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OPTIMAL CONTROL OF ADMISSION, ROUTING, AND SERVICE 

IN QUEUES AND NETWORKS OF QUEUES:  A TUTORIAL REVIEW 

Shaler Stidham, Jr. 
North Carolina State University at Raleigh 

September, 1984 

Abslnar.1 

Queueing models can be useful in the analysis, design, and 
control of production, transportation, communication, and 
logistics systems. Using the theory of Markov decision processes 
and the inductive techniques of dynamic programming, normative 
models have been developed for optimal control of admission, 
routing, and servicing of jobs in queues and networks of queues. 
We review some of these models in a unified format, beginning 
with single-facility models and then moving on to models for 
networks of queues. The emphasis is on using induction (value 
iteration) to establish the qualitative structure of optimal 
control policies. We compare the resulting policies to some ad 
hoc control rules that have been proposed in the literature. 

Öddcess:   Department of Industrial Engineering and 
Program in Operations Research 

Box   ??Q6~ 
North Carolina State University 
Raleigh,  NC  27695-7906 
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several stages of disassembly, inspection and/or replacement of 

components. In communication systems, a series of queues may 

provide a model for a "virtual channel" -- a sequence o-f linked 

communication channels -- between the source and destination of a 

certain class o-f messages (cf. LazarC 1983)) . 

It may be the case that different jobs require different 

combinations of services in different sequences. There could be 

feedback of certain Jobs, because of the need for rework. In 

such cases the appropriate queueing-network model will be more 

complicated, with multiple branches and combined series-parallel 

structure. The classical industrial application for such a more 

general network model is a J,ob shop., and indeed the seminal 

theoretical paper on networks of queues <Jackson<1963)) has these 

words in the title. Subsequently, Jackson's model and 

generalizations have been successfully applied to performance 

evaluation in computer/communication systems (see, e.g., 

Kleinrock<1976)). More recently, the industrial engineering 

community has recognized the utility of the networks-of-queues 

model for analysis of flexible manufacturing systems: systems 

consisting of automated manufacturing cells, capable of 

efficiently processing a variety of jobs requiring processing by 

different combinations of machines <see, e.g., Buzacott and 

Yao<1983)). 

For the most part, queueing-network models have been 

descriptive, rather than normative. That is, they have provided 

a tool for estimating operating characteristics or measures of 

effectiveness,  such  as  congestion  levels  or  throughput,  of 
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existing or proposed systems, operating according to specified 

policies. The task o-f selecting the best design or the best 

control pol icy has been left to the system operator. Recently, 

however, more and more researchers have turned to mathematical 

models, not only tor description, but also to help make crucial 

design and control decisions. 

Optimal design is an integral part o-f queueing-network 

models for automatic transfer lines, where the location and size 

of buffers for in-process inventories are design variables (Ho et 

ftlU97?>, Al t i ok (1982) , Altiok and St i dham( 1983) > . A common 

approach is to use simulation or an analytical Markov model to 

evaluate the costs and benefits of a fixed buffer configuration, 

and then use a gradient-search algorithm to move toward a local 

(and, with luck, global) optimum. Other possible design varia- 

bles are the number of servers and/or the service rates at each 

node (e.g., work station, repair facility) of the network. 

Gross, Miller, and Soland(1982) used a queueing-network model to 

represent a system in which repairable items are processed at 

either a depot or field station and there is the possibility of 

providing spares. The number of spares and the number of servers 

at each repair facility were design variables and the objective 

was to minimize the cost of providing spares and servers, while 

maintaining a desired level of operational readiness (probabi- 

1 ity that the required number of items are operational). An 

integer-programming algorithm was used to find the optimal de- 

s i on . 

In  a design problem,  the decision variables,  once  fixed, 
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remain so throughout the planning horizon. By contrast, if the 

decision variables can be adjusted as the system status changes, 

then we have a conlcol problem. Control ma/ be exercised in a 

queueing network by varying the arrival or service rates, turning 

servers on or off, or changing job priorities or routings. By 

doing so, one can balance the "bad" (congestion) with the "good" 

(throughput). As an example, consider the communication system 

illustrated in Figure 2. (This example captures, in simplified 

-form, several of the important issues in the control of flow and 

rou t i ng i n commun i cat i on systems.) 

Figure 2.  Simple Communication Example, 

There are three cities (A, B, and C), with direct channels 

labelled i , 2 , and 3 , linking A to B , B to C , and A 

to C , respectively. Each channel transmits messages one at a 

time. Messages waiting to be transmitted are placed in an 

infinite-capacity buffer in front of the channel. There are 

three classes of messages (jobs): originating in A and des- 

tined for B (c1 ass 1), ori gi nat i ng in B and dest i ned for C 

(class 2), and originating in A and destined for C (class 3> . 

The system has no control over messages of class 1 or 2 : al 1 

messages of each class must be sent over the corresponding direct 

channel. Messages of class 3, however, may be controlled in two 

ways: (i) by accepting or rejecting a message when it "arrives" 

(is generated at city A); CM) by choosing whether to route it 

directly to c i ty  C  v i a channel 3,  or indirect 1y via channe1s i 
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and  2.   In the latter case,  the message competes with  "local" 

traffic (messages of classes 1 and 2), 

The corresponding network of queues (see Figure 3) has three 

Figure 3.  Queue i ng-Ne twork Model -for Communication System. 

nodes, one corresponding to each channel (server) and its buffer. 

The decisions (accept vs. reject, route via channels 1 and 2 vs. 

via channel 3> are indicated by "toggles". 

What can one say about "optimal", or at least "good", con- 

trol pol icies for this problem?" On the one hand, one would 1 ike 

to get as many messages as possible through the system (maximize 

throughput). This could be accomplished by admitting each c1ass- 

3 arrival. On the other hand, admitting a c1ass-3 message has 

associated "costs". One cost is reflected in the time it takes 

the message to reach its destination, which depends on which 

route is chosen and how many messages are ahead of it in the 

buffer(s). Economists would call this an "internal effect". 

Another cost is the "congestion" which is added to the system by 

admitting the message, as reflected in the additional delays 

suffered by later messages because of its presence. The economic 

term for this type of cost is an "external effect". A rational 

control policy for admission and/or routing of messages must 

balance these benefits and costs. Intuition suggests that such a 

policy should have (at least) the following (monotonici ty) pro- 

perties: if it accepts an arriving message in a given state, 

then  it should also accept if one or more messages  are  removed 
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Often it is useful to view the components of production, 

transportation, communication, or logistics, systems as queues, in 

which j.ühs (customers) are processed by one or more secuecs, The 

jobs could be parts or subassembl ies, vehicles, messages or 

computer programs, or repairable items. The servers could be 

work stations, traffic signals or road segments, communication 

channels or computer CPU's, or maintenance/repair facilities. 

Often there are many such service facilities, linked together by 

paths along which jobs may travel from one facil ity to another. 

An abstract model for such systems is a neiiAiocIi of queues, 

and such models have been increasingly recognized as useful tools 

for understanding the behavior of complex service systems. Per- 

haps the simplest network consists of a number, m , of queues in 

series, in which the output of queue i is the input to queue 

i + 1 . A flow^shop production system, such as an assembly 1 i ne or 

automatic transfer line,  has this structure (see Figure 1).   In 

Figure 1.  Queues in Series. 

such a system, each job must be processed at each of the work 

stations (numbered i = 1,2,...,m ) in the same order. Each work 

station consists of one or more servers (machines and/or workers) 

all capable of performing the same task, preceded by a buffer or 

storage area where jobs wait for processing. Obviously, such a 

model is not limited to production and assembly operations, but 

may also apply to maintenance and repair facilities in which 

incoming jobs (e.g., aircraft, vehicles) of identical or similar 

configuration  scheduled for routine maintenance must go  through 
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■from any one of the nodes;  if it is preferable to route a class- 

3  message  via  node 3 in a given state,  then it  will  remain 

pr-e-fenable to do so it one or more messages are removed from node 

3 and/or added to nodes I and 2. 

At the very least, one expects a mathematic control model to 

be capable of confirming or denying the validity of such in- 

tuition. Beyond that, such a model should lead to efficient 

numerical algorithms for computing the control parameters of an 

optimal policy — specifically, the boundary of the "acceptance 

region" and the boundary between the regions of the state space 

where it is optimal to route to nodes 1 and 2 vs, node 3 <the 

"sw i t c hi ng curve") . 

For another example of a control problem involving a network 

of queues, let us return to the series-of-queues model for a flow 

shop as pictured in Figure I. Suppose that it is possible 

to control (dynamically vary) the rates at which the servers at 

various nodes work, in response to changing congestion levels. 

For example, one might want to turn a server off when the down- 

stream buffer<s) have accumu1ated a large number of jobs or when 

the number of jobs in the upstream buffer<s> is small. "Just-in- 

time" production pol icies 1 ike the Japanese Ji.anban are a special 

case of this type of policy. Again, one would hope that a 

mathematical optimization model, based on a plausible benefit- 

cost structure, would enable one to test the val idity of such 

operating principles and efficiently calculate the parameters of 

the associated control policies, 
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The prim-any goal of this paper is to survey the progress 

that has been made toward accomplishing these two goals, in the 

general context o-f mathematical models for control of networks of 

queues. We -focus attention on models based on Markov decision 

processes, using the inductive ideas embodied in dynamic 

programming as a tool -for characterizing the structure o-f 

optimal policies as well as calculating their parameters. Ule 

begin by illustrating the economic assumptions and analytic 

technique in the context of some simple, one-facility models, and 

then move on to mu1ti-faci1 ity (queueing-network) models. The 

models considered allow control of admission, routing, and/or 

servicing of jobs. For a more detailed survey that concentrates 

on control of admission and routing, see Stidham(1984). Earlier 

comprehensive surveys may be found in Sobel(1974), Stidham(1974), 

and Crabill, Gross, and Magazine(1977). 

I .-  Admission  Conincl in  a Slügl£-=ia£;ii££: Qu&llB 

We first consider a simple, single-facility model with 

control of admission of customers. It is a special case of a 

model for exponential congestion systems, studied by Lippman and 

Stidham(1977) and is illustrated below in Figure 4.   Jobs arrive 

Figure 4.  M/M/l Queue with Control of Admission. 

at a single-server facility according to a Poisson process with 

mean arrival rate 'X (Jobs per unit time). Equ i val en 11 y: the 

interarrival times between jobs are i .i -d. (independent and i den- 
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tically distributed) with an exponential distribution with mean 

1/ % .) (See, e.g., Ross<1970) -for a discussion of properties of 

the Poisson process and exponential distribution.) The system 

operator controls the arrivals by deciding whether to accept 

(action a = 1 ) or reject (action a = 0 > an arriving job. 

Accepted jobs join an infinite-capacity queue and wait for ser- 

vice. There is a single server who serves jobs one at a time, 

with service times that are i.i.d. with an exponential distribu- 

tion w i th mean 1//*. , The shorthand for th i s i s to say that we 

have an exponential server with mean service rate ^w, (jobs per 

unit time). In the literature on queues, a system like that 

illustrated in Figure 4, but with no restriction on entry of 

jobs, is referred to as an M/M/l queue. The "M" in the first- 

position stands for the "memoryless" (exponential) distribution 

of inter-arrival times. The "M" in the second position tells us 

that the service-time distribution is also exponential. The "1" 

in the third position stands for "one server". w"e extend this 

terminology to control models, so that the model under considera- 

tion becomes an "M/M/l queue with control of admission". 

For clarity of exposition, we assume a simple benefit/cost 

structure reflecting the fact that throughput is "good" and 

congestion is "bad". Each admitted job generates a fixed reward 

(utility) r . There is a waiting cost h per job per unit time 

in the system (i.e., in the queue plus in service). Equiva- 

lently, by analogy with inventory-control problems, we can say 

that there is a cost of holding jobs h*i per unit time while 

there are  i  jobs in the system.   Future rewards and costs  are 

279 



continuously discounted at rate <* > 0 , so that the present 

value of a net benefit x received at time t is x • expC-*tt> . 

The objective o-f the system operator is to maximize the total 

expected discounted net benef i t over an in-finite time horizon.* 

»Discounting reflects the time preferences of a rational economic 
decision maker and makes it possible to compare present and 
future benefits and costs. An alternate optimal ity criterion is 
long-run average net benefit per unit time. Average-optimal con- 
trol policies can be derived from «<-d i scoun t-op t i mal policies by 
letting e< approach zero (see, e.g., Ross(i?7CO, Lippman and 
Stidham<1977)). We shall therefore confine our attention to the 
d i scoun ted-ne t-benef it cri ter ion. 

Our goal is to characterize the structure of an optimal 

control policy (rule for choosing actions) and develop efficient 

techniques for computing its parameters. To this end, we first 

use concepts from dynamic programming <Be 1 1 man<1958) , Ross<l?70>) 

to derive a functional equation satisfied by the optimal value 

function, V, i):~ maximum total expected discounted net benefit 

o'jer an infinite horizon, starting from state i . The Principle 

of Optimality of dynamic programming says that, from each 

starting state i , an optimal policy will choose an action a(i) 

= a that maximizes the sum of the discounted net benefit earned 

until the next observation point and the present value of the 

discounted net benefit earned after the next decision point, 

assuming that we follow an optimal pol icy from whatever state j 

we enter at that point. For the problem at hand, it follows that 

the optimal value function M<i) satisfies the optimality equa- 

tion  ( i>,0) i 

V< i ) = [- h-i + 'XmaxO + V< i *1 > ,V< i.) } + /AV< i -1) }/<X+/*+*<> , (1) 

where  •vl<-l.)  = M<0) .  A rigorous derivation of  the  dynamic- 
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programming optimali ty equation under general conditions satis- 

fied by our problem may be found in Schal(1975), Bertsekas<1980), 

or Whitt1e<1983). For the problem at hand, there are several 

possible heuristic derivations of C1> 9 one of them being the 

f o 1 1 ow i n g . 

We observe the system only at transitions <changes of state 

caused by arrivals or service completions), The time between 

transitions is the minimum of two independent exponential random 

variables, the time until the next arrival and the time until the 

next service completion] and thus is itself exponentially distri- 

buted with parameter X + /t , the sum of the arrival and service 

rates. Until a transition occurs, given that we are in state 

i j we incur holding cost at the constant rate h»i . Applying 

the discount factor expt-ott'f for cost accruing at time t and 

integrating over the exponentially distributed time until the 

next transition gives the term - h«i /(Ä+it+eC) , the expected 

discounted holding cost until the next observation point. The 

expected discount factor over the interval between now and the 

next observation point is ( % + /t >/C % + /(t + *C ) . The next observa- 

tion is at an arrival or a service completion with respective 

probabilities X / ( X +/*.) and /*■/<. X +/c. ) . These expressions 

follow from well-known properties of exponential distributions.* 

*Note that because U(-l) = KJKO) , the optimal i ty equation for 
state 0 implicitly assumes that the server continues to operate 
when no customers are present, but that any service completions 
are fictitious, in effect creating "dummy" transitions from state 
0 to itself. It is easy to verify that the equation for state 
0  is equivalent to 

M<0) =  ^maxtr + U(l), V(0))/<A*K) , 
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the equation resulting from imbedding only at "real" events 
(arrivals), The advantage of our formulation (often referred to 
in the literature as "uniformization"> is that it makes the time 
between observation points (although random) independent of the 
state and action. The resulting optimal i ty equations are 
structurally equivalent to those of the approximating discrete- 
time Markov decision process resulting from observing the system 
at fixed time intervals of length dt and ignoring multiple 
events in a single interval (which have probability o(dt) ). The 
equations in this form are more amenable to qualitative analysis 
via successive approximations, as we shall see presently, Uni- 
formization is a standard technique in the analysis of Markov 
chains. It usefulness in models for control of queues was recog- 
nized by Lippman(1?75) (see also Serfozo(197?)). 

We can use the optimality equation to show that an optimal 

policy is Oiuaolanlc., specifically that the optimal action a( i ) 

is non-increasing in i 10 . In other words, an optimal admis- 

sion pol icy is characterized by a cniiical niimbsn i* such that 

an arriving job is admitted if and only if i < i* . By adding 

and subtracting the term u( i ) on the right-hand side, we can 

rewrite the optimal ity equation (1) in equivalent form 

M(r) = [-h'i + XWi) + ,«.U(i-i) 
(2) 

+ 'XraaxCr - CM< i )-VC i +i>3 ,0>3/( % +/t +* ) , 

from which it is easy to see that an optimal .jd^ission pol icy 

will be monotonic if U(i) - M(i+1) is non-decreasing in i , 

that is, if U(i) is concave. In this case, the critical 

number w i 1 1 be i* = minUä V( i ) - U( i + 1 ) 1 r > . The quantity 

V(i) - V(i+1) can be interpreted as the total cost (including 

loss of net benefit to future arrivals) caused by the entry of a 

job in state i . We should admit a job if and only if this cost 

is smaller* than the reward r . 

*Our convention is to reject in case cost exactly equals reward. 
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Since   the  optima) i ty  equation  <2)  on 1 y  de-fines  KK. i ) 

imp1icit1y,  it  does  not yield a direct proof  that   U< i>   is 

concave.   One  can,  however,  exploit the -fact that <2) can  be 

solved by successive approximations: start with an approximation, 

U  ,  of the optimal value function K>     and insert it in place of 
0 

U   in  the  right-hand  side of  (1) ,  thus  generating  a  new 

approximating -function  U  .   Repeat this process,  defining  U 
1 n 

in terms of  U     <nli) by the recursive analogue of <1>: 
n-I 

k/n<r) = [-h»i + >msx{r + Yn-1 < i + 1 > ,Vn-i < i > 3 

<3> 
+ /tV   < i-1) ]/< *X +/t+ * ) . 

n-i 

The  theory  behind the convergence of  U    to   k^  ,  including 
n 

necessary  restrictions  on  U  ,  may be found  in  Schäl<1975), 
0 

St i dham< 1931 ) ,  Wh i 111 e U 933) ,  van  der WalC19815.   In  dynamic 

programming,   it  is  customary  to  call  this  approach  ualue 

Ü£Cdiiüü,  following Be 1 1 man < 1 957) .  M   can also be interpreted 
n 

as  the maximum total expected net benefit if the system is to be 

operated  for only  n  stages (observation points) and then  shut 

down,  earning  a  terminal (scrip) value according  to  a  given 

function  U (j>  of the final state  j . 
0 

Ualue  iteration  can be used as the basis for an  inductive 

proof that  V  ,  and hence  0 ,  is concave.   It is intuitively 
n 

clear  that   M(i)  should also be non-increasing in   i  .   For 

technical reasons, having to do with the boundary at state  i=0 , 

it is necessary to add this property to the induction hypothesis, 

wh ich thus be comes: 
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V <i)  is concave and non-increasing in  i 1   0    .       (4) 
n 

The inductive step involves showing,  via equation <3),  that  U 
n 

satisfies  <4>  whenever  V    does.   The non-trivial  part  is 
n-1 

showing  that concavity of a -function  g( i >  implies concavity of 

the function 

f<i):= maxir + g<i+l>,  g<i>> . <5> 

This was done by L i ppman < 1975) .   The -function  U =0  trivially 

satisfies  (4) and therefore is a suitable starting function  for 

the induction.   Convergence of  U   to U  in this case  follows 
n 

from Schäl<1975).   In the process of verifying the optimal ity of 

a  monotonic policy for the infinite-horizon discounted  problem, 

we  also  verify monotonicity for each  n-stage  problem   --  a 

property  that  may be of interest  in applications  to  problems 

with a finite planning horizon. 

Inductive analyses like this, based on the "preservation of 

concavity" through transformations like (5), form the basis for 

the study of the structure of optimal policies in many problems 

in the control of queues. The next section provides another 

illustration of the power of this approach. 

fie.rn.anks.* 

1 . Cnilical-niimbBi: pjolicifis .and ihfiic niitD£r:ii:al £.sDaipu±*±±an^. 

The inductive analysis has reduced the M/M/i admission-control 

problem to one of finding the optimal critical number i* . This 

is     a   one-dimensional    optimization   problem: among   the   class     of 
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M/M/l/n systerns, find the system capacity n = i* that yields, 

the maximum value. Naor<1969) used this approach in his seminal 

paper on admission control. For M/M/i/n systems a closed-form 

expression is available for the long-run average net benefit, 

which can be shown to be unimodal in n , so that a local maximum 

is a global maximum. Naor exploited this property to give neces- 

sary and sufficient conditions for n = i* , when the optimal ity 

criterion is long-run average net benefit. This approach was 

extended to M/M/c and more general exponential systems by Knud- 

sen(1972) and Knudsen and Stidham(1976). Systems with more gene- 

ral arrival process or service-time distribution, with attention 

restricted to critical-number policies, have been studied by 

Adler and Naor<1969), Simonovits(1976), Balachandran and Schae- 

fer(1979), and Rue and Rosenshine<19S1>. 

Of course, for discounted problems one possible technique 

for finding i* is simply to apply value iteration as a numeri- 

cal  algorithm to the optimality equation  (1).*  Although not  a 

*The  state  space must first be truncated to a  finite  set,  in 
order for the algorithm to be finite. 

particularly fast algorithm by itself (especially when is 

close to zero), value iteration can be made to converge quite 

rapidly with the incorporation of bounds, extrapolations, elimi- 

nation of suboptimal actions, and transformations. (See, e.g., 

van Nunen and Wesse1s(1979) for a survey of the different va- 

riants of value iteration.) Policy iteration ("Howard's algo- 

rithm") is another alternative. A variant of policy iteration, 

which  restricts  attention to critical-number policies  and  ex- 
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pi o its the special structure of the optimal i ty equation -for 

admission-control problems, was developed by Man Nunen and Puter- 

man<1980) ,<I 982) . Wijngaard and Stidham<1983) haue developed an 

efficient algorithm -for a class o-f Markov decision processes that 

includes the admission-control problem. 

2. Submodulaciiy and EDQüiüüic policie-s^. We see from (2) that 

our maximization problem is of the form 

f ( i )  =  max g( i , a) , 16) 
a 

where  in  this  case  g( i ,a) = a r + MX i+a)  .   The  theory  of 

submodular (and super-modular) -functions <Topk i s( 1978) ) provides a 

set of tools for showing monotonicity of the optimizing action in 

problems of this form.   A function  g(i , a)  is called suhmodulac 

(supacmodulac) in  <i ,a)  if  g(i ,a') - g(i ,a)  is non-increasing 

in  i , for all  a' > a .  If  a(i)  is defined as the (smallest) 

maximizing  action in (6),  then it is easy to see that  a<i)  is 

non-Increasing (non-decreasing) in  i  if  g(i,a)  is  submodular 

(supermodu1ar).   (Symmetric  statements  hold  for  minimization 

problems,)   In the present problem,  submodu1arity of  g(i ,a)  = 

a r + U(i+a)  follows directly from concavity of  MX i ) .  This is 

often the case in queueing-control problems. 

3. Exiansiaus. of the. induciiua appcüach-. Mar i ants of the induc- 

tive approach can be used to prove monotonicity of an optimal 

admission-control policy for systems with multiple servers or a 

state-dependent service mechanism, non-linear (convex) holding 

cost rate h(i) , and/or random rewards (Lippman and Stid- 

h am( 1 977) ) ,  w i t h a gen e r a 1 inter ar r i V a 1 -1 i me d i s t r- i bu t i on , batch 
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arrivals with random baten -.i^e, or mixed-Erlang service-time 

distribution <Stidham<1?73), Langen<1982)), with random environ- 

ments, including dependent i n terarr i val times, -fixed time hori- 

zons, non-stationary arrival process, multiple job types, or 

partially observable processes (Helm and Waldmann<1933)>, with 

general input and output process and continuous state variable 

CJohansen and Stidham<I 980)), and with charging of rewards and 

costs at departure (rather than arrival) instants (Johansen and 

Stidham(1984)), For more details about other these and other 

single-facility admission-control models, see, e.g., Stidham and 

Prabhu< 1974) , Johansen and St i dham< 1 930) , St i dhamd 984) . 

2.  Sfi-CU-Lce £an±£.o±  la  a S±rigl£.=3£!£:i!£C QU&UB. 

Our next model is -for a single M/M/l queue with control o-f 

service. The model is illustrated below in Figure 5. As we 

shall see, it is in some sense "dual" to the admission-control 

model of the previous section, and as such differs superficially 

from service-rate control models in the literature (Cra- 

bi 1 1 U972) ,<1974) , Sabeti(1973), L i ppman < 1 975) , Jo<1932)). The 

formulations can be shown to be equivalent, however-, by a simple 

transformation (see Remark 4 below). 

Figure 5.  M/M/l Queue with Control of Service. 

Once again jobs arrive from a Poisson process with mean 

arrival rate > , but now all jobs enter the system. An enter- 

ing  job  goes  immediately into service if the server  is  free; 
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otherwise, it joins the < i nf i n t te-capac i ty) queue. The single 

server per-forms (potential) services according to an exponential 

distribution with mean service rate p. . Control is exercised 

by "accepting" or "rejecting" potential service completions when 

they occur. If a potential service completion is accepted, then 

a customer departs from the system and a cost c 1 0 is in- 

curred. I-f it is rejected then no cost is incurred and the 

system state remains unchanged. Alternatively, in the case of 

rejection we can think o-f the customer in service being "-fed 

back" to receive another exponentially distributed service, as 

illustrated in Figure 5. As before, there is a holding cost h 

per unit time per job in the system. Future costs are conti- 

nuously discounted at rate c* > 0 and the objective is to 

minimize the total expected discounted cost over an infinite 

hor i zon. 

Define U<i ) := minimum total expected discounted cost over 

an infinite horizon, starting from state i . Then this optimal 

value function satisfies the optimality equation Ci^O) : 

VCi) = [ h-i + ^u<j + i) + ^minCc + VCi-l),V(i»}3/a+/* + «() , (7) 

where     U<-1)   =  U<0)    . (Equivalent1y,      assume   that   all    potential 

service completions in state 0 are rejected.) The "duality" 

with equation (i) for the admission-control problem is obvious. 

The     arguments     for   the   validity   of   (7) —     both      rigorous     and 

heuristic -- parallel those for (. i ) . An alternate version of 

the   optimality   equation,   equivalent   to   (7),    is 

K><\)   =   C   h-i   +    >V< i + 1)   +   /tKX. i ) 

288 



(8) 
+ ^timinCc - tU<l>~V<i-l>3,033/< *+/* + * ) , 

from which it follow«, that an optimal service policy will be 

monotonic if U<i) - V<iM) is non-decreasing in i , that is, 

if U(i > is convex. In this case, the optimal p o1 i c y w i11 be 

characterized by a critical number i*:= max {isU<i>~VCI-1) < c> . 

The quantity M<i) - U(i-I> is the benefit (in terms of expected 

discounted future cost savings) of a service completion in state 

i . We should accept a potential service completion if and only 

if this benefit is at least as great as the service cost c , 

that is, if and on 1 y if  i > i * .* 

»Our  convention is to accept a service completion in  case  cost 
exactly equals benefit. 

Just as in the admission-control model, one can prove that 

M<i> is convex by value iteration, and in the process also prove 

optimal ity of a monotonic policy for the n-stage problem. The 

key step is to show that convexity of a function g<i) implies 

convexity of the function 

f(t):= minCc + g(i-l), g<i)>  . <9> 

The proof exactly parallels the proof of concavity of f(i> when 

f < i }  is defined by (5) with  g<i>  concave. 

3. Dpllmalili: n£ a ijull-sßjculce ji.oll.ci:-. Under an optimal policy 

with critical number i* , the states i = 0,l,...,i*-l are 

transient. In other words, after the system first reaches state 

i*  ,  there will always be at least  i*  jobs present.   It  may 
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seem strange that an optimal pol icy might not serve unless there- 

are at least a certain minimum number of customers are present. 

In -fact, when the criterion is long-run average return, 3o- 

bel<1982> has shown — by a different approach and -for much 

more general systems than the one under consideration here 

that i* = 1 . In other words, a "fu 1 1 -service" policy is opti- 

mal : service should take place whenever at least one job is in 

the system. But for discounted problems it is possible to have 

i* > 1 : if the discount rate is large enough, the savings in 

future holding costs, after discounting, may not be large enough 

in some states to offset the service cost, which is incurred now. 

4.  Coiitciül of san.ui.ca ca±e. ui±h one o.e. mace iEasihle. ualues^.  In 

most of the literature on service control, the decision maker has 

the  option of selecting,  at each point in time,  a service rate 

i from a feasible set  A ,  which may be a  finite,  countably 

infinite, -or uncountable set (e.g., an interval [0 , At ] >. When 

service rate )f is in effect, a cost is incurred at rate c(^> 

per unit time. (See, e.g., Crab i 1 1 ( I ??2> , < 1 974) , Sabe t i < 1 973') , 

L i ppman < i 975) , Jo<1982).> By contrast, in the present model 

potential services take place at the constant rate u. and can be 

accepted, at a lump-sum cost c , or rejected, at no cost. There 

is an equivalence between the two types of model, which may be 

seen as foilows. 

First, our mode 1 is equivalent to one in which the decision 

maker must continuously choose between serving at rate tx , 

incurring  service cost continuously at rate  cCytOt—    c  ,  or 
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serving at rate  Ci (i.e., not serving), incurring service cost at 

rate  0 .   For, with  c (yw,)  de-fined in this way, the optimal i ty 

equation (7) can be rewritten as 

W< i ) = [ h- i + ■xvn+n 

+ min{c(/4) + /*> KK i -1 > t  u.V< i ) ? 3/< % + /t + « > , 
(103 

which  is  the optimal i ty equation -for the latter problem.* 

«As in the admission-control problem, we have uniformized the 
transitions by imagining that, even when the service rate is 0 , 
the server- continues to perform "fictitious" services at rate 
/t- . These fictitious services have no effect on the state or 
costs, so that the resulting Markov decision process is equiva- 
lent to one in which only the "real" transitions <arrivals and 
service completions) are considered. (See Lippman<1975) , Ser- 
fozo<1979).) 

To  see  how the case of two or more feasible service  rates 

can  be handled,  suppose our accept/reject model is modified  as 

follows.   There are  k  independent,  parallel servers, the j-th 

of  which  serves according to an exponential  distribution  with 

mean rate   Jf  ,  where  2 i' =    M,   .        Potential service  comple- 
J j 

tions  by server  j  (j = l,2,...,k) can be accepted,  at a  cost 

or rejected,  at  0  cost.   Assume the  c 's  are non-de- 
J 
creasing  in  j .   Then the term in the optimal ity equation  (1) 

that involves minimization will be replaced by 

k 
£ y * mi nCc  + MO-O , KK i ) } . 

J = 1  j      j 

An  optimal  policy will accept service completions in  state   i 

from  servers  j = 1,2,...,j#<i) ,  and reject those from servers 

j = j*<i)+i,...,k ,  where  j*<i)s= max{j: VCi)-V<i~l>£c   > .  The 
j 

inductive  proof  that   u<i>   is convex  goes  through  without 

: nan ye Thus   the      j*(i)''s     are   non-deereas i ng   in      i    :      the   more 
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jobs in the system, the more servers should be "on". This re- 

sult, which is of interest in its own right, can be used to 

establish optimal i ty o-f a monoton ic policy for a s i ngl e-seruer 

system in which the server can be operated at any rate 

^ € C 0, U, 3 , at a cost per unit time c < 3f ) , where c(2f) is a 

convex, non-decreasing function, with c<0) = 0 . One simply 

approximates c( X ) by a piecewise-1inear function over k sub- 

intervals o-f length   i"     *  ,with   S     + ... + 6     =/c 

Ik 1 k 
and   c :=  CcCZJT )~c(£)f       > 3/ t as the slope  over  the  j-th 

j J      J-l     J 
sub interval.  Convexity of  c<#)  implies that the  c   are non- 

j 
decreasing in  j ,  so that the above mu1ti-server model applies. 

It  follows  that  the optimal service rate to use  in  state   i 

equals   o   + ...  + 6 ,  which is non-decreasing  in   i 
1 j*<i) 

since  j*<i)  is non-decreasing in i 

The assumption that c( 6 ) is convex is not restrictive, 

since any non-convex c< o ) can be replaced by its lower convex 

envelope without affecting optimal policies. See, e-g-j 

Crabi1j<1972), Jo(l?82> for details. Intuitively, the reason is 

that any rate if that be 1 ongs to an i n terval where c < % > is 

non-convex can be achieved at a lower cost by mixing two rates, 

one below and the other above  Jf 

5.   Extensions, and gan&naliza±ions-.  Optimal i ty of a monoton ic 

policy  can  be proved  by extensions  of  the  above  inductive 

analysis   for systems  with  state-dependent   arrival   rates 

(Crabi1H1972)), non-linear     (convex)    holding     costs 

(LJppman(1975>>, general service-time distribution with work-in- 
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system as the state variable (Mitche11<1970), Doshi<1976)), 

and phase-type service-time distributions (Jo and Stidham(1983)). 

Papers treating the service-control problem by other techniques 

include Schassberger(1976;, Gal 1 isch(i978), and Stidham and 

Weber(1984). 

6. .Swilching cos&s .and hx=,±£C£±lc pDllciss-. In some problems 

there may he a lump-sum cost associated with swllnhlng the ser- 

vice rate -from one value to another, in addition to the cost 

rates associated with serving at various rates. (See Lu and 

Serfozo(1931) and the references cited therein.) This switching 

cost, -for example, could be proportional to the di f f erence be- 

tween the old and new service rates. The optimal service rate Y 

to select at an observation point now depends on the rate v 

currently in use as well as the number of jobs i, so that the 

appropriate state variable is (i ,V ) . An inductive analysis 

can be used to show that an optimal policy is hxs±£t£ilc, which 

means  that it is characterized by a sequence o-f pairs of conical 

limiis,   C< V    f,v   ),  i=0,l,2,...}  ,  such that for each  state 
i   i 

(i,V>  the service rate should be (1) adjusted upward to  v   , 
i 

if   V < V      j   <2) adjusted downward to V       ,  if V    >    v       ; 
i i i 

and (3) left unchanged if V      L    1/ £   1/ 
i i 

3.  Cnnlnol O£  önniitals, and Sftculczz 

.in f&cl&s .and SBC-IBS,  oi jQujeJues 

Our first model (Weber and Stidham(1983)) for control of a 

network of queues is for a cycle of m queues, in which a job 

that  completes service at node (queue)  i  goes to node   i+1 
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(We identify node  m+1  as node I .)  The system under considera- 

tion  is illustrated in Figure 6. Jobs from outside the  system 

enter node  i  at mean rate  X according to a Poisson process, 
i 

Figure 6.  Cycle of Queues with Control of Service. 

which  is not subject to control.   There is a single exponential 

server  at node  i  who per-forms potential services at mean  rate 

u,      .   A potential service completion may be accepted, at a cost 
i 

ci   (which may be negative),  or rejected,  at  0   cost.*   The 

*Cf. the single-facility service-control model in Section 2. 
Continuous control of service rates and more than one -feasible 
rate can be handled by the same transformations and extensions as 
used there.  See Remark 4. 

number of jobs in node  i  is denoted by  x   and a state of  the 
i 

system  by  the  vector  x = <x ,...,x ) ,  with  x  10  ,  i  = 
1      m i 

1,...,m .  While in state  x , the system incurs holding cost per 

unit  time ' h<x) = £h (x > ,  where each function   h (x >   is 
i  i i  i 

non-negative  and  convex (but not  necessarily  non-decreasing). 

Future costs are continuously discounted at rate  o< > ü  and the 

objective  is to minimize the total expected discounted cost over 

an infinite hör i zon. 

The two types of state transitions will be denoted 

x  — >  A x := x + e  , 
i i 

corresponding   to   an   arrival    at   node      i    ,   and 

x     —>     T   x:=   >:   -   e     +e , 
i i i + 1 
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corresponding  to an accepted service completion at node  i   and 

resulting transfer to node  i+i .  (Here  e   denotes an m-vector 
i 

With  O's  in every component except the i-th, which equals  1 .) 

The  system  is observed at every   arrival and  potential  service 

completion,  so  that observation points occur  exponentially  at 

rate   A:= 2< X + /*• > .   De-fine  U(x):= minimum total expected 
i   i 

discounted  cost over an in-finite hortzonl  starting  -from  state 

x .  Then V(x')      satisfies the optimal i ty equation 

m 
Kf ( x ) = C h ( x ) +   £ Oi V < A X) 

i=l  i   i 
m <11) 

+  S /uninCVCx) ,c  + V<T x> >]/< A + <* > , 
i=l  i i      i 

where  it  is understood that the minimization  operator  selects 

y<x)   if   x   = 0 .   <The arguments for the val idity  of  <11) 
i 

parallel  those for the single-facility model of Section 2.)   U)e 

can rewrite (11) in the equivalent version 

m m 
WCx.) = [ h<x> +  2 \ V<A x) +  £ /A V<x'> 

i = l  i   i      i = 1  i 
m (12) 

+  £ itmihCO, c - tWx)-y<T K)])/<A+*0 . 
i=l  i        i i 

The quantity  U(x>-V(T x)  can be interpreted as the benefit of a 
i 

service completion at node  i  in state  x .   We should accept a 

potential  service  completion  at node  i  if and only  if  this 

benefit is at least as great as the service cost  c 
i 

Weber and Stidham<1983) showed that an optimal policy has 

the following property (analogous to simple monotonicity in sin- 

gle -fac i 1 i ty problems): 
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6£±ac a se.cu.ice. comp-laiion at node i li^e^.^ aii£c a j.ofa is. 

Itansfeced £catn node i ±n node. i±l 1+ ±he apiimal sacuice nai£ 

a± node i does aai iac.iie.asa aad iha op-üma! saciiice caias a± 

oihac nodes da aai decrease.^. 

To establish this property, it suffices to show that the benefit, 

•vKx) - V<T x) ,      of transferring a job from node  i  to node  i+i 
i 

does  not  increase  as another job is transferred  from   i   to 

i+1 ,  and  does not decrease as another job is transferred  from 

node  j  to node  j+1 , j ^ i .  In other words, 

tJ<x> - K>(T   x)  1 V(.T   x) - y<T T x) , (13) 
i i        i i 

U(x> - U(T x) 1     y<T x> - UCT T x) ,  j?H .   (14) 
i j        i j 

It  can be shown ( by mowing one job all the way around the cycle) 

that <14) implies <13>,  so it suffices to prove C14). 

UJe call a function U<x> satisfying (14) nmliimodiilac., 

following Hajek(1983), who introduced the concept in a different 

context. In a sense, mu1timodularity is a mu1ti-dimensional 

analogue of submodularity. Weber and Stidham<1983) prove that 

the optimal value function U<x) is mu1timodu1ar by a value- 

iteration induction, the Key step of which (cf. the single- 

facility models) is to show that mu1timodu1arity is preserved by 

transformations of the form 

f(x)  =  m i n{c + q < T x), q ( x ) } 
i<    k 

. 
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6p.p.lica±iQD.si       S&nias o£ QUEUES wi±h CQCL±CLQ1  Q£ önci^als     and^DC 
S&E:U.iC.£S.-. 

These   results  can  be  applied  to  a  series  o-f  queues 

<i=1,2,...,m-l), with control of the (Poisson) arrival process at 

the first node, by adding to the series a dummy node  m , with no 

holding  cost and an in-finite supply o-f jobs,  and  letting  that 

node  receive all output -from node  m-1 and generate all input to 

node   1  .   Accepting or rejecting service completions  at  the 

dummy node corresponds to accepting or rejecting arrivals to  the 

-first  node  in the series.   The service cost  c   at the  dummy 
m 

node  is the negative o-f the reward  r  earned when  an  arriving 

job is accepted at node  1 . 

The monotonicity result referred to above implies that the 

benefit of accepting an arriving job does not decrease as another 

job is transferred from any node j in the series to node j+1 , 

or- < by combining a sequence of such moves) as a job is removed 

from any node j in the series. Thus an optimal admission- 

control policy will be more likely to accept if either of these 

two types of state change is made, which general izes the result 

in Section 1. Although the present model implicitly assumes that 

the service rate at each of the nodes in series is also con- 

trollable, the results apply to a system with fixed service 

rates, as long as the marginal holding costs do not increase from 

node i to node i+t , i = 1,2,...,m-1 . For in this case the 

problem with fixed service rates is equivalent to one in which 

service completions can be accepted or rejected but there is no 

cost of accepting a service completion;  in the latter- problem it 
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will  always be optimal to accept all service completions,  since 

they  move a job to a cheaper node at no cost.   Note  that  this 

ordering of the marginal holding costs implies that  each holding 

cost  -function   h (x >  is non-decreasing,  since  the  marginal 
i  i 

holding  cost  at node  m  is identically zero.   See  Weber  and 

St i dham< i 933) for -further discussion. 

The results of Weber and Stidham<1983) may be compared to 

those o-f Lazar<1983), who also analyzes control o-f the arrival 

rate to the first queue in a series of queues. Lazar studies a 

steady-state version of the problem, in which the objective is to 

maximize expected steady-state throughput, subject to a con- 

straint on the total expected response time (time to pass through 

all nodes) of a job. By a Lagrange-mu1tipi iers argument, this 

problem can be seen to be equivalent to the problem of choosing 

an arrival rate to the first node that maximizes a weighted sum 

of the arrival rate (i.e., the throughput of the system) and 

minus the steady-state expected number of customers in the sys- 

tem. The latter problem is clearly equivalent to the problem of 

maximizing the long-run average net benefit in a system with 

fixed reward per admitted customer and linear holding costs at 

each queue, with the same holding-cost coefficient; a problem 

that belongs to the class considered in Weber and Stidham<1983). 

Lazar's  analysis shows that an optimal control pol icy has a 

critical-number form with respect to the total number of jobs  in 

the  series:  "end-to-end" control is optimal.   This result  may 

seem  to  contradict those in Weber and Stidham(i983),  in  which 

optimal  pol icies  can  (and generally do) have  a  more  general 
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structure. But in -fact there is no contradiction, since Lazar 

derives his result by -first considering the s i ngl e-f ac i 1 i ty Nor- 

ton equivalent to the series, for which <. o-f course) an optimal 

policy is a -function o-f the total number In the system. There- 

fore, by the way in which Lazar- has formulated his problem, he 

has -from the beginning restricted attention to policies based on 

the total number o-f customers in the series. 

