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thsiract
fueueing models can be useful in the analysis, design, and
cantrol of production, transportation, communication, and

lagistice eyetems. Using the theory of MarkKov decision processes
and the inductive techniques of dynamic programming, normative
madels have been develcoped for optimal contrel of admission,
routing, and servicing of jobs in queuwes and networks of queues.
We review some of these models in a unified format, beqginning
with singte—-facility models and then maoving on to medels for
networks of queues, The emphasis is on using induction <(value
iteration) to establish the qualitative structure of optimal
contrel policies. We compare the resulting policies to some ad
hoc control rules that have been proposed in the literature.
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several stages of disassembly, inspection andsor replacement of

components, In communication systems, & series of queues may
provide a model for a "virtual channel" -- a sequence of linkKed
communication channels -- between the source and destination of a

certain class of messages (cf. Lazar(1983)).

It may be the c%se that different jobs require different
combinations of services in different sequences. There could be
feedback of certain jobs, because of the need for rework. In
guch «cases the appropriate queueing—-network model will be more
complicated, with multiple branches and combined series—-parallel
structure. The classical industrial application for such a more
general network model is a Jioh shop, and indeed the <seminal
thecoretical paper on networks of queues {(Jackson(1%43)) has these
words in the title, Subsequently, Jackson’s model and
generalizations have been successfully applied to performance
evaluation in computer/communication syetems (cee, E.Q.,
Kleinrock(1%97&2). More recently, the Industrial engineering
community has recognized the utility of the networks-of-queues
model for analysics of flexible manufacturing systems: systems
consisting of automated manufacturing cells, capable of
efficiently processing a variety of jobs requiring processing by
different combinations of machines <(cee, e.g., Buzacott and

Yao(1983)).

For the most part, queueing-networlk models have hbeen
descriptive, rather than nermative. That is, they have provided
a tool for estimating operating characteristics or measures of
effectiveness, such as congestion levels or ‘Ythroughput, of

&la2



existing or proposed systems, operating according to specified
palicies. The task of =electing the best design or the becst
coentral policy has been left to the system operator. Recently,
fowever, more and more researchers have turned to mathematical
models, not only for description, but also to help make crucial

design and control decisions.

Optimal design is an integral part of gqueueing-network
models for avtomatic transfer lines, where the location and Eizé
of buffers for in-process inventories are design variables (Ho =t
al {19792, Alticki{l?82), Altiok and Stidham(1%7833). A commorn
approach 1s to use simulation or an analytical Markov model to
evaluate the costs and benefits of a fixed buffer configuration,
and then use a gradient-search algorithm to move toward & laocal
(and, with IUEM, global? optimum. Qther possible design varia-
bles are the number of servers andsor the service rates at each
node (2.gQ., work station, repair facility) of the network.
Gross, Miller, and Salandil1%82) used & queueing—n=twork model to
represent & syetem in which repairable items are processed at
gjther a depot or field station and therg is the possibility of
providing spares. The number of spares and the number of servers
at each repair facility were design variables and the obijective

was to minimize the cost of providing =pares and servers, while

maintaining & desired level of operational readiness (ﬁrabahi—
lity that the regquired number of items are operational), An
integer~programming algorithm was used to find the optimal de-
Sian.

In & design problem, the decision variabltes, once fixed,

2713



remain soa throughout the planning herizon. By contrast, if the

decision wvariables can be adjusted a= the system status change

]

)
then we have a control problem, Contral may be exercised in &
queuveing netwerk by varying the arrival or service rates, turning

servers on or off, or changing Jjob priorities or routings. By

doing so, one can balance the "bad" (congeetion) with the "good"
(throughputy. As an example, consider the communication syetem
ilTlustrated in Figure 2. (This example capltures, in simplified

form, sewveral of the impertant issues in the contral of Flow and

routing in communication systems.?

1]

There zre three cities (A4, B, =&nd C», with direct channel

TIr

labelled 1 , 2, and 2 , linking A to B , B to ©C , and
to C , respectively, Each channel transmite messages ane at =
timse. Messagee waiting to be transmitted are placed in =z&n

infinite~-capacity buffer in front of the channsl. Thers ar

Dy

three classes of messages (jobs): criginating in A and des-

tined for B (glass 12, originating in B and destined for C

[N}

(class 2y, and aoriginating in A& and destined for C {(class 3r.
The system has no control cver messages of class | oo 2 all
messages of each clase must be sent ower the corresponding direct
channel ., Mescsages of class 3, however, may be caontrolled in two

Y

Wea

11}

(i) by accepting or rejecting a message when it "arrives
(is generated at city Ak Cii) by choosing whether to route it
-

directty to city £ wvia channel 2, or indirectly wvia channmels |1
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and 2. In the latter case, the message competes with "locat"

traffic {messages of classecs | and 2V.

The corresponding network of queues (see Figure 3> has three

Figure 3. Queueing-Network Model for Communication System.

nodes, one corresponding to esach channel (server) and its buffer.
The decisione (accept ve. reject, route via channels 1 and 2 vs,.

via channel 3) are indicated by "taggles".

tlhat can one say about “"optimal", or at least "good", con-
trol policies for this problem? On the one hand, one would 1like

to get as many mescages &

"

possible through the system (maximize
throughput). This could be accomplished by admitting each class-—

-

2 arriwval, On the other hand, admitting & class—-3 me

m
1]
1]}

ha

14}

ag
assoclated "costse". One cost is reflected in the time it takes
the message fo reach its destination, which depends on which
route  is  chaogen and how many messages are ahead of it in  the
buffericl. Economists would call this an "internal effect",.
Another cost is the "congestion" which is added to the system by
admitting the message, as reflected in the additiocnal delays
csuffered by later messages because of ite presence. The economic
term +tor this type of cost is an "external effect", A rational
control palicy For admission andsor routing of messages must
balance these benefits and coste. Intuition suggeste that such =
palicy <hould have (at least) the following {monoctonicity2 pro-
perties: if it accepts an arriving messxge in a given <shtate,

then it should al

1

.0 accept if one or more messages  arse removed
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Often it ie useful to view the components of production,
transportation, communication, or lrgicstice syetems as Queues, in
which Jjobs {(customers? are processed by one or more secuers. The
Jjobe could be parts or subassemblies, wvehicles, messages or
computer programs, or repairable items. The servers could be
work <stations, traffic signals or road segments, communication
channels or computer CRU‘s, or maintenances/repair Ffacilities.
Often there are many such service facilities, linked together by

pathse along which Jjobs may travel from one facility to ancther.

“n abstract model for such syetems is a mpetwork of gueues,
and such models have been increasingly recognized as useful tools
for understanding the kehavior of complex service systems. Fer—
haps the simplecet network consistse of & number, m , of queues in
series, in which the cutput of gqueue i ie the input to queue
i+l . A flow=shop production system, such as an assembly line ar

avtamatic transfer line, has this structure {(see Figure 1), In

Figure 1. Queuese in Series.

such a swstem, each job muet be processed at each of the work
stations (numbered | = 1,2,...,m ) in the same order. Each work
cstation conesiste of one or more servers {machines and/or workers?
all capable of performing the same task, Ppreceded by a buffer or
cstorage area where jobs wait for processing. Cbviously, <uch a
model is not 1imited to production and assembly operations, but
may also apply to maintenance and repair facilities in which
inctoming jobs {(e.qg., aircraft, vehicles) of identical or similar

canfiquration scheduled for routine maintenance must go through
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from any one of the nodes; if it is preferable to route a class-

]

mescage wvia node 3 in a given state, then it will remain
preferable to do so if one or more messages are removed from node

2 and/or added to nades § and 2.

At the very least, one expects a mathematic control model to
be capable of confirming or denying the validity of such in-
tuition. Beyond that, such a model should lead to efficient

numericxl algorithms for computing the control parameters of an

optimal palicy =-- <specifically, the boundary of the "acceptance
reqgion"  and the boundary between the regions of the state <pace
where it is optimal to route to nodes | and 2 ve. nade 3 (the

"ewitching curve"d,

For another example of & contral praoblem invelving a network
of queuves, let use return to the seriecs~of-queues model for a flow
cshop &= pictured in Figure 1§, Suppose that it is possibkle
te control {(drpamically vary) the rates at which the servers at
various nodes worlk, in regponse to changing cangestion levels,
For example, one might want to turn a sarver off when the down-
ctream buffer{sel have accumulated & large number of Jjobs or when
the number of Jjobs in the upstream buffer(s? is small. "Just-in-
time" production paolicies like the Japanese Kaoban are a <special
case of this type of policy. Again, one would hope that a
mathematical optimization model, based an 2 plausible benefit-
cost structure, would enable one to test the validity of such
cperating principles and efficiently calculate the parametere of

the aszociated control policies.
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fhe primary goal of this paper is to survey the proagress
that has been made toward accomplishing these twe goals, in  the
general context of mathematical models for control of networks of
queues. We Ffeocus attention on maodels based on Markov decision
processes, using the inductive Iideas embodied in drnamic
programming as & tool  for characterizing the structure of
optimal policies as well as calculating their parameters, We
begin by illustrating the ecocnomic assumptione and analytic
technique in the context of some simple, one—~facility models, and
then move on to multi—-facility f(queueing-network) maodels. The
models considered allow control of admission, rowting, and/or
servicing of Jjobs. Far a more detailed survey that concentrates
on control of admission and routing, see Stidham(1%84). Earlier
comprehensive surveye may be found in Scbel(1974), Stidham(1974),

and Crakill, Gross, and Magazine(l1977).
1. édmissipn LCooircol to a Single-fezcuer [Qusine

We First consider & simple, =ingle-facility model with
control of admission of customers. It is a special case aof &
model Ffor exponential congestion systems, <studied by Lippman and

Stidham(1777> and is illustrated below in Figure 4, Jabs arrive

Figure 4., MMl RQueue with Control of Admission.

at & single-server facility according toc a Poissan process  with
mean arrival rate 2 (jabs per unit timed, Equivalent]»: the

interarrival times between jabs are i.i.d. Cindependent and iden-—
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tically distributed? with an exponential distribution with mean
{1/N.) (See, e.g., Ross(1%270) for a discussion of properties of
the Poisson process and exponential distribution.) The system
operator contrale the arrivals by deciding whether to accept
{action a = 1 3 or reject (action & =0 > an arriving Job.
fdccepted Jobe join an infinite-capacity queue and wait for ser-

vice. There is a

it

ingle z=erver who serves jobs one at a time,
with service times that are i:i.d. with an expanential distribu-
tion with mean 174 . The shorthand far this is to say that we
have an exponential server with mean service rate u C(jobs per
unit timed. In the literature an queues, a system like that
illustrated in Figure 4, but with no restriction on  entry of
Jjobs, is referred toc as an M/MS1 queue. The "M" in the first

position stands for the "memoryless" (exponential) distribution

of interarrival times. The "M" in the second position tells us
that the service-time distribution is also exponential. The "1"
in the third position stand& for "one server". We extend this

terminalogy to control modele, so that the model under considera-

tion becomes anm "MAMAS1 queue with control of admission".

Faor clarity of expositicon, we assume & simple benefits/cost
structures reflecting the fact that throughput is ‘"good" and
conge=tion ie "bad". Each admitted job generates a fixed reward
{utility¥) r . There is a waiting cost h per Jjob per unit time
in the <system (i.e., in the queue plus in servicel. Equiva-
lently, by analogy with inventory-contral probklems, we can &ay
that there s a cost aof haolding jobs he«i per unit time while

there are i Jjobs in the system. Future rewards and coste are

A



continuously discounted at rate o« > 0 , so that the present
value of a net benefit x received at time t is x . expl{-s&ti
The obljective of the sycstem cperator ie to maximize the total
expected discounted net benefit over an infinite time horizon.®

#Discounting reflects the time preferences of & rational economic
decision makKer and maKes it poscsible to compare present and
future benefitse and costes. An alternate optimality criterion is
long-run average net benefit per unit time. Average-optimal con-
trol policies can he derived from &« -discount-optimal paolicies by
letting approach zerc (see, ¢e.9Q., Ross(1%70), Lippmanr and
Stidham{(19772). We <hall therefore confine cur attention to the
discounted-net-benefit criterion,

Our aoal ic to characterize the structure of an optimal
contral policy (rule for choosing actione? and develop efficient
techniques for computing its parameters. To thie end, we firct
use conceptes from dynamic programming (Bel lmand1?52), Ross{12701)
ta derive a functional equation satisefied by the optimal wvalue
function, V{idei= maximum total expected discounted net benefit
aver an infinite horizon, starting from state i . The Principle
af Optimality of dypnamic programming sars that, from each
starting state i , an optimal policy will choese an action =Cid
= a that maximizes the sum of the discounted net benetfit earned
until the next observaticon point and the present value of the
discounted net benefit earned after the next decision point,
assuming that we follow an cptimal policy from whatewver state |
we enter at that point. For the problem a& hand, it follows that
the optimal value function WV(i)> <catisfiese the optimality equa-

tian Cilx0)
VEid = I— hei + Amax{r + VCGi+1),VC002 + VG- 1/ (dptd (1)

where V(-1)> = U0) . A rigorous derivation of the dynamic-—
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programming optimality equation under general conditions satis-
fied by our prohlem may be found in Schal (1?75, Bertcsekas(1%80),
or Whittle{1283), For the problem at hand, there are several
posseible heuristic derivations of (1), one of them being the

following.

We cbkeerve the system anly at tranzitions {(changes of <ctate

caused by arrivale or service completionsy, The time between
transiticns is the minimum of two independent exponential random
variables, the time until the next arrival and the time until the

next service completion, and thus ie itselt exponentially distri-

buted with parameter XA + a4, the sum of the arrival and service

rates, Until & transition occcurs, given that we are in ctate
i 4 we incur halding cost at the constant rate h-i « Applying
the discount factor exp{-a«t} for cost accruing at time t and

intearating over the sxponentially distributed time until the
next transition gives the term - h+i A{A+p+«) , the expected
discounted holding cost until the next observation point. The
expected discount factor over the interval between now and the
next observation point is (%'*}LLI(A*nM4i¥) . The next observa-
tion s at an arrival or & service completion with respective
probabilities A/CA+ u) and a4/ /CA+ ) These expressions

follow from well-Known properties of exponential distributions.=

#Note that because V(-1) = V(0> , the optimality equatiaon for
state 0 implicitly assumes that the =zerver continues to operate
when no customers are present, but that any cervice completians
are fictitious, in effect creating "dummy" transitions from state
a to itseif. It ie easy to verify that the equation for state
0 ie equivalent to

U0y = Amaxir + V1), WO (A + )
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the equation resulting Ffrom imbedding only at “"real" events
Carrivals). The advantage of ocur formulation {(often referred to
in the literature as "unitformization"? is that it makes the time
between ohservation points (al though random?) independent of the
state and action. The resulting coptimality egquaticns are
structurally equivalent to those of the approximating discrete-
time Markov decicsion process resulting from chserving the system
at fixed time intervals of length dt and ignoring multiple
events in & single interval (which have prababkility o(dt) >. The

equaticns in this form are more amenable to qualitative analysis
via successive approximations, as we shall see presently, Uni-
formization is & standard technique in the analysis of Markov

chains. It usefulness in models for control of queues was recog-
nized by Lippman(l1%73) (see also Serfozol(l®7?r),

lWe can use the optimalité equation to show that an optimal
policy is monotonic, <specifically that the optimal action alid
i€ non—increasing in i 2 0 . In other words, an optimal admis-
gian policy is characterized by a crpitical onumber % such that
an arriving job ise admitted if and only i+ i ¢ i% ., By adding
and subtracting the term W{(i)> on the right-hand side, we can

rewrite the optimality equation (1) in equivalent form

VWEid = [=h+i + XWWU(ir + AT =10

(2

A max{r = [V{id)-VCi+101,030-°ChA + e+ ()
from which it ie easy to szee that an optimal =dmisszion policy
will be monotonic if W(i) — Wi+l) is non-decreasing in | .
that is, if M) s concave. In this case, the critical

number will be % = min{i: V(i> ~ Udi+sl) 2 r3 . The guantity
V(Cid = UCi+1)> «can be interpreted as the total cost J{including
loss of net benefit to future arrivals) caused by the entry of =z
job in state i . We should admit a job if and only if this cost
ie emaller®* than the reward r

¥Our conventicon ie to reject in case cozt exactly equals reward.
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Since the optimality equation <(2) only defines Vi
implicitly, it does not yield a direct proof that V(i is
concave. One can, however, exploit the fact that (2 can he
salved by successive approximations: start with an approximation,

U , of the optimal value function Y and insert jt in place of
0

LA in the right-hand <ide of <1)> , thus qgenerating a new
approximating function V .  Repeat this process, defining V
1 n
in terms of U {nx1) by the recursive analogue of (1)
n—1

Undid) = [~-hei + Qmax{r + Un-1¢i+1),Un-1¢Ci)2

+ al Ci~T1)l/¢ A+t
n—-1

The theory behind the convergence of U to Vo, including
n
necessary restrictione on V , may be found in Schal{197?5),
G
Stidham{i%81>, Whitt1e{i?83), wvan der Wal (1?8312, In dyrramic

programming, it ie customary to call thie approach ralus
itepatrion, Ffaollowing Bellman{i?57,, \ can also be interpreted
Kl

as  the maximum total expected net benefit if the system is to be

operated for only n st

o

ges (obsepvation pointed and then shut
down, earning & terminal {(scraxp) walue azccording to a aqiven

function Y (j» of the final state |

0
Uxlue iteration can be used as the basis for an  inductive
praof that Y , and hence V , is concawve, It is intuitively
clear thxt nU(i) chould alsc be non-increasing in i : Faor
technical reasons, having to do with the boundary at state i=0 ,

it ie necessary to add this property to the induction hypothesis,

which thus bhecomes:
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UV (i) is concave and non-increasing in i 2 0 . ()
n

The inductive step involves showing, via equation (2), that WV

n

satisfies (4) whenever V does. The non—trivial part is
n—1

showing that concavity of a function g(i) implies concavity of

the function
fCiYi= max{r + gli+ld, agliri . (=D

This was done by Lippman(1%273). The function V =0 trivially
satiefies (4) and therefore is a cuitable startigg function +for
the induction. Convergence of U to WV in this case follows
from Schal(1%75), In the procegsnof verifying the optimality of
a manotonic paolicy for the infinite-herizon discounted prablem,
we also wverify monotonicity for each n-stage problem —— i

property that may be of interest in applications to problems

with a finite planning horizaon,

Inductive analyses like this, based on the "preservation of
cancavity" through transformations like (5, form the basis for
the study of the structure of optimal peolicies in many problems
in the control of queues., The next section provides another

itlustration of the power of this approach.

Bemarcks,

fhe Coitical-number policies and their npumercical computation.
The inductive analysis has reduced the M/M/1 admission-contraol
problem to one of finding the optimal critical number 1% . This

ie & one-dimensional optimization problem: among the class of
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M MA1/n evstems, Ffind the eystem capacity n = i%¥ that yields

the maximum value, Maor(194%)> used this approach in his seminal
paper on admission contral. For M/MA1/n syetems & claosed-form
expression is awvailable for the long-run average net benefit,

which can be shown to be unimodal in n , so that a local maximum
is a global maximum. Nacor exploited this property to give neces-
sary and sufficient conditions for n = i¥ , when the optimality
criterion is long-run average net benefit. This approach was
extended to MAMA7c and mare general exponential systems by Knud-
sen(1?72) and Knudsen and Stidham(1974). Systems with more gene-—
ral arrival process or service—time distribution, with attention
restricted to critical-number policies, have been <studied by
Adler and Maor{l%#&%), Simoncovits{l1?74), Balachandran and Schae-—

fer (1979, and Rue and Rosenshine{1%813.

f cource, for discounted problems one possible technique
far +inding i¥ is simply to apply value iteration as a numeri-
cal algorithm to the optimality equation (1).% Although not =

¥The state space must first be truncated to a finite set, in
order for the algorithm to be finite.

particularly fast algorithm by itself (especially when is
clase ta zero), wvalue iteration can be made to converge quite
rapidly with the incorporation of bounds, extrapolations, elimi-
nation of suboptimal actions, and transformations. (See, ©.9.,
van NMunen and Wesselsll197%) for a survey of the different wva-
riants of value iteration.)> Folicy iteration ("Howard s algo-
rithm") is another alternative. & variant of policy iteration,

which restricte attention to critical-number policies and ex-
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ploits the special structure of the optimality equation for
admission—-caontrol problems, was developed by van MNunen and Puter-
man{l%804) ,{1%82), Widngaard and Stidham(l78323) have developed an
efficient algorithm for a clase of Markov decision processes that

includes the admission-controel problem.

2. Submndulapity abnd monotonic policies.  We see from {(2)  that
cur maximization problem is of the form
fCi>» = max gli,a) , (&)
a
where in this case gQli,x) = a r + Ulitad The theary of
submodul ar (and supermodular) functions (Topkis(i%78)) praovides a

set of tools for showing monotonicity of the optimizing action in

problems of this farm. A function gli,a0 is called submodular
(supecmodulac) in (i,al it giit,a’) — gli,ar ise non—increasing
in i 4, for all a” » & . IFf alid ie defined as the (smallest)
maximizing action in {4, then it ie easy to see that afi> is
naen—increasing (non-decreasing? in i it gii,z) is <submodular
(supermocdul ar) . (Symmetric <statements haold +For minimization
problems.) In the present problem, submodularity of ogli,a) =

ar + Uli+al follows directly from concavity aof W(i) . Thizs is

often the case in queueing-control problems.

