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PREFACE

This report describes work done during the summer of 1984 by Dr B. 1.

Sivazlian, principal investigator, of the Department of Industrial and Systems

Engineering, the University of Florida, Gainesville, Florida 32611, under

Contract No. F08635-83-C-0202 with the Air Force Armament Laboratory (AFATL),

Armament Division, Eglin Air Force Base, Florida 32542. The program manager

was Mr Daniel A. Mclnnis (BLYW).

This work addresses itself to the problem of determining the probability

of kill. Pk,.Of multiple weapons under stick delivery (single pass and

multiple passes). Explicit expressions for Pk are not, however, derived. For

laser guided bombs and guided weapons, mathematical models have been developed

for obtaining explicit expressions for Pk as well as its variance. It is

assumed that for each weapon, the damage function can be approximated by the

three-parameter Carleton damage function. It will be seen that the

assumptions related to the distribution, of the delivery errors constitute the

main elements which bring forth the difference between the various models.

The author has benefited from helpful discussions with Mr Jerry Bass, Mr

Daniel Mclnnis and Mr Charles Reynolds who have contributed to the report

through their comments.

The Public Affairs Office has reviewed this report, and it is releasable

to the National Technical Information Service (NTIS), where it will be

availatle' to, the general publIc, including foreign nationals.

This technical report has been reviewed and' is:aplpoved for publication.

FOR THE COMMANDeR

MILTON D. KINGCAID, one, USA?
Chief, Analysis and Strategic Defense Division'
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SECTION 1,

I NTRODUCT ION

1. Objective of the Study

In this report, analytical models are formulated for obtaining the

q)

probability of kil'i, Pk' of a point target for a variety of situations. These

situations can be roughly divided into two categories, namely, multiple

weapons delivery.(Sections 11 and III) and single guided weapon delivery

(Section IV and V).

In Section 11, the general problem of the stick delivery of weapons is

formulated. An exact expression for Pk is obtained. However. this expression

is in the form of a multiple integral which is very dificult to evaluate. As

a w.osequence, an approximation is suggested and the reader is referred to r31

for further details.

In Section 111, the problem of multiple weapons delivery with independent

passes is described. In general, at each pass, weapons are delivered in

stisk, and thus, a formal approach to the problem would have to rely on the

results of Section I.I. No specific methodology is provided to tackle the'

e *. gneral problem. The only situation that is worked out in detail is the case

of singly delivered weapon per pass.

sections TV and V consi~der the problem of guided weapon delivery. The

delivery of guided weapons I iffer from the delivery of general purpose bombs

in that the delivery error distributions have different. characteristics.'

In its simplest form, for guided weapons, the delivery error in tho

direction of range has the same normal distribu~tion as for the delivery error

in the direction of deflection. The tweo-standard deviation's are equal. fGiven

that the two delivery errors are unbiased and t~hat they are independently

1i
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distributed, it immediately follows that the distribution of errors in the

radial direction follows the so-called circular or Rayleigh distribution,

Experimental evidence, howeverhas shown otherwise and two attempts are

made in the ,JTCG/ME (Air-to-Surface) manuals to correct for. this situation.

In the early edition (1980) (1), a modified radial distribution is proposed

for laser-guided bombs. This situation is studied in detail in Section IV.

In a more recent edition (1983) [2], a normal delivery error with bias in the

range direction is proposed for general guided weapons. This situation is

studied in Section V. Section VI consists of cQncluding remarks..

.2. Assumptions

The following ssumptions are made:

a. Each of the target and weapon is idealized as a point. Depending on

the particular situation considered, the weapon may or may not be

ai'med directly at the target.

b. The direction of the weapon delivery range and deflection are

respectively parallel to the (x-y) coordinate system on the-ground

plane. Since the coordinate system can be arbitrarily selected, there

is na loss in generality in making this specific assumption. 'Thip

position of the target, has coordinates (u~v).

C. For stick delivery, the weapons are subject to ballistic and aiming

errors in each of the x and y directions. For single weapon release,

a delivery error in each of the x and y directions is assumed. In

each case, the probabil'ity density function of these'errors must be

specifled.



d. The probability of kill due to fragmentation at a point (u,v)

given that the weapnn impacts at ,(x,y) is given by the three-parameter

Carleton damage function

D(u-x, v-y)= Do exp Di-x)2 + (C-)]2
x y

me pirameters Rx and R . are, respectively,the weapon radii in the x

and y directions. The parameters D is the maximum probability of

kill which occurs at the point of weapon impact

e. Fragmentation does not contribute to the delivery error.

"6.
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SECTION II

MULTIPLE WEAPCIS: STICK DELIVERY

1. Introduction

Ve consider the stick delivery of n weapons (n0-,2,...) for which the.%

following assumptions are made:

a. Each weapon is subject to ballistic errors which are assumed to be

normally distributed, independent of each other and independent in

each of the x (range) and y (deflection) directions.

b. The entire stick pattern is subject to aiming error which is assumed -*

to be normally and independently distributed in each of the x and y

directions, and independently distributed from the ballistic errors.

Equivalently, it can be stated that each of the n weapons is subject-

to the same aiming error.

11 x

----•---- --- -- -------- ---

Yi i (u.v)

target,

Y

(wit;
.!eaoon impact point

deflecticn

:

range

Figure I. Geometry of Target and eapon
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Let (Ei, ni) be the mean point of impact (MPI) of tI.e ith weapon

(i-I,2,...,n). The ballistic errors in the directions of range and deflection

are, respectively, X, and Y1. The random variables X, and Y, are assumed to

be independent each with zero mean and having the respective normal

probability density functions

• ,.r VW (1)

and

2fy(l, 1.__a./• ep- 1oi2 (2) }if ,- .•.:xp -

2 2a

For each of the i weapons, the aiming errors in the directions of range

and deflection are, respectively, X and Y. The random variables X and Y are

assumed to be independent each with zero mean and having the respective normal

probability density functions'

2
0 (3) '-gx(x) exp[. 2 3

and

12gy(y) Y.e " exp[ - _ Y (4) -."'

'y

The random variables {.Xi} {Yi} X,-and Y are mutually independent.

Let (Wi, Zi) be the actual impact point of the ith weapon. This is the

result of the combined effect of 'the ballistic error and aiming error. This

combined effect is the sum of the ballistic error and aiming error in each of

the x and y directions (see Figure 1). Clearly, for i-l,?6,..,n



W 4. X + x()

* (6)
Z "n + Yi + Y ) .

