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taser guided bombs and guided weapons, mathematicél'models have be=n deveioped
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- SECTION I
INTRODUCTION

1. “Objective of the Study

_In this report, ana[ytical models are formulated for obtaining the

probability of kili, Py, of a point target for a variety of situations. These
~ situations can be roughly d1v1ded into two categories, namely, mu1t1p1e
weapons delivery. (Sect1ons II and I11) and single guided weapon delivery

(Se;tion IV and V),

In Section 11, the general prOblem of the §tick delivery of weapons is
formulated. An exact expression for Py is- obtained However. this expression
is in the form of a multiple integral which is very dificult to evaluate. As
a ~onsequence, an approximation is suggested and the reader is referred to [3]
for further details.

" In Section 111, the problem of multiple weapons delivery wfth'independent
paéses is described. In general, at each pass, weapons Aré dglivered in

stizk, and thus, a formal approach to the problem would have to rely on the

. results of Sectfon 1. No specific methodology is provided to tackle the'

geﬁera1 probTem; The only situation thatlis worked out in detail is ;he case
of singly delivered weapon per pass. |

Sections IV and v consider the problem of quided weapon delivery, The |
dellvery of guided weapons differ from the delivery of general purpose bomhs
in that the delivery error distributions have different characteristics.

In its simplest form, for guided weapons, the delivery error in the

" direction of range has the same normal distrib@tion.as for the delivery error
. 1n'the‘direction of deflection, The two-standard deviations are equal. Given

‘that the two delivery errors are unbiased and that they are independently

P N
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distributed, it immediately follows that the distribution of errors in the

radial direction follows the so-called circular or Rayieigh distribution.

Experimental evidence, however, has shown otherwise and two attempts are

made in the JTCG/ME (Air-to-Surface) manuals to correct for this situation.

"In the early edition (1980) [1], a modified radial distribution is proposed

for laser-guided bombs. This situation is studied in detail fn Section IV.

In a more recent edition (1983) [2]; a normal delivery error with bias in the

range direction is proposed for genekal guided weapons. This situation is

studied in Section V., Section VI consists of concluding reﬁarks.

. 2. Assumptions

" The following ~ssumptions are made:

a., Each of the target and weapon 15 idealized as a point. Depending on

.c'

the particular s%tuation considered, the weapon may or'may not be
aimed directly at the target.
The direction of the weapon delivery range and deflectior are

respectively parallel to the (x-y) coordinate system on the ground

- plane., Since the coordinate system can bg arbitrarily selected, there

is' na loss in generality in making this specific aSsumption."The
position;of the target has coordinates (u,v).
For stick de]iverj, the weapons are subject to ballistic and aiming

errbrs in each of the x and y 41rections; For single weapon release,

a delivery ecror in each of the x and y directions is assumed. In

each case, the probability density function of these errors must be

specified.
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d. The probability of ki1l due to fragmentation at a point (u,v)

L O

given that the weapnn impacts at (x,y) is gfven by the three-parameter
Carleton damage function
| ; u=xy2 V11_2
D(u-x, v-y) = Dy exp{- Dyl (3~ (5571
X y

“ne pirameters R, and RQ are, respectively, the weapon radii in the x

and y direztions. The parameters D, is the maximum probability of

N AL TR

kill which occurs at the point of weapon impact

e. Fragmentation does not contribute .to the delivery error,
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SECTION 11
MULTIPLE WEAPCiS: STICK DELIVERY

1. Introduction
ke consider the stick delivery of n weapons (n=1,2,...) for which the

r
following assumptions are made:
a. Each weapon is subject to ballistic errors which are assumed to be
normally distributed, independent of each other and independent in
" each of the x (range) and y (deflection) directions.
b, The entire stick pattern is subject to aiming error which is assumed
~ to be normally and independently distributed in each of the x and y |
directions, and independently distributed from the ballistic errors.
Equivalently, it can be stated that each of the n weapons is subject. '
‘to the same aiming error. '
y w1 ,
A (P————xi-ogb-&--—-yl
(Ei,ﬂil '
_—L— ---------- LYY A P,
. 'T : ‘ i
) 1 . .
) ]
Y. b (uw) o
R ! ]
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Yo : .
1 o :
uoo‘otttbobouooyw..--.-d
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.
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Figure 1. Geometry of Target and Weapon
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Let (€4, ny) be the mean point of impact.(MPI)'of the ith weapon ;;;

{1=1,2,...,n). The ballistic errors in the directions éf range and deflection ;::

are, respectively, xi Snd Yi. The random variables Xy and Y; are assumed to | iif

be independent each with zero mean and having the resp'ectivé normal.
~ probability density functions : | - - iﬁé ;

| 1 X .
fX.i(xi) = expf{ - —T] o v _ (1) :.-:.‘;
B | .20 . o
1 1 ‘ : :
and o _ ' ' ra
yz . . -
fYL(yi) = exp| - -—12-] , . (2) g
1 02 2n . 202 '

For each of the i weapons, the aiminy errors in the directions of range

and deflection are, respectively, X and Y, The random variables X and Y are ' };5
' ! p?,."-
. assumed to be independent each witn zero mean and having the respective normal ' -

probability densitylfunctions'

2 . ‘ . -
1 : ,
gy (x) = — - =2 : 3)
Sy ‘
X X v
and
g(y) t’-—-—l——; e‘xp{-_lil | | (4)
y o/ 203 o E ' '

The random'yariablas {x;}, {51, x.‘éhdbv are mutually independent.
Let (W, 1;) be the 2ctual impact pofnt of the ith weapon. This is the
result of the combined effect of the ballistic error and aiming error. -This

combined effect fs the sum of the ballistic error and aiming error in each of

Ay

the x and y directions (see Figure 1). Clearly, for 1-1.2...,;n
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Hi'gf’x{"x , » {5
;= ng+ Yi + Y ' B | i i6)

The sequence of random variables {W;} and {Z;} are mutually independent and

are normally distributed with respective means . o | ' b
L | ‘ . '{225

and respective veriances

+ c:; Varczi]‘- ag s+ ol | ; (8)

Var[Hi] = 02 y

1

The random variables in the sequence {wi}, i*1,...,n, are not mutually
‘independent since all of them depend on the common random variable X. Clearly

for i#j

CGVEH.;. "‘j] =.E[(wi"51)(wj‘5'j)] 4
- 0] ~ | .
=E{x2] sai = . ‘_ - (9)

Thus, the sequence of random variables {W;} are jointly normally distributed

with mean vector ‘ L ' A
£ = (8 Eprennibpl o | (10

_and variance-covariance matrix




- -.
2, 2 2 2 ’
o) * 0y g, v 0
2 2 2 2
9% O ¥ Ot 9
-ﬂ. = L L] *
. ' . | . (11)
2 2
‘. oy o s to
or . Q= alz. _I- + qi lil . ’ : o (12)

where 1 is the (nxn) identity matrix and where the n-dimensional row vector 1

is defined as

1= (1, 1,....1), o (13)

If we define W = (W;. Hz.....Hn).'then the joint pfobdbili;y density function

of the Wy's is N(W; &, 8)
Similarly, for i 2 j§

CovlZy. 1) * EL(Zyon;)Zjon ;)]
= EL(Y; 0 1(Y;40)] |
B E[YZ] = 05 : : ' (14)




Thus, the sequence of random variables

distributed with mean vector
n = (nl, “2”"’"n)

and variance-covariance matrix

B 2
oyt o, X o§ .
2 2 2
Uy 02 +0
A = . .
02 02 .
y y
=ohlealll

If we define 7 = (ZI.ZZ....,Zn), then

of the Zy's is N(Z; n, A).

