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PREFACE

This report describes work done {n the summer of 1983 by Dr B. D.
Sivazlian, Department of Industrial and Systems Engineering, the University of
Florida, Gainesville, Florida 32611 under Contract No. F08635-83-C-0202 with
the Air Force Armament Laboratory (AFATL), Armament Division, Eglin Air Force
Base, Florida 32542. The program manager was Mr, Daniel A. McInnis (DLYW).

The work was initiated under a 1982 USAF-SCEEE Summer Faculty Research
Program sponsored by the Air Force Office of Scientific Research conducted by
the Southeastern Center for Electrical Engineering Education under Contract
No, F49620-82-C-0035.

This work addresses itself to the problem of computing the uncertainty
associated with the probability of kill when using the two-parameter Carleton
damage function as specified in the Joint Munitions Effectiveness Manual/Air-
to-Surface (JMEM/AS) open end methods as described in 61 JTCG/ME-3-7 (Revised
15 May 1980).

The two-parameter Carleton damage function approximates the probability
of kill due to fragmentation of an exploding weapon in the absence of blast
effect and delivery error, Further, it assumes that at the center of the
exploding weapon, the probability of kill is unity. It thus excludes
weapon/target situations in which such probability of kill results in a number
less than unity.

The author has benefited from helpful discussions with several people.
Particular thanks are due to Mr Jerry Bass, Mr Daniel MclInnis, Mr Charles
Reynolds, and Ms Katherine H. Douglas, all from DLYW who have read the report
and have contributed to it through helpful comments,

The report is the first of a series dealing with the uncertainty

associated with various weapon effectiveness indices, and details

i




methodologies and techniques used in computing such uncertainties in the 8
presence of error in the input parameters. k-
E;j The Public Affairs Office has reviewed this report, and it is releasable ;'-f
;\ to the National Technical Information Service (NTIS), where it will be
h available to the general public, including foreign nationals. .
: This technical report has been reviewed and is approved for publication.
FOR THE COMMANDER
MILTON D. KINGCAID, Co)ohel, USAF
Chief, Analysis and Stfrategic Defense Division
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: SECTION 1
i INTRODUCTION

i: The present report discusses methodologies for estimating the probability
ij of kill, P, taken as a measure of weapons effectiveness. In addition, the

! . report addresses itself to the important question of estimating the

variability in P, in the presence of uncertainty.

. Section Il elaborates on the techniques available to determine the mean
F: and the variance of P,, denoted, respectively, by E[Pk] and Var(Pk], when P,
ii is expressed as a mathematical function of given input parameters, say X and
Y. It is assumed here that none of X or Y are known precisely but are subject
to estimation error. Such error may arise if, for example, X and Y are
measured subjectively, or X and Y are obtained through some type of
inferential estimation procedure such as the use of multiple regression
scheme,

Section III applies the methodology to the particular situation of
fragment sensitive targets in the absence of blast and aiming error. The

probability of kill in such an instance can be approximated by the Carleton

damage function

2 2

Pre = exp[-(5 + 1?)] .
R R
X Y

Here it is assumed that the weapon explodes at (0,0) and the target is located
at {x,y). R, and Ry are two parameters identifying the weapon's radii. The
general approach assumes that estimates of R, and Ry, as well as the errors in
such estimates, are available, and the problem addresses itself to estimating

Pkf and its variance.




......

Section IV goes one step beyond and looks at the problem of actually

estimating R, and R, as well as their covariance matrix, It is assumed that

Y
experimental results obtained from fragmentation field data of an exploding
weapon are used to estimate the values of Rx and Ry in the Carleton damage
function. Two methods are explored, both based on the theory of linear
multiple regression,

Some concluding statements are made in Section V.

iﬁ At this point two remarks are in order. The first remark concerns the

Carleton damage function. In the cases considered in this report, it is

implicitly assumed that, at the point of weapon explosion, the probability of
ki1l is unity. Further, one assumes that the equiprobability contour lines in
the {x,y) plane are ellipses with axes coinciding with the x and y axes.
These conditions are fairly reasonably satisfied when the impact angle of the
weapon is close to 90 degrees and the x and y axes are taken to be the
directions of the weapon range and deflection, respectively. Thus, one may
use the two-parameter Carleton damage function as a model for this
situation, When the impact angle is smaller than 90 degrees, the equiproba-
bility contour lines do not, in general, follow elliptic patterns and are not
in genera) symmetrical about the deflection axis. However, because of its
simplicity, the Carleton damage function is still used in practice.

When the probability of kill at the point of impact is less than unity,

the three-parameter Carleton damage function given by

2 2
. X
Pef = Dy GXp['Do(;§'+ i?)]
X y

is a suggested model (see e.g., [6]). Notice that in this case, since

0 < Pyg < 1, one must necessarily have 0 < D, < 1. In what follows, only the

two-parameter Carleton damage function is considered (Do=l).
2




The second remark concerns the fragmentation field data for computing
Pyg. It will be assumed that such data are available and that they have been
processed to exhibit in matrix form the value of P ¢ at a target point (x,y),

when the weapon impacts at (0,0) with a given angle and at a given velocity.

......................................
...........................
......