3. Extensions of the ipductive appooach. Variants of the induc-
tive approach can ke used to prove monctonicity of an optimal
admission-control  policy for swstems with multiple servers or &
state-dependent service mechaniem, non-linear {(convex) holding
caost rate hdil v andsor random rewards  (Lippman  and  Stid-

ham{19277>), with a general interarrival-time distribution, batch
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arrivals with random batcn cive, or mixed-Erlang service—-time
distriboticon (Etidham{(1?78>, Langen(i1%82>), with random environ-
mentz, including dependent interarrival times, Fixed time hori-
zons, non—-staticonary arrival process, multiple job types, or
partially observable processes (Helm and Waldmann(i1%83)2, with
general input and output processe and continuous state wvariable
{Johansen and Stidham{i%¥80)), and with charging of rewards and
costs  at departure (rather thanm arrival? instants (Johansen and
Stidham(1%843>. For more details about other these and other
single—facility admission-control models, <ee, e.q., Stidham and

Prabhu(l%74), Johansen and Stidham(1?80), Stidham(1984).
2. LBeruire Conirol in a Single=Seruer Ousue

Our next model! ige for a single M/MAL queue with control of
service, The model ie itlustrated below in Figure 3. A  we
shxll sgee, it ie in some sense "dual" to the admissicn-control
model of the previous section, and as such differs superficially
from zservice-rate control modele in  the literature (Cra-
Bi11019722,41974>, Sabketi(1973), Lippman<l?75), Jo(19¥822). The
formulations can ke shown to be equiwalent, however, by a simple
transformation (see Remark 4 below).

Figure 3. MM’ Queue with Control of Service.

Once &sgain  Jjobs arrive from a Poisson process with mean

arrival rate X , but now all Jjobe enter the syetem. An enter-

ing Jobk goes immediately into service if the server is freej
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otherwicge, it joins the (infinite—capacity? queue. The =single
server performe (potential) services according to an exponential
distribution with mean service rate o . Control is exercised
by “accepting" or "rejecting" potential service completions when
they occur. If a potential service completion ie accepted, then
a customer departs from the system and & cost ¢ 2 0O is in-
curred. I+ it is rejected then no cost ie incurred and the
system state remaine unchanged. Alternatively, in the case of
rejection we can think of the customer in service being "fed

back" to receive another exponentially distributed <cervice, as

illustrated in Figure 5. As before, there is & holding cast  h
per unit time per job in the system. Future costs are conti-
nuously discounted at rate o > 0 and the objective is to
minimize the total expected discounted cost over an  infinite

haorizon.

Define VCid::= minimum total expected discounted cost over
an infinite horizon, starting from state i . Then this aptimal

value function satisefies the optimality eguation (ix0)
VCid =0 hei + AVCI+1) + mminc + UGi-1) WD Q+put ) , (7D

where U{(-1) = U{0) , (Equivalently, assume that all potential
service completions in state 0 are rejected.? The ‘“"duality"
with equatiaon ¢1) for the admicesion-control problem is obvious.
The arguments For the validity of (7 -— both rigorous and
heuristic --— parallel those tor (1), An axlternate version of

the optimality equation, equivalent to (7}, is

WEid = [ hei + QUVCi+L)Y + /LU(])
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+ /J.min{c = M| G T =1 B 1G] AE Dttt B g

from which it follows that an coptimal service palicy will be
monotonic if W(i)» - VY(i-1)» is non-decreasing in 1t , that is,
it W(ir» is convex. In this case, the optimal palicy will be
characterized by a critical number i#%:= max{i:V{i)-UC{i-12 < c?

The quantity Vi) - U(i-1) is the benefit (in terme of expected
discounted Ffuture cost savings? of a service completion in state
i ble should accept & potential service completion i+ and onily
if thie bernefit is at least as great as the service cost (R
that is, if and only if i > i ¥

#0ur convention is to accept a service campletion in case coast
exactl» equals benefit. ’

Just as in the admission-control model, one can prove that

Cid i= convex by vwalue iteration, and in the process aleo prove
optimality of a monotonic policy for the n-stage problem. The
key step iz to show that convexity of a function g(i? implies

convexity of the function
flid:= min{c + gCi—-1), glixx . (%)

The prootf exactly parallels the proof of concavity of +F(i)» when

f{i>» is detined by (352 with gfi}? concave.

Eemarks.

-

2. Dptimality of a full=seruire policy. Under an optimal policy

with critical number % , the states i = 0,1,...,i%-1 are
transient. In other words, after the system first reaches state
i® 4, there will alwaye be at least % Jjobs present. It mayr
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seem strange that anm optimal policy might not serve unless  thers
are at least a certain minimum number of customers are present.
In +fact, when the criterion is long-run average return, So-
bel(1932) has shown =-- hy a different approach and +for much
more general systems than the one under consideration here ==
that i=®= =1 , In other words, a "full-service" policy is opti-
mal: <service should take place whenever at least one job is in
the system. But for discounted problems it is possible to have
i# > 1 : if the discount rate is large enough, the savings in
future holding costs, after discounting, may not be large encugh

in some states to offzet the service cost, which is incurred now.

4. LConteol of sepwice cate with one oo mope feasihle ualues.  In
most of the ltiterature on service control, the decision maker has
the option of selecting, at each point in time, a =zervice raté
! tfrom a feasible set & , which may be a finite, countably
infinite, -or uncountable set {g.g., arn interval [D,/&] Yo When
service rate Y is in effect, & cost is incurred at rate c( ¥
per unit time, (See, e.q., Crabilldi?72),{1974), Sabeti{1%73),
Lippman{l?75), Jai{l282).) By contrast, in the present madel
potential services take place at the constant rate M and can be
accepted, at a lump-sum cost ¢ , or rejected, at no cost. There
is an equivalence hetween the twe types of model, which may be

seen as fallows.

Firet, ocur model is equivalent to one in which the decizion
maker must continucusely choose between serving at rate M y

incurring service cost continuocusly at rate c{pd:=

R ]

, ar
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zerving at rate 0 (i.e., not serving), incurring service cast at
rate 0 . For, with ctm> defined in this way, the optimality

equation (7) can be rewritten as

Viid = L hei + AU+

C1a2

+ min{ctpm) + /L'v'(i—l),/,(.'v'(i)}]/()\+,u+o<) :

which e the aoptimality equation for the latter problem.*
#3s in the admissicon—-control problem, we have uniformized the

transitions by imagining that, even when the service rate is 0 ,
the server continues to perform "fictitiouse" services at rate
Mo These fictitious serwvices have no effect on the state or
coets, e thxat the resulting Markov decision pracess is equiva-—
lent to one in which only the "real" transitions (arrivals and
zsaryice completians? are considered. (See Lippman(1973), Ser-
tozo(l1?77) .2

To <see how the case of two or more feasible service rates
can ke handled, suppose our accept/reject model is modified as
fol lows. There are K independent, paratlel servers, the .J-th

af which serves according to an exponential distribution with

mean rate X. y where Z:X. = M . Potential service complte-
tions by Eerier Jgowy o= 1,%,...,M) can be accepted, at a cost
c y, or rejected, &t 0O cost. Assume the c_’S are non—de-
cieaaing in . Then the term in the optimaliiy equaticon (12

that involves minimization will be replaced by

K

25 X eminfe + WCi=1), W{id3

=1 j i
An optimal policy will accept service completions in  state i
from <servers Jj = 1,Z2,,..,0%(i> , and reject those from servers
o= d¥tir+l, ...,k , where JxE(idi= max{j: Wid)-Wi~-1>xc ¥ . The

J

inductive prcoof that Vi) i= convex goes through without

change. Thus the i%(i>"s are non-decreasing in i @ the more
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Jobs in the system, the mare servers should ke "on", This re-
sult, which i= of interest in its own right, can be used to
establich optimality of a monotonic policy for a2 single—server
sy¥stem in which the server can be operated at any rate
¥ € [G,f&] , at a cost per unit time cC¥) , where c¢ 73 2k
convex, non-decreasing function, with <c(0) =10 . Cne simply

approximates c(d) by a piecewise—~linear function cver K sub-

intervals of length ¥ ' u &l ¥ ¢ With Y + ... 4+ ¥ = M
1 K 1 k
and ¢ 1= [c(ZY r-ciZY 1Y as the slope over the J—th
J J J=d 3
subinterval. Convexity of (¥ implies that the ¢ are non-
J

decreasing in Jj , so that the above multi-server model applies,

It Ffollows that the optimal service rate to use in =tate i
equals ¥ T | , Which is non—decresasing in i
1 JECD)
since Jj¥(i> is npon—decreasing in i
The assumption that «c¢ ¥> is convex is not restrictive,

since any non—-convex Cf &> can be replaced by its lower convex
envelope without affecting optimal policies. See, S =
Crabilld{l1?272), Jol(l1?82) for details. Intuitively, the reason is
that a&ny rate ¥ that belongse to an interval where cf ¥ i s
non—conveyx can be achieved at a lower cost by mixing two rates,

cne below and the other aboue ¥

S, Extensions aod generalizaticons. OGptimaltity of a monotonic
policy can be proved by extensions of the above inductive
analvsis for systems with state-dependent arrival rates
(Crabill<1®72)), non—1linear {fconvexl holding costs

(Lippman(1?73)>, general service—-time distribution with work-in-
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evstem as the state variahle (Mitchell(1%270), Doshi(1976)),
and phase-type cervice—time distributions (Jo and Stidham{(1%83)).
Fapers  treating the service-control problem by other techniques
include Schassberger(l®74), Gallisch(i978), and Stidham and

Weber(l 9842,

& Switrbing rcnsts and hyeterstic policiss. In some problems
there may be & lump-sum cost associated with switching the <cer-
vice rate from cne value to another, in addition to the cost
rates associated with serving at various rates, (See Lu and
Serfoczo(l?31)> and the references cited tharein.> This switching
cost, For example, could be proportional to the difference be-
tween the old and new service rates. The optimal cezrvice rate ¥
to scselect at an observation point now depends on the rate v
currently in use as well as the number of Jjobs i, so that the
appropriate state variable is (i, V) . An inductive analysis
can be used to show that an optimal policy is hysteretic, which
meane that it is characterized by a sequence of pairs of conitronl
limits, “y 17_), i=0,1,2,...2 , such that for esach state
(i,¥?r the se;uic; rate should he (1) adjusted upward to ¥ '
i+ v [ l/. j (2) adjusted downward to 5. y IfF vV 77I :
and (3) lc--FtIunchanged % g &y | '
i i

2. LConteol of éeecivals and Secuices

An Cyeles and Secies of Queles

Our  first model (Weber and Stidham{1283)) far control of a
networl  of queues is for & cycle of m  queues, in which a job

that completes service at node (queue) i goes to node i+1
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(We identifty node m+l a=s node t .Y The gystem under considera-
tion is illustrated in Figure $&. Jobs from cutside the system
enter naode i at mean rate py according to & Foisson process,

Figure 4. Cycle of Queues with Control of Service.

which is not subject to controtl, There is & aiqg]e exponential
server at node i who performs potential services at mean rate
/L_ 3 A potential service completicon may be accepted, at a cost
ci] (which may be negativel), or rejected, at 0 cost. ¥ The
;E;T__;;;__;T;;le—faleity —;;PuiE;:E;;tral model in Section 2.
Continuocug control of service rates and more than one feasible

rate can beg handled by the same transformations and extenszions as
used there. See Remark 4, ’

number of jobs in node i is denoted by x and a state of the
system by the wvector x = (¥ ,...,%x ) , Iwith - e , i =
lyoeuoym o While in state x , the aysTem incurs hD;ding cost per
unit time * hi(x) = z:h_(x_) » where each function h_{x ) is

I 1 1 |
non-negative and convex (but not necessarily non-decreasing).

Future coste are continuously discounted at rate of » 0 and the
objective is to minimize the total expected discounted cost owver

an infinite harizan.

The twe types of =tate transitions will be denated

X =2 A xi=x +te ,
i i
corresponding to an arrival at node i , and

X -2 T xi= % — e + & 0
i i i+1

294



corresponding to an accepted service completion at node i and

rezulting transfer to node i+l . (Here e denctes an m-vector
i

with 0’¢ in every component except the i-~th, which equals 1 .)

The swetem ic observed at every arrival and potential service

completion, <o that observation points occur exponentially at

rate A= ZaX ¥ M Define WV{x)t= minimum total! expected
i i

dicscounted cost over an infinite horizon, starting +rem state

X . Then WU(x) satisfies the optimxlity equation

m
Vixd) = [ hixd + 25 AVta x)

i=1 i i
m (113
+ 3 M mintUOo,c + V(T X231/ CA+el)
i=1 " i [
where it ig understood that the minimization operator selects
Vixd i+ X =0 , (The arguments for the validity aof (11
i
paraxlle)l those for the single—-facility model of Section Z.) We
can rewrite (11) in the equivalent version
m m
Wixy = [T hix) + Z WA x) + 23 M M0
i=1 i i i=1"
(12>

m
+ /,Lmin{tl, c - [V MT )1/ (A+ &)
TR i i

The quantity W{x)-WT x> can be interpreted as the benefit of &
i

gseryice completion at node in state x . We should accept a

potential service completion at node i i+ and only if this

benefit iz at least as great as the service cost ¢
i

Weber and Stidham(1783> showed that an optimal policy has
the Jollowing property (xnzlogous to simple monotonicity in gin-

gle—facility problems):
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after a secuice completion at node 1 Li.e., afiter a Jloh dis
teoansfeped foom node 1 to node i+l 3, the noptimal smpuice cate

at noode L does not inceease and the optimal sercuice calte at

in

aither nodes do oot deccease.

To establish this property, it suffices to show that the benefit,
Uix) = W(T x> , of transferring a Jjob from node i to node i+d
does not Iincrease as anather job is transferred from i to
i+l , and does not decrease as another job is transferred +rom
node j  to node j+! , j # i . In other worde,
Ulx) - U(T-x) 2 V(T.x) = U(T.T.x) h (13
i i i

Vi) ~ (T 2y £ V(T x> - WT T %) ,  J&i . i)
i J i J

It can be shown (by moving one job all the way arcund the cycled

that ¢{4> impliee (13>, <cao it suffices to prove (14).

We call a function W) satisfying (14) muliimodular,
following Hajek(1983>, who introduced the concept in a different
context. In & sense, multimodularity iz a multi-dimencional
analogue of submadulari ty. Weber and Stidham({1?83) prove that
the optimal wvalue function W(x}) is multimodular by & wvalue-
i teration induction, the Key step of which <(cf. the single-
facility models) is to show that multimodularity ie preserved hy
transformations of the form

f(x) = min{c + (T x¥, q(x)* .
K K
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%pplicaiimuz; Secies o0f Queues with Control of Accivals andZoc
Sepuices.

These results can be applied tao a series of queues
{i=t,2,...,m-13, with control of the {Poisson) arrival process at
the firet node, by adding tce the series & dummy node m , with no
holding cost and an infinite supply of jobs, and letting that
node receive &ll output from node m—-{ and generate all input to
node 1 . Accepting or rejecting service completions at the
dummy node corresponds to accepting or rejecting arrivals to the
first node in the series. The service cost c at the dummy

m

node is the negative of the reward r earned when an arriving

Jab ie accepted at node 1

The monotonicity result referred to above implies that the
benefit of accepting an arriving Jab does not decrease as another
Job is transferred from any naode j in the series to node Jj+1 ,

ar (by combining a sequence of such moves) as a job is removed

"

from any node in the series. Thus an optimal admission-
control  pelicy will be more Jikely to ac&ept it either of these
two types of state change is made, which generalizes the result
in Sectiaen 1. Although the present mode]'imp]icitly assumes that
the <cervice rate at each of the nodes in series is alsoc con-
trollable, the resulte apply to a system with Ffixed cervice
ratee, as laong &s the marginal holding coste do not increase from
node i to node i+l , i = 1,Z2,...,m-1 . Forr in this case the
problem with fixed service rates is equivalent to gne in which
cervice campletions can be accepted or rejected but there ie no

cost of accepting a service completion; in the latter praoblem it
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will always be optimal to accept %11 service completions, since
they move & Jjob to a cheaper node at no cost. Mote that this
ardering of the marginal holding costs implies that each holding
cost  function h_(x.) ie non-decreasing, <since the marginal
haolding cost  at ;od; m is identically zero. See  lWeber and

Stidham(1%83) for further discussion.

The resulte of Weber and Stidham{1%83) may be compared to
those of Lazard(i?83), who also analyzes control of the arrival
rate to the first queue in a series of gqueues., Lazar studies =
steady~state version of the problem, in which the oblective is to
maximize expected steady-state throuvghput, subject to a con-
straint on the total expected response time (time to pass through
all nodes) aof a job. By & Lagrange-multipliers argument, this
problem can be seen to be equivalent to the probklem of choosing
an arrival rate to the first node that maximizes a weighted sum
of the arrival rate <i.e., the throughput of the syrstem? and
minus the steady-state expected number of customers in the sys-
tem. The latter problem is clearly equivalent to the problem of
maximizing the lang-run average net benefit in a swyetem with
fixed reward per admitted customer and linear holding coste  at
each gqueue, with the same holding-cost cosefficiesnt: x problem

that belongs to the class considered in Weber and Stidhamdl783%.

Lazar’s analwysis=s shows that an optimal control policy has &

critical-number form with respect to the total number of jobks in
the series: "end-to-end" control is optimal. This result may
seem to contradict those in Weber and Stidhami{l?33), in which

aptimal policies can  {and generally dod have a more genseral
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structure. But in fact there is no contradiction, since Lazar
derives his result by firet considering the single—facility Nor-
ten  equivalent to the series, for which (of course) an optimal
palicy is a function of the total number in the system. There-
fore, by the way in which Lazar has farmulated hise prabklem, he
has from the beqinning restricted attention to policies based on

the total number of customers in the series.

Other NMetwork=Contral Hodels.

Davis{i?77) contidered two exponential servers f(with mean
rates M and M Y in paraliel, each with its own gqueue, and a
renewal ;rrival p:aceas -— that is, i.i.d. interarrival times
distributed as a random variable T . The system controller may

reject ¢a=0)> an arriving job, xdmit it to queue | (a=1), ar admit

it to queue 2 {a=2), based on the state x = (% ,x at the
1 2
instant of arrival, where x = number of jobs at queue | (in-
d
cluding the one in service, f anyy, J = 1,2 . Figure 7
illustrates the model, #&n o admitted customer generates & (deter-—
Figure 7. Control  of Admissicon and Routing to Two FParaltlel
Queues
ministic) reward r ., There is a holding cost rate h (x )  per
L
unit time while x jobs are at gqueue J , where h () is a
g J

convex, non-decreasing function, J = 1,2 .

&n inductive proof based on walue iteration shows that an
optimal admizsionsrouting poticy {al(x)r is monotonic for this
problem, in the sense that =z{x) = 0 implies afx+e ) =0 , Jj =

-
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1,2 3 in aother worde, the rejection region Ri:= {x: a{x) = 0} s
an incrceasing set. The induction also shows that the "switching
curve" e monotornic: if admitting to queue 2 <{(queue 1 2 i
preferable to admitting to queue 1 <(gueue 2 » in state x ,
then it will remain so in state x + @ (x + e 2 . Finally, an

1 2

additiconal property of.the rejection region is demonstrated by

the induction: as we move closer to the switching curve, we are
mere likely to reject & job. To illustrate the application of
this property, note that each of the rejection regions illus—

trated in Figure & below (for the case of two symmetric queues?
is an increasing set, but 8(a) and 8{b> violate this property

and thus cannct be rejection regions for an aoptimal policy. Al

et e e et e e g . o e e e o e S e e e e e e et et ‘e e —_— —— e et et o e o e e e et e St o P et o i e

Figure 8, Examples of Increasing Sets for Parallel-Queue Problem

these properties of an optimal policy follow from werifying that
the optimal value function is concave in each argument, submodu-
lar, and satisfies a third condition., The three conditions taken
together constitute the analogue of multimodularity for maximiza-
tion problems in two dimencsions. Contrel of routing with paral-
lel queues was also caonsidered by Farrell (1?74, Winstonii??7),
Weber(1%78>, and Ephremides, Waraiya, and Walrand(l%7%) among

others.

Ghaone im(1%80) (see aleo Ghoneim and Stidham{(1%832) studied

two exponential servers in series (with mean service rates M
i

and M >, each with an infinite-capacity queue, Arrivale to
2
queue J are from a Poisson procees with mean rate 7\ i =
g
I a2s Jobs arriving to queue 1 must go on to queus 2 after
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finishing service at cerver || . Jobs arriving to queue 2
leave the <cystem after finiehing service &t server 2 (See
Figqure 2.) The model thus describes, +or example, a simple
communication system consisting af two channels in series with =

combination of local and long-distance traffic.

Figure 2. Control of Admission to Two Queues in Series.

