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I. INTRODUCTION

T ‘The purpose of this document is to define and briefly discuss coordinate
systems commonly employed at test ranges as well as to recommend procedures and
practices for the use of a global coordinate system.. This document replaces

. IRIG Document 151-69 (formerly 103-69), Global Coord{aate.System. '

"> This document is primarily intended for use by individuals familiar with
the basic concepts and definitions commonly employed in geodesy. In order' to
aid the reader who requires additional background information, a bibliography
of some of the standard texts on geodesy, map projections, and spherical
astronomy is provided. —_ ... * FRNTVRTREE SR Laen "522., i e

This document specializes in those trajectory coordinate systems that are,
or could be, potentially applicable to data reduction tasks performed at the
various test ranges. No attempt has been made to address the subject of coor-
dinate systems in a general manner or to develop a compendium of the various
coordinate systems employed at the test ranges. General discussions on coordi-
nate Systems are given in a number of standard texts on geodesy and are not
repeated in this document. Information on special-purpose coordinate systems
employed at a given range can usually be obtained from documents at the local
installation. A compendium of all coordinate systems used by member ranges
would produce a voluminous document of dubious value. In spite of being
narrow in scope, this document still manages to serve a useful purpose
through an in-depth presentation of the definitions, properties and useful
transformations associated with those coordinate systems having a general
interest to data reduction specialists at most test ranges.
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" 1I. GLOBAL COORDINATES

Any giobal coordinate system (geodetic datur) is based on an ellipsoid of
. revolution whose size and shape approximate that of the entire Earth and whose
center coincides in some manner with the gravititional center of the Earth.

. Examples of such systems are the Mercury Datuyr based on the Fischer 1960
Ellipsoid and the DOD World Geodetic System (W3S) 1972.

Satellite and missile trajectories are relativa to the Earth's center of
gravity; therefore, range data referred to tie center of gravity are the end
products for such trajectory analyses. Wher the sensor coverage 2xceeds the
extent of local or regional datums, the s1res must be located on a global datum
to achieve cons1stent geometry.

Global coordinates based on a given ellipsoid are determined by transforma-
tions from regional or local cooirdinate systems or from observations of a satel-
- lite whose orbit is known relative to scme coordinate system., These computations
and transformations are usually assumed to lead to consistent results. However,
when it is possible to make comparisons, the results are rarely in compiete
agreement. Differences in computatioral and orbital force field models, along
with parameter and computer characteristics, are responsible for such discrep-
ancies. Additionally, in theory, the centers of two global datum systems
should only differ by a constant; however, in practice, the difference
appears to be a function of the lociation of the measurements.
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ITI.. REGIONAL COORDINATES

A regional geodetic datum consists of an ellipsoid whose size and shape
approximate that of the particu]ar region of the Earth, This e]]ipsoid is
oriented to a physical point in the region, and this point is the origin of

. the regional datum. Examples of such systems and their reference ellipsoids
are the European Datum (ED) on the ‘Internationgl Ellipsoid of 1924, the North
‘American Datum (NAD) on the Clarke 1866 Ellipsoid, and the Tokyo Datum (TD) on
“ Bessel 1841 t111p>o1d

Conventional surveys in a region are referenced to the datum network defin-
ing the regional system. When distance and azimuth between regional sensors
are necessary for .scaling, such regional coordinates are the best computational
source. Regional cioordinates may be extended to greater distances by -optical
and electronic observation of a satellite. The relation between regional and
global coordinate systems is specified by displacement between ellipsoid centers
in rectangular coordinates (AE, AF, AG) and differences inm eliipsoid sizes and
shapes (Aa, Af), where a and f are semi-major axis and flattening, respectively.




IV. PARTICULAR RANGE (LOCAL) COORDINATES

These coordinate systems are usually rectangular systems whose centey
(origin) and x-y plane are tangent to some convenient point on the range
(usually one of the launch pads or instrumentation sites). The coordinates
may be transformed from these local coordinates to appropriate regional coor-
dinates or gloha! systems. These local range systems are primarily a compu-
tational conveniconce designed for the range configuration and mission. Such
systems are not amenable to interrange projects or missions.
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V. DATUM TRANSFZRMATIONS

Frequently, it is neces~'ry to transform station geodetic coordinates from
‘one datum to another. The fcilowing information is necessary for this transfor-
mation: ‘

ag = the semi-major «xis of the reference ellipsocid of the da‘tuw which
the transformation will occur (original datum),

fg = the f1atteninq of the reference ellipsoid of the'original datum,

ay the semi-major axis of the reference ellipsoid for the datum to which
the transformation will occur (new datum),

fN = the flattening of the reference ellipsoid of the new datum, and
AE = EN'- Eo
AF = F. - F the displacement of the center
NTTO of the new datum relative to the
' origipal
AG = GN - Gy

The EFG system is a right-handed Cartesian system. The origin of this
system is at the geometric center'of the reference ellipsuid. The coordirate
axes are'orianted as follows: E and F lie in the plane of .the Equator, G
coincides with the rotational axis of the Earth ard is positive througn the
North Pole, E is positive through Greenwich Meridian (0° longitude), and F is
. positive to complete a right-handed system. This system rotates with the Earth
and is Farth-centered and Carth-fixed (ECEF). The fact that the various Farth-
centered systems exhibit displacement of their centers is evidence of experi-
~mental error rather than disagreement in fundamental assumptions. This EFG

system will he called the Master Coordinate System or the system in which
Jntegration takes olace .

The methad of transformation consists of the following steps:

1. Calculate the geocentric Cartesian ceordinates of the original
- coordinates given ¢g,' Ay, Hg, ag, fg, where ¢y, Ay and Hy are the
-geodetic latitude, longitude and height above the refsrence
-ellipsoid, respz.tively, of the point to be transformed. - The
method of transformation, discussed in section VII, paragraph 7,
. produces the data set (E,, Fy, Gp).

