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I. INTRODUCTION

--- '"The purpose of this document is to define and briefly discuss coordinate
systems commonly employed at test ranges as well as to recommend procedures and
practices for the use of a global coordinate system. This document replaces

"- IRIG Document 151-69 (formerly 103-69), Global Coordlate, System.

" Thi's document is primarily intended for use by, individuals familiar with
the basic concepts and definitions commonly employed in geodesy. In order'to
aid the reader who requires additional background information, a bibliography
of some of the standard texts on geodesy, map projections, and spherical
astronomy is provided.--, ...

.'.2 This document specializes in those trajectory coordinate systems that are,
* or could be, potentially applicable to data reduction tasks performed at the

various test ranges. No attempt has been made to address the subject of coor-
dinate systems in a general manner or to develop a compendium of the various
coordinate systems employed at the test ranges. General discussions on coordi-
nate systems are given in a number of standard texts on geodesy and are not
repeated in this document. Information on special-purpose coordinate systems
employed at a given range can usually be obtained from documents at the local
installation. A compendium of all coordinate systems used by member ranges
would produce a voluminous document of dubious value. In spite of being
narrow in scope, this document still manages to serve a useful purpose

-'through an in-depth presentation of the definitions, properties and useful
transformations associated with those coordinate systems having a general
interest to data reduction specialists At most test ranges.

i_ W X.'.
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I. GLOBAL COORDINATES

Any global coordinate system (geodetic (tatun') is based on an ellipsoid of
revolution whose size and shape approximate that of the entire Earth and whose
center coincides in some manner with the graviti.tional center of the Earth.
Examples of such systems are the Mercury Datuwr based on the Fischer 1960
Ellipsoid and the DOD World Geodetic System (WZS) 1972.

Satellite and missile trajectories are retati'1 to the Earth's center of
gravity; therefore, range data referred to tne ce,iter of gravity are the end
products for such trajectory analyses. Whei the sensor coverage exceeds the

*,extent of local or regional datums, the sites must be located on a global datum
to achieve consistent geometry.

* Global coordinates bdsed on a given ellipsoid are determined by transforma-
* tions from regional or local coordinate 'iystems or from observations of a satel-

lite whose orbit is known relative to some coordinate system.' These computations
and transformations are usually assumed to lead to consistent results. However,
"when it is possible to make comparisons, the results are rarely in complete
agreement. Differences in computatioral and orbital force field models, along
with parameter, and zomputer characteristics,-are responsible for such discrep-
anries. Additionally, in theory, the centers of two global datum systems
should only differ by a constant; hcwever, in practice, the difference
appears to be a futiction of the location of the measurements.

I
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III. REGIONAL COORDINATES

A regional geodetic datum consists of an ellipsoid whose size and shape
approximate that of the particular region of the Earth. This ellipsoid is
oriented to a physical point in the region, and this point is the origin of
the regional datum. Examples of such systems and their reference ellipsoids
are the European Datum (ED) on the Internation4l Ellipsoid of 1924, the North
American Datum (NAD) on the Clarke 1866 Ellipsoid, and the Tokyo Datum (TD) on

* Bessel 1841 Ellipsoid.

Conventional surveys in a region are referenced to the datum network defin-
ing the regional system,. When distance and azimuth between regional sensors
are necessary for scaling, such regional coordinates are the. best computational

:source. Regional c,--ordinates may be extended to greater distances by -optical
and electrvonic observation of a satellite. The relation between regional and
global coordinate systems is specified by displacement between ellipsoid centers
"in rectangular coordinates (AE, LF, AG) and differences in ellipsoid sizes and

shapes (Aa, Af), where a and f are semi-major axis and flattening, respectively.

N'

I,--

5,. .- .



IV. PARTICULAR RANGE (LOCAL) COORDINATES

These coordinate systems are usually rectangular systems whose center
(origin) and x-y plane are tangent to some convenient point on the range
(usually one of the launch pads or instrumentation sites). The coordinates
may be transformed from these local coordinates to appropriate regional coor-
dinates or global systems. These local range systems are primarily a compu-
tational conv~enicnce designed for the range configuration and mission. Such
systems are not amenable to interrange projects or missions.

Pi
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V. DATUM TRANSFRMATI'0NS

Frequently, it is nece.-,-ry to transform station geodetic coordinates from
one datum to another. The following inforrmation is necessary for this transfor-
mation:

a o - the semi-major ,xis of the reference ellipsoid of the datuftV which
the transformation will occur (original datum),

fo = the flattening of the reference ellipsoid of the'original datum,

aN = the semi-major axis of the reference ellipsoid for the datum to which
the transformation will occur (new datum),

f = the flattening of the reference ellipsoid of the new datum, and

SAE = EN, E o
N

AF = F F0  the displacement of the center
F N -of the new datum relative to the

original
SG= GN Go

"The EFG system is a right-handed Cartesian system. The origin of this
system is at the geometric center'of the reference ellipsuid. The coordinate
axes are'ori.znted as follows: E and F lie in the plane of the Equator, G
coincides with the rotational axis of the Earth ard is positive througn the

.4, North Pole, E is positive through Greenwich Meridian (00 longitude), and F is
positive to complete a right-handed system. This -system rotates with the Earth
and is Earth-centered and Earth-fixed (ECEF). The fact that the various Earth-
centered systems exhibit displacement of their centers is evidence of experi-
mental error rather than disagreement in fundamental assumptions. 'This EFG
system will he called the Master Coordinate System or the system in which
integration takes place.

