ARO WORKSHOP

ANALYTICAL AND COMPUTATIONAL
ISSUES IN LOGISTICS R&D

MAY 7-9, 1984

Volume 1

Approved for public release; distribution unlimited.
The findings of this report are not to be construed
as an official Department of the Army position, un-
less so designated by other authorized documents.

Sponsored by
The Army Research Office

Hosted By
The George Washington University
This volume and its companion contain the proceedings of an ARO workshop on logistics research held at the George Washington University on 7-9 May 1984. The ARO workshop concept is to bring a dozen, or so, researchers in a well defined scientific area together with Army scientists and engineers with similar interests. The primary goal of these workshops is communication. Formal presentations by each group stimulate discussions, which in many cases, develop into very productive long range interactions. At a more basic level, the Army participants are presented with a survey of recent results while the researchers are presented with new motivating problems for future research.

Logistics is a very broad field of endeavor, encompassing many academic disciplines. For example, logistics practice uses concepts from management science, mathematical optimization theory, network analysis, reliability, quality control, queuing theory, and many others. Because of this broad nature, the ARO workshop concept does not naturally accommodate this topic. There is, however, a mounting interest in logistics research at all levels within the Department of the Army because of the realization that the life cycle logistic costs of a weapon system amount to several times its initial development and production costs. Since there is no formal comprehensive outline of specific problems or issues whose solutions could streamline the practice of logistics in the Army, this workshop was a first step in establishing the necessary dialog for developing such an outline, at least for that part of the scientific community with which ARO interacts. It is hoped that there will be a series of follow-on meetings which will focus on more specialized topics of interest to researchers and the Army alike. These meetings will likely take the form of workshops, working group meetings, and other committee functions. Each will have its own format and goal.

This workshop began with a special keynote presentation by Mr. Walter W. Hollis, Deputy Undersecretary of the Army, Operations Research. Mr. Hollis developed the very broad outlines of the logistics problem from the perspective of his office, while subsequent presentations gave more highly resolved treatments of this problem. The papers presented by the academic researchers also followed this general pattern. An effort was made to group the academic talks with the Army talks which were most similar in content, in the workshop agenda.

The agenda is produced in the beginning pages of the first volume of these proceedings. Because of the pressure of work, some of the participants were not able to provide a copy of their papers. The reproduction of the proceedings was, therefore, delayed to accommodate as many of the papers as possible.
The presentations of the Army participants tend to be factual outlines of mission oriented work competently performed over a long period of time. The academic papers, on the other hand, are reports of recent research results along with directions for current and future research. The continuing nature of academic research is reflected in the fact, that the titles of the papers in the latter category differ from the titles given in the agenda. Due to the very different nature of the two types of talks, therefore, the proceedings are compiled in two volumes. It is hoped that this will make it a more useful document.
KEYNOTE ADDRESS: A CONCEPT FOR THE EVALUATION OF LOGISTIC SUPPORTABILITY
Walter W. Hollis, Deputy Undersecretary of the Army - C. R.

THE ARMY PERSPECTIVE ON LOGISTICS R&D
William Kracov, DARCOM Headquarters

SOME AREAS FOR RESEARCH IN ANALYTICAL AND COMPUTATIONAL LOGISTICS
William H. Marlow, George Washington University

ILS PLANNING PROBLEM FOR NEW WEAPON SYSTEMS
Michael McGrath, Office of the Secretary of Defense

A STOCHASTIC NETWORK FORMULATION FOR PERFORMANCE ASSESSMENT AND LIFE-CYCLE
MODELING IN COMPLEX SYSTEM DESIGN
Austin Lemoine, Ford Aerospace Corporation

LOGISTICS SUPPORT ANALYSIS TECHNIQUES REVIEW AND ANALYSIS
Leslie H. Adkins, US Army DARCOM Materiel Readiness Support Activity

CONTROL PROBLEMS IN NETWORKS OF QUEUES
Shaler Stidham, North Carolina State University