2. Calculate the geocentric Cartesian coordinates of the new datum:

EN ‘,Eo + AE
Fy = Fg ¢ 4F o | .'
N 0
o PREVIOUS PAGE §
Gy = Go * 6 e @




3. Calculate ¢N’ AN, and HN using aN’.fN’ E FN’ and GN as shown in

N!
section VII, paragraph 7. .

The origins and ellipsoids for a few datums are

NAD 1927 ED D
Meade's Ranch, KS v Potsdam Tokyo

¢ 39°13'26.6860"N 5292254 81"N 35°39'17.51"N
A 261°27"¢9.49400" 13°04'01.66" 139°44'40.50"
Ho 599.4M:0.3 i

E11ipsoid  Clarke 1866 o International 1924 Bessel 1841

The ellipsoid parameters of interest are | '
Ellipsoid S a_(meters) f
C;arke 1866 ' 6578205.4 1/294.978SQSé
Fischer (Mercury) 1966 6378166 1/298.3
Kaula 1961 - | 6378165 | 1/298.3
Bessel 1841 © 6377397.155 1/299.1528128
WGs 72 - - 6378135 1/298.26
International (Hayford) 1924 6378388 172970
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VI. TRAJECTORY. COORDINATE CYSTEMS

Crbital computations involve a number of different coordinate systems
and iransformation of data among these systems. These coordinate systems are
related to each other through a reference fiqure represent1ng the actual Earth.

‘This reference figure is an ellipsoid of revolution of given dimensions whose

surface is.assumed to approximata closely the mean sea level surface of the .
actual Earth. It is also assumed that the mass of the Earth is sufficiently
homogeneous for its center to be taken at the geometric center of the reference
ellipsoid. In this way, the major axis of the reference ellipsoid lies in tne
equatorial plane of the Earth, and the minor axis coincides with the Earth's
rotational axis.

The location and origin of a given data acquisition coordirate system are
determined by an astronomical and a geodetic survey (the Tatter of which is
based upon a specific ellipsoid). The geodetic coordinates are latitude ¢,
Tongitude A, and height H above the surface of the reference ellirsoid. The
geodetic latitude of a point, which is positive in the Northern Hemisphere,
is the angle between the equatorial piane and the geodetic vertical through
the point extended to intersect the plane of the equator. The geodetic longi-
tude of a point is an angle in the equatorial plane with its vertex at the
center of the Earth, its initial side through the Greemwich Meridian, and its
terminal side through the meridian of the point. Longitude is measured posi-
tive eastward of Greenwich. Geodetic height is measured positive up from the
surface of the reference ellipsoid along the geodetic. vertical.

The astronomical coordinates are latitude ¢' and longitude A'. The astro-

. nomical latitude is defined as the angie between the equatorial plane and the

astronomical vertical through the point. The astronomical vertical is.defined
by the direction of gravity (plumbline) at the point. The astronomical longi-
tude is the angle between the plane containing the Greenwich Meridian and the
projection of the astronomical vertical on the equatoriai pline. The Tatitude
and Tongitude differences between geodetic and astronomical coordinateés aefine
the deflection of the vertical. Astronomical coordinates define only orijenta-
tion, while geodetic coordinates define orientation and location. This dis-
tinction is of importance to the transformatlon equations detailed in the noxt
sect1on

Pr1or to any orbital computation, a set of-initial conditions must be
obtained if equations of motion.are to be integrated. Position and ve]oCxty
are usually needed (and ballistic coefficient and covariance matrix, if pos-
sible). The initial cond1t1ons may. be transformed to the ECEF system '

n




VII. PARTICULAR TRAJECTORY COORDINATE SYSTEMS

1. Topocentric Range Coordinate System (x, y, 2, X, v, Z)

A topocentric Cartesian system is assumed with the x-y.plane normal
to the geodetic normal determined by the origin, with geocdetic coor-
dinates 5, : and H. The xyz range system is shown ir figure 1-1.
The coordinate system is right-handed with positive x pointiing

east, positive y pointing north, and positive z pointing up along
the normal completing the right-handed system.

{x,y,2)

Greenwich

Figure .1
If the slant range azimuth, and elevation are known, the position vector
components are '

>
i

R cos £ sin«a

R cos € cos a . - . .8

<
"

~
"
~
w
—te
3
™

where -

.  coordinates (x,y,z),

R is the slant range from the origin to a point withltopocentric

i I

&
.

v is the elevation angle of the position vector above the X~y
plane, and '

o

Pd
ALAEN

@ is the azimuth angle measured in the x-y topocentric plane from
True North to the orojection of the position vector un the x-y plane.

R ¥
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If the components of the position vector x, y, z are known, then R, a, ¥
may be determined from the following equations:

L . L .
R = (XZ + yZ + 22)2 ) . (2)
vy ~ (Double Arctan)
2 = tan (;j)' (If = 2<0, thena = a + 27) (3)
€ = tan’! ? (4)

(x2 + y2)°

In general, position and range data are the basic measurements received by
instrumentation systems that are external to a vehicle in flight. Most methods
of obtaining velocity and acceleration make use of numerically differentiated
filtered position data (expressed as a furction of time)}. If the position and
velocity components are known, the range rate azwmuth rate, and elevation rate
may be computed as follows:

ZJe

X; + y} + ZE K . . (5)

:
Iz

(radians per second) o (6)

Mse

2 - 2(R/R . : '
. 2= 2(R/R) (radjans per second) , (7)

(x2 + y2)3

2. Geocentric Coordinate System (Master) LE,'F, G; é,.F,,G)

We assume a. right -handed Cartesian system located at the center of the.
ellipsoid of reference with the E-F plane fixed in the equatorial plane fthat
is ECEF) and the G axis along the rotational axis of the Earth. E is positive
in the direction of longitude (A)= 0° and latitude (9) = 0°. F is positive
90° counterclockwise from £, and G is poswtive in the dnrection ¢ = 90° [see
f\gures 2-1 and 2-2). .