The sequence of random variables {Wi} and[Zl are mutually independent and

are normally distributed with respective means '
E.... -n

E[Wi]= tit EPii n, (7)

and respective variances &

VrW = 02 + a2 Vara1 2 +-a

The random variables in the sequence { W, i-1,.,.,n, are not mutually

independent since all of them depend on the common random variable X. Clearly

for i*j

CovEWi, W.' = -ti)(W
ji j33

= E[(xi+X)(X'+X)l

=q[ x21 02 (9)

Thus, the sequence of random variables 141 are-jointly normally distributed'

with mean vector

E_ • . , : , , (to) -;:

and variance-covariance matrix

V.. .6"-"



2 2 2 201• + Crx Ox * • Ox

0:2 0 + a2 (2
x 1 x • x

i* 
S(11)

2 02 ,1 J2 + a2

or 2 1 + • v o (12)

where is the (nxn) identity matrix and where the n-dimensional row vector 1

! is defined as

I (1. (13)

If we define W (W1. W2 ,....,Wn), then the joint probability density functlon

of the Wi's is N(W; , _

Similarly, for i j j

. CovZi. Z - E[(Zi-nl)(Zj-j•
_ E((Yi+Y))(Y 

+Y)l

E"" " E2 

(14)

qy
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Thus, the sequence of random variables {ZI}. i-1,2,...,n are' jointly normally

distributed with mean vector

n = (nl$, n 2,.n n) (15)

and variance-covariance matrix

S+ a2 a2 a22
2 y y y

2 ~ 2 +? . ~2Ca a + a2 • 2
, 2 y y

A ^ " (16)

2-2 0 +2 2 02
y y 2 Y

II

"d2 I +2 a2 'I(17)"-2 2 --

If we define Z = (ZlJZ2 ,...,Zn), then he joint probability density function

of the Zi's is N(Z.; i,A).

* 2. The Model

For a target locatetl at (u,v), it is required to' determine the proba-

*- bility of kill of the target assuming hat if a weapon impacts at (w,z), the

- damage function is of the form

::: s



D(u-w, v-z) = DO exp{- D0[(-u) 2 + -(1)

x y

The conditional probability of kill given that the first weapon impacts

at (wl,zl'), the second weapon impacts at (w2 ,z 2 ),..., and the nth weapon

impacts at (Wn,Zn) is

* n
"jI - H [1 - D(u-wi, v-zi)I} (19)

The unconditional probability of kill at (u,v) is

Pk .. f (Probability of kill at u,v) ith weapon impacts at (wi,zi)

for iF1,2,...,n][Probability that the ith weapon impacts

between (wlzi) and (wi+dwi, zi+dzi) for i=l,.,...,nl

* - n
" '".. I {i - II [1 - D(u-wi, V-Z )I} N(2w ., a)
-' . -i. i=1"

n
"N(_z; n, ) H dwI dzi (20)

Note that Pk, in Seneral, is going to be a function of the location of

the target, namely (u,v), and also a function of the cordinates of the MPI of

all n weapons. It is customary to assume that the location of the taget

coincides with the origin, so that u'O-v, and hence, Pk is only a function

*:: of _ and n. and one can write:

ful
.. •PkC..,)_ I... fIi * .l [1 { .o(wi,z 1)1 N,(_, .•)

2n

N(., .,, ) U dwi dz1 i21)

* - 9



3. Remarks

There are two problems to be addressed here. The first problem is that

of obtaining the optlmun %tick pattern that will maximize the probability of

kill Pk(_,n_). By an optimum stick pattern is meant the determination of the

optimum locations of the MPI's of each of the n weapons delivered in such a

way that the probability of kill is maximized. As one of the possible courses

of action one could select the MPI's to coincide with the location of the

point target, that is to set

S0 n= ni, I 12,...,n

But this course of action does not necessarily maximize the probability of

kill. Note, however, that the weapons are dropped from specific locations on

the plane. There are usually three such locations: the two wings and the

airplane centerline. As many as 100 of these weapons may be released in a

singlu stick delivery. Thus, from a practi'cal point of vicw, the ,ariables

Ci and ni are selected according to a :onstrained path.

The second problem consists in obtaining a computable expression for

P n). The 2n- tuple integral could theoretically he evaluated (since the,

function rn(wt , zt) is of' an exponential form). However,* it is extremely

difficult to proceed with the integrations particularlyfor 1,arge number of

weapons. The complexity of the expression for Pk(.,n_.) has led to the develop-

ment of an alternate method for rederiving Pk( 01-1) The other method relies

on a decompositlon principle which results in a substantially more simplified

expression fur Pk(_,n) ultimately reduced to a double integral (,-r details

see (31).

10



SECTION III

MULTIPLE WEAPONS: INDEPENDENT PASSES

1. Introduction

It is conceivable that when delivering weapons to a given target, an

aircraft makes several independent passes over the target and releases one or

more weapons at each pass. Multiple weapons are assumed to be released

according to-a stick delivery pattern. In general, the number of passes is a

random variable and the number of weapons delivered' at each pass is a random

variable. The determination of the probability of kill of the target will

then depend on the probability of kill of the target at each delivery as well

as the statistical characteristics of the number of weapons released at each

pass and the number of passes.

To solve this problem, it is necessary to know the following:

i. The relationship between the probability of kill of the target and the

number of weapons' released at a given pass. This type of functional

relationship would be the-result 'of an analysis of the stick delivery

of weapons.

ii. The probability distribution function of the number of weapons

released.

iii. The probability distribution function:-of the number of passes.

In general, let

M x random variable denoting the number of passes;

Ni S random variable denoting the number of weapons released at the ith

pass (i0-,2,,,.,M);

Pk('Ni) • probability of kill 'for Ni stick delivered weapons per pass;

.1!



The net target probability of kill is

~(M) (M
p 1 I - n [.1 - Pk(Ni)] (22)

1=1

Even when M and R, are deterministic, explicit expressions for (M) cannot, in

general, he obtained unless the function Pk(.) is known. However, for single

weapon release (Ni=1 for all i) and M fixed, a closed form expression for Pkf

qan be obtained. This particular case is investigated in detail in the

paragraphs that follows'.

2. 'The Model

The development of the model for single weapon delivery per pass is

rather straightforward and consi~sts essentially in determining the probability

of kill of the target per pass and then applying formula (22).

It wil be assumeJ that the delivery errors in each of the x(range)

direction and y.(deflection) direction are independently and normally

distributed with respective standard deviations ax and ay. Let

(u,v) = cordinates of the point target;

(x,y) =. cordinates of the point at which weapon impacts.