.'2. The Model

For a target located at (u,v), it

{Zi}' i=1,2,...,n are jointly normally

(15)

: ,' (16)

(17)

the joint probability density function

is required to determine the proba-

bility of ki!l'of the target assuming that {f a weapon impacts at (w,z), the

damage function is of the form




D(u-w, v-2) = Dy exp|- Do[(u’w)2 + (5 ) ]} (18)

~ The conditional probability of kill given that the first weapon impacts
at (wl,zl), the second weapon impacts at (wz,zz),.... and the nth weapon
impacts at (wp,2z,) is |

(1- 1 [1 - 0umwys vz} | (19)
i=l ) . )

The unconditional probability of kill at {u,v) is

{. cee I [Probab11ity of ki1l at u,v) | ith weapon impacts at (wj,z;)

- 2n
for isl,z....,n][Probabi1ity that the ith weapon impacts
. between (w;,z;) and (wy+dwy, z;4dzy) for i=1,2,...,n]
L L : n
= [ LX) I {1 - n [1 - D(U-W » V=2 )]} N(_\!; .E_’ ﬂ) -

, ' - s ~em

2n ‘ .
N(z; n, A) n dw1 dz ' : (20)

1=l

Note that Py, in general, is going to be a function of the 1ocation'of

the target, namely (u,v), and also a function of the cordinates of the MPI of

all'n wéapons, It is customary to assume that the location of the t;gét

coincides with the origin, so that usOsv, and hence, Py is only a function

of £ and n and one can write:

) - - , n L .
Plen) = [ oo 0 {1 e (1= Dlw,z) ]} Mw, B, 0)
- - 1-1 . o »
2n |
Mz M) 1 d\v1 dz, I €3Y

{ul




3. Remarks
There are two problems to be addressed here. The first problem is that
of obtéining the optimum stick pattern that will maximize thelprobabiliiy-of
ki1l Pp(E,n). By an optimum stick pattern is meant the determination of the
optimum locations of the MPI's of each of the n weapons delivered in such a
_way that the probability of kill is maximized. As one of the possible courses

of action one could select the MPI's to coincide with the tocation of the

point target, that is to set
€i = 0 = ni’ i = 1.2...0,"

But thi§.codrse of action does not necessariiy maximize the probability of
kill. Note, however, that the weapons are dropped from specific locations on
the plaﬁe; There are usually three such locations: the two wings and the
airplane centerl{ne. As many as’100 of these weapons may be released in a
singlc‘stick delivery, Thus, from a practical point of vi}w. the variables
§; and n; are selected according to a constrained path, |
| The second problem consists in obtaining'a computab‘é expression for
Pk(;.'g). The 2n- tuple integral could theoretically he evaiuated (since the
functidq'n(;§, zy) 1s of an exponential form)., ‘Houevér.'lt s extremeiy
'difficult to proceed with the integrations parti;uiarly'for large number of
weaponé. The complexity of the expression for Py (E.n) has led to the deve!opf:-i
ment. of an alternate method for rederiving P, (£.,nj. Thé other mefhodfrelieé
on a decomposition principle which results in a substnnfialiy more simp]ified

expression fur pk(iﬂl) ultimately redu;ed to a double integral {or details

-see [37). ;

10




SECTION III
MULTIPLE WEAPONS: INDEPENDENT PASSES

1. Introduction

It is conceivable that.when delivering weapons to a given target, an
aircraft makes several independent passes over the target and releases one or
more weapons at each'pass. Multiple weapons are assumed to be reileased
according to-a stick delivery pattern. In general, the number of passes is a
random variable and the number of weapons delivered’at each pass is a rardom
variable. The determination of the probability of kill of the target wi11
then depend on the probabil1ty of kill of the target at each delivery as well
as the statist1cal characteristics of the number of weapons released at each
pass and the number of passes. |

To solve this problem, it {s necessary to know the fellowing:

i. The relationship between the probability oftkill of the target and the
number of'weapons released at a given pass. This type of functional
re]ationship would be the result of an analysis of the stick delivery
of weapons. | ' |

ii. Tﬁe probability distribution function of the number of weapons
released. |

i1f{. The probability distribution function of the number of passes,

In general let
M= random variable denoting the number of passes;
Ny = random variable denoting the number of weapons released at the ith
pass (1=1,2,...,M); _f | |
PeiNg) = probabil};y of kill for Ny stick'deliverec'weépons per pass;

1n




The net target probability of kill is

pM =1

=

kf

-
n=ax
[aary

[1 - P (N))] | | (22)

Even when M and N are deterministiﬁ. explicit expressions for Piz) cannot, in
general, he obtained unless the function Pk(-) is. known, However, for single
weapon release (Nj=1 for all i) and M fixed, a closed form expression for Py
can be obtainéd. This particular case is investigated in detail in the

paragraphs that follows'

2. 'The Mode!

The developmeht of the modef for single weapon deli&ery per pass is
father straight forward and consists essentially in determining the probability
of kill of the target per pass and then applying formula (22).

It wil be assumed tﬁat the delivery errors -in eachvof the x(rénge)
direction and y (deflection) direction are 1ndependent1& and normally

distributed with respective standard deviations 9. and ay. Let

]

(u,v) = cordinates of the point target;

{x,y) = cordinates of the point at which weapon impacts.
It is assumed that the weabon is aimed at the target, ‘Then, the probability

density function of the delivery ercor in the x direction is

o 2 | - |
fl(x-u) a e exp [- 45:%1-1 ' o (23)
: /2 a 20 ' . o :
. X X
and the probability density function of the delivery error in the y direction
is
N K 20 ' ' |

Y y
12




If Qe assume that the damage function is represented by the three
parameter Carleton damage function, then the probability of kill at (u,v)

given that the weapon impacts at (x,y) is

2 2
D(u-x, v-y) = D expl- OoLgl- Le=dy o (2)
Rx Ry

To determine the probability of kill of the target for a single weapon in
the presence of delivery errors, the laws of conditional probabilities are

used and one has

Pes = Probability of kill at (u,v)

= [ [ [Probability of kill at (u,v)|weapon impacts at (x,y)]
= J -l .

[Probability weapon impacts between (x,y) and (x+dx. y+dy)j

Using (23), (24), and (25), one obtains

Pes = | . [ Dlu-x, v-y) fl(X-d) fo(y-v) dx dy .

D e

. 2 2 .
1 {x-u)<, 1 . -y ,
. exp| - . exp| - . dx dy A - (26)
= -] Pl ”—)‘122 (e

‘ This double integral can be easily evaluated, and it is found that

R, : Ry '
Pg=D . (27)
kf = Y
/2 2 /2 2 :
AR 20 gy -Ry+2000y

13




A1l the partial derivat1ves of P

Since all passes are assumed to be independent, then from (22) the net target

probability of kill for M passes is

N
JUES TR (28)
Using (27) in (28) results in
R ‘ R
P i1 0y —=2 . e o (29)
/R sy ol /R4 20l

3. Estimation of E[ ] and Var[P£ ]

The Taylor's series estimation procedure will be used to obtain
approximate expressions for E[P )] and Var[P(M)] 1n temms of the means and

variances of the five input parameters,D s, R,R ,0 ,anda,.

x* Ty* Ux y
Let ”o .