~{E,F, G) cr (A, ¢, H)

Greenwich

Figure 2-!

- -0'-" plane

\.

AR

' Figure 2-2
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Prior to any transformation of topocentric coordinates, corrections for deflec-
tion from the vertical must be applied. Assuming these corrections have been
made, the transformation of position and velocity components measured in the
topocentric range =:stem is given by

]E -sin Aa -cos Ao l | 0 ix; Eo
Fl| = !'cos A, -sin a0 I 0 sin ¢ -cos @d‘ ;y + 15 (8)
G' \ 0 0 1 i &0 cos o, sin ¢°l zz Go

or
£ ~sin xo. -C0S Aa sin ¢0 CQS.*Ofcos ¢o : X ' _ EOI,
Fl = | cos lo ~sin Ao sin ¢0 sin io cos éo } y .+ F0 (9)
G -0 cos ¢, sin‘(po 12 Gol

The geocentric coordizates of the topocentric reference site are computed
from . .

Eo t»(N°+H°)cps ¢Q cos Ao

Fy = (N°+Hp)cos & ?in A, (10)

a1
. <

a el
G° [N°(1Ie ) + Ho] sin ¢

e

Coaa
a
i)

The parameter N in equation (10) is the transverse radius of curvature
given by : o :

i _ o
Ny - 0 —~ . (1)
e (l-ezsin2¢0)'

where . -
a_ is the semi-major qxis of the reference ellipsoid;

e is the eccentricity of the reference ellip&oid,

¢, is the geodetic latitude of the refer'nce site, pOSIt1ve north
of the Equator, and

A, {5 the geodetic longitude of the reference site, pusitive east.

16




In addition, Ho is the geodetic height of the reference site and

¥ T n+h
bl

where n is the geoid-ellipsoid separation and h is the height of the reference
site above {or below) mean sea level.

The geocentric velocities are found from the following transformations:

X e

-sin A -C X in c A C
S 0s OS OO oS 0 0s 00

Mo

(2}

Ak
]
“«< e

]

| o cos 2
| Cein 3 . . _
i cos A Sln‘AO sin oo sxn.}o cos oo
|

N

0 cos 9, sin ¢o ,

or

> e

rie
n
>
< .
-
—
)
e

Cyoe
~N

where K is the matrix in equation (12).

If the geocentric coordinates of the point are known, the topocentric coor-

dinates may be found by

‘ ' - v
X ;E Eo | |
y| « kT Jr-r o (1)
}4 G.'GO

17




&
e
} :g If the topocentric coordinates are positioned so that the x axis is at some
:i angle from north other than 90°, the K matrix becomes
K1y K12 K43
K =1 Kyy Kyp Kag (16)
K31 K32 K3z |
; where
Kyy = -sin A sina - €os a cos A sin 4,
K]2 = sin XA cos a - sin a cos A sin ¢,
K]3 = cos.k cos ¢,
K21'= cos A sin a - cos a sin A sin ¢,

K°2 = -C0S X €OS a - Sin a sin a sin ¢,
K23 = sin X cos ¢,
K3] = ¢cos 9 cos a,

K32 2 ¢cos 9 sin a, and

K33 = sin ¢,

N

A;:Q where g is the angle from north to the position of the pos1*1ve X axis in the
-a: the topocentric system (see figure 2-3). .
.&’-

&

'z

——t> North

: ;§ . - ' : S Figure 2-3
!‘ . ) )




3. Earth-Fixed Spherical Coordinate System (r, i, &, Vor Ae’ Ye)

A spherical system is assumed with the same origin as the ECEF (EFG) <oor-
dinate system (see figure 3-1). In addition, a UVW coordinate system is also
introduced. The latter is a right-handed coordinate system with U pointing eact,
V pointing north, and W pointing along the projection of the geocentric radius r.
The U-V plane is normal to the geocentric radius (see figure 3-1).

E

Greenwich
‘Figure 3-1 .

The following parameters can now be defined in terms of these coordinate
systems: '

r is the geocentric rangc from the center of the reference spheroid to -
the point (origin of the (UVW) coordinate system).

§ is the déc]ination, pésitive north. The declination is the angle
between the equatoriul plane and the geocentric range vector.

A is the 1ongitudq; positive east.

v_ is the Earth-fiked total velocity.

A_ is the azimuth of the velocity vector projected on the U-V plane.
" The'angle is measurcd from north to the projection of the velocity
vector. Ae is commoniy calied the heading.

is the elevation of the velocity vector above the U-V plane. e is com- .
monly called the flight path angle.

19




If the position vector compcnents of a point in space are given in the ECEF

system, then r, ) and § may be found from
r= (E2 + F2 o+ G2)%

wnere £, F, and G are the geocentric coordinates of the point,

5 = tan'l —-——G—L s
(2 + F2)"

(Double Arctan)

and

-1 (F
A = tan '(E>- (If A<0, then A= \ + 27)

(17)

(18)

(19)

If the coordinates of the point in space are given in polar courdinates r,

A, §, the geocentric coordinates are

r cos § cos -

E =
F=rcos§sini
.G =rsiné

(20)

If the geocentrib velocities are knowrn, they can be transformed from the EFG
coordinate system to the UVW coordinate system with the following rotations:

91 = A

62 = 9¢°
83 = (90° - §)

The transformation is

- e [t 2
Me

i
]
o .
P~ .
-y .