It is assumed that the weapon is aimed at the target. Then, the probability

density function of the delivery error in the x direction is

f (x-u) - exp [(X- 2  (Z3)
x

and the probability density function of the delivery error in the y direction

is

2
f (y-Y) a - expf. (- JV (24)

12



If we assume that the damage function is represented by the three

parameter Carleton damage function, then the probability of kill at (u,v)

given that the weapon impacts at (x,y) is

D(u-x, v-y) D0 expf- OO[(u•x) + (V-)} (25)
Ry

To determine the probability of kill of the target for a single weapon in

the presence of ,delivery errors, the laws of conditional probabilities are

used and one has

Pkf = Probability of kill at (u,v)

= f f [Probability of kill at (u,v)lweapon impacts at (x,y)l

[Probability weapon impacts between (x,y) and (x+dx. y+dy)]

Using (23), (24), and (25), one obtains

al

Pkf f=D. fJ D(u-x, v-y) fl(x-u) f2 (y-v) dx dy

f1 f Doexpi- D0 [ u-x) 
2 + (-Y) 2i'

R 2 R2
x y

_ exp.- ( • u) 2 exp{- p (...(X 1dx dy (26),,2 ? r• - a2 J,i/w ax 0 •x (F , 2ay

This double integral can be easily evaluated, and it is found that

R R
a x .-Y -- (27)

x + 2130 ax 0

.13
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Since all passes are assumed to be independent, then from (22) the net target

probability of kill for M passes is

P(M) I (28)

Using (27) in (28) results In

'14)R RP(M) Rx R M
k~f i.- [1 - (29)

/R' + 2D0 02 ,/•+ 20 2

xx y

3. Estimation of E[(M)] and Var[P (M

The Taylor's series estimation procedure will be used to obtain

approximate expressions for E[P(M)] and Var[Pkf ] in terms of the means and

variances of the five input parameterso, Rx, R q a , and a

Let N0' I -y 'x and a referrespectivelyto the mean of, Do, x, Ry,.

a and ay Expanding P(M) about the point (7n-. Rx, Ry, a- , y) in Taylor's

series and retaining only first order terms one obtains

P(M) (%. R R~ , P M) (Tý 1 y x y)kf , + (yy - f I. ( -
•p!) p(). 3P("14

3P0o f k kf
+(Do - '6o) FD + (Rx"- Rx) --T + (CR y- Fý) =•-'k

a (M) (M)

+ - .÷- • kfSX x l " yF I ( Y l ) 30T (3b)

All the partial derivatives of P(M) with respect to the five variables Rkf w

Rye a and a are to be evaluated at the mean values of the variables.,x y

Approximate expressions for E[(M)kf and VarP(M)kf ] are now provided.

14



a Estimation of E[P M)

Taking expectation on both sided of (30) yields as a first approximation

From (28)

E(P)I]= [1 o-° ___x_ ' I 1

E[ P(M) "U " (31)

x Ox y0 y

For simplicity the bar (-) notation will be omitted in the sequel. Let 7.

2 x + 2n0 x (32), =,

3Ry+ 20o y2 (33) [

Then, from (31)

E[P(M)] =1 (1 -'D Rx Ry Q-I )M (34)t kf y1 2

(M)
b. Estimation of Var[Pkf "

First, expression (30). is written as

P__ (M)ff (00' RxS Ry, a ' " 1

kf kf y f 0 X
(Do------ Rxapkx.: + (Ry 2R •kf•

ISS

15 D
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()aPkf(M)+ 3' + (Cy._ W (35):-.+ (% - If)•o .".
x X( aa y y

° •

Squaring and taking expectations on both sides of (35) yields

M)M
Var[('J 1= Var(D.I f_2_) + Var[i kf2

. p(M) 3p(M) ,;:.

+ var .] (kf) 2 + var[0,x C 2
y x

+ var[% ] r I(M)•2t-
+ Vara + covariance terms (36)

y

Again, it should be noted that all partial derivatives are evaluated at the

point N y y

Now, in general, from (28)
•(M)

kf p- Pkf" MO1 " P - (37)
kf )M .

Pkf here is the probability of kill of a single weapon

Expression for aPkf/a(.) can be obtained from the results in Section V in.

which biased delivery error for single weapon is considered. For the present

Section, results for 3Pkf/3(.) are obtained by setting in all the partial

derivatives of Section V 8y O-By, This immediately yields from (115) and 7

From (117)

,kf RxRy I ,,1 (1 - 2 , 1 0o , y (38)aD " x, 'y 00[ x 1[ 0 % - y
~All

16.-



Q, and 02 are defined in (32) and (33) and they are the same as (113) and

(114)

From (118)

-l V -2 2)
I0 R Q1 f2 [ - Q- Rj (39)

From (119)

3 Pkf 1 -2 -(

From (120)

kf _ - 2 R 0 l 3 (-1 (41)ac 2 0a y 13  7.

Sa%

a kf R 10- c (42)
y(M) ..

The explicit expression for VarP can be obtained from the following

relation obtained from (36) and (37):

(a P.
W[rP kf J1 +'( -ar PkR~{af% .)

+aýR )Pkf 2 + kf 2

y X
.•'

43 kf 2' + covariance terms (43) .,.

•al (4317

"a,

F 4
.

S. . . . : .. . - ; . - " - :- -- . . .. .. .. . " . " . . . . . .• b .



c. Nutierical Example

Au aircraft makes M=2 passes over a given target and at each pass drops a

general purpose bomb. The weapon is aimed at the target. The parameters of

the Carleton damage function are

Do =1, RX 120 ft and Ry 200 ft

y

These parameters are subject to estimation errors and their variances are

given by

Var[00 ] = .002, Var[R]I = 50 ft 2. and Var[Ry] = 70 ft 2 .

The aiming errors in the x (range),and y (deflection) directions are

independentl'y and normally distributed with

ax =30 ft ; y= 20 ft.

Var(G=4 ft ; VarC,=4 ft2x y

we have

(120)2 (2)(1)(30) 16,200

-1,27.279,22

(200)2.(+)(7)(2) 2 44,800

02 = 201.990,10

Pkf XRYQR x R. Y 
.
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(1)(120)(200)

Pkf M127.279,22)(2,01.990,10) = .93352

From (34)

E[P(2) u 1 - (1 p)2kf kf"

1 (1 - .93352)2= .9956

From (38) k

aPkf (120)(200) .)(1)(30)2 1120)2

ao 1-127.279,Z2)(201.990,lO) ' - .6,000 40,800

z .933.52 (1 - .055,555,5- .009,803,8"

- .872,505,7

From (39)

Pkf' (1)(200) [ 1  (120)-1 -w

-(127.279,222)(201.990,10) " 16,200

".007,779,3 (1 - .888,888,8)

.000,864,3

From (40)

3Pkf ,0
( 7,,279,22)-(201.0,10) 40,800 -

* .004,667,6 (1 " .980,392,1)

.000"091.5
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ZA.