With the same reward and cost structure as for the parallel —queue
model  juset discussed, &an induction based on wvalue iteration
gstablishes that the same three properties hold for the optimal
value function, Thue, for example, the optimal rejection regicon
for jobe arriving to queue | i€ &n increasing set. These proper-
tiesz alsoc rule out certain increasing sets as candidates for the
aptimal rejection region, namely those whase boundaries have

horizontal segments of length greater than one.

A typical optimal rejection region f(fraom a numerical
example) has the chape shown in Figure 10, (Thie shape far the
Figure 10, Typical Optimal Rejection Region for Two Queues in

Series

rejection region is characteristic of both discounted and undis~
counted problems.) It may be instructive to compare this rejec-—
tion region to that implied by one of the flow-control rules
proposed in the communicationes literature. "End~-to-end" control
(Lazar¢1%83)) suggests putting an upper bound, K y, on the total
number of jobs (mecssages? in a particular paxth in the netwark.
The corresponding rejection region has & straight-line boundary,

£ + x =K . By contrast the boundary of an aptimal rejection
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region, as illustrated in Fiqure 10, 1is nonr~linear and non-
symmetric. Numerical examples (cf. Abdel-Gawad{(1784)) have shown
that an optimal policy can yield benetits up to 134 larger than
those from the best end-to-end contral. Implementing an optimal
contral requires that the system controller keep track of the
number of jobs at each node {(queue) in a path, rather than just
the total number. So additional booKkeeping ovérhead would be

required.

HajeK{(1982) has considered a general two—node moadel that in-
corporates many of the features of both the parallel and series
queue mogels (bhut not the option of accepting or rejecting arriv-
ing Jjobsy, In Hajek’s model, queues 1 and 2 receive Poissaon
arrivals at rates ) and )q , respectively. A third stream of
Faoisson arrivals at iate A Ean be rauted'ta either queue., The
stations have fixed exponential servers with rates F} and M

and & third exponential server with rate a that can be as-

signed to either queue; |jobs whose service is completed by these

servers leave the system. There are two additicnal exponential
servers, with rates Y and X y the first of which serves
queue 1| and sends Jobalfo queue 2;, the second of which serves
gqueue 2 and sends jobs to queue 1 . Service completions by

thece =zervers can ke "accepted” or "rejected"; the jobs arriving
at rate A are to be routed to one or the other of the gqueues;
and the <cerver with rate M is to be xssigned to one or the
other of the queues. A1l theese decisions are to be made dyna-
mically &5 a function of the number of Jjobs in the two queues,
Haiek wuses an inductive procof to establish the existence of &
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monotonic switching curve, on which all these decisions can be
based, Hise analysis accommodates convex halding costs at  each

queue zand coste ascociated with each switching decision.

So far little progress has been made in characterizing or
computing optimal control policies for more complicated networks
than those we have discussed, Ae far as I Know, the only <suc-

cessful analysis of a network with more than two nodes is that of

Weber and Stidham(1583), An  essential  feature of their
crclecs/series model is the absence of branching or rfouting
choices, As  we have seen, both branching and routing choices

have been successfully analyzed in the context of two-node prob-
lems. But attempts to extend these resultse to more than two
nodes have failted. In particular, the three-node, series—paral-
lel netwark discussed in the introdoction (see Figure 3 ap-
parently cannot be studied by the inductive approach. (See

Ahdel —Gawad(1284) for further discussion.?
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SOME RECENT ADVANCES IN ACTIVITY NETWORKS
S. E. Elmaghraby -
NCSU -
INTRODUCTION

This paper is a subset of a much larger monograph on Progress in

ANs+ that is currently under preparation.

Here, we limit ourselves -

to three specific areas:

*
Project compression in DANs ,

statistical

estimation in PAng, and reducibility of ANs.

(For a more detailed

[- exposition of the acronyms DANs and PANs, see the book by Elmaghraby
[(81.)

The CPM model [ 8] resolved the questions that first come to mind
fi in DANs, whose analysis is, fortunately, of elementary nature. They f
enriched our vocabulary with such important concepts as: Critical
path (CP), event "slack'" and activity "float'", earliest and latest
_ node realization times; etc. The two major outstanding problems are: i

. optimal project "compression', and optimal 'resource allocation";

. neither of which can be termed "elementary'". Indeed, the latter
tjl problem, that of optimal resource allocation, is known to be NP-Complete B
3
: and the achievement of the optimum is impractical except in the most
1
;o trivial of networks. This, in turn, signifies that the problem is
;‘ difficult to resolve by an "efficient" algorithm for any realistic AN;
als -
E hence the rash of heuristic procedures that yield ''good" answers.
-
- . -
p .
- +
¢ Activity Network
! *
3 Deterministic Activity Network
4 §Probabilistic Activity Network -—
L -
AR 320
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Fortunately, the problem of project compression is amenable to
resolution. 1Its significance resides in the ability to specify the
most efficient utilization of investments in the speeding up of a
project. Alternatively, it serves to alert the manager to the range
of requirements of additional investments should he wish to deviate
appreciably from the "normal" flow of work in the project.

The problems of statistical estimation are concerned with the
determination of probability distribution functions (pdf) of the
i time of realization of nodes (= events) when the durations of the
activities are random variables (r.v.). In addition, a host of other
issues are ralsed relative to the criticality of paths and activities,
whose answer is difficult to compute, despite their theoretical
simplicity. Approximations and bounding techniques are used to give

the analyst the insight desired.

Interestingly enough, the above two classes of problems give rise
to the third issue discussed in this report, viz., the reducibility of
ANs.

One final remark. The three main sections of this report are

almost independent. This may have introduced some redundancy, but

should facilitate reading.

— " T
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I. OPTIMAL PROJECT COMPRESSION

The mathematical statement of the problem runs as follows:

minimize IooCily, ) (1)
(1j)ea 3744
such that the precedence constraints are respected, and the project
1s completed on or before time T_. Let t, denote the time of realiza-~
tion of node i. Then if activity (1j)eA, with the arrow in the direc-~

tion 1 + j, we must impose the restriction

>0  V(ij)eA (2)

t, -t > -T (3)

Here we assume that the 'start node" is node 1, and that the "terminal

node is n; whence the set N = {1,2, ..., n}. Finally, the activity

—_
“~
SN
duration yij is bound from below by a lower limit lij > 0, and from ﬁ\{
-
o P
above by an upper limit uij > zij’ i.e., 0 :-lij < yij-i uij' (The ?;;
only instance in which yij is permitted to be 0 is in the case of "dummy" _j!
fj activities; see ref. [8 ] for a detailed explanation of the utility of jlf
f;f' these activities.) It is more convenient to re-write this double 1;i
9 inequality as o
T
yij 2z 2ij and -yij 2 -uij; V(ij)eA (4)

322

T
PP .
AT A A
. s

FLEL o

et A




A W W T e TR, TR T T

The mathematical program (1)-(4) has been extensively studied under
the various manifestations of the individual activity time-cost function

Ci » (see Chapter 2 of ref. [8 ] for details). We devote the remainder

3
of this section to the analysis of the case in which Cij(yij) is convex
decreasing.

In passing, we mention that, to the best of our knowledge, the
first treatment of convex cost functions was by Jewel [14] in 1965.
However, his motivation stemmed from PANs, where his objective was to

balance the cost of project compression versus contract penalties and

bids by competitors. 1In particular, he addressed the following question:

A fixed project schedule must be determined now despite uncertainty in ;WAii
activity durations. Based upon the difference between the allotted time ii,?j
interval and the "free" time needed by the job, corrective action may :€'£
have to be taken to stay within the fixed, predetermined, schedule. ,_;;:
The problem is to determine that schedule that minimizes the expected TT—%!

amount of extra effort expended to stay on schedule.

He assumes that if the allotted time to an activity (i3i) is

z, . (= tj-ti), and if the activity (random) duration is Yij’ then the

1j

cost function g(zlY) is convex in z for every realization y of Yl for all

activities. In Figure 1, three sample curves are given, and all differ
in the cost incurred if y is actually less than z: (I) represents
resulting economy through, for instance, resource utilization elsewhere;
(I1) would obtain if the committed resources are irretrievable; and
(I1I) represents the need to spend more effort because of, say, disposal

activities.
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g(z/y) hoss

z y

Figure 1. Three alternative curves of effort
required as a function of actual
completion time y.

Convexity of g in z for all y guarantees the convexity of the —

&
expected cost in the decision variable z, as well as the convexity of " ’,
the sum of costs over all activities, i.e., the convexity of

-] :-_r.-_!
g(z) = j g(zly) dF(y) o

0 L

where F(y) is the pdf of y, and of i!iii
= :j

6@ = § o8z %

(13) 3

A typical curve of g(z) is shown in Figure 2.
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Figure 2. Resulting expected cost.

From this point onwards, the treatment is devoid of uncertainty,
and is reduced to minimizing E(Z) subject to the usual precedence
constraints. Jewell advocates approximatingig(z) %y linear segments,
and then applying Fulkerson's algorithm. (In the example solved in
the paper, the function E(z) was quadratic in z and he used a quadratic
programming algorithm.) More elaborate approaches to this problem are
the subject matter of the remainder of this section.

We start with the quadratic case, which can be resolved analyti-
cally, while the general case is approximated by linear splines.

As wil). become evident below, the conclusions are more transparent
if we discuss two cases separately: The first assumes that the deriva-
tive dC/dy (sometimes also denoted by C”) is continuous for ye[f,);

and the second accepts discontinuities at £ > 0 and u > 1&.

Our discussion covers two trains of thought: The first is to
achieve exact solutions, and the second is to approximate the optimum.

As will be seen, each raises its own secondary problems.
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1. EXACT SOLUTIONS

Case 1: Continuous Derivative

Since C is quadratic with continuous derivative in the interval

[(2,»), we may assume it, without any loss of generality, to be of the

form

C(y) = b +Bu-y)? L<y<u (5)

Note that C is tangent to the line C(y) = b at y = u, where C_ = 0;

see Fig. 3. We may go one step further and simplify (5) to -m!i

C(x) = b+ (u - x)° T

by setting u = u Y8 and x = y Y8 , the "normalized" values of u and vy,
P': respectively. Henceforth, we drop the "~" from the u for the sake of
simplicity, since the context reveals to which value of the upper bound

reference is made. In general, analysis proceeds with the normalized

variables {x:l } to the end, then it is translated into the original

}f._.' {yij }- variables.
= We introduce one mild assumption whose justification is easy to :1}}
< establish: T, is such that no activity will be at its lower bound; j~ .
i.e., at the optimum, y,, > £,., (1j)eA. (Note that if £,, is small oo
{ 1} 13 i3 e
] -~

. enough, this condition will be automatically satisfied.) We shall refer
to it as Condition L.
- In ref. [7 ] the following characterization of the optimum solution

is given. Let the nodes of the network be realized at times

r hl
3
3 D
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Figure 3. The Quadratic Function C(y) = b + B(u-y)"; for
' L <y <u.

PT.*' TR

»

cr v v, w e

,
-

327

] "" " A

T
T
1

1

.

.

o

at om0 a =

LT IR IEE -
L SR -t at .
. LY

&
P
.

A, P PRSP PGP

PR SaE RTINS I AP T T R S P SHUR |




& T m Te T s T e 87

o o s . B A aaie Rt SRty Aude St Jufe SR - B Jhuiie AU Y . e
\

-
.

: 0= byt Sy et = Ts’ where ty corresponds to the kth

i 2 3 k
I! earliest node. Let D(1) denote the sum of the derivatives C;j that are
. "in progress" at time 1. Then the given schedule of activities is

R optimal iff D(1) is constant for all t¢[0,T_].
ii There are two remarks to be made about that result. First, it was
. proved by elementary variational-type arguments. Second, though it
! characterized the optimum, it gave no procedure for achieving it. The
i following development pertains to these two remarks.

Note that, since C 1s quadratic decreasing in the interval

ij
[gij’“ij]’ then constant over [uij,w], it is convex. Add to this that
all the constraints are linear, and the conclusion immediately follows
that the necessary conditions of Kuhn and Tucker[16] for nonlinear

programming are also sufficient. It is a simple matter to verify that

these conditions translate directly into the condition D(t) = counstant,

re[O,Ts]; details of the proof may be found in [11]. This gives a more z;jj

direct proof, albeit non-elementary. T

.

As to the problem of algorithmic solution, ref. [11] also gives 'r?!

such an algorithm. It is based on the following results: j}:ﬁ

Proposition 1 The necessary and sufficient conditions for 5

optimality stated above are equivalent to the conditions: ;__!

-a for i =1 i‘i:

§ (dyg =~ dgy) = 0 for i # 1,n (6) -

::' a for i=n . :

T; where dij is the (normalized) reduction in activity (1j), and P

_...,..'

) a is some constant. T

. Lo

P.. . \“
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As a preliminary to the next result, let the "critical subnetwork (CSN)"
denote the set of longest paths in the network. It is easy

to establish that we may deal with the optimal "incremental"” reductions

(r)
{dij 5

The following two assertions ensure the solvability of the system of

} at the rth iteration, in place of the "total" reductions {d1 }.

equatiors in the {d(r)} unknowns.

1]
Proposition 2 If the CSN contains K arcs, there shall be

K simultaneous linear equations relating the values of the

(r)} at the rth iteration

individual (incremental) reductions {dij

(v)

to the constant a .

The proof of this theorem rests on the fact that if the CSN has
m(< n) nodes and K arcs, there are m-1 independent equations (6) (the
first equation is discarded), and exactly K-mt+l "fundamental loop"
equations, for a total of K independent equations in the K unknowns.

We shall refer to this system of linear equations notationally as

BD = a(r)e (7)
~m-1

vhere B is a K x K matrix of entries O, + 1; D is a K x 1 column vector

of {d(r)}, and the vector e
n

ij

m-1, where it has entry 1.

-1 is a vector of zeros except in position

Proposition 3 The system (7), in the "incremental reduc-

(r)
ij }

tions {d » Ppossesses a unique solution.

(r)
1j

It remains to determine a(r). This

We are now assured of the (unique) determination of d ;,’as a func-

(r) (1), (1) (0)

, say d1j 13

tion of a
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is accomplished by remarking that the current CSN can be 'compressed' un-

abatedly until one of the following two eventualities occur:

A

(1) Another (currently non-critical) path becomes "critical', or
(1i) The specified duration Ts is reached.
i In the first eventuality the CSN must be augmented by the new path
(or paths); hence, the current system of equations (7) are no longer
valid and must be updated. In the second eventuality, we terminate,

since the optimum is in hand.

(r)
1

Denote the permissible reduction to eventuality (i) by a » and

Denote the set of arcs in the CSN by K in iteration r.

the permissible reduction to eventuality (ii) by agr). Then, clearly,
a(r) = min {a(r), a(r)}. (8) T
1 2 Lo
n‘xﬂ:]
Back substitution into the expressions for dg) yields the respective ' ‘ ‘
ST
values. T )
CSERE
The suggested algorithm may be briefly sketched as follows. :}T_}ﬂ
| e
Step (0) Set each activity at its upper bound xij = uij V(ij)eA. Tf?ffi
Compute the node realization times {t(o)} and define the CSN. 1:,n}i
{ (r) SRS
o
Step (1) Compute dg) in terms of a'™; (13)¢k{"), by solving the 4
system of linear equations B(r)D(r) = a(r)lm. o
r e
Step (2) Compute a(') = min(air), a; )) if K < A, and a(r) = aér) .(iif
if K= A (i.e., if all activities in A are critical). L —»~!
Step (3) Compute T(r) = T(r-l)—a(r) and return to Step (1) with
r=1r +1 if T(n) > Ts; otherwise halt.
] q
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Finally, we have

Proposition 4 The stated algorithm yields the desired solution o

a
\

N
N
g
]
<

in a finite number of steps.

"gtraightforward" except for two rather

(r)

The suggested procedure is

complex operations: first the inversion of the matrix B of coefficients

(r)
1

of (7), and, second, the determination of a . The first is an opera-

[heb 2N B o

. tion of order of complexity not exceeding 0(N3); and the second is of
O(Nz). (Details of capitalizing in iteration r on the availability of

(x-1) from the previous iteration, as well as the deter-

the inverse of B
mination of the order of complexity of the operations involved are given
in ref. [111.)

Resolving the problem for a specified completion time Ts also yields

the approach to obtaining the complete optimal time-cost function for all

feasible Ts (provided that Condition L is satisfied).
The procedure has been programmed in FORTRAN 4 on the NCSU's

IBM 370/165. Details and documentation may be found in [18].

Case 2: Discontinuous Derivative

For more realism and practicality, we introduce two discontinuities

in the derivative, one at £ and the other at u, as follows:

- c () ; for y = ot
- -dc/dy =
- ® ; for y = ¢
@
o 0 H for y = u+
i -dC/dy =
: C (u) ; for y = u~
r. T
l o
f. 331 N
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The cost function and its derivative would then appear as shown in
Figure 4 . We shall refer to the derivative diagram as the kilter

diagram (KD). In it we distinguish four regionms:

Region F (for "float'): u<y<w 07 =0

Region E : y =uj C° < C (u)

Region C (for "compressible'"): 2 <y < u; C"(u) > C™> C(2)
Region L (for '"low bound"): y=2; C7 =«

The algorithm specified below can be understood only in conjunc-

tion with the (necessary and sufficient) Kuhn-Tucker conditions for

optimality, on the basis of which it is easy to construct the following

"optimality table".

State of Actiyity Flow Condition Domain of C
Duration 13
i < Yij = uij < tJ -t i =0 F
1 < yij = uij = l‘::| -ty 0 = ElJ>_C£j(uiJ) E
2SS g b T F1 T
?_-Cij(ulj)
1 = yij = tj - ti < uij Eifi—cij(zij) L

Table 1, Optimality Table
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-C’(u)
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£

u

Figure 4. The KD for Case 2; % <y < u.

region E

region F

/

duration y

derivative
-C'(y) region L
[ o]
region C
region F
duration y
u
Figure 5. The KD for Case 1. (Region L is never reached,

by Condition L.)
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In passing, it is worth remarking that the applicability of the Kuhn-

Tucker conditions to general convex (not necessarily quadratic) C func-

(71

1]

tions, as noted by Elmaghraby , was first applied to quadratic cost

functions by Kapur[15]

who achieved the KD and reasoned the optimality
table shown above. Unfortunately, his subsequent development may not
achieve the optimum, as demonstrated in [18]. This is mainly because
of his strict adherence to the concept of "maximal flow cutset", which
had validity in the case of linear cost functions (see [12]), but has
no equivalent validity in the case of nonlinear functions, albeit it
has some utility in parts of the calculations, as presently demonstrated.
Our algorithm rests on the following crucial observation: At itera-
tion r, if all activities in the CSN were in State C then we would pro-
ceed in an identical fashion to our procedure of Case 1 discussed above.
It is not difficult to see that Case 1 is, in some sense, a “degenerate"
case of our present conditions, in which the KD has the shape of Figure 5 ,
in which region E has disappeared and region L is never reached (because
the duration lij is never realized, according to Condition L). But since
now we must contend with regions E and L, the basic procedure of Case 1
should be modified to reflect the new concerns that have resulted from
these two regions. In particular:
(a) An activity in State E cannot be shortened, though the
(u

"flow'" through it may be increased until it equals C ),

13 %13

at which time the activity may be shortened.
(b) An activity in State L is at its lowest possible duration,
and therefore cannot be shortened at all, though "flow"

through it may be increased indefinitely.
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i: Careful study of the Optimality Table immediately reveals that any "flow"

.

increase in the CSN is translatable (linearly) into change in duration

of the individual activities in the CSN. Consequently, the limitations
(r)

on a' ’, the amount of permissible "compression" in iteration r, should

be augmented by the two most recent considerations, as follows: ;{

agr): to be derived from the augmented flow such that activity

!
(ij) moves from region E to region C (or equivalently, fij ‘ lj?

which was strictly < Cij(uij) is increased to Cij(uij))' | ;

a(r): to be derived from the augmented flow such that activity

»

——ed
(1j) moves from region C to region L (or equivalently, fij -.g
1j(Qij) is decreased to = Cij(lij)). )

which was strictly > C

As before,

a(r) = min(air), agr), agr), air))

AY
{r) and aér’ are determined as before. R

in which a
We refrain from giving the full details of the algorithm; they may

be found in [11]. However, we make the following remarks concerning its

computability. We confine ourselves to iteration r, and therefore

eliminate the explicit reference to the iteration number for the sake

of simplicity. ,f;f
A CSN may have arcs in states E, C and L. The bound ay on the

permissible reduction in project duration, may be obtained by interpreting

the arcs in state E as possessing capacities equal to [Cij(uij) - fij] > 03

(ij)€E, and performing a standard flow augmentation -tep. Conceptually,
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this briags the marginal value of "cohort activities” (i.e., activities
that lie on a minimal capacity cutset containing (ij)) to the same level
as that of activity (ij)¢E, and there would be no inequity in the valua-
tion of the various activities.