() it (B KR T 5 :
o, and Iy Fxpanding P ¢’ about the point (Dn,.Rx, Ry, L ay) in Taylor's

series and retaining only first order terms one obtains

Pi‘(r) (Dov R‘o'R ’ GX’U ) = P(M) (ﬁ':qx’.wy' -O-X.‘;)

Y y
apﬁr) - aP(") | _ é#é?’
+ (D - Tp) e +(R.-R)—§——+'(Ry-Ry')“-y—I
o(M) WL -
ACEES aotf + (o, -7 ,,:" (30)
("

with respect to the five variables Dn. Rx.

Rys o, and a, are to be evaluated at the mean values of the vartables..

Approximate expressions for E[Par)] and Var{Pi?’] are now provided,

14

x' y' °x’ and ay refer,respectivgly,to the mean of Dy, Ry, Rys
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a. Estimation of E[P(M)]

Taking expectation on both sided of (30) yiefds as a first apprOximation

(M - (1 e = =
E[Pis (Og» Rys Rys oy 0 )] = P’ (Dps 'R'X.Fy,ux‘._qy)
From (23)
elp{¥] = (1 -, X s LA (31)
/ﬁi+2§03"2‘ |/R2+200y

For simplicity the bar (~) notation will be omitted 1n.the sequel. Let

2 2 2 ' :
q =.R& + My o, . (32)
2 2 2 , | . '
03 = RC + 20y o | | (33)

Then, from (31)

e(Pke] = 1= (1 oy 8, R ot ggh" T REDR

b. Estimation of Var{P(M)]

First, expression (30) is written as

BT R - -
'GX' "y) i pif (ﬁortx’ wyo "x»d )

Y y
N I R
* by - %) 35, 300 ¢ (R - Fx) Ei:jf,’ (Ry = Ry) 3§;’7
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o

(M) (M) '
+ (0. =9.)) it + (0, -0 2Pkt (38)
X X aax y y’ %o -

Squaring and taking expectations on both sides of (35) yiglds

' e o | ﬁ¢) 2
var{p )] = var{0g] (55" )2+var[rz,(1(3 )
(M | (M)
+ Var[R 1 ( ) + Varfo ] (55— a:f 2
Ry
| ao(™
+-Var[ay] akf 2 4 covariance terms ‘ (36)

Again, it should be noted that all partial derivatives are evaluated at the

point (Do, Ry Ry. Gy °y)'

Now, in general, from (28)

ap(M . :
o - M- G S ¢ 1))

ka here is the probability of ki1l of a single weapon

Expression for ap f/3(-) can be obtained from the résult; in Section V in
which biased delivery error for single weapon is considered, .For the present
Section, results for aPkf/a( ) are obtained by setting in all the parttal
derivattves-of Section V B, =0=B ., This immediately yields from (115) and

y
(116) Ey=1s€,, |
From (117)
3P S ' - X
kf . S | y 42 02 ,
0, Ry Ry O 07, [1- 0,05 0f° - °o oy o2 9 | (38)
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Qy and 0, are defined in (32) and (33) and they are the same as (113) and

(114)
" From (118) -

'

aPkf

From (119)

3P

From (120)
P
kf 2 -3 -1
-——-—aax ZDORnyO‘ 0

From (121)

o

The explicit expngséion for Var{PQ?)l can be obtained from the

relation obtained from (35) and an:

m(p‘"’} . »(1 . ”u?“' (e r{D}

. -1 gl [y _ o2 2
w®, PRy 0, [1-07° R

l 2

= o 2 el =3
o 2D R’FR),’J‘1 020

(m"") wart J

P |
variny) (ER ¢ varla ) (a,*f)z

+ var{a,) (a,“’)

%} + covarfance terms

"vl 17 _

(39)

(40)

(41)

(42)

following

(a3)

-

..A. e
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¢. Nuierical Example

An aircraft makes M=2 passes over a given target and at each pass drops a

general purpose bomb, The‘weapon is aimed at the target. The parameters of

- the Carleton damage function are

- Dg =1, Ry = 120 ft  and R, = 200 ft

These parameters are subject to estimation errors and their variances are

given by
Var{Dg] = .002, Var[R,] = 50 ft2, and var[R ] = 70 ft?,

The aiming errors in the x (range) and y (deflection) directions are

independeﬁtly and normally distributed with

a, = 30 ft oy = 20 ft,

Var[ax] = 4 ftz; Var[oy] = 4 ft2

we have

= (120)7‘+ (2)(1)(30)2 = 16,200

T o
£
]

'=°127.219,22

-
—_
[}

. (200)2 .+ (2)(1)(20)2 = 40,800

=}
~N
o

9
N
“

201.990,10

.. -1 -l
Pee = D Ry Ry QF° 05
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AR
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diminsmd
.

f
AR

-
4
KE
-
3
o
g
i
i

.
o
L

. 1)(120)(200 _ | S
Pre ~279,722) (201,990,107 - +93352 <

From (34)
EP(2)] =1 - (1007
=1-11- .93352)2 .9956
From (38)

ap, . ‘ 2 2
Kf 120) (200 0?1004
30, - T127.279,22)(201.990,10 {1 - 15000 ~ - “40,800

.933,52 (1 - .055,555,5 - .009,803,8]

.872,505,7

From (39)

Wee 1) (260} (1 - {1200 1
W, (157‘27% 222)(201.990,10) L ~ 16,200

* .007,779,3 (1 - .818,888,8)
s .000,864,3

- ?rom (40) ' o s . ' , ' ‘ - '

P, ' | .> -
kf: 1){120 (zog) - o
3R, TT277279,22)(201-390, 10 (1 - 45, sno] | -

= .004,667,6 (1 - .980,392,1) T : | R

= ,000,091,5
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“rom (41)

Per . _(2)(1)%(120)(200)(30)

39, '(127.279,22)3(201.999,10)

.003,457,4 ' .

From (42) | R -

Per . _(2)(1)%(120)(200) (20)

3%, (127.279,22)(201.990,10)3

. .000,915,2 . Eiij.

Assuming all the covariance terms 'to be zero, then using (43) we obtain ' ::_-.

)
<

Ve .
1' v i-
'l e ¢ -
R £

var[p{Z)] = 2 (1 - .93352) {(.002)(.872,505,7)% + {50)(.000,864,3)

(70)(.000,001,5)2 + (4)(-.003,457,4)%

T+

+ -

(4)(-.000,915,2)%} = .000,214,2 | | ] | R

”
., l.rl
N
W
Andenl Ad.