From (41)

Pkf (2)(1) 2(120)(200)(30)

ax (127.279,22)3(201.990,10)

= - .003,457,4

From (42)

_Pkf (2)() 2(120)(200)(20)
y (127.279,22) (2fl.9g0,l1)

= - .000,915,2

Assuming all the covariance terms to be zero, then using (43) we obtain

Var[P(2)] = 2 (1 - .93352) [(.002)(.872,505,7)2 + (50)(.000,864,3)2kf 
Y"

+ (70)(.000,091,5) + (4)(-.003,457,4)2

+ (4)(-,.000,915,2)2 , .000,214,2

Op( 2 ) = .014,6
kf

20
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SECTION IV

LASER GUIDED BOMBS

1. Introduction

For laser-guided bombs, the distances between the mean points of impact

4 (NPI) and the actual impact points cannot be accurately represented by the

circular or Rayleigh distribution function. It becomes necessary to devise

some other distribution function to represent the delivery errors distrihution

in the range and deflection directions. Let:

ax= standard deviation of delivery errors in the x or range direction;,

ay= standard deviation of delivery errors in the y or deflection

direction;

FR(r) =the distribution function of the delivery errors R ini the radial

direction;

a=a positive constant such that 0 < 1.

Then, it has been found experimentally Ell that FR(r) is more accurately

represented by a function of the form

FR r) a -exp( r +~-1 (1-a) [1. exp( r2 0 < r < (44)

FR(r) is a proper distribution function since F(O) 0 and F(.) 1.

The corresponding density function is

22
fR(r) a jexp(. + 2 .L2ex , < C* 45

x y y

*in order to find the joint density function of the delivery er~rors X and

Y in the range and deflection directions, say f~y(c,.Y). it is necessary to



make certain assumptions about the random variables R and 0 which represent

respectivel y the delivery errors in the radial direction R and the delivery

errors in the argument 0. The following shall be assumned:

a. The delivery error is equally likely to be at any point in the interval

0 < 8 < 2w, so that the marginal density function of 9 is

fe (0) 0 1 <2

2w <2 (46)

b. The random variahles R and 9 are independently distributed.

The joint probability function of R and 0 is:

fR r) if (a =1 S- exp( r 2 + k1-a xp -r 2

R ff a22a 2 G2 02

0O<r < < ~ < 2, (47)

The Prohability that the weapon will impact in the interval (r, r+dr) and

(8, 8+dO) is:

fR(r) f,(O) dr do =* [¶-exp(,. r-

x x

+ 2 exp(- _ 14)) r dr doO,'< r <-' 0 < a < 2W (48)

y y

*Changing to Cartesian coordinates, one obtains the probability that the weapon

* will impact in the interval (x,,x~dx), (, y+dy) or

2 2
f ~(x~y) dx dy ~ -- x~

2o1x x

+ ("a) expf(x +V~r~ d x dy, <. x <* < y < (49)

y y



Thus, the joint probability density function of X and Y is

fx.y(X,Y) . { exp[.-_)] . __ exp[-[-'-()I
,"7 x2 azx , x x

+ (-4)f- ex p( 4 x ( -J))_2.)] 2

" y y Y y

"0 a ( 1, < x <-,- < y < (50)

G
Clearly X and Y are not in general independent. X and Y are independent only

in the special cases when a-0 and a-1. However, fl,y(x,y).is a proper density

function. It may be verified that fl,y(xy) is a unimodal function, achieving

a maximum at the point (0,0). It may be noted that fl,y(x,y) is given as a

convex combination of density functions of two pairs of independently

distributed random variables.

Let the MPI of the weapon be the coordinates .(uv) of the target, in

r-:. other words the weapon is aimed at the target. Let (dx, dy) be the

* infinitesimal rectangle close to the point (x.y) at which the weapon

impacts. Define the random variables i and Y which measure respectively the

['- distances between the target poiat and the weapon impact point along the

" abscissa and the ordinate.. 'Then, from (50) the probability that the weapon

will impact in the rectangle dx dy is given by:

"f f xuy( yv)dxdy a exp[- i " -v)}i Y 2 2

,'. (xJu)•

+ (1-a) exp[- (x-u YV dx dy * (2W a 2a)
* y
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2. The Model

To determine the probability of kill of the target for a single weapon in

the presence of delivery error, th laws of conditional probabilities are used

and we have the probability of kill at (u,v) as

P kf I f' [Probability of kill at (u,v) I weapon impacts at (x,y)].

(Probability that the weapon impacts between (x,y) and

(x+dx, y+dy)1

-f f D fu-x, v-y) fy(X-U, v-y) dx dy

- f f %exp{- D0[~) a (Y) I
x y

2fl2

x x

2 2
+ (1 -Q) {-, exp[ - (x-u) + (v-v)']1 dx dy (2

Z11 a 22a02 I
y y

Making the change in variables w - x-u and z *y-v y-ields

~kf JI aý 0 0( 2 + --2 1 L 2 2.'

__ 2

+ (-)f---exp( - Jw)+ ) dx dy (53)

'Y y

This integral may be expressed as a sum involving products of two single

integrals:

P kf f expf(- 2  .+-~-)JI dw. f 2ep
xx xy x

24



+ (1-G) Dw DO w2.w2 ,0 z2  z2

2wa2 R 2 a2R 2 2
y ,oy y ,

(54)

Consider any one of the four Integrals. For example, let

x +

Let 0o 1A
Let- - (_ + 1 (56)

/7 R
Ki

Then 1
xx - + I- exp(-1-) do

X 1

S/" Rx a (R{2 2o0 o2'2 (57)

The other three integrals may be obtained in a similar fashion. One then

immediately obtains for Pkf

R
P kf D 0

/Rf + 20 /R2  + 2 '

/ 1 Ox y Ox

R R

(I x )y .(58)
y y

3. Estimation of E[Pkfl and Var[Pkf1

Recall that Pkf is a function of the six parameters ao, ) Rx, Ry. ax and,

I Let Tx, Ry* ;x and Fy re Ifer respectively to the mean of a, Do, R x

26



Ry, a and ay. Expanding Pkf about the point (, DO, , y one obtains

up to the first order terns:

P kf (a. DC). Rx, RY, Cx,- °y') " P kf (7. 'TO- Tx. FY, W-• ;Y)

aPkf 3 Pkf aPkf
+ + (Do -%-6) -jk-+ (Rx x) k

aP kf P_ aPk+ (Ry - Ry) -a R+ (ax - ox) a- + (ay-y 59

y yxY 3 y

Note that the partial derivatives of Pkf with respect to the six variables

(, 00,, RX9 Ry, ax V and ay are to be evaluated at the mean values of the

variables. We now provide approximate expressions for E(Pkfl and Var[Pkfl.

a. Estimation of E[Pkfl

Taking expectations on both sides of (59) yields as a first approximation

E[Pkf(Q, %o RX. R" ax as)] " Xkf(" TO' ¶" x'-" y)

.02

-R + 2 D 7-R+ 2

x Oy y 0 y

b. Estimation of Var(Pkf]

First, expression (59) is written as

Pkf( 06, R . kf(7 WO Ix I'IF X y

"26



a Pkf aPkf + x) 3 kf
* ( ) -a- '+ (%D-")- .-O ¢R -6 ii

0 x

' Pkf aPkf + kf

+(Ry - R) y- -+ %ax axj -au61
y x y )Wy

* Squaring and taking expectations on both sides of (61) yields

( kf 2 ( kf,2 aP k 2
•Var(Pkfl Var[a] + VarVar DO] 7-) + Var[Rx 53 R

÷ Var(R,] aPkf 2 "aPkf 2 aPkf+_•) VrR +var~ax] (U_•92 +var~ay] (,-,-)

y x y

+ covarlance terms (62)

Again, it should be noted that all the partial derivatives are evaluated at

the point (7, %0, T T x, Oy). We now obtain the expressions for the

partial derivatives

apkf + x 2 2

1 1
-,c R Ry CR2 + 2÷ a2)2 (R + 20 02)(3

0y Ox 0x y 0 xCII

.k 2,4 R[R 2D 2 (k2 + 7.60
-D UD y ~x 0 2% y 0 xI 3
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A.

4 1-t R [(R' + 2n 2~ (R2 + 7 o Y

3 1

0 y x y Ro ' +  2 Do o y,..

K2 2 2a 3lR +23 1 .::
-) 0 r (R~ + 2D 0i)~ (-)D R (R 2  + 20 (4

y 0y

= ( R 2 + 2 1 o ") 02 R ((R , + 21) a % (25)R. x x 0K -' ) no 0 2. x

2 2 L
R R+ 2n R 21 2)I 0X +(iG 0 y (Ry %a

1 3.

f(R2 + 2D a2)2 R R2 (R2  2 20~2)-2
y y x x 00y] (66)L

akf 1 3
R- % (R2 +2 + 2 ?) 2 2 2

x ax [R' 2 00 ox)

33
2 (27 2

(R R + 2%) o X ) + 00a IL ( 2o 2)

3o 1 3

2 3

oxc (R 2+ 20 or a !.'lO 2  (68)

X) + 20"0(-")
,2 ,

1k
RX Ry 20 (R +.



c. Numerical Example

Assume that for a laser guided weapon, the parameters of the Carleton

damage function are

DO 1, Rx =120 ft and R =200 ft

y

These parameters are subject to estimation errors and their variances are

given by

Var[DO] = .002, Var[Rxi = 50 ft 2 and Var[Ry] = 70 ft 2

The guided weapon is aimed at a point target. The aiming in the x(range) and

y (deflection) directions have a joint probability density function given by

(51) where

CI .75; ax =30 ft.; ay 20 ft.

Var[al - .001; Var[a x = 4 ft 2 ; Varfay] = 4 ft 2

To obtain the numerical values of the expressions for E[Pkf] and the

partial derivatives, the following quantities are i•etroduced

Ri + 29 2 '(69)
I x O x

2 2 2 -
'Q - R, + 200a (70)

2 2 2

R + 2% 0 y (71)
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Substituting for the values of the parameters yields

Q' (120)2 + (2)(1)(30)2 16,200

Q 127.279,22

= (200)' + (2)(1)(20) 2 40,800

7 =2(01.qqO,O'

2Q = (120)2+ (2)(1)(20) = 15,2003

= 123.288,28

2 (200)2 + (2)(1)(30)2 41,800

04= 204.450,48 4C

Omitting for simplicity the, symbol for averages one obtains

E( oRxR0 + (1m 00 R;"y
-1l 1 3- 02

°o Rx 0 y Q" R 1.°1 + (1-a) .00 . (73).v"

.75S

(()(1202(200) [ 77 2)(204 .,-

+ .25+ (123.288,28)(201.990,107i

= .932,649,1

°.30



Now

aPkf kf i0.QQ
S" 00 R R Q- Q-] (7,4)Q

* (1)(120)(200) [(127.279)22)( 2 04 ,4 50 , 4 T8

1 ':
"(123.28A,28)(201,990,10)] = .041,452,8

Rkf 1  1 2 3 1 3
+ 0 yx 1y 1 4  ex 0 1 Q4 o 0 1. 04 ]

R1 1 D -3-1 
o2- 

31y1Q y2 ýQ 3  ~2 0%GyQ 3  02

x ýy 011 Q41 , no a 0x Q1 O0 x Q;21.

R(1.i Q2 Q3- 1 Do 2-2 2-? (75)x ~~ 0 [1 % Q3 y ~~2 ]

* (.75)(1201(7200 (1)(30) -

(127.'279,22)( 204.450.48) -16,200 41,800-

X 20)(200) 11)(20)2 (1)(20)

*(.69.1.714.4)(.922,913,3) + (.240,934,7)(.963.8802)-

S.870,6Z46

+kf * •' 3  R , """ 4.27. - (1-[ ) 0 - -- - 3 ]

3R 110• 4480 Q R?-

0 x I y 2 L'3 x

-1 0,2] + 21.% 2
+ R0 9,Q)1 R!23.2828 I ( 15, 00 . 0 0 31 - :.031 (76)
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,* ,• , . *: . .

II. 1 6::o t...ZW - 4

(.75)(1)(200) [1..-(120)2.
(127.279,221(204.450,48) 16,2001

S(.25 f)(1(0.o ) (1"'0"2

T201.990,10)23.288 ,28) 15,2001

( 1.005,764,2)(.111,111,1) + (.002,607,7)(.052,631,5) '

".000,746,1

RPkf' 1'rA 1R 2  A 1 2

0  • - R• Q +,- (1-a) D R, 0-0 - 03 Ry 0 . y 0x3 2 y 2

-1 -1 2 -1-4 2 2'=Q • oRX 04 [04 2 - (i-G) -O,% Q, Q [I Q- (77)4 + ]DR Q2  Q1 [i 2

(.75)(1.)(120) ' (200)21
(127.279,22)(204.450,48) 11 41,800,

(.25)(1)(120) (200) 2
-(201.990,10)(123.2,..,28) 1 - 40,800J

= (.0003,458,5)(.043,062,2) + (.001,204,6)(.019,607,R) .