The method of transformation consists of the following steps:

1. Calculate the geocentric Cartesian coordinates of the original
'coordinates given Oo,' H0, Hot ao, fo, wheire. 4o,X X and HO are the

geodetic latitude, longitude and height above the reference
ellipsoid, respE.tively, of the point to be transformed. The
method of transformation, discussed in section VII, paragraph 7,
produces the data set (E 0 , F0 , GO).

2. Calculate the geocentric Cartesian coordinates of the new datum:

EN" Eo + AE

N Fo +AF

" I S ImPLANK
G G9,



3. Calculate OW'N AN9 and H N using. a N f N' E N3 F N and GN as shown in

section VII, paragraph 7.

The origins and ellipsoids: for a few datums are

NAD 1927 ED TD
"Meade's Ranch, KS Potsdam Tokyo

39 013'26.6860"N 52 0 22'54 81 "N 35 0 39'17.51 "N

A 261 027'29.494001" 13004'01.66" 1390.14'40.50I

H 599.4M±O.3

Ellipsoid Clarke 1866 International 1924 Bessel 1841

The ellipsoid parameters of interest are

Ellipsoid a (meters) f

Clarke 1866 6378206.4 1/294.9786932

Fischer (Me-vcury) 1960 6378166 1/298.3

Kaula 1961 6378165 1/298.3

* Bessel 1841 6177397.155 1/299.1528128

* •i" WGS 72 6378135 1/298.26

International (Hayford) 1924 6378388 1/297.0

10



i VI. TRAJECTORY COORDINATE 'YSTEMS

Orbital computations involve a number of different coordinate systems
and Lransformation of data among these systems. These coordinate systems areII related to each other through a reference fiqure representing the actual Earth.
This reference figure is an ellipsoid of revolution of givan dimensions whose
surface is assumed to approximate closely the mean sea level surface of the
actual Earth. It is also assumed that the mass of the Earth is sufficiently
homogeneous for i-ts center to be taken at the geometric center of the reference
ellipsoid. In this way, the major axis of the reference ellipsoid lies in tne
equatorial plane of the Earth, and the minor axis coin:ide3 with the Earth's
rotational axis.

The location and origin of a given data acquisition coordinate system are
determined by an astronomical and a geodetic survey (the latter of which is
based upon a specific ellipsoid). The geodetic coordinates are latitude p,
longitude X, and height H above the surface of the reference ellipsoid. The
geodetic latitude of a point, which is positive in the Northern Hemisphere,
is the angle between the equatorial plane and the geodetic vertical through
the point extended to intersect the plane of the equator. The geodetic longi-
tude of a point is an angle in the equatorial plane with ,ts vertex at the
center of the Earth, its initial side through the Green:ich Meridian, and its
terminal side through the meridian of the point. Longitude is measdred posi-
tive eastward of Greenwich. Geodetic height is measured positive up from the
surface of the reference ellipsoid along the geodetic. vertical.

The astronomical coordinates are latitude ý' and longitude V'. The astro-
. nomical latitude is defined as the angle between the equatorial plane and the

astronomical vertical through the point. The astronomical vertical is.defined
by the direction of gravity (plumbline) at the point. The astronomical longi-
tude is the angle between the plane containing the Greenwich Meridian and the
projection of the astronomical vertical on the equatoriai pl:'e. The latitude
and Tongitude differences between geodetic ai;d astronomical coordinates aefine
the deflection of the vertical. Astronomical coordinates define only orienta-
tion, while geodetic coordinates define orientation and location. This dis-
tinction is of importance to the transformation equations detailed in the next
section..

Prior to any orbital computation, a set of initial conditions must be
obtained if equations of.motion, are to be integrated. Position and velocity.

-, are usually needed (and ballistic coefficient and covariance matrix, if pos-
sible). The initial conditions may be transformed to the ECEF system.

N.
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VLI. PARTICULAR TRAJECTORY COORDINATE SYSTEMS

1. Topocentric Range Coordinate System (x' y, Z, z , 4

A topocentric Cartesian system is aisumed with the x-y.plane normal

to the geodetic normal determined by the origin, with geodetic coor-

dinates. ý, X and H. The xyz range system is shown ir figure 1-I

The coordinate system is right-handed with positive x pointing

east, positive y pointing north, and positive z pointing up along

the normal c3mpleti'ng the right-handed system.

•w 

G 
z

RF

Sx

Greenwich

Figure 1

If the slant range azimuth, and elevation are known, the position vector

x R cos c sin a

y R cos E cosc (C)

z R'sin c

where

R is the slant range from the origin to a point with topocentric

coordinates (x,y,z),

r is the elevation angle of the position vector above the x-y

plane, and

cx is the azimuth angle measured in the x-y topocentric plane from

True North to the projection of the position vector on the x-y plane.

13 
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If the components of the position vector x, y, z are known, then R, a,
may be determined from the following equations-

* R = (x 2  y2 + z2)½ (2)

' ( f (Double Arctan)
a = tan- I. If ot <0 the na a + 2) (3)

JJ

E tan. X2+ (4)
SxZ + y2) 

)

In general, position and range data are the basic measurements received oy
instrumentation'systems that are external to a vehicle in flight. Most methods
"of obtaining velocity.and acceleration make use of numerically differentiated
filtered position data (expressed as a function of time). If the position and
velocity components.are known, the range rate. azimuth rate, and elevation rate

* may be computed as follows:

X; X+ Y; +zi (5)
:I' * R

CL Z •-- (radians per second) (6)X2 .•y2

z z(x y)L (radians per second) (7)

Wx + y2)½

2. Geocentric Coordinate System (Master) (E,'F, G, E, F,,G)

We amsume a right-handed Cartesian system located at the center of the.
ellipsoid of reference with the E-F plane fixed in the equatorial plane '(that
is ECEF) and the G axi's along the rotational axis of the Earth. E is positive
in the direction of longitude ()- 00 and latftude (o) - 00. F is positive
900 counterclockwise from E, and G is positive.in the direction € 90* (see
figures 2-1 and 2-2).

14.



,; G . / -.(E, F', G) or (X, IS,

/

F

Greenwech

* Figure 2--1

4.

E-F plane

Figure 2-2

15
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"Prior to any transformation of topocentric coordinates, corrections for deflec-
tion from the vertical must be applied. Assuming these corrections have been
"made, the transformation of position and velocity components measured in the
topocentric range '-stem is given by

si X -Cos A 0 1 00xE
,- 0 0

i-•• 'os•o si X 0 0 sin €o'Cos lo + r- (8)

G lC0 0 l 0 coso sin o G

or

E -sin -cos X0 sin cos A cos x E

r cos X0  -sin Xo sin o sin X0 cos + F (0)

G 0 Cos %0 sir, o z GO0

The geocentric coordinates of the topocentric reference site are computed
from

-Eo 0 Z(N +H )Cos ýQ cos Ao

Fo (N o+H )cos o sin (1

0 0 0 0* s" G ( No(1-e 2 ) + Ho] sin *

" The parameter N in equation (10) is the transverse radius of curvature

given by

N .(11)
0 %'1-e2Sin 2$ '

where

a is the semi-major ax;•s of the reference ellipsoid;

e is the eccentric'ity of the reference ellipsoid,

is the geodetic latitude of the reference site, positive north
of the Equator, and

x is t'he geodetic longitude of the reference site, pt.4itive east.
0



* In addition, H is the geodetic height of the reference site and

n +oSui •n+h

where n is the geoid-ellipsoid separation and h is the height of the reference
site above (or below) mean sea level.

The geocentric velocities are found from the following transformations:

E -sin X -cos X sin cos X cos t x
0 00 0 0

Cos X -sin X sin sin X~ cas (12N,
0 0 0 0 0

0 coso sin ,z

or

E i

K y

where K is the matrix in equation (12).

If the geocentric coordinates of the point are known, the topocentriccoor-
dinates may be found by

X E -Eo

y K F FO (14)

Z G -G

17
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If the topocentric coordinates are positioned so that the x axis is at some

angle from north other than 900, the K matrix becomes

S11 K1 2 K13 1

K K21K21  2 KK23 (16)

"%- where
'.4.1

K l sin =X sin - cos cos X sin ( 6

K12 ' sin X, cos c - sin a Cos A sin €,

K13 = cos Cos,

K K21  cos XA sin L - cos at sin ', sin @,

K22  -cos X cos a - sin a sin a sin ,

.. K2 3  sin X Cos 0,

SK3 1 = cos. Cos cL,

K3 2 - cos t sin ct, and

K3 3 ' sin ¢,

where 4 is the angle from north to the position of the positive x axis in the
the topocen~tric system (see figure 2-3).

mNorth

Eostt Y

Figure 2-3

. 1 8
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3. Earth-Fixed Spherical Coordinate System (r, X, 6, v, Ae, Ye)

A spherical system is assumed with the same origin as the ECEF (EFG) coor-
dinate system (see figure 3-1). In addition, a UVW coordinate system is also
introduced. The latter is a right-handed coordinate system with U pointing eact,

V pointing north, and W pointing along the projection of the geocentric radius r.
The U-V plane is normal to the geocentric radius (see figure 3-'1)*.

G
S..W

S• ' • U

S.'

is Greenwich

*Figure 3-1

The following parameters can now'be defined in terms of these coordinate
S systems:

r is the geocentric rangc from the center of the reference spheroid to
the point (origin of the (UVW) coordinate system).

6 is the declination, positive north. The declination is the angle
Sbetween the equator'iO plane'and the geocentric range vector.

A is the longitude,, positive east.

ye is the Earth-fixed total velocity.

A is the azimuth of the velocity vector projected on the U-V plane."e The angle 4s measured from north to the projection of the velocity

vector. Ae is commonly called the heading.

Ye is the elevation of the velocity vector above the U-V plane. y"e is conw-e mnly' called the flight path angle.

19



If the position vector compcnents of a point in space are given in the ECEF
*. system, then r, X and 6 may be found from

r = (E2 + F2 + G2)½ (17)

,were E, F, and G are the geocentric coordinates of the point,

a. = tan-((E G )()
3 an (E2 + GF2)½-

V and
tann ( (If (Double Arctan)

=tan <0, then X= N + 2T) (19)

If the coordinates of the point in space are given i.n polar cox.rdinates r,
6, 6, the geocentric coordinates are

E = r cos 6 cos X,

F = r cos 6 sin X (20)

"G = r sin 6

If the geocentric velocities are known;, they can be transformed from the EFGcoordinate system to the UVW coordinate system with the following rotations:

62 =900

e3 - (900°- 6)

The transformation is

i = R3R2R1  F (21)

W1 G

20
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where

1 0 0 cos e2 sin a2 0 cos. 0 sin 81 0
R3R2R 0 Cos - sin 3 -sin 2 Cos 0 0 -sin Ocos 0 0

3 2 R1 -0os 3  03 2 2i
,I

0 -sin 03 cos 03 0 0 1 0 0

(22)

Substituting the values of 91' 02. and 83 into the R3 R matrix and matrix mul-
tipl~ing gives '

-sin X cos X 0

R3 R2Rl = -sin 6 cos X -sin 6 sin X. cos 6 (23)

cos 6 cos A cos 6 sin X sin 6

The result of the transformation using equations (21) and (23) is

U -E sin X + F cos X

V = -E sin 6 cos X - F sin 6 sin X + G6cos 6 (24)

S= E cos 6 cos A + F cos 6 sin x -" 'sin 6

The, transpose of the R3 R2 Rl matrix is

-sin X -sin 6 cos A cos 6 cos A

A3R2R3 = Tos X -sin 6 sin X cos 6 sin X (25)

0 cos 6 sins

and

r " (R3R2R ) V (26)

4w

G21

,21



If the geocentric velocities (E, F, G) of the point in space are known,
Ve, Ael Ae may be found from the velocity components transformed to the UVW

coordinate system by the use of equation (24) and the following relations:

Ve =(2 + 2 + w2)V (27)

(Double Arctan)

A e tan (If Ae <0, then Ae Ae + 27r) (28)

Y tan- (*2 )(29)

If, on the other hand, the total velocity, heading, and flight path angle
are known in the UVW coordinate system, then

U= ve cos Ye sin Ae (30)

= ve cos Ye cos Ae

= v sin y

e e

The geometric velocities may be obtained in this case by transforming the

U, V, W to the E, F, G (ECEF) system with equation (26)..

4. Cartesian Inertial Coordinate System (El, FI, GI, E1 9 FI, G1 )

In figure 4-1, an Earth-centered inertial (ECl) coordinate system is repre-

sented byEl, Fil GI. The ECEF rotating coordinate system is represented by

E, F, G. The ECEF system is rotating about the GI(G) axis with an angular

velocity w. ( , =.we, the rotational rate of the Earth.) By definition, E is

positive toward the mean vernal equinox of date, F is positive 90" counter-

clockwise from EP, and GI completes the right-handed system. EI and FI are in

the Earth's equatorial plane, and G, is positive toward the North Pole.

22



• Gi- G

Gt1'~
* F

r

SF,

MEAN VERNAL
EQUINOX

Figure 4-1

The inertial 'coordinate frame is rotated into the ECEF system as follows:

E cos sin e 0 EI

F - -sin e, cos.e 0 F1  (31)

G R. 0 0 1 GI I

The subscript R on the left-hand side of equation (31), indicates that the EFG
(ECEF) coordinate system rotates relative to the inertial.(I) system.

The reverse transformation is

EIcose0 -sine0 0 E

F I' sin 0 cos 0 0 F (32)

G 0 0 1 G

The transformatio)n of inertial velocities to ECE velocities is

Co 0 sine 0 +E F I
i'-F )sin 9 cos e 0 (33)

G R 0 11R

I2



The reverse transformation is

co 0! 6 S i 0 0 IE-G

sin 6 cos 6 C F,+ 6E (34)

4 0 0 1
IR

The transformation of inertial accelerations to ECEFaccelerationi is

E cos 8 sin a 0 EI + 28•F'. -62E1

F-sin e cos O F "1 26E 1 - 6 2 FI (35)

GR 0 0 i I

The reverse transformation is

E cos 0 -sin e 0 E- 2 F 62E

FI sin 6 cos 0 '0 F + 26 E - 62F (36)

[G. 0 0 1G

The matrix in equation (31) transforms the position data of the true 'of date
inertial frame to the true of date ECEF frame by rotating through the 'hour angle
between the true vernal equinox and the Greenwich Meridian. This hour a'ngle is
also known as Greenwich Apparent Sidereal Time (0). The angle 8 can be computed

* from

8= GAST° + we (t" tohUT) (37),

where

GAST 0 is the Greenwich Apparent Sidereal Time in radians at 0h Universal

Time (tohUT) on the Julian date of the given epoch,

t is the time of interest, and

-2

24



w is the rotational rate of the Earth measured relative to the instan-e

taneously true vernal equinox:

we= 0.7292115855 x 10-4 P.dians per second

we = 6.300388099 radians per day.