SECTION II
METHODOLOGY

1. Background

In many practical situations, a measure of the effectiveness of an
exploding weapon upon a target is usually expressed by the probability of kill
Py The computation of this Pk value is most often undertaken by using a
mathematical expression or mode! which is a function of the target position
relative to the center of explosion, as well as a function of one or more
parameters, These parameters are, in general, established either subjectively
or experimentally or both, and they account for a number of factors which may
be present at the time of the explosion, such as weapon characteristics,
impact angle, impact velocity, nature of target, etc. An example of a P,
function is the Carleton damage function which was previously introduced.
Thus, given a set of conditions, the formula allows one to compute a Py value
for any location of the target relative to the weapon., However, one must
realize that this formula, like any other, is only an approximation whose
usefulness is dictated by how accurately it represents reality. This is due
to the fact that (a) the mathematical model is not an exact replica of the
actual situation and (b) the parameters in the model are estimates (random
variables) rather than exact quantities,

A natural question that may be raised in this context is how good is the
Py value computed from the mathematical model; or, precisely what is the error
of the Py value? To answer this question, one should note that Pk being a

function of the estimates is itself a random variable, Theoretically

speaking, given the joint distribution of the parameters, the distribution of
Py could be obtained, thus providing a means for calculating, for any ;:1

confidence level, interval estimates for P,. However, in practice this is not

4
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& possible due to several reasons. First, from an economic point of view,
‘E inadequate data are avajlable to describe fully the joint distribution of the
- parameters, Second, P, is, in general, a complex function of the parameters,

X and thus, characterizing its distribution becomes very difficult, if not

impossible., Finally, the intent is not to set up accurate confidence
intervals on Py, but rather to provide the decision maker with adequate
information on how P, behaves statistically in the presence of estimation
errar in the input parameters. Thus, very often the parameters will often be
characterized by their first two moments. Similarly, the establishment of the
first two moments of P, will be adequate for our purpose.

For argument sake, suppose that the probability of kill, Py, is a

function of the two input parameters X and Y so that
P = P (X,Y) . (1)

Suppose that each of the parameters X and Y are estimates subject to error,
It is required to determine E[Py] and Var(P,].
If the joint distribution of X and Y is known and is, say, fX,Y (x,y),
then
BT = [y Jf P (ay) fy y (xoy) dx dy

and ECPE) = [, P2 (x,y) fy,y (xy) dx dy .

From these two expressions one can obtain
¢ var(P,] = E(PE) - €20P, 1.

It should be noted that although it is impossible to completely
characterize the function fx,Y (x,y), nevertheless, there exists methodologies
to arrive at approximate estimates of E[P ] and Var[P 1. We shall digress on

two such methods which are:

.....
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...........

a. the subjective estimation procedure

b. the Taylor's series estimation procedure.

Each of these methods assumes that certain statistical information is

available on all input parameters which enter in the computation of P,

2. The Subjective Estimation Procedure

In the subjective estimation procedure, it is assumed that the
uncertainty level of each input parameter is provided as subjective
information. A lower and upper bound value for each parameter is obtained.
The value of a particular parameter is assumed to take equally likely values
between its two extreme points. This is equivalent to assuming that each
parameter is a random variable uniformiy distributed over its range of
values. Further, the parameters are assumed to be mutually independent random
variables. With this statistical information, the evaluation of E[Pk] and
E[PE] are reduced to the computation of a set of definite integrals. Thus,
referring to (1), if X is assumed to be uniformly distributed in the interval
[xl,xzj, while Y is assumed to be uniformly distributed in the interval

{y1,¥21, then, if X and Y are mutually independent, it follows that

1 1’2 *2
E(p,1 = [ © P (x,y) dx dy
k —(xz'xl)(yZ'.Yl) -Yl xl k
y. X
2 1 2.2 .2
E(py] = [ [ Pr (x,y) dx dy .
k x2-xl)(y2-y17 )'1 X k

Note here that under these assumptions, the mean and variance of X and Y are

given, respectively, by

¥

...........
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Xq+X Xop=X,)

ex) = 42 o var(x] = A
+ (y,-y;)?

Y1, Yo ¥y

E[Y]) = 5 s Var[Y] = 1 -

Although the method often provides expressions for E[P ] and E[PE] which

can be analytically manipulated to arrive at closed form expressions, never-
theless, it has certain inherent disadvantages which should be stated at this
ﬁl stage., First, there is no guarantee that closed form expressions can be

obtained for E[P, ] and E[PE]. If such expressions are derivable, they are

usually fairly complex in form. Second, the method does not make any
allowance for incorporating a dependency factor between X and Y, if such
dependency is known to exist. A third disadvantage of the method lies in the
fact that it is not possible to segregate the contribution of the variance of
each parameter component to the variance of the probability of kill Py-
Finally, the numerical computation of Var[Pk] requires that the computed

values of E[P,] and E[PE] be carried to several significant digits.

3. The Taylor's Series Estimation Procedure

In the Taylor's series estimation procedure, the assumption is made that
the statistical moments of the input parameters are known and that P, (X,Y) is
a differentiable function of X and Y. The expression for the probability of
ki1l P, is expanded as a Taylor's series about the expected value of the input
parameters. 0nly first order terms are assumed significant in the derivation
that follows. However, in general, one could use a procedure parallel to that
outlined here if higher order terms beyond the first are to be included.

Let X = E[X] and ¥ = E[Y], then

_ _ P, _. P,
P (X,Y) =P (X,V) + (X-X) =~ + (Y=Y) =~ . (2) .
K X - 9 - .-
X,Y X,Y = 1
’ 3
NN
-
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Taking expectations on both sides of (2) yields

E[P, (X,Y)] = P, (X,Y) .