X .
[ X)

20

(21)




.

% where

1; 1 0 0 cos 6, sin .52 0 __CO§:6] sin 8, 0
b2 _ ' . e _~- o .
?3 - R3R,Ry = |0 cos §3 sin 8, sin 6, cos 6, 0 sin &, cos 8 0
k2 4 B

b}
)

0 -sin 83 cos 63 ' e 0 : 1:,:\ _Q. 0.

(22)

132 : Substituting the values of 9, ez,land 8, into the R,R,R, matrix and matrix mul-
. tiplying gives . oo A }

gﬂ -sin A cos A . ' ? - 0
N ‘ " RyR,Ry = 1-sin & cos X -sin § sin A - cos s (23)
B o cos & cos A cos & sin X - - sin &
f? The result of the transformation using equations (21) and (23) is
k- U = -E sin A + F cos A
o5 : .
A"& * ] . ’ L4 ' . '
& V= -E sin § cos A - F sin § sin A + G-cos § (24)
4 . .. . . _
5 W=Ecos §cos A+ Fcos §sin)- u'sing
i The transpose of the RyR,R, matrix is
3 » L
rj -sin A -sin § cos A .~ cos § cos A
‘5 -(R3R2R]) = cos A -sin & sin X cos § sin A (25)
# B : ' | :
R 0 cos § ‘ sin &
" and
R . .
g E U
ks sl = RRRO)T |y
y F CArA! v (26)
5
s . .
» G W
i - 21




If the geocentric velocities (E, F, G) of the'point in space are known,

v Ae’ Ae may be found from the velocity components transformed to the UVW

el
coordinate system by the use of equation (Z4) and the following relations:

.o . . 1’
(2 2+w2)2

Vo ° us + v (27)
5 (Double Arctan) ' o
A = tan”P (3 (If A_ <0, then A_ = A_ + 2) (28)
e v e e e
-1 W
y, = tan —_— (29)
e , (02 + VZ)% ,

If, on the other hand, the total velocity, heading, and flight path angle
are known in the UVW coordinate System then

U = vy cos v, sin A, : | ‘(30)
Vv = Ve cos Yo COS-Ae
W =.ve sin Ye

The geomet.1c velocities may be obtained in this case by transform1ng the
U, V, W to the E F 6 (ECEF) system w1th equation (26).

4. Cartesian Inertial Coordinate System (E,, FI' GI’ Ers Fro G))

In figure 4-1, an Earth-centered‘inertial (ec1) ceordinate system is repre-
sented by'EI{ ?I. G;. The ECEF rotating coordinate system is represented by
E, F, G. The ECEF system is rotat1ng about the GI(G) axis with an angular
velocity 8. (8 = wys the rotational rate of the Earth.) By definition, Ey is
positive toward .the mean vernal equinox of date, FI is positive 90° counter-
clockwise from EI' and GI completes the right-handed system. E. and F. are in

1 I
the Earth's equatorial plane, and G, is positive toward the North Pole.
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e
S ’ : The inertial ‘coordinate frame is rotated into the ECEF system as fonbws:
- | |
# ,
";:.j E cos 8 sin 8 0 E;
‘_-\.‘
AN ) . ' '
Py F = -sin 8 cos.© 0 Fi : (31)
o ' » .
.. )
o . .
::. G g, 0 0 1 GI I
n"‘ ’ ) oo ‘ ' .
! ‘ .~ The subscript R on the left-hand side of equation (31) indicates that the EFG
B (ECEF) coordinate system rotates relative to the inertfial (I) system.
.\“ - " The reverse transformation is
;.q ’ - Y ! ‘ .
o E cos & -sin @8 0 E
i 1
‘f. Fi' = sin 8 cos 8 0 R o (32)
5-‘:5 | N 0 0 IR 1N
-~ - The transformation of inertial velocities to ECE! velocities is.
e cos 0 sin 8 0 é, + jFI
F *  Fsing cose 0| |F - 6 (33)
Gla o0 ! & IS
23




The reverse transformation is

E| cos 8 - -sin 0 0| [E-BE
Fy = sin 8 cos & G| |FoE (34)
6, 0 o ) |é

The transformation of inertial accelerations to ECEF accelerations is

3 cos 8 . singe 0 B, + 28 F, - 8%
F = -sin 9 cos 8 0 Fp - 28 €, - 82F; (35) .
G |g 0 0 1 i : 1

The reverse transformation is.

EI cos § -sin® 0 1E-28 F - 82
Fl = sin® cos® O F+2d k- 8oF ~(36)
6|, 0 0 1 G "

The matrix in equation (31) transforms the position data of the true of date
inertial frame to the true of date ECEF frame by rotating through the 'hour angle
between the true vernal equinox and the Greenwich Meridian. This hour angle is
also known as Greenwich Apparent Sidereal Time (8). The angle 8 can be computed
from . oo S C

6T OAST, vy (8 - thy) ~on
where ‘ ' ' : '

GASTO is the Greenwich Apparent Sidereal Time in radians at 0h

Time (tohUT) on the Julian date of the given epoch,

Universal

t, is the time of interest, and

2 -'  - .: A 32 B : - . | ,'L
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Wy is the rotational rate of the Earth measured relative to the instan-

taneously true vernal equinox:

£
"

0.7292115855 x 10" .adians per second

£
"

6.300388099 radians per day.'

These parameters'are illustratnd in figure 4-2.