Dlhec Ne±ujocik.=Con±nol tlodels- 

Dayis<1977) considered  two exponential  servers  <with  mean 

rates u,       and u     ) in parallel,  each with its own queue, and a 
1       2 

renewal arrival process  —  that is,  i.i.d.  interarrival times- 

distributed as a random variable  T .   The system controller may 

reject <a=0) an arriving job, admit it to queue i <a=l), or admit 

it  to  queue 2 <a=2>,  based on the state  x = < x , x )   at  the 
I  2 

instant o-f arrival ,  where  x := number o-f jobs at queue  j  <in- 
J 

eluding  the  one in service,  if any),   j =  1,2  .   Figure  7 

illustrates the model.   An admitted customer generates a <deter- 

Figure  7.   Control  of Admission and Routing  to  Two  Parallel 
Queues 

ministic) reward  r ■   There is a holding cost rate  h <x )  per 
J  J 

unit  time while  x    jobs are at queue  J ,  where  h (. • >  is a 
j j 

convex, non-decreasing function,  j = 1,2 . 

An  inductive proof based on value iteration shows  that  an 

optimal  admission/routing policy  £a<x)>  is monotonic for  this 

problem,  in the sense that  aCx) = 0  implies  a<x+e ) = 0 , j = 
j 
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1,2 5 in other words, the rejection region  R:= tx: a<x) - 05  is 

an inctfiasing sai.   The induction also shows that the "switching 

curve"  is mono tonic:   if admitting to queue  2  (queue  i )  is 

preferable  to  admitting to queue  1  (queue  2 ) in state x      , 

then it will remain so in state  x + e   (x + e ) .  Finally,  an 
1        2 

additional  property of.the rejection region is  demonstrated  by 

the induction: as we move closer to the switching curve, we are 

more likely to reject a job. To illustrate the application o-f 

this property, note that each o-f the rejection regions illus- 

trated in Figure 8 below (-for the case o-f two symmetric queues) 

is an increasing set, but 8(a) and 8(b) violate this property 

and thus cannot be rejection regions for an optimal policy.   All 

Figure 8.  Examples o-f Increasing Sets -for Paral 1 e 1-Queue Problem 

these properties o-f an optimal policy follow from verifying that 

the optimal ualue function is concave in each argument, submodu- 

1ar, and satisfies a third condition. The three conditions taken 

together constitute the analogue of mu1timodu1arity for maximiza- 

tion problems in two dimensions. Control of routing with paral- 

lel queues was also considered by Farre11(1976), Winston(I 977), 

Weber(1978), and Ephremides, Uaraiya, and Walrand(1979) among 

others. 

Ghoneim(1980)  (see also Ghoneim and Stidham(1983))  studied 

two  exponential servers in series (with mean service  rates  u. 

and  At  ),  each with an infinite-capacity queue.   Arrivals  to 
2 

queue   j  are from a Foisson process with mean rate \     ,   j  = 
j 

1,2  .   Jobs arriving to queue  1  must go on to queue  2  after 
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-finishing service at server 1 . Jobs arriving to queue 2 

leave the system after -finishing service at server 2 . (See 

Figure ?.) The model thus describes, -for example, a simple 

communication system consisting o-f two channels in series with a 

combination o-f local and long-distance traffic. 

Figure 9.  Control o-f Admission to Two Queues in Series. 

With the same reward and cost structure as for the paral 1 el-queue 

model just discussed, an induction based on value iteration 

establishes that the same three properties hold -for the optimal 

value -function. Thus, for example, the optimal rejection region 

for jobs arriving to queue 1 is an increasing set. These proper- 

ties also rule out certain increasing sets as candidates for the 

optimal rejection region, namely those whose boundaries have 

horizontal segments of length greater than one. 

A   typical  optimal  rejection  region  (from  a  numerical 

example) has the shape shown in Figure 10.   (This shape for  the 

Figure  10.   Typical Optimal Rejection Region for Two Queues  in 
Ser i es 

rejection region is characteristic of both discounted and undre- 

counted problems.) It may be instructive to compare this rejec- 

tion region to that implied by one of the flow-control rules 

proposed in the communications literature. "End-to-end" control 

(LazaM1983)) suggests putting an upper bound, k , on the total 

number of jobs (messages) in a particular path in the network. 

The  corresponding rejection region has a stpaight-1ine boundary, 

x  + x  = k .   By contrast the boundary of an optimal  rejection 
1    2 
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region, as illustrated in Figure 10, is non-linear and non- 

symmetric. Numerical examples <cf. Abde 1 -Gawad< i 984) ) have shown 

that an optimal policy can yield benefits up to 15V. larger than 

those from the best end-to-end control. Implementing an optimal 

control requires that the system controller keep track of the 

number of jobs at each node (queue) in a path, rather than just 

the total number. So additional bookkeeping overhead would be 

required. 

Hajek<1982) has considered a general two-node model that in- 

corporates many of the features of both the parallel and series 

queue models (but not the option of accepting or rejecting arriv- 

ing jobs).   In Hajek's model, queues  1  and  2  receive Poisson 

arrivals at rates \        and  >  , respectively.  A third stream of 
1        2 

Poisson arrivals at rate "\     can be routed to either queue.   The 

stations  have fixed exponential servers with rates u.       and   u. 
1 2 

and a thi-rd exponential server with rate /u. that can be as- 

signed to either queue; jobs whose service is completed by these 

servers leave the system.   There are two additional  exponential 

servers,  with  rates  V   and  )f   ,  the first of which serves 
12 21 

queue 1 and sends jobs to queue 2, the second of which serves- 

queue 2 and sends jobs to queue 1 . Service completions by 

these servers can be "accepted" or- "rejected"} the jobs arriving 

at rate ^ are to be routed to one or the other of the queues; 

and the server with rate a. is to be assigned to one or the 

other of the queues. All these decisions Are to be made dyna- 

mically as a function of the number of jobs in the two queues. 

Hajek  uses  an inductive proof to establ ish the existence  of  a 

302 



monotonic switching curve, on which all these decisions can be 

based. His analysis accommodates convex holding costs at each 

queue and costs associated with each switching decision. 

So tar little progress has been made in characterizing or 

computing optimal control policies for more complicated networks 

than those we have discussed. As -far as I know, the only suc- 

cessful analysis of a network with more than two nodes is that of 

Weber and E;t i dham< i 983) . An essential feature of their 

cycles/series model is the absence of branching or routing 

choices. As we have seen, both branching and routing choices 

have been successfully analyzed in the context of two-node prob- 

lems. But attempts to extend these results to more than two 

nodes haue failed. In particular, the three-node, series-paral- 

lel network discussed in the introduction (see Figure 3) ap- 

parently cannot be studied by the inductive approach. <See 

Abdel -Üawadt 1 984) -for -further discussion.) 
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Figu-e 3. Queuetr'g-Netwo-k Model for Communication Sy-stem.
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Figure 5. M/M/1 Queue with Control of Service.
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SOME RECENT ADVANCES IN ACTIVITY NETWORKS

S. E. Elmaghraby

NCSU

INTRODUCTION

This paper is a subset of a much larger monograph on Progress in

ANs that is currently under preparation. Here, we limit ourselves

to three specific areas: Project compression in DANs , statistical

estimation in PANs §
, and reducibility of ANs. (For a more detailed

exposition of the acronyms DANs and PANs, see the book by Elmaghraby

(81.)

The CPM model [ 8] resolved the questions that first come to mind

4 in DANs, whose analysis is, fortunately, of elementary nature. They

enriched our vocabulary with such important concepts as: Critical

path (CP), event "slack" and activity "float", earliest and latest

node realization times; etc. The two major outstanding problems are:

optimal project "compression", and optimal "resource allocation";

neither of which can be termed "elementary". Indeed, the latter

OA problem, that of optimal resource allocation, is known to be NP-Complete

and the achievement of the optimum is impractical except in the most

trivial of networks. This, in turn, signifies that the problem is

O difficult to resolve by an "efficient" algorithm for any realistic AN;

hence the rash of heuristic procedures that yield "good" answers.

1Activity Network

*

Deterministic Activity Network

§Probabilistic Activity Network
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Fortunately, the problem of project compression is amenable to

resolution. Its significance resides in the ability to specify the

most efficient utilization of investments in the speeding up of a

project. Alternatively, it serves to alert the manager to the range

of requirements of additional investments should he wish to deviate

appreciably from the "normal" flow of work in the project.

The problems of statistical estimation are concerned with the

determination of probability distribution functions (pdf) of the

time of realization of nodes ( events) when the durations of the

activities are random variables (r.v.). In addition, a host of other

issues are raised relative to the criticality of paths and activities,

whose answer is difficult to compute, despite their theoretical

simplicity. Approximations and bounding techniques are used to give

the analyst the insight desired.

Interestingly enough, the above two classes of problems give rise

to the third issue discussed in this report, viz., the reducibility of

ANs.

One final remark. The three main sections of this report are

almost independent. This may have introduced some redundancy, but

should facilitate reading.

3

I
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I. OPTIMAL PROJECT COMPRESSION

.- The mathematical statement of the problem runs as follows:

minimize ( Cij (y (1)]
(iJ )4EA

such that the precedence constraints are respected, and the project

is completed on or before time Ts. Let tI denote the time of realiza-

V tion of node i. Then if activity (ij)EA, with the arrow in the direc-

tion i we must impose the restriction

-t + tj - > 0 Y(iJ)cA (2)

The completion time requirement adds the constraint:

, - tI  tn > -Ts  (3) 1

Here we assume that the "start node" is node 1, anr that the "terminal"

node is n; whence the set N E {1,2, ... , n}. Finally, the activity

duration yl is bound from below by a lower limit 9. > 0, and from

above by an upper limitu > i.e., 0 < J < (The
-ii , Yi LUi 1

only instance in which yiJ is permitted to be 0 is in the case of "dummy"

activities; see ref. [8 J for a detailed explanation of the utility of

these activities.) It is more convenient to re-write this double

inequality as

YIJ > 9i and -yiJ -uij V(ij)EA (4)
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The mathematical program (l)-(4) has been extensively studied under

the various manifestations of the individual activity time-cost function

C (see Chapter 2 of ref. [8 J for details). We devote the remainder

of this section to the analysis of the case in which Cij(yij is convex

decreasing.

In passing, we mention that, to the best of our knowledge, the

first treatment of convex cost functions was by Jewel [14] in 1965.

However, his motivation stemmed from PANs, where his objective was to

balance the cost of project compression versus contract penalties and

bids by competitors. In particular, he addressed the following question:

L A fixed project schedule must be determined now despite uncertainty in

activity durations. Based upon the difference between the allotted time

interval and the "free" time needed by the job, corrective action may

have to be taken to stay within the fixed, predetermined, schedule.

The problem is to determine that schedule that minimizes the expected

amount of extra effort expended to stay on schedule.

He assumes that if the allotted time to an activity (ij) is

zij t-ti) and if the activity (random) duration is Yithen the

cost function g(zlY) is convex in z for every realization y of Yfor all

activities. In Figure 1, three sample curves are given, and all differ

r in the cost incurred if y is actually less than z: (I) represents

resulting economy through, for instance, resource utilization elsewhere;

(II) would obtain if the committed resources are irretrievable; and

(III) represents the need to spend more effort because of, say, disposal

activities.
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.* V : .-b 1.-

g(z/y)
m °-m

z y

Figure 1. Three alternative curves of effort
required as a function of actual
completion time y.

Convexity of g in z for all y guarantees the convexity of the

expected cost in the decision variable z, as well as the convexity of

the sum of costs over all activities, i.e., the convexity of

(z) f- g(z-y) dF(y)

0

where F(y) is the pdf of y, and of

G(Z) y i
(ii)

. °

A typical curve of g(z) is shown in Figure 2
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I U

Figure 2. Resulting expected cost.

From this point onwards, the treatment is devoid of uncertainty,

and is reduced to minimizing G(Z) subject to the usual precedence

constraints. Jewell advocates approximating g(z) ty linear segments,

and then applying Fulkerson's algorithm. (In the example solved in

the paper, the function g(z) was quadratic in z and he used a quadratic

programming algorithm.) More elaborate approaches to this problem are

the subject matter of the remainder of this section.

We start with the quadratic case, which can be resolved analyti-

cally, while the general case is approximated by linear splines.

As wil. become evident below, the conclusions are more transparent

if we discuss two cases separately: The first assumes that the deriva-

tive dC/dy (sometimes also denoted by C") is continuous for yE[L,o);

and the second accepts discontinuities at 9 > 0 and u > Z.

Our disciisrion covers two trains of thought: The first is to

achieve exact solutions, and the second is to approximate the optimum.

As will be seen, each raises its own secondary problems.
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1. EXACT SOLUTIONS

Case 1: Continuous Derivative

Since C is quadratic with continuous derivative in the interval

[Z,-), we may assume it, without any loss of generality, to be of the

form

C(y) = b + 8(u-y) 2  < y< u (5)

Note that C is tangent to the line C(y) - b at y - u, where C' 0;

see Fig. 3. We may go one step further and simplify (5) to

2
C(x) = b + (u - x)

by setting u u IT-and x = y T , the "normalized" values of u and y,

respectively. Henceforth, we drop the "^" from the a for the sake of

simplicity, since the context reveals to which value of the upper bound

reference is made. In general, analysis proceeds with the normalized

variables {x } to the end, then it is translated into the original
ij

{Y I- variables.

We introduce one mild assumption whose justification is easy to

establish: Ts is such that no activity will be at its lower bound;

i.e., at the optimum, Yij > IiJ' (ij)eA. (Note that if Z.i is small

0 enough, this condition will be automatically satisfied.) We shall refer -:

to it as Condition L.

In ref. [ 7 ] the following characterization of the optimum solution

-U is given. Let the nodes of the network be realized at times
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K cost -

C(I)
C(y)

- durationI I U
2

Figure 3. The Quadratic Function C(y) -b + B(u-y) ;for
t< y < U.
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0- t t ti3 . - T where t corresponds to the kth0~ = ' n s i
2 3 k

earliest node. Let D() denote the sum of the derivatives C that are

"in progress" at time r. Then the given schedule of activities is

optimal iff D(r) is constant for all TE[O,T s].

There are two remarks to be made about that result. First, it was

proved by elementary variational-type arguments. Second, though it

characterized the optimum, it gave no procedure for achieving it. The

following development pertains to these two remarks.

Note that, since Cij is quadratic decreasing in the interval

ij u j ], then constant over [u ij,], it is convex. Add to this that

all the constraints are linear, and the conclusion immediately follows

that the necessary conditions of KUhn and Tucker[1 6] for nonlinear

programming are also sufficient. It is a simple matter to verify that

these conditions translate directly into the condition D(T) constant,

TC[O,Ts]; details of the proof may be found in [111. This gives a more
S

direct proof, albeit non-elementary.

As to the problem of algorithmic solution, ref. [11] also gives

such an algorithm. It is based on the following results:

Proposition I The necessary and sufficient conditions for

optimality stated above are equivalent to the conditions:

-a for i = 1

" (dji- dij) = 0 for i 0 l,n (6)

a for i = n

where dlj is the (normalized) reduction in activity (ij), and

* a is some constant.
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' . As a preliminary to the next result, let the "critical subnetwork (CSN)"

.- denote the set of longest paths in the network. It is easy

to establish that we may deal with the optimal "incremental" reductions

(r)
{d at the rth iteration, in place of the "total" reductions {d I.ij ii
The following two asserttons ensure the solvability of the system of

(r) }ukon.;'
equations in the {d I unknowns.

ij

Proposition 2 If the CSN contains K arcs, there shall be

K simultaneous linear equations relating the values of the
(r)}athrtitrto"

individual (incremental) reductions {d j at the rth iteration

to the constant a

The proof of this theorem rests on the fact that if the CSN has

m(< n) nodes and K arcs, there are m-1 independent equations (6) (the

first equation is discarded), and exactly K-m+l "fundamental loop"

equations, for a total of K independent equations in the K unknowns.

We shall refer to this system of linear equations notationally as

D a(r) (7)

where B is a K x K matrix of entries 0, + 1; D is a K x 1 column vector

of {dij(r)}, and the vector e is a vector of zeros except in position

. m-l, where it has entry 1.

Proposition 3 The system (7), in the "incremental" reduc-

tions (d(r) }, possesses a unique solution.

(r)

We are now assured of the (unique) determination of d as a func-ij(r) (r) (r) a(r) Trhis

tion of a say d = v a . It remains to determine a (r ) . This
ii ii
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is accomplished by remarking that the current CSN can be "compressed" un-

abatedly until one of the following two eventualities occur:

(i) Another (currently non-critical) path becomes "critical", or

(ii) The specified duration T is reached.

In the first eventuality the CSN must be augmented by the new path

(or paths); hence, the current system of equations (7) are no longer . -

valid and must be updated. In the second eventuality, we terminate,

since the optimum is in hand.

(r)
Denote the permissible reduction to eventuality () by a1  , and

Cr)
the permissible reduction to eventuality (ii) by a2 . Then, clearly,

a(r) mn {ar) a 2  (8)

Back substitution into the expressions for d(r) yields the respective

values.

The suggested algorithm may be briefly sketched as follows.

Step (0) Set each activity at its upper bound x = u. V(ij)EA.
ii i j

Compute the node realization times {t (0 ) } and define the CSN.

Denote the set of arcs in the CSN by K -r) in iteration r.

(r) (r) Cr)
Step (1) Compute dij in terms of a (ij)K r  by solving the

system of linear equations B(r)D - a(r)

StC( Cmuear) (r) Cr Cr) r)

Step (2) Compute a min(aI  , a ) if K < A, and a a .-

if K - A (i.e., if all activities in A are critical).

Step (3) Compute T(r ) = T (r-)-a(r ) and return to Step (1) with

(n)
r r + I if T > T ;otherwise halt.
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Finally, we have

Proposition 4 The stated algorithm yields the desired solution

in a finite number of steps.

The suggested procedure is "straightforward" except for two rather

complex operations: first the inversion of the matrix B()of coefficients

of (7), and, second, the determination of a~r The first is an opera-

3
tion of order of complexity not exceeding O(N );and the second is of

2
O(N ).(Details of capitalizing in iteration r on the availability of

the inverse of B (r-l) from the previous iteration, as well as the deter-

minat ion of the order of complexity of the operations involved are given

* in ref. [11].)

Resolving the problem for a specified completion time T also yields
5

the approach to obtaining the complete optimal time-cost function for all

feasible T s(provided that Condition L is satisfied).

The procedure has been programmed in FORTRAN 4 on the NCSU's

IBM 370/165. Details and documentation may be found in [18].

Case 2: Discontinuous Derivative

For more realism and practicality, we introduce two discontinuities

in the derivative, one at Z. and the other at u, as follows: 2

6+

CMfor y 2

0 f or y u+

-dC/dy

C'u) 33 for y u
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The cost function and its derivative would then appear as shown in 

Figure 4 . We shall refer to the derivative diagram as the kilter 

diagram (KD).  In it we distinguish four regions: 

Region F (for "float"): u < y < «; C = 0 

Region E : y = u; C < C'(u) 

Region G (for "compressible"): %  < y < u; C'(u) > C"> C(£) 

Region L (for "low bound"): y = £; C = « 

The algorithm specified below can be understood only in conjunc- 

tion with the (necessary and sufficient) Kuhn-Tucker conditions for 

optimality, on the basis of which it is easy to construct the following 

"optimality table". 

State of Actlyity 
Duration 

Flow Condition Domain of C 
ij 

ij   J-J   ij   J   i 
f.. - 0 
ij 

L < y.. = u.. = t. - t. 
ij   ij   ij   J   i °-V-cij(V E 

£..< y.. = t.-t.<u,. 
ij   ij   J   i - ij 

C' (i..) > f. =-c;.(y..) 
ij  ij    ij   U  iJ 

L-c' (u..) 
ij  ij 

£, . = y.4 = t. - t < u,. 
ij   ij   J   i   ij 

t.. >-c:.(i .) 
IJ -   -LJ   IJ 

Table 1.  Optimality Table 
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region L

-CM )

region)

regionn E

-C'(u) -region F

I duration y

Figure 4. The KD for Case 2; Z. < y <u.

derivative

-C'(y) region L
00

7eio/
regionn C

duration y
U

*Figure 5. The KD for Case 1. (Region L is never reached,
by Condition L.)
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In passing, it is worth remarking that the applicability of the Kuhn-

Tucker conditions to general convex (not necessarily quadratic) C1 func-

tions, as noted by Elmaghraby~ P was first applied to quadratic cost

[151
functions by Kapur who achieved the 103 and reasoned the optimality

table shown above. Unfortunately, his subsequent development may not

achieve the optimum, as demonstrated in [18]. This is mainly because

of his strict adherence to the concept of "maximal flow cutset", which

had validity in the case of linear cost functions (see [12]), but has

no equivalent validity in the case of nonlinear functions, albeit it

has some utility in parts of the calculations, as presently demonstrated.