Thus, in the Taylor's series estimation procedure, the probability of kill
computed at the mean values of the parameters is taken as an estimate of the
mean of the probability of kill, This estimate is an approximation which is
adequate for most practical problems. Further accuracy may be obtained by the
inclusion of higher order terms in the Taylor's series expansion. For

example, the addition of the second order term to (2) yields

: , P, a%P, a%p,
5T {(X-X) aXT— + 2(X-X)(Y-Y) WYV+ (v,Y) ;2—__}
XY ’ X,Y
which upon taking expectations gives
1 BZPk asz 1 asz
7 Var[X] 7 + COV[X,Y] WVl - + 5 Var[Y] 5 .

This last expression would be added to Pk(Y;T) to improve the accuracy of the

value of E[Pk(X,Y)].
To obtain an estimate of the variance of P, write (2) as i?
(0 « 1) X e o T
P (X,Y) = P(T,Y) = (X- + (Y- . -
k . ly,v RAVE -
Squaring both sides yields i :
»e
2 2 =
P aP
- — -2 =2 k =\ 2 k o
[P (X ¥) = P (X, V)17 = (X-X) ) + (YY) (53-)
o) gy DS & .-:::
PP fﬁ
+ 2x-0(Y-Y) (5)Gy) _— (3)

.
v Co te e
P
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Taking expectations on both sides of (3) and remembering that

P (X,Y) = E[Pk(X,Y)] yields

2 2
P, P,
Var[P (X,V)] = Var[X] () . Var[Y]{zy-) .
‘ + 2 Cov[X,Y] (f-Pi)(f-'i) (4)
’ ax /tayY '

Formula (4) provides a mean for computing the uncertainty in the value of

P (X,Y) as a function of the uncertainty in the values of the input

parameters X and Y, namely Var[X], var[Y] and Cov{X,Y]. Of course, in case

when X and Y are independently distributed, the covariance term vanishes and

- expression (4) involves only the variance components,

: The advantages of this method are three fold. First, it is possible to
obtain fairly simple expressions for E[P ] and var[P ]. Second, in case when
the input parameters are correlated, the uncertainty in P, can reflect the

:f extent of this correlation through a covariance term, Ffinally, the

il contribution to the P, variance of each variance component can be identified

and segregated. With an objective towards reducing the P, variance, the
methodology allows one to break down the P, variance into its components and to }f
identify those input parameters with the largest variance contribution. It :
should be noted that the method fails in cases where P, is not a
differentiable function of the input parameters,

As was mentioned earlier, when using the Taylor's series estimation
procedure, a decision has to be made on how many terms are to be retained in r o
; the expansion, As a first approximation, only first order terms are usually oo
- retained, Improved accuracy in both E[Pk] and Var[P ] could be obtained by

the inclusion of second and higher order terms. This however, would generate ;




cumbersome mathematical expressions and would require a knowledge of the

higher moments of X and Y, In what follows, only first order terms are
considered in order to maintain the simplicity of the expressions derived. An
extensive discussion of the Taylor's series estimation procedure is included

in [2].

4, Remarks

a. Experience has shown that in cases where X and Y are independently
distributed, the subjective estimation procedure and the Taylor's series
estimation procedure provide results for E[P, ] and Var[P, ] which are in close
numerical agreement. This will be verified later on in this report when the
methods are applied to fragment sensitive targets in the presence of no aiming
error.

b. In establishing confidence intervals for P , a two standard
deviation (=2) two-sided confidence interval is selected. In such a case,
Chebyshev's inequality guarantees at least a 75 percent confidence interval

since for =2 we have

P{E[Pk] - uJVarlel < Pk < E[Pk] + aJVar[Pk]}.Z 1 - _% = .75 .
a

10
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SECTION III

APPLICATION OF THE ESTIMATION PROCEOURES

1. The Carleton Damage Function

For fragment sensitive targets, in the absence of aiming error, the

Carleton damage function may be used as a model to measure the value of the

T
®

probability of kill due to fragmentation, Pees at an arbitrary point (x,y) in

the plane given that the weapon bursts at the origin (0,0). This damage

function has the form

x
~N

pkf = exp [-( (5)

el
+
GN S
=

where R, and Ry are two parameters known as weapon radii. Rx is the weapon
radius in the direction of range which is the direction of the main weapon
axis (the x-axis). Ry is the weapon radius in the direction of deflection
(y-axis) perpendicular to the x-axis. 1In general,Ry > R,.

It is assumed now that the parameters Ry and Ry are not known exactly and
that they are subject to estimation errors. Under these conditions, it is
required to estimate the error in Pefe To do this, one needs to evaluate both
E[P ¢] and Var[Pkf] in order to specify an interval estimation for P ¢ for any
(x,y). The estimates of R, and Ry are assumed to be given either in the form
of a minimum value and a maximum value through a subjective estimation
procedure, or in the form of a vector mean and a covariance matrix through an
inferential estimation procedure. Given the estimates of R, and Ry, the
problem is to determine E[P,¢] and var[P, ¢]. We shall consider next the
application of each of the two methods discussed in Section Il to this

particular problem.