RN
‘
&

Q
0
<~
~h N
—
]
s
1
idand

.014,6

R K
l..t 'I' 'l . : I o
R A el
AN .“I‘." ! [ER W
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SECTION IV
LASER GUIDED BOMBS

1. Introduction

For lasgr-guided bombs, the distances between the mean points of impact
(MPI)‘and the actual impact points cannot be accurately represented by the
circular or Rayleigh distribution function. It becomes necessary to devise

some other distribution function to represent the delivery errors distribution

in the range and deflection directions. Let:

standard deviation of delivery errors in the x or range direction;

Q
u

X
°y = standard deviation of delivery errors in the y or deflection
direction; |
FR(r) = the distribution function of the delivery errors R in the radial

direction;
a = a positive constant such that 0 < a < 1.
Then, it has been found experimentally [1] that Fp(r) is more accurately

represented by a function of the form

» 2 | 2
Fa(r) =a [1 - exp(- —57)] + (1=a) [1' - exp(- =)}, O <r<cw (44)
. 2, 209 ‘

Fa(r) is a proper distribution functfon since F(0) = 0 and Fle) = 1.°

The corresponding density function is

. . : 2 ' T2 ’
folr) = 25 exp(+ <) *U"‘%)'sexp(' “Lx), 0crce o (45)
Ch 2" L ' Z"y o ,

In order to,find the joint density function of the delivery errors X and

Y in the range and deflection directions, say fy y(x,y), it is necessaéy to

21




make certain assumptions about the random variables R and 8 which represent
respectively the delivery efrors in the radial direction R and the delivery
errors in the argument 6. The following' shall be assumed: .

a. The delivery error is equai]y likely to be at an'y point in the interval

0 <6 < zx, so that the marginal density function of 8 is
. l \ ] . :
fo (8) =55, 0 <o < \ (46)

b. The random variables R and @ are independently distributed.

The joint probability function of R and 9 is:

fol®) f5(0) = 5 (% ex o LL2)F oy —)I
X x y .Y
0<rc<me, 0<O <2 (an

The probability that the weapoh will impact in the interval (r, r+dr) and
(6, 6+4d0) is:

fal(r) fy(0) dr do = 5%-[ ; exp(- —--)
o %

Ix
. ? ' . . :
+u?i)-exp(--L2'—)] rdrdo, 0<crce, 0<o <2, (48)
o 20 '
y Y

Changinq to Cartesian coordinates. one obtains the pmbahﬂfty that the weapon

will 1mpact in the interval (x, x+dx) , (y, y+dy) or

‘ ' o : 2.2
- e Lo .(_x_+.v_).
Fy,plxay) dx dy = o { 7~ expl- g

x,.

0

e dd=) exp L——‘zi—)-]}dxdy.-0<x<-,-<y<o (49)
y Y -

N | | 22
AN . . . o - .
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Thus, the joint probability density function of X and Y is

2 , ' 2
fy () =a {—=— exp{-(%5)] + —— exp[ ()]}
’ x- o, 2°x Vo oy , Zox

, 2 S v 2
1 £ Xy . -1 - y
+ (1) {/Fay eXP[-(za;».;] = exp| (203 )11

0Cac< ], m <X, 'wm(y<(a ' ‘ (50)

Clearly X and Y are not in general independent., X and Y are independent only
in the specialvcases when a=0 and a=1. However, fx'v(x,y)<is a proper density
function, It may be verified that fx'y(x,y) is a unimodal function, achieving
a maximum at the poiﬁt (0,0). It may be noted that fx’y(x,y) is given as a
convex combinatior of density functions of two pairs of independently
distributed randoﬁ variables, _

"Let the MPI of thé weapon be tﬁe coordinates.(u,Q) of the target, in
other words the weapon is aimed at the target. Let (dx, dy) be the
infjnjtesimal rectangle close to the point (x,y) at vhich the weapon
1mpacfsf .Define the random variables X and Y which measure respectiveiy the
disténces,?etween'the targét pointlgnd the weapon impact point along the

“abscissa and the ordinate. ‘Then, from (50)'the probability that the weapon

will ‘impact in the rectangle dx dy is given by:

1! expf— {x=u) .~ (lr!lA}}

g 2 2
/bax : hx'

fx'Y(x-u.yév)dxdy =a

2 2 | o
+ (1-a) {: 1 > exp| - lx-u)‘ ; (y=-v) 1} dx dy s
: 0, - 2 _ _

y Dy




2. The Model
To determine the probability of kill of the target for a single weapon in
the presence of delivery error, th laws of conditional probabilities are used

and we have the probability of kill at (u,v) as

Pef = j [ [Probability of kill at (u,v) | weapon impacts at (x:3)1
(Probability that the weapon impacts be;wéen (x,y) and
(x+dx, y+dy)] | -

= LD Luexy vey) fy y(xeu, vey) dx dy
-l -t .

=11 0 exp{-vo[.(i;f)%("—;f)z) ».

(x=u)® + u-v)z,}
2 ]

(a {;-l-g exp| -

no
X ' X ,
] (x=u)? + (y-v)? |
+ (1-a). {—5~ exp| - — 1}) dx dy » (52)
21 o); ‘ 20y_ _

Making the change in varfables w. = x-u and z = y-vryieldé

» = 22 N
Pkf = } J 00 expt - Do('w—z' + 2—2'” (a {—_L-z_'.e"p[‘ LE_Z_-LH
7R R v o . 20° .
x y : x x .
! 2 2 i . . i . .
+ (1-a) {- l? . exp( - 1!-—%—£-L]}) dx dy (53)
Zw‘ ay‘ , 20 ‘ ) . S

This integral may he expressed as a sum jnvdlving products of two single

tntegrals:
S e 2 e et ()
Pe= . exp| - + dw, expl - +. dz
s kf 2 qf - RX 720‘ - R 2, .

X

24




2

: 2
(1-a) O o D, w 2 - z 2
v —2 ) exp- (G ¢ =) aw. | 23] dz
2!02 - Rz‘ 202 - 02
y y Yy y
(54)
Consider any one of the four integrals. For example, let
. . o |
1= | expl- (2+-15) v dw (55)
X o 2 2°2 : v »
X X
' 1
D - p
et 2= s(J+— 32w | (56)
7 R, 20, ‘
Then o 1
1,0, 1,72
Lx ® 2 ('R?' + . ?) I exp(- ) de
X X I
1 Do J_"‘z
7w T
. R X de
2 | '2 - '
- R o (R + 20, ox) (§7)
The other three integrals may be obtained in a similar fashion. . One then
immediately obtains for Pee
R R
Pee = @ °o — ‘ —
/-2 + 200 E /R + ZDo E
» R R | )
+ (1) Dy X —— - (58)

i
/n + 2y ol /n «»zn0 y

3. Estimation of E(Pkf] and Var(Pkf]

Recall that Py ¢ is a function of the six parameters a, N., Rx' Ry, 9y and .

g and a’ refer respect1vely to the mean of a, DO' R+

°y‘ LeF.u. 0, x Ry'

28
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Ry. o, and oy Expanding P, ¢ about the point (a, e Rys Ry, gy s “y) one qbtalns

up to the first order terms:

pkf (an Do: RX’ Rys oxo ay) = Pkf (:o U » w x* o, )

Rys 9,

, ' [
P f 3Pkf - EPkf ‘

(59)

Note that the partial derivatives of Py¢ with respect to the six variables

a, Dy, R and o are to be evaluated at the mean values of the

x* Ry' Ix » y
variables, We now provide approximate expressions for E[P ¢] and Var[Pkf].

a. Estimation of E[Pkf]

Taking expectations on both sides of (59) yields as a first approximation

E[ Pkf(a. no. Rx. R » ax Gy)] ] Pkf(a.’ ﬁ . Fx. 'R'y’ -a-x' -a—y)

Yy
= ;'—'.)0 . i" . ﬁ’
/R, 3 R+ 28,7,
- R - . *
+ (1-;) Dy ° = x—. — C = i = | .(60)
R ZD0 ay Ry + ZDO °y )

b. Estimation of Vah{Pkf]

First, exbfession (59) isiuritten as

Peglas DO, ‘Rx'. Ry. Iys cy)_.-'P“(';. 0,, 'ﬁ; T . T x* a. )