ACTIVITY NETWORKS: A STATUS REPORT
Salah Elmaghraby, North Carolina State University

LOGISTICS OPERATIONAL EFFECTIVENESS NETWORK ANALYSIS
Maureen Stark, Ballistic Research Laboratory

MARKOV MODELS OF MULTI-ECHelon, REPAIRABLE-ITEM INVENTORY SYSTEMS
Donald Gross, George Washington University

RELIABILITY AND FAULT TREE ANALYSIS USING EXPERT OPINION: A
CONCEPTUAL FRAMEWORK
Nozer D. Singpurwalla, George Washington University

FORECASTING PERFORMANCE FOR SLOW MOVING ITEMS
Robert Deemer, Army Materiel Systems Analysis Activity
A GENERALIZED DYNAMIC LINEAR MODEL WITH A CONSTRAINT ON THE EXPECTED VALUE OF STATE VARIABLES
Jacob Tsao and R. E. Barlow, University of California, Berkeley

STUDYING MODEL ASSUMPTIONS IN PROCESS CONTROL
Charles P. Quesenberry, North Carolina State University

QUALITY IMPROVEMENT USING EXPERIMENTAL DESIGN
George E. P. Box, Mathematics Research Center, The University of Wisconsin

SUPPORTING THE FUTURE FORCE
J. Russell Wiltshire, HQ, Department of the Army

MODELS OF MILITARY COMBAT WITH LOGISTICS
John S. Maybee, University of Colorado, Boulder

OVERVIEW OF SELECTED TOPICS IN LOGISTICS R&D
Wilson Heaps, Army Materiel Systems Analysis Activity

SIMULATION OF NON-MARKOVIAN SYSTEMS
Donald L. Iglehart, Stanford University

PANEL DISCUSSION
Moderator, Jagdish Chandra

Panelists:
George E. P. Box, University of Wisconsin
Rolf Clark, George Washington University
Austin Lemoine, Ford Aerospace Corporation
William H. Marlow

OVERVIEW OF EXPERT SYSTEMS
Stephen Cross, Air Force Institute of Technology

SUPPORTABILITY IN OPERATIONAL TEST AND EVALUATION
Douglas McGowen, Operational Test and Evaluation Agency

ILS QUANTIFICATION
Thomas Lanagan, Army Logistics Center

INTEGER AND MIXED-INTEGER NONLINEAR PROGRAMMING FOR LOGISTICS R&D PROBLEMS
Richard Soland, George Washington University
TABLE OF CONTENTS

VOLUME 1

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>Workshop Agenda</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>Keynote Address
Walter W. Hollis, Deputy Undersecretary of The Army, O/R</td>
<td>1</td>
</tr>
<tr>
<td>ILS Planning Problems for New Weapon Systems
Michael McGrath</td>
<td>2</td>
</tr>
<tr>
<td>Logistics Support Analysis Techniques Review and Analysis
Leslie H. Adkins</td>
<td>16</td>
</tr>
<tr>
<td>Logistics Operational Effectiveness Network Analysis
Maureen Stark</td>
<td>55</td>
</tr>
<tr>
<td>Forecasting Performance for Slow Moving Items
Robert Deemer</td>
<td>72</td>
</tr>
<tr>
<td>Supporting the Future Force
J. Russell Wiltshire</td>
<td>92</td>
</tr>
<tr>
<td>Overview of Selected Topics in Logistics R&D
Wilson Heaps</td>
<td>148</td>
</tr>
<tr>
<td>Supportability in Operational Test and Evaluation
Douglas McGowen</td>
<td>168</td>
</tr>
<tr>
<td>ILS Quantification
Thomas Lanagan</td>
<td>188</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
VOLUME 2

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistics, Stochastic Networks, and Failure Modeling</td>
<td>287</td>
</tr>
<tr>
<td>Austin J. Lemoine and Michael L. Wenocur</td>
<td></td>
</tr>
<tr>
<td>Optimal Control of Admission, Routing, and Service in Queues and</td>
<td>330</td>
</tr>
<tr>
<td>Networks of Queues: A Tutorial Review</td>
<td></td>
</tr>
<tr>
<td>Snaler Stidham, Jr.</td>
<td></td>
</tr>
<tr>
<td>Some Recent Advances in Activity Networks</td>
<td>378</td>
</tr>
<tr>
<td>S. E. Elmaghraby, B. M. Dodin, A. M. Salem, and A. H. Colby</td>
<td></td>
</tr>
<tr>
<td>Markov Models of Multi-echelon, Repairable-Item Inventory Systems</td>
<td>421</td>
</tr>
<tr>
<td>Donald Gross, Leonidas C. Kioussis, Douglas R. Miller, and</td>
<td></td>
</tr>
<tr>
<td>Richard M. Soland</td>
<td></td>
</tr>
<tr>
<td>Studying Model Assumptions in Process Quality Control</td>
<td>440</td>
</tr>
<tr>
<td>C. P. Quesenberry</td>
<td></td>
</tr>
<tr>
<td>Recent Research in Experimental Design for Quality Improvement</td>
<td>454</td>
</tr>
<tr>
<td>with Applications to Logistics</td>
<td></td>
</tr>
<tr>
<td>George E. P. Box</td>
<td></td>
</tr>
<tr>
<td>Models of Military Combat with Logistics Components</td>
<td>469</td>
</tr>
<tr>
<td>John S. Maybee</td>
<td></td>
</tr>
<tr>
<td>Overview of Expert Systems</td>
<td>478</td>
</tr>
<tr>
<td>Stephen E. Cross</td>
<td></td>
</tr>
</tbody>
</table>
KEYNOTE ADDRESS

A CONCEPT FOR THE EVALUATION OF LOGISTIC SUPPORTABILITY

Walter W. Hollis
Deputy Undersecretary of the Army
Operations Research
Summary of Mr. Walter W. Hollis' Keynote Address
at
ARO Workshop on Logistics R&D
George Washington University
7 May 1984

Mr. Hollis opened his remarks by making four points--

Supportability is an important and timely topic.

Life cycle costs for most systems dominated by support costs.

Logistics R&D has at least two components--

R&D to increase the productivity of Combat Service Support Units, and

R&D as a part of system design to ensure reliability and maintainability are inherent in it.

In connection with the latter point he observed that he was concerned that the creation of, for example, reliability departments, may have led us to forget the very excellent concept of interdisciplinary design teams. He pointed out that we should not develop a we and thee attitude.

Following these general remarks, Mr. Hollis turned to the topic of Logistics Supportability Evaluations in support of the acquisition process. He emphasized the point that such evaluations to be credible could not rely on test data alone. It was explained in connection with this point that tests of size and length sufficient to a credible assessment would be unaffordable and would suffer from what is called the "persistence of the situational variable," i.e., one set of initial conditions - scenario, unit, test location, etc.

The challenge then to those who desire to evaluate logistic supportability is to find the proper mixture of test and simulation. Tests can provide the basic data as to the reliability and maintainability of specific item level systems (a tank, for example) repair times, frequency of parts usage but cannot provide realistically the impact of the supply system on supportability nor the assessment of the impact of the new item level system on the next higher level system in which it is embedded. The more rearward the need to assess supportability the more need for simulation as an evaluation tool.

Mr. Hollis left with the mathematicians in the audience the request that they think about existing simulations of the supportability process, reflect on the adequacy of these and suggest better approaches to the process of logistic supportability assessment.
ILS PLANNING PROBLEMS FOR NEW WEAPON SYSTEMS

Michael McGrath
Office of the Secretary of Defense
DEFINING THE
ILS PLANNING PROBLEM

Michael F. McGrath
Office of the Secretary of Defense
May 7, 1984
OUTLINE

- BACKGROUND: INTEGRATED LOGISTIC SUPPORT (ILS) POLICIES

- DEFINING THE PROBLEM
 - OBJECTIVE FUNCTION
 - CONSTRAINTS

- TWO CURRENT "SOLUTION" TECHNIQUES AND THEIR LIMITATIONS

- RESEARCH AREAS AND POSSIBLE SOLUTION APPROACHES FOR THE FUTURE
CURRENT ILS POLICY
(DoD DIRECTIVE 5000.39, NOV 1983)

OBJECTIVE

"THE PRIMARY OBJECTIVE OF THE ILS PROGRAM SHALL BE TO ACHIEVE SYSTEM READINESS OBJECTIVES AT AN AFFORDABLE LIFE CYCLE COST."

SCOPE

TEN ILS ELEMENTS:

| MAINTENANCE PLANNING MANPOWER AND PERSONNEL SUPPLY SUPPORT | SUPPORT EQUIPMENT TECHNICAL DATA TRAINING & TRAINING SUPPORT DESIGN INTERFACE | COMPUTER RESOURCES SUPPORT FACILITIES PACKAGING, HANDLING, STORAGE & TRANSPORTATION |

PROCESS

• EARLY ACTIVITIES: (MIL-STD-1388-1A) — DESIGNING IN DESIRABLE SUPPORT CHARACTERISTICS — DETERMINING MAINTENANCE CONCEPT, SUPPORT REQUIREMENTS

• SUBSEQUENT ACTIVITIES: — ACQUISITION, EVALUATION AND DEPLOYMENT OF SUPPORT RESOURCES
AN ANALYTICAL INTERPRETATION

MINIMIZE: LIFE CYCLE COST

SUBJECT TO: READINESS AND SUSTAINABILITY
 CONSTRAINTS
 TECHNOLOGICAL CONSTRAINTS
 RESOURCE CONSTRAINTS
 OPERATIONAL AND LOGISTIC
 SCENARIO CONSTRAINTS
FORMULATION AS A NOTIONAL NONLINEAR PROGRAMMING PROBLEM

CONTROL VARIABLES (VECTORS)

\[d = \text{DESIGN VARIABLES (MTBF, MTTR, # OF LRUs, UNIT COST, \ldots)} \]

\[s = \text{SUPPORT RESOURCE VARIABLES (SPARES QUANTITIES, MAINTENANCE MANPOWER AND SKILL LEVELS, SUPPORT EQUIPMENT \ldots)} \]

\[m = \text{MAINTENANCE CONCEPT VARIABLES (LEVEL OF REPAIR, SUPPLY ECHELONS, TRANSPORTATION MODES, \ldots)} \]

OBJECTIVE FUNCTION

\[c = \text{LIFE CYCLE COST} = f(d,s,m;p) \]

where

\[p = \text{"FIXED" PARAMETERS (NUMBER OF END ITEMS, UTILIZATION RATE, \ldots)} \]
FORMULATION (CONT'D)

CONSTRAINTS

READINESS & SUSTAINABILITY:

TECHNOLOGICAL:

RESOURCE:

OPERATIONAL AND LOGISTIC SCENARIO:

\[
\begin{align*}
& g_1(d,s,m,p) \geq 0 \\
& g_2(d,s,m,p) \geq 0 \\
& \ldots \\
& g_9(d,s,m,p) \geq 0 \\
& g_{10}(d,s,m,p) \geq 0 \\
& g_{11}(d,s,m,p) \geq 0 \\
& g_{12}(d,s,m,p) \geq 0 \\
& \ldots \\
& g_{16}(d,s,m,p) \geq 0 \\
& g_{17}(d,s,m,p) \geq 0
\end{align*}
\]
WHY NOT TAKE NLP PROBLEM LITERALLY?

TECHNICAL PROBLEMS
• FUNCTIONAL FORMS OF OBJECTIVE FUNCTION AND CONSTRAINTS ARE KNOWN ONLY PARTIALLY
• CONSTRAINTS MAY MAKE PROBLEM INFEASIBLE

MANAGEMENT PROBLEMS
• NUMBER OF CONTROL VARIABLES AND CONSTRAINTS CHANGES VIRTUALLY EVERY WEEK

CONCESSIONS TO PRAGMATISM
• ONE PERSON'S CONSTRAINT IS ANOTHER PERSON'S CONTROL VARIABLE
• ALTHOUGH "BEST" SOLUTION WOULD BE NICE, "GOOD ENOUGH" SOLUTION IS ACCEPTABLE (I.E., AFFORDABLE SOLUTION THAT MEETS THE IMPORTANT CONSTRAINTS)
CURRENT APPROACHES

1. WORK THE PROBLEM IN PIECES (PARTITIONING)
 • DEAL WITH A SUBSET OF THE CONTROL VARIABLES
 AND KNOWN (OR ASSUMED) FUNCTIONAL FORMS
 FOR THE OBJECTIVE AND CONSTRAINTS

EXAMPLE: SPARING-TO-AVAILABILITY

\[
\begin{align*}
\text{min} & \quad \sum_{nij} \sum_{i} \text{items} \quad \sum_{j} \text{locations} \quad nij \ C_i \\
\text{s.t.} & \quad A_0 \geq \alpha \text{ where } A_0 = f(n_{ij}, \text{MTBF}_i, \text{MTTR}_j, \text{MSRT}, \text{SMR}_i, \ldots) \\
& \quad n_{ij} \geq 0, \text{ integer}
\end{align*}
\]

EXAMPLE: LEVEL OF REPAIR ANALYSIS

\[
\begin{align*}
\text{min} & \quad \text{Support Cost} = f(\text{Repair Level}, n_{ij}, \ldots) \\
\text{s.t.} & \quad \text{Repair Level} = O, I, D, \text{ or "Discard"} \rightarrow \text{SMR}_i
\end{align*}
\]
WHAT'S WRONG WITH PARTITIONING?

NOTHING, IF:

- WILLING TO ACCEPT NON-OPTIMAL SOLUTIONS
- CAN ENSURE SEPARATE ANALYSES USE CONSISTENT ASSUMPTIONS AND INPUT DATA

NON-TRIVIAL MANAGEMENT PROBLEM
(MIL-STD-1388-2A, "LSAR", SHOULD HELP)
CURRENT APPROACHES

2. USE SIMULATION (UNKNOWN FUNCTIONS)
 • CHOOSE AFFORDABLE VALUES FOR A SUBSET OF THE
 CONTROL VARIABLES; SIMULATE IN A SCENARIO THAT
 MEETS OPERATIONAL AND LOGISTIC CONSTRAINTS;
 AND OBSERVE OUTPUT MEASURES OF INTEREST.
 CONDUCT SENSITIVITY EXCURSIONS.

EXAMPLE: AIR FORCE USE OF "LCOM" TO TEST THE
 SORTIE GENERATION RATES ACHIEVABLE
 FOR GIVEN MAINTENANCE MANNING AND
 SPARES LEVELS.

EXAMPLE: NAVY USE OF "TIGER" TO ESTIMATE THE
 OPERATIONAL AVAILABILITY OF COMPLEX
 SHIP COMBAT SYSTEMS, GIVEN COMPONENT
 RELIABILITY AND SPARES INPUTS
WHAT'S WRONG WITH SIMULATION?

NOTHING, AS A MEANS OF TESTING WHETHER CONSTRAINTS ARE MET. BUT:

- DIFFICULT TO OPTIMIZE, EVEN APPROXIMATELY

- CUMBERSOME — CURRENT MODELS AND APPLICATIONS TEND TO REQUIRE EXTENSIVE INPUT DATA AND COMPUTER TIME
FUTURE DIRECTIONS

- Continue to work the problem in partitioned form, but perhaps in larger chunks.

- Discipline the data base so that separate analyses will be consistent (MIL-STD-1388-1A/2A).

- Seek further development of closed form functional expressions for the objective and constraints.
RESEARCH AREAS

• STOCHASTIC MODELING APPROACHES TO TAKE ADDITIONAL CONSTRAINTS INTO ACCOUNT (IN CLOSED FORM). FOR EXAMPLE:
 — "SPARING TO AVAILABILITY" UNDER DYNAMIC CONDITIONS
 — FINITE POPULATION, FINITE REPAIR CAPACITY SPARING MODELS

• EXPANDED MODELS THAT CONSIDER MORE CONTROL VARIABLES SIMULTANEOUSLY. FOR EXAMPLE:
 — COMBINED SPARING TO AVAILABILITY AND LEVEL OF REPAIR MODELS (E.G., OATMEAL)

• APPROXIMATIONS FOR USE WITH LIMITED INPUT DATA
 — AGGREGATE SPARING TO AVAILABILITY APPROACHES
 — PARAMETRIC COST ESTIMATING RELATIONSHIPS
LOGISTICS SUPPORT ANALYSIS TECHNIQUES REVIEW AND ANALYSIS

Leslie H. Adkins
US Army DARCOM Materiel Readiness Support Activity
Good Afternoon. I'm Bud Adkins, for the US Army DARCOM Materiel Readiness Support Activity, or MRSA, Lexington, KY. I would like to briefly discuss some of the ongoing or planned activities at MRSA concerning Logistic Support Analysis Technique and models. More specifically I would like to discuss MRSA's LSA techniques technical review and analysis efforts.
US ARMY DARCOM
MATERIEL READINESS SUPPORT ACTIVITY

MISSION

TO PROVIDE LOGISTICS ANALYSES AND EVALUATIONS AND OTHER TECHNICAL AND MANAGEMENT SERVICES IN SUPPORT OF THE DARCOM MATERIEL READINESS MISSION DURING ALL PHASES OF THE LIFE CYCLE MANAGEMENT

THRUST

TO POSITIVELY INFLUENCE THE ARMY’S EFFORT TO FIELD FULLY SUPPORTABLE ITEMS OF EQUIPMENT TO THE SOLDIERS AND TO IMPROVE ARMY MATERIEL READINESS

CMALLC's primary mission is as shown. We are involved in every phase of the materiel life cycle, from concept to disposal, and in every element of integrated logistic support. Our responsibilities range from assessments of new materiel systems, to analysis of materiel systems readiness to be fielded, to determinations of final disposition of materiel systems that are no longer practical to maintain.
MRSA ORGANIZATIONAL RELATIONSHIPS

First, for the benefit of those who are not familiar with MRSA, we are an activity of about 400 personnel that reports to the US Army Materiel Development and Readiness Command (DARCOM) located in nearby Alexandria, VA. Although we report to MG Welsh, Director of supply, maintenance, and transportation, we receive tasking from most of the DARCOM directorates. In addition, we also have DA and DOD responsibilities.
This is MRSA's operational policy—that is, prevention, detection, and correction. Our role for items under development is to prevent logistic support problems from becoming soldier problems. For those items already in the hands of troops, MRSA's role is to detect logistic support problems requiring resolution. MRSA then works to attain correction to identified problems in coordination with equipment proponents. This again reflects MRSA's broad role throughout a material systems life cycle.
SIGNIFICANT FUNCTIONAL AREAS

- INTEGRATED LOGISTIC SUPPORT POLICY AND PROCEDURES FOR ARMY
- ARMY OIL ANALYSIS PROGRAM (AOAP)
- RELIABILITY IMPROVEMENT AND REPORTING SYSTEM
- ASSISTANCE AND CONSULTANT SERVICE TO MATERIEL DEVELOPERS/USERS
- ARMY SAMPLE DATA COLLECTION PROGRAM
- STANDARD ARMY MAINTENANCE SYSTEM
- LOGISTICS COORDINATOR FOR ARMY IR&D PROGRAM
- DOD TECHNICAL MANUAL STANDARDIZATION
- DOD LSA/LSAR

These are some of the more significant functional areas in NRSA's mission. We draft and publish Army ILS policy and procedures in the form of pamphlets and regulations. We provