f was found
to be the root of a sixth order polynomial in f which satisfies the conditions
imposed on f earlier in this work i.e. 1<{f<=, The coefficients of the
polynomial are strain dependent and had to be recomputed in every iteration
[see Appendix II].

To ensure small scale microcracking, the outer radius of the mesh was
chosen to be 15 to 20 times the outer radius of a damaged zone, estimated from

the stresses in the absense of microcracking.

RESULTS

Stress-strain fields

Figs (7) to (8) display the stresses and strains ahead of the crack tip
for various choices of A and €y. A 1is the rate of increase of the microcrack
density with respect to the effective stress and Ey = k(oM-oc) is the
saturation value of the microcrack density.

In the unmicrocracked region, both stresses and strains agree quite
closely with the solution obtained for an unmicrocracked material. The

elastic strain and stress fields constrain the deformation due to

[ R IR Wy PSR R AP R TR o e e T AT L
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microcracking in the damaged zone. The above constraint together with the
weakening of the material in the damaged zone due to microcracking, causes
stress relaxation in the region of intermediate microcracking. Very close to
the crack tip the microcracking density 1s saturated and the stress and strain
fields become singular again. We observe that the amount of stress relaxation
increases with A and it reaches its maximum level for A= =, At this point we
notice the importance of the presence of the zone of intermediate
microcracking, for its presence ensures a smooth transition for both the
strain and stress fields from the outer to the inner asymptotic fields. The
absence of the above region would lead to infinite strain and stress gradients
along the boundary of the fully microcracked material and the unmicrocrack
material [see Appendix 1I]. We also notice that 1in the stress relaxation
region, the effective stress which in our case is the equivalent stress

O = /E;S—EI; is consistent with the microcracking law eq (3), fig (2) that we
used. In the particular case of A= =, Op=0.=1.0 as we expected. 1In this
situation, the partially microcracked zone is like a perfectly plastic zone.
The zone with saturated microcrack density is dominated by microcracking
deformation with larger strains and stresses at lower levels than would

prevail in the absence of microcrackinge.

The shape and size of the transformed zone

A typical microcrack zone is shown in fig. (5). Three characteristic
quantities describing the microcrack zones that we studied were consistently

computed. x_ 1Is the distance along the x axis at which the microcrack zone

m

boundary crosses the x axis. h, denotes the y coordinate of the farthest

point along the y direction to experience microcracking and 6  is the polar

angle corresponding to the same point. The boundary of the inner zone, where
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the microcrack density is saturated is also characterized by the corresponding
quantities xg, hg and 85 fig. (5).

Pig. (9) to fig (9Y) show how the above quantities depend on the second
critical stress oy, for fixed values of o and €y = X(GM-GC) « The size of
the fully microcracked zone is inversely proportional to the value of the
second critical stress Oy. Similarly high saturation values of the microcrack
density yleld small saturation zone. There is an increase in the size of the
above zone in both directions as A increases or Oy decreases. In no case does
the 1inner zone becomes identical with the whole damaged zone because as we
said earlier the existences of a zone of intermediate microcracking is an
essential feature of the microcracking law eq(3). The microcrack zone
boundary depends on the first critical stress odg. For fixed values of both
the first critical stress o and the saturation wmicrocrack density the
microcrack boundary tends to stretch along the x axis while reduction of hy is
observed, as A increases. The angles Gm and 98 corresponding to h, and hg
drop from 78° for small values of A, to 49° as A becomes infinite. Fig (10)
shows microcrack zones obtained through our finite element analysis. Fig (11)
and (12) show the profile of the microcrack density ahead of the crack tip for

various values of oy

Plane stress results

Similar results to those of the plane strain case were obtained for the
plane stress case. The transverse constraint of the plane strain case

produces large transformation zones. the overall response of a microcracking

material was found to be similar for both plane strain and plane stress cases.
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DISCUSSION

Using the concept of the microcrack density € first Iintroduced by
Budiansky and 0'Connell [1] together with a further simplified microcracking
law proposed by Fu and Evans [l0], we establish the basis of a continuum
mechanics description for the phenomenon of stress-induced microcracking in a
brittle polycrystalline composite. With appropriate 1integration of the
constitutive relations we were able to obtain information as to what happens
in the process zone at the vicinity of the crack tip of a major crack under a
mode 1 loading In a material susceptible to microcracking. For appropriate
choices of parameters, the transformation zone, as in the case of small scale
yielding 1in a ductile material, is well contained. The stress and strain
fields exhibiting the characteristics shown 1in fig (7) and (8) are well
behaved. When the first critical stress op and the saturation value
€y are specified, the second critical stress Oy or the variable A\ appearing in
the microcracking law control the rate at which the material microcracks and
affects the stress and strain fields as well as the shape and size of the
transformation zone.

At this point, we have all the necessary tools for a full scale
investigation of the phenomenon of microcracking. Such an investigation
should address the question of the possible effects on material toughening due
to microcracking. Further work 1s necessary to elucidate the nature of the
crack propagation criterion. 1In addition studies done by McMeeking and Evans
(6] and Budiansky et al. (7], suggest that the toughness of certain ceramics
can be substantially enhanced through the controlled use of martensitic
transformation. Faber [9] found that microcracking contributes to the
toughness of Z.0, - ceramics and Fu and Evans [l10] found that stress induced

microcracking enhances the toughness of brittle polycrystalline aggregates.
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The finite element analysis will sgubstantially contribute to a better
understanding of the mechanics of stress induced microcrack toughening in
brittle material. As we saw earlier in our analysis, a zone with saturated
microcrack density always exists. We may be able to treat this zone as being
composed of homogeneous elastic material and use a Griffith criterion for
propagation of the major crack into this zone. McMeeking, in unpublished
work, has shown that the material obeying the constitutive law of eq. (3-6) is
nonlinear hyperelastic. It follows that the J-integral is path independent
throughout the material in both unmicrocracked and microcracked regions. As a
consequence, the energy release rate for the microcracking material will have
the same value as in the noamicrocracking material at the same applied loads.
Thus 1if the critical value for propagation 1is unchanged, then no microcrack
toughening can occur. However, the critical energy release rate for fully
microcracked material may differ from that for the unmicrocracked case. A
simple model of the crack growing from microcrack facet to microcrack facet
suggests that the average critical energy release rate would be less and so
microcrack embrittlement would occur. However, aspects of R-curve type
behavior and more realistic microcracking laws may hold the clue to microcrack
toughening. Some of these issues have been addressed by Faber [9] and we will

consider such issues in the future.
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APPENDIX 1

We consider an element consisting of two dissimilar material

XIS ELE

E, v are the Young modulus and Poisson's ratio for an unmicrocracked material.
E,‘; are the corresponding moduli for a microcracked material.

We require that the material remains coutinuous after deformation. Thus from

equilibrium and compatibility we get the interface conditions

5 =0

XX XX
;;y = eyy interface conditions.
cxy = oxy =0

The constitutive relations for plane elasticity case are

- Bv - vk * =

eaB £ (daB v OYY 6&6 v v Plane strain
unmicrocracked

c =k (e + v¥ e 5 ) vk = _X_.Plane stress
solid af T+v ag (T-2v¥y “yy “ap 1+y

= _ftv = == % =V

eaﬁ - ( ap v OYY 6aB) v 7 Plane strain
microcracked _

T, = -E—-(E' + v* e 5 .)V* =" Plane stress
solid o fHv TTaB ) ggwy YY aB f+v
where f = ———11?;—— , where € is the microcrack density.
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let a MC +T6

B = g, * v+-?—6-(v-l)

Y=- 36 *V
then for plane strain:
a, = a2
6
ag = 2aB - !waz
- a2 _ 22 22,2, 2,12
a, = B2 + 2ay - 8vap + 4v’a % e + el + 5}
2 2 2.2 2 2 2 1.2
= - + - -

' aq 28y - 4v(B 2ay) + 8aBv 2\°E v[(ex+ey) 2\)[ex + ey + 7ny] (8)
[ 2 2 2 20,02, .2 1.2 2
> = - - — -

- a, =y 8vBy + (B” + 2ay)dv (AEv) “[4(e  + e * 2V (e + e,) ]
a, = BByvz - lwyz
E ag = lwzyz
; for plane stress
- o o2
*.: 36 a
‘ 2
b ag = 2aB - 2va
- ) _ 2.2 _42.2,.2 ., 2,12
: a, BS + 2ay - 4vaf + v KE[ex+ey+-2-yxy]
- a, = 2By - 2\;(B2 + 2ay) + Zanz - XzEzv[lte e - Yz ] 9)
-, 3 xy Xy
_ .2 _ 2,02 _ 2, 2 2 1 2

a, =Y 4BYV + vE(B° + 2ay) - (AEv) [ex + ey + 5 ny]

a = ZByvz - Zw2

a = V2Y2 .




Ny T T e W Y LYY

R A A e Sl i o B i

Bl Ao e LRt e Bt bt fSoh Sl B S - L k" A S Tk i

P e R STVYWTF IR TN TV N O TR TR

-18-

APPENDIX I1
The microcracking law given by equation (3) earlier in this paper allow
us to determine the microcrack density € for a given stress state. It is more

16
convenient to determine € or £ = 1/(1 -7 €) for a given strain state.

E

from the constitutive law oij = v [eij + ?:%V ek Gij] @)
we get Op = [0i h ]1/ = —f%- [ei etV 2f-v 5 eikll/2 (2)
3 °13 e I IR PP
then we have the following cases in computing f.
= = = = l =
i) oR(f) < Sc => e =0 = f 6 1. (3)
l -~ =—¢
9
= = = - = = 1
11) oR(f) > UM => € = €y K(UM GC) > f 6 . (4)
l - =—2¢
9 ™M™
111) 9 < aR(f) < °M =€ = k(crR - oc). (5)
substituting ogp from equation (2) in eqn (5) we have
9 1 E 2f-v 2 {2
— (1 =3) =A — [e e + VvV ——— e ]l—KG. (6)
16 f f+v ij 1j (f—2v)2 kk C
which is a sixth order polynomial in f of the form
6 5 4 3 2
a6f + an + akf + a3f + azf + alf ta, 0 (7

whose coefficients are given below.
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stress discontinuity

we allow o = Oy and require

XX
t (f4v)(l-vk)g =
we get (f+v)( ) gy

5 =1l
or 3

yy yy

v
and cyy =f 5 oyy- (£-1) ;7:35 S

strain discontinuity

n T TSy

-17-

e = e

yy yy

(1—v*)cyy+(7*(f+v)-v*(1+v) )0, o

for Plane stress

2
for Plane strain

we allow eyy = eyy and require cxx = cxx
- vk (f+v)(1~2v%) v* 1-v* (f+v)(1- 2v*)
t = - -
we ge €xx [143* (1) (1-2v%) 1_;}] eYY 1= (= (1T-2v%) ©

— f-2v

1 1-v (f—)(£-2v)

Plane strain: e, = ((I—Zv)(l—v) = Veyy ¥ T (T (T=2) ®xx
2
- £f-1 1 f+v
Plane stress: e x = F ( - eyy t T exx)
Notice that for f=1 (unmicrocracked material) cy = dy and e =e ., both

stress and strains are continuous.

for microcracked materials f>1 and

5. < o_ whereas e._ > e, . The strains are larger in the microcracked region

y y XX XX

and the stresses fall to a lower value.
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Stress Intensity Factors for Slightly Kinked,
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SUMMARY

A solutlon 1is presented for the elastic stress intensity factors at the
tips of a slightly kinked, partially closed crack in compression. The solu-
tion is accurate to first order in the deviation of the crack surface from a
straight line and is carried out using perturbation procedures analogous to
those of Banichuk [5], Goldstein and Salganik [6] and Cotterell and Rice [7]
for the problem of an open crack. Comparison with the exact solution indi-
cates that the asymptotic solution 1s accurate for values of the angle between

the straight crack and its out-of-plane kinks up to about 20°,

1. INTRODUCTION

Experiments on glass plates containing pre-existing planar through cracks
oriented at an angle to the direction of the axial compression have revealed
that the relative sliding of the faces of the pre-existing cracks does not
result in co-planar crack growth, but rather produces at the tips of the pre-
existing eracks small tension cracks which deviate at sharp angles from the
sliding plane [1-4]. These experiments are designed to be models for the pro-
pagation of cracks in rocks in compression. In this paper, we are concerned
with the calculation of stress intensity factors at the tips of the kinked
open extensions of a closed sliding through crack. The same method can be
extended to a curved crack with several closed sections. The solution ob~
tained is accurate to first order in the deviation of the crack surface from a
straight line drawn between the kink tips and is carried out using perturba-
tion procedures similar to those used in Refs. [5-9] for the problem of the
open crack. The results can be stated in terms of known solutions for a

single straight crack or a co-linear array of straight cracks.
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A complete solution to the problem of the sliding kinked crack has been
il given by Nemat-Nasser and Horii (3], who used a continuous distribution of
Ff dislocations to model the crack and its kinks. In order to find the stress
:f intensity factors, they solved numerically a singular integral equation for

the dislocation distribution. In contrast, we can avoid the solution of the

singular integral equation by using the results of the asymptotic analysis for

the stress intensity factors. However, the validity of the asymptotic solu-~

tion is limited to small deviations of the crack surface from a straight line.
Comparisons with the exact solution given in Ref. [3] indicate that the first
order solution for the mode I stress intensity factor is accurate for values

of the angle between the straight crack and its out—-of-plane kinks up to about

20°.

2. GENERAL FORMULATION OF THE PROBLEM

2.1 Formulation of the boundary value problem

Consider an infinite plate of a homogeneous, isotropic, linearly elastiec,
brittle solid containing a curved crack on y = A(x) , with its tips at the

g.0 and 0>

@
positions x = ta (Fig. l). A uniform state of stress o, , vy xy

-]

(-]
is applied at infinity, with cyy < 0 and cxy

regarded as positive. The corresponding two-dimensional boundary value

< 0 , where tension is

problem is given by

941,53 = 0

2€ij = “i,j + “j,i in V ’ (l)

o131 = Cijkacrr
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Oy = 01; at infinity, (2)
onn(x, A) = ons(x, A) =0 on the open portions of the crack, (3)

Ons(x, A) = popy, (x, A) on the sliding portions

u;(x, A = u (x, ) of the crack, (4)

where oij s Eq4 and uy are the stress, strain and displacement fields in
the region V occupled by the body, cijkl is the fourth order tensor of the
elastic moduli, San and Onhg Aare the normal and shear tractions at the

crack surface, u, 1s the displacement in the direction normal to the crack

n
surface, p 1is the coefficient of friction, A,i is BA/Oxi and the super-
scripts plus and minus denote the value of the indicated quantity on the upper
and lower surfaces of the crack. Note that the open and sliding portions of

the crack are, in general, not known in advance and their determination be-

comes part of the solution.

2,2 Small-parameter expansion

The essence of the approximation we use is that the solution to the pro-
blem with the curved crack is close, in some sense, to the solution of a
similar problem for a straight crack. In fact, we shall use the solution to

the following problem, involving a flat crack, as the leading or zeroth order

(0) (0)

approximation in our expansion. Let ¢ y £ and 2(0) be such that
(0)
c =0
1,3
(0) _ (0) (0) '
2£1j u gt Uyt in V (5)
(0) (0)
%3 = Ciyeace
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and 13 oij at ianfinity (6)
052)(X. 0) = Oig)(X, 0) =0 on the open portions of the crack, (7)
Uig)(X, 0) = udig)(X, 0) on the sliding portions
u;(x, 0) = u;(x, 0) of the crack, (8)

where V' is the plane with a straight slit lying on the x-axis from =-a
to a . If the slope of the actual crack, A'(x) , has order of magnitude
e << 1 at its largest, then we can seek a perturbation expansion in € for

the solution to the problem of the curved crack, such that

g=gP g vt 9)

g =P gD ot (10)

g =0+ (D yoe?)y (11)
where g(l) » g(l) and g(l) are all 0(e) compared to the leading order

terms. We mention that A'(x) = 0(e) also means that A(x)/a = O(c) , be-
cause A(za) = 0 . What remains now is the finding of the equations and the

(1 () LD

boundary conditions governing ¢ ’ and « We note at this
stage that our approach is identical to that of Cotterell and Rice [7], except
that they addressed the problem of a crack open everywhere. Furthermore, they
found their solutions and expressed their expansions in terms of

Muskhelishvili's [10] complex potentials. We prefer to work in terms of fun-

damental quantities, although it 1is entirely possible that the partially
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closed, slightly curved crack can also be solved by a variation of the complex
variable treatment of Cotterell and Rice [5].

1€))

We return now to the question of finding ¢ y €

(1 Q)

and u « In
order to find the equations and boundary conditions governing g(l) , g(l)
and u(l) , we substitute the expansions (9)-(11) into equations (1)=-(4).
We also use the fact that both A(x) and A'(x) are O0(e) to write
expansions in € for the tractions and displacements on the crack surface y

= A(x) « Using a tensorial transformation, we find that the normal and shear

tractions on the actual crack can be written as

o (x, \) -,i. [0 (xs M) + 0 (x, M)] +

+% [o,,(xs M) =G (x, M]cos20 ~ o (x, Nstn20 ,

ans(x, A) = dxy(x, A)cos28 + %-[oyy(x, A) - dxx(x, A)1sin20 ,

where 8 = A'(x) + 0(e3) +» Then, using a Maclaurin series expansion in ©
for s8in20 and cos20 , we find

Ona(xs ) = Oyu(x, A) = ' (x) oy (x, M) + (%),

Sna(Xs ) = 0y (X, A) 4 A (1) [0y (x, M) = 0py(x, M)] + 0e?y ,

If we now write Maclaurin series expansions in y for Oy, , Oyy and °xy .

the last two equations become

3o (x. 0)
onn(x, A) = ayy(x, 0) - A(x) -—-3—————-- 2A'(x) o (x, 0) + O(e ) . (12)




30 (x, 0)
0% M) = 0 (x, 0) = A(x) —= + A () loy (x, 0) -

ox

2
- Uxx(x, 0)) + 0(e™) , (13)

where we have also used the equilibrium equations bcxy/by = -adxx/bx and
bayy/ay = -aoxy/bx .

In a similar way we can show that
up(x, A) = ug(x, 0) + A(Xegy(x, 0) = A'(uy(x, 0) + oe?) . (14)

Using the expansions (9)-(11), equations (12)-(14) can be written as

(0)
%0 7 (x, 0)
- (0 (1) - xy .
cnn(x, A) Oyy (x, 0) + ny (x, 0) - M(x)

%
- 2h'(x)oig)(x, 0) + 0(e2) , (15)
cns(x, A) = cig)(x, 0) + ci;)(x, 0) - Mx) Egy\‘
+ 2 6{Dx, 0) - ofPx, 01 + 0ty (16)
u (x, A) = u§°)(x, 0) + ugl)(x, 0) + X(x)eig)(x, 0) -
(17)

- K'(x)uio)(x, 0) + oce?y .

Finally, substituting eqmns. (9)=-(11) and (15)-(16) into the boundary value

problem formulated in Section 3.1 (eqns. (1)-(4)), taking into account (5)-(8)
S(l) , E.(l)

and separating zero and first order terms, we find that and

2(1) should be the solution to the following boundary value problem

b e o T
Sl G




.
1,5 = O

ZES) = uﬁ; + ugii in V'

(1)
(1) =C €
cij ijk7kt

oj(_;) =0 at infinity,
ﬁ 05;)(::, 0) =0 on the open portions of the crack,
.’» di;)(x,O) - pdg;)(x,O)H»(x) < [cﬁ’(x,O)-ucig)(x,O)] -
- w(x)[(1+zu2)o§2)(x,o>-a$)(x,o)1 for |x| <a, (21

(D oty - oD ) =
uy (x, 0) uy (x, 0)
" = A (el (2,016 D x,0 11 0 10 P x,0Hu P (x,07)) (22)

on the closed sliding portion of the crack.

-;:: 3, FORMULAE FOR THE STRESS INTENSITY FACTORS

'. Following Cotterell and Rice [7], let w be the angle of the crack tip
at x =a , given by w =A'(a) to first order. The normal (o,,) and shear
(dw) stresses acting along the prolongation of the crack at a small dis-

‘ tance r from the tip at x = a are obtained by setting A = wr + 0(53) =

w(x - a) + 0(53) into equations (15) and (16). So,
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26{(x, 0)

W yy x

¢ = c(o)(x,O)ﬂ»(x-a) -2wci3)(x,0)+di;)(X.O)*O(Cz) >

(0)
00 (x, 0)
g = o(o)(x,O)-w(x—a) xx

(0) (0) (1) 2
ro - xy Bx twlol 7(x,0)-0, T(x,0) 140, "(x,0)+0(e”) .

Then, the stress intensity factors can be calculated as

(0) (D (1) 2
KI = ii3+ (V2rr wa) = KI + KI + 0(e”) , (23)
Ky; = Un, (/27 o) = K(O) + + + 0Ce?) (24
11 m, (V2nr KIIw KII J )
r*O
where Kio) , gg) ’ il) and Kil) are the stress intensity factors for

the zeroth {eqns. (5)-(8)) and first order (eqns. (18)-(22)) problems, and

0)
o0 (x, 0)
R LN

(0)
aaxx (x,0)

(l) = —w/2n lim+{(x-a)3/2 x

Ko + (x-a)llz["x)(x’o) - °)(cg)("’°)]} :
X>a

Using the last two equations and a Williams [l1] expansion for the near

crack tip stress field, we can show that

(D -3 (0

Iw 2 I1 ° (25)
and Kii; 7w Kgo) . (26)
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From the formulation of the first order problem (eqns. (18)-(22)), it is
clear that this can be considered as the superposition of the following two
problems; problem (i) with a prescribed normal displacment and zero shear
traction on the sliding portions of the crack and with the rest of the crack
traction free, and problem (ii) with a prescribed shear traction and zero
normal traction everywhere on the crack face. Thus, knowing the solution of
the zeroth order problem (eqns. (5)-(8)) and having determined the sliding and
(D

open portions of the crack, we can determine from the solution of

problem (i) mentioned above.

(D)

II is concerned, it is obvious that only the prescribed

As far as

shear tractions at the crack surface of problem (ii) mentioned above that have

opposite directions on the upper and lower surfaces of the crack have a non-

( )

zero contribution to K « With the definition
-_ 1 + -
A(x) =5 [A(x, 07) + A(x, 0)] ,

K§i) is known (e.g., [12]) to be

(l) 1 a—(l) a + x
- — Yy S =
“11 /na {adxy (x) a-x &> (27)

where, according to (21),
‘(”(x) - ua“)(x) 1 £ 30w - “0)(x)]

—(0)

-vla+ 253 70 - Fw0 . (28)

On the other hand, it is possible that the stress field of the zeroth order

(0)

1
problem, ¢ » has the characteristic —— elastic singularity at several
/r
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(0)

points in the interval |x| € a ; since derivatives of ¢

o
xy

with respect
to x are involved in the formula for (eqn. (28)), non-integrable
singularities will appear in eqn. (27). To overcome this difficulty, we
assume, for the moment, that the stress components ( )(x, 0) are all

bounded and differentiable with respect to x 1in the interval lxl < a ; this

makes Gi;)(X, 0) also bounded on the crack face. In the case where

5(0)

(x, 0) are singular at some point in the interval le < a , the singu-

ij
larities are removed by replacing Oig)(x, 0) by bounded functions that
reduce continuously to zero (or any other value that makes ( )(x, 0)

ij

continuous) over distances closer than a small distance & to the point where
the singularities appear. Later it is shown that it is possible to let &
tend to zero, i.e., effectively to remove the restriction of bounded and

differentiable ( )(x, 0) .

%13
We return now to the calculation of KI§1) + With the above continuity
assumptions on ig) we can integrate by parts eqn. (28) to find
a
KD = L5 oafa s 2589 -597 4
/Ta -a yy yy xx
(0) —(0) a + x
At ] -
+ [+ 20 @] - WO, )} VEZ dx (29)
a ——
0 0 1 A+ - xA! -
- i (Eix) - pai ) ) zA'(a) - 2 (a F%, (a) : s : dx .
/ra -a y (a - x)

It should be noted that ah(x) + (a-x)A'(a) = g; [ah(x) + (a-x)A'(a)] =0
at x = a , so there 1s no divergence at the upper limit of the second inte-
gral in (29). It can also be seen that an integrable singularity can exist in

_{g)(x) , provided it is not at x = 2a , as was also noted in [7]). Specifi-

cally, in terms of our earlier discussion, & can be shrunk to zero and in
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that limit, the result of equation (29) for K%i) approaches the result

obtained by inserting directly into (29) the singular, actual 3‘0)(x) « Such

ij

considerations, based essentially on the fact that the final result of equa-

0
tion (29) for K%i) contains Eij)(x) only (and not derivatives with respect

to x), allow us to conclude that (29) is valid for all integrable Efg)(x)
(i.e., not necessarily bounded or continuous).