2. The Use of the Subjective Estimation Procedure

Here it is assumed that Rx and R, are uniformly and independently

Yy
distributed over the respective ranges Rxl < Rx < sz and Ryl < Ry < Ryz.
The quantities Rxl, sz. Ryl' and Ry2 are supposed to be known. They may be

determined, for example, through a subjective procedure in which individuals
are requested to provide a lower and upper bound on the values of R, and Ry
based on their judgement and their experience. The main objective is to

determine E[P,¢] and Var[P ] .

a. Estimation of E[Pkf]

Using (5), the expectation of P ¢ is given by:

Ry Rx 2 2
2 { 2 ox X_ . X
p[-(35 + 5) dR_dR
R RZ 2 Xy

- 1
fPur) = R, 77 [y
Ya e By N x Ry
1 N
R R
y 2 X, 2
TR R I(R =7/ 2 exp(- ’7) dR, [ © exp(- =5) dR, . (6)
Ry -Ry 1R Ry ) " R Y 'R R

To proceed further, one needs to evaluate integrals of the form
B kz
J(A,B) = [ exp(- —EJ du .
A u

Now making the change in variable v = %-1n this integral expression yields

1
A 22

ang) = f eV . Lav,
v

o) —

Integrating by parts yields

12
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1 l
22K K 2,2
IABY = -3 e Y L Aty e
1 1
8 B
1
2 A 2.2
= B exp(- 57) - A exp(- 57) % [ ek qy .
8 A 1
B
¢ In the integral expression let kv = . ; then dv = —— dw and
3 kv/2
k k =
J(A,B) = B exp(- =) - Aexp(-—5) - k/Z [ e dw
82 "2 k/Z
B
=B exp(- —5) - Aexp(- =) - k/Z e dw - e dw |
P PAR :
2 kv2 _w2
=Bexp(-—-2-)-Aexp(-k ) - 2w [—l—jTe 2 4w
A 27 0
K2 W
1 "2
-—[" e dw] .
2q 0 ]
,
Let 0(1)=Lj e Zdw.
/2n "0

Thus, ¢(z) is the area under the standardized normal curve to the right of z=0.
These values are readily available, and can be obtained from existing tables

(see e.g., [1]). The expression for J(A,B) can be written as:

2 2
J(A,B) = B exp(- ‘E’z) - A exp(- ff) - /5 [oZ) - o(8f3)) . (7)

13
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The expression for E[Pkf] given in (6) can be written using (7) as

2 2
. 1 . _x° X

EPke) = 7—n YR, R {sz exp(- 2 ) - Rxl exp - ) )
Y2 N 2 "1 Xy Xq

_ — 2
-2 /7 [0[-,’;—:—2-) - o(-,’z-‘i—?-—)} {Ry2 exp( - ;‘%-)

1 2 Yo
2 _ —_— -—
- R, exp(- =) - 297w [s(F) - o(¥D)]} (8)
1 R y y
Yy 1 2

b. Estimation of Var[Pkf]

The following expression results after squaring both sides of (5)

2 2
PEf = exp[-(-g-;—+ —Z-ZL)] . (9)
Rx y

It is thus evident that E[ng] can be obtained directly from E[Pkf] given in

(8) by replacing x and y, respectively, by x¥2 and yv2 . This substitution

yields
2 2
(k) = T (R, op(- B - R enal- &)
y2 y1 x2 x1 2 sz 1 Rxl
2
- 207 [0(2) - o(B)]} {R, exp(- ZL)
Rx Rx y2 R2
1 2 Yo
2y° — 2 2
- R exp(- 5-) - 2y/7n [o(§L-) - o(£)]} . (10)
N R Y1 Y2
Y

The expression for Var[Pkf] can be obtained by using (8) and (10) in the formula

Var[Py¢] = E[PZ,) - {ELP (132 . (11)

14
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c. Example
It is required to determine an estimate of the probability of kill P ¢

for a fragment sensitive target located at x=50 ft and y=100 ft when a weapon
detonates at (0,0). The blast effect is neglected, and it is assumed that the
Carleton damage function given by expression (5) can reasonably be used to
compute Py ¢. A subjective evaluation of the weapon radii identifies the value
of Rx to be at least 80 ft but no more than 90 ft, Similarly, the value of Ry
is judged to be at least 160 ft but no more than 180 ft,

To proceed with the calculations, it is assumed that the parameters Rx
and Ry are independently and uniformly distributed over the respective ranges
80 < R, < 90 and 160 < Ry < 180. Further, the requirement is to calculate not
only E[pkf], but also Var[Pkf] in order to place confidence bounds on P ¢.
Note that Rxl = 80 ft, sz = 90 ft, Ryl = 160 ft, and Ry = 180 ft.

The expression for E[Pkf] is given by (8). Subst1tut1ng for the

numerical values of x,y, R, , R R, and R ields
Yo Txpr Txpr Ty 2 Ty Y

2 2

ECPys] =Tr§071‘5%m70‘:3m' « {90 exp[- (3—8) ] - 80 exp|- (3%) ]
2
- (205017 ((3%T) - s (B2Z)1} {180 expl- (10)°)

- 160 el (2] - (2)0100) /7 (o190 - (100N

= TEﬁ%TTﬁT {66.099,930,47 - 54,130,707,69

- 100 /« [4(.883,883,5) - ¢(.785,674,2)1}

« {132.199,860,9 - 108.261,415,4 - 200 /= [¢(.883,833,5)

- #(.785,674,2)7} . (12)

15




The values of the function ¢(+) are obtained from the tabulated values in [1]

Ii using linear interpolation. As an example, to compute ¢(.883,883,5), the
A following two values are read from the table:

2 #(.90) = .315,939,88

% #(.88) = .310,570,35 .

It thus follows that

fﬂ ¢(.883,883,5) = ¢(.88) + [?i'9°lf91-??%%E3§3?'383'5"88]

F; . 310.570.35 + (:005,369,53)(.003,883,5)

= ,311,612,98 .

One obtains similarly

¢(.785,674,2)

"

.80)-¢4(.78)1(.785,674,2-.78
NS CEUELELN L 1
= ,282,304,56

(.288,144,60-.282,304,56) (.005,674,2)
2

= ,283,961,44,

Substituting for these numerical values in (12) yields o

E[P ¢l = .499,582,48. ]

16 ;:_.