26




ap ‘ P ¢
kf
= (a3) 52l + (0, - Ty) 35 3% R SE
- P ap
- - - f
VR =T gpil e (o, =T gin+ (o, - ) gt (61)
Yy X y

Squaring and taking expectations on both sides of (61) yields

P

he, var(Dg] (aD;f)Z + Var[R ] (aR

| 1N
Var(P, (] = varfa] ( ™ )

Pefy2
)

., 9P ~ap 3p
kfy2 kfy2 kfy 2
+ Var[Ry] (gu;-) f Var[ax] (°°x )+ Var[ay] (5E;ra

+ covariance terms ) , ' (62)

Again, it should be noted that all the partial derivatives are evaluated at

the point (a, ﬁb, ﬁ;, ﬁ;, 3;, 3;). We now obtain the expressions for the

partial derivatives

1 1

ap - -

kf 2, . 2,72 (p2 2,72
T Dy Ry Ry \R + /.Doox) (Ry + 200 ux)

~3 -} |
o 2 .2 | .
- O 3 Ry (gx»f 2 0, oy) (n + 20, y) (63)
LI | -
53§ﬁ “a R R [(RZ 20 v ) (R2 . M, 62) 2

: 1
- Dy 02 (R2 + ZD 0 ) (R§ +2 u o )

1 E
- 0y a (R + ZDO E) 2 (R§ + zno ai) 2] .
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1 .
2 27?2 r
+ (1) R Ry [(Rx + 20, ay) (Ry + 20, ay)
. 2 (o2 72 (.2 2,72
b oy (Rx +‘ZDO °y) (Ry * 2D, o )
- 0, a (’2's 20, 02) 2 (R2 + 20, 2) 2} | (64)

ap : 1
—Xf 2 2" 2 272
D, R
W, TR (R + 2y o ) [(Rx + 20 07) |

3

- R (RZ + 2 02)-2] + (1<) 0. R (R? + 20, 273
x ¥ o %) 07y Uy ¥ Pp %y
1 3
[(R2 + 2n, oj) 2. RZ (R + 20, as)-z] (65)
ol a0 R (R2+ 2 az)-% 2 272
3Ry 0 "x VM x 0 "x [(Ry * 200 ax)
-‘R§ (R% & 20, ax) 2] + (1a) 0, R, (Rf + 2, 05)‘2
‘ 1 | 3 .
[(R§ + 20, 05)-2 - Rﬁ (Rs + 200105)-2] S (66)
L : .
T, = O R Ry (- 200, (RZ+ 20, az) (Ri s 2y 08
. : 1 3 | '
- My o, (R%:+ 20, oi)-z (@5 + 2, &f).z] | (67 .
Pyt P | 3
7, (=) 0 R, Ry (- 2050, (R2 + 20, az) 2 (R + on, 3) ?
1 3 ~
- 20, (R + 20, cy) 2 (n§‘+ 20, 05) 2] - | (68)
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c. MNumerical Example

Assume that for a laser guided weapon, the parameters of the Carleton

damage function are

Dg=1, . Ry =120 ft and R = 200 ft

These parameters are subject to estimation errors and thefir variances are

given by
Var[Dg] = .002, Var(R,] = 50 ftZ and var{R,] = 70 ft?

The guided weapon is aimed at a point target. The aiming in the x(range)
y (deflection) directions have a joint probability density function given
(51) where

a = ,75; oy = 30 ft; - c’ = 20 ft.
Var(al = .001; - Varfo,] = 4 ft?;  Var(o ] = 4 ft?

To obtain the numerical values of fhe expressions for E[P,¢] and the

partial derivative;,‘the follpwing quantitfes are introdhéed

2

2 .2
01_' Ry + 2D oy

2 2 -2
2 2 2
03 s Rx + ZDO °y

2 2 2
04 = Ry + ?DO 9,

29

and

by

(69)

(70)

(11)

(12)

-
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Substituting for the values of the parameters yields

o? = (120)% + (2)(1)(30)% = 16,200

127.279,22

o
—
]

(200)7 + (2)(1)(20)2

40,800

LD
N
[]

=
~
1]

201.990,10

02 = (1207 + (2)(1)(20)7 = 15,200

L=’
My
[]

123.288,28

02 = (20002 + (2)(1)(30)% = 41,800

204.450,48

2
F-Y
[}

Omitting for simplicity the symbol for averages one obtains

' -1 -1 ' .1 -’l
E[Pkf] = a DO RX Ry 01 94 + (1‘0),00.Rx Ry 03 02 :

0y R R, (o 071 03! + (1) 05 031}

(1)(120)(200) [Trz7777672?f%§6171367157

+

(123.288,28)(201.990,10)

.932,649,1

(73)

. e b S e e

ndn
N .l
s ' e %0

2
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Now

ap : | ' |
kf : -1 -1 -1 ,-1 : :
3o - Do Ry Ry [01 % -0 G ] Lo _ (?4)

= (1)(120)(200) [1T§77§7§j§§%?§ﬁ?71357357

. 1 . ) »
* 1123289, 28)(201,390,10)] = --041.452,8

P . . .
kf -1 -1 2.3 -1 2 .1 -3
W, - R Ry [0 Q- 0y 077 05 - 0 ) 0]

y

| coel 1 2 -3 -1 2 -1 -3
* (1) RoRy {037 0" - Dy o) 037 Q5 - D, oy 437 0;7]

-1 -1 2 -2 2 .2
*ReRy O qp [1-myo, O -0y o) 03

‘ -1 -1 2 -2 2 2 ‘
+ (1<) Ry RIQy Qg ‘[1 =Dy oy 03" - 050y Q) (75)'

. (3012 2:
.75)(120) (200 (1)(30) (1)(30)-]
= TTE?%’Ei%.EET%%ﬁET;EﬁTha) (1- 16,200 = ~41,800
' S 4 ‘ 2 12
.25){120) {200 (W(200°  (1)(20)*
ot ?iﬁi?éﬁﬁ:%&?{f%%t?ﬁ%?iﬁT (1 - 5%~ - 20,800

< (.691,714,4)(.922,913,3) + (.240,934,7)(.963,8802)

= .870,6246 | | |
Koy r g (o“ - R2 073 4 (1) 0, R é;i (azh - 82 03]
AR 0y 4 vy x 1 07y "2 Y37 x 3

o] - -2, a1 B
= a0y R 0 QG (1 -’ Y]+ (1) 0 R 05 031 - 2 03 (8)

\\\\;1,
N

Ean
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.75)(1){200 [1 - 120 ]
1127 279 22E1204 450 48; 16 200

.25)(1)(200 {120! !