The change in duration of activities in state C requires the solution
of a system of K linear equations in K unknowms, similar to Case 1,
Equations (7). Unfortunately, the matrix B no longer possesses the
desirable property of + 1 or O entries: its top m-1 rows will indeed
have such entries, but the bottom (K-mt+l) rows (corresponding to the
"fundamental loops'") will have fractional entries. This is due to the

non-zero slope of C,, in region C, which relates the "flow" variables fi

ij

to the amount of reduction d1

]
i

Finally, it must be noted that while each path in the CSN is shortened
at each {teration, any individual activity need not follow such monotone
behavior: an activity may be lengthened after having been shortened,
though no activity will possess positive float if it had once been in
the CSN. This is not a new result, since it is observed even in the
linear cost casellz].

The procedure has been programmed in FORTRAN 4 on the University's

IBM 370/165. Details and documentation may be found in [18].
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2. OPTIMAL LINEAR APPROXIMATIONS
It is a truism that project compression under linear cost functions

of the form C(y) = b - ay; £ <y < u; a, b > 0, 1s considerably easier

to resolve optimally than under nonlinear cost functions. The above
analysis, carried under the simplifying assumption of quadratic cost
functions should amply demonstrate the fact, if such demonstration were
needed! The natural question then is: what if C(y) is not quadratic,
though still convex decreasing as y increases from £ to u. Can the

problem still be analyzed? For instance, suppose

C(y) = a/(btky); 0 < 2 < y<u<=; abk>0. 9)

What can be said about the optimum in this case?

One may wish to persist in applying the theoretical constructs of
the exact solutions, which are indeed applicable in toto. Unfortunately,
the KD;will now possess a nonlinear segment in region C, which would

necessitate the solution of a system of nonlinear equations in the

"flows"' {fi } at each iteration; an onerous task at best.

]
The other alternative 1s to approximate the cost function C(y) by
a piecewise linear and convex function (i.e., linear spline) that is :Efi:
SN

optimal in some sense. There are two immediate questions that present ~?1i;

themselves: the first is to define the sense of the approximation itself, -:;
g and the second 1s to define the criterion of optimality of the approxima- T
t_ tion. We elaborate on these two questions. )
ls
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The approximation we seek should guarantee a deviation from the optimum
value that does not exceed a prescribed proportional error §. To see what

this implies, let C(Y) = z Cij(yij)’ and assume the optimum is achieved
(1))A

*
1]

course, Y* is unknown, and we wish to approximate the value C(Y*). Let

at the vector of durations y* = {y?.}, with corresponding value c(y*). of

Hij(yij) denote the piece-wise linear and convex approximation to Cij(yij)'
and let H(Y) = Z H,.(y,,) be the criterion function of the linear
(13yea 71

program (LP) defined by the constraints (2)-(4). The solution of this LP,
which is achieved relatively easily, shall yield a vector of activity

durations, which we denote by n* = {n: }, and the corresponding value

3

H(n*). Now, the requirement we impose may be stated as follows: Select

the approximation H to satisfy the inequality

ij

[c(Y*) - H(n™) | < 8|c(Y™)| (10)

for any prescribed value § > 0. Typically, & is less than 1, chosen from
the interval [ .01, .10). Restriction (10) simply ensures that the approxi-
mate optimum H(n*) shall not deviate from the true optimum C(Y*) by more

than a small fraction of the value of the true optimum.

We now address the issue of the "measure of closeness" of the individual
approximating (linear) functions H(y) to the original C(y): We
adopt the "maximum norm" (Chebychev) criterion. In other words, we seek

a piece-wise linear and convex approximating spline whose maximal deviation

from the original function Cij(yij) is minimal (i.e., optimal in the sense

of Chebychev).
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Our procedure comprises two basic steps: The first accepts the data
of the original problem and the specified 6§ > 0 and yields a value ¢ > 0

that represents the bound on the maximal deviation between C1j and Hij'

The second accepts € and constructs for each function C, (y) the approxi-

1j

mating linear spline H, (y) that deviates from C,,(y) by at most ¢ through-

ij 1]

out the range of y.

The details of the construction are given in [ 9 ]. The procedure

is programmed for the function C, (y) = aij/(b +kijy) for illustrative

i] ij

purposes.
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II. ESTIMATIONS IN THE PERT MODEL

One of the main advantages of using network analysis for project
planning and control is the ability to identify the activities that are
critical to the achievement of the project objectives. In DANs, it is
relatively easy to respond to questions such as: What is the critical
path(s)? What are the most M cricital activities? and so forth.

We seek to develop the analogous results in PANs, such as the PERT

model. Clearly, one must phrase the questions in probabilistic terms ]
such as: What path (or paths) is the most probable to be critical?

Which activity (or activities) has the highest probability of being _:i
critical? What is the probability that a particular path is critical? 'J%
Which (minimal) paths have a total probability of being critical at ]
least B, etc.? jﬁ‘
In the following sections we formalize these intuitive notions :_q
and develop procedures for approximating their measures. We concentrate ;'-
in this brief report on delineating the fundamental concepts adopted in ‘ ?
7 | the approximations used, leaving the detailed accounts to a companion fJ%
E{”V report in preparation. 'if}
EFT Some Definitions and Basic Concepts ]
ﬁ?“ Let P be the set of paths in the AN and let Py denote the hth path :ﬁg
?;i (from node 1 to node n), and let Z(ph) denote its duration, h = 1,2, ..., p. | j
E.: _ The criticality index (CI) of a path p, is denoted by CR(p,), and defined by |
L - ¢
; CR(py) = Pr(z(py) > Z(p,) for all p cP) (11)
K
:. _—
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where Pr(-) means the "probability of", and the duration

z(p,) = ) Y,. a2)
h (ij)sph 1]

Here, Y represents the duration of activity (ij), a random variable

ij
(r.v.) presumed of known probability distribution function (pdf).

CR(ph) has been estimated bx several analytical and Monte Carlo
sampling techniques, the latter ranging from the "crude' to the very
"sophisticated" ([1, 19, 20]). Our objective is to present analyti-
cal approaches to the determination of CR(ph) and the other measures
stated above.

The criticality of an activity (i1j), 1 <1 < j < n, is defined as

the sum of the CIs of the paths containing it. We denote the CI of

activity (ij) by the symbol CA(ij); hence,

CA(1j) = [ CR(p) 5  (iidepy (13)
Ph
The procedure described in the following section relies heavily on
the iterative algorithm of Dodin [ 4 ] for the estimation of the pdf of
the project completion time, which is summarized next because of its

relevance to computing.

1. THE APPROXIMATION OF THE PDF OF PROJECT COMPLETION TIME
Dodin [ 4] developed a system of computer programs that accomplish

four tasks:
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1. Generate random AN of a pre-specified number of nodes N and arcs Aj
i.e., a network from the set of networks with this n and |A|, in which
all are equally probable. The procedure represents a slight improvement
over that of Herroelen and Caestecki[l3]. Basically, there are two
approaches, which are best discussed relative to the N x N adjacency
matrix. The first is the "deletion method", which starts with the upper
triangle above the main diagonal full, then sequentially eliminates
entries of 1 randomly, subject to the restriction that every node is
connected to both the origin as well as the terminal nodes until the
desired number is left. The second is the "addition method", which re-
verses the view and starts with an empty upper triangle that is to be
filled sequentially until the desired number of arcs are present, subject
to the same constraint.

The choice of the method to implement depends, obviously, on the

density of the network. The deletion method is preferred if |A| >

n{n-1)/4 + 1.

2. Discritize any given continuous pdf. Three approaches have been tried;
and the most efficient in terms of accuracy and computer time is a hybrid
of the last two. Let m denote the number of discrete points that represent

F(+). (1) the first method assumes that both the location x, and the

k
probability mass p(xk) = Py of occurrence of ¥, are unknown, k=1, ..., m.
It is desired to determine these 2m unknowns by equating the first 2Zm
moments of the discrete approximation to the (given) theoretical df:

m

X]I;pk=ur , forr=0,1, ..., 2m-1 (14)
=1

342



where

oo

M, = E(x") = J y" dF(y) ; the rth moment
0

Equations ( 14 ) may be represented in matrix form as

VP

]
<]

where V is the well-knovn Vandermonde matrix of dimensions 2m x m,

P is the probability vector with m components, and E is the vector
of 2m moments {UH}' Two methods were tried to solve this system of
nonlinear equations, but, unfortunately, neither succeeded for m > 8.

This approach was then abandoned. (1i) The second method may be

termed "the equal interval method", in which the (finite) range of
the arc duration is divided into m equal intervals of width A each.

The finiteness of the range is secured by defining two points £ and u

by
Pr(X < &) = 0.0005 = P(x > u) .

With the intervals defined, it is easy to determine the probabilities
{pk}, assumed to be associated with {xk} at the min-points of their
respective intervals, This method proved quite satisfactory for df's
that possess no sharp peaks or severe skewness. The method is also
convenient for the use of the Fast Fourier Transform (FFT) method in

the successive approximation discussed below,
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~ (i{ii) The third method divides the (finite) range into intervals of

n unequal length but of equal probabilities (= 1/m). It is a simple
matter to determine the intervals through the inverse function F—l(-),

and proceed assuming the probability concentrated as the mid-point of

H each interval.

A hybrid of approaches (ii) and (iii) would use equal intervals

where the df is flat, or nearly so, and reverts to equal probabilities
where it peaks.

3. Reduce the AN to its irreducible form, through the operation of
addition (= convolution operation) of arcs in series and multiplication

(

maximum operation) of arcs in parallel. We wish to make two remarks
on this step. The first is that the number of discrete points m is
usually held fixed beyond a certain point, and a reduction operation that
yields a number of points larger than m must be "folded back' to only

m points. This introduces the first source of error in the approximating

procedure. The second remark is that it is in this step that the equal

interval method helps because of our ability to use the FFT in the reduc-

tion process.

4. Approximate the irreducible network. This is the "heart" (central

element) of the computer package and embodies the concept of independence Ty

L
f‘ . that is usually invoked relative to paths into any node ieN. ; K
E:.> The iterative progression over the nodes of the network employs the E;i
f;; convolution of Fi(t) with Fij(t)' where Fi(t) denotes the pdf of Ti, the 3 ;
F’ﬁ time of realization of node iij, and Fij(t) is the pdf of Xij‘ the ?T;
i'ﬁ' duration of activity (ij). The comvolution operation can be performed .

by either the usual formula or through the use of FFT. Both approaches

were tested and preference is given to the usual formula.
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The accuracy of the approximation was tested relative to two
measures:
(1) The max-absolute deviation max |Fn(t) - ﬁn(t)|

t

(11) The average value of the absolute deviation

J |E (&) - ﬁn(t)ldt .
0

In these expressions, the "exact" pdf Fn(t) was secured through Mcs.t

The results are most encouraging: (a) For networks up to 60 nodes
and 150 activities, the max. deviation was less than .08 and the average "iﬂ
deviation less than .03. (b) The max. value of the absolute deviation
occurs wihtin the low 30% of the range of the r.v. This is reassuring,
since in the study of ANs the realizations of greatest interest are _ q
those in the "right tail' of the distribution; i.e., in the high 30%

of the range. (c) The sampled distribution Fn(t) (via MCS) converges

toward the approximate distribution %n(t) as the sample size increases!
This is an unexpected result, since it implies that the sampled df is
the "inexact' one! (d) The processing time of the approximate procedure

are quite reasonable, being of the order of 30 secs. for networks of

size (N,A) < (60,120) on the AMDAHL V-7.

!

= 2. THE ACTIVITY CRITICALITY INDEX

b .

Py Let nj denote the in-degree of node J, and assume the arcs into

] to be numbered in increasing order, the same as their originating nodes;

see Figure 6.

+Monr.e Carlo Sampling.

LI
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Figure 6. The scheme of numbering ares into j.

We define the cutset Cj at node j to be the set of arcs resulting from
the partitioning of the set of nodes N into two mutually exclusive sub-

sets Sj and Tj where

v

[#>]
[l

{ieN : 1 < 3} and T {ien. 3 43,5 i}

Hence

(@]
[

{(hk)eA : heS, and keTj} (15)
Let Tf denote the duration of the longest path forward from node 1 to
node i, and T? denote the duration of the longest path backwards from

£
node n to node j. Clearly, both Tj and T? are r.v.'s. Let wij denote
the duration of the longest path containing arc (ij); then

3
Wow & By Hpy # 2 (16)

b
13 i 9
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where Ti = max {Z(pli)} and T? = max {Z(pNj)} an o
P11 Pyj -

and Pyy denotes a path from i to j. R

T

- Proposition 5 wij =  max {Z(ph)} : Z(ph) as defined )
- ph . .-
» el
- (13)epy S
? in (12). -z
; The proof is by direct substitution in the definition of W, in (16). S
} -
f Now, the exact value of the CI of arc (ij) 1is given by (see (13) . ;

N <

‘ and (11)): i *q

.

w0

cA(i)) = T CR(pp ]

(1j)epy _____i

: = ) Pr(z(p,) > z(p_ ) for all p_eP) (18) -

8 c = “'Pq q :

> (ij)"ph <

B
0

Let L(ij) denote the subset of paths that contain arc (ij). Then,
clearly, CA(ij) measures the "weight" attached to the event that any
phEL(ij) is longer than any other path in the network. Unfortunately,
it is extremely difficult to calculate CA(ij) directly from (18)
because of the need to identify the set of all paths in the network and
to calculate the corresponding CR's. To obviate that need, we appeal

to the concept of '"cutset'" defined above. Let

!

f . .

! s .
PN i e e, X .
A e S . ‘
Y L a4 TSN TEY, ¥

CAP(ij) = Pr(wij-: wkl for all (k&)eC

) (19)

j

. .
‘ . . .
N, W

A P UL S |



where Cj is as defined in (15). Close scrutiny reveals that CAP(ij)
measures the probability that the maximuﬁ of the paths in the subset
L(ij) is longer than the maximum of the paths not containing (ij), (i.e.,
in the complementary set E(ij) ; P - L(ij)). These latter paths are
precisely the pathé that contain all the ares in Cj except arc (ij).
It is demonstrated in [ 6 ] that CAP(ij) always underestimates CA(ij).
But for the moment, we ascertain the iterative manner in which Cj is

obtained from Cj+1'

Proposition 6 Cj = Cj+l + {(ij)eA ¢ i < 3} - {(jk)eA : k > j}

with the initial condition
Cy = {(iAN) gA}

where A is the set of activities in the network.

The proof is achieved by induction, starting with node N-1.°

Proposition 7 CAP(1j) < CA(ij) for all (ij)eA

We argue heuristically as follows. If any path pheL(ij) is longer than

any path pqei(ij), then a fortiori, max{Z(pk) 3 eL(1j)} is longer

Py
than max{Z(pq) : pqéf(ij)}. Therefore, the set on which CA(ij) i1s
defined contains the set on which CAP(ij) is defined. Moreover, the
sum of probabilities defining CA(ij) is no less than the probability of

the union of the events in the set, which is no smaller a set than that

defining the probability of CAP(ij). Consequently, CAP(ij) < CA(ij).
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Proposition 8 For any node 1 * 1, n,

I caGy) = ] cAdd) (20)
jeB(4) jeA(1)
where the sets A(i) and B(i) denote the sets of nodes
connected to i and occurring after it and before it,

respectively.

The proof is accomplished by defining the CI of node i, CN(i) as

follows:

CN(i) = [} CR(p,) -
Ph
isph
That is, the CI of a node is the sum of the CIs of the paths containing
that node. Then it is easy to show, by appealing to definitions, that
CN(1) is equal to each side of equality (20).

Two immediate consequences of Proposition 8 follows:

Corollary 1 CN(1) = CN(n) = ] CR(p,) > 1.0 (21)
phEP

The two equalities in (21) are rather obvious; and the last inequality
follows from the definition of CR(ph) as probability, and the fact that
the paths in the network are not necessarily independent. (Equality to
1.0 is achieved only when the paths are independent and, in the case of
discrete pdf's, no two paths are critical simultaneously.)

Corollary 2 The CI of any path is equal to the CI of any unique
arc on the path (i.e., an arc that belongs to no other path). Moreover,

all unique arcs on the same path have the same CI.
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We now concern ourselves with the computation of CAP(ij). Let

V(ij) uenote the maximum duration of paths not containing arc (ij).

V(ij) = max {w
(hk)eCj
(hk)eL(ij)

hk}

Consequently, from (19), we may write
CAP(ij) = Pr[W,; > V(ij)]

in which each wrs is given by (16), (rs) C Thus the problem of deter-

i
mining the value of CAP(ij) reduces to calculating the pdf of the r.v.'s .
Tf and T:, (rs)éCj, and performing the necessary convolution and maximum 'ff;

operations., But the calculation of the (approximate) pdf's of Tf and.
T: is precisely the problem discussed in[4 ]. As is mentioned there,
the causes for the errors in estimation of these pdf's are three:

(i) the discretizing of continuous distributions (if any); (ii) the
assumption of independence of paths; and (iii) the reduction of the ;?!!
domain of the computed pdf's to a predetermined (small) number of 3

discrete points. Most importantly, in[ 4] it is demonstrated that the

approximation to the pdf of wrs mayv either overestimate or underestimate
the true pdf, Consequently, the approximation to CAP(ij), denoted hv
ACAP(ij), cannot be asserted to be an underestimate of CA(ij), though
empirical evidence in [4 ] indicates that the approximation is excellent.
Finally, it was demonstrated in Cor. 1 that CN(1) > 1.0, In

case CN(N) > 1, which is almost always true, it is advantageous to

normalize all Cls, for arcs and nodes, by dividing throughout by CN(N),

because such normalizaticn reduces the maximum error in the estimation
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of activity Cls. Indeed, the original maximum error =

max (|CA(ij) - CAP(ij)|), while the normalized maximum error is
(ijdeA

precisely 1/CN(N) of its value., A minor benefit of such normalization
is that the various CIs may be thought of now as probabilities, which

was not possible before.

3. THE HIGHEST K-CRITICAL PATHS

The title implies either of the following two problems:
(i) the identification of the minimum set of paths whose probability
of being "critical", i.e., that any member of the set is of no shorter
duration than any path in the network that is not in the set, is at

least 8; 0 <8 <1, (typically B > 0.50); (ii) the identification

E

of the K "most critical' paths in their rank order, i.e., the path(s) .
with the highest probability of being critical, the path(s) with the _ f:%
next highest probability of being critical, and so forth to the Kth \'izﬁ
ranking path(s). ﬁy;i
(ﬁ The theoretical discussion presented below leads to an approxi- }52;?
EE mating procedure that emulates that used in DANs to identify the first :Eii?
E, K CPs. ::;i
Let P(j)CP denote the set of paths ending in node j; p‘j‘ep(j) el
EG; denote the kth ranked "CP" ending in node j, and Z(p?) its duration. ff;
»‘ We say that p? dominates p; ig_nrobabilitV, denoted hy p? 2:p§ if #;;!
g Prz)) 2 2GD] 2 PriZG]) 2 23] (22)
L
i‘ The following assertion is an immediate consequence of the above _J
:~ definition.
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Proposition 9 Let p; and pi be two paths ending in node i
such that pi Z.pi. Then p; = [pio(ij)] Z,[Pio(ij)] = Pg

where "o'" denotes the catenation (or extension) of the

path from the right.

In words, this Proposition asserts that adding activity (ij) to both
paths does not alter their relative ranking, which is eminently

plausible.

Unfortunately, dominance in probability as defined in (22) is,

in general, intransitive, contrary to prima facie expectationms.

1
That is, if piz pi and piz pi, then the relation pi? pi need not

be true in general, but is true for symmetric distributions. To see

this, note that the dominance relation pi‘ > pi implies that

Priz (p}) > 2(p2)1 > 1/2. Ve thus have

J’

Priz (0D - Z (8D = (uy = b 2 = (uy = )] 2 1/2 (23)

where W = E[Z (pI)]. Now, assuming symmetric pdf's, it is clear
that the r.v. [Z (pi) -2 (pi)] is also symmetric about its mean
(ul - u2), and inequality (23) implies that —(ul - u2) <0; i.e.,
] > Mye Similarly, the dominance relation pf pr implies that
My 2 Mg under the assumption of symmetric pdf's. We therefore con-
clude that ¥y > Maqe Now reversing the argument we conclude that
Pr(z (pi) > 2 (pi) > 1/2, which finally implies that piépz. We

have just proved
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Proposition 10 If the paths to a node possess symmetric pdf's,

then dominance in probability as defined in (23) is
transitive. Furthermore, pi > pi > ¥y 2 ¥,, where
T E[Z@li‘)].

The utility of these conclusions is evident for the result
sought. High-numbered nodes are the ones most prone to having a large
number of paths (from node 1) leading into them. (One can easily
verify that node 2 has 1 path, node 3 has < 2 paths, node 4 has < 4
paths, node 5 has < 8 paths and node 6 has < 16 paths. In general,
node i has < 212 paths leading into it from node 1.) But these paths
are precisely the ones whose pdf's may be approximated by symmetric
distributions (usually the normal pdf). Consequently, they are the
ones to which the assumption of transitivity of dominance is appropri-
ate. Lower-numbered nodes are not in need for such approximation since
their paths may be explicitly enumerated and ranked.