These parameters are illustrate'd in figure 4-2.

Greenwich Meridian at 0h UT

F!

Mean Vernal Equinox

Figure 4-2

The Greenwich Apparent Sidereal Time at 0h UT, expressed as an angle, repre-

sents'the angle between-the vernal equinox and the Greenwich Meridian. 'Assuming

that the time of interest is after midnight, the Greenwich Meridian rotates

through the angle ', to ,E'. The angle 0 represents the Greenwich Apparent Sidereal

Time at the time ,t. The Greenwich'Mean Sidereal Time in $ S at 0h. UT on the
Julian date epoch day (JDOE) iS

"GMST (hours-) - 6.67170278 + 0.0657098232 (JDOE - 2433282.b) (38)
0

MOD (GMST 0 , 24)
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The mean longitude of the ascending node of the Moon's orbit measured in

degrees at 0h UT is

Q(Degrees) = 372.1133 - 0.0529539 (JDO- 2433282.5) (39)

2(radians) = £Q(Degrees) T

The equation of the equinoxes in hours is

Eo0 (hnurs) = -0.00029 sin Q (40)

TheGreenwich Apparent Sidereal Time in hours at Oh UT is

GAST (hours) = GMST + E (41)

GAST in radians is

GASTo (radians) = GAST (hours) L (42)

The angle e required for transforming inertial coordinates to ECEF is-

6(radians) GASTo + 6.3003880.99 (ti - th) (43)
o ~ooUT

Mod ( E 27)

where

St.i - tohLjT = (JD -2.4 106). (JDOE -2.4 x 106)

and JDOE is the Julian date (JD) at 0h T on the day of the epoch (JO is )e
Julian date of the time of interest). The Julian date is a continuous cont
of the days and fractions of days from 1 January 4713'B.C., Greenwich Mean
Noon (=12hUT). The JD for ti may be co puted us follows:

26
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JD (ti) 357K - (K + (M + 9)/2 (44)

+ M + I + 1721013.5

+ UT/24 - 0.5 sign (1OOK + M- 190002.5)

+ 0.5

where

K is the year (1801 < K <_ 2099),

' M is the month (1. < M < 12),

! is the day. of the month (1 < I <. 31),

UT is the Universal Time in hcurs,

< > is the integer function', and

sign is the sign function.

S•. Oh
For example, 1978, January 1, 0 UT = 2443509.5 JD, and

1877, August 11, 7 h 3 0m UT ='2406842.8125 JD

5. Spherical Inertial Coordinate. System (r,; a, 5, vI, AI, It', BI)

A spherical system is assumed with the origin the same as the ECI (.Fi, FI,

GI) coordinate system. This coordinate system is right-handed with E, positive

toward the mean vernal equinox of date, F1 900 counterclockwise from EI, and GI

coincident with the Earth's rotational axis and positive toward the North Pole

(see figure 5-1).

,7'
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G,/W1
r

VERNAL EQUINOX

Figure 5-1

A coordinate system designated UP, VI, WP, is also shown in figure 5-1.

This coordinate system is right-handed with UI pointing eas't, V, pointing

north, and WI pointing along the projection of the geocerntric radius r.. The
(UVIplane is normal to the geocentric radius. The following definition's

apply to the parameters used in conjunction with the Spherical Inertial Coordi-

nate System:

r 'is the geocentric range from the center of the Earth to the point
, (origin of, the (UVW)I coordinate'system).

, & is the declination, positive north. The declination is the angle
between the equatorial plane and, the range vector.

a is the right ascension measured positive east from the vernal
equinox of date.

A IA is the azimuth of the velocity vector projected on, the (U-V)I

plane.

YI is the elevation of the velocity vector above the ýU-V)I plane.

i1I is the angle between the range vector and the velocity vector.

If the. position vector components of a point in space are given in the ECI
system, then r, a, 5 may be found from the following:

r. (E F2 G2Y÷ (45)
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= t a r r '( 
D o u b l e A r c t a n ) a

,?*"•=tan- E (If ct< 0, then, -,t = + 27,) (46)

a tan- '1 (47)
.(E 2 F)

where

El, Fi, and G are geocentric inertial coordinates of the- point.

A When the coordinates of the point in space are given in polar coordinates (r,

a, 5), the geocentric coordinates are

E= r cos 6 cos cL (48)

F= r cos 6 sin a

"G r sin S

If the geocentric ineetial velocities are known, they'can be transformed
from the ECI, (EFG)I system to the (UVW)I coordinate system with the following
rotations:I

2900

e 3 - (90-6)

Substituting the above angles into equation (22) gives

;-sin - COS a 0

*"(R 3 R2 RO)1 = -sin 6 cos a -sin 6 sin ac, co% 6 (49)

m cos 6 cos a cos 6 sin a sin 6

The transformation is'

HI

"(R3R2 R)j (50)

3 2,, . 'yG
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or

E sin ci + cos ".