*! In a similar fashion, using (10) one obtains for E[ng] ;ﬁ
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2~ 1
ECPkr] = T1go-TE0y(90-80y (90 e*P (-2 (g5

- (2)(50) /27 [o({ZJ130) . o({2L30)) ),

2 2
(180 exp[-2(7gg) - 160 exp[-2(783) |

(2)(100) /Z% [¢((2)§280)) - a(‘2’§§8°))1}

1
TZ07(T0y 48.546,675,65 - 36.626,668,94
{

100 /2n [#(1.25) - #(1.111,111,1)]})

{97.093,351,30 - 73.253,337,88}
- 200 /2= [o(1.25) - &(1.111,111,1)]} .

From the tables one obtains after using linear interpolation
¢(1.25) = .394,338,81
and #(1.111,111,1) = .366,727,93 .

Substituting these numerical values in the expression for E[PEf] yields
E(PZe] = .249,898,556,3 .

Using (11), the following numerical value for Var[P, ¢] is obtained

17
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s s amts o8

Var{Py¢] = E[PZ.] - (E[Py¢1)2

.249,898,556,3 - (.499,582,48)2

.000,315,902 .

The standard deviation of P is:

Q
"

v Var[P,__]
" kf

Y .000,315,902 = .0178 .
Thus, using Chebyshev's inequality, with at least a 75 percent confidence
interval, we have

Pre = E[P ) + 20
f A
k kf Py s

[}

.4996 + .0356 .

3. The Use of the Taylor's Seriec Estimation Procedure

Referring once more to the Carleton damage function given by expression

(5), the parameters R and R, are assumed to be subject to estimation error

y
and thus cannot be determined accurately. These parameters are to be
specified at least in terms of their first two moments, that is, in terms of

their statistical means

Rx = E[Rx] and Ry = E[Ry] (13)
and in terms of a covariance matrix defined by

Var[Rx] Cov[Rx,Ry]

(14)

Cov[Rx,Ry] Var[Ry]

18




In case R, and Ry are subjectively estimated in terms of their ranges, say

R, <« Rx <Rx2 and R),1 <R, < Ryz, and assuming that Rx and Ry are

X
1 y
independently and uniformly distributed over such ranges, the statistical

means and the covariance matrix are given, respectively, by:

R 4R Ry *R
T =1 2 O S
Rx 5 and Ry = 5 (15)
(R, -R_)?
X X
2 X 0
1
2 (16)
(R, -R, )
Yo N

0 — 1

On the other hand, it is possible that the parameters R, and Ry are
estimated using a specific inferential procedure, such as a linear multiple
regression analysis. Iﬁ such a case, nne may, for example, use experimental
data to fit the Carleton damage function, and as a result of such an analysis,
derive estimates for the first two moments of R, and Ry (see Section 1V).

We next show how one can use the estimates of R, and Ry as expressed in

(13) and (14) to derive expressions for E(P ¢] and Var(P, ¢].

a. Estimation of E[Pkf]

As a first approximation one can write {see Section II).

EPe] = PRy R)

Using expression (5) for the Carleton damage function function one obtains

2 2
E(P, ] = exp[-(—:__—z- + -_Réi)] . (17)
X Yy

19
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\ b. Estimation of Var[Pkf]
P The procedure outlined in Section Il is used to arrive at an expression 'f-':;
for Var[Pkf]. Expanding the expression for Pef = Pes (Rx'Ry) as given in (5) :
= as a Taylor's series about the point (ﬁxﬁy) and retaining only first order =1
_ terms results in: T ]
L _ P .
Prf (RX’Ry) = Pkf (RX’RY) + (Rx - RX) (-BT—)-— _ o3
x R_,R
X"y 1
aP
= kf
+ (R, -R) (5570 _ -
y YR R R
O J y
-l
Transposing and squaring both sides results in j
2 }
ap )
T R112 = (R K2 (kf
[P (ResRy) = Pye (RGRIIT = (R-RD® (Gr—)_ B
X . -
X"y ol
2, . ° ap, . 3P "
= k f = = kf kf ey
+ (R,-R) (557 + 2(R,RVR -R) [ (55)] . (18)
Y 'y’ ‘3R = = x x''y y 3R oR
YRR x Ty ROR o
Taking expectations on both sides of (18), one obtains as a first approxima- -4
tion } ;
2 -
ap apP ‘
f kf :
Var[Pyel = Var[R) (5% )ﬁ + varlR ] (5p) 1
X x® y y x° y . -
ap P
+ 2 CovlR R, [(reit) (sl ] _ - (19) o
Tyl VR AR e & .o
AL LY o
Now from expression (5) ”
"
2
ap 2 2 2 ey
k. 2 exp[-(%5 + L5)] (20) o
aRx R3 RZ R?. »
X x oy =
20 N

..................................................
...................................................
..........................................................




3Pkf ? 2 x2 2

and == = S axp[ (%5 + L5)] . (21)
BRy R3 R2 R2
y X y

Substituting (20) and (21) in (19) yields

4 2 2
L Var[P, (] = % {exp[-z(%-z- + YE-Z-)]', Var(R ]
X X y
b g &
t §6 {exP[‘z(:7'+ ﬁg)]} Var[Ry]
y x Uy
+ g {exp[—zk—h;z— + 51} CoviR, R T . (22)
Xy X y
C. Example

Consider the data given in the example of Section IlI,2.c. where

80 < Ry < 90, 160 < Ry <180, x = 50, y = 100. Using the expression (15) and

(16) yields
5 Rx1+R"2 80+90
Ry =—F—=—7—=8ft
Ry1+R’2 160+180
Ry =—5—="7 =10ft
(R, R ) )
var[R,] = iz 1. (90120) N 122 2
(R, R, )2 ,
Var[Ry] = 212 1 . KIBOIQBQ) . 4?3 ftz.