The algorithm alluded to at the beginning of this section is
now apparent, and its gist is as follows. For any node j, let its

immediately preceding nodes be il,iz, cney is; and suppose that the

first K CPs to node ir have been identified as p; > p‘iz ?_ ...zplic . To
T T

r
determine p;, the most critical path to rode j, we need to compare
only the = topmost r.v.'s{Z[pi o(irj); r=12, ..., s]tand rank them.
The highest ranking path (in p:obability) is p;. Now, the second
ranking path in this set is compared with the second ranking path in

the set of paths to which the topmost path belonged; and the higher

ranking (in probability) between these two paths is pg; and so on for
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p?, k = 3,4, ..., k. At termination, the answer to the two problems posed

at the beginning is in hand:

K
(1) The K most CPs of the network are precisely pi, pi, ey Ppe

(ii) The minimum set of paths whose probability is no less than 8

is easily obtained from the most critical paths into node n.

Computing experience with this approximating procedure, and compari-
son with the results obtained from extensive MCS in determining the most
critical three paths in networks of varying sizes reveal three signifi-
cant facts: (1) the match between the approximating procedure and MCS
decreases with path rank: there was 937 matches in path rank 1, 71%
matches in rank 2, and only 57X matches in rank 3; (ii) the approximate
procedure consumes significantly less time than MCS (approximately
an order of magnitude less); (i1ii) In several instances, the set of
paths identified by both the approximate procedure and MCS were identical,
but the rank of the paths within the two sets was different. This is
encouraging since it implies that both approaches would identify the same
set of arcg as critical; (iv) Experimentation with MCS was necessarily
aborted at small-size networks (n = 30 and |A| = 90), since larger networks
would have required inordinately large amounts of time. This phenomenon
was not experienced by the approximate procedure because of the difference
in complexity between the two: MCS requires the enumeration, identifica-
tion, and comparison of paths, which is a process that is of exponential

complexity, while the approximate procedure is of complexity O(nz).

354

=l
. u
B
-
R
R |
.‘A'.:!
4

. e
s .

i




III. REDUCIBILITY OF ANs

The third area of investigation is related to the problem of 'reduc-
tion" of ANs, which rears its head in more than one investigation in the
context of ANs. (For a description of three such investigations, see

( 3].) Here we limit our attention to the PERT

Colby and Elmaghraby
model and ask the question: What is the d.f. of the time of realization
of the "terminal node' of the network (which signifies the completion
time of the project)? Now, it is well-known that two activities in
series may be collapsed into one activity whose d.f. is given by the
convolution of the two individual d.f.'s. On the other hand, two
activities in parallel may be collapsed into a single activity whose
d.f. is given by the product of the two individual d.f.'s. 1If the
original network can be collapsed into a single activity (1l,n) then,
indeed, the analytical form of the d.f. of the duration of the project
is in hand. Unfortunately, the irreducibility of such PERT networks
prohibits such (conceptually easy) analytical determination, which, in
turn, gave rise to various approximating or bounding procedures discussed
in II above.
Consequently, we say that a digraph is reducible if either of the
following two conditions is satisfied:
fa) There exists at least one path with node(s) of in-degree
one and out-degree one (i.e., the path contains two arcs
in series)
(b) There exist at least two paths '"in parallel'; i.e., there
are two distinct nodes i and j, 1 <1 < j < , and two dis-

tinct paths from i to j with the property that if there is an
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intermediate node on either path between i and j, then it

is of in-degree and out-degree one.

The "reduction process" amounts to the collapsing of two arcs

into one, starting with arcs in series (the process may alternate

between combining arcs in series, then arcs in parallel, then arcs
in series that have been created by the arcs in parallel; etc.). A  -)-_<

digraph is said to be completely reducible if it is collapsible to a

B
single arc joining nodes 1 and n. 'Otherwise, we terminate with a "
graph that is irreducible (which is shorthand for "not completely
reducible"). Then, evidently, both conditions (a) and (b) are not ‘
satisfied. - q

The problem of irreducibility of ANs has been recognized by every

researcher in the field since the classical paper of Malcolm 35_31[17]

on the PERT model; (for citations, see Elmaghraby's book [ 8], Ch. 4). !
Consequently, it is natural to inquire into the conditions under which e
a day 1s irreducible. To this end we introduce some definitions and ;!f:g
notation. .—__,;!

Figure 7. The interdictive graph (IG).
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The "Interdictive Graph" (IG) is the graph shown in Figure 7.
Evidently, it is irreducible

We write IN(i) and OUT(i) as shorthand for the in-degree and
the out~dgreee of node i, respectively.

We write NS(a) and NE(a) for the "'start node" and "end node"
of arc a€A, respectively.

By a descendent of node i we mean a node j > 1 which is
connected from i by an arc or a path.

The set of all nodes that comnect to node j by a path is

4

denoted by P(j); 1.e., P(}) = {4 eN : 1 < j and i connects

to j. by a path}l.

Properties of Irreducible Digraphs (IDG)

The following properties of IDG's are easy to verify. For the sake
of brevity we shall not clutter this note Witl"t their proofs. They are
numbered consecutively from the previous two properties:

(3) The number of nodes [NI > 4.
(4) Either OUT(1) = 1, in which case IN(2) = OUT(l) = 1 and oUT(2) > 2;
or OUT(1l) > 2. Therefore, without loss of generality, we can take

the IDG to start at node 1 whose OUT(1l) > 2.

(5) Either IN(E) = 1, in which case QUT(@-1) = IN(m) = 1 and IN(n-1) > 2;

or IN(n) > 2. Similarly, we can assume that IN(n) > 2.

(6) There exists a smallest-numbered node i, # 1, 2 such that 2, j € P(iz)

and the paths Hiz) =

(1,2,...,i2) and H£3) = (1,j,...,12) are independent

{i.e., they have no intermediate node in common). (Note that the existence

of such a node is guaranteed by the fact that both 2 and j are € P(n);

see Property 2.)
(7) For all i # 1, n, IN(i) + OUT(i) > 3; hence there are no arcs in

(simple) series.
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The main results of Elmaghraby and Dodin [10] is the following:

Proposition: A digraph is irreducible iff it contains

the IG.

The proof of this assertion is elementary and rests on the properties - d;
of the IG enumerated above. F;j
Two questions flow naturally from this result. The first is:
How to detect (efficiently) the presence of the IG, and if there is —‘i
more than one, determine their count and their identity? And the
second is: What is the most economical way (in the sense of minimum
arcs) to "fix" in order to render the network completely reducible. . i
The issue of detection is easily answered by: do the reduction ]
(which is easily defined in polynomial time (O(m)), and 1if the trivial
network (of only one 1 , n arc) is nc:- achieved, then the IG must exist. .:AJ
Henceforth, we refer only to the remaining two questions. B
It is our contention that either of these two questions poses a

(

problem that is NP-Hard. Colby z] demonstrated that both problems are

i in the class NP. He also proposed a heuristic procedure that is of * ,%
{; polynomial complexity (O(na)) that dominates an earlier procedure by _’fE
? Dodin[ 5]; see the paper by Colby and ':‘Zlmaghraby[3 ] for details and t E
L. examples. i qq
E: One final remark. Despite the fact that interest in the minimal ;
&_ number of arcs to "fix" springs from the desire to secure the exact (or f.{:
i! approximate) pdf of the time of realization of node j, it is easy to "‘!
show (as was demonstrated by Dodin[S] ) that fixing the minimum number of ' '5

arcs is also useful in bounding the pdf from below. That is, if one is 'E

!’ not interested in determining the exact pdf (through multiple integratiom _“
:.5 358 e
® . e
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over the '"fixed" arcs), but rather is interested in deriving 2.b. of the
pdf, then the identification of the minimum number of fixed arcs help TS

generate tighter bounds.
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MARKOV MODELS OF MULTI-ECHELON, REPAIRABLE-ITEM
INVENTORY SYSTEMS

by
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Richard M. Soland

Exact models of finite end-item population, finite repair capaci-
ty repairable-item systems are developed using Markov process analyses
for both transient and steady state environments. Unlike most currently
used multi-echelon models, the infinite population, infinite repair ca-
pacity restrictions are removed. Exponential failure and repair times

are assumed and the system is modeled as a closed Markovian queuing
network.

In the transient case, the finite set of differential equations,
and in the steady-state case, the finite set of difference equations,
are solved by numerical techniques. The adequacy of these techniques
for yielding solutions to practical systems is also discussed.
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1. Introduction - -

—
-
§
.o
el
'.LL"A.J

Consider a typical multi-echelon repairable-item inventory system

as shown schematically in Figure 1. Shown there is a two location

ey

(bases), two level of supply (spares at bases and depot), two level of

repair (base and depot) system which we shall denote as a (2,2,2) sys-

L

A A I e B

1

tem. The nodes BUi (i = 1,2) represent operating and spare units
(we consider for now only a single item such as a final assembly or a
key component) at base i, BRi (i = 1,2) represent the repair fa-

cility at base 1 , DU represents depot spares, and DR the depot

Ta T

repair facility.

Our goal is to develop exact mathematical models for such finite

T

calling population (finite number of items), finite repair capacity,

4

i- repairable item provisioning systems in both time-varying and steady-

1 state environments. Specifically, we wish to find the state probability

3 vector (the probability distribution for the system being in its various {-
¢ .
Y o
- K -
- R
- 365 T
b
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BR1 BUl

o DR DU
BR2 BU2 |
, Figure 1. Multi-echelon, repair-
. able item system.

possible states) which will allow us to then calculate measures of per-

formance such as availability (the probability that at least some desir-
able, prespecified number of components is operational). Ultimately,

these models will be used to yield the optimal combination of spares and

vepair channels at each location in the system.

Assuming times to component failure and component repair times

to be exponentially distributed random variables, we have a continuous

q
time Markov process (CTMP). The process is driven by a rate matrix ??ﬁ
- Q = {qij} , where qy 5 is the "rate" of going from state i to state o
L‘: VO A.A‘..
EB:Z 3 3 that is, letting X(t) represent the system state at time ¢t , S
- PriX(t+At) = j[X(t) = i} =
r" Uy = lim l:r = gtj — :] » 1 #3
3 At>0
- = -
3 a4 § a5 - g
. s
s (1#3) e

e

For example, suppose the (2,2,2) system pictured in Figure 1

is in a state (call it i ) for which the depot spares pocl is not

Y
N )

.
A

b =
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v

%t empty (at least one spare is on hand at the depot). Suppose we consider
‘ the event: a component fails at base 1. Describing this state i by

the vector (

’ Teu1® “Br1® "BU2® “BR2® "DU’ nDR) , where n, denotes the

k

number of components at node k in the 'metwork," this event takes the

system to a state j , namely, (nBUl’ Dpr1° Pu2°® “BR2’ nDU-l, nDR+l) .

at the rate q.,. = X , where 1/A 1is the mean time to failure

ij - "1 "pn

(MTITF) of a component and O is the probability (or percentage) of

1
failed items requiring depot repair.

If we denote the state probability (row) vector at time ¢t by
m(t) = (nl(t), ﬂz(t), cees ns(t)] , that is, the ith element, ni(t) . F+4h
is the probability of the system being in state i at time t (there
is a finite number of states [call this number S] even though this number ifff}
can be quite large), then we must solvé the finite set of first-order,

linear differential (Kolmogorov) equations

7' (t) = m(e)Q . (1)

For steady-state solutions, we are required to solve the finite set of
linear algebraic steady state equations,

9 =1Q, (2)
where T = (Wl, Wz, coey ﬂ3) is the steady~-state probability vector and

0 1is a row vector of all zeroes. In both steady-state and transient

cases we have the further condition that the probabilities sum to one,
. namely, S
1 =71(t)e = Te ,

——

where e 1is a column vector, with all components equal to 1.

[ Jail S e 20 wa 4

T
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- 2. Transient Environment

We are often interested in what happens to such systems in a time-
varying environment. For example, a sudden increase in effort (say a ?_j
E peacetime to wartime shift) may cause a sudden decrease in MTTF. In :d
\i_i such situations, it is necessary to have m(t) , and we must solve the
‘ finite set of first order linear differential equations given in (1). j
, Except for very small systems (one or two states) analytical tech- —’4
niques such as Laplace transforms are intractable. Since we have a fi-
nite set of equations, numerical methods can be employed. Numerical in- d
tegration schemes such as Runge-Kutta or predictor-corrector methods -
are possibilities. We choose a different approach, however, which is
referred to by some as randomization, and has been shown to be more ef- ]

1
ficient for these kinds of problems [see Arsham, Balana, and Gross (1983) Q
or Grassmann (1977a)]. For details on this technique, which can be

derived by a probabilistic argument when viewing the CTMP in a certair way, :j}

see Grassmann (1977a and b) or Gross and Miller (1984a and b).
The computational formulas are as follows. Consider a discrete

time Markov chain (DTMC) with single-step transition probability matrix

P=Q/A+1,
where T*fﬁ
- -
A mix lqii[ , S
e

that is, A 1is the maximum of the absolute values on the diagonal of

the Q matrix. Since a diagonal element of Q 1is the negative of the
o sum of the other elements in the row (rows of the Q matrix sum to i

zero), A 1is actually the absolute value of the minimum (largest

T
v, Y, v "
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negative) diagonal element of the matrix. This DIMC is referred to as
a uniformized embedded DTMC of the CTMP. Denoting by Q(k) the
state probability vector of this DTMC after k transitions, it can be
shown (see the above cited references) that

k e—At

"z" NOMU

T .(t) = 7 .
] k=0 1 K

For computational purposes, it is necessary to truncate the infinite
sum. The truncation error can be easily bounded since we are

discarding a Poisson "tail," so that the computational formula

becomes
T(t,e) k -At
- 2 (k) (At) e
m (t) kzo o T (3)

where

N =At n

T(t,e) = min {N: Z E—~?§A£l— >1-c},
n=0 )

€ being the maximum tolerable error (specified by the user). One
advantage of this method over numerical integration is an exact bound
on the computational error.

The major computational effort in using (3) is now reduced to

Q(k)

finding the state probability vector, , of the uniformized em-

bedded DTMC. This can be readily accomplished by the usual recursion,
(0)

(k+1) _ (k)

9 =m0 ;5 ¢ 2P . (4
Gross and Miller (1984a) give a more efficient procedure than the suc-
cessive vector-matrix multiplication of (4), which takes advantage of

the sparsity of the P matrix.
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3. Steady-state Environment

Solving for the steady-state probability vector n requires
solving the set of linear algebraic equations of (2). Since one of these
equations is redundant, it is necessary to reduce the equation set by
one and use 1 = Te as the final equation. Thus (2) can be reformulated as

b=1A, (5)

where b 1is a vector of all zeroes, except for the last element, which
is al, and A 1is the Q matrix with the last column replaced by 1's.

For relatively small systems, the solution can be obtained by
inverting A to get

T=pA
However, for most realistic problems, the state space (and hence dimen-
sion of the A matrix) is too large to obtain At efficiently or
accurately. Thls situation suggests iterative procedures such as
Jacoby or Gauss-Seidel.
Consider the A matrix as a sum,
A=L+D+U,
where L 1is a lower triangular matrix, D 1s a matrix with only diagonal ele-
ments, and U 1is an upper triangular matrix. Then (5) can be written as
n(L+D+U) = b
or
1D = b - n(L+U) . (6)

We can use (6) in an iterative fashion,

TT(n+l)D _

-

b - 1@ (7)
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(0)

where we begin the procedure with some initial guess, say T . This

procedure is called Jacoby iteration. Note that in performing the cal~

R . . . n+ n+l
culations, since D 1is a diagonal matrix, we compute n( D ﬁ( )

0 1 ’
n§n+l) , ... successively. 1If, as we compute the “§n+l) , we replace
the ﬂin) on the right-hand side [e.g., in computing ﬂ§n+l) , the
g(n) vector is modified to be E(n) = (ﬁén+l), “in+l)’ cee "§EII) ’
“§n)’ “§:i’ cees nén))] , this procedure is referred to as Gauss-Seidel

iteration, and in matrix representation is

where T and b are now column vectors, and UT, LT are the trans-
poses of U and L , respectively.

Two questions remain to be answered concerning use of the itera-
tive procedures of (7) or (8); namely, (i) do the procedures converge,
and (ii) when should the iterations be terminated? 1In general, these
procedures may not necessarily converge, although for our well-structured
Markov process convergence will take place. The stopping criterion gen-

erally used is the Cauchy criterion, namely, stop when

(nt1) (n)
max |mw; - <gq s (9)
i
where € is an "arbitrarily" chosen small number. We found using the

o

fractional difference version of (9), namely, stop when

L) _ o
méx 2 ) = < €y » (10)
i m

to be somewhat more effective, While there has been some success in

using Gauss-Seidel (G-S) on Markov models [see Kaufman, Gopinath, and

371

-

R R I T ST AT S ) . .



B P T " e B R R R R T L R T T I e

T-490

Wunderlich (1981)], problems exist with respect to rate of convergence

and appropriate stopping criteria. The G-S convergence rate can often be

improved by using overrelaxation, that is, by weighting with a coeffi-

; cient greater .than one the Wén+l)’ n§n+1), ceey ﬂ;f;l) used in calcu-~ ol
E . (n+1) o
T lating “j [see Kaufman, et al. (1981) or Maron (1982)].

Usually, the G-S preocedure is applied to a set of equations with

a nonsingular matrix (such as A ). Consider a nonsingular matrix M -

with positive diagonal elements and negative off-diagonal elements.

The G-S procedure is known to converge for sets of equations with such

an M matrix [see Varga (1963)]. Now consider equation set (2), namely, -
9=10 .

Multiplying through by =1 gives

_Q = I[[_Q] > J

where -Q has positive diagonal elements and negative off-diagonal ele-

ments. However, it is singular, since one equation of this set is re- c

dundant. Suppose we arbitrarily set T (assuming there are S states) co

S L

<

to one, remove the last row of the Q matrix (call this reduced matrix I
N

6 ), and consider solving the reduced S-1 x S-1 set of equations i{§$
0 = n{-4] . R

9 = 10 .

~ . . .
Now -Q 1is an M matrix and convergence 1s guaranteed. Of course the

:' resulting ni values are relative to HS = 1 so that they must be renor- k:
. SA
. malized by dividing each by Z§=l LR How fast convergence takes place ".
. - -
- still is a key question, however. It turns out [see Kaufman, et al.
=
[ (1981)] that working with the full Q matrix, even though it is singu-
b -
} .
} lar, speeds convergence, and this is what we also do. e
e -
-
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Another procedure is to use the uniformized embedded DTMG of the
randomization procedure with transition probability matrix P = Q/A + 1 ,
This Markov chain has limiting probabilities given by

$=gp, (11)

and they are identical to the m of the CIMP we seek [¢ = ¢P => ¢ =

9(@Q/M+1) = 0 = $(Q/A) = 0 =¢Q =0 =1Q ]. Solving the set of
equations given by (11) is no easier, of course, than solving that of
(5). However, we know from Markov chain theory that limiting probabil-
ities of a DIMC can be found by iteration, namely,

E(n+l) . )

-

] (12)
Here again, we have computational problems associated with iteration,
but we know from Markov chain theory that convergence is guaranteed due to
the existence of a steady state vector % (the P matrix is irreducible).
The problem of when to stop the iterations remains, however. Using the
Cauchy criterion here results in problems similar to those found when
using it for G-S iteration, namely, successive probabilities can differ
by very small amounts and still be far from the steady state values.
Wallace and Rosenberg (1966) provide a considerably better stop-
ping criterion than the Cauchy criterion of (10), Their stopping
rule is based on estimating the rate of convergence by estimating

the second eigenvalue of P , and turns out to be: '"Stop when

| (ntl) (n)|
i) i3

- € B (12D
N
m W

For details of this development, see Wallace and Rosenberg (1966) or

Gross, Kioussis, Miller, and Soland (1984).
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4, Results

The following section gives a brief summary of results to date.
For greater detail, we refer the reader to Gross and Miller (1984b) and
Gross, Kioussis, and Miller (1984) for the transient case and to Gross,

Kioussis, Miller, and Soland (1984) for the steady-state case.

4.1 Transient Case

The largest system solved to date using equation (3) directly
was a (2,2,2) system (as pictured in Figure 1) with 18 components at
base 1 (of which 4 were spares), 13 at base 2 (of which 3 were spares),
and 3 spares at the depot. The base repair shops had 2 parallel service
channels each, and the depot repair facility had four. This gave a
state space of 20,748 (Q = 20,748 x 20,748).

The time-varying environment scenario is shown in Figure 2. At
time 6 , a shift in MTTF (1/)) occurs but it takes until time 10 for
the repair facilities to "catch up" in MITR (1/u). This simulates a
change in usage due to, say, a shift from peacetime to wartime. The

measure of effectiveness calculated is the availability at time ¢t

(t

1,2,...,15) , where availability is defined as follows:

Al(t) z Pr{at least 14 components are operational at base 1 at
time t}

Az(t) = Pr{at least 10 components are operational at base 2 at
time t}

H

A]Z(t) =z Pr{at least 14 components at base 1 and at least 10
components at base 2 are simultaneously operational

at time t} .
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" o Repair rate 1.5u
{ =1 R S
- Repair rate U } >0% incr.
Failure rate 1.5X
Failure rate A }50% incr.
+——t } { S } -+ } - ——rf 4- —t - ﬂ
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time :

Figure 2. Time-varying environment scenario for sample run.