40 Our algorithm rests on the following crucial observation: At itera-

tion r, if all activities in the CSN were in State C then we would pro-

ceed in an identical fashion to our procedure of Case 1 discussed above. 4
It is not difficult to see that Case 1 is, in some sense, a "degenerate"

case of our present conditions, in which the KD has the shape of Figure 5

* . in which region E has disappeared and region L is never reached (because

the duration Z jis never realized, according to Condition L). But since

now we must contend with regions E and L, the basic procedure of Case 1

should be modified to reflect the new concerns that have resulted from

* these two regions. In particular:

(a) An activity in State E cannot be shortened, though the

"flow" through it may be increased until it equals C ij(u i)

* at which time the activity may be shortened.

* .(b) An activity in State L is at its lowest possible duration,

and therefore cannot be shortened at all, though "flow"

* through it may be increased indefinitely.
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Careful study of the Optimality Table immediately reveals that any "flow"

increase in the CSN is translatable (linearly) into change in duration

of the individual activities in the CSN. Consequently, the limitations

(r)
on a r

, the amount of permissible "compression" in iteration r, should

be augmented by the two most recent considerations, as follows:

a : to be derived from the augmented flow such that activity

(ij) moves from region E to region C (or equivalently, f j

which was strictly < C' (u ) is increased to C'j(uij)).

a (r): to be derived from the augmented flow such that activity

(ij) moves from region C to region L (or equivalently, f

which was strictly > C J( z ) is decreased to C j(9ij)).

As before,

a(r) .~(r) a(r) a(r) a(r))".a min a 1  a a2  a a3  a a4

in which a (r) and a ( are determined as before.
1 2

We refrain from giving the full details of the algorithm; they may

be found in [11]. However, we make the following remarks concerning its

computability. We confine ourselves to iteration r, and therefore

eliminate the explicit reference to the iteration number for the sake

of simplicity.

A CSN may have arcs in states E, C and L. The bound a 3 on the

permissible reduction in project duration, may be obtained by interpreting

the arcs in state E as possessing capacities equal to [Cij(uij) - fij] > 0;

(ij)EE, and performing a standard flow augmentation =tep. Conceptually,
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this briags the marginal value of "cohort activities" (i.e., activities

that lie on a minimal capacity cutset containing (ij)) to the same level

as that of activity (ij)EE, and there would be no inequity in the valua-

tion of the various activities.

The change in duration of activities in state C requires the solution

of a system of K linear equations in K unknowns, similar to Case 1,

EqLations (7). Unfortunately, the matrix B no longer possesses the

desirable property of + 1 or 0 entries: its top m-l rows will indeed

have such entries, but the bottom (K-m+l) rows (corresponding to the

"fundamental loops") will have fractional entries. This is due to the

non-zero slope of C in region C, which relates the "flow" variables f

to the amount of reduction d
ij

Finally, it must be noted that while each path in the CSN is shortened

at each iteration, any individual activity need not follow such monotone

behavior: an activity may be lengthened after having been shortened,

though no activity will possess positive float if it had once been in

the CSN. This is not a new result, since it is observed even in the

[12]
linear cost case

The procedure has been programmed in FORTRAN 4 on the University's

IBM 370/165. Details and documentation may be found in [18].
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2. OPTIMAL LINEAR APPROXIMATIONS

It is a truism that project compression under linear cost functions

of the form C(y) - b - ay; Z < y < u; a, b > 0, is considerably easier ii
to resolve optimally than under nonlinear cost functions. The above

analysis, carried under the simplifying assumption of quadratic cost

functions should amply demonstrate the fact, if such demonstration were

needed! The natural question then is: what if C(y) is not quadratic,

though still convex decreasing as y increases from Z to u. Can the

problem still be analyzed? For instance, suppose

C(y) = a/(b+ky); 0< Z < y < u ; a,b,k > 0. (9)

What can be said about the optimum in this case?

One may wish to persist in applying the theoretical constructs of

the exact solutions, which are indeed applicable in toto. Unfortunately, ]
the KD'will now possess a nonlinear segment in region C, which would

necessitate the solution of a system of nonlinear equations in the 9
"flows" {f } at each iteration; an onerous task at best.

ij

The other alternative is to approximate the cost function C(y) by

a piecewise linear and convex function (i.e., linear spline) that is

optimal in some sense. There are two immediate questions that present

themselves: the first is to define the sense of the approximation itself,

and the second is to define the criterion of optimality of the approxima-

tion. We elaborate on these two questions.

3
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,.

The approximation we seek should guarantee a deviation from the optimum

value that does not exceed a prescribed proportional error 6. To 3ee what

this implies, let C(Y) - Ci (Yij) , and assume the optimum is achieved
(iJ)eA

at the vector of durations y- {yj, with corresponding value C(Y*). Of

course, Y* is unknown, and we wish to approximate the value C(Y*). Let

H (Y ) denote the piece-wise linear and convex approximation to Ci(Y
ii ii ii

and let H(Y) (J) Hij(Yij) be the criterion function of the linear
(ij)EA j j

program (LP) defined by the constraints (2)-(4). The solution of this LP,

which is achieved relatively easily, shall yield a vector of activity

durations, which we denote by n* - {nij}, and the corresponding value

H(n*). Now, the requirement we impose may be stated as follows: Select

the approximation H to satisfy the inequality

ii

IC(Y*) - H(n*)[ < 6IC(Y*)l (1.0)

for any prescribed value 6 > 0. Typically, 6 is less than 1, chosen from

the interval 1 .01, .10]. Restriction (10) simply ensures that the approxi-

mate optimum H(n*) shall not deviate from the true optimum C(Y*) by more

than a small fraction of the value of the true optimum.

We now address the issue of the "measure of closeness" of the individual q

approximating (linear) functions H(y) to the original C(y): We

adopt the "maximum norm" (Chebychev) criterion. In other words, we seek

a piece-wise linear and convex approximating sine whose maximal deviation

from the original function Cij(Yij) is minimal (i.e., optimal in the sense

of Chebychev) .
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Our procedure comprises two basic steps: The first accepts the data

of the origial problem and the specified 6 > 0 and yields a value c > 0

that represents the bound on the maximal deviation between C and Hij.

The second accepts e and constructs for each function Cij(y) the approxi-

mating linear spline Hij (y) that deviates from Cij(y) by at most c through-

out the range of y. . -

The details of the construction are given in [ 9 ]. The procedure

is programmed for the function Cij(y) aij/(bij+kijy) for illustrative

purposes.

33I
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II. ESTIMATIONS IN THE PERT MODEL

1LOne of the main advantages of using network analysis f or project

planning and control is the ability to identify the activities that are i
critical to the achievement of the project objectives. In DANs, it is

relatively easy to respond to questions such as: What is the critical

path(s)? What are the most M cricital activities? and so forth. h
We seek to develop the analogous results in PANs, such as the PERT

model. Clearly, one must phrase *the questions in probabilistic terms

such as: What path (or paths) is the most probable to be critical?

Which activity (or activities) has the highest probability of being

critical? What is the probability that a particular path is critical?

Which (minimal) paths have a total probability of being critical at

least , etc.?

In the following sections we formalize these intuitive notions

and develop procedures for approximating their measures. We concentrate

in this brief report on delineating the fundamental concepts adopted in

the approximations used, leaving the detailed accounts to a companion

report in preparation.

Some Definitions and Basic Concepts

Let P be the set of paths in the AN and let ph denote the hth path A

(from node 1 to node n), and let Z(ph ) denote its duration, h = 1,2, ... , p.

The criticality index (CI) of a path ph is denoted by CR(ph) and defined by

R(ph) =P(Z(ph) > Z(p)folPq qP (1
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where Pr(-) means the "probability of", and the duration

Z(Ph)" Y (12)
(ij) Ph

Here, Y represents the duration of activity (ij), a random variable

(r.v.) presumed of known probability distribution function (pdf).

CR(Ph) has been estimated by several analytical and Monte Carlo

sampling techniques, the latter ranging from the "crude" to the very

"sophisticated" ([1, 19, 20]). Our objective is to present analyti-

cal approaches to the determination of CR(ph) and the other measures

stated above.

The criticality of an activity (ij), 1 < i < j < n, is defined as

the sum of the CIs of the paths containing it. We denote the CI of

activity (ij) by the symbol CA(ij); hence,

CA(ij) =  CR(Ph ; (ii)eph (13)
Ph..

The procedure described in the following section relies heavily on

the iterative algorithm of Dodin [41 for the estimation of the pdf of

the project completion time, which is summarized next because of its

relevance to computing.

1. THE APPROXIMATION OF THE PDF OF PROJECT COMPLETION TIME

Dodin [ 4] developed a system of computer programs that accomplish

four tasks:

qq
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1. Generate random AN of a pre-specified number of nodes N and arcs A; 

i.e., a network from the set of networks with this n and |A|, in which 

all are equally probable. The procedure represents a slight improvement 

[13] 
over that of Herroelen and Caestecki   . Basically, there are two 

approaches, which are best discussed relative to the N x N adjacency 

matrix. The first is the "deletion method", which starts with the upper 

triangle above the main diagonal full, then sequentially eliminates 

entries of 1 randomly, subject to the restriction that every node is 

connected to both the origin as well as the terminal nodes until the 

desired number is left. The second is the "addition method", which re- 

verses the view and starts with an empty upper triangle that is to be 

filled sequentially until the desired number of arcs are present, subject 

to the same constraint. 

The choice of the method to implement depends, obviously, on the 

density of the network. The deletion method is preferred if |A| >_ 

n(n-l)/4 + 1. 

2. Discritize any given continuous pdf.  Three approaches have been tried; 

and the most efficient in terms of accuracy and computer time is a hybrid 

of the last two.  Let m denote the number of discrete points that represent 

F(>)'  (i)  the first method assumes that both the location x, and the 

probability mass p(x.) = p, of occurrence of x, are unknown, k = 1, ..., m. 

It is desired to determine these 2m unknowns by equating the first 2m 

moments of the discrete approximation to the (given) theoretical df: 

m 

1    K  Pfc "Wf '  for r = 0,1, . .., 2m-l (14) 
k=l k K 
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where 

p = E(x ) = I  yr dF(y) ;   the rth moment 

Equations ( 14 ) may be represented in matrix form as 

VP = E 

where V is the well-known Vandermonde matrix of dimensions 2m * m, 

P is the probability vector with m components, and E is the vector 

of 2m moments Cpu)«  Two methods were tried to solve this system of 

nonlinear equations, but, unfortunately, neither succeeded for m > 8. 

This approach was then abandoned.  (ii) The second method may be 

termed "the equal interval method", in which the (finite) range of 

the arc duration is divided into m equal intervals of width A each. 

The finiteness of the range is secured by defining two points I  and u 

by 

Pr(X < £) = 0.0005 = P(x > u) . 

With the intervals defined, it is easy to determine the probabilities 

{p }, assumed to be associated with {x, } at the min-points of their 

respective intervals.  This method proved quite satisfactory for df's 

that possess no sharp peaks or severe skewness.  The method is also 

convenient for the use of the Fast Fourier Transform (FFT) method in 

the successive approximation discussed below. 
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(iii) The third method divides the (finite) range into intervals of

lunequal length but of equal probabilities (- 1/rn). It is a simple

matter to determine the intervals through the inverse function F H),

and proceed assumiing the probability concentrated as the mid-point of

each interval.

A hybrid of approaches (ii) and (iii) would use equal intervals

*where the df is flat, or nearly so, and reverts to equal probabilities

where it peaks.

3. Reduce the AN to its irreducible form, through the operation of

addition (:H convolution operation) of arcs in series and multiplication

(~maximum operation) of arcs in parallel. We wish to make two remarks

* on this step. The first is that the number of discrete points m is

* usually held fixed beyond a certain point, and a reduction operation that

yields a number of points larger than m must be "folded back" to only

m points. This introduces the first source of error in the approximating.

* procedure. The second remark is that it is in this step that the equal

interval method helps because of our ability to use the FFT in the reduc-

tion process.

4. Approximate the irreducible network. This is the "heart" (central

element) of the computer package and embodies the concept of independence

that is usually invoked relative to paths into any node ieN.

The iterative progression over the nodes of the network employs the

convolution of Fi tW with F ij (t), where Fi (t) denotes the pdf of TiV the
0I

time of realization of node iEB,. and F ii(t) is the pdf of X.., the

duration of activity (ij). The convolution operation can be performed

* *by either the usual formula or through the use of FFT. Both approaches

were tested and preference is given to the usual formula.
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r. The accuracy of the approximation was tested relative to two

measures:

(1) The max-absolute deviation max IF F(t) n F(t)l
t.

(ii) The average value of the absolute deviation

In these expressions, the "exact" pdf F n(t) was secured through MCS.t

The results are most encouraging: (a) For networks up to 60 nodes

and 150 activities, the max. deviation was less than .08 and the average

deviation less than .03. (b) The max. value of the absolute deviation

occurs vihtin the low 30% of the range of the r.v. This is reassuring,

since in the study of ANs the realizations of greatest interest are

nthose in the "right tail" of the distribution; i.e., in the high 30%

of the range. (c) The sampled distribution F t) (via MCS) converges
n

toward the approximate distribution F W as the sample size increases!

This is an unexpected result, since It implies that the sampled df is

the "inexact" one! (d) The processing time of the approximate procedure

are quite reasonable, being of the order of 30 secs. for networks of

hsize (N,A) < (60,120) on the AMDAHL V-7.

2. THE ACTIVITY CRITICALITY INDEX

Let n denote the in-degree of node and assume the arcs into

n K2

a to be numbered in increasing order, the same as their originating nodes;

see Figure 6.

6t
tMonte Carlo Sampling.
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Figure 6.  The scheme of numbering arcs into j_. 

We define the cutset G. at node X  t0 De tne set of arcs resulting from 

the partitioning of the set of nodes N into two mutually exclusive sub- 

sets S. and T. where 
j   i 

S. = {ieN :  i < j}   and T. = {ien : i > j} 

Hence 

C. = {(hk)eA : heS.  and keT.} 
2 3 j 

(15) 

Let T denote the duration of the longest path forward from node _1 to 

node i_, and T. denote the duration of the longest path backwards from 

node n to node j.  Clearly, both T. and T. are r.v.'s.  Let W.. denote 
- J     J ij 

the duration of the longest path containing arc (ij); then 

W. . -  if + ¥., + Th. (16) 

346 



f b
where T max (Z(pli)} and Tb - max {Z(Pxj)} (17)SP i P N N J-

and Pij denotes a path from i to J.

Proposition 5 W - max {Z(ph)} ; Z(ph) as defined
Ph

(iJ)Eph

in (12).

The proof is by direct substitution in the definition of W j in (16).

Now, the exact value of the CI of arc (iJ) is given by (see (13)

. and (11)):

CA(ij) - [ CR(ph )
(ij) EPh

= Pr(Z(p ) > Z(pq) for all p EP) (18)
(iJ)EPh q-

Let L(ij) denote the subset of paths that contain arc (ij). Then,

clearly, CA(ij) measures the "weight" attached to the event that any

PhEL(ij) is longer than any other path in the network. Unfortunately,

it is extremely difficult to calculate CA(ij) directly from (18)

because of the need to identify the set of all paths in the network and

to calculate the corresponding CR's. To obviate that need, we appeal

to the concept of "cutset" defined above. Let

CAP(ij) Pr(Wij > for all (kZ)ECJ) (19)
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where C. is as defined in (15). Close scrutiny reveals that CAP(ij) 

measures the probability that the maximum of the paths in the subset 

L(ij) is longer than the maximum of the paths not containing (ij) , (i.e., 

in the complementary set L(ij) = P - L(ij)). These latter paths are 

precisely the paths that contain all the arcs in C. except arc (ij). 

It is demonstrated in [ 6] that CAP(ij) always underestimates CA(ij). 

But for the moment, we ascertain the iterative manner in which C. is 
J 

obtained from C.., . 
J+l 

Proposition 6  C. = C   + {(ij)eA :  i < j} - {(jk)eA : k > j} 

with the initial condition 

CN = {(iN)eA) 

where A is the set of activities in the network. 

The proof is achieved by induction, starting with node N-l. 

Proposition 7  CAP(ij) <_ CA(ij)  for all (1J)EA 

We argue heuristically as follows.  If any path p.eL(ij) is longer than 

any path p eL(ij), then ä fortiori, max{Z(p,) : pveL(ij)} is longer 

than max{Z(p ) : p eL(ij)}.  Therefore, the set on which CA(ij) is 

defined contains the set on which CAP(ij) is defined. Moreover, the 

sum of probabilities defining CA(ij) is no less than the probability of 

the union of the events in the set, which is no smaller a set than that 

defining the probability of CAP(ij).  Consequently, CAP(ij) <_ CA(ij). 
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Proposition 8 For any node i 1, n,

Z CA(ji) = CA(ij) (20)
jEB(i) JcA(i)

where the sets A(i) and B(i) denote the sets of nodes

connected to i and occurring after it and before it,

respectively. -

The proof is accomplished by defining the CI of node i, CN(i) as

follows:

CN(i) X CR(ph)

iPh-.

iE~

That is, the CI of a node is the sum of the CIs of the paths containing

* that node. Then it is easy to show, by appealing to definitions, that

CN(i) is equal to each side of equality (20).

Two immediate consequences of Proposition 8 follows:

Corollary 1 CN(l) CN(n) - CR(ph) > 1.0 (21)
PhEP  .. ,

The two equalities in (21) are rather obvious; and the last inequality

follows from the definition of CR(ph) as probability, and the fact that

the paths in the network are not necessarily independent. (Equality to

.* 1.0 is achieved only when the paths are independent and, in the case of

discrete pdf's, no two paths are critical simultaneously.)

Corollary 2 The CI of any path is equal to the CI of any unique

arc on the path (i.e., an arc that belongs to no other path). Moreover,

all unique arcs on the same path have the same CI.
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We now concern ourselves with the computation of CAP(ij). Let

V(ij) enote the maximum duration of paths not containing arc (ij).

V(ij) = max {WhI
hk

(hk)cC.

(hk) c(ij)

Consequently, from (19), we may write

CAP(ij) =Pr[Wi > V~ij)] 1

in which each W is given by (16), (rs) Cj. Thus the problem of deter-

rs J,

mining the value of CAP(ij) reduces to calculating the pdf of the r.v.'s

f bT and T , (rs)cCi. and performing the necessary convolution and maximum
r s j

foperations. But the calculation of the (approximate) pdf's of Tr and

b
T is precisely the problem discussed in [4 1. As is mentioned there,

-

the causes for the errors in estimation of these pdf's are three:

(i) the discretizing of continuous distributions (if any); (ii) the

assumption of independence of paths; and (iii) the reduction of the

domain of the computed pdf's to a predetermined (small) number of

discrete points. Most importantly, in [ 4] it is demonstrated that the

approximation to the pdf of I may either overestimate or underestimaters

the true pdf. Consequently, the approximation to CAP(ij), denoted by

ACAP(ij), cannot be asserted to be an underestimate of CA(ij), though

empirical evidence in [4 ]indicates that the approximation is excellent.

Finally, it was demonstrated in Cor. 1 that CN(l) > 1.0. In

case CN(N) > 1, which is almost always true, it is advantageous to

normalize all CIs, for arcs and nodes, by dividing throughout by CN(N),

because such normalization reduces the maximum error in the estimation
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of activity CIs. Indeed, the original maximum error

max (ICA(ij) - CAP(ij)j), while the normalized maximum error is
(ij)cA

precisely l/CN(N) of its value. A minor benefit of such normalization

is that the various CIs may be thought of now as probabilities, which

was not possible before.

3. THE HIGHEST K-CRITICAL PATHS

The title implies either of the following two problems:

(i) the identification of the minimum set of paths whose probability

of being "critical", i.e., that any member of the set is of no shorter

duration than any path in the network that is not in the set, is at

least 0; 0 < 8 < 1, (typically 8 > 0.50); (ii) the identification

of the K "most critical" paths in their rank order, i.e., the path(s)

with the highest probability of being critical, the path(s) with the

next highest probability of being critical, and so forth to the Kth"

ranking path(s).

The theoretical discussion presented below leads to an approxi-

mating procedure that emulates that used in DANs to identify the first

K CPs.
Let Pj)CP denote the set of paths ending in node j; P kP,

kdenote the kth ranked "CP" ending in node j, and ZCp.) its duration.

k r. >k rWe say that pj dominates p in probability, denoted by p r if

kJ r
Pr[Z(pk) > Z( Pr ,(pr) > (pk)] (22)

The following assertion is an immediate consequence of the above

definition.
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Proposition 9 Let p. and pi be two paths ending in node i

11 2 2
such that p1 > p2 . Then p1 1 2PiO )] =2p , .p,

where "o" denotes the catenation (or extension) of the

path from the right.

In words, this Proposition asserts that adding activity Cij) to both

paths does not alter their relative ranking, which is eminently

plausible.

Unfortunately, dominance in probability as defined in (22) is,

in general, intransitive, contrary to prima facie expectations.

1 2 2 3 1 3
That is, if p 1 > P1 and p2> P3, then the relation p' 1> P 3 need not

be true in general, but is true for symmetric distributions. To see

1 2
this, note that the dominance relation pl 4  p implies that

Pr[Z z1 2 > 1/2. We thus have

Pr[Z (p - Z (p) - Gl - G - ( - 12)] > 1/2 (23)

U

where jr = 
-E[Z (p)]. Now, assuming symmetric pdf's, it is clear

that the r.v. [Z - Z r2 ) is also symmetric about its mean
hi)

(11 - 12)' and inequality (23) implies that -(w, 1 - 112 < 0; i.e., 9

I" 2 . Similarly, the dominance relation p2 __> p3 implies that

i2 > 13 under the assumption of symmetric pdf's. We therefore con-

elude that wl > V3" Now reversing the argument we conclude that -4

Pr[Z (p) > z (p) 1/2, which finally implies that p i  e Pi

* have just proved
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Proposition 10 If the paths to a node possess symmetric pdf's,

then dominance in probability as defined in (23) is
1 ' 2 hr

transitive. Furthermore, pi - u where

Ur = E

The utility of these conclusions is evident for the result

sought. High-numbered nodes are the ones most prone to having a large

number of paths (from node 1) leading into them. (One can easily -

verify that node 2 has 1 path, node 3 has < 2 paths, node 4 has < 4

paths, node 5 has < 8 paths and node 6 has < 16 paths. In general,

node i has < 2i-2 paths leading into it from node 1.) But these paths
4|

are precisely the ones whose pdf's may be approximated by symmetric

distributions (usually the normal pdf). Consequently, they are the

ones to which the assumption of transitivity of dominance is appropri-

ate. Lower-numbered nodes are not in need for such approximation since

their paths may be explicitly enumerated and ranked.

The algorithm alluded to at the beginning of this section is

now apparent, and its gist is as follows. For any node j, let its

immediately preceding nodes be ili 2, ... , is; and suppose that the

first K CPs to node i have been identified asPi To
r r rr

* 1determine the most critical path to node j, we need to compare

Ionly the s topmost r.v.'s(Z[p. o(irj); r = 1,2, ... , s]}and rank them.
r

The highest ranking path (in probability) is pj. Now, the second

ranking path in this set is compared with the second ranking path in

the set of paths to which the topmost path belonged; and the higher

ranking (in probability) between these two paths is pj; and so on for
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p k 3,4, .. ,k. At termination, the answer to the two problems posed

at the beginning is in hand:

Mi The K most CPs of the network are precisely Pn 2  K

(ii) The minimum set of paths whose probability is no less than a

is easily obtained from the most critical paths into node n.

* - Computing experience with this approximating procedure, and compari-

son with the results obtained from extensive MCS in determining the most

critical three paths in networks of varying sizes reveal three signifi-

cant facts: (i) the match between the approximating procedure and MCS

- decreases with path rank: there was 93% matches in path rank 1, 71%
40

* matches in rank 2, and only 57% matches in rank 3; (11) the approximate

- . procedure consumes significantly less time than MCS (approximately

an order of magnitude less); (iii) In several instances, the set of

paths identified by both the approximate procedure and MCS were identical,

but the rank of the paths within the two sets was different. This is

encouraging since it implies that both approaches would identify the same

set of arcs as critical; (iv) Experimentation with MCS was necessarily

aborted at small-size networks (n -30 and JAI =90), since larger networks2

would have required inordinately large amounts of time. This phenomenon

was not experienced by the approximate procedure because of the difference

in complexity between the two: MCS requires the enumeration, identifica-

tion, and comparison of paths, which is a process that is of exponential

* 2
complexity, while the approximate procedure is of complexity 0(n )
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III. REUCIBILITY OF AN

4 ~The third area of investigation is related to the problem of "reduc- .-

tion" of ANs, which rears its head in more than one investigation in the

context of ANs. (For a description of three such investigations, see

[3Colby and Elmaghraby .)Here we limit our attention to the PERT

model and ask the question: What is the d.f. of the time of realization

of the "terminal node" of the network (which signifies the completion

time of the project)? Now, it is well-known that two activities in

series may be collapsed into one activity whose d.f. is given by the

convolution of the two individual d.f.'s. On the other hand, two

activities in parallel may be collapsed into a single activity whose

d.f. is given by the product of the two individual d.f.'s. If the

original network can be collapsed into a single activity (l,n) then,

indeed, the analytical form of the d.f. of the duration of the project

is in hand. Unfortunately, the irreducibility of such PERT networks

*prohibits such (conceptually easy) analytical determination, which, in

turn, gave rise to various approximating or bounding procedures discussed

in II above.

Consequently, we say that a digraph is reducible if either of the

following two conditions is satisfied:AI

(a) There exists at least one path with node(s) of in-degree

one and out-degree one (i.e., the path contains two arcs

in series)

(b) There exist at least two paths "in parallel"; i.e., there

are two distinct nodes i and J_, 1 <- i < j <,and two dis-

tinct paths from i to Iwith the property that if there is an
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intermediate node on either path between i and j, then it 2
is of in-degree and out-degree one.

The "reduction process" amounts to the collapsing of two arcs

into one, starting with arcs in series (the process may alternate

between combining arcs in series, then arcs in parallel, then arcs

in series that have been created by the arcs in parallel; etc.). A

digraph is said to be completely reducible if it is collapsible to a

single arc joining nodes I and n. 'Otherwise, we terminate with a

graph that is irreducible (which is shorthand for "not completely

reducible"). Then, evidently, both conditions (a) and (b) are not

satisfied.

The problem of irreducibility of ANs has been recognized by every

researcher in the field since the classical paper of Malcolm et al[1 7'

on the PERT model; (for citations, see Elmaghraby's book [8 1, Ch. 4).

Consequently, it is natural to inquire into the conditions under which

a day is irreducible. To this end we introduce some definitions and

notation.

...

"" .

I.

.- .

6i

Figure 7. The interdictive graph (IG).
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The "Interdictive Graph" (IG) is the graph shown in Figure 7. 

Evidently, it is irreducible 

We write IN(i) and OUT(i) as shorthand for the in-degree and 

the out~dgreee of node 1,  respectively. 

We write NS(a) and NE(a) for the "start node" and "end node" 

of arc _a£ A, respectively. 

By a descendant of node i we mean a node j  > i which is 

connected from i by an arc or a path. 

The set of all nodes that connect to_ node j_ by a path is 

denoted by FQ) ; I.e., P(j_) ■ {i e N : jt < j_ and i_ connects 

to j_ by a path}. 

Properties of Irreducible Digraphs (IDG) 

The following properties of IDG's are easy to verify.  For the sake 

of brevity we shall not clutter this note with their proofs.  They are 

numbered consecutively from the previous two properties: 

(3) The number of nodes |S| >_ 4. 

(4) Either 0UT(_1) = 1, in which case IN(2_) = 0UT(1) = 1 and 0UT(2) _> 2; 

or QUTCL) ^_ 2.  Therefore, without loss of generality, we can take 

the IDG to start at node _1 whose 0UT(1) >_ 2. 

(5) Either IN(n) = 1, in which case OUT(n-l) = IN(n) = 1 and IN(n-L) _> 2; 

or IN(n) > 2.  Similarly, we can assume that IN(n) _>_ 2. 

(6) There exists a smallest-numbered node i. # 1,   2^ such that _2, j_ € P(i_~) 

(2) (3) 
and the paths IT-   ■ (1,2, . . . ,i„) and II   = (l,j,...,i.) are independent 

(i.e.', they have no intermediate node in common).  (Note that the existence 

of such a node is guaranteed by the fact that both 2_  and J_ are e P(n); 

see Property 2.) 

(7) For all i i  !_, n, TN(I) + OUT(i) _> 3; hence there are no arcs in 

(simple) series. 
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The main results of Elmaghraby and Dodin [101 is the following:

Proposition: A digraph is irreducible iff it contains

the IG.

The proof of this assertion is elementary and rests on the properties

of the IG enumerated above.

Two questions flow naturally from this result. The first is:

How to detect (efficiently) the presence of the IG, and if there is

more than one, determine their count and their identity? And the

second is: What is the most economical way (in the sense of minimum

arcs) to "fix" in order to render the network completely reducible.

The issue of detection is easily answered by: do the reduction

(which is easily defined in polynomial time (0(m)), and if the trivial

network (of only one 1 , n arc) is nc- achieved, then the IG must exist.

Henceforth, we refer only to the remaining two questions.

It is our contention that either of these two questions poses a

problem that is NP-Hard. Colby2 demonstrated that both problems are

in the class NP. He also proposed a heuristic procedure that is of

4
polynomial complexity (O(n )) that dominates an earlier procedure by

[53Dodin ; see the paper by Colby and Elmaghraby 3 for details and

examples.

One final remark. Despite the fact that interest in the minimal

number of arcs to "fix" springs from the desire to secure the exact (or
6

approximate) pdf of the time of realization of node j, it is easy to

show (as was demonstrated by Dodin [5 ) that fixing the minimum number of

arcs is also useful in bounding the pdf from below. That is, if one is

not interested in determining the exact pdf (through multiple integration
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over the "fixed" arcs), but rather is interested in deriving Z.b. of the

pdf, then the identification of the minimum number of fixed arcs help "

generate tighter bounds.

5-
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THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Institute for Management Science and Engineering

MARKOV MODELS OF MULTI-ECHELON, REPAIRABLE-ITEM
INVENTORY SYSTEMS

by

Donald Gross

Douglas R. Miller

1. Introduction

Consider a typical multi-echelon repairable-item inventory system

* as shown schematically in Figure 1. Shown there is a two location

* (bases), two level of supply (spares at bases and depot), two level of

*repair (base and depot) system which we shall denote as a (2,2,2) sys-

tem. The nodes BUi (i =1,2) represent operating and spare units

(we consider for now only a single item such as a final assembly or a

key component) at base i ,BRi (i =1,2) represent the repair fa-

cility at base i, DU represents depot spares, and DR the depot

repair facility.

Our goal is to develop exact mathematical models for such finite

calling population (finite number of items), finite repair capacity,

repairable item provisioning systems in both time-varying and steady-

state environments. Specifically, we wish to find the state probability

vector (the probability distribution for the system being in its various
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BRi BUl

DR DU

BR2 BU2

Figure 1. Multi-echelon, repair-
able item system.

possible states) which will allow us to then calculate measures of per-

formance such as availability (the probability that at least some desir-

able, prespecified number of components is operational). Ultimately,

- these models will be used to yield the optimal combination of spares and

repair channels at each location in the system.

Assuming times to component failure and component repair times

* .to be exponentially distributed random variables, we have a continuous

time Markov process (CTMP). The process is driven by a rate matrix

Q = {q.} ,where q is the "rate" of going from state i to state
ii ij

j ; that is, letting X(t) represent the system state at time t
I1 4"

Ati [r{X(t+At) = jX(t)=
q -... l i ij At q

(i~j)

For example, suppose the (2,2,2) system pictured in Figure 1

is in a state (call it i ) for which the depot spares pool is not

366
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empty (at least one spare is on hand at the depot). Suppose we consider

the event: a component fails at base 1. Describing this state i by

the vector (nBUl, nBRI, nBU2, nBR2, nDU, nDR) where nk denotes the

number of components at node k in the "network," this event takes the

system to a state j , namely, (nBUl, nBR, nBU2, nBR2, nDU-1, nDR+)

at the rate qi X nBUI, where l/X is the mean time to failure

(MTTF) of a component and l is the probability (or percentage) of

failed items requiring depot repair.

If we denote the state probability (row) vector at time t by

ff(t) = Cf 1 (t), TT2 (t), ... , 7T(t)) , that is, the ith element, it) ,

is the probability of the system being in state i at time t (there

is a finite number of states [call this number S] even though this number

can be quite large), then we must solve the finite set of first-order,

linear differential (Kolmogorov) equations

= 7(t)Q.(1

For steady-state solutions, we are required to solve the finite set of

linear algebraic steady state equations,

12 3 0 (2)

where 7 = (7IT T2' ..., 7T) is the steady-state probability vector and

0 is a row vector of all zeroes. In both steady-state and transient

cases we have the further condition that the probabilities sum to one,

namely,

1 = (t)e 7 e

where e is a column vector, with all components equal to 1.

367
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2. Transient Environment

We are often interested in what happens to such systems in a time-

varying environment. For example, a sudden increase in effort (say a

peacetime to wartime shift) may cause a sudden decrease in MTTF. In

such situations, it is necessary to have ir(t) , and we must solve the

finite set of first order linear differential equations given in (1).

Except for very small systems (one or two states) analytical tech-

niques such as Laplace transforms are intractable. Since we have a fi-

nite set of equations, numerical methods can be employed. Numerical in-

tegration schemes such as Runge-Kutta or predictor-corrector methods

are possibilities. We choose a different approach, however, which is

referred to by some as randomization, and has been shown to be more ef-

ficient for these kinds of problems [see Arsham, Balana, and Gross (1983)

or Grassmann (1977a)]. For details on this technique, which can be

derived by a probabilistic argument when viewing the CTMP in a certain way,

see Grassmann (1977a and b) or Gross and Miller (1984a and b).

The computational formulas are as follows. Consider a discrete

time Markov chain (DTMC) with single-step transition probability matrix

P Q/A + I

where

A max Iqiii
i 6

that is, A is the maximum of the absolute values on the diagonal of

the Q matrix. Since a diagonal element of Q is the negative of the

sum of the other elements in the row (rows of the Q matrix sum to

zero), A is actually the absolute value of the minimum (largest
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negative) diagonal element of the matrix. This DTMC is referred to as

(k)a uniformized embedded DTMC of the CTMP. Denoting by the

state probability vector of this DTMC after k transitions, it can be

shown (see the above cited references) that

Co k -At
rr.(t) - .~(k) (At) e-k= k!

k-0

For computational purposes, it is necessary to truncate the infinite

sum. The truncation error can be easily bounded since we are

discarding a Poisson "tail," so that the computational formula

becomes

T(t,)) (k) (At) k e-At7.T) 1 0 ik kl (3)

k=O

where

T(t,E) = min N: > ei (AtEn>-..

6 being the maximum tolerable error (specified by the user). One
IN -.

advantage of this method over numerical integration is an exact bound

on the computational error.

The major computational effort in using (3) is now reduced to

(k)finding the state probability vector, ( , of the uniformized em-

bedded DTMC. This can be readily accomplished by the usual recursion,

(0) 0) ; (k+l) (k) . (4)

Gross and Miller (1984a) give a more efficient procedure than the suc-

cessive vector-matrix multiplication of (4), which takes advantage of

the sparsity of the P matrix.
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3. Steady-state Environment

Solving for the steady-state probability vector f requires

solving the set of linear algebraic equations of (2). Since one of these

equations is redundant, it is necessary to reduce the equation set by

one and use 1 = 7Te as the final equation. Thus (2) can be reformulated as

b=IA, (5)

where b is a vector of all zeroes, except for the last element, which

is a 1, and A is the Q matrix with the last column replaced by l's.

For relatively small systems, the solution can be obtained by

inverting A to get

* TT~bA1

However, for most realistic problems, the state space (and hence dimen-
i -i

sion of the A matrix) is too large to obtain A efficiently or

accurately. This situation suggests iterative procedures such as

Jacoby or Gauss-Seidel.

Consider the A matrix as a sum,

A=L+D+U,

where L is a lower triangular matrix, D is a matrix with only diagonal ele-

ments, and U is an upper triangular matrix. Then (5) can be written as

T (L+D+U) b

or

.= b - n(L+U) (6)

We can use (6) in an iterative fashion,

T D(n+l)D=b- ( (L+U) , (7)
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(0)
where we begin the procedure with some initial guess, say n(0) This

procedure is called Jacoby iteration. Note that in performing the cal-

culations, since D is a diagonal matrix, we compute In+l) (nl)

nl successively. If, as we compute the ,n+l, we replace

the iTn on the right-hand side [e.g., in computing 7(~) the.".]

S(n) vector is modified to be 7T(n) = (lT n+l) ,Tr(n+l) 7T (n+l)

'(n) In (n)Jl . N , this procedure is referred to as Gauss-Seidel

iteration, and in matrix representation is

T (n+l) T (n)
(uT+D) ( l  b - Lr , (8)

T T
where 7T and b are now column vectors, and UT , L are the trans-

poses of U and L , respectively.

Two questions remain to be answered concerning use of the itera-

tive procedures of (7) or (8); namely, (i) do the procedures converge,

and (ii) when should the iterations be terminated? In general, these

procedures may not necessarily converge, although for our well-structured

Markov process convergence will take place. The stopping criterion gen- U

erally used is the Cauchy criterion, namely, stop when

max (n+l) (n) < E0 , (9)

i

where E0  is an "arbitrarily" chosen small number. We found using the

fractional difference version of (9), namely, stop when

(n+l) (n)
STi. -IT.1. 1

max (n) < 0 (10)
i T.

to be somewhat more effective. While there has been some success in

using Gauss-Seidel (G-S) on Markov models [see Kaufman, Gopinath, and
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Wunderlich (1981)], problems exist with respect to rate of convergence

and appropriate stopping criteria. The G-S convergence rate can often be

improved by using overrelaxation, that is, by weighting with a coeffi-

(n+l) (n+l) (n+i)cient greater-than one the Trr ) , 7T1' Tr-i used in calcu-

(n+l)lating (nl [see Kaufman, et al. (1981) or Maron (1982)].

Usually, the G-S procedure is applied to a set of equations with

a nonsingular matrix (such as A ). Consider a nonsingular matrix M

with positive diagonal elements and negative off-diagonal elements.

The G-S procedure is known to converge for sets of equations with such

an M matrix [see Varga (1963)]. Now consider equation set (2), namely,

0 = Q

Multiplying through by -1 gives

0 = [-Q]

where -Q has positive diagonal elements and negative off-diagonal ele-

ments. However, it is singular, since one equation of this set is re-

dundant. Suppose we arbitrarily set TVS (assuming there are S states)

to one, remove the last row of the Q matrix (call this reduced matrix

Q ) and consider solving the reduced S-1 x S-1 set of equations

0o

Now -~is an M matrix and convergence is guaranteed. Of course the -

resulting f. values are relative to TS = 1 so that they must be renor-
1

i malized by dividing each by .= How fast convergence takes place

still is a key question, however. It turns out [see Kaufman, et at.

(1981)] that working with the full Q matrix, even though it is singu-

lar, speeds convergence, and this is what we also do.
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Another procedure is to use the uniformized embedded DTMC of the 

randomization procedure with transition probability matrix P = Q/A + I . 

This Markov chain has limiting probabilities given by 

£  = (feP , (11) 

and they are identical to the IT of the CTMP we seek  [(j> -  (j)P => <j> = 

§.(.(Q/h)+l)  => 0 = <£(Q/A) => 0 = ^Q = 0 = TTQ ] .  Solving the set of 

equations given by (11) is no easier, of course, than solving that of 

(5).  However, we know from Markov chain theory that limiting probabil- 

ities of a DTMC can be found by iteration, namely, 

(n+1)    (n)„ /,.,-. TT       = TT   P . (12) 

Here again, we have computational problems associated with iteration, 

but we know from Markov chain theory that convergence is guaranteed due to 

the existence of a steady state vector TT  (the P matrix is irreducible), 

The problem of when to stop the iterations remains, however.  Using the 

Cauchy criterion here results in problems similar to those found when 

using it for G-S iteration, namely, successive probabilities can differ 

by very small amounts and still be far from the steady state values. 

Wallace and Rosenberg (1966) provide a considerably better stop- 

ping criterion than the Cauchy criterion of (10) .  Their stopping 

rule is based on estimating the rate of convergence by estimating 

the second eigenvalue of P , and turns out to be:  "Stop when 

(n+1) . (n) 
TT. - . , T X  

(n+1)  (n) 
IT      "IT 

<£A •" (13) 1/n  b0 
1 

For details of this development, see Wallace and Rosenberg (1966) or 

Gross, Kioussis, Miller, and Soland (1984). 
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4. Results

The following section gives a brief summary of results to date.

For greater detail, we refer the reader to Gross and Miller (1984b) and

Gross, Kioussis, and Miller (1984) for the transient case and to Gross,

* Kioussis, Miller, and Soland (1984) for the steady-state case.

4.1 Transient Case

The largest system solved to date using equation (3) directly

was a (2,2,2) system (as pictured in Figure 1) with 18 components at

base 1 (of which 4 were spares), 13 at base 2 (of which 3 were spares),

and 3 spares at the depot. The base repair shops had 2 parallel service

channels each, and the depot repair facility had four. This gave a

state space of 20,748 (Q = 20,748 x 20,748).

The time-varying environment scenario is shown in Figure 2. At

time 6 , a shift in MTTF (1/X) occurs but it takes until time 10 for

the repair facilities to "catch up" in MTTR (i/1). This simulates a
69

change in usage due to, say, a shift from peacetime to wartime. The

measure of effectiveness calculated is the availability at time t

(t = 1,2,...,15) , where availability is defined as follows: q

A (t) Pr{at least 14 components are operational at base 1 at

time t}

A2(t) Pr{at least 10 components are operational at base 2 at

time t}

A (t) Pr{at least 14 components at base 1 and at least 10
12

components at base 2 are simultaneously operational u
at time t}
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..