By assumption, Cov[Rx.Ry] = 0.

Using these numerical values in (7) and in (22), we obtain

2 2
EPed = exp-[(3Y + (1) ]

= ,500
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(85) (170)

2 ) 4
" L‘*_M_l_@%_{exp[ ((so) (IOOL]} 400)

(170) (85) (170)

B Var[P ] ﬁ_(_%_ {ex [ 2( QOL (100)2 ]} (1

+

.000,138,4 + ,000,138,4

.000,276,8 .

The standard deviation of Pkf is

= /.000,276,8 = .0166 .
Kf

a

P

Using Chebyshev's inequality with at least a 75 percent confidence interval we

have

Poe = E[P ] + 20
kf kfd — pkf

.500 + .033.

This last result is fairly close to the numerical result in the example
of Section IIl.2.c. The computational simplicity of this last method as
compared to the subjective estimation procedure should be pointed out. In
addition, one notes that the variance contribution of the input parameters Rx
and Ry, respectively, to the total Pkf variance are equal. Of course, this is
coincidental and is due to the particular numerical data used. In general,
the variance contributions will be different. The methodology provides a
means for segregating the variance component of each of the input parameters

entering in the computation of P fs and from that point of view is definitely

more advantageous than the subjective estimation procedure.
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SECTION IV

INFERENTIAL ESTIMATION PROCEDURES

1. Background

The next logical question that arises consists in the way the statistical

Y characteristics of the input parameters R, and Ry are established. It was
seen that one of the methods is the so-called subjective method, The other
method is the inferential one in which experimental data are used to estimate

the values of the parameters R, and R when P, . is expressed as a mathematical e

Y
function of these parameters. Two regression schemes will be discussed

through which one could compute such values as E[R,], E[Ry], var[Rr,1], Var{Ry]

and Cov[Rx,Ry], all of which are used in the Taylor's series estimation j"‘"‘
R

procedure to arrive at values of E[P, ] and Var[Pkf]. e
2. A Linear Multiple Regression Scheme: Method 1 fI::'-.'-j:I
The starting point is the Carleton damage function which was defined by L.«
expression (5) and which is repeated here: \
2 2 -'-.‘j.:‘:

X ®

s = exp[-(55 + L)1 (23) 2 -

RX Ry : T

It is assumed here that, through the analysis of the fragmentation data, a ':‘I:;:_Z:f'
. value of P ¢ is specified at a given location (x,y) when the weapon bursts at ;o__

(0,0). The main objective is to estimate the values of R, and Ry.

Suppose that there are n data points. For the ith data point

(i=1,2,...,n) pkfi represents the probability of kil) due to fragmentation at ’, ,
the point (xi.yi). In what follows it shall always be assumed that l:.j';'.j
0 < Pygy <1 for all 1. In case Pyp = O such data point fs discarded. i
S
RS
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Taking logarithms on both sides of (23) yields

1 NEOBAOC O

2 2
- 1 X =4
2 -In Pg = 1n(3k—f-) =7 -:5 . (24) -]
\.", X y :.j
In (24) let %
z = 1n(Pl ), u= x2, vV = yz (25) ¢ j
kf -q
- d = —-]-'- and b = ——l. . (26) . '-:
R? R2

X y o
Substituting these values in (23) one obtains )
-]
Z= au + bv, (27) ]
: =
v For the ith data point, we shall assume that ~
:;. € = zi - aui - bvi (i=1,2,4..,N0) (28) :;
=
_ are independently distributed, and further that .o
= Ele.] =0 N
" 1 A
‘ varfe,] = 0% . (29) :1
The parameters a, b, and o2 are to be estimated. ﬂ
At this stage one may be tempted to assume that z = 1n(51—0 is normally . ;f
kf by
distributed with mean (autbv) and variance 02, and attempt to use the maximum j}
<
likelihood technique to arrive at estimates of a, b, and oz. However, since . ;;
0 < Pg <1, it follows that 0 < z < =, and hence the assumption of normality .
of z may not be justified. However, the least square technique may still be ;i
.-‘\
used for the estimation of a, b, and 02. Using (26) and the Taylor's serties N
-.. -\

2 estimation procedure, it will be shown how one can obtain estimates of R, and

-
.
S
v
- <

W,
[

-
[N
oo
v .
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a. A Least Square Technique

Using (28) the classical least square technique may be used to arrive at
estimates of a, b, and oz. Note here that through the transformation (25) and
(26) a non-linear multiple regression scheme was changed into a linear

multiple regression scheme. One is thus led to determine a and b so as to

minimize the function

(zi-aui-bvi)2 . (30)

e~ 3
(]

-de N
]

Hnese 3

i=1 i

1

The specific steps of the technique are well known (see e.g., [5]) and will

not be presented here. The two normal equations are

II.M p-1
|
o

ui(zi-aui-bvi) =

i=1

ne~

vi(zi-aui-bvi) =0

i=1

which reduce to

e (31)

n 2 n n 2
= 121 Yo %12 7 121 UVie 27 LY (32)
n n
and ¢ = 121 Uy, €, 121 ViZg . (33)
25
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A1l these quantities can be numerically computed. The normal equations (31)

p can be written as

- aa,, +ba,=c
- 11 12 1 (34)
- a 821 + b 622 = CZ
Consider the matrix
a a
As | 12 ]. (35)
21 22
Its inverse is
a -a
Pl (2 7o ) . (36)
113227212 12 11