Figure 3 shows a plot of Al(t) versus t . Plots of Az(t) and
A3(t) are similar in nature. The graph shows an initial Al(O) of 1.0
(we assume at time zero all components are operational) and thereafter o7 j
a drop-off toward the steady~-state availability as time increases. At

time 6, the increase in failure rate occurs and Al(t) begins to drop

off at a higher rate, heading for a new, lower steady-state availability.
However, the increase in repair rate at time 10 causes Al(t) to begin

to rise, heading back toward the original steady-state availability. This

run took approximately 25 minutes of CPU time on a VAX 11/780 computer

; using the randomization computation of (3) with the efficient procedure
9 given in Gross and Miller (1984a) for calculating Q(k) .
1
4 Y
¢ As the systems become more complex (more bases, multiple component . ¢
F types, indenture, more echelons, etc.) the state-space grows rapidly. We
1 .
T
i have solved a problem with three bases, yielding a state-space of size SRS
f )
|- y 3
#. 43,278,703, by truncating the state-space ("lumping'" low probability .
. states into several absorbing states resulting in a truncated state space
b .
- L.
L‘, - .
9 N
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Figure 3. Al(t) versus t for sample run.

of approximately 15,000 states) on the VAX 11/780 in approximately 30

minutes [sce Gross, Kioussis, and Miller (1984)].
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4,2 Steady-state Case

Ironically, computational success has been far more elusive for
the steady-state situation than for the transient case, The problem is
the stopping criterion for these iterative procedures (a problem not
present when dealing with transient solutions). In the transient case,
the randomization procedure guarantees an accuracy to within a pre-—
specified € . For steady state; using either the Cauchy or the
Wallace-Rosenberg stopping rule does not guarantee errors within £ .
Table 1 shows some computations for a (1,1,1) system which is the
classical machine repair with spares model of queueing theory. For this
model the availability can be computed analytically, which allowed
us to estimate the actual error. The columns under P-WR show the results
of using (12) with the stopping criterion of (13}, the Wallace-Rosenberg
approach, while the GS-C columns show results for (8) with the stopping
criterion of (10), the Gauss-Seidel approach.

The circled elements show the cases for which the error specifi-
cation, £ , was exceeded. While there were more cases of exceeding the
stopping rule error specification in P-WR, the error excesses were
larger, especially for the larger population cases, under G5-C, But
G8-C stopped in far fewer iterations in almost all cases (except for the
very small population cases), and it is the number of iterations that
consumes most of the CPU time.

The last column shows a rerun of GS5-C, ignoring the stopping cri-
terion and performing the same number of iterations as used for the P-WR
procedure, The errors essentially went to zero, which indicates that

if a better stopping criterion could be found, Gauss-Seidel iteration
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detailed discussion of these steady-state procedures can be found in

might be a viable approach. Runs for some (2,2,2) systems and more ' :?
]

]

Gross, Kioussis, Miller, and Soland (1984). )
4
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STUDYING MODEL ASSUMPTIONS
IN PROCESS QUALITY CONTROL

C. P. Quesenberry
North Carolina State University
Raleigh, NC 27695-8203
1. INTRODUCTION

In procaess quality control by variables we typically assume that a
sequence of oObservations Xl’ X2, ooy Xn’ ... is observed in time. The
Xi's themselves are often batch means. The basic model usually assumes that
the Xi’s are independently and identically distributed normal random variables,
i.e.,are i.i.d. N(u,c2) r.v.'s. Some of the most widely used methods of
process quality control, such as Shewhart charts for sample means and ranges
and CUSUM tests for sample means, are designed to detect changes in the
process that cause either u or o to shift to different values. However, the
observed data contain much information that can be used for purposes other
than detecting changes in the mean and variance of an assumed normal model.
In this talk, we shall propose computing certain statisties which capture
all of the information in the data, beyond that in the sample mean and
variance, and consider methods of using these statistics to detect a number
of types of violations of the basic model assumptions.

The statistics which we propose to compute are called sequential uni-
form residuals, due to the fact that they have known uniform‘distributions
when the normal model is correct. These residuals are not new, but have
been derived and studied by the present speaker and co-workers in earlier
work, however, they have not been considered in the context of process

quality control. We feel that they have excellent potential for many

useful applications in this area.
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2. UNIFORM AND NU RESIDUALS

Let X X X, ... denote a sequence of random variables, and

1 72 "t O
when these are i.i.d. N(u.oa) random variables we shall say that normal
model assumptions hold. We define the following (sequential) sample

quantities:

T _ or 2 _ or < 2
X. = zli/r, s, = zl(xJ - X)/r,
(to compute these sequentially, see Youngs and Cramer, 1972)

Xo= Lr - 0%+ x Ir, 82 = (B + (P, - X

%i r ‘“r-1 r
- A

. r

)2

[r(r _ 2)]%(xr _ 'ir)/(r - 1)Sr_1 _‘

w,_, = Gr—E(Ar); r=2,3, ..., 0,

9

4

) e o
k‘ When G_ (+) is a Student-t distribution function with v degrees of freedom. |

b If the normal model assumptions hold, then the values u Ups oe

were shown in 0'Reilly and Quesenberry (1973),0-Q, to be i.i.d. uniform

random variables on the unit interval. A careful examination of the value
Ar above shows that it is a Studentized value of the residual of the rth
observed value from the mean of the first r values. For this reason, we

shall call the value u. e uniform residual. Our purpose in this paper is

to consider using these uniform residuals and other related quantities in
methods for studying the model assumptions in statistical process control.
These uniform residuals were first derived in 0-Q by the method of

conditional probability integral transformations introduced by those

authors. These residuals can also be obtained as a special case of the

[} uniform residuals from regression models with normal error structure as

——

given in 0-Q, and considered also in Quesenberry (1983) and Hester and

Quesenberry (198L). 1In the present work, we shall discuss some ways in

LAk ans /s A
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which these sequential uniform residuals can be used in statistical process q
control, however, we first set out some basic properties of these statistics

which, we feel, motivate the use of these quantities. When normal model

assumptions hold, the uniform residuals have the following properties:
Property 1. The quantities Ups Uy cnes uN, are i.,i.d. uniform random

variables on the unit interval (0,1). (0-Q, 1973).

(ul, cees ur)' is independent of the vectors

Property 2. The vector %r

(S5, ..., 82)' for all r =2, 3, ... .(This ]

— _ —— — 2 _

Ko = (X5, «oo, X)) and §3 = (S5,
o follows from the completeness and sufficiency of Tr = (i;, Si)', and a well-know o
= - e d
| @ result of Pasu (1955).) - 1

Property 3. The uniform residuals vector Rr is a maximal invariant with

respect to linear transformations of the data. (Quesenberry and Starbuck

(1976), Q-s).

Property 4. If a most powerful similar or a most powerful invariant (re
to linear transformations) test exists for testing the normal model against
any particular alternative, then a test of equal power can be based on the

uniform residuals. (Q-S).

Let ¢(°) denote the distribution function of a N(0,1) distribution, and

®-l(-) its inverse function. Then we define NU (normal-uniform) residuals
_ a1 - »
2y = ¢ (uJ) ,J=1,2, ...

and 21y Zps -e. ATE i.i.a N(0,1) r.v.'s, when the normal model holds.

For some problems, there are advuntages in considering the NU residuuals

rather than, or in addition to, the uniform residuals.
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3. STUDYING THE RESIDUALS

In view of the properties of the sequential uniform residuals
discussed in section 2, the'principal task is to find effective ways to
study these values in order to detect deviations from model assumptions.
We can consider two basic settings, which present somewhat different
problems. First, we can consider the analysis of residuals for a set of
past data, and, second, we can consider the sequential analysis of data
as it is observed in time. In each of these cases, we may wish to use the
data to attempt to identify different types of model misspecification yhich

can occur. There are many different types of problems which can be

considered and we must limit our discussion here to a few particular
problems. In this section we consider the simple but useful method of
graphing the u's in order to look for patterns, and then suggest tests for
uniformity on the uniform residuals and of normality on the NU residuals

as general methods of analysis to detect anomolies in the data. In the

next section, we suggest using these residuals to detect outliers.

£ 0

We consider first some methods for analyzing the uniform and NU o

residuals that are designed to detect a wide range of deviations from the

oo o
ORI |

basic normal model. Since these methods are expected to perform reasonably
well in detecting a large class of alternatives, we cannot e;pect them to ' .
be most effective against particular restricted alternatives. If we wish

to focus on a particular alternative, then it may be possible to find a

test or other analysis technique which is especially sensitive for detecting ‘ :“

it. In this section, we shall consider analyses based on plotting the re-

siduals and computing some omnibus goodness-of-fit tests.
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Graphing Techniques

As a first analysis, we suggest plotting the uniform (or NU) residuals

WEITEP AV | o

| R

against the index and studying these plots for trends. Due to the recursive
property of these residuals, the plots can be made sequentially when each ]
observation is taken, in order to identify problems as early as possible. ;
Under the null hypothesis, the uniform residuals should tend to form & uni- :-i§
form band between the lines u = 0 and u = 1. The possible types of ]

patterns that indicate model specification errors is large. Indeed, any

.
-
.-
-

recognizable pattern among these points will likely require further study. -
The type of misspecification that leads to a particular point pattern can
sometimes be deduced by recalling the nature of the transformations in (2.1) {

viz., that Aj is a Studentized residual and uJ is obtained by transforming

AJ with the appropriate Student-t distribution function.
The uniform and NU residuals are equivalent statistics, and contain
the same information; however, some patterns or anomalies will be more ~#

apparent in the graphs of one or the other of these types of residuals. One

instance of this is in detecting outliers. The plots of NU residuals

will display outliers more clearly than will the plots of uniform residuals.

The detection of outliers will be considered in Section 4.

An Omnibus Test for Uniformity

One type of test statistic which we shall often want to compute is an

omnibus test of simple uniformity on the values of X Such omnibus tests

have reasonably good power against a wide range of alternatives. There are s

R
. e -
o . -

a large number of omnibus goodness-of-fit tests which can be used to make

F. tests for uniformity. Reasonably extensive power studies of tests for uni- R
¢

; formity have been made by Quesenberry and Miller (1977), Q-M, and by Miller

[ .
q and Quesenberry (1979), M-Q. These papers review much of the literature in -
p q
,. this area of goodness-of-fit testing. Based upon the results in these papers, :
b

- .

p - we recommend the Neyman smooth test.

b .
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Neyman (1937) posed a statistic designed to have high power for test-

ing uniformity against certain classes of alternative distributions on the

unit interval. (See M-Q and Kendall and Stuart (1961), p. Lkh.,) The test is
l defined as follows. The Legendre polynomials . are given by; for r = Q,

1, 2, 3, 4 and 0 <y < 1;

mo(y) = 1um (y) = /i2(y-4),
? T(y) = Ble(y-5)° - %), a(y) = /Tl20(y-3)3 - 3(y-%)], (3.1)
= n () = 2100y - ks(y=9)? + 9/8.
':’.; Then put o i
!l ) o]
‘ tr=;=lnr(uj) forr =1, 2, 3, L,

and the Neyman smooth test rejects for large values of the statistic

2 _ 2 2. 2 2
P, = (1/N) (t1 *rg ot t3 + th). (3.2)

Neyman showed that pf has a limiting xz(h) distribution when

Ups eevsy uN are i.i.d. uniform r.v.'s. Computations of upper .1, .05, and
.01 percentage points in M-Q indicate that this approximation is reasonably ;T{ﬁj
good for N as small as ten, or even smaller in some cases. This approximation . !

is particularly convenient because it can be used to determine the observed

significance level or p-value of the test for uniformity. Thus, in order

to obtain an overall assessment of the validity of the normal model, we

1

compute the u,'s from (2.1), the value of pi from (3.2), and then evaluate

J

NSL_PV = p-value = P(2(4) > po}. (3.3)

For 0 < a <1, if NS4_PV < a, then, of course, we reject the normal
," model at the a level. In practice, we compute NSh_PV and view it as a

L. general coefficient of validity of the normal model. .

387

.‘1.

e
N .
K .




Tests of Normality on NU Residuals
In addition to (or in place of) omnibus tests for uniformity, we can test
defined at the end of

the normality of the NU residuals 2z vy Z

l’ b N’

Section 2. There are many good tests of normality available today, and there
is no strong reason to favor a particular one. We slightly prefer the
Anderson-Darling test. Two points should be noted in this context. Although
Z)s e Ty (N = n-2) are i.i.d. N(0,1) when the normal assumptions hold,

it has been shown by Stephens (1974) and independently by Dyer (1974) that
statistics for testing composite normality often have better power for
testing simple normality than tests designed to test the simple normality
null hypothesis, Another point that should be noted is that the most popular
tests for normality do not have solved distribution theory that allows the

exact determination of p-values of the tests. We feel this is a considerable

disadvantage for these tests.

4., DETECTING OUTLIERS

In many process control problems, an occasional observation will appear
which is either much larger or smaller than its fellows. The question then
is how one is to decide when an observation is an "outlier" and when it is
4 feasible value under the normal model assumptions, The exact distribu-
tion theory of uniform residuals provides an especially simple and elegant
solution for the problem of detecting outliers.

We shall declare an observation a left outlier if it is too small and
thus its uniform residual is too near zero, and we call it a right outlier
if it is too large and its uniform residual is thus too near one. In view
of the nature of sequential uniform residuals, this means that an observa-
tion is called a left outlier if it is too small when compared with the

observations preceding it, and, similarly, it is a right outlier if it is

1388




too large in comparison with the values preceding it. Thus these might

be called sequential outliers.

Suppose that we are willing to incorrectly decide that observations
are too large and that they are too small each at the rate of 1 in No
observations, when the normal modelis correct. Then we apply the follow-
ing rejection (identification) rule:

Declare x & left outlier if u _, < l/No,
Declare x, a right outlier if 0 ® (No-l)/No. (k.1)

The overall rejection rate is é/No, when the model is correct. This is
a reasonable procedure for screening observations as they arrive sequentially.
This procedure is, of course, equivalent to rejecting individual observa-
tions as outliers if they fall outside the lines u = l/No and u = (No—l)/No
on the graph discussed in Section 3.

If we wish to decide if a sequence U eny Uy of residuals from past
date contains outliers we can apply the rule above to perform tests, or we
can appeal directly to the distribution theory for order statistics from
a uniform distribution. Let u(l) and u(N) denote the smallest and largest
values among the residuals, respectively. Morecover, let PL denote the
p-value for testing that the point associated with u(l) is a left outlier,
and PR denote the p-value for testing that the point corresponding to u(N)
is a right outlier. When the normal model holds these values are given by

N A N .
) L] P —l—U.(N) . (h-l)

P =1~ (1 -
(1 -u b

L (1)

The use of these formulas will be illustrated with numerical examples

in the following section.
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5. NUMERICAL EXAMPLES
To illustrate the techniques discussed above, we have computed the uni-
form residuals for a number éf data sets. A random sample of size 50 was
generated from each of four distributions and the uniform residuals were
plotted again§t the index. Samples were drawn from a normal, exponential,
uniform and Cauchy distribution. The graphs for these samples are given in

the following Figures 1 - L. The p-values NSh_ PV, P_ and P

L R are given in

Table 1.
The plot of the uniform residuals for the normal sample in Figure 1

shows no anamolous patterns and the p-values are easily in the acceptance

e e s e ho e aes on . - et e g anae s — BRI S v e SR e i S R A o S Sd

ety

g

range. :ké
The graph for the exponential sample in Figure 2 does show important _';i
patterns that indicate a nonnormal distribution. There are no observa- 'T-j
tions very near zero - which is a reflection of the fact that the normal 7 ji
density is positive on the negative reals but the exponential density is i-ii
zero on the negative reals. Note that the p-values are all suspect. The \;;ﬁ
Neyman smooth statistic p-value is 0.01386, PL = 0.99981 is too large, and :¥ié
P, = 0.02536. j
The analysis of the uniform sample shows a value of NSL PV = 0,06839, b?
which is suspect, and a value of PR that is too large, again. * The graph in - 1
Figure 3 shows no points very near zero or one, which is a reflection of f'
the fact that the uniform density has thinner tails than the normal density. ‘ié
The Cauchy sample is easily rejected by the goodness-of-fit test, and .J

its tendency to throw outliers is efident in the p-values of the order
statistics. 5
Finally, we computed the uniform residuals and the p-values for the "~i
390 o
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' data given by Ott (1975). Note that in Figure 5 for this data the
.
y;; points display a rising trend beginning at about the 76th or 77th original
P
Lc data points. This is due to a trend in the data discussed by Ott. Also,
9 both PL and PR are significant at the 0.05 level.
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FIGURE 5: PLOT FOR OTT DATA
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TABLE 1: GCOODNESS OF FIT AND OUTLIERS P-VALUES

Purent P P

Distribution NSL_PV L R
p Normal 0.45931 0.93523 0.49131
. Exponentinl 0.01386 0.99981 0.02536
b
:‘.7 ’ Uniform 0.06839 0.50572 0.9812y
P“_..
' Cauchy 7.95071E-08 2.06501E-1k 0.0211 7k«
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Recent Research in Experimental Design for Quality Improvement ;
with Applications to Logistics -
George E. P. Box :f
-4
1. LOGISTICS AND QUALITY CONTROL .
Important measures of military competence such as performance capability .
and readiness rate are greatly influenced by the quality of the weapons and of ;
the other devices available to the soldier. ‘*i
,:3 A traditional philosophy of quality control has been to "inspect bad ..fJ
% guality out" and indeed there are famous military standards that employ this S
" philosophy. W. Edwards Deming (1982) has likened this to making toast R
[ - according to the recipe "you burn it and I'll scrape it", and has urged the SR
‘I alternative philosophy of assuring that good quality has been built in to the - i
b product in the first place. 1In particular he attributes to the latter B
{ philosophy the success of Japanese industry in producing high quality products :
at low cost. A typical example of the dramatic consequences that have been '
attributed to these differences of approach are the air-conditioner defect
rates shown in Table 1 and quoted by David Garvin (1983). :
|
(In the factory: Assembly line defects per 100 units) }
American Japanese T
Total eceeeeracnsosccnsoonens 63.5 0.95 :
LeakS cecseccssscscecsncsons 3.1 0.12 o
Electrical c.oveeecuereccocsncnnns 3.3 0.12 -"—-J'-
{In the field: Service call rate per 100 units under ::uf
first year warranty coverage) R
American Japanese T
Tota]— LI R B I I B B B B AL B BR B AR B AN Y AR N 4 10.5 0'6 T e
COMPYreSSOYS eessescasssscssosanse 1.0 0.05 -
ThermoStatsS cecessoscosccccoscass 1.4 0.002
Fan MOtOrS .ssseesccconccnscocce 0.5 0.028

TABLE 1. Defect rates in US and Japanese air conditioners

Similar comparisons have been made between defect rates in American and
Japanese automobiles.

i

LA I S

The same United States industry that makes air conditioners and motor

9 vehicles also makes military hardware. It seems clear therefore that a major ”"];
F change in quality philosophy could produce a major improvement in the T
a2 reliability of the Army's equipment. The philosophy of "building guality in" .{
) employs a policy of never ending quality improvement which may be typified in R %
: B
. q
- Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. _1
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;E terms of the traditional statistical model

y = f(x,) + e

]: where y is a quality characteristic believed to depend on a set of variables

denoted by x, whose identity is known, and e is the difference y - f(x )
usually referred to as error. (Such "errors" are often somewhat arbitrarily
imbued by the theoretician with properties of randomness, normality

- independence and homoscedasticity). 1In reality e is a function e(x,) of a
- number of additional variables, x, say, which affect the system but whose
ni identity is usually unknown. In general, quality improvement is achieved by

i transferring elements of the unknown factor vector x into the known factor

EG. vector 51 as indicated below ~
.
(- )7 e
) y = f(x )+ elx,) .
known unknown

The effect of such transfer is two-fold D

(i) to reveal effects of previously unknown factors which may then be '”"J
adjusted to levels yielding higher quality and/or used to control the q
process. e

(ii) to remove variation previously caused by haphazard changes in these
factors. RS

Some of the statistical techniques which contribute to this transfer are e
quality control charting (including Shewhart, Cusum, Pareto and Fishbone -
charts) and designed experimentation on line and off line (employing in o
different and appropriate contexts factorial, fractional factorial and .
orthogonal array designs, evolutionary operation and response surface ‘}
methods). Ri

RS
1

2. SCIENTIFIC METHOD AND QUALITY

Charting and experimentation are examples respectively of passive
surveillance and active intervention both of which are important elements in RN
scientific method which it is desirable to consider further.

Humans differ from other animals most remarkably in their ability to R
learn. It is clear that although throughout the history of mankind :}252
technological learning has taken place, until three or four hundred years ago
change occurred very slowly. One reason for this was that in order to learn -
something - for example, how to make fire or champagne - two rare events q
needed to coincide: (a) an informative event had to occur, and (b) a person
able to draw logical conclusions and to act on them had to be aware of that
informative event.