= .000,172,5 .,

*,.kf 2  R -3 + 1 31

2 XRyQ -1-1 -2 + 2(8-- - 2 ~o x [0 R Q4  +Q 3] (7 8)4

(1 21(,75)(1.2(30)(120)(.200.48)1_.._÷_ _1' L'16'."

.003,554,7
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.-......

3Pkf 2 -3 Q1 31
a n 0 Y " 2 '3  3 2
y

L .020-02( .) 2o a• R• R , -1 • [o-1 2 + o-21 (79) ,...'-,-

(2) (.25) (1)2(20) (1201 (200) I + --S (21.990,10)(123.288,280 [15,200 W-l

.- .000,870,2

To determine the variance of Pkf, we assume a, , RxR y andx to
y x y

be independent so that

Var[Pkf) U (Var~]) (•pkf) 2 ,a) kf)2 aRkf 2

P + (Var[liO])D + (Var[R] )
0 x

+ Va(R]) 3 kf 2 ~ 3 kf 2 ~ 3 kf 2
+ (Var[Ry]) (g Z+ (Var~ox]) ( ) + (Var[ y])l-"'

y x y,

(.001)(-.041,452,8)2 + (.002)(.870,624,6)2-

+ (50)(.000,746,1)2 + (70)(.000,172,5)2

+ (4)(-.A03,554,7) + (4)(-.0000870,9):

" .001,601,1

a .0400Pkf :r.:

two-standard deviation confidence interval on Pkf is

Pkf * EtPkf'.t 2 op
kf

* .9326 t±.AO0 '7_7

We note, in particular, that the contribution to the total variance of 00 is

94.7%.
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SECTION V

GUIDED WEAPONS

1. Tntroductlon

In the most recent JTCG/ME manual on the "Derivation of JMEM/AS Open-End

Methods" (1983)(21, the methodology for computing range and deflection

delivery errors for guided weapons is outlined. It is assumed that in t',e

range direction, the aimpoint is offset by a negative value, that 'is the

center of the distribution of impact points is short of t-he aimpoint. No such

offset occurs in the deflection direc~tion. The amot'nt of offset is a

correction factor which can be introduced as a bias in the'distribution of

delivery errors in the range direction. This bias is assumed to be a-kno~wn

input to the prr'hlem. The distribution of delivery errors in each of the

x(range) and y (deflection) directions are assumed to be normally and

independently distributed with the same standard deviation (aj a= 0

* The problem treated in this section is quite general and considers the

presence of biases in both the range a' d deflection directions with ax a

By setting the bias in the deflection lirection equals to zero and

a a cy, the distribution of oellfs ry err~ors for guided weapons is

x• 
"

obtained. By setting the biases in both direction equal to zero, the*

* distribution of delivery errors for general purpose bombs is obtained.

2. Wea2on Del~ivery withOffset or Bla

* ,In stunying the delivery of a guided weapon (idealized as a point) upon a

point target, seveeal factors have to beaccounted. for in developing an

expression for the probability of kill of the target,. "sn such factors1, th~e

coordinates of the various interplayin4 variables shouldi be considered'.

34,



particularly if the weapon is not aimed directly at the target or the presence

of bias In the delivery of'weapon cannot be avoided.

Let then;

(u,v) - location of the point target on the ground'plane;

* (R,n) = coordinates of the desired mean point of impact (MPI) of the weapon,

or the coordinates of the point at which the weapon is aimed or

aimpoint;

(x,y) = coordinates of the actual weapon impact point;

(4,m) = coordinates of the center of impact points (CIP).

A little elaboration is needed on the last set of coordinates defined.

If there is no bias in the delivery of the weapon, then, the CIP coincides

with the MPI. If on the other hand bias exists, then the CIP will be

different from the MPI. Thus, in general, L * { and m * n.

Assume now that the x direction Is the direction of the range and the y

direction is the direction of deflection. Suppose now that there is a

delivery error when releasing the weapon. This Ierror is measured in each of

the x and y directions. The delivery error In the x direction is the distance

along the abscissa between the weapon impact point and the center of impact

points or (x-L). Similarly, the delivery error in the y direction is the

distance along the ordinate between the weapon'Impact point and the center of

impact points or (y-m). Assume (x-R) and (y.m) to be independently and

normally distributed -with respective standard deviations a and ay. Thus,,

f1 (x..I) a xp - (80)

ix
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.9

M)2
f2 (y-m) = exp[ 2o( (81)

y y

Assume that the bias in the x direction and the bias in the y direction are

known. Thus., let

bx= €- = bias in the x direction or range offset,

b = n-m = bias in the y direction or deflection offset.

Thus,

x
m =n-b (82)

and it becomes possible to express the probability density functions of the

delivery errors in terms of the MPI and the offset. Thus

fI (x-&+b, x exp[- (x- 2bx) 1(:::. IS 2a ](3

x x

'1 e,-(Y-n+b )2
f2 (y-n+b ))y2. (84)

.,Y

3. The Model

If we'assume that the damage function is represented by the Carleton

damage function, then the probability of kill at (uv) given that the weapon

impacts at (xy) is

D(u.-x, vy) - n0 expl. D, [R12) + (!R.) (8)
x y

To determine the probability of kill of the target in the presence of delivery

error, the laws of conditional probabilities are used and we have:
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Pkf Probability of kill at (u,v)

f f [Probability of kill at (uv)lweapon impacts at (x,y)].

(Probability weapon impacts between (x,y) and (x+dx, y+dy)].

f f D(u-x, v-y) f1 (xC+bx) f2 (y-' + by) dx dy

f f no exp{- Dr 0 u-x) 2 +

"x y

1x) +_ b_ 2 (y-n + by)2
exp[ - (x,,,,I; 1 exp[- - dy (86),xp - 2x .N-O 2Y ]dx

x x y

In general, thus, Pkf is a function of

a. the location of the target (u,v);

bý the coordinates of the NPI (f,n);

c. the biases bx and by in the x and y directions.

To evaluate the double integral in the expression for Pkf, write Pkf as

the product of two single integrals.

": ~ ~Pkf " 0" 0
k f* IF ay

i x y

20 "(.'JX) (X-C + b d
f exp.(- 2 * -, -. - d

R X X.