Repair rate 1.5p'

Repair rate 1i 50% incr.

Failure rate 1.5X

Failure rate X 150% incr.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

Figure 2. Time-varying environment scenario for sample run.

Figure 3 shows a plot of A1 (t) versus t Plots of A2(t) and

A3 (t) are similar in nature. The graph shows an initial AI(0) of 1.0

(we assume at time zero alZ components are operational) and thereafter

a drop-off toward the steady-state availability as time increases. At

time 6, the increase in failure rate occurs and A (t) begins to drop

off at a higher rate, heading for a new, lower steady-state availability.

However, the increase in repair rate at time 10 causes A1 (t) to begin

to rise, heading back toward the original steady-state availability. This

run took approximately 25 minutes of CPU time on a VAX 11/780 computer

using the randomization computation of (3) with the efficient procedure

i(k)" -.
given in Gross and Miller (1984a) for calculating •

As the systems become more complex (more bases, multiple component

types, indenture, more echelons, etc.) the state-space grows rapidly. We

have solved a problem with three bases, yielding a state-space of size

43,278,703, by truncating the state-space ("lumping" low probability

states into several absorbing states resulting in a truncated state space

375
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AWA

1.01

0.8

0.6

0.4

0.2

0 ~~0.0 II
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 t

Figure 3. A 1tW versus t for sample run.

of approximately 15,000 states) on the VAX 11/780 in approximately 30

minutes [see Gross, Kioussis, and Miller (1984)].
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4.2  Steady-state Case 

Ironically, computational success has been far more elusive for 

the steady-state situation than for the transient case.  The problem is 

the stopping criterion for these iterative procedures (a problem not 

present when dealing with transient solutions).  In the transient case, 

the randomization procedure guarantees an accuracy to within a pre- 

specified £ .  For steady state,- using either the Cauchy or the 

Wallace-Rosenberg stopping rule does not guarantee errors within £ . 

Table 1 shows some computations for a  (1,1,1)  system which is the 

classical machine repair with spares model of queueing theory.  For this 

model the availability can be computed analytically, which allowed 

us to estimate the actual error.  The columns under P-WR show the results 

of using (12) with the stopping criterion of (13), the Wallace-Rosenberg 

approach, while the GS-C columns show results for (8) with the stopping 

criterion of (10), the Gauss-Seidel approach. 

The circled elements show the cases for which the error specifi- 

cation,  £ , was exceeded.  While there were more cases of exceeding the 

stopping rule error specification in P-WR, the error excesses were 

larger, especially for the larger population cases, under GS-C.  But 

GS-G stopped in far fewer iterations in almost all cases (except for the 

very small population cases), and it is the number of iterations that 

consumes most of the CPU time. 

The last column shows a rerun of GS-C, ignoring the stopping cri- 

terion and performing the same number of iterations as used for the P-WR 

procedure.  The errors essentially went to zero, which indicates that 

if a better stopping criterion could be found, Gauss-Seidel iteration 
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might be a viable approach. Runs for some (2,2,2) systems and more

detailed discussion of these steady-state procedures can be found in

Gross, Kioussis, Miller, and Soland (1984).
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STUDYING MODEL ASSUMPTIONS
IN PROCESS QUALITY CONTROL

C. P. Quesenberry
North Carolina State University

Raleigh, NC 27695-8203-'.1

1. INTRODUCTION

In process quality control by variables we typically assume that a

sequence of observations x x . X ... is observed in time. The

Xi 's themselves are often batch means. The basic model usually assumes that

the Xi 's are independently and identically distributed normal random variables,

2i.e., are i.i.d. N(p,a ) r.v.'s. Some of the most widely used methods of

process quality control such as Shewhart charts for sample means and ranges

and CUSUM tests for sample means, are designed to detect changes in the

process that cause either i. or a to shift to different values. However, thZ!

observed data contain much information that can be used for purposes other

than detecting changes in the mean and variance of an assumed normal model.

In this talk, we shall propose computing certain statistics which capture

* all of the information in the data, beyond that in the sample mean and

" "variance, and consider methods of using these statistics to detect a number

* of types of violations of the basic model assumptions.

The statistics which we propose to compute are called sequential uni-

form residuals, due to the fact that they have known uniform distributions

when the normal model is correct. These residuals are not new, but have

been derived and studied by the present speaker and co-workers in earlier

work, however, they have not been considered in the context of process

quality control. We feel that they have excellent potential for many

useful applications in this area.

382
6 6



-r r u -- -.

2. UNIFORM AND NU RESIDUALS

Let X1 , X2 , ... , Xn, ... denote a sequence of random variables, and

when these are i.i.d. N(p,o ) random variables we shall say that normal

model assumptions hold. We define the following (sequential) sample

quantities:

= X /r, S2 = r (x -X )2 /r,
r l1 r 1 j r

(to compute these sequentially, see Youngs and Cramer, 1972)

[(r - r)]/ + r]/r, S2 = -s2 + (X - /1-i + X " 7

A = [r(r- 2)]2 (X r  r )/(r 1)S

u-2 2 (A ); r = 2, 3, ... , n.

When G (.) is a Student-t distribution function with v degrees of freedom.

If the normal model assumptions hold, then the values u, 2 ..

were shown in O'Reilly and Quesenberry (1973),O-Q, to be i.i.d. uniform

random variables on the unit interval. A careful examination of the value

A above shows that it is a Studentized value of the residual of the rthr- |

observed value from the mean of the first r values. For this reason, we

shall call the value u a uniform residual. Our purpose in this paper is

to consider using these uniform residuals and other related quantities in

methods for studying the model assumptions in statistical process control.

These uniform residuals were first derived in O-Q by the method of

conditional probability integral transformations introduced by those

authors. These residuals can also be obtained as a special case of the

* uniform residuals from regression models with normal error structure as 6

given in O-Q, and considered also in Quesenberry (1983) and Hester and

Quesenberry (19B4). In the present work, we shall discuss some ways in
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which these sequential uniform residuals can be used in statistical process

control, however, we first set out some basic properties of these statistics

which, we feel, motivate the use of these quantities. When normal model

assumptions hold, the uniform residuals have the following properties:

Property 1. The quantities ul, u2 , ..., un, are i.i.d. uniform random

variables on the unit interval (0,1). (O-Q, 1973).

Property 2. The vector r= (Ul ... I ur)' is independent of the vectors

(X 3-P ... , Xr)' and kr = (S2 , ... , S2 )r for all r= 2, 3, ... .(This

follows from the completeness and sufficiency of T ( $2)' and a well-known% z r r ,r"

qe result of Easu (1955).)

Property 3. The uniform residuals vector i~ is a maximal invariant with
_]

respect to linear transformations of the data. (Quesenberry and Starbuck

(1976), Q-S).

-Property 4. If a most powerful similar or a most powerful invariant (re

to linear transformations) test exists for testing the normal model against

any particular alternative, then a test of equal power can be based on the

uniform residuals. (Q-S). 7'-
Let 4D(*) denote the distribution function of a N(0,1) distribution, and-

-lP its inverse function. Then we define NU (normal-uniform) residuals

z (u(=j C-(uj) , j = 1, 2,
j

and zl, z2 , ... are i.i.d N(0,1) r.v.'s, when the normal model holds.

For some problems, there are advantages in considering the NU residuals

rather than, or in addition to, the uniform residuals.
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3STUDYING THE RESIDUALS

In view of the properties of the sequential uniform residuals

discussed in section 2, the principal task is to find effective ways to

study these values in order to detect deviations from model assumptions.

We can consider two basic settings, which present somewhat different

problems. First, we can consider the analysis of residuals for a set of

past data, and, second, we can consider the sequential analysis of data

as it is observed in time. In each of these cases, we may wish to use the

data to attempt to identify different types of model misspecification Which

can occur. There are many different ty-pes of problems which can be

considered and we must limit our discussion here to a few particular

- problems. In this section we consider the simple but useful method of

graphing the u's in order to look for patterns, and then suggest tests for

uniformity on the uniform residuals and of normality on the NU residuals

as general methods of analysis to detect ano-malies in the data. In the

* next section, we suggest using these residuals to detect outliers.

We consider first sane methods for analyzing the uniform and NU

residuals that are designed to detect a wide range of deviations from the

basic normal model. Since these methods are expected to perform reasonably

well in detecting a large class of alternatives, we cannot expect them to

be most effective against particular restricted alternatives. If we wish

to focus on a particular alternative, then it may be possible to find a

test or other analysis technique which is especially sensitive for detectinr

it. In this section, we shall consider analyses based on platting the re-

siduals and computing same omnibus goodness-of-fit tests.
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Graphing Techniques

As a first analysis, we suggest plotting the uniform (or NU) residuals

against the index and studying these plots for trends. Due to the recursive

property of these residuals, the plots can be made sequentially when each

observation is taken, in order to identify problems as early as possible.

Under the null hypothesis, the uniform residuals should tend to form a uni-

form band between the lines u = 0 and u = 1. The possible types of

patterns that indicate model specification errors is large. Indeed, any

recognizable pattern among these points will likely require further study.

The type of misspecification that leads to a particular point pattern can

sometimes be deduced by recalling the nature of the transformations in (2.1)

viz., that A is a Studentized residual and uj is obtained by transforming

A with the appropriate Student-t distribution function.

The uniform and NU residuals are equivalent statistics, and contain

the same information; however, some patterns or anomalies will be more

apparent in the graphs of one or the other of these types of residuals. One

instance of this is in detecting outliers. The plots of NU residuals

will display outliers more clearly than will the plots of uniform residuals.

The detection of outliers will be considered in Section 4.

An Omnibus Test for Uniformity

One type of test statistic which we shall often want to compute is an

0 omnibus test of simple uniformity on the values of . Such omnibus tests

have reasonably good power against a wide range of alternatives. There are

a large number of omnibus goodness-of-fit tests which can be used to make

0 tests for uniformity. Reasonably extensive power studies of tests for uni-

formity have been made by Quesenberry and Miller (1977), Q-M, and by Miller

and Quesenberry (1979), M-Q. These papers review much of the literature in

this area of goodness-of-fit testing. Based upon the results in these papers,

- we recommend the Neyman smooth test.
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Neyxnan (1937) posed a statistic designed to have high power for test-

ing uniformity against certain classes of alternative distributions on the

unit interval. (See M-Q and Kendall and Stuart (1961), p. 444.) The test i;

defined as follows. The Legendre polynomials i are given by; for r 0,r

1, 2, 3, 4; and 0 < y < 1;

10(y) = l,YCy) =1-(y- ),

(Y) = 16(y- ) 2  , n3 (y) = [20(y- )3  3(y- (3.1)
2 3 31

42
r 4(y) = 210(y- ) - 45(y- )2 + 9/8.

Then put

N
t = n (uj) for r = 1, 2, 3, 4,r J=l

and the Neyman smooth test rejects for large values of the statistic

2 ( 2 2 + 2+ t) (3.2)P4  C (lN) (t1 + t2  t 3 + ,

Neyman showed that p4 has a limiting x2(4) distribution when

Ul, ... , uN are i.i.d. uniform r.v.'s. Computations of upper .1, .05, and
N+

.01 percentage points in M-Q indicate that this approximation is reasonably

good for N as small as ten, or even smaller in soe cases. This approximation

is particularly convenient because it can be used to determine the observed

significance level or p-value of the test for uniformity. lus, in order

to obtain an overall assessment of the validity of the normal model, we

2
compute the uj's from (2.1), the value of p4 from (3.2), and then evaluate

NS4_PV = p-value = P{ 2 (4) > p }. (3.3)
44

* For 0 < a < 1, if NS4_PV < a, then, of course, we reject thv normal

model at the a level. In practice, we compute NS4PV and view it as a

general coefficient of validity of the normal model.

3
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Tests of Normality on NU Residuals 

In addition to (or in place of) omnibus tests for uniformity, we can test 

the normality of the NU residuals z , . . . , z , defined at the end of 

Section 2.  There are many good tests of normality available today, and there 

is no strong reason to favor a particular one. We slightly prefer the 

Anderson-Darling test.  Two points should be noted in this context. Although 

z^, ..., z  (N = n-2) are i.i.d.  N(0,l) when the normal assumptions hold, 

it has been shown by Stephens (197*0 and independently by Dyer (197^) that 

statistics for testing composite normality often have better power for 

testing simple normality than tests designed to test the simple normality 

null hypothesis.  Another point that should be noted is that the most popular 

tests for normality do not have solved distribution theory that allows the 

exact determination of p-values of the tests.  We feel this is a considerable 

disadvantage for these tests. 

U.   DETECTING OUTLIERS 

In many process control problems , an occasional observation will appear 

which is either much larger or smaller than its fellows.  The question then 

is how one is to decide when an observation is an "outlier" and when it is 

a feasible value under the normal model assumptions.  The exact distribu- 

tion theory of uniform residuals provides an especially simple and elegant 

solution for the problem of detecting outliers. 

We shall declare an observation a left outlier if it is too small and 

thus its uniform residual is too near zero, and we call it a right outlier 

if it is too large and its uniform residual is thus too near one. In view 

of the nature of sequential uniform residuals, this means that an observa- 

tion is called a left outlier if it is too small when compared with the 

observations preceding it, and, similarly, it is a right outlier if it is 
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too large in comparison with the values preceding it.  Thus these might 

he called sequential outliers■ 

Suppose that we are willing to incorrectly decide that observations 

are too large and that they are too small each at the rate of 1 in N 
o 

observations, when the normal model is correct.  Then we apply the follow- 

ing rejection (identification) rule: 

Declare x a left outlier if u „ < l/N , r r-2     o' 

Declare x a right outlier if u 0 > (N -l)/N . (h.l) r    ° r-2    o    o 

The overall rejection rate is 2/N , when the model is correct. This is 

a reasonable procedure for screening observations as they arrive sequentially. 

This procedure is, of course, equivalent to rejecting individual observa- 

tions as outliers if they fall outside the lines u = l/N and u = (N -l)/N 

on the graph discussed in Section 3. 

If we wish to decide if a sequence u , ,.., u of residuals from past 

data contains outliers we can apply the rule above to perform tests, or we 

can appeal directly to the distribution theory for order statistics from 

a uniform distribution.  Let u#, » and u,,,N denote the smallest and largest (1)     (N) 

values among the residuals, respectively.  Moreover, let p denote the 
Li 

p-value for testing that the point associated with u, ,   is a left outlier, 

and PR denote the p-value for testing that the point corresponding to u, 

is a right outlier.  When the normal model holds these values are given by 

The use of these formulas will be illustrated with numerical examples 

in the following section. 



5. NUMERICAL EXAMPLES

To illustrate the techniques discussed above, we have computed the uni-

- form residuals for a number of data sets. A random sample of size 50 was

S-generated from each of four distributions and the uniform residuals were

plotted against the index. Samples were drawn from a normal, exponential,

.. uniform and Cauchy distribution. The graphs for these samples are given in

the following Figures 1 - h. The p-values NSI4 PV, PL and PR are given in

Table 1.

The plot of the uniform residuals for the normal sample in Figure 1

shows no anamolous patterns and the p-values are easily in the acceptance

range.

The graph for the exponential sample in Figure 2 does show important

patterns that indicate a nonnormal distribution. There are no observa-

tions very near zero - which is a reflection of the fact that the normal

density is positive on the negative reals but the exponential density is

zero on the negative reals. Note that the p-values are all suspect. The

Neyman smooth statistic p-value is 0.01386, PL = 0.99981 is too large, and

P = 0.02536.

The analysis of the uniform sample shows a value of NSh_PV 0.06839,

which is suspect and a value of PR that is too large, again. %The graph in

Figure 3 shows no points very near zero or one, which is a reflection of

the fact that the uniform density has thinner tails than the normal density. .4

* The Cauchy sample is easily rejected by the goodness-of-fit test, and i

its tendency to throw outliers is evident in the p-values of the order

statistics.

ID Finally, we computed the uniform residuals and the p-values for the
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1A

data given by Ott (1975). Note that in Figure 5 for this data the

-points display a rising trend beginning at about the 76th or 77th original

data points. This is due to a trend in the data discussed by Ott. Also,

both P Land P Rare significant at the 0.05 level.

0
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FIGURE 1: PLOT FOR.NORMAL SAMPLE
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FIGURE 3: PLOT FOR UNIFORM SAMPLE
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FIGURE 5: PLOT FOR OTT DATA
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Noma 0.53 0.32 00413

Exonnta 0.038 0.98.23

Cach 7-57E0 M6501EilL 0. 0211711

orma 0.0393f .9523oo472 0.493

Expoentil 0.13860.9981 00253



REFERENCES

Basu, D. (1955), "On Statistics Independent of a Complete Sufficient Statistic"

Sankhya, 15, 377-380.

Dyer, A. R. (1974), "Hypothesis Testing Procedures for Separate Families of

Hypotheses," Journal of the American Statistical Association, 69, 140-145.

Hester, Allen and C. P. Quesenberry (1984), Analyzing Uniform Residuals for

Heteroscedasticity (Unpublished manuscript).

Miller, F. L., Jr., and Quesenberry, C. P. (1979), "Power Studies of Tests

for Uniformity," Communications in Statistics - Simulation and Computations,

B8(3), 271-290.

Neyman, J. (1937), "'Smooth' Test for Goodness of Fit," Skandinavisk

Aktuarietidskrift, 20, 149-199.

Ott, E. R. (1975), Process Quality Control, McGraw-Hill Book Company.

O'Reilly, F. J., and Quesenberry, C. P. (1973), "The Conditional Probability

Integral Transformation and Applications to Obtain Composite Chi-Square

Goodness-of-Fit Tests," Annals of Statistics, 1, 74-83.

Quesenberry, C. P. (1983), Analyzing Uniform Residuals for Time Changes in

Regression Models (Unpublished manuscript).

Quesenberry, C. P., and Miller, F. L., Jr. (1977), "Power Studies of Some

Tests for Uniformity," Journal of Statistical Computation and Simulation,

5, 169-191.

Quesenberry, C. P., and Starbuck, H. R. (1976), "On Optimal Tests for Separate

Hypotheses and Conditional Probability Integral Transformations," 7.1
Communications in Statistics A5(6), 507-524.

Stephens, M. A. (1974), "EDF Statistics for Goodness of Fit and Some Compariso,.,"

Journal of the American Statistical Association, 69, 730-737.

Youngs, E. A., and Cramer, E. M. (1971). "Some Results relevant to Choice

of Sum and Sum-of-Product Algorithms," Technometrics, 13, 657-665.

395
* U

- - .



396 

{ß^irfi    K) 



Recent Research in Experimental Design for Quality Improvement
with Applications to Logistics

George E. P. Box

1. LOGISTICS AND QUALITY CONTROL

Important measures of military competence such as performance capability
and readiness rate are greatly influenced by the quality of the weapons and of
the other devices available to the soldier.

A traditional philosophy of quality control has been to "inspect bad
quality out" and indeed there are famous military standards that employ this
philosophy. W. Edwards Deming (1982) has likened this to making toast
according to the recipe "you burn it and I'll scrape it", and has urged the
alternative philosophy of assuring that good quality has been built in to the
product in the first place. In particular he attributes to the latter
philosophy the success of Japanese industry in producing high quality products
at low cost. A typical example of the dramatic consequences that have been
attributed to these differences of approach are the air-conditioner defect
rates shown in Table 1 and quoted by David Garvin (1983).

(In the factory: Assembly line defects per 100 units)J
American Japanese

Total..............................63.5 0.95
Leaks...............................3.1 0.12

Electrical...............................3.3 0.12

(In the field: Service call rate per 100 units under
first year warranty coverage)

Totl......................American Japanese
To a .. .. ... . .. .. 10.5 0.6

Compressors..............................1.0 0.05
Thermostats..............................1.4 0.002
Fan motors..............................0.5 0.028

TABLE 1. Defect rates in US and Japanese air conditioners

Similar comparisons have been made between defect rates in American and
Japanese automobiles.

The same United States industry that makes air conditioners and motor
* vehicles also makes military hardware. It seems clear therefore that a major

change in quality philosophy could produce a major improvement in the
reliability of the Army's equipment. The philosophy of "building quality in"
employs a policy of never ending quality improvement which may be typified in

Sponsored by the United States Army under Contract No. DAAG,29-P0-C-0041.
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terms of the traditional statistical model

y = f(x )+ e

Cwhere y is a quality characteristic believed to depend on a set of variables
denoted by x1 whose identity is known, and e is the difference y - f(x
usually referred to as error. (Such "errors" are often somewhat arbitrarily
imbued by the theoretician with properties of randomness, normality
independence and homoscedasticity). In reality e is a function e(x ) of a
number of additional variables, 32say, which affect the system but whose
identity is usually unknown. In general, quality improvement is achieved by
transferring elements of the unknown factor vector x into the known factor
vector x as indicated below'2

y f (?S) +e(x-2)

known unknown

The effect of such transfer is two-fold

Wi to reveal effects of previously unknown factors which may then be
adjusted to levels yielding higher quality and/or used to control the

* process.