3 / Greenwich Meridian at C)h uTt

F

GAST,

P E'(1;)

Mean Vernal Equinox

Figure 4-2

The Greenwich Appérent Sidereal Time at 0h UT, expressed as an angle, répré-
sents the ang]e'between'theJVernal equindx and the Greenwich Meridian. - Assuming
that the time of interest (fi) is after midnight, the Greenwich Heridiqn rotates
through the angle ¢ to E'. The angle 6 represents the Greenwich Apparent Sidereal

'_Tfme at the time 't.. The Greenwich Mean Sidereal Time in 1 s at Oh'pT on the
~Julian date epoch day (JDOE) is

GMST_ (hours) = 6.67170278 + 0.0657098232 (J00, - 2433282.5)  (38)
MOD (GMST_, 24) . |

25




The mean longitude of the ascending node of the Moor.'s orbit measured in .
degrees at Oh uT is

Q(Degrees) = 372.1133 - 0.0529529 (JDO

0

- ¢ - 2433282.5) (39)
iz : Q(radians) = Q(Degrees) T%ﬁ

é The equation of the equinoxes in hours is

: £ (hours) = -0.00029 sin @ o " (40)

-

The Greenwich Apparent Sidereal Time in hours at 0h Ut is
GAST0 (hours) = u‘MSTo + Eo (41)
GASTo in ragians is
. _ 2n '
GASTo (radians) = GASTo (hours) 5T _ (42)
; : The angle 6 required for transforming inertial coordinates to ECEF is

8{radians) = GASTd + 6.300388099 (1;i -th

3 o | o UT) (43)

Mod (a,‘Zn)l

where

RSO

. o= - 6 - - 6
‘ ti - tohUT (JD - 2.4 ¥ 10°) (JDOE 2.4 x 10°%)
and JDOE’is the Julian date {JD) at OhUT on the day of the epoch (JD is ne-
Julian date of the time of interest). [The Julian date is a continuous count
of the days and fractions of days from |l January 4713'B.C., Greenwich Mean
Noon (=12hUT). The JD for t, may be chputed oS follows:

B e e wea -
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3 (t.) = 387K - T(k+<(Ms 9)/1?£§>> | (44)

<:§%§§:> + 1 +1721013.5

UT/24 - 0.5 sign (100K + M - 190002.5)

+

+

+ 0.5

where

K is the year (1801 < K < 2099),

M is the month (1 <M < 12),

—

is the day of the month (1 < I < 31),
UT is the Universal Time in hcurs,

< > is the integer function, and

sign is the_sigh function.

For example, 1978, January 1, 0" UT = 2443509.5 4D, and
1877, August 11, 7" 30" UT ='2406842.8125 JD

5, Spherical Inertial Coordinate,SyEtem (ry a, 3, Vi AI' Yoo BI)

A sphericé] system is assumed with the origin the_same as the ECI (EI. FI‘
‘ GI) coordinate system. This coordinate system is rightjhanded'with EI positive
toward the mean verna1.equinox of date, FI 90° counterclockwise frqm EI’ and GI
coincident with the Earth's rotational axis and positive toward the North Pole

(see figure 5-1).
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Figure 5-1
A coordinate system designated UI' VI' HI’ is also shown in figure 5-1.

This coordinate system is right-handed with UI pointing east, VI pointing
north, and “I pointing along the projection of the geocentrlc radius r. The
{u- V)I plane is normal to the geocentric radius., The following def1n1t1ons

apply to the paremeters used in conjunction with the Spherical Inertial Coordi-

nate System:

r is the geocentric range from the center of the Carth to the point
(origin of the (UVH)X coordinate system).

- 8§ is the declination, positive north., The decltnatxon is the angle
between the equatorial plane and the range vector.

a is the right ascension measured positive east from the vernal
equinox of date.

'AI is the azxmuth of the ve\ocxty vector projected on, the (u- v)r
plane. :

Y is the elevation of the velocity vector above the (U-V), plane.

'BI is the angle betweén the range vectbr and the velocity vector.

"If the. position vector components of a point in space are given in the £CI -
system, then r, a, § may be found from the following:

r_a'(Ef'o F2 » Gz)&’l ' (45)
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2
1]
m

a [ (Double Arctan) '
tan =1}; (If a< 0, thes x = a + 27) (46)
1

G

O
"

tan L . (a7

2 215
where . . ,

EI‘ FI‘ and GI are geocentric inertial coordinates of the. point.

When the coordinates of the point in space are given in polar coordinates (r,
1, 8), the geocentric coordinates are

r cos & €os a - (48)

m
1

F, = rcos § sin a

(2
f

I r sin‘s

If the geocentric inerctial velocities are known, they can be transiormed
from the ECI, (EFG)I system to the (va)I coordinate system with the following
rotations: , : : ' :

8. =

] ' ! .

= o
8, ® 90°

93 = (90-6)
Substituting the abdye ahgles into equation (22) gives

1}

=sin - .¢cosa . - 0

~ {RgRHRy ) . -sinld cos a  -sin § sin'a. cos 6, (49)
.€0S § cos a ' cos § sina sin 6‘
The transformaiion is’
’ o | ’l
;XJ‘ - £l
V| = (R,RLR,) F 50
i- l 37271 p ! " 0)
+ | !
R | lGX
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or

UI = -EI sin a +'FI cos a
GI = 'EI sin § cos a - ﬁl sin § sin a + é! cos &
ﬁx = él cos d cos a + ﬁf cos & sin a + él sin §

The transformed velocities may be used to find the total velocity (v )} as

well as AI’ Yp» 3y from the following equations (see figure 5-2):

. . 3 L
= (U2 2 2y2
Yy (Ux'fvx + W)
- -1 7T (Double Arctan)
Ap=fam =) (1ra <0, then A = A, + 27)
. : | |
. W
YI - ta"-x .2 1.2 Lﬁ
(63 + ¥3)
- -]
BI - 90 + YI