201.990,10) (123.288,28 [1 " 15,200

. (.005,764.2)(.111,111.1)'+'(.002,007.7)(.052.631.5)
= ,000,746,1

3P

kf - - .3, - alp -
k- a 0, R 011 [o;'- Ri 043] + (1<) Oy R, 03‘[0 - nz 0,3]
y .
a1 el 2 -2 -1 -1 ,
=aDyR, 0 0 [1- Ry %] +‘(1-a) Dg.R, 0 Q3 [1 - R 02l oM
(.75)(1)(120 (1 - {2002 ]
. T Z?L)_Toa 450,48) L1 = 31,800
.25) (1) (120 (1 - (202 ]
TEET‘§§%‘FE}%T%3 é:%‘iﬁf - 30,800
= (.0003,458,5)(.043,062,2) + (.001,204,6)(.019,607,8)
= .000,172,5
T 2' |
o, TR0 Ry [0} °1 Lo g ].
2 RS S R ’ -
*.- 2 Nyo, Rx Ry Q1 Qq [o1 +0Q,] : (78)

. 2 - .
. (2)(.75)(1) (30)(120)(200) ] 1
- ' [15.200 + 4'1.800'i

(127.279,22)(204.450.48)

]
[ 3

; .003,554,7

2




ap
kf . 2. -1 -1
T 2(1-a) 05 o, R, R [0; 03’ + 03’ q; ]

el ol s - -2 '
- - 2(1). 03 o, R, Ry o21 0! [052 + 03] S

. ‘zlé'25361¥2§2°%§12°3§2°°2 [ L
990, . m a0 7500

= - ,000,870,2

To determine the variance of Pyg, we assume a, nO"Rx"Ry' 9y and °y to

be independent so that

Var(Pkf

Y
+ (Var[R,]) (-—5152 + (Varfo,]) (5 “f) + (Varfo, 1) (—-5532

= (.001)(-.041,452,8)2 + (.oozi(.87o,sz4.s)2‘
+ (50)(.000,746,1)% + (70)(.000,172,5)2
+ (8)(-.003,554,7)2 + (8)(-.000,870,2)2
» .001,601,1

g, = .0400 [
Pt -

" & two-standard deviatfon confidence interval on Pye s
Pe= E(P Jt 20
£ Pt
= ,9326 ¢ .0800

We note, in particular, that the contribution to the total variance of Dy is
94.7%. T
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SECTION V
GUIDED WEAPONS

1. Introduction

In the most recent JTCG/ME mahual on the “Derivation of JHEH/AS Open-End
‘Methods” (1983)[21, the methodology for computing range gnd deflection
delivery errors for guided weapons is outlined. It is assumed that invfhe
range direction, the aimpoiﬁt is offset b& a négativé value, that is the
center'of the distribution of impact points is snort of the aimpoint. No such
offset occurs in the deflection direction. The amouvnt of offset is a
correction factor which can be 1ntrdduced as a bias in the distribution of
delivery errors in the range direction. This bias is assumed to be a known
input to the prohlem. The distribution of delivery errors in each of the
x{range) and y (deflection) directions are assumed to be normally and

independently distributed with the same standard deQiation (°x =0, =0).

y
The problém treated in this scction §s quite general and considers the

'pfesence of biases in both the range.a’d deflection directions wftﬁ Oy * Ty

By setting the bias in the deflection ifecfion equals,to zero and

g, = oyr= a; the distributfon of . deli/ery arrors for guided weapons is

obtained. By setting the biases in both direction equal to zero, the .

distribution of delivery errors“for general purpose bombs {is obtained. '

2. Weapon Delivery with Offset or Bias

‘In stuaying the delivery of a guided weapon (idealfzed as a point) upon a
point target, seveial factors have to be accounted, for in developing an
expression for the probability of_kill of the tarjet. Among such faciors, the

coordinates of the various interplaying varfables should be coasidgred.
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particularly if the weapon is not aimed directly at the target or the presence

of bias in the delivery of'weépon cannot be avoided.

Let then;

(u,v) = location of the point target on the ground plane;

(g,n) = coordinatés of the desired mean point of impact (MPI) of tﬁe weapon;
or the coordinates of the point at'which the weapon is aimed sr
aimpoint; | .

(x,y) = coordinates of the actual weapon impact point;

(2,m) = coordinates of the center of mpact points (crp).

A little elaboration is needed on the last set of coordinates defined.

If there is no bfas in the delivery of the weapon, then, the CIP coincides

with the MPI. If on the other hand bias exists, then the CIP will be

different from the MPI. Thus, in general, t # £ and m # n.

Assume now that the x direction is the direction of the range and the y
direction‘is the direction of &eflection. Suppose now that there i§ a
delivery error when releasing the weapon. This error {s ﬁeasqred in each of
thg x and y directions. The delivery error in the x directipn is the distance

along the abscissa between the weapon impact point and the center of impact

points or (x;z); Similarly, the de!ivery error in the y direction is the

distance along the ordinate between the weaponimpact point and the center of
impact points or (y-m), Assume {x-t) and (y-m) to be independently and

normaily distributed with respective standard deviations o, and a,. Thus,

Ay () @ = expf- LX)y | " (s0)
o 1 > L ' Zax AR




exp| - il:%l—] | (81)

fz (Y"“) = 2
. y Gy

7 o

Assume that the bias in the x direction and the bias in the y direction are

known. Thus, let

b, = -2 = bias in the x direction or range offset,
by = n-m = bias in the y direction cr deflection offset.
Thué,
L=E-by .
m = n=b : 82
n-b, | L (82)

and it becomes possible to express thé'probability density functions of the

delivery errors in terms of the MPI. and the offset., Thus

_ _ 2
. (x=E+b_)
, } X

f (x.€+b ) B S OX ()] - ——— (83)

1 xS e s pl 20: ] 8.
- 2
(y-n+b ) :
b, ) = ——t . —— :
£, (y n+by) =, exp( 20; 1 . (84)

3. The Model
If we assume that the damage function is represeﬂted by the Carleton
‘damage func‘ion, then the probability of kill at (u,v) given that the weapon

impacts at (x,y) is

D(u-x, vey) = n expl - Do (u-x (-—13 }} g | S (88)

To determine the probability of kill of the target in the presence of‘de11very‘

© error, the laws of conditional probabilities are used and we have:
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‘A & & vV .

Probability of kill at (u,v)

]

»

Y
"

| [ ([Probability of kill at (u,v)|weapon impacts at (x,y)].

[Probability weapon impacts between (x,y) and (x+dx, y+dy)].

L L D(u-x, v=y) f; (x=E+b ) fyly-n + by) dx dy

L e . 2 .2
= [ I mp exe{- D, [iﬁﬁal’ » gl

X By
S N A PP LN
. — exp[ - 5 ] g exp[---—-—y--—2 —1] dx dy (86)
' 2x 9 . Zox Uy _Zay

In general, thus, Py g is a function 61’
a. the location of the target (u,v);
b. the coordinates of the 'NPI (e,n);
c. the biasés b, and b, tn the x and y directions.
To gvaluate the double 1Integ;'al in the expression for Py¢, write Pye as

the product of two single fntegrals.