Clearly

SRt

and the estimates a and b of a and b are immediately given by the equations

R [- PR Y. BN of
728 12 2 (37)
a11“22"12
- C.+¥d,..C
- 413227212

It can be verified that 5 and 6 are unbiased estimators of a and b so that
E(a] -
of & (see e.g., [4]) which is given by

a and E[S] = b, Knowing a and 6, one can obtain an unbiased estimate

(39)

02 n
)

2 ) i)
~~~~~~~~~~~~

ML Bt USRI LN
o ST
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Further, one obtains [5]:

- 322 ~2
var{a] = ——— (40)
ad,,3,,-2
11227212
- M ~2
var[b] = —— o (41)
a,.d,..-a
1%227%12
~ - a2 ~2
Cov[a,b] = - —=5 4 (42)
3112227912

or more succinctly, the covariance matrix of (a,b) is given by

var{a] Cov[a,b] ) _ 2 ( a5, -3y, ) (43
Cov[a,b] var[b] 31,135,731, | -2, a1
b. Estimates of Rx and %y
It is clear that in the Taylor's series estimation procedure, the
determination of E(P ¢] and Var[P, ¢] requires as input the values of
R, = E[R ], R, = E[R ] (44)
and the covariance matrix
var{R_] Cov[R_,R. ]
,R
Cov[Rx y] Var[Ry]

The intent now is to use the results of the previous least square
analysis which yielded a and l;, the estimates of a and b, respectively, as well

as

Var[g] Cov[g,ﬁ]
Cov[a,b] var[b]
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to obtain (44) and (45). This can be accomplished through the functional
relationship given by (26).
Before one proceeds any further, it should be noted that the notation a
is used to denote both the estimator of a as a random variable and the
particular numerical estimate of a obtained from the least square analysis and p
given by (37). The same holds true for b. In the sequel, the meaning of the
notation a or b should be clear from the context,
Since a and b are not known exactly but are, in general, random variables,

it follows from (26) that R, and Ry are themselves random variables given,

respectively, by

. (46)

Expand now R = a~1/2 as a Taylor's series about the point a. One ebtains
-~ Ry Lo g 4R
R =R " (a—a) | A + (a-a) ~2) -
X *la=a da |a=a T da~|a=a
=11 (a-a) + —-§7E (a-2)2 (47)
7a 2a3]2 8a

Recall that a is an unbiased estimator of a, t.e., E[S] = a, Taking

expectations on both sides of (47) yields:

1 1 ° 3 PR Y -
R = ER] = ;E -'22377 E[(a-a)] + 32377 E[(a-a)%]

l 1 >
= —— —-—72- Vv . (48)
Y ! 8&5 arla]

a

Since a is an unknown quantity, its numerical estimate a given by (37) is used :;:

instead. The value of Var[$] is given by (40).

v LN
. l '
ol

i}
ol
Py &

L1,
P N
bl

.
.

. -
. 0 _°
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Subtracting (48) from (47) one obtains the foliowing up to and including

first order terms:

1 ~
RX - R-X ﬁ'z—am (a-a) . (49)
Squaring both sides of (49) and taking expectations yields
3
1 "~
Var[Rx] 3‘2;3 var[a] . (50)
Similarly one obtains
R =L+ 3 var[b) (51)
Y75 a2
1 ~
- -~ - -b
Ry R& ;;377 (b-b) (52)
" Y
Var[Ry] ;;3 var[b] . (53)
Multiplying (49) by (52) and taking expectation yields
1 ~ -~
Cov[R _,R ] = Cov[a,b] . (54)
X797 a(ab) T2
Expressions (44) and (45) are thus completely specified. The following is a
summary of the results obtained when a and b are replaced, respectively, by their
estimate aand b
R =—+ _gn. var[a], R =-Ll. _377 var[b] (55)
. 7T 8 Y ' @
Var[é] Cov[é,ﬁ]
Var[Rx] Cov[Rx,Ry] 453 4(a,b)372
= (56)
Cov[Rx,Ry] Var[Ry] Cov[a,b] Var[b]
a(a,0)%  ad
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3. Another Linear Multiple Regression Scheme: Method 2
' This section digresses on a second l1inear multiple regression scheme to
Lf:'_:j determine estimates of the parameters R, and Ry of the Carleton damage
'.::j'\ function
= 2 2
X
n Pt = exp -7 + Zp)] -
. . X y
In this instance, it is assumed that one knows, a priori, values R, and Ry
0 ()
close to the estimates of R, and Ry, respectively. Specific procedures to
obtain such initial values of Rx and Ry will be discussed later,
0 )
The expression for Pkf is expanded as a Taylor's series about the point
(Ry ,Ry ) to yield up to its first order terms
o Yo
? P
kf kf
P =P + (R-R, ) —=— + (RR )
kf kf x x. ' R IR, LR Yy y.' 3R R ,R
Rx ,Ry o X xo’ Yo o y xo’ Yo
o ‘o
2 2 2 2 2
_ X y 2x X y
-exp[-(;zz—+ﬁ_2_)]+ (R -R )ETG*P['(R—Z-+R2 )]
*o Yo *o *o Yo
2 2 2
2y X y
R -R exp |- + . 57
' A A R o
o Yo o Yo :;-1
2 Q2 1
5 Multiplying both sides of (57) by exp(—-2— + Lz—) and transposing one obtains
- Rx R ]
- o Yo D
2 2 ' 2 2
. LI A = - x - 2y
P s exp(Rz + 2 J-1-= (Rx Rxo) 3 + (Ry Ryo) 3 (58) -
’ o Yo *o Yo
- -
~
Let now 5
= 2 2 -
-'::’ Z = Pkf . exp(i-z-— + 'R%) -1 (59)
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a =R, -R
ReRy,
. s 2
R3
X
0

Equation (58) becomes

z

a.

au + bv ,

The Least Square Technique

Clearly z is a |l

inear function of u and v.

(62)

The method just described

approximates what would have resulted in a nonlinear regression scheme with a

linear regression scheme using the Taylor's series expansion and retaining

only first order terms.

coordinates (x,y) at

The variables u and v are obtained from the

which P ¢ 1s measured experimentally.

known

The numerical

values of z at a particular (u,v) are deduced from the known values of x,y and

Pt

Under these conditions,one is again dealing with a linear multiple

regression scheme, and the values of a and b, and hence Ry and Ry, can be

estimated using least square techniques as described in the previous section.

The output results of the least square approach will consist of the

estimates a and b of a and b, respectively, as well as the covariance matrix

PArL ST Brt il Sl e 4

var[a] Cov[a,b]
.- . . (63)
Cov[a,b] var[b]
From (60) it follows that
R =R +a , R =R+ b (64)
X Xo y yo
and, of course,
Var([R_ ] CovR, ,ﬁy] var[a) Cov[a,b]
- FS A = A a -~ . (65)
Cov[Rx.Ry] Var[Ry] Cov[a,b] var[b]
31
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It is possible to obtain better approximations for the estimates in (64)
and (65) by retaining higher order terms in the Taylor's series expansion.
This, however, would considerably add to the complexity of the problem. A more
natural approach consists in using the initial values of Rxo and Ryo to obtain
estimates R, and Ry1 using the linear regression scheme. This could be
followed by a second iteration in which Rxl and Ryl would be used as initial
values to obtain improved estimates sz and Ry2 using the same linear
regression scheme and so forth, assuming that the procedure will converge to
some value of R and Ry.

It should be noted that one of the advantages of the present multiple
regression scheme over Method 1 discussed in Section 1V-2 is that values of
Py ¢ = 0 need not be discarded from the data in the least square analysis,
provided that they be counted as additional observation points,

b. Initialization of the values of Rx and R

y
The previous method on the linearization of a non-linear multiple

regression scheme using Taylor's series expansion procedure is predicated on
the assumption that initial values RXo and Ryo for the two weapon radii, which
are close to the estimated values, can be obtained. Next, three possible
avenues are discussed that could be used to obtain such initial values using
experimental data. Such data is usually in the form of a matrix giving values
of P ¢ for various values of (x,y) when the weapon detonates at (0,0).

In the first procedure, the values of Rxo and R),O are obtained from a
knowledge of the mean area of effectiveness (MAE) of the weapon as well as the
impact angle [. The following relation is used:

MAE = .!.. _j“ P (xy) dx dy = wao Ryo . (66)




The value of the double integral is obtained from field data giving Prflxsy)

at specific values of x and y. Assume now that R, is the weapon radius in
0

the direction of range and R, is the weapon radius in the direction of

Yo

deflection. Let I be the weapon impact angle. Then the ratio Rx/'Ry
o Yo

satisfies the following experimental relation (see e.g., [3]):

P

XO
g—=1-0.8cos 1. (67)

Yo

Using (66) and (67) values of R and Ry can be obtained,
0 0

In the second procedure one uses the following relations to obtain Ry
)

and Ryo,respective1y, (see e.g., [6])

2
R, = ] 2x Pet (x,0) dx

] 0
RZ - fc 2y Pye (0,y) dy .
Yo o

Thus Rf is obteined by multiplying each value of the damage function on the
x-axis gy 2x and integrating the result over all possible values of «x.
Similarly, Rs is obtained by multiplying each value of the damage function
along the y-a:is by 2y and integrating it over all possible values of y.

To use the third procedure, one notes that in the expression for the
Carleton damage function, the equiprobability contour line corresponding to a

probability of kill of P,¢ = el = 3678794, has for equation

2 2
xt .y
L AR
Y

x oy

Thus the two weapon radii R, and R, correspond to the semi-axes of an ellipse,

y
and these values can be determined from the Pkf matrix obtained from the

fragmentation field data.
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SECTION V
CONCLUSIONS

M It has been customary to evaluate weapon effectiveness by the use of a
single index number such as the probability of kill Py- In the present report
procedures have been developed for estimating the error in the Py value
knowing the error in the input parameters used to compute Py .

For fragment sensitive targets, the Carleton damage function appears to
be a reasonable model to compute Py in the absence of blast and aiming
error, This function usually contains the two parameters R, and Ry which

define the weapon radii, The report has addressed itself to the specific

problem of utilizing the inherent errors in R, and R, to compute the error in

y
Py -

Methodologies have been developed to identify the causes of error in the
parameters when field data are used to estimate R, and Ry. These
methodologies are based on well established statistical techniques such as

linear multiple regression, and their use has provided estimates for R, and Ry

as well as estimates for Var[Rx], Var[Ry],and Cov[Rx,Ry]. In tuen, these

14
A

estimates can be used to compute E(P ] and Var[P,]. Knowing the first two

moments of P, , Chebyshev's inequality provides one with a means for setting up

_ o e e
PSP SR

confidence intervals for P values.

P

PO )
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