Gy
Wi
Y]
B .
! ¢
3
r 0/
o@ .
- EF plang
Figure 5.2
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If, on the otner hand, vI; AI’ and BI are known, then
v, = vy sin BI cos AI (56)
Hr = -vy cos BI
or
.UI = vy cos Yy sin AI.
v, = vy €os yp cos AI ' (57)
HI = vy sin Yq '

In this case, thepgeocentric inertial velocities may be obtained with the
following matrix transformations:

EI UI
2 TN S F . (58)
1 3RRy )y 1 158
6y ¥

6. Satellite Orbital Elements System (0, w, i, a, e, M)

At any instant, the position and motion of an artificial satellite, in
earth-centered inertially fixed coordinates, can be described by the rectangular
components of position (EI' FI' G ) and velocity (E,. G ). The satellite's

positisn at a given txme can also be described by six elements of the Keplerian
eilipse (2, w, i, 3, e, M). Three of these elements specify the spacial posi-
tion of the orbital plane, two give the size and shape of the ordit, and the
sixth relates orbital position to time. These elements are defined as follows:
Q2 is the rxght ascension of the ascending node. -
w is the argument of perigee,

i is the inclinat1on of the plane of the orblt with respect to the equa-
toria! plane. .

a.is the semi-major axis of the elliptical orbit.
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e is the eccentricity of the 21liptical orbit.
M is the mean anomaly.
€ is the ecce-:tric anomaly. .

E;» Fy» Gy, (e the inertial geocentric coo}dinatgs of the satellite.

'EI’ FI’ GI’ ére the inertial geocentric velocities components of the
satellite, ' ‘

Figure 6-1 indicates the coordinate system discussed in this section.
Figure 6-2 shows the relationship of the position of a satellite in its ellip-
tical orbit and its projection onto an auxiliary circle {dotted line). The
symbols X, and Y, are orbital plane coordinates, ¢ is the eccentric anomaly
that is measured in the orbital nlane from perigee to S', f is the true anomaly
(not to be confused with flattening), and p is the radius from the center of
the Earth to the satellite.

G
'}

S apse

\ ascending node

Figure 6-1
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The coordinates of S with respect to the origin of the (EFG)I coordinate
sys'.em are '

X = p cos f
Y =psinf " (99)
71 =0 . |

The orbital coordinates of S expressed as a function of thé'eccentfic
anomaly are : ' -

X, = a'(cos € - e)

Y,=a(l -e)isine : (6C)
I =0

W

13




The orbital velocities are

>C .
i

{’ -sin € u s
w ill-e cos €) a
. .'{(1-e2)15 cos e} (p_)%
w (i-e cos ¢€) a

=0

I

-
1

[ K Y

where
u is the gravitationa1 constant and

e is the eccentric anomaly, which must be obtained by
a solution of

M=¢-esine¢

_ . 1 o .
€& = M f e sin M + 7 e sin 2M

=
—
1]
™
it
[]
T ®
w
-
3
™
—d

it B
bey; = TT=ecos e,S

~ Add the bey to €y to give €y. Repeat untilinn = M,

“dinates is
E(] [cos 2 -sing of I 0o 0| [cos w -sinw
Fil=1sina cos a ol o cos i -sini| |sinw . cos w
G| |0 0 | 1] |0 sini  cosi| |0 "0

34

0

0

(61)

- (62)

* The equation is ‘usually solved by iteration.. The first approximation of

(63)

The transformation from orbital coordinates to inertial geocentric coor-
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¥
%

4

£ P P12 P13 Xy
FI = P21 | P22 P23 Yw (65) .
Gy Py P32 P33 Z,
where '

P]1 = coS w €OS @ -sin w sin  cos 1,

P]2 = -sin w cos Q -cos w sin Q cos i,

P]3 = sin Q sin i,

P21 = ¢cos w Sin Q +sin w ¢cos Q cos i, ‘ \

Pyp = -sin w sin @ + cos w cos Q cos i,
P23 = -cos Q sin i,

P3] = sin Q sin i,

P32 = cos w-sin i, ‘and

cos 1.

«
w
]

.Calling the above matrix the P matrix, the transformation from orbital veloti-
ties to inertial geocentric velocities is o

{ S Bl . X, | |
Fil . =° Yl | (56)
S b

Assuming that the position and velocity vectors exist in the ECI system,
the. orbital elements (2, w, i, a, e, M) can be determined. The semi-major axis
of the elliptical orbit is -

a = —H . - (67)
Zufr Vlz
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where

= 2
r (EI

e

I

. . [ 1.
= 2 2 2)2
vy (E2 + F2 + GI)

I

I

Next, ralculate the angular momentum vector't:

atong with

L

Z

-
=r X

.-
v

I

and,

(68)

(69)

(70)

()

‘The parameter E defines a unit vector in the direction of f with components

where

Rotating the positiun coordinates through Q and i produces

E?
Fi
Gl
EI
F

G'

]»
= 10

0

le/L, ly/L and lz/L,

e (92 2 24
L (zx + zy + 22) .

0 0
cos i sin i

-sin i cos i
. ¢cos R

-cos 1 sin Q

sin i sih 9]

cos Q -

-sin @ . cos Q

0

sin @

cos i cos @ sin i

-sin'i cos Q. cos i

36

sin Q

0

0

0

(72)

(73)

(78)
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Solving for G':g:vés

G' = (sin { sin Q) Ep *+ (-sin i cos O Fl + (cos i} G (75)

I

fquating the like expressions for " and G° gives
(U sinising
,‘;/L = -sin i cos & (76)

»lz/L

it

cos i

Solving for ;! from the ibove exoaressions gives

-1 [-% ] (Double Arctan)
i = tan - T (1f &2 < 0, then Q = Q + 2n) (77) .