2 'S- Do(V;Y) (y-n + b )"~~o 
-( Y X•"[ Z i:'2 ]I dy (87)

f exi-j R2  + 2
y y
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Let

w- x-9 + bx (88)

z - y .+ by (89)

Then

k 0  e (u- + bx)-W) 2  W2
-2o f expa DO( R 2"All dx

-,(v-n +b )-z 2
"f exp{-['0 ( R(n - + _.-21 dy

Sy 2a-- y

R R 1 u(+ b 2 v-
- x exp-i [( q x + v2

= Pkf((u-/ + bx* v-n + b) (90)
K' y

where

2q , R x +02 (11• 2"D' x (1

q Y - +0 y (9 2 )
q2  2,)0  Y

4. Special Cases

Several special cases are now considered

a. Case of ,no bias

Here hx*Oand byO and one obtains

RxR
~kf. (u-t u-n) 2q, q2  qq 2  (3

38



b. Case of no bias in the y direction (guided weapons)

This is the case corresponding to guided weapons and the expression for

Pkf becomes

u< + bx ..21t¢4
P = 2qlqp- q2 +0q 2

c. Case of no bias in the y direction and weapon is aimed at target.

Here, -the desired MPI coincides with the point target (u=-, v-n):

R R bx b
'Pkf (bX, b) exp - + (95

5. Estimation of E[Pkf] and Var[Pkfl

Let Bx W u-. + bx (96)

B - v-n + b (97)
y y

The expression for Pkf becomes, in general,

Pkf (1x' By) - -2 q .-

where 
1*

2
2 2O +a (99)x

0

2
q + a~ (100)

0
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Note here that Pkf is a function of seven parameters namely %.R,. Ry. aX,
a y Bx and 8 . We shall assume that Bx and B are precisely known and are notxy y
subject to estimation error, but that the five other parameters On, RX9 RYD

axand aymay be subject to estimation error. It shall be assumed that both
the means and the variances of th e parameters are known. First we obtain an p
explicit expression for Pkf Substituting for qand q2 in Pk 8 *B)yed

R R
P kf (B, )-

P.

2 x 22
0 2

2 B2

""! B

-exp x- Y

R2 2

30 R xp4 2
__ 0-____ 2 0 0

R ox 2 D x

exp(- I( 21 (101)1

y O y y

The Taylor,'s series estimation procedure will be used to obtain approximate

expressions for ECPkfI and Var(Pkfl in terms of the means and variances of the

five input parameters Do. Rx Ry, a and a

x- y

Let n ot Ry Ry e as e and a o refer respectively to the mean of tat bt

and a. Expanding tkf about the point r k. F - obtains upx y
to the first order terms:

Pkf 0 9 R RBOx a x 0 "y-

k x y k} f".", 'x9 0;

40.
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.- Pf kfkf,o.. -+)-. , +(R-
kfpkf ,

+°-x• 5p-f + €° " -) I (102) ii•:::"0 y

Note that the partial derivative of Pkf with respect to the five variables lop

Rx, Ry, ¶x and a are to be evaluated at the mean values of the variables.y 

-

Approximate expressions for EEPkf] and Var[Pkfl are now provided.

a. Estimation Of E[Pkf]

Taking expectations on both sides of (102) yields as a first approximation

E[Pkf(Do, Rx, Ry,- ax, Cyi Pkf(0 x •,°,°):-.

R R 1 8x B~. 13

where q-1 ' +0 Ox (0)i~ii-2

2  '-0 2 + (105)
irst ' x s (01wrt

b. Esimatin ofVar[Pf]kf

-4 ,, .2

wh r , :1) + x"(104

41
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*+(aI + ;aY)a f (106)
X yt

Squaring and taking expectations on both sides of (106) yields

VarPk) Vr( 0]apkf 2 3'Pkf 2V~arP kf Va (ao 0 ) 3TH VarfR1 (j-

akf 2  Pkf 2
t Var[R] Y n- + Var~cyxi '*-

+ Var~ac] kf ~2 + covariance terms (107)
y

Again, it should be noted that all partial derivatives are evaluated'at the

point (3 ).we now otbain'the expressions for the partial
' y' y

derivatives

a. pkf /30 0 )

ik R(2+ 2 D 2- x(-D8 R + 2n02 ]
a0  x O 0x exp(- 0Rx

-R t2 2 2 ?7- x[ R 2 nl 2 YI

3

0 DoRxax(Rx + 7Do a ) e~xp[ 00 RX(R + 2D0 0eO)''

*-DR 2  *2 2 ' 2 2 -

if) Rx (Rx+ 7122 R2  -

Do~R ( 00a)~ B X (R2 + 2 00 a X) + 2 00 ax OX (Rx 2 Da2)

*~ 2x( DaO 0~R4 2)-~1] * R(R2 *2022

42p 32(R+ D



y 0 0

2 2x[ 2~ 2~ 2R -1 2.7-a~

+. {0 Rx (R~ + 2 D~~) exp(- o Bx (R~ +2 r)~ a !-)lI

3
R 2 22 D 0 2 2 2~ 2-1

+ R (Ry + 2 Do ex p[- 0 By (Ry + 2 Do 02)]

2 2 -2 2

to) 2R + 2 -1))1~B~(~ ?%~
+ 0 Rx (R~ 4.+ 2 n0~ o 2 ] exp[- '0~ B (R + 2 fl) X) f] (fR

3 ~f242 2 8 2 ?2

2-, 2- 2 - 21 -

f D~ R .(R 2 ~ 2 2x[ 2 2, (-1,a

{(7 +2 2) 2 exp(- 00 B ; ( R- + 2 n y

IR(R2 + 2 Dd x) exnI- 01 8!(R + 2 0
10 )

R.008 (R + R 2 .2 )2 ),-e4-0 (R -+ 20 D2
ex[. 0x 0 + (109) a

2 2 0 2 -

~kf y 
'*~

uR, (R +2  0 a2 7x( )B 24.2
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2 2 2 o 2-1
(DR + 2 y exp4- 0 BY2 (R' + 2 ~y,0- B y y."-

3
-R 2 (R R+ 2 2 0 a 'Y) ex[-0B (R2 + 2 ) 0

+ 2 2 22 20 2 2
yy

= % Ro8 2 R2(R 2 2 1xp[' o 2 R2  
+ 2

0 y 0 y- y y ..

7c-r R., y-('' + 2no 0 exp(- D 8 (R2 +20 0-zi20 1 B 0

•)1

222 2 2 2 2 1exp[- DO BB (Ry + 2 D a

+ aPkf4 0/1 0 a x (Rx +20 0 aX) ( 0 + 2 DO 0)"

2 2 2o 2)2 21-

expf- Dn"BX pR{.+o22Doy0+

• {-2 DO R (R2 + 2 0 exp( - 0 Bx (R x 2 + 2 0 D 2

-e(R 2 + 20 0 2 2 +'121-

e(p. + 1 2.00 a~ (11+2)D o

¾ r%



c. Numerical Example

Assume that for a guided weapon the parameters of the Carleton damage

function are

Do 1, Rx 120 ft and R =200 ft' 1
y

These parameters are subject to estimation errors and their variances are given

by

Var[D0) .002, Var(Rx] =50 ft2 and Var[R) 7 0 ft2

The guided weapon is aimed at a point target. Thus,

u C and v n

The aiming errors in the x (range) and y (deflection) directions are normally

and independently distributed with the same stand'ard deviation

OxCa iq20ft

and Ya ) 4, ft2

The bias in the range direction is bx 20 ft. There is no. bias in the

deflection direction- b 0 ft. , t, thus', follows that

a uo +b, .20 ft

81 v-n~b 0oft.
y *
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Assume that all the covariance terms are zero. For simplicity, the bar()

notation for expectation will be omitted.