(ii) to remove variation previously caused by haphazard changes in these
factors.

Some of the statistical techniques which contribute to this transfer are
quality control charting (including Shewhart, Cusum, Pareto and Fishbone

* charts) and designed experimentation on line and off line (employing in
* different and appropriate contexts factorial, fractional factorial and
* orthogonal array designs, evolutionary operation and response surface

methods).

2. SCIENTIFIC METHOD AND QUALITY

Charting and experimentation are examples respectively of passive
surveillance and active intervention both of which are important elements in
scientific method which it is desirable to consider further.

Humans differ from other animals most remarkably in their ability to
learn. It is clear that although throughout the history of mankind

*technological learning has taken place, until three or four hundred years ago
change occurred very slowly. One reason for this was that in order to learn
something - for example, how to make fire or champagne - two rare events

0 needed to coincide: (a) an informative event had to occur, and (b) a person
* able to draw logical conclusions and to act on them had to be aware of that

informative event.

Passive surveillance is a way of increasing the probability that the rare
informative event will be constructively taken note of and is exemplified by

* quality charting methods. Thus a Shewhart chart is a means to ensure that



possibly informative events are brought to the attention of those who may be
able to discover in them an "assignable cause" (Shewhart 1931) and act
appropriately.

Active intervention by experimentation aims, in addition, to increase the

probability of an informative event actually occurring. A designed experiment
conducted by a qualified experimenter can dramatically increase the
probability of learning because it increases simultaneously the probability of
an informative event occurring and also the probability of the event being
constructively witnessed. Recently there has been much use of experimental
design in Japanese industry particularly by Genichi Taguchi (Taguchi and Wu
(1980)) and his followers. In off-line experimentation he has in particular

* emphasized the use of highly fractionated designs and orthogonal arrays and
the minimization of variance.

In the remainder of this paper we briefly outline some recent research on
the use of experimental design in the improvement of quality.

3. USE OF SCREENING DESIGNS TO IMPROVE QUALITY

Table 2 shows in summary a highly fractionated two-level factorial design -. -

employed as a screening design in an off-line welding experiment performed by
the National Railway Corporation of Japan (Taguchi and Wu, 1980). In the
column to the right of the table is shown the observed tensile strength of the
weld, one of several quality characteristics measured.

The design was chosen on the assumption that in addition to main effects

only the two-factor interactions AC, AG, AH, and GH were expected to be
present. On that supposition, all nine main effects and the four selected

*two-factor interactions can be separately estimated by appropriate orthogonal
contrasts, the two remaining contrasts corresponding to the columns labelled
e I and e2 measure only experimental error. Below the table are shown the

grand average, the fifteen effect contrasts, and the effects plotted on a dot
diagram. When the effects are plotted on normal probability paper, thirteen
of them plot roughly as a straight line but the remaining two, corresponding
to the main effects for factors B and C, fall markedly off the line,
suggesting that over the ranges studied, only factors B and C affect
tensile location by amounts not readily attributed to noise.

If this conjecture is true, then, at least approximately, the sixteen

runs could be regarded as four replications of a 22 factorial design in
factors B and C only. However, when the results are plotted in Figure 1
so as to reflect this, inspection suggests the existence of a dramatic effect
of a different kind - when factor C is at its plus level the spread of the

To facilitate later discussion we have set out the design and labelled the
levels somewhat differently from Taguchi.
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data appears much larger than when it is at its minus level. Thus, in
addition to detecting shifts in location due to B and C, the experiment
may also have detected what we will call a dispersion effect due to C. The
example raises the general possibility pursued in the remainder of this paper
of analyzing unreplicated designs for dispersion effects as well as for the
more usual location effects.

M 40 42 44 46 40 42 44 46

* a
t

* e
r C

i
a

40 42 44 46 40 42 44 46

sotDrying Period B+

Figure 1. Tensile data as four replicates of a 2 2factorial
design in factors B and C only.

Data of this Kind might be accounted for by the effect of one or more
variables other than B that affected tensile strength only at the "plus
level" of C (only when the alternative material was used). Analysis of the
eight runs made at the plus level of C does not support this possibility,

* however.
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4. RATIONALES FOR USING SCREENING DESIGNS

* -Before proceeding we need to consider the question, "In what situations
are screening designs, such as highly fractionated factorials, useful?"

4.1. Effect Sparsity

A common industrial problem is to find from a rather large number of
factors those few that are responsible for large effects. The idea is
comparable to that which motivates the use in quality control studies of the
"Pareto diagram." (See, for example, Ishikawa (1976)). The situation is
approximated by postulating that only a small proportion of effects will be
"active" and the rest "inert". We call this the postulate of effect
sparsity. For studying such situations, higly fractionated designs and other

* orthogonal arrays (Finney (1945), Plackett and Burman (1946), Rao (1947),
Taguchi and Wu (1980)) which can screen moderately large numbers of variables
in rather few runs are of great interest. Two main rationalizations have been
suggested for the use of these designs; both ideas rely on the postulate of
effect sparsity but in somewhat different ways.

4.2. Rationale Based on Prior Selection of Important InteractionsK. It is argued (see for example Davies (1954)) that in some circumstances

physical knowledge of the process will make only a few interactions likely and
that the remainder may be assumed negligible. For example, in the welding

K experiment described above there were 36 possible two-factor interactions
between the nine factors, but only four were regarded as likely, leaving 32

such interactions assumed negligible. The difficulty with this idea is that -

in many applications the picking out of a few "likely" interactions is
difficult if not impossible. Indeed the investigator might justifiably

protest that, in the circumstance where an experiment is needed to determine
which first order (main) effects are important, it is illogical that he be
expected to guess in advance which effects of second order (interactions) are
important.

4.3. Projective Rationale Factor Sparsity

whs idetitdfeento is howeve unnon wilfeactve inproiding main effpet
t at om tea difrnkoini hto factorscniedolasml spasty husow suppose

thtso ietthe ks facovr considere, onyimll suse atvinpofiin unknon sizecds
* and interactions within that subset. Arguing as in Box and Hunter (1961) a

two-level design enabling us to study such a system is a fraction of

resolution R = d + 1 (or in the terminology of Rao (1947) an array of
strengrth d) which produces complete factorials (possibly replicated) in

wedngdsgncul ereade sforrelcte f 2fatrili
every one of the spaces of d = R - 1 dimensions. For example, we have
seen that on the assumption that only factors B and C are important, the

just those two factors. But because the design is of resolution R = 3 the
same would have been true for any of the 36 choices of two out of the nine
factors tested. Thus the design would be appropriate if it were believed that

not more than tw~o of the faCcors were likely to be "active".
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Columns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a 15-11

(b) 28-4IV

(c) 5-1

(d) 24

TABLE 3. Some alternative uses of the orthogonal array of Table 2.

For further illustration we consider again the sixteen-run orthogonal
array of Table 2 and, adopting a roman subscript to denote the resolution R
of the design, we indicate in Table 3 various ways in which that array might
be used. It may be shown that

(a) If we associated the fifteen contrast columns of the design with
fifteen factors, we would generate a 21-1design providing four-fold

replication of 22 factorials in every one of the 105 two-dimensional

(b) If we associated only columns 1, 2, 4, 7, 8, 11, 13, and 14 with
*eight factors we would agenerate a 28-4 design providing two-fold3 IV

replication of 2~ factorials in every one of the 56 three-dimensional
projections.

(c) if we associated only columns 1, 2, 4, 8, and 15 with five factors
we would generate a 25-1 deinproviding a 24factorial in every one ofV dsg
the four-dimensional projections.

(d) If we associated only columns 1, 2, 4, and 8 with four factors we
would obtain the complete 24 design from which this orthogonal array was in
fact generated.

Designs (a), (b) and (c) would thus be appropriate for situations where we
believfd respectively that not more than 2, 3, or 4 factors would be
active . Notice that intermediate values of k could be accommoda 2d by
suitably omitting certain columns. Thus the welding design is a 2111

4 arran ~ement which can be obtained by omitting 6 columns from the completeq
215 Notice finally that for intermediate designs we can take advantage of

* both rationales by arranging, as was done for the welding design, that
* particular interactions are isolated.

The designs give partial coverage for a larger number of factors, for example

(Box and Hunter (1961)) 56 of the 70 four-dimensional projections of the 21V4

yield a full factorial in four variables.
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A discussion of the interative model building process by Bcx and Jenkins
(1970) characterized three steps in the iterative data analysis cycle

indicated below

identification fitting - diagnostic checking

Most of the present paper is concerned with model identification - the search

for a model worthy to be formally entertained and fitted by an efficient

procedure such as maximum likelihood. The situation we now address concerns
the analysis of fractional designs such as the welding design in the above
context when only a few of the factors are likely to have effects but these
may include dispersion effects as well as location effects.

5. DISPERSION EFFECTS

We again use the design of Table 2 for illustration. There are 16 runs
from which 16 quantities -- the average and 15 effect contrasts -- have been

calculated. Now if we were also interested in possible dispersion effects we
could also calculate 15 variance ratios. For example, in column I we can

2compute the sample variance sI  for those observatins associated with a
minus sign and compare it with the sample variance s+2 for observations

associated with a plus sign to provide the ratio F1 = s /s1+. If this is
done for the welding data we obtain values for lnFi* given in Figure 2(a).
It will be recalled that in the earlier analysis a large dispersion effect
associated with factor C (column 15) was found, but in Figure 2(a) the
effect for factor C is not especially extreme, instead the dispersion effect
for factor D (column 1) stands out from all the rest. This misleading
indication occurs because we have not so far taken account of the aliasing of
location and dispersion effects. Since sixteen linearly independent location
effects have already been calculated for the original data, calculated
dispersion effects must be functions of these. Recently (Box and Meyer 1984a)
a general theory of location-dispersion aliasing has been obtained for
factorials and fractional factorials at two levels. For illustration, in this
particular example it turns out that the following identity exists for the - I

- .dispersion effect Fl, that is the F ratio associated with factor D and
hence for column 1 of the design.

(1-2-3) +-)1+(6-7) +(8-9) +(10-11)2+( 12-13 )2+(4-5
(2+3)2+(4++)7+(+7)22+(+) 0+11)2+(2+13)2+(4+15)2

Now (see Table 2) 14 = B = 2.15 and 15 = C = 3.10 are the two largest

location effects, standing out from all the others. The extreme value of F1
associated with an apparent dispersion effect of factor D(1) is largely

" -

In this figure familiar normal theory significance levels are also shown.

Obviously the necessary assumptions are not satisfied in this case, but these
percentages provide a rough indication of magnitude.
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accounted for by the squared sura and squared difference of the location 
effects  B  aiicl  C which appear respectively as the last terms in the 
denominator and numerator of equation (1).  A natural way to proceed is to 
compute variances from the residuals obtained after eliminating large location 
effects.  After such elimination the alias relations of equation (1) remain 
the same except that location effects from eliminated variables drop out. 
That is zeros are substituted for eliminated variables.  Variance analysis for 
the residuals after eliminating effects of  B and C are shown in Figure 
2(b).  The dispersion effect associated with C  (factor 15) is now correctly 
indicated as extreme.  It is shovm in the paper referenced above how, more 
generally, under circumstances of effect sparsity a location-dispersion model 
may be correctly identified when a few effects of both kinds are present. 

ANALYSIS OF UNREPLICATED FRACTIONAL DESIGNS 

Another important problem in the analysis of unreplicated fractional 
designs and other orthogonal arrays concerns the picking out of "active" 
factors.  A serious difficulty is that with unreplicated fractional designs no 
simple estimate of the experimental error variance against which to judge the 
effects is available. 

In one valuable procedure due to Cuthbert Daniel (1959, 1976) effects are 
plotted on Normal probability paper.  For illustration Table 4 shows the 
calculated effects from a  2-r»,  design used in an experiment on injection 
molding (Box, Hunter and Hunter, 1978, p. 399).  These effects are plotted on 
normal probability paper in Figure 3. 

T-1 = -0.7 + 1 mold temp. 
T2 = -0.1 * 2 moisture content 
TT =  5.5+3 holding pressure 
T4 = -0,3 + 4 cavity thickness 
T5 = -3.8 + 5 booster pressure 
T5 = -0.1 + 6 cycle time 
T7 =  0.6+7 gate size 
Tg =  1.2+8 screw speed 

T9 = T1.2 = ~0,6 + 1*2 + 3*7 + 4*8 + 5"6 

T10 = Tl"3 =  °'9 * 1'3 + 2'7 + 4*6 + 5"8 

T11 = Tl'4 = ~0,4 + 1*4 + 2*8 + 3*6 + 5"7 

T12 = T-t'c =  4.6 + 1.5 + 2.6 + 3.8 + 4.7 
T13 = Ti!e = ~0,3 * 1*6 + 2*5 + 3'4 + 7*8 

T14 = Tl!7 = ~0,2 "*" 1'7 + 2"3 + 6'8 + 4*5 

T15 = Tl!8 = "°'6 * 1*8 + 2*4 + 3,S + 6*7 

8—4 TABLE 4.  Calculated effects from a  2IV  design showing 
alias structure assuming three factor and higher order 
interactions negligible.  Injection molding experiment. 
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Figure 3. Normal plot of effects. Injection
molding experiment.
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An alternative Bayesian approach (Box and Meyer, 1984b) is as follows:
Let T ,T ,...,T be standardized* effects with

T i = ei if effect inert

T i = e i + Ti  if effect active

2 2

e i + N(O,0 ), T. + N(0,0 ) k 21 1 ' U 2 - "
C

Suppose the probability that an effect is active is a.

Let a (r) be the event that a particular set of r of the v factors
are active, and let T be the vector of estimated effects corresponding to
active factors of a(r) . Then, (Box and Tiiao, 1968) with p(o) - the
posterior probability that T (r) are the only active effects is:

-1 r 12

P[a IT,a,k] - [k {I1 - (1 - r)
(r) - L k2 Sk

where S(r) = T'(r)(r) and S = T'T. In particular the marginal probability

that an effect i is active give T, a and k is proportional to

V
-1r -1

[ak - 1  ] {1 - (1 - 1 _) S(r)} 2

a ( r ) a k"

i active

A study of the fractional factorials appearing in Davies (1954), Daniel
(1976) and Box, Hunter and Hunter (1978) suggested that a might range from
0.15-0.45 while k might range from 5 to 15. The posterior probabilities

computed with the (roughly average) values, a = 0.30 and k = 10 are shown
in Figure 4(a) in which N denotes the probability (negligible for this
example) that there are no active effects. The results from a sensitivity
analysis in which a and k were altered to vary over the ranges mentioned
above is shown in Figure 4(b).

It will be seen that Figure 4(a) points to the conclusion that active
effects are associated with columns 3, 5 and 12 of the design and that column
8 might possibly also be associated with an active factor. Figure 4(b)
suggests that this conclusion is very little affected by widely different

choices for a and k. Further research with different choices of prior,
with marginization with respect to k, and with different choices of the
distribution assumptions is being conducted.

6

For three-level and mixed two and three level designs for example, this
analysis is carried out after the effects are scaled so that they all have

equal variances.
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3 5 12

Postcor ior
Probability

0.5.................... .. .. .. .. .. .. .. * ............

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4(a) welding experiment. Posterior probability that factor
i is active (a = 0.30, k 10).

(3) (5) (12)

............................................. ...........

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4(b) Sensitivity analysis for posterior probability
a =.15 -. 45, k =5 -15.
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7. OTHER RESEARCH

Topics which are emphasized in Taguchi's approach to "off line quality
control" are (a) reduction of variation by error transmission studies and (b)
the choosing of a product design so that it is robust with respect to
environmental variables.

These topics are also receiving attention in further research.
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1. Combined arms models of combat. The classical Lanchester model of

military combat is defined by the equations

x -ay

y -bx

where x(b) is the strength of the X-force at time t and y(b) is the

strength of the Y-force at time t . If we are interested in adjoining

logistics considerations to combat models it is more realistic to start with

combined arms models of combat.

A general combined arms model of Lanchester type can be formulated in the

following way. The X-force is assumed to have m units of strengths

x(t) m(t) at time t and the Y-force has n units of strengths

YL(t),...,yl(t) at time t These units may be of different types. Let

Let x (xl ,...,x m ) , y ( The combat between X and Y

forces is governed by the equations

-Ay

{ -Bx
where A is an mxn matrix and B an nxm matrix. We also have A > 0

and B > 0 , i.e. A and B are nonnegative matrices. The properties oZ the

solution of the systtrm (1) depend entirely upon the matrix

* Mm -A

an (n+m)x(n+m) matrix, subject to initial conditions
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x(0) -x0 - I (0,...,x 0), RO:"

y( 0) ,, 0Y (Y1 ... .,YnO)(o '" "
-9

We have x0 >0 , 0 Y > 0""'

In such a model the elements of the matrixes A and B have the

following foruis: a.. X..a.. and b.. ijij . The number a.. repre-

Lj tJ 13 M oi U

sents the efficiency of the unit y. of the Y-force when used against the
J

unit x. of the X-force . On the other hand, the number Xi". represents
1j

'he fraction of the firepower of unit y, directed against the unit 'Zt by

m
the Y-commander. We may suppose that I X.. 1 . The numbers S.. andi=l tJ t-

i.. are similary defined. The numbers a.. and 3.. are analogous to the
ij 13 -Ji

coefficients a and b in the classical Lanchester model--thus we may call

them attrition rate coefficients. The numbers X.. and U.. (note that

n
I for each i) represent a priori choices which must be made by the

i=l J

commanders of the Y-force and the X-force, respectively.

An element a.. of the matrix A can be zero if either the unit y. is

ineffective against the unit x. or if the Y-commander elects not to useU

unit yj against unit x. A similar meaning is attached to an element

b.. of B being zero.
tjU

An example of a combined arms model is the following which includes X

F.4D and Y units of four types:

.i) Direct fire combat unit.

(ii) Artillary unit;

0 (a) direct support,

(8) counter battery fire,

( ) air defense supression.
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(iii) Air support unit;

(a) close support,

(0) air defense suppression,

(y) artillery suppression.

(iv) Air defense unit.

Here we have listed the functions each unit can perform. The model then takes

the form

0 -A
M1

M B 01

where

awe 812 a13 0

a2 2  23 0

A1
0 0 0 a3 4

a 42 a43  0

and B has the same form as A . The matrix M is reducible so the model

can be subdivided into two submodels. The main submodel has matrix '

0 0 0 -a22 -a23 0

0 0 0 0 0 -a34

0 0 0 -a42 a43 0

-b -b 0 0 0 0
22 23

0 0 -b34 0 0 0

-b -b 0 0 0 0

42 43

41
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A satisfactory theory can be developed if we assume M is a Lanchester

Matrix (see Maybee 1984). This means A and B are regular, i.e. each row

and column contains at least one nonzero element, and M is irreducible. In

the above example the matrix M is a Lanchester Matrix.

2. Supply models. For the simplest supply models we adjoin to the system (2)

supply vectors Sx(t) - (Sxl,...,Sx) , and Sy(t) - (Syl,...,Syn) . Here

Sx.(t) is the supply level of unit x. of X-force at time t . The1 1

function Sy.(t) has a similar meaning.

The equations of combat are supplemented by

(2) Sx = -DlX, Sy - -D2Y

where D and D are diagonal matrices of size mxm and nxn , respec-1 21

tively, with positive diagonal elements. Thus the supply levels of the units

diminish with time at a rate proportional to the unit level.

The system of equations (1), (2) is to be solved subject to the following

stopping rules. If a unit level or supply level falls below an acceptable

percentage of initial unit or initial supply level, then that unit is

withdrawn from combat.

Note that in this model, once the equations (1) are solved, equations (2)

can be explicitly integrated to determine the vectors Sx(b) and Sy(t)

Thus the theory of system (1) is immediately applicable to it.

A more sophisticated supply model can be developed as follows. Define

the vectors u(t) = (u (t),...,u (t)) and v(t) - (v (t),...,v(t)) which
1 ~ pq

represent supply lines for the X-force and Y-force, respectively. Here u.(t)

is the capacity of the i-th X-force supply line at time t . The

function v.(t) has a similar meaning.
416
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In this version of the model we assume supplies are brought in as combat

goes on. Also each commander directs fire against opposing supply lines.

Thus to the equations (1) we now adjoin the equations

Ax =-D 1x + Au,

Sy = -D 2 Y + Bv

and

u = -Ey
(3)

v -Fx

Here A is an mxp matrix, B is nxq matrix, E is a pxn matrix, and

F is a qxm matrix. All of these matrices are nonnegative. Initial values

are given for Sx, Sy, u and v where Sx(0) > 0 , Sy(0) > 0 , u(0) > 0

v(O) > 0 , The elements of the matrices A, B, E, and F have the same form

as those in the matrices A and B This is because each commander makes a

priori decisions as to how he uses his supply lines to bring in supplies and

also how much of his firepower he directs against each of his opponents'

supply lines.