L Passive surveillance is a way of increasing the probability that the rare

¢ informative event will be constructively taken note of and is exemplified by q
quality charting methods. Thus a Shewhart chart is a means to ensure that
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possibly informative events are brought to the attention of those who may be
able to discover in them an "assignable cause" (Shewhart 1931) and act
appropriately.

Active intervention by experimentation aims, in addition, to increase the
probability of an informative event actually occurring. A designed experiment
conducted by a qualified experimenter can dramatically increase the
probability of learning because it increases simultaneously the probability of
an informative event occurring and also the probability of the event being )
constructively witnessed. Recently there has been much use of experimental R

'
N P
P

design in Japanese industry particularly by Genichi Taguchi (Taguchi and Wu ,.1.!!
(1980)) and his followers. 1In off-line experimentation he has in particular -
emphasized the use of highly fractionated designs and orthogonal arrays and 1
the minimization of variance. 3
In the remainder of this paper we briefly outline some recent research on —

the use of experimental design in the improvement of quality. ) !?
)

3. USE OF SCREENING DESIGNS TO IMPROVE QUALITY

N
Tab}e 2 shows in summary a highly fractionated two-level factorial design Qifij
employed as a screening design in an off-line welding experiment performed by
the National Railway Corporation of Japan (Taguchi and Wu, 1980). In the
column to the right of the table is shown the observed tensile strength of the
weld, one of several quality characteristics measured.

The design was chosen on the assumption that in addition to main effects —]
only the two-factor interactions AC, AG, AH, and GH were expected to be -
present. On that supposition, all nine main effects and the four selected )
two-factor interactions can be separately estimated by appropriate orthogonal )
contrasts, the two remaining contrasts corresponding to the columns labelled -
e, and e, measure only experimental error. Below the table are shown the
grand average, the fifteen effect contrasts, and the effects plotted on a dot
diagram. When the effects are plotted on normal probability paper, thirteen
of them plot roughly as a straight line but the remaining two, corresponding
to the main effects for factors B and C, fall markedly off the line,
suggesting that over the ranges studied, only factors B and C affect
tensile location by amounts not readily attributed to noise.

5

3

]. Li‘.’f'f'f_ B

If this conjecture is true, then, at least approximately, the sixteen - v!i
runs could be regarded as four replications of a 2 factorial design in -
factors B and C only. However, when the results are plotted in Figure 1
so as to reflect this, inspection suggests the existence of a dramatic effect
of a different kind - when factor C is at its plus level the spread of the

*
To facilitate later discussion we have set out the design and labelled the
levels somewhat differently from Taguchi.
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data appears much larger* than when it is at its minus level. Thus, in N
addition to detecting shifts in location due to B and C, the experiment T ]
may also have detected what we will call a dispersion effect due to C. The ’ ‘
example raises the general possibility pursued in the remainder of this paper

of analyzing unreplicated designs for dispersion effects as well as for the
more usual location effects.

<+ - () n v .'0. [ )
M 40 42 44 46 . 40 42 44 46 »
a : L
t R
e 4 o
r ?
i T
a -
- . '-
[ o0 :. ]
? - 4 v v M ¥ Y L ] T Y LANNE. o Y L§ L -
40 42 44 46 40 42 44 46
3
b
b
[
L
! Drying Period B +
[_
1 Figure 1. Tensile data as four replicates of a 22 factorial
- design in factors B and C only.
g
3
-
>
. *Data of this kind might be accounted for by the effect of one or more S |
. variables other than B that affected tensile strength only at the "plus SRR
! level” of C (only when the alternative material was used). Analysis of the R i
:_ eight runs made at the plus level of C does not support this possibility, Lo
-. however. .
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- 4. RATIONALES FOR USING SCREENING DESIGNS

Before proceeding we need to consider the question, "In what situations
are screening designs, such as highly fractionated factorials, useful?”

» 4.1. Effect Sparsity

) A common industrial problem is to find from a rather large number of
R
S factors those few that are responsible for large effects. The idea is

- comparable to that which motivates the use in quality control studies of the
hii "Pareto diagram." (See, for example, Ishikawa (1976)). The situation is
ra.f approximated by postulating that only a small proportion of effects will be
. "active”" and the rest "inert". We call this the postulate of effect

o sparsity. For studying such situations, higly fractionated designs and other
S orthogonal arrays (Finney (1945), Plackett and Burman (1946), Rao (1947),
Taguchi and Wu (1980)) which can screen moderately large numbers of variables
in rather few runs are of great interest. Two main rationalizations have been
suggested for the use of these designs; both ideas rely on the postulate of
effect sparsity but in somewhat different ways.

4.2. Rationale Based on Prior Selection of Important Interactions

L J It is argued (see for example Davies {1954)) that in some circumstances
physical knowledge of the process will make only a few interactions likely and
that the remainder may be assumed negligible. For example, in the welding
experiment described above there were 36 possible two-factor interactions
between the nine factors, but only four were regarded as likely, leaving 32
such interactions assumed negligible. The difficulty with this idea is that —
in many applications the picking out of a few "likely" interactions is
difficult if not impossible. Indeed the investigator might justifiably
protest that, in the circumstance where an experiment is needed to determine
which first order (main) effects are important, it is illogical that he be
expected to quess in advance which effects of second order (interactions) are
important.

;jl[L.;3..-

4.3. Projective Rationale Factor Sparsity

A somewhat different notion is that of factor sparsity. Thus suppose
that, of the k factors considered, only a small subset of unknown size 4,
whose identity is however unknown, will be active in providing main effects
and interactions within that subset. Arquing as in Box and Hunter (1961) a
two-level design enabling us to study such a system is a fraction of
resolution R =4 + 1 (or in the terminology of Rao (1947) an array of
strength d) which, produces complete factorials (possibly replicated) in
every one of the i spaces of d = R - 1 dimensions. For example, we have -
seen that on the assumption that only factors B and C are important, the ‘
welding design could be regarded as four replicates of a 22 factorial in - -
just those two factors. But because the design is of resolution R = 3 the
same would have been true for any of the 36 choices of two out of the nine .
factors tested. Thus the design would be appropriate if it were believed that .
not more than two of the factors were likely to be "active". A
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Columns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15-11

(a) 2111 e e e e e e e e . . . . . .
{ (by 2834 Coe Co : Lo

(@ 2377 N . . .

(d) 24 L] . L] L]

TABLE 3. Some alternative uses of the orthogonal array of Table 2.

For further illustration we consider again the sixteen-run orthogonal
array of Table 2 and, adopting a roman subscript to denote the resolution R
of the design, we indicate in Table 3 various ways in which that array might
be used. It may be shown that

(a) If we associated the fifteen contrast columns of the design with
fifteen factors, we would generate a 2}?;11 design providing four-fold
replication of 2 factorials in every one of the 105 two-dimensional
projections.

(b) If we associated only columns 1, 2, 4, 7, 8, 11, 13, and 14 with :
eight factors we would agenerate a 2%;4 design providing two-fold R

replication of 2 factorials in every one of the 56 three-dimensional RRON

projections. ST

PN

(c) 1If we associated only columns 1, 2, 4, 8, and 15 with five factors - q

we would generate a ZV_1 design providing a 2%  factorial in every one of Ll

the four-dimensional projections. L

(d) If we associated only columns 1, 2, 4, and 8 with four factors we _3

would obtain the complete 24 design from which this orthogonal array was in [*

X fact generated. ”ffj?

(- Designs (a), (b) and (c) would thus be appropriate for situations where we .

. believgd respectively that not more than 2, 3, or 4 factors would be )

active . Notice that intermediate values of k could be accommodageg by R

suitably omitting certain columns. Thus the welding design is a 2377 o

,5 arran?ement which can be obtained by omitting & columns from the complete IR

= 2;?;1 . Notice finally that for intermediate designs we can take advantage of T

; both rationales by arranging, as was done for the welding design, that S

t. particular interactions are isolated. Y

g S

K S

[ .
a
3
3

3 w ..

. The designs give partial coverage for a larger number of factors, for example q

- (Box and Hunter (1961)) 56 of the 70 four-dimensional projections of the 2?;4 :‘ijf

t yield a full factorial in four variables. o
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A discussion of the interative model building process by Bcx and Jenkins
(1970) characterized three steps in the iterative data analysis cycle
indicated below

[-—b identification ——3 fitting ——3 diagnostic checking]

Most of the present paper is concerned with model identification -~ the search
for a model worthy to be formally entertained and fitted by an efficient
procedure such as maximum likelihood. The situation we now address concerns
the analysis of fractional designs such as the welding design in the above
context when only a few of the factors are likely to have effects but these
may include dispersion effects as well as location effects.

5. DISPERSION EFFECTS

We again use the design of Table 2 for illustration. There are 16 runs
from which 16 guantities -- the average and 15 effect contrasts =-- have been
calculated. Now if we were also interested in possible dispersion effects we
could also calculate 15 variance ratios. For example, in column 1 we can
compute the sample variance s%y_ for those observatisns associated with a
minus sign and compare it with the sample variance sy, _for observations
associated with a plus sign to provide the ratio F4q = s?_/s%+. If this is
done for the welding data we obtain values for 1nF;* given in Figure 2(a).
It will be recalled that in the earlier analysis a large dispersion effect
associated with factor C (column 15) was found, but in Figure 2(a) the
effect for factor C 1is not especially extreme, instead the dispersion effect
for factor D (column 1) stands out from all the rest. This misleading
indication occurs because we have not so far taken account of the aliasing of
location and dispersion effects. Since sixteen linearly independent location
effects have already been calculated for the original data, calculated
dispersion effects must be functions of these. Recently (Box and Meyer 1984a)
a general theory of location-dispersion aliasing has been obtained for
factorials and fractional factorials at two levels. For illustration, in this
particular example it turns out that the following identity exists for the
dispersion effect F,, that is the F ratio associated with factor D and
hence for column 1 of the design.

A A 2 A A LI A A A A ~ ~ ~ ~

(2=3)24(8-5)24(6-7)24(8-9)24+(10-11) 24(12-13) 2+( 14-15)>

(243)24(3+5) 24(6+47) 24 (8+9) 24(10+11) 24(12+13) 24 (14+15) 2

~ ~

Now (see Table 2) 14 =B = 2,15 and 15 = C = 3.10 are the two largest
location effects, standing out from all the others. The extreme value of Fy
associated with an apparent dispersion effect of factor D(1) is largely

*

In this figure familiar normal theory significance levels are also shown.
Obviously the necessary assumptions are not satisfied in this case, but these
percentages provide a rough indication of magnitude.
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accounted for by the squared sum and squared difference of the location
effects B and € which appear respectively as the last terms in the
denominator and numerator of equation (1). A natural way to proceed is to
compute variances from the residuals obtained after eliminating large location
effects. After such elimination the alias relations of equation (1) remain
the same except that location effects from eliminated variables drop out.

That is zeros are substituted for eliminated variables. Variance analysis for
the residuals after eliminating effects of B and C are shown in Figure
2(b). The dispersion effect associated with C (factor 15) is now correctly
indicated as extreme. It is shown in the paper referenced above how, more
generally, under circumstances of effect sparsity a location-dispersion model
may be correctly identified when a few effects of both kinds are present.

6. ANALYSIS OF UNREPLICATED FRACTIONAL DESIGHNS

Another important problem in the analysis of unreplicated fractional
designs and other orthogonal arrays concerns the picking out of "active"
factors. A serious difficulty is that with unreplicated fractional designs no
simple estimate of the experimental error variance against which to judge the
effects is available.

In one valuable procedure due to Cuthbert Daniel (1959, 1976) effects are
plotted on Normal probabilitg_gaper. For illustration Table 4 shows the
calculated effects from a 21y design used in an experiment on injection
molding (Box, Hunter and Hunter, 1978, p. 399). These effects are plotted on
normal probability paper in Figure 3.

Ty = =0F 71 mold temp.

Ty, = =0.1 + 2 moisture content

Tg = 5.5+ 3 holding pressure

Ty = -0.3 > 4 cavity thickness

Tg = =3.8 + 5 booster pressure

Tg = -0.1+ 6 cycle time

T, = 0.6 7 gate size

Tg = 1.2 > 8 screw speed
Tg = Tq .2 = =06 % 12 ¥ 37 + 4.8 + 5.6
T10 = T1.3 = 0.2 » 1.3 + 2.7 + 4.6 + 5.8
T11 =T1.4=-0.4+ 1.4 + 2.8 + 3.6 + 5.7
Typ = Tq,5 = 4.6 » 1.5 + 2.6 + 3.8 + 4.7
T13 = T1-6 = =0,3 > 1.6 + 2.5+ 3.4 + 7.8
Tqg = Tq,7 = =0.2 + 1.7 + 2.3 + 6.8 + 4.5
Tqg = Tq,8 = =06 > 1.8 + 2.4 + 3.5 + 6.7

TABLE 4. Calculated effects from a 2264 design showing
alias structure assuming three factor and higher order
interactions negligible. Injection molding experiment.
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An alternative Bayesian approich (Box and Meyer, 1984b) is as follows: S
Let T1,T2,...,TV be standardized effects with Lo

T; = e if effect inert

T. = e. + 1, if effect active
1 1 i
2
2 2 g °'2r
e; * N(O,0 ), ‘l’i +N(0'GT) k =—'02— .

Suppose the probability that an effect is active is «a.

Let a(, be the event that a particular set of r of the v factors X
are active, and let E(r) be the vector of estimated effects corr?sponding to SR
active factors of Aryye Then, (Box and "iao, 1968) with p(o) « ; the -'i;j
posterior probability that T are the only active effects is: ’i

1

(r) . v .
-1 S 2
ak 1 (r)
Pla ltiax) = [F—=] {1 - 0 - k—z) 1
where S(r) EZr)E(r) and S = z'z. In particular the marginal probability 4
that an effect i 1is active give T, a and k is proportional to w_,lq
r v
- S 2
ak (r)
—_— 1 - (1 - —= .
a Z [1 a] { ( kz) S }
(r)
i active

A study of the fractional factorials appearing in Davies (1954), Daniel
(1976) and Box, Hunter and Hunter (1978) suggested that a might range from
0.15-0.45 while k might range from 5 to 15. The posterior probabilities
computed with the (roughly average) values. a = 0.30 and k = 10 are shown
in Figure 4(a) in which N denotes the probability (negligible for this
example) that there are no active effects. The results from a sensitivity
analysis in which a and k were altered to vary over the ranges mentioned
above is shown in Figure 4(b).

It will be seen that Figure 4{(a) points to the conclusion that active
effects are associated with columns 3, 5 and 12 of the design and that column
8 might possibly also be associated with an active factor. Figure 4(b)
suggests that this conclusion is very little affected by widely different
choices for a and k. Further research with different choices of prior,
with marginization with respect to k, and with different choices of the
distribution assumptions is being conducted.

Il L AN ARy

* S
For three-level and mixed two and three level designs for example, this _ -“
analysis is carried out after the effects are scaled so that they all have -

equal variances.
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Figure 4(a)
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Welding experiment. Posterior probability that factor
i is active (a = 0.30, k = 10).
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Figure 4(b)

11]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sensitivity analysis for posterior probability
a = .15 - .45, k = 5 - 15,
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7. OTHER RESEARCH

Topics which are emphasized in Taquchi's approach to "off line quality
control" are (a) reduction of variation by error transmission studies and (b)
the choosing of a product design so that it is robust with respect to
environmental variables.

These topics are also receiving attention in further research.
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1. Combined arms models of combat. The classical Lanchester model of

military combat is defined by the equations

x = -ay ,

y = -bx ,
where x(b) 1is the strength of the X-force at time t and y(b) 1is the
strength of the Y-force at time t . If we are interested in adjoining

logistics considerations to combat models it is more realistic to start with

combined arms models of combat.

A general combined arms model of Lanchester type can be formulated in the p

following way. The X-force is assumed to have m wunits of strengths
xl(t),...,xm(t) at time t and the Y-force has n units of strengths
yl(t),...,yl(t) at time t . These units may be of different types. Let
Let x = (xl,...,xm) s ¥ = (yl,...,yn) . The combat between X and Y

forces is governed by the equations

.

X = -Ay ,
(D .
y = -Bx ,
where A is an mxn matrix and B an nxm matrix. We also have A > 0
and B> 0, i.e. A and B are nonnegative matrices. The properties ol
solution of the syst:m (1) depend entirely upon the matrix
0 -A
M= R
-B 0

an (n+m)x(n+m) matrix, subject to initial conditions
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x(0) = x_ = (

0 xlO""’xnﬂ) ,

y(0) = Yo = (ylo....,yno) .

We have Xq >0, Yo >0.

In such a model the elements of the matrixes A and B have the

following forwms: a., = X.,.a.,. and bi' = 8

SERRSSISS 37 M50
sents the efficiency of the unit yj of the Y-force when used against the

. The number “ij repre-

unit x. of the X-force . On the other hand, the number xij represents

the fraction of the firepower of unit g5 directed against the unit €. by

m
the Y-commander. We may suppose that 2 Aij =1 ., The numbers Bij and
i=]

uij are similary defined. The numbers aij and Bij are analogous to the
coefficients a and b in the classical Lanchester model--thus we may call

them attrition rate coefficients. The numbers Aij and “ij (note that

n
Y u..=1 for each i) represent a priori choices which must be made by th

2]
Zo;manders of the Y-force and the X-force, respectively.

An element aij of the matrix A can be zero if either the unit ¥;
ineffective against the unit x, or if the Y-commander elects not to use
unit Y3 against unit x; « A similar meaning is attached to an element
bij of B Dbeing zero.

An example of a combined arms model is the following which includes X
and Y wunits of four types:

(i) Direct fire combat unit.

(ii) Artillary unit;
(a) direct support,

(B) counter battery fire,

(v) air defense supression.
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(iii) Air support unit;

lié (a) close support,
n (B) air defense suppression,
3 (Y) artillery suppression.
(iv) Air defense unit.
Fi Here we have listed the functions each unit can perform.
'_ _‘ the form
0 -Al
Ml =
—B1 0
where
8, 4, a3 0]
0 8y 83 0
Al =
0 0 0 a3,

[0 %2 %3 0
and B, has the same form as Al . The matrix Ml is reducible so the
can be subdivided into two submodels., The main submodel has matrix

K 0 0 -a,, 8,4
0 0 0 0 0
" - 0 0 0 “a,, T8,
—b22 —b23 0 0 0
0 0 -b34 0 0
Lfbhz -bh3 0 0 0
415

The model then takes

0
“834
0
0
0
0 -

model 5:33
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A satisfactory theory can be developed if we assume M 1is a Lanchester
Matrix (see Maybee 1984). This means A and B are regular, i.e. each row
and column contains at least one nonzero element, and M is irreducible. In
the above example the matrix M 1is a Lanchester Matrix.

2. Supply models. For the simplest supply models we adjoin to the system (2)

supply vectors Sx(t) = (le,...,Sxm) , and Sy(t) = (Syl,...,Syn) . Here
Sxi(t) is the supply level of unit x; of X-force at time t . The
function Syi(t) has a similar meaning.

The equations of combat are supplemented by

(2) Sx = D, x, Sy = -0,y

where D1 and D2 are diagonal matrices of size mxm and nxn , respec-
tively, with positive diagonal elements., Thus the supply levels of the units
diminish with time at a rate proportional to the unit level.

The system of equations (1), (2) is to be solved subject to the following
stopping rules. 1If a unit level or supply level falls below an acceptable
percentage of initial unit or initial supply level, then that unit is
withdrawn from combat.

Note that in this model, once the equations (1) are solved, equations (2)
can be explicitly integrated to determine the vectors Sx(b) and Sy(t) .
Thus the theory of system (1) is immediately applicable to it.

A more sophisticated supply model can be developed as follows. Define
the vectors u(t) = (ul(t),...,up(t)) and v(t) = (vl(t),...,vq(t)) which
represent supply lines for the X-force and Y-force, respectively. Here ui(t)
is the capacity of the i-th X-force supply line at time ¢t . The

function vi(t) has a similar meaning.
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In this version of the mocdel we assume supplies are brought in as combat

L e

goes on. Also each commander directs fire against opposing supply lines.

Thus to the equations (1) we now adjoin the equations

Sx = “D.x + Au ,

1

2")

Sy = —Dzy + Bv )
and -
(3) G—-EY:

3
; = -Fx .

Here A 1is an mxp matrix, B 1is nxq matrix, E 1is a pxn matrix, and

F is a gqxm matrix, All of these matrices are nonnegative. Initial values

are given for Sx, Sy, u and v where Sx(0) >0, Sy(0) >0, u(0) >0,
v(0) > 0, The elements of the matrices K, B, E, and F have the same form
as those in the matrices A and B . This is because each commander makes a —=-
priori decisions as to how he uses his supply lines to bring in supplies and
also how much of his firepower he directs against each of his opponents'’
supply lines. o
Note that in this model it is still true that the solution of the system

(1) completely determines the entire model. Once the system (1) has been

solved the system (3) can be integrated directly to determine the vectors u

Az i S 200 bl A4 % e gn

C ot B A YA
. [ Ve T . .

T LIVER te LTl

and v . Then the system (2') can be integrated to determine the vectors Sx ~'H
and Sy . o
Y

Nevertheless we have a significant new issue introduced here, This is |
Ty

because of the question of how much firepower should be used against supply

.

lines versus how much is used against opposing cumbat units. This version of

- 417
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the model permits us to evaluate the effects of such choices upon the outcome
of combat. The previous simpler version only allows us to evaluate the
effects of supply levels upon the outcome of combat.