P 'D . * =
K e TEe
X y
; Dylu=x)®  (x=€ ¢ b_)
. ex - + dx
N P RS 2°’Z ’
- Dn{v-y)" . {y=n + b )" . :
e expls [ v =]} gy | (87)
- Ry Wy _
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Let

W= Xx-f + bx

| 2= yen + by
Then
2
D - (u€ + b_)-w) 2
0 . ' X’ w
Pe = ] "M4o(. ) + ‘}«
kf ); 1
2woxay g 0 Rx | 203
- ~ (ven + b )=z 2
- [ exp{ D9 ( R - }2 + 22“ dy
-t ! y 20

u-g + b_ 2 v-n + b
. Xy

;RXR e vn2
gy ol (5= (T

z Pkf(u'e + bx, Y-n + by)

where
/2
ar B o
0 ‘
) %
9 204 %

4. Special Cases

Several special cases are nowyconsidered
a, Case of no bias

Here h"Osand'byso and one obtains

- RR' -
‘ £ uon) a X . 1 ou-€,2 Venty 2
Pye (v & u-n) —J—quqz exp| 2 (( ) (—“2) 1

(88)
(89)

(90)

(91)

(92)

(93)




b. "Case of no bias in the y direction (guided weapons)

This is the case corresponding to guided weapons and the expression for

Pxe becomes

R_R u-f + b
Pre (u=E+b , von) = z=X- expf- % [(—5
1

29,9,

c. Case of no bias in the y direction and weapon is aimed at target,

Here, the desired MP1 coincides with the point target (u=£, v-n):

: R,R 1 22 Ey,z'
it (s by = it ol § 197 + (9

5. Estimation of E(P¢) and VarP, (]

Let Bx = Y=f + bx

= +
-By v=n by

The expression for Py¢ becomes, in general,

RXR 1 Bx 2 B ?
Pt (30 By) = g exel-g ()] * (gl

where
2
" *70. O * oy
2
R
2 : 2
qz - 0 L ] dy

39

(94)

(95)

(96)
' (97)

(98)

(99)

(100)
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Note here that Pxe 1s a function of seven parameters nahely Dgs Rys Ry, g,

oy, B8, and By. We shall assume that Bx and By are precisely known and are not

subject to estimation error, but that the five other parameters Dps Ryo %y'

~ g, and o may be subject to estimation error. It shall be assumed that both

X y
the means and the variances of the parameters are known., First we obtain an

explicit expression for Pyee Substituting for q and q» in Pee (Bx' By) yields

R
. X'y
pkf (Bx,,By) = > =
2 //rRx; + a2 l/ifl— + 02
2 D0 X 2 D0 Y
2 2
1) 8
- exp {- % [ ) s ) L—i}
X 2 Y
70, * % Z0. ¢
0 0
. 2
R 2 DB
. 0"'x
=D - exp (-5 (5———3)]
0 2\ 2 2
/rhz + 20 Rx + 20
R ' 20, 8
. — Y :
X exp| - % (R2 - g - 2)] (101}
) g
"Ryz *.2 nuay2 y 0y

The Taylor's series estimation procedure will be used to obtain approximate

expressions for E[Pkf] and Var[Pkf] 1n terms of the means and varfances of the

five input parameters DO Ry » Ry L and ay.

Let Do. X ? Ry, °x and °y refer respectively to the mean ef Dg» gx. Ry.

X 4

© 9, and o . Expanding Py about the pofnt (ﬁb, 5;. R, 3;. o) one obtains up

yl
to the first order terms:

Py (Do, Rx’lRy' L cy‘) - Py (Uo l' F 0 .c )
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= Py = M kf
+ (D = D) 55—+ (R, = R,) w,_ * Ry - Ry R,
ap . .
—~ Pyt - o |
RECRER R A CPRENE B (102)

Note that the partial derivative of Peg with respect to the five variables Dy,
Rgs Ry, o, and o, are to be evaluated at the mean values of the variables.

Approximate expressions for E[Py¢] and Var(Py¢] are now provided.

a., Estimation of E[Pkf]

Taking expectations on both sides of (102) yields as a first approximation

E[Pkf(DO’ Rxo Ry’ °xp oy)] = Pkf (BOD wxo ‘iy’ ;xlb ;y)

— -

RR

- 2L exp{-‘[(—) +(i)2n - - . (109)
29,9, 4 % " |
EZ . .
where Ef‘- ZXDO + ;3 » e | (108)
T A S : ' (105)
2 29 - - |

b. Estimation of Var(P, ]
First expression (102) is weitten as

Per (Ngs Ry R .o',(.a,)v-' Pt (oo k‘ R 5,0 3))

Y
o w,, P
, kf = k¢
= (DO U ) + (R x) ‘z"R-x"-' + (RJ - R’)sw;-
T 4




— . P ~ . Pys
+ (o, ~0) 35 (°y" ay) 5?;'

Squaring and taking expectations on both sides of (106) yields

Var(P, (] = Var[DO] (-—Ejéz + Var(R,] (aka)

2P ap
+ Var(R ] (5§5I92 + Varfo,] (355£92 a
y X

\ aPkf 2
+ Var[ay] (5577 ° + covariance terms
Yy

~derivatives

3Pkf/300

1
Cl £

Kf 2 2 (a2 + 2 . oAl
- = (R (R +2[)00) exp[ 0p B2 (RZ+ 20, 6571

-R(R +Zl)oay)2exp[ ooay(a +zn a)]}
' 2 .2 -3
+'{-DORxc(R +?Doa) exp[DOX(R +20,

. 273 . 2,02 5 2l
Ry (R + 20 ) exp( - Dy By (Ry + 20, oy). 11

o {Dy R, (R2 + 2 0, x) 2 {- B (R + 2 0y @ 2) +20,8
o | 3
. exp[-;oo Bf (Rf + 20, a:)'ll . Ry(Rs + 20, 03) 2

42

(106)

(107)

" Again, it should be noted that all partial derivatives are evaluated at the

- point (D,, R, ﬁ}, Sy E}). We now otbainlthe'expressions for the partial
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.'c_

s exp|- D0 (R +20, 05)'1]}

2 2,72 ol (02 2y -1
+ {Do R, (Rx +2050,) “ expl- By B, (Rx +2050)7]

3
. 2 (02 2,72 2 02 2, -1
{ R, oy (Ry +2 D50y } exp{- Dy 8, (Ry +201, ay) 11

. 1 .
2 2,72 . a2 (n2 2, -1
+ {D0 RO(R +2 Dy o)) © exp- D, B, (Rx,"' 2 050)7]
- 2
. 2 72 2,02, 2y -1
R, (Ry +20, ay) ( B, (Ry +2.0, cy)
2 2 2,-2 2,2 2,-1
+ 20 ay (R + 20, y) ] exp[- Dy By (Ry +20, ay) 1}
b 2Pue/?R
3P, 3

- 2 2,72 -1
55:— = D, Ry.(Ry +2 0, oy) exp[ Do 82 (R +2 n o ) ]

o 1 : ‘ _
2 - 2 2y -2
{,(Rx + 20, °5) 2 exp| - Dy By (Rf +20, ai) .]|

—

- Ri'(ki + 2 0, oil-ztexp{-,ﬂolﬂz (R: *’2 DQ ai)'
2 L Bz 2 (R +2 8, az) (RE f:z Dy 55)'2
e 8 20 )
a?k;/ah
Py 2

o 2 23 202 0o 2el
w O Ry (R% + 205 0 2 expl- 0y 8X(s2 + 2 0y a3)"]

43

(1n8)

(109)
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[N ] S R T P R

B T Y T T U S L T T T W U T T S T e - = e

o2 272 2 o2 2-1
{(Ry + 20, oy) exp - D, B (Ry +20, °y) |
3

2 (.2 r 2 (o2 2, -1
R -
Y (Ry +20, ay) exp( - D, y (Ry +20D, o’) ]

1

2 2\-2
+ 21, By Y (R + 2 Dy o ) (Ry + 20, oy)
- exp| - Do sy (R +20y0 5) 4
d. apkf/aax

ap ' 1

2
=D R +20 -
adx 0 ( 0 Uy) exp[ DO

- { -2 Do 9 ( 2

242 (o2, 23 .2 2,-
vaog82a (R 2007 (Rx+2000‘)2

- exp| - Oy 83 (RE + 2D, qi)'l]}

Y IE
SUAL

apkf

9 =D
Yy

2,72
o R R (R +2050) ¢ expl- Dg

-

2
[-2 D (R + D0 y

40 R 2

+

+ 200 )'2

exp| - °o 2 (R +2 °o "y .1”

u

2 .2 2
By (Ry + 2 0y 0

2,72 2 -
Ry + 2 050,) “ exp[- 0, B (RZ+ 2 0y 037

2 .2
B, (Rx+zooa

s DTN P ]
‘ exp[- Uy 87 (RS + 2 05 427
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C. MNumerical Example

Aésume that for a guided weapon the parameters of the Carleton damage

Dg = 1, Ry = 120 ft and R = 200 ft

These parameters are subject to estimation errors and their variances are given fﬁ%,,#

by

Var(Dg] = .002, Var{R,] = 50 ftZ and var[R,] = 70 ft?