Note that in this model it is still true that the solution of the system

(1) completely determines the entire model. Once the system (1) has been

solved the system (3) can be integrated directly to determine the vectors u

and v Then the system (2') can be integrated to determine the vectors Sx

and Sy

Nevertheless we have a significant new issue introduced here. This is

because of the question of how much firepower should be used against supply

lines versus how much is used against opposing cumbat units. This version of

417
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the model permits us to evaluate the effects of such choices upon the outcome

of combat. The previous simpler version only allows us to evaluate the

effects of supply levels upon the outcome of combat.

A very sophisticated supply model can now be formulated. We now assume

that the supply lines are also used to reinforce the combat units. We then

have an entirely new model having the form

x -A y + A2u u -Eyx

1-Bx + B2v ,-Fx
(4) • -

Ax = -D1x + Au

-y = -D2y + Bv

Here A2 is an mxp matrix and B2 is an nxq matrix, A2 > 0 , B2 > 0

The elements of these matrices have the same form as the matrices A1 and A
B1 , that is, they are the products of coefficients which define the

capability of each supply line to furnish the given type of reinforcements

(men, tanks, etc.) with a number on the interval [0,1] which represents the 1-1
fraction of supply line capacity devoted to such reinforcements.

The matrix of the system (4) is

0 A -A 0
2 1

0 0 -E 0

N =

-B 0 0 B
12

-F 0 0 0 -

and the system to be solved is

418

* ' -



Fx 0 A2  -A 0
I! 0 0 -E 0 u

B2  y.

We call N a Lanchester logistics matrix ifeach of the matrices Al, B,

2' B2 , E, F is regular and N is irreducible. Of course, systems for which

N is reducible can be decomposed into smaller irreducible systems. Also once

(5) has been solved, we may again determine Sx and Sy by integration.

Preliminary results show that the basic properties of the solution of (5)

depend only upon the structure of the matrix N . Thus all such logistics

0 systems can be expected to have similar solutions.

* 3. Issues that can be addressed by such models. It is important to *
understand first how our models should be used. Because of the fact that a

* large set of a priori decisions muist be made by ech commander with regard to

how he allocates his firepower and how he uses his supply lines, it is 2-

reasonable to suppose that a given matrix M or N will apply from time 0

to the first time t1 at which one of the commanders changes his allocations.

Then M is replaced by a new matrix i (N by N) and a model of the same

*-general. form holds until time t 2 * of course, the~ initial values for the

interval [t l't2]I are the same as the final values at t I using the matrix

M or N . Thus a lengthy combat can be modeled as a sequence of such

* models. We can even use our models for combat which lasts over a period of

days or weeks with intermittant periods of quiet (say at night) during which

* supplies or reinforcements are brought in. Then the initial conditions for

* 1t1,2  would not necessarily be the same as the final conditions on [O,t1 1

4191



A variety of problems may be solved using these models.  We may 

investigate the effect of a priori decisions made by the commanders upon the 

battle progress. To do this it is necessary to devise various measures of 

combat effectiveness (see Willis 1982 for a variety of such measures applied 

to classical combat models).  We can study the result of invoking various 

stopping rules and the effect of initial force sizes on battle progress.  All 

of these issues can be studied using combined arms models. 

The issues mentioned above are also relevant to the various supply 

models.  But we may use the supply models to try and understand the answers to 

other questions.  For exmaple, what is the relation between combat levels and 

supply levels and, in particular, what are the optimal initial supply levels? 

How should suply line capacities be allocated so as to insure against having 

to withdraw from combat because of inadequate supplies? Conversely, what is 

the most effective allocation of fire power between enemy units and enemy 

supply lines?  Deeper issues concern questions such as when a commander should 

change his allocations and how. 
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OVERVIEW OF EXPERT SYSTEMS

Capt Stephen E. Cross, USAF
Artificial Intelligence Laboratory
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Introduction

An expert system is a computer program that embodies the
knowledge of a human expert and a reasoning process (which may be
suggestive of the human expert's reasoning process) to perform
some problem solving task that is usually deferred to a human
expert. Often, these programs are referred to as knowledge based
programs or intelligent assistants. Many programs can be con-
sidered to perform some expert task. For instance, a FORTRAN
program that computes a Fourier transform accomplishes something
that would be difficult for a human to do. What distinguishes
expert systems in the artificial intelligence context, is that
these programs use the same type of experiential knowledge as do
their human counterparts. A significant architectural character-
istic is that this knowledge is contained in a separate knowledge
base.

Expert systems can perform many tasks. A taxonomy of tasks
include: prediction, diagnosis, design, planning, monitoring,
interpretation, debugging, repair, instruction, and control.

The type of knowledge that human experts use can be divided
into three categories: facts, heuristics, and beliefs. Facts are
perhaps the easiest form of knowledge to visualize. They are just
static pieces of data which are thought to be true. For instance,
a fact is 'the wing span of a T-38 is 24 feet.' Heuristics are
pieces of expertiential knowledge which are most often stated in
the form of production rules. Heuristics are 'rules of thumb' or
gut feelings that are acquired throughout the course of a career.
They are rarely recorded in text books or professional articles.
An example heuristic is taken from MYCIN [ref 1] an expert system
that performs the diagnosis and recommended treatment task in
infectious blood disease.

If 1) the infection is primary-bacteremia,
2) the site of the culture is one of the sterile sites,
3) the suspected portal of entry of the organism is the

gastrointestinal tract,

Then there is suggestive evidence (cf=.7) that the identity
of the organism is bacteroides.

The computer representation of this rule would look like:

(IF (AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)
(MEMBF CNTXT SITE STERILESITES)
(SAME CNTXT PORTAL GI))
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(TH (CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7)

An expert system requires knowledge of belief. Belief
enables the computer to decide how much credibility to attach to
facts or heuristics. Quite often belief has been repreL.ented
probablistically, but symbolic representations of belief are now
becoming popular. MYCIN's use of certainty factors is typical of
numerical belief representation. Belief is mapped into the range
[-1,1] where I represents being certain something is true, -1
represents being certain something is not true, and 0 represents
the lack of any knowledge to believe or not believe something.
The above rule has a cf of .7 which indicates a fairly certain
level of belief (equivalent to a physician saying 'I'm fairly

"" certain'). An algorithm is used to combine cf's during a search
process for applicable rules so that the path with the highest
combined cf is evaluated first.

An ZxAZ2..

As a prototypical expert system, I will discuss the animal
production system of Winston and Horn [ref 2]. This system is
used to identify animals in a zoo. Although simple, it illus-
trates how more complicated systems like MYCIN operate. An under-
standing of production system operation is a prerequisite for
understanding more complicated rule-based system architectures.

A production system consists of a rule-base, a data base,
and a control program. The rule base is the repository of all
heuristics. In theory, the rule base is unordered. That is, there
is no significance in contiguous rules. Some systems (e.g.,

"* MYCIN) include certainty factors which are processed to give a
measure of belief. In the animal system there is no uncertainty,

* - hence there is no need for certainty factors. The data base in
MYCIN consists of facts gleaed from the patient history (e.g.,
the subject smokes 3 packs a day) and results of laboratory
tests. In the animal system the data base is a list of symbolic
facts. The list is a respository for known characteristics of
animals. The control structure uses backward chaining. For
instance, if the computer wanted to deduce that the patient had a
particular disease, it would obtain a list of rules that made
conclusions about that disease. Then the antecedents of each such

*. rule would be tested. Antecedents for which there is insufficient
data would be defined as subgoals and rules that made conclusions
about these new subgoals would be accessed, hence backward chain-
ing.

Many other control schemes are possible. The process of
0, backward chaining is often called goal-directed search. Another

process, forward chaining, seeks to invoke rules whose
antecedents presently match the data base. This strategy is
called data-driven search. Combinations of backward and forward
chaining are often employed in production systems. McDermott (ref
3] has proposed several variations. Rather than a pure forward or

* backward search, McDermott suggests keeping track of rules that
have been applied successfully in the past and trying them first,
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or trying rules first that have what are judged to be computa-
tionally tractable antecedents.

The animal production system consists of lists of facts and
rules. The following trace will illustrate some of the basic
concepts.

, the data base initially consists of these known facts " -

(setq facts '((animal has hair)
(animal eats meat)
(animal has tawny color)
(animal has dark spots)))

;the rule base consists of rules like
(setq rules '((rule idl (if (animal has hair))

(then (animal is mammal)))
(rule id2 (if (animal gives milk))

(then (animal is mammal)))
(rule id3 (if (animal has feathers))

(then (animal is bird)))
(rule id4 (if (animal flies)

(animallays eggs))
(then (animal is bird)))

(rule id5 (if (animal eats meat))
(then (animal is carnivore)))

(rule id6 (if (animal has pointed teeth)
(animal has claws)
(animal has forward eyes))

(then (animal is carnivore)))
(rule id7 (if (animal is mammal)

(animal has hoofs))
(then (animal is ungulate)))

(rule id8 (if (animal is mammal)
(animal chew cud))

(then (animal is ungulate)
(animal is even toed)))

(rule id9 (if (animal is carnivore)
(animal has tawny color)
(animal has black stripes))

(then (animal is cheetah)))

The animal production system can be run in the forward or
backward chaining mode. In the forward mode, a search will be
made for rules whose left side match the data stored in the facts
list. Any rule that matches (and whose right side has not been
previously written into the list) will have its right side added
to the list. The search continues until no more rules are appli-
cable. In this system the function deduce accomplishes this
search.

(deduce)
rule idl deduces (animal is mammal)
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rule id5 deduces (animal is carnivore)
rule id9 deduces (animal is cheetah)

At this point the facts list becomes:

((animal has hair) (animal eats meat)
(animal has tawny color) (animal has dark spots)
(animal is mammal) (animal is carnivore)
(animal is cheetah))

The system can be run in a backward chaining mode by estab-
lishing a list of hypotheses.

(setq hypotheses '((animal is cheetah)
(animal is ostrich)
(animal is penguin)
(animal is cow)
(animal is elephant)

A search is made for rules whose left side support each
hypothesis. The function that performs this task is diagnose.

(diagnose)
Is it true: (animal has feathers)? no ;the user responds
Is it true: (animal flies)? no
Is it true: (animal has hair)? yes
rule idl deduces (animal is mammal)
Care to know how? yes
(animal is mammal) demonstrated by: (animal has hair)
Is it true: (animal has hoofs)? why ;the user can
;ask why such a question was asked
(animals has hoofs) needed to show (animal is ungulate) U

SIs it true: (animal has hoofs)? yes
rule id7 deduces (animal is ungulate)
Care to know how? no

S-Is it true: (animal has black stripes)? yes
rule idl2 deduces (animal is zebra)
Care to know how? no
Hypothesis (animal is zebra) is true.
any other questions? no

The production system approach has several advantages. The
knowledge base is separate from the control program, hence it is

. easy to modify, add, or delete knowledge. Modification of the 4
knowledge base does not inhibit operation of the computer pro-

.. gram. Knowledge has a uniform representation.

"" the A major advantage of the production system approach is that
the program can 'explain' its solutions by reciting some portion

* of the rules that were used in the reasoning process. For
example, a backward chaining production system interprets ques-
tions like 'How?' to mean 'How did I reach this conclusion' and
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will list the rules that were instrumental in the decision.
Questions like 'Why?' (why was this question asked) are answered
by listing the antecedents of the rule to which the questions
context is the subgoal. Sample questions and answers are shown in
the MYCIN trace above. It should be noted that this is a very
primitive form of computer understanding. A truly intelligent
explanation facility would have powerful 'truth maintenance'
facilities and access to first principles. An interesting case
study was conducted with MYCIN about four years ago. It was - -

decided that since MYCIN was so splendid at diagnosis and had an
explantion capability, that it would make a good medical instruc-
tor. But it was soon found that an experiential knowledge base
was deficient at explaining many of the causal relationships in
medicine. For instance, MYCIN has a rule that says 'don't
administer tetracycline to children under eight years of age.' No
where in the knowledge are the facts that tetracycline inhibits
bone development, a physiological piece of knowledge.

There are several problems with production systems at the
present. As stated above, an expert system needs access to large
stores of knowledge. Some of the knowledge is experiential and is
probably best represented as production rules. Other knowledge
concerns domain theories. CASENET [ref 4] represents causal rela-
tionships in internal medicine. MDX [ref 5] orders disease pro-
cesses in a tree structure and records at each node only that
knowledge that is required to establish the existence of that
disease process. Cross' air traffic control system [ref 6] uses a
network representation for control algorithms. New heuristics are
justified by propagating values (the effect of applying heuris-
tics) throughout the network.

MYCIN led to the development of many expert systems. Since
the knowledge base was separate from the program, it is possible
in many applications to simply insert a new knowledge base for a
different domain. PUFF [ref 7] an expert system for the diagnosis
of pulmonary lung disease, was written in EMYCIN (essentially
MYCIN). PUFF demonstrates that a new expert system can be built
in a fairly short period of time provided: 1) the domain of
application is not sufficiently changed, and 2) the people build-
ing the expert system have experience in building knowledge based
systems. PUFF was created in about 100 man hours by a team of
expert knowledge engineers and physicians.

One major bottleneck in expert system design is knowledge
acquisition. The speed at which an expert system can be built is
directly related to the skill and experience of the expert system
builder, commonly called the knowledge engineer. It is his job to
become sufficiently conversant in the domain to talk intelligent- |
ly with a cooperative domain expert, and to obtain the heuristics
that the domain expert uses to do difficult problem solving. It's
a paradox that domain experts have only vague ideas of the actual
heuristics that they use. This is why training programs like
medicine, law, etc. take many years. Micbie (ref 8] relates an
interesting example. A cheese manufacturing company in England ....
relied on the skill of an elderly gentleman to do quality control
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of its products. He could assess the quality of cheese by probing
his finger through the wax seal and feeling the cheese inside.
Because of his prowness and the fact that he was quite elderly,
the company management wanted to automate his expert behavior.
They brought in many mechanical engineers to attempt to build a

. device which could probe the cheese in the same manner as the
" expert. What the expert did not realize and hence was unable to

verbalize to the system builders, was that his probing was simply
a mental device he employed to focus his sense of smell on the
particular cheese in front of him.

Another problem with rule bases is that they become large
and search becomes computationally expensive. TIERESIAS, the
subject of Randall Davis' PhD work [ref 9], used meta-rules to
guide the invocation of domain rules. A meta-rule is simply a

,*'. production rule that makes conclusions about domain rules. An
example which was used in conjunction with a MYCIN-like system
for investment advice is shown below:

If 1) the age of the investor is greater than 50,
2) the investor is not independently wealthy,

Then there is evidence (cf-l.0) that only stocks that
have high dividends should be considered.

Another approach to knowledge base organization was offere4
" by Aikins [ref 10] in her PhD dissertation. She noted the search

inefficiency problems in PUFF and developed a frame based expert
system where rules were organized into disease groups.

The final problem in rule bases which will be discussed here
* . is belief justification. It is very important that only one

domain expert be consulted in the creation of a new knowledge
-. base. Often one expert's heuristic will contradict another ex-

pert's. The computer at present has no mechanism for truth main-
tenance [ref 11] although research into this area is proceeding.

An Tdeal Architecture.

One should remember that a production system is only a
simple architecture of an expert system. The anatomy of an
'ideal' expert system is shown in Fig. 1 [ref 12:17]. The system
consists of a natural language front-end to facilitate communica-
tion between the computer and the user. Brooke's thesis [ref 13]
describes a universal natural language front-end for expert sys-
tems. The blackboard is used to record intermediate results
posted for use by many knowledge bases which may be operating in
parallel. The knowledge base contains facts as well as heuristic
problem-solving rules. The interpreter controls how the knowledge
base is searched. The enforcer adjusts previous conclusions when
new data or knowledge alter their bases of support. The justifier
rationalizes and explains the system's behavior.

Hearsay II (ref 14], a system designed to do speech recogni-
tion, embodies many of the concepts from the ideal architecture.
Hearsay II was organized as a body of cooperating, independent
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specialists. Each specialist used knowledge that was unique to
the speech recognition task. For instance, there was a knowledge
base of rules for inferring phonemes and a separate knowledge
base of grammbtical rules.

Many other architectures exist. OPS5 [ref 15] allows control -

rules to be specified which allow different search strategies to
be invoked in different contexts. Rl [ref 16] is a VAX computer
configuration expert system written in OPS5. ROSS [ref 171 facil-
itates communicate between small experts (or actors) through a
message passing language. ROSIE [ref 181 provides a structured
English interface to facilitate representation of rules. All of
these systems are variations on the production system theme.

Penny Nii (an expert expert system builder) has offered some
practical advice for those wishing to build an expert system (ref
19].

1. Don't be your own expert. It is hard to be objective
about your own 'expert' knowledge.

2. The problem must be well chosen. AI is not the answer to
every problem. Expert systems work best when the problem is well
bounded. This means that while we can represent large amounts of
problem specific knowledge we do not have a good handle on repre-
senting general world knowledge.

3. You need to meet the human expert more than halfway. Nii
begins a new expert system building task by reading all the

* " literature in the application domain.

4. If none of the tools that you have available will work,
build one.

5. One needs a way to handle uncertainty. A weighting
process must be built in that handles facts or knowledge like 'I
strongly believe .... ' or 'It might cause

6. The program must have easy means of knowledge base
modification. The program must be able to explain its answers.
Both imply that if the expert is to be a personal assistant to a
human, that it should have a useful natural language front end.

* Limitations.s

There are some serious limitations to expert systems at the
-"'- present time. Expert system techniques have to date only been

successful in domains where the experiential knowledge of the
expert could be decoupled from the world and common-sense
knowledge of the expert. These programs tend to be idiot savants - -

in that they neither recognize an interesting problem or solution
and degrade quickly near the fringes of their knowledge. For
instance, MYCIN fails when mutliple diseases are present in the
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body causing some infectious blood disease symptoms to be masked.
Another limitation is that to date, expert systems have only been
successfully applied to domains that are very narrow. The com-
puter does a fantastic job at 'deep' inferencing. We do not have
the capabilities to represent 'broad' knowledge in useful ways.
Expert systems do not have the capability to do common sense
reasoning. For instance, an expert system for the flight domain
might represent emergency checklist 'scripts'. One of these
states that when the cabin depressurizes, descend. However, an
intelligent being would immediately rule out a descent when
flying in the mountains.

All Ls Not TLotZ.

Even with the limitations, there are many successful appli-
cations. Measures of success are 1) the number of companies that
are building expert systems for internal use (e.g., Westinghouse,
General Electric, NCR), 2) the amount of venture capital avail-
able to build systems for stock market analysis, etc., and 3) the
huge salaries available to knowledge engineers (up to $70,000 on
the west coast). We conclude the section on expert systems with a
listing of the known expert systems. Much of the list is taken
from [ref 19] and is supplemented with systems that we have
worked on.

Air Force Institute of Technology

- ATC (an air traffic control expert system framework)
- Maintenance expert systems (battle damage assessment,

circuit card diagnosis, tech order automation)
- Military planning (several military planning aids)
- Natural language front ends to expert systems
- Pilot aids, ongoing research in advanced expert system

architectures
- SPEREXAS (a speech recognition system)

Bioengineering

- MOLGEN (genetic experiment planning aid)

Chemistry

- DENDRAL (interprets mass spectrometer data)
- DECS (organic synthesis planning)

Computer Systems

- DART (diagnosis of computer faults)
- RI (configure VAX systems.
- SPEAR (analysis of computer error logs)
-XSEL (assists sales people in selecting appropriate

computer systems)

Engineering
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- SACON (aids structural engineers)

General Purpose

- AGE (guides development of expert systems involving
hypothesis formation and information fusion)

- AL/X (assists diagnostic experts)
- EMYCIN (MYCIN without the knowledge base)

- • - EXPERT (an inference system used in oil exploration tasks)
- KAS (an experimental knowledge acquisition system)
- LOOPS (an experimental knowledge representation system)

- - OPS (a basic inference system)
• - ROSIE (a basic inference system)

- - TIERESIAS (aids in knowledge acquisiton)
-.- - UNITS (an early version of LOOPS)

Law

- LDS (an experimental system that models legal decision
making)

- TAXMAN (an experimental system that deals with rules
implicit in tax laws)

Maintenance

- CAT-1 (diagnosis of diesel train engines)

Military

- AIRPLAN (an expert system for air traffic control around
aircraft carriers)

- HASP (an expert system for identification and tracking of
ships using ocean sonar signals)

- KNOBS (a tactical aircraft planning aid)
- TATR (an expert system for tactical air targeteering, uses

-" ROSIE)
- SWIRL (a tactical aircraft planning aid, uses ROSS)

.. Resource Exploration

- DIPMETER ADVISOR (analyzes information from oil wells)
- DRILLING ADVISOR (diagnosing oil well drilling problems)
- PROSPECTOR (evaluates sites for potential mineral deposits)

Medicine

• - CADUCEUS (differential diagnosis in internal medicine)
- - CASNET (a causal network that associates treatments with

various diagnostic hypotheses)
- - MYCIN (diagnoses infectious blood diseases)

- MDX (uses compiled knowledge to performed various diagnosis
.. tasks)
9. - ONCOCIN (a management system for cancer chemotherapy)

- PUFF (diagnosis of pulmonary disorders, uses EMYCIN)
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