A very sophisticated supply model can now be formulated, We now assume
that the supply lines are also used to reinforce the combat units. We then

have an entirely new model having the form

.
X

Ce
1]
1
=
<
-

-Aly + A2u ,

<o
i
1
xy
]

-le + Bzv R

(4) -

Sx = -Dlx + Au ,

<
L]

Here A, 1s an mxp matrix and B

9 2 is an nxq matrix, A, >0, B, >0 .

2 2

The elements of these matrices have the same form as the matrices A1 and

B1 , that is, they are the products of coefficients which define the
capability of each supply line to furnish the given type of reinforcements
(men, tanks, etc.) with a number on the interval [0,1] which represents the

fraction of supply line capacity devoted to such reinforcements,

The matrix of the system (4) is

and the system to be solved is

418
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1 We call N a Lanchester logistics matrix if each of the matrices Al,

- Ays Bys

e

-

E, F is regular and N 1is irreducible. Of course, systems for which _ %
N is reducible can be decomposed into smaller irreducible systems. Also once j

{ (5) has been solved, we may again determine Sx and Sy by integration. .,
Preliminary results show that the basic properties of the solution of (5)

depend only upon the structure of the matrix N . Thus all such logistics

) o .
‘l..L. PR

systems can be expected to have similar solutions,

3. Issues that can be addressed by such models. It is important to

1

u. .‘
‘ ’l ’ .
B YRR

(1. understand first how our models should be used. Because of the fact that a

large set of a priori decisions must be made by ech commander with regard to

how he allocates his firepower and how he uses his supply lines, it is

L
aata_a'i s

o

.“1. PSRRI ¥

C) reasonable to suppose that a given matrix M or N will apply from time O

to the first time t, at which one of the commanders changes his allocations,

Then M 1is replaced by a new matrix i (N by ﬁ) and a model of the same

1

"' general form holds until time t2 . Of course, the initial values for the

ol

L_, interval [tl,tzl are the same as the final values at t, using the matrix
M or N . Thus a lengthy combat can be modeled as a sequence of such
P models, We can even use our models for combat which lasts over a period of

days or weeks with intermittant periods of quiet (say at night) during which

supplies or reinforcements are brought in. Then the initial conditions for

o . L
s s s . 44_4_1. PRI R

-, [tl,t2] would not necessarily be the same as the final conditions on [O,tl].

b 419

- . . PRIV < m PR P N
R P S T S SR IR LI D U



A variety of problems may be solved using these models., We may
investigate the effect of a priori decisions made by the commanders upon the
battle progress., To do this it is necessary to devise various measures of
combat effectiveness (see Willis 1982 for a variety of such measures applied
to classical combat models). We can study the result of invoking various
stopping rules and the effect of initial force sizes on battle progress. All
of these issues can be studied using combined arms models.

The issues mentioned above are algso relevant to the various supply
models, But we may use the supply models to try and understand the answers to
other questions. For exmaple, what is the relation between combat levels and
supply levels aund, in particular, what are the optimal initial supply levels?
How should suply line capacities be allocated so as to insure against having
to withdraw from combat because of inadequate supplies? Conversely, what is
the most effective allocation of fire power between enemy units and enemy
supply lines? Deeper issues concern questions such as when a commander should

change his allocations and how,
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OVERVIEW OF EXPERT SYSTEMS

Capt Stephen E. Cross, USAF
Artificial Intelligence Laboratory
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Introduction .

An expert system is a computer program that embodies the ;;j
knowledge of a human expert and a reasoning process (which may be
suggestive of the human expert's reasoning process) to perform .
some problem solving task that is usually deferred to a human O
expert. Often, these programs are referred to as knowledge based -
programs or intelligent assistants. Many programs can be con- Lo
sidered to perform some expert task. For instance, a FORTRAN -
program that computes a Fourier transform accomplishes something
that would be difficult for a human to do. What distinguishes
expert systems in the artificial intelligence context, is that
these programs use the same type of experiential knowledge as do
: their human counterparts. A significant architectural character-
ti gstic is that this knowledge is contained in a separate knowledge

ase.

, Expert systems can perform many tasks. A taxonomy of tasks
- include: prediction, diagnosis, design, planning, monitoring,
interpretation, debugging, repair, instruction, and control.

The type of knowledge that human experts use can be divided
into three categories: facts, heuristics, and beliefs. Facts are
perhaps the easiest form of knowledge to visualize. They are just
static pieces of data which are thought to be true. For instance,
a fact is 'the wing span of a T-38 is 24 feet.' Heuristics are
pieces of expertiential knowledge which are most often stated in
the form of production rules. Heuristics are 'rules of thumb' or
gut feelings that are acquired throughout the course of a career.
They are rarely recorded in text books or professional articles.
An example heuristic is taken from MYCIN [ref 1] an expert system
- that performs the diagnosis and recommended treatment task in
- infectious blood disease.

If 1) the infection is primary-bacteremia,
2) the site of the culture is one of the sterile sites,
3) the suspected portal of entry of the organism is the
gastrointestinal tract,

o Then there is suggestive evidence (cf=.7) that the identity
' of the orgarism is bacteroides.

The computer representation of this rule would look like:
(IF (AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)

¢ (MEMBF CNTXT SITE STERILESITES)
S (SAME CNTXT PORTAL GI))
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(TH (CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7)

- An expert system requires knowledge of belief. Belief
- enables the computer to decide how much credibility to attach to
facts or heuristics. Quite often belief has been reprecented
probablistically, but symbolic representations of belief are now
becoming popular. MYCIN's use of certainty factors is typical of
numerical belief representation. Belief is mapped into the range
[-1,1] where 1 represents being certain something is true, -1
represents being certain something is not true, and 0 represents
the lack of any knowledge to believe or not believe something.
The above rule has a cf of .7 which indicates a fairly certain
level of belief (equivalent to a physician saying 'I'm fairly
certain'). An algorithm is used to combine cf's during a search
process for applicable rules so that the path with the highest
combined cf is evaluated first.

An Example.

As a prototypical expert system, I will discuss the animal
production system of Winston and Horn [ref 2]. This system is
used to identify animals in a zoo. Although simple, it illus-
trates how more complicated systems like MYCIN operate. An under-
standing of production system operation is a prerequisite for
understanding more complicated rule-based system architectures.

e T " T 1
A l‘. P

A production system consists of a rule-base, a data base,
and a control program. The rule base is the repository of all
heuristics. In theory, the rule base is unordered. That is, there
is no significance in contiguous rules. Some systems (e.g.,
MYCIN) include certainty factors which are processed to give a
measure of belief. In the animal system there is no uncertainty,
hence there is no need for certainty factors. The data base in
MYCIN consists of facts glea~ed from the patient history (e.qg.,
the subject smokes 3 packs a day) and results of laboratory
tests. In the animal system the data base is a list of symbolic
facts. The list is a respository for known characteristics of
animals. The control structure uses backward chaining. For
instance, if the computer wanted to deduce that the patient had a
particular disease, it would obtain a list of rules that made
conclusions about that disease. Then the antecedents of each such
rule would be tested. Antecedents for which there is insufficient
data would be defined as subgoals and rules that made conclusions
about these new subgoals would be accessed, hence backward chain-
ing.

Many other control schemes are possible. The process of
backward chaining is often called goal-directed search. Another
process, forward chaining, seeks to invoke rules whose
antecedents presently match the data base. This strategy is
called data-driven search. Combinations of backward and forward
chaining are often employed in production systems. McDermott (ref
3] has proposed several variations. Rather than a pure forward or
backward search, McDermott suggests keeping track of rules that
have been applied successfully in the past and trying them first,
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The animal production system consists of lists of facts and
rules. The following trace will illustrate some of the basic
concepts.

; the data base initially consists of these known facts
(setq facts '((animal has hair) L
(animal eats meat) N
(animal has tawny color)
(animal has dark spots)))

iy o

sthe rule base consists of rules like
(setq rules '((rule idl (if (animal has hair)) .
(then (animal is mammal))) ]
(rule id2 (if (animal gives milk))
(then (animal is mammal))) B
(rule id3 (if (animal has feathers))
(then (animal is bird))) 1
(ruleidd (if (animal flies)
(animallays eggs))
(then (animal is bird)))
(rule id5 (if (animal eats meat))
(then (animal is carnivore)))
(rule id6 (if (animal has pointed teeth)
(animal has claws)
(animal has forward eyes))
(then (animal is carnivore)})
(rule id7 (if (animal is mammal)
(animal has hoofs))
(then (animal is ungulate)))
(rule id8 (if (animal is mammal)
(animal chew cud))
(then (animal is ungulate)
(animal is even toed)))
(rule id9 (if (animal is carnivore)
(animal has tawny color)
(animal has black stripes)) RN
(then (animal is cheetah))) T

The animal production system can be run in the forward or
backward chaining mode. In the forward mode, a search will be
made for rules whose left side match the data stored in the facts
list. Any rule that matches (and whose right side has not been
previously written into the list) will have its right side added
to the list. The search continues until no more rules are appli-
cable. In this system the function deduce accomplishes this
search.

M A o e e i e it g M o oG e ou e e
DA ) o R .
O * - . .

B (deduce) T
: rule idl deduces (animal is mammal) .

e -V
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rule id5 deduces (animal is carnivore)
rule id9 deduces (animal is cheetah)

At this point the facts list becomes:

((animal has hair) (animal eats meat)

(animal has tawny color) (animal has dark spots)
(animal is mammal) (animal is carnivore)

(animal is cheetah))

The system can be run in a backward chaining mode by estab-
lishing a list of hypotheses.

(setq hypotheses '((animal is cheetah)
(animal isostrich)
(animal is penguin)
(animal is cow)
(animal is elephant)

A search is made for rules whose left side support each
hypothesis. The function that performs this task is diagnose.

(diagnose)

Is it true: (animal has feathers)? no :the user responds
Is it true: (animal flies)? no

Is it true: (animal has hair)? ves

rule idl deduces (animal is mammal)

Care to know how? yes

(animal is mammal) demonstrated by: (animal has hair)
Is it true: (animal has hoofs)? why ;the user can
;ask why such a question was asked

(animals has hoofs) needed to show (animal is ungulate)
Is it true: (animal has hoofs)? yes

rule id7 deduces (animal is ungulate)

Care to know how? no

Is it true: (animal has black stripes)? yes

rule idl2 deduces (animal is zebra)

Care to know how? no

Hypothesis (animal is zebra) is true.

any other questions? no

The production system approach has several advantages. The
knowledge base is separate from the control program, hence it is
easy to modify, add, or delete knowledge. Modification of the
knowledge base does not inhibit operation of the computer pro-
gram. Knowledge has a uniform representation.

A major advantage of the production system approach is that
the program can 'explain' its solutions by reciting some portion
of the rules that were used in the reasoning process. For
example, a backward chaining production system interprets ques-
tions like 'How?' to mean 'How did I reach this conclusion' and
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Q; will list the rules that were instrumental in the decision.
K Questions like 'Why?' (why was this question asked) are answered

- by listing the antecedents of the rule to
g context is the subgoal. Sample questions and
o the MYCIN trace above. It should be noted
' primitive form of computer understanding.

explanation facility would have powerful

which the questions -
answers are shown in RN
that this is a very .
A truly intelligent oz
'truth maintenance' -

facilities and access to first principles. An interesting case e
study was conducted with MYCIN about four years ago. It was b
decided that since MYCIN was so splendid at diagnosis and had an Bt

. explantion capability, that it would make a good medical instruc- -

~ tor. But it was soon found that an experiential knowledge base

- was deficient at explaining many of the causal relationships in
medicine. For instance, MYCIN has a rule that says 'don't
administer tetracycline to children under eight years of age.' No
where in the knowledge are the facts that tetracycline inhibits
bone development, a physiological piece of knowledge.

There are several problems with production systems at the
present. As stated above, an expert system needs access to large
stores of knowledge. Some of the knowledge is experiential and is
probably best represented as production rules. Other knowledge
concerns domain theories. CASENET [ref 4] represents causal rela-

) tionships in internal medicine. MDX ([ref 5] orders disease pro-

- cesses in a tree structure and records at each node only that

knowledge that is required to establish the existence of that

_ disease process. Cross' air traffic control system [ref 6] uses a

x5 network representation for control algorithms. New heuristics are

- justified by propagating values (the effect of applying heuris-
tics) throughout the network.

MYCIN led to the development of many expert systems. Since
the knowledge base was separate from the program, it is possible
in many applications to simply insert a new knowledge base for a
different domain. PUFF [ref 7] an expert system for the diagnosis
of pulmonary lung disease, was written in EMYCIN (essentially
MYCIN). PUFF demonstrates that a new expert system can be built
in a fairly short period of time provided: 1) the domain of
application is not sufficiently changed, and 2) the people build-
ing the expert system have experience in building knowledge based
systems. PUFF was created in about 100 man hours by a team of
expert knowledge engineers and physicians.

One major bottleneck in expert system design is knowledge
acquisition. The speed at which an expert system can be built is
directly related to the skill and experience of the expert system
builder, commonly called the knowledge engineer. It is his job to
become sufficiently conversant in the domain to talk intelligent-
[ ly with a cooperative domain expert, and to obtain the heuristics
- that the domain expert uses to do difficult problem solving. It's
. a paradox that domain experts have only vague ideas of the actual
' heuristics that they use. This is why training »rograms like
medicine, law, etc. take many years. Michie [ref 8] relates an
interesting example. A cheese manufacturing company in England
relied on the skill of an elderly gentleman to do quality control
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of its products. He could assess the quality of cheese by probing
his finger through the wax seal and feeling the cheese inside.
Because of his prowness and the fact that he was quite elderly,
the company management wanted to automate his expert behavior.
They brought in many mechanical engineers to attempt to build a
device which could probe the cheese in the same manner as the
expert. What the expert did not realize and hence was unable to
verbalize to the system builders, was that his probing was simply
a mental device he employed to focus his sense of smell on the
particular cheese in front of him.

Another problem with rule bases is that they become large
and search becomes computationally expensive. TIERESIAS, the
subject of Randall Davis' PhD work [ref 9], used meta-rules to
guide the invocation of domain rules. A meta-rule is simply a
production rule that makes conclusions about domain rules. An
example which was used in conjunction with a MYCIN-like system
for investment advice is shown below:

If 1) the age of the investor is greater than 50,
2) the investor is not independently wealthy,

Then there is evidence (cf=1.0) that only stocks that
have high dividends should be considered.

Another approach to knowledge base organization was offereZ
by Aikins [ref 10] in her PhD dissertation. She noted the search
inefficiency problems in PUFF and developed a frame based expert
system where rules were organized into disease groups.

The final problem in rule bases which will be discussed here
is belief justification. It is very important that only one
domain expert be consulted in the creation of a new knowledge
base. Often one expert's heuristic will contradict another ex-
pert's. The computer at present has no mechanism for truth main-
tenance [ref 11] although research into this area is proceeding.

An Ideal Architecture.

One should remember that a production system is only a
simple architecture of an expert system. The anatomy of an
'ideal' expert system is shown in Fig. 1 [ref 12:17). The system
consists of a natural language front-end to facilitate communica-
tion between the computer and the user. Brooke's thesis [ref 13]
describes a universal natural language front-end for expert sys-
tems. The blackboard is used to record intermediate results
posted for use by many knowledge bases which may be operating in
parallel. The knowledge base contains facts as well as heuristic
problem-solving rules. The interpreter controls how the knowledge
base is searched. The enforcer adjusts previous conclusions when
new data or knowledge alter their bases of support. The justifier
rationalizes and explains the system's behavior.

Hearsay II [ref 14], a system designed to do speech recogni-
tion, embodies many of the concepts from the ideal architecture.
Hearsay 1II was organized as a body of cooperating, independent
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specialists. Each specialist used knowledge that was unique to
the speech recognition task. For instance, there was a knowledge
base of rules for inferring phonemes and a separate knowledge
base of grammatical rules.

Many other architectures exist. OPS5 [ref 15] allows control
rules to be specified which allow different search strategies to o
be invoked in different contexts. Rl [ref 16] is a VAX computer A
confiquration expert system written in OPS5. ROSS [ref 171 facil- '

itates communicate between small experts (or actors) through a ff
message passing language. ROSIE [ref 18] provides a structured NN
English interface to facilitate representation of rules. All of ;4!

these systems are variations on the production system theme. _
Expert System Advice.
Penny Nii (an expert expert system builder) has offered some

practical advice for those wishing to build an expert system [ref
191].

1. Don't be your own expert. It is hard to be objective
about your own 'expert' knowledge.

2. The problem must be well chosen. AI is not the answer to
every problem. Expert systems work best when the problem is well
bounded. This means that while we can represent large amounts of
problem specific knowledge we do not have a good handle on repre-
senting general world knowledge.

3. You need to meet the human expert more than halfway. Nii
begins a new expert system building task by reading all the
literature in the application domain.

4. If none of the tools that you have available will work,
build one.

5. One needs a way to handle uncertainty. A weighting
process must be built in that handles facts or knowledge like 'I
strongly believe ....' or 'It might cause .....'

6. The program must have easy means of knowledge base
modification. The program must be able to explain its answers.
Both imply that if the expert is to be a personal assistant to a
human, that it should have a useful natural language front end.

Limitati .

There are some serious limitations to expert systems at the
present time. Expert system techniques have to date only been
successful in domains where the experiential knowledge of the
expert could be decoupled from the world and common-sense
knowledge of the expert. These programs tend to be idiot savants
in that they neither recognize an interesting problem or solution
and degrade quickly near the fringes of their knowledge. For
instance, MYCIN fails when mutliple diseases are present in the




bod¥hcausing some infectious blood disease symptoms to be masked.

Another limitation is that to date, expert systems have only been
successfully applied to domains that are very narrow. The com-
puter does a fantastic job at 'deep' inferencing. We do not have
the capabilities to represent 'broad' knowledge in useful ways.
Expert systems do not have the capability to do common sense
reasoning. For instance, an expert system for the flight domain
might represent emergency checklist 'scripts'. One of these
states that when the cabin depressurizes, descend. However, an
intelligent being would immediately rule out a descent when
flying in the mountains.

All Is Not Lost.

Even with the limitations, there are many successful appli-
cations. Measures of success are 1) the number of companies that
are building expert systems for internal use (e.g., Westinghouse,
General Electric, NCR), 2) the amount of venture capital avail-
able to build systems for stock market analysis, etc., and 3) the
huge salaries available to knowledge engineers (up to $70,000 on
the west coast). We conclude the section on expert systems with a
listing of the known expert systems. Much of the list is taken
from [ref 19] and is supplemented with systems that we have
worked on.

Air Force Institute of Technology

- ATC (an air traffic control expert system framework)
- Maintenance expert systems (battle damage assessment,
circuit card diagnosis, tech order automation)

- Military planning (several military planning aids)

- Natural language front ends to expert systems

- Pilot aids, ongoing research in advanced expert system
architectures

- SPEREXAS (a speech recognition system)

Bioengineering
- MOLGEN (genetic experiment planning aid)
Chemistry

- DENDRAL (interprets mass spectrometer data)
- DECS (organic synthesis planning)

Computer Systems

- DART (diagnosis of computer faults)

- R1 (configure VAX systens!

- SPEAR (analysis of computer error logs)

- XSEL (assists sales people in selecting appropriate
computer systems)

Engineering
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- SACON (aids structural engineers)
General Purpose

- AGE (guides development of expert systems involving
hypothesis formation and information fusion)

- AL/X (assists diagnostic experts)

- EMYCIN (MYCIN without the knowledge base)

- EXPERT (an inference system used in 0il exploration tasks)

- KAS (an experimental knowledge acquisition system)

- LOOPS (an experimental knowledge representation system)

- OPS (a basic inference system)

- ROSIE (a basic inference system)

- TIERESIAS (aids in knowledge acquisiton)

- UNITS (an early version of LOOPS)

Law

- LDS (an experimental system that models legal decision
making)

- TAXMAN (an experimental system that deals with rules
implicit in tax laws)

Maintenance
- CAT-1 (diagnosis of diesel train engines)
Military

- AIRPLAN (an expert system for air traffic control around
aircraft carriers)

- HASP (an expert system for identification and tracking of
ships using ocean sonar signals)

- KNOBS (a tactical aircraft planning aid)

- TATR (an expert system for tactical air targeteering, uses
ROSIE)

- SWIRL (a tactical aircraft planning aid, uses ROSS)

Resource Exploration

- DIPMETER ADVISOR (analyzes information from oil wells)
~ DRILLING ADVISOR (diagnosing o0il well drilling problems)
~ PROSPECTOR (evaluates sites for potential mineral deposits)

Medicine

~ CADUCEUS (differential diagnosis in internal medicine)

- CASNET (a causal network that associates treatments with
various diagnostic hypotheses)

- MYCIN (diagnoses infectious blood diseases)

- MDX (uses compiled knowledge to performed various diagnosis
tasks)

~ ONCOCIN (a management system for cancer chemotherapy)

~ PUFF (diagnosis of pulmonary disorders, uses EMYCIN)
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