S sin 6cosLi- sin 6 sin c+ Cos (51)

i E I cos 6 cos c * FI cos 6 sin ot + G1 sin 5

The transformed velocities may be used to find the total velocity (v ) as
well as AI- YI' 8 1from the following equations (see figure 5-2):

S= (U2 + v 2 + 2)½ ('52)1I'• ' , I "I

AIta\ (Double Arctan) (53)

If A_ < 0, then A A1 + 2)

=tan- i (54)

= 900 + (55)

G1

W1.1.61
E1 ,F1 plane

Figure 5-2
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SIf, on the other hand, vI, AP and 6 are known. then

UI =vl sin B sin A

VI = Vl sin B cos A (56)

,= -vI cos BI

or

cos Y, sin A,.

vI sVl cos Y, cos A (57)

W1 VI S vl sin ye

In this case, the geocentric inertial velocities mabe obtained with the
following watrix transformations:

i
F =(R R, R )T - (58)

II

6. Satellite Orbital Eiements System (Q, t•, i, a, e, M)

At any instant, the position and motion of an artificial satelite, in
earth-centered inertially fixed coordinates, can be described- by the rectangular
components of position (E, "Fi, GI) and velocity (L, FI, a The satellite's

position at a given time can also be described by six elements of the Keplerian
ellipse (Q, w,,i, a,'e, M). Three'of these'elpments specify the spacial posi-

tion of the orbital plane, two give the size and shape of the orbit, and the
sixth relates orbital position to time. These elements are defined as.follows:

.I is the right asrension of the ascending node.

w is the argument of perigee.

I is the inclination of the plane of the orbit with respect to the equa-
* torial plane.

a. i. the semi-major axis of the elliptical orbit.
3
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e is the eccentricity of the 2lliptical orbit.

M is the mean anomaly.

e is the ecce-1tric anomaly.

El, FI, GI, (?-e the inertial geocentric coordinates of the satellite.

*E, FI, GI, are the inertial geocentric velocities components of the
satellite.

Figure 6-1 indicates the coordinate system discussed in this section.
Figure 6-2 shows the relationship of the position of a satellite in its ellip-
tical orbit and its projection onto an auxiliary circle (dotted line). The
symbols X• and Y. are 'orbital plane coordinates, E is the eccentric anomaly
that is measured in the orbital plane from perigee to S', f is the true anomaly
(n'ot to be confused with flattening), and p is the radius from the center of
the Earth to the satellite.

GI

S 'apse

f perigee

I

Sascending node% E

SFigure 6-1
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The coordinates of S with respect to the origin of the (EFG)I coordinate
sys'.ff are

X = pcos f

Y' = p sin f (59)

0(

Z = 0e

The orbital coordinates of S expressed as a function of the eccentric

anomaly are

6 X =a (cos f - e)

i y= a (I -e2)½sin f (69)

Z a 0

W

:t ~33.



The orbital velocities are

(l esi½ co E (61
XW = -e cos ET a

S (I-e COS ka) (61 )

=0

where

iv is the gravitational constant and
c is the eccentric anomaly, which must be obtained by

<• a solution of

M = - e sin c .(62)

The equation is 'usually solved by iteration.. The first approximation of
V.. ~ is

E M + e sin M + ez sin 2M
.•. Then+

r TeM =C e -sin E (63)

= M - M

TI = (-e cos cl

.• r Add, the Ae1 to cl to give c 2. Repeat untl Mn M.

The transformation from orbital coordinates to inertial geocentric coor-
,dirates is

E cos a -sin 0 1 0 0 cos c -sinw 0 X

F, !sin sl cos Q 0 cos i -sin i sin w cos W 0 Y

G 0 .0 1 j0 sin i cosi 0 0 1 z

(64)
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E 1 1  P1 2  P 13

FI P2 1  P2 2  P2 3  Y (65)

G31 P3 2  P3 3

where

P11 = cos co C Q -sin w sin 0 cos i,

P12 = -sin w cos Q -cos w sin Q cos i,

P1 3 = sin .Q sin i,

P21 = cos ,A sin fl + sin w cos Q cos i,

P22 -sin w sin Q2 + cos w cos Q cos i,

P2 3 =-cos Q sin i,

P3 1 = sin ý2 sin i,

SP32 =cos w.sin i, and

P P33 =Cos i.

Calling the above matrix the P matrix, the transformation from orbital veloCi-
ties to inertial'geocentric velocities is

EI

FI P YO (66)

Assuming that the position and velocity vectors exist in the ECI system,
the. orbital elements (1, WO, i, a, e, M) can be determined. The semi-major axis

of the elliptical orbit is

a (67)
2u-r v 2-
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where

r -(E + F2 + G2)½ and, (68)

2: + (E + + (69)
V, (E F2 +F, G

Next, c:alculate the angular momentum vector L:

L r x vI (70)

aiong with

Z Ey G - EIGI (71)

•z= EIFII "FIEI

The parameter Z defines a unit vector in the direction of L with components

Y./L', 9y/L and /z./L, (72)

where

Rotating the position coordinates through Q and i produces

El 1 0 0 Cos 9 sin Q 0 E

FP 0 Cos t sin i -sin Q. Cos a 0 F. (73*)'

G' -sin A cos 1 0 0 1 G

E' Cos Q sin o 0 EI

F' -cos i sin 0 cos i cos, sin F (74)

G' ,sin i si'n n -sin t cos i cos t
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G' x(sin isin iJV E~ + (-sin 1 co-,jt F f- (Cos )G1  (75).