To obtain the numerical values for EIPkfl and the partial derivatives, the

following quantities are introduced:

.. • - . .... , I - -

2 ? 2 D 2

R 00O (113)

2 * + 2 a (114)

=~ ~ ep- B[R +2 % 2 -1

E epi 0 x R x+ 2D 0ox)-

= exp[ - D 8 Q-2  (115)

E2 = ex pf- 0 B 2 (R2 + 2 10 '~r11i

z exp[- D 8 2  (116)

Substituting for the values of the parameters yields

Q2u102 2
(120 (2)(1)(20)2

15,200
rhus, Q 123.288,28

2 (20)'+'(2)(1)(20)

*40,800
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-T2 7-7. C

Thus, Q2- 201.990,10

=2

E - exp[- (1)(20) .974,027,4L_
21 1-,200

2
E2 = exp[- (1) =40,800 J,?..

Using (113), (114), (115) and (16) in (103), the following expression for

E[Pkf] is obtained

E[Pkf] = DO R I Q•1 ERy 2 "2

(1)(120)(.974,027,4)(200)(1) "
(123.288,28) (201.990,10)

=.938,708

The partial derivatives are 'now computed,. They are first rewritten using

(113),1(114), (115) and (116).

From (108)

aPkf ,R Q ER 0V 0V.--

a•o _x 1 y 2 E21 + 60 2 3 a 1 1 2'.2 1"

+[DRB2 Q-3 + 2 D282R a2 Q'51E R ;'E

-1 2 -3

1. 1, y y 2

-1 2 22 2 4
+ to R, 0[ E, R yil- 0• Q2 2 D,, 8o ,'.-'.E

{% 1 Qj 1 2i 2~ Q28 Q 2 + 2 Dý 22 22 -4a R Q EQ E 1,•.Q , 2- 08•- 0iZ,2 ,l°Z"-

X y 1 2 1 2 DO x Ox 01 O x Il
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-% 2 022 +- -1 2 0
2 Q-2]} (117',

aPkf (120)( 200)(.974.027.4)(1) Ll- 1)(20)' (1(0

TU0 (123.288,28)(201.990,10) 15,200 15,200

(2)(1) 2(20)2 (20) 2 1)2)20

(15,200)2 40,800'J

S.938,708 [- - .026,315. , .026,315, 7 - .. 001,385 - A."-,o •03,91

- .881 -9",5

From (109)

~kDR E [ E -R 2 0 E + 2 0 B R2 Q-
0R y 221o1 1 11 0x x 1E 11

) 1 -1 2 2 1

(1)(200)(.974.027.4)(1) r (120) 2 (2)(1)( 20' 2

(123.288,28)(201.990,10) L 15,200 1.5,200

.00.q2.sl-.947,368.4 (1 -. 052,631,5s)]

S.000,801.7

Frwlom(1)

0 2 E -' R+ 2. D 02 R2 0-5E2
y

£ lR Q- Q~ R E1QRU 2. n B 2 .2  (.119)
"0Ox 1 2 1'2 2 y y
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. (1)(120)(.974,027,4)(Cl) I-
(123.288,28)(201.990.10) 40,800 (i-a)

- .004,693,5 (1 - .980,392,1)

- .000,092

From (111)

•- kf 0 R R 0, 1 E - 2 ,% ax 0 -3 E + 4 D2 3 22 - 5 E

Ta o x y 2 2 1~ 1 0 x 1. )

2 -3 82 02o )

D; Rx R Q ax ElF I 2 2 (120)

(2)(1)-2(120)(200)(20)(.974 "027 "4)(1 [ -1 1 , 0 ( ) ( } ( }) ) +(21(l) (20) 2

(123.288,28)3 (201.990,10) 1

= .002,470,2 (-1 + .052,631,5)

= -. 002,340,1

From (112)

DPkf -3 -5-y 1 Ej (-2 ooD E + 4 O a, 0yo; E?)
-0 o . 1, 1; 0? o 2, 2, c- y. °o 2, ~ (.1

21 2 y lo-3 E .2(-1 + .20 82 ~-2 (12 11)

. (2).( )2 (120)(200)(20)(.974,•?7.4)(1 ) ( -I)

(123.2R,28)(201.990,1io)3

* -. 000,920,3
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To determine the variance of Pkf, expression (107) is used

Var[Pkf VarCD] 3P k1 + Var[R) (n-)f + VarER) aj-w-2
0 X y

+ Var~a] (pkf)12 + Varra I 3P k 2 (122)

2 7y

2(.002)(.881,399,S)2 + (50)(.000,8O1.,7)2

+ (70)(.000.092.) 2 + (4)(-.002,3401) 2

+ (4)(-.000,9203) 2

=.001,611,7

Thus, a .0402
kf

A two-standard deviation confidence interval on E[Pkfl is

P k EEP kJ ±: 2 apkf

*.9387 t .0804

It is noted, in particular, that the contribution of Var(tool to the total

variance is about 96.4%.

so



SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

In this report, the modeling of multiple weapons delivery has been

attempted. Details related to the stick delivery of weapons are described in a

separate report (3], In addition, the modeling of the delivery Of guided

weapons has been undertaken under two differnt sets of assumptions for the

distribution of delivery error.

Although the underlying methodology for tackling these different

situations is the same, nevertheless, the statistical characteristics of the

distribution of delivery errors constitute the main element which brings forth

the differences between the various models.

The solutions to the problems related to multiple weapons are far from

being complete. For example, the approximate solution to the general stick

delivery problem as partially reported in (31 needs some verification using the

exact approach presented in Section II in this report. In addition, the

multiple weapon delivery under independent passes remains to be solved.

Questions such as the effect of the number of weapons delivered per pass or the

number of passes on the variability in Pk have not been answered. Final1y, it

is conceivable that the general problem of weapon delivery be approached as a

single mathematical model in which the distribution of the delivery error takes

a general form. The different situations studied so far as separate problems

nay then be recovered as special cases to this general problem.
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