The guided weapon is aimed at a point target. Thus,

U=§ and v = n o

The aiming errors in the x (range) and y (deflection) directions are normélly

and independently distributed with the same standard devfation

'ax = ay =g = 20 ft

-and © Var{o] = 4th2
The bfas in the range'direction is b, = 20 ft. There is no bias in the
- deflectiqn dirgction& by = 0 ft, It, thus, follows ‘that |

Bx * UfHb - 20 ft

By = v-n+§y . 0 ft,
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Assume that all the covariance terms are zero. For simplicity, the bar (~)
notation for expectation will be omitted. '
To obtain the numerical values for E[Py¢] and the partial defivatiyes, the

following quantities are introduced:

2 _ 2 2

Qy = Ry + 2050, | | (113)
S22 2 |

0y = Ry +20y0, | (114)

2 a2 2,-1
E, = exp{- D, B[R} + 2 By o]}

= expl- Dy 82 ;7] L | (115)

. 2 12 2;-1
E, = exp{- D, By [Ry +20, uy] ]

2 -2 , ‘ .
= exp| - Dy B.y a, ] C (116)
Substftuting‘for the values of the parameters yields

o} - (12007 + (éi(x)(zoﬂ
«'15,200
Thus., o + 123,288,28
0 = (200)% « (2)(1)(20)°

= 40,800 3 o o
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Thus, Q, = 201.990,10

2
. 1)(20)% .

(1)(0)?

E, = exp[- 453001 = 1

Using (113), (114), (115) and (16) in (103), the foliowing expression for
E[Pkf] is obtained ‘

- -1 -1
.E[Pkf] = 01 E1 Ry 02

_ (1)(120)(..974,027,4)(200)(15
(123.288,28) (201.990,10)

.938,708

The partial derivatives are now computed. They are first rewritten using

(113), (114), (115) and (116).

From (108)

P
kf _ -1 -1 2 -3 -1
a‘b—‘[RQ £, R 05 2}+{-DRax0 Ey R, 0 E

o 1 2}

+{[ g R BZQ‘3+ZD§B§R,U QIS] £ R 051 E,
+{.u R, 01 €y R, o0 035}
1 2

-1 1 2 2

e el gl -2 _n g2 g2 2,2
-2 R ot gl 5152{1. cQ 0y B2 0] 4~znza °1-
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2 =2 117,
- 050 02-4-008 [1+20 02]} (117,
®ye  (120)(200)(.974,027,4)(1 (1)(20)2 (1) (20)2

W, ° (123.288,28)(201.990,10) {1-

0 15,200 ~ 15,200

20202
2)(1)4(20 20 20
' Utl)s ioo)) (20)% L)o'('aﬁ)"}

"

.938,708 |1 - .026,315.7 - ;026,315,7 + ,001,385 - .0(:3,803,9]

- .881,399,5
From (109)
;;53 - 0y R, 05! (o' E, - RZ o€, + 20y 35 R2 07 ]
= 0y R otl o' £ €, [1- 6;? R (1 - 20y B o;?)j' (118)

2 2
1)(200)(.974,027,4) (1 (1202 (2)(1)(20)%
123.288,28)(201.990,10 [‘ * 15, 200 (1 - 5,200 )

©.007.822,5 [ 1- .947,368,4 (1 - .052,631,5)]

= ,000,801,7
From (110)
P, -
Kf ot -1 2 2 0t
53;- =Dy R O] E 1 (%5 By R Q, Byt 20,8 Ry 2 EZ]
-0y R 0105 55[1-0‘22(1-21330)} | (119)
1 "2 "1 o 2. R

~
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< (1)(120)(.978,027,8) 1) _r,_ (200)2 (1:0)]
123.288,28)(201.990.10) ' '~ 30,800

= 0004,693’5 (1 - 0980.392.1)

= .000,092

- From (111)

30

X

- -1 a3 2
Po R, Ry 07, (-2.00 o QT E +40,8

2 -3 -1 2
=20 R R 07 0y o, By Fy (14208,

. (20(10%(120)(200)(20) (974,027, (1) [, ,
(123.288,28)° (201.990,10) °

= .002,470,2 (-1 + .052,631,5)

= -.002’340|1

('Frqm (112)

P ¢
g
J

N Ve (onm o 03¢ o4n2al
. oQ R, Ry 0 .El (-2 0, o, 0y Ey + 4 D5 By

.2 A1 3 L 2
=205 RoR o1 %o £ gy (-1 20y B

y 1

. (20(1)%(120)(200)(20)(.978,027, (1)
(123.288,28)(201.990,10)° o

= -.000.920'3
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To determine the variance of Py¢, expression (107) is used

. ap | ap 3P
kfy2 . kf\?2 TTkf 2
Var[Pkf} Var[DO] (512;0 + Var[Rx] (aRx )€+ Var[Ry] (sﬁ;-a |

ap, ap
kfy 2 kfy2
Var(o, ] (aax )¢+ Var[cy] (aay )

+

(122)

1]

(.002)(.881,399,5) + (50)(.000,801,7)?

(70)(.000.092)2 + (4)(-.002,3401)2

+

+

(8)(-.000,9203)2

.001,611,7

Thus, o, = 0402
kf

A two-standard deviation confidence interval on E[Py¢] is

p.=EP.Jt 20
K w2 2%,

= ,9387 & .0804

It is noted, in particular, that the contribution of Var{Dyl to the total

varianéelis abéut 96.4%.
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SECTION vI
CONCLUSIONS AND RECOMMENDATIONS

In this report, the modeling of multiple weapons delivery has been
attempted. Detailsbrelated to the stick deliverj of weapons are described in a
separate report [3]. ' In addition, the modeling of the delivery of guided
weapons has been undertagen under two differnt sets of assumptions for the
distribution of delivery error. '

Although the uhderlying methodology for tackling these differgnt

situations is'the same, nevertheless, the statistical characteristics of the

distribution of delivery errors constitute the main element which brings forth
the dffferentes betieen the various models. '
: The'soiutions to the problems related to multiple Qéabons are far from
being compleie. For examble, the. approximate solution to the general stick
ldelivery prbblem as partially reported in [3] needs some verification using the
exact approaéh-presented in Section II in this repoft. In addition, the '
multiple weapon delivéry under independent passes remains to be solved,
'ouestionsléucﬁ as the effect of the number of weapons delivgred per pass or the
nuﬁber of passes on.the vsriabilfty in Py ﬁave not be;n answered. Finally, it '
is concefvable th;t the general problem of wezpon defivery be approached as- a
single mathematical model in which the dfstribution of the dg]ivery error takes
a general form, .The'different sityations studied so far as separate prob1ems'

may then be recovered as special cases to this génerqi problem,
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