[qu~iting thie flke expressions for " and V givrs

-/L sn i sin z

S/L: -sin iCos r (76)

*~/L~ cos I
z

Solving for from the above expressions gives

*tn
4 

-tx (Double Arctan) 2)(7i! -tan (If W<0,thn0 Q+2) (7

*tn1  (1i2K (78)

The eccentricity (e) can be calculated tram standard formulas involving the
semi-ma.jor axij, and flattening or the semi-major and semi-minor axes of the
el Iip'se. The eccentric anomaly (r) then follows As

e cos . J(79)

e sin c *(E1E I * Fr1 '+ G1Gj)/V a½, (80)

n~t1 a gr4')J e~- Js-In (81

The term ;,Is the magnitude of the radial component of veloci~ty. often.
4this quantity Is not read'ily available, 4ouvow. the radius vector ('r) and 'the

* total inertial velocity vector (v are generally available. When this Is the
case, the term r rcan be replaced b? -v I (dot product,) in equa~tion (81 ). In
any event, the term r should not be coa1fois 1 with v. Finally, compute thK- mean
*Ameiy as

E %.@ inC.' (82)
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To determine the argument of perigee (w) find the angle between the line
of nodes and the satellite position measured in the orbital plane 8.

From equation (74)

P ?', E' E1 cos Q + FI sin Q (83.)

F' -E cos i sin 2 + FI cos i cos Q + G sin i

0 tan'- F)(Double Arctan)E (If 0 <0, then e 0 + 21T) (84)

Now find the true anomaly (f), the angle between perigee and the satellite
position:

f= 2tan'(( + '12)sin (Double Arctan) (85)\tl - e/ Cos

or

f L 6 4: F I I G 10)(Double Arctan)

f tan L2 - 'r (If f < 0, then f f + 2T) (86)

Now finally

Iw = - f (If wý< 0, then w :w + 2r) (87)

It is advisable to exercise due care in determining the quadrants of the,
angular.quantities i,.G, and f. A way of making this determination is to com-
pute both the, sine and cosine value for a given angle.

7. Geodetic Coordinate System (X, H)

The geodetic coordinate system ir related to the geocentric coordinate
system as shown in figure 7-1. The geodetic latitude (0) is the angle between
the geodetic Equator and the geodetic line that is normal to the surface of the
ellipsoid at any point. The geodetic latitude is-positive in the northern half
of the hemisphere. The geodetic longitude (X) of a point is measured positive
to the east of the Greenwich Meridian. The angle is measured in the E-F pl.ane
between the zero meridian plane and the geodetic. meridian plane of the point..
"Both planes contai,n the mino.r axis of the reference ellipsoid.

S3I8
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E
Greenwich

Meridian

Figure 7-1

The geocentric coordinates of a point in space may be obtained from the
geodetic coordinates as follows:

E = (N + H) cos * cos X

F (14 +H) cos * sin X (88)

G6 (N (]-e2) + H] sin €

where N. is the radius of curvature in the prime vertical

N a (89)O-(le2 si, :,)7

In this relation, a and e are the semi-major axis and eccentricity, respec-
tively, for the reference ellipsoid.
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I,1 the geocentric coordinates are known, the reverse information is

A tan 1  (Double Arctan)
' tIf X < 0, then X X A + 27) (90)

Latitude is obtained by Newton's iterative method as follows:

oj+l : @ fj 30(•

where

f ae 2  (E 2 + F2 ) 2  G and (92)

'J (l-e: sin2  j)2 Cos sin ¢.

V 4 f\ : e4a sin . cos j. (E 2 + F2 ) sin (j G, cos 0.

j (l-e 2 sin 2 .c) 3 / 2  cos 2 . - sir.2 4.

For j =I1

= tan' 1  G (94)

where C, (E 2 + F2 ) 2 .

The solution is complete when -f is < 10 radians. Then

H -' (D-DS)2 + (G -G)s 2 (95)

where

D- N cos ( and (96)

S' Gs* N(1-e 2 ) sin €.

To resolve the ambiguity in sign, compute

B=D (,-D) + G s(G-GS) (97)
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The sign in the computed value of B is then assigned to H. As an alternative,
H can be computed as

[D2 + (G + e 2 N sin )2]2 - [D2 + (N sin ,)2] (98)

STh'is expression yields the sign of H directly as part of the computation.

8. Summary of Trajectory Coordinate Systems

Figure 8-1 depicts the relationships.of the trajectory coordinate syste;ý
defined in section VII.

(1) Range Systemt:,. 
x , y , Z

N (2) ECEF Geocentric
(3) ECEF (.Master) (7) Geodeticp., Spherical 

, E, F, G ,H
,r

SECI
ECI Inertial Oribtal
Spherica l E I, F I, G I , , i a , M

a r , c 5 • ,9 1 , E. G I

Figure 8-1,

U,,
+' , .
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VIII. RCC RECOMMENDATIONS AND PROCEDURES

The Range Commanders Council adopts and recommends fcr 4nterrange use the
Geodetic Datum and Global Coordinate System described belcow

a. For the exchange of data among ranges on missions wn'ere interrange action
is required, employ the Department of Defense World Geodetic System of 1972, with

. the following ellipsoid definitions:

WGS 72 ELLIPSOID

STANDARD ERROR
PARAMETERS NOTATION MAGNITUDE (68.27%)

Gravitational GM 398600.5 km3/s2. _±0.4
%. Cohstant

? Second Degreeý C2,0 -484.1605 x 10-

Zonal
Angular Velocity e 0.7292115147 x 10-# *O.l x 10-13

rad/s

Angular Velocity' 0.7292115855 x 13"4

rad/s

Ser lajor Axis a 6378135 m ±5 m

Flattening* f 1/298.26 ±0.6 x 10-7

Gravitational GM' 398600.8 km3 /s 2  -0.4
%, Constant

Major eccentricity e 0.08181331066

"b. Transformation constants ,or shifting from three regional datums to the
WGS-72 Datum are given below. The unclassified regional datum shifts listed are

Staken from referene_ 1.

.4% •" *Dcf~nn parctmeters o. " .•S72 Ellipsoid (see re~ec f-.

..xclu'ding amo'so.srere (for with geodetic cmputations intclv.ing the nor?2 aI
po~ential).

2IAU system of rAaronomiaI Constants (relatie tom•ied stars).

44 
3 R-zatiue to the instantaneous true equtnox.

* 'Cctntains the mas of the Earth's atmosphere (for uae r4ith satellite and
. apace studies).
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"T ,:.SFORMATION _. )_ f x 10"

North American -22 157 176 -71.4 -0.37295850
Datum (NAD) 27
Area to WGS-72

European Datum (ED) -84 -103 -127 -253 -0.14223913
(International)
Area to WGS-72

Tokyo Datum (TD) -140 516 673 737.845. 0.10006272
(Bessel)"Area to WGS-72

N

NJ
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3.,pCalculate N' , N' and HN using aN, fN' EW, FN, and G as shown in section VII,
paragraph 7. ' N

The origins and ellipsoids for a few, datums are.

NAD 1927 ED Tc
Meade's Ranch, KS Potsdem Tokyo

* 3313'26.686"N 52"2'51.45"N 35"39'17.51"N

S

2 6 1"27'29.494"E 13"03'58.93"E 139044'40.90"E

H 599.4M+0.3

Ellipsoid 'Clarke 1866 International 1924 Bessel 1841

The ellipsoid parameters of interest are

Ellipsoid a (meters) f

Clarke 1866 6378206.4 1/294.9786982

Fischer (Mercury) 1960 6378166 1/298.3

Kaula 1961 6378165 1/298.3

Bessel 1841 6377397.155 1/299.1528128

WGS 72 6378135 1/298M26

International (Hayford) 1924 6378388 1/297.0

WGS 84 6378137 1/298.257223563
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VIII. RCC RECOMMENDATI(iNS AND PROCEDURES

The Range Commanders Council adopts and recommends for interrange use the
Geodetic Datum and Global Coordinate System described below.

a. For the exchange of data amonq ranges on missions where interrange
action is required, 'employ the Department of Defense World Geodetir System 1984,
with the following ellipsoid drefinitions:

WGS 84 ELLIPSOID

STANDARD ERROR
PARAMETERS NOTATION MAGNITUDE (68.27%)

Gravitationa lI* GM 398600.5 km3 /s 2  +0.06
Cunstant

Second Degree* C2 0  -484.16685 x 10-6 +1.30 x 10-9
Zonal

Angular Velocity2. We 0.7292115 x 104- +0.1500 x 01c1
rad/s

Angular VeI oci ty3* 0.72921158553 x 10-4 +0.1500 x 10711
e +4.3(10-15 T ) rad/s

Gravitational 4  GM- 398600.15 km3 /s 2  +0.6
Constant

Semi-major Axis* a 6378137 m +2 m

Flattening (Ellipticity) f 1/298.257223563
(0.00335281066474)

First eccentricity e 0.0818191908426

e2 0.00669437999013

*Oefining parameters of WGS 84 Ellipsoid. (see reference 1).

1Contains the mass of the Earth's atmosphere (for use with satellite and space
studies).

21AG adopted value for the true angular velocity of the earth.

3 Relative to the instantaneous true equinox; T - Julian Centuries from Epoch
J2000.

4 Excluding atmosphere (for use with geodetic computations involving the normal
potential).
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b. Transformation constants for shifti'ng from three regional datums to the
WGS 84 Datum are given below. -The unclassified regional datum shifts listed are
taken from reference 1.

TRANSFORMATION E(m) F(m) G(m) a(m) f x 10

North American* -8 160 176 -69.4 -0.37264639
Datum (NAD) 27
Area to WGS-84

Furopean Datum (ED) -87 -98 -121 -251 -0.14192702
1950 (International)
Area to WGS-84

Tokyo Datum (TD) -128 481 664 739.845, 0.10037483
(Besse 1)
Area to WGS-84

*Mean Value (CUNUS).:
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