1 (i? + !{2!" | ‘
i = tan” AX . (78)

f
2

. The eccentricity (e) can be calculated from standard formulas involving the
semt-ma jor axi. and flattening or the semi-major and semi-minor axes of the
ellipse. The eccentric anomaly (r) then follows ds

o e cos'. . ll‘- El' o ' :  _ (79)

., esings (Elél + rl;lt’ Gléi)/(uﬂ)k.. . (80)

E . ” . - .
i =1 fre{pa -1 Jesinc] -
R S R G U [ )
The term ¢ {3 the -agnitude of the radtal component of velocity, Often.
this quantity s not readily availuble,.hou!vor. the radius vector (F) and the
total inertinl volocity vector (v ) are qencrally available. When this is the
case, the term r r can be replaced by r.v (dot” product) in equatlon (81). In

any event, the term r shou!d not be coafu* 4 with v vy Finally, co-pute the mean
anomely " . ‘

Mec.esinc. - : . (82)
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To determine the argument of perigee (w) find the angle between the line
of nodes and the satellite position measured in the orbital plane 6.

From equation (74)

E!

u

E, cos 0+ Fy sin @  (83)

F! -EI cos i sin 9 + FI cos i cos 9 + GI siﬁ i

D
(1}

' fan'l F'\ (Double Arctan) .
E') (If 6<0, then & = 6 + 2m) , (84)

Now find the true anomaly (f), the angle between perigee and the satellite
rosition: - )

-
"
~N
I
Y
>
[

—
N
| ot
]+
ol
S ——
N

wn

b

o |
™ [No|m

(Doqble Arctan) , (85)

N

or

1 L(EXEI ¥ FIﬁI *_Glél) (Double Arctan)
Z - ur (If f <0, then f = f + 2rr) (86)

© Now finally ‘
' w=06-f (Ifw<0, then w = w + 2r) (87)

It is advisable to exercise due.care in determinfng the quadrants of the’
angular quantities w, 6, and f. A way of making this determination is to com- -

pute both the sine and cosine value for a given .angle.

7. Geodetic Coordinate System {A, ¢, H)

The geodetic coordinate system ic related to the geocentric courdinate
system as shown in figure 7-1, The geodetic latitude (¢) is the angle between
the geodetic Equator and the geodetic line that is normal to the surface of the
ellipsoid at any point. The geodetic latitude is-positive in the northern hal f
of the hemisphere. The geodetic longitude (i) of a point is measured positive
to the east of the Greenwich Meridian. The angle is measured in the E-F plane
between the zero meridian plane and the geodetic meridian plane of the point.
Both planes contain the minor axis of the reference ellipsoid.

38.
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The geocentric coordinates of a point in space may ‘be obtained from the
geodetic cuordinates as follows: :

(N # H) COS ¢ COS A

E =
CF = (N o+ H) cos ¢ sin . C - (88)
G = [N (1-e2) + H] sin ¢, -

Pty

where N. is the radius of curvature in the prime vertical

it

LAY A LY X ALY

-
=

.« N (89
N (1-e2 sin ¢)% ot )

-

]

In this relation, a and e are the semi-major ax1s and eccentrvcity, respec~
tively, for the reference ellipsoid.
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The solution is complete when -fj <%> is < 107!2 padians. Then
H=¢t [(D-DS)2 + (6 - GS)Z]';i ' (95)
where ' . S .
Ds = N cos ¢ and ' . (96)

I7 the geocentric coordinates are known, the reverse information is

.‘ . . n )
A= tan-l (f.\ (DOUb]e r-r-tan)

E/ (If A <0, then A = X + 2r) (90)
Latitude is obtained by Newton's ,iterativ_e method as follows:
o\ -1 .
= — i,}i ! . . g.I)
Pia = 45 f (;¢) j (
where _ .
: ’ 1
. 2 2 T+ 2 /2
f. = ae. T - (€ F?) + -8 and (92)
J (1-e3 sin2 ¢.)? cos ¢j sin ¢j
J

(1-e2 sinz ¢ )2 © cos2g; ST

6. = tan"] 6\ . (94)
,¢J an ((1-e2) D> f

(§f> '= e"a sin ¢J cos ¢j_ (E2 + F2)7 sin ¢J. G cos ¢J- . (93)
J

- L
where D = (E2 + F2)2,

G, = N (1-e?) sin ¢.
To resolve the ambiguity in sign. compute

BeD (-0) 46 (e6) L (en)




The sign in the computed value of B is then assigned to H. As an alternative,
H can be computed as

H=1[D%2 + (G + e2 N sin (15)2]1/2 - [Dg + (N sin ;)2]% ' (98)

This expression yields the sign of H directly as part of the computation,

8. Summary of Trajectory Coordinate Systems

Figure 8-1 depicts the relationships of the trajectory coordinate systeus
defined in section VII.

(1) Range System
Xy ¥y 2Z
X, ¥, 2

\ {2) ECEF Geocentric

- (3) §C§F - (Master) (7) Geodetic
%2 | T > E, F, G i B WP
2 - ot E, F, G

y

-

IO

'.l

A

. . | (8) ECI
|(5) EcI Inertial

heri
Spherical , Ery Fpo 6 | ol

=
W Wt

(6) Satellite
Oribtal

Ry Wy iv a, eoM
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VIII. RCC RECOMMENDATIONS AND PROCEDURES

>
.4

The Range Commanders Council addpts ard recommends fcr interrange use the
Geodetic Datum and Global Coordinate System described btelcw.