We mention again that part of the solution to our problem is the finding
of the sliding portions of the crack. Having found the sliding portions of
the crack and the solution of the zeroth order problem, we can proceed to

solve the first order problem and use the formulae given in this section to

find the first order correction to the stress intensity factors.

4, THE PROBLEM OF THE KINKED CRACK

A particular case of the curved crack is the kinked crack shown in Fig.

2. The shape of the kinked crack is given by

b
EE:_Z (x + a) for -a<x<-b,
ANx) = mx for lx' <b,
mb (x - a) for b<x < a.
b-a

In this case, w = A'(a) + 0(eJ) = me —+ oedy .

Following our previous discussion, we assume that both m and

mb
- a

are 0(e) , which is equivalent to assuming that A'(x) 1is O0(e) . We

@ -2

yy and oxy

are negative and so, it can be assumed that the portion of the crack in the

mention again that we are concerned with the case where both o

interval |x‘ < b remains closed during the application of the load. Thus,
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the sliding portion of the crack is the 1interval |x| < b and the open por-
tions are the intervals b < 'x' € a . Of course, there is a possibility that
the applied stresses 013 and the orientation of the kinked crack are such
that the whole crack remains closed and does not slide. To check whether this
happens, we can solve the problem assuming that the crack opens in the inter-
val b ¢ IXI < a ; 1f the calculated K; at the tips of the kinks is
negative, the tip of the kinks remain closed and the assumption that the crack

opens in the whole intervals b < 'x' < a 1is 1in error.

4.1 Solution of the zeroth order problem

The zeroth order problem can be considered as the superposition of the
four problems shown in Fig. 3, where F(x) 1s the distribution of the
058)(x, 0) stress component of problem no. l. We note that for problem no. 4
the shear stress on the crack face, cig)(x, 0) = uF(x) , opposes the relative
sliding of the crack faces. The quantities of interest for each of the four
problems mentioned above are given in the following. In the solutions pre-
sented in the rest of this section, conditions of plane strain are assumed; in
order to get the plane stress solutions we simply replace Vv by T+v °

4,1.,1 Problem no. 1

The solution to this problem has been given by Erdogan [5] and is as

follows

@

(0) - vy 2 E(k) _ .27,
9oy (x, 0) S —— [a Ky ~ ] = F(x) , (30)
(b" = x")(a" - x7)

ox, 0) = F(x) ~ 0~ ,
XX yv

|
(e

0(0)(x, 0) =
Xy
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u(o)(x, O+) = u(o)(x, 0) .
x x

e§3)(x, 0%y = e)(,g)(x, 07) for |x| < b ;
and

o{x, 0) = =% for b < |x| <a,

XX Yy

where K(k) and E(k) are the complete elliptic integrals of the first and
2,2
second kind respectively and k = /1 - b"/a" .

Also, the stress intensity factors for this problem are

“/ra
0) _ %y E(k)
S [l_KZkS]’
and Kg?) =0 ,

Problem no. 2 consists of a plane strain tension. The solution to this
‘lem is quite obvious; therefore we proceed to problem no. 3.

4,1.2 Problem no. 3

The solution to this problem is known (e.g., [12]) to be
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Fig.

le Infinite plate containing
2. Infinite plate containing
3. Superposition used in the
4., Superposition used in the
5. Infinite plate containing

overall compression.

6. Stress intensity factor at the tips of the kinked crack shown in Fig.

5 (p = 0.3).
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a curved

a kinked

solution

solution

a kinked

crack.

crack.

of the zeroth order problem.
of the first order problem.

crack ori2onted at 36° to the
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Finally, using eqns. (46), (47) and (51) we find the stress intensity factor

to be

’-(O’m—udm)/ﬁ m k3-(2-v)k2+(l—2v+ZC)k+v
K Xy yy

1 - v : 2‘(2

.'.r"‘" EAN

AR \'*. '.'-" '.

.-.._---’ ,‘1 ~\\_'i
P Sy -._’-..JA. o
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C
2G 1 f X(x) dx

] g—' = >
¢'(z) = Q'(2) = =Ty D it x-z X2’

(52)

where h(x) 1s the function determining the shape of the wedge of length 2b

(see Fig. 4), X(z) = /(a2 - zz)(b2 - zz) and the constant C, 1is determined

from the equation

1 [ { dh ,22 - 2yp? - ¢2) At Jax -

C = ~h(b) .

As discussed in Section 4.2, the shape of the wedge for our problem is

given by

- uo _ 2 _ 2
h(x) =m-2L ¥ {1 -Via -x x| <b . (53)

/az - x2

Substituting (53) into (52) and carrying out the integrations, we find

ma O " g y
(z) Q'(z) =) xy yy
/(2% - a®)(z? - vd)
[ z/z° - b° - ava” - b2 z2 - z/z2 - b2 2va2 + b2
v + - + C]
2 2 2
z - a a 2a
where
¢ -l | k(K> + [(1 + 2vR(K) = 2ECR)Jk + 2
K(k) 2k
8 w/x° - b° - a/a2 - b2 dx
+Vf 2 7 }o
b 2 2
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For a prescribed shear traction oxy(x, 0) along the crack face, it is

known (e.g., [12]) that

a
0'(2) =T (@) = - e [ o (x, ) va® - S X (49)
am V22 - 2% 7@
In our problem
uF(x) for |x| <b,
o__(x, 0) = (50)
Xy 0 for b < |x| <a,

where F(x) 1s defined in eqn. (30). Substituting (49) into (50) and

carrying out the integration we find

0'(z) =Q'(z) = - %-uoy;{[zz - a2 igt;] 1 z } .

/(z2 - az)(z2 - b2) Vz© - a

Finally, using eqns. (46)-(48) and the definition

K; + 1Ky = Um, /2n(x - a) [dyy(x, 0) + icxy(x, 0)] (51)

I
x*a

we find the results shown in Section 4.1.3.

APPENDIX 2
The solution to the problem of the opening of a finite crack by a rigid

wedge has been given by Markuzon [14]. In terms of Muskhelishuili's [10]

complex potentials, the solution is shown to be
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APPENDIX 1

The problem no. 4 in Fig. 3 is formulated in terms of the complex

potentials ¢ and ¢ of Muskhelishvili [10}. The stresses and displacements

can be expressed as

O * Oyy = 2(¢'(z) + ¢'(2)] ,

Ouy " ot Zicxy = 2[z¢"(z) + ¢*'(2)] ,

2(;(ux + :I.uy) = x¢(z) - 20'(z) - ¢(z) ,

where « = 3 - 4v  for plane strain and x = (3 - v)/(1 + v) for plane
stress, the overbar denotes the complex conjugate and prime stands for
differentiation with respect to z = x + 1y

Introducing the analytic function
Q(z) = z6'(z) + ¢(z)
eqns. (43)-(45) can be written as

o * oyy = 2[(¢'(z) + ¢'(2)] ,

Oyy = Opy * 20, = 2{(z - z)¢"(2) - Q(z) - ¢'(2)] ,

26(u, + tu) = k¢(z) - (z - z) $'(z) - Q(z) .

l.;r'

% T s S T s T P R S o
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E; be valid, depend on both 2/c and © . But, roughly speaking, the asymptotic
fQ solution is seen to be accurate for values of 6 up to about 20°, Unfortu-
’%; nately, the values of Kjy for small values of © are not given in Ref. [3];
;35 so, comparisons of the asymptotic result for Kjj with the exact solution

_. were not possible.

6. CLOSURE
A first order solution has been obtained for the stress intensity factors

;fi at the tips of the kinked extension of a sliding crack. The validity of the

: asymptotic solution is limited to kinked cracks with small deviations from

v straightness. There are several situations where this deviation is indeed

= small. As an example, consider the case of a glass plate or a rock block con-
-ﬁl taining several small cracks at different orientations. Under the application
,; of a compressive load, the cracks with an angle to the directfon of compres-
is sion, Y , greater than Yo < tan-l &- will remain closed and only those
'~£ with v <y, can, possibly, slide and propagate. It is also known ([1]-{4})

i that these cracks tend to propagate towards the direction of compression. So,
;: if the coefficient of friction, p , is very high (which makes Ye small) the
:; crack propagation will create kinked cracks with small deviations from

- straightness. For situations like these, the asymptotic results can be used
E? to determine the stress intensity factors and to make predictions for the

éi direction of further propagation. In addition, fatigue due to non-
'. proportional loads can cause the development of cracks that are not straight

~ and are partially closed, although open at the tip. For cases where the
deviation from the straight line is small, the methods devised here can be
used, although a criterion for determining where the closed portions lie would

have to be developed.
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20 L1 (0) , (1) 2
KII KII +7°’KI +Ku + 0(e”) ,

where K%O) . K%g) . K%l) and Kéi) are given in equations (38), (39),

(41) and (42) respectively. Equations (41) and (42) show that Kil) and
Kgi) depend on Poisson's ratio v . This means that they have different
values under plane strain or plane stress conditions. On the other hand, it
is known that, in the absence of body forces, the stress intensity factors for
traction boundary value problems are the same under plane strain or plane
stress conditions and independent of the elastic constants. The reason that
v enters the expressions of the asymptotic solution for the stress intensity
factors is that the displacement field of the zeroth order problem, which
depends on Vv , was used to formulate the first order problem. As a result,
the in-plane components of the first order correction to the stress field and
the corresponding corrections to the stress intensity factors depend on v .
However, numerical calculations of Kgl) and K;i) show that their depen-
dence on Vv 1is very weak and that their values for plane strain and plane
stress conditions are practically indistinguishable, which validates the first
order correction.

Next, we apply our results to the problem of a infinite plate containing
a kinked crack oriented at 36° to the overall compression (Fig. 5). The exact
solution, given in Ref. [3], and the asymptotic results for K; are plotted
in Fig. 6 versus the angle between the straight crack and its out-of-plane
kinks, 8 , for several values of the ratio of the length of the kink, £ , to

the length of the straight crack, ¢ . In general, the region of accuracy of

the asymptotic solution depends on both £/c and & , because the values of

m and w 1in our analysis, which must be small for the asymptotic solution to
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- where

o

e cal{ KOOK> + [(1 + 2V)R(k) = 2E(K) ]k + 2v

N K(k) 2k

- a 42 _+2_.,2_2

‘7:( +va | xY'x b2 a’a b dx .

f?i We proceed now to the calculation of the mode II stress intensity factor
. for the first order problem, K%i) » which can be determined either by solving

problem no. 2 in Fig. 4 or, equivalently, using eqn. (29). We note that

e 0 0 1
- Eix)(X) ’ Eiy)(X) and Eig)(x) all have the characteristic — singularity

L /r

i at x = *b ; but as discussed in Section 3, eqn. (29) for K§i) can still be
used, provided that the singularities are integrable, which is indeed the

20 case. So, using the solution of the zeroth order problem derived in the pre-

vious section and applying eqn. (29), after some lengthy, but straightforward,

integrations we find

ko (1) _ (1) ® o mb _ 2a -1b 2 ® =
) KII BR ST 4+ (dyy Gxx) YRa —— (1 5 sin ;-) + 2u moyy /Ra +
'\':'\
n",‘ 2
R o n 2 2, E(k) 1 -4p E(k)
e — - + — - -
2 vo ma o {1 - su (1 + 3u%) s 7 [1 T 1} (42)
o (1)
A where Ky is given in eqn. (40).
o 5. DISCUSSION AND COMPARISON WITH THE EXACT SOLUTION
pre The obtained asymptotic solution for the stress intensity factors at the
- tips of a kinked crack is of the form

(0) _3 (0) (» 2
Ky =K' - 50Kt + K77+ 0(e)

2 I
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E‘y;”(x) - Ef(g)(x) -0 (37)

for b < |x| < a.

Also, the stress intensity factors for the zeroth order problem are given

by
o “/%a
@
](:(]?) (dxy uoy;) V/ra + p.K§0) . (39)

4.2 Stress intensity factors for the first order problem

As discussed in Section 3, the first order problem can be considered to
be the superposition of the two problems shown in Fig. 4.

The mode I stress intensity factor Kgl)

is determined by solving
problem no. ! in Fig. 4, which is actually the problem of the opening of a

finite crack by a rigid wedge. The general solution to this problem has been

given by Markuzon [14]. Taking into account eqn. (22) and the solution of the

S
S

zeroth order problem derived in the previous section, we find that, for our

1
.

o
Pt

particular case, the shape of the wedge, h(x) , is given by

'y
i,

w

e

_ o Q-pc ® N2 2
2h(x) = u ) (2,010l (x,07) = 2n 2Ly (Ve : x| < b . 40)

Ya® - x

A S
A M

b el 20 gn e g
a 8 . . )

Using the above formula for the shape of the wedge and Markuzon's [14]

solution, we find the mode I stress intensity factor to be (see Appendix 2)

3 2
(N _ .= ® m kW =-(2-v)k"+ (1l -2v+20)k +vV
K; (oxy uoyy) /ma = 5 , (41)

2k
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o
o8 _
2N d(o)(x, 07) = ¥2uc0 { L [x2 - az E(k) ] - X }
o xx K(k 5 5
ol /(xT - b7 )(a” - x7) Ya“® - x
o for b < |x| <a.
j: Also,
0
- SEEL
\-_.
i ®
A Ve
RO 2 CEG)
- 11 K(k)
k
\ 4.1.4 Superposition
N
. Superimposing the solutions of the four problems shown in Fig. 3, we find
:.'Tf the quantities of interest of the solution to the zeroth order problem to be
. —~0),, _ ® =
Ch (x) = F(x) cyy + O (31)
oo —(0
- Sy = FOO) (32)
)
I!
e 0
‘.'::: _C;)((y)(x) = pF(x) , (33)
_" 5 © s ®
BN - 4
(O gty — (0 07y = oy Xy Poyy _ x
: ey (%s 01 =& (x, 07) = 2v g = (34)
- Ya© - x
)
o 07 - T
. (0) +, _ (0) =y o - Xy yy ,.2 _ 2
. u (x, 0) u (x, 0 ) = 2(1 - v) a Va x (35)
=~
.
[ for |x| < b ; and
o
V%) =06"+s", (36)
XX yy Xx




g
e(g)(x, oty = gy L ¥

y G '

o’ ——————
[~ and uio)(x, Ot) = $(1 = v) —gz-/az - x2 for |x| <a,

where G 1is the shear modulus of the material.

In addition,
0
and K(o) =g " Yra .
I1 Xy

4.1.3 Problem no. 4

The solution to this problem is derived in Appendix 1 and is as follows
c(o)(x, 0¥y = gpo © 22X
XX A e

(0) -
cyy (x, 0) =0,

of(g’(x, 0) = uF(x) ,

-]
po

z(o)(x, 0¥) = 7v X X ,

yy G 5 5
: Ya® - x
-_~,._4-- o, oy T
u (x, 07) = %(1 - v) —G—/a - x for lx‘ <b;
O
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0; 7"'7r c ———— Exact solution

- = == Asymptotic solution

L/c=0.01
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£/¢=05
0.14
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0(xn)
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.. Figure 6
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