P
. ~ :
TN a. Ffor the exchange of data among ranges on missions wnere interrange action
;' is required, employ the Department of Defense World Geadetic System of 1972, with
*:',‘:- the following ellipsoid definitions: :
e WGS 72 ELLIPSOID
]
W . STANDARD ERROR
;:: PARAMETERS ' NOTATION MAGNITUDE (68.27%)
. » '
ﬁ Gravitational’ GM _, 398600.5 kmi/s2. 0.4
.,;.,‘ Cohstant : .
\.{:l . v _ . .
2;, Second Degree’ o -484.1605 x 107% ===
2’,;3 Zonal ’ ‘
e : - . -13
!!a Angular Velocity® o 0.7252115147 x 197“ 0.1 x 10
S e ’ rad/s :
‘ ".\‘ 2 o . s
o Angular Velocity’ e 0.7292115855 x 137°
'{-_ rad/s
RS . ‘ :
g Ser  major Axis® a ‘ 6378135 m , 5w
24 Flattening” f ©1/298.26 | +0.6 x 1677
o -
2y Gravitational” GM” 398600.8 km¥/s2 0.4
M Constant -
o Major eccentricity = e 0.08181331066
<o L : '
:-fj'_- b. Transformation constants .or shifting from. three regional datums to the
-",;-'

WGS-72 Datum are given below. The unclassified regional datum shifts listed are
taken from reference 1. . o , ,

s

l}',

= o

vy *De Fining parameters o 55 72 Ellipsoid (see ref:rence I;.

N .

ol oo ‘

” Yo, . B . K . . . . .

o loroluding atmosrhere (for use with geodetie computatioms invelving the normal
, ng : : g

o potentizl). :

2 . ] .

' . . ' . .

fud 214U system of Astromomical Congtants (relative to fixed stars).

% ~ |

o2 3relative to the instantoneous true equinoz.

i

“contains the mass of the EZarth's atmosphere (for use with satellite and
gpace studies). o '

.

)
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N T .SFORMATION tE{m) Af(m) . 2G6(m) Jalm) tf x 10
e " North American L2 157 176 71,4 -0.37295850

Natum {NAD) 27
Area to WGS-72

K

N _

2 European Datum (ED) -84 -103 -127 -253 -0.14223913
) (International) . .

' Area to WGS-72 .

-!! Tokyo Datum (TD) | -140 516 673  737.845. 0.10006272
o (Bessel) . |
-~ Area to WG3S-72
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ADDENDUM
_ Document 151-85
Global Coordinate System

Replace pages 10, 43, 44 and 45 with the attached pages.
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3..Ca]cula£e O M and HN using e fN’ EN’vFN’ and.GN as shoyn in section YII,-

paragraph 7,

The origins and ellipsoids for a few datums are

NAD 1927 ED
Meade's Ranch, KS Potsdem
¢ 33°13'26.686"N 52°22'51.45"N
A 261’2}'29.494"E ' 13‘03'58.93"E
H 599.4M+0.3 |
Ellipsoid ‘Clarke 1866 Xnternationa! i924

The ellipsoid parameters of interest are

Ellipsoid ; a (meters)
Clarke 1866 | | 6378206.4
Fischef (Mercury) 1960 6378166
Kaula 1961 | 6378165
Bessel 1841 16377397155
WGS 72 . | , 6378135

International (Hayford) 1924 6378388

NGS 84 .. 6378137

T
Tokyo
35°39'17,51%N
139°44'40.90"E

Bessel 1841

5
1/294.9786982
1/298.3
1/298.3
1/299.1528128
1/298.26
1/297.0
1/298.257é23553
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YIII., RCC RECOMMENDATINNS AND PROCEDURES

The Range Commanders Council adopts and recommends for interrange use the
Geodetic Datum and Global Coordinate System described below,

a. For the exchange of data among ranges on missions where interrange
action is required, employ the Department of Defense World Geodetir System 1984,
with the following ellipsoid definitions: _

WGS 84 ELLIPSOID

STANDARD ERROR

PARAMETERS NOTATION © MAGNITUGE (68.27%)
Gravitationalls oM 3986005 km3/s2 40,06
Cunstant ‘ ‘ ‘
Second Degree* S0 -484,16685 x 1076 41,30 x 1079
Zonal * E .
Angular VeiocityZ. ' wg ' 50.7292115 x 1074 40,1500 x 10-i1
' - .rad/s .
Angular Velocity3, ue 0.72921158553 x 10°%  +0.1500 x 10711
e ©+4,3(10-15 Tﬁ) rad/s
Gravitationald M- 398600.15 kP /s?  +0.6
Constant . : ,
Semi -ma jor Ax{s# a 6378137 m ' +2n
Flattening (Ellipticity) . f  1/298.257223563  -=-=-
- | o ©{0.00335281066474) -
First eccentricity e 0.0818191908426
| e " 0.00669437999013

*Defining parameters of WGS 84 Ellipsoid (see reference 1),

lcontains the mass of the Earth s atmosphere (for use with satellfte and space
studies). .

21AG adopted value for the true angular velocity of the earti,

3333331ve to the 1nstantaneous true equinox; T - Julian Centuries from Epoch

4Excludfng atmosphere (for use with geodet!c computations 1nvolvlng the normll
potential). _ . o
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b. Transformation constants for shifting from three regional datums to the
WGS 84 Datum are given below. 'The unclassified regional datum shifts listed are
taken from reference 1. '

TRANSFORMAT ION ' E(m) Fm) . 6(m)  a(m) £ x 10
North American* -8 160 176 -69.4 -0.37264639

Datum (NAD) 27
Area to WGS-84

Turopean Datum (ED) -87 -98 -121 -251 -0,14192702
1950 (International) '
Area to WGS-84

Tokyo Datum (TD) -128 481 664  739.845.  0.10037483
(Bessel) ‘ .
Area to WGS-84

THean Value (CUNUSL

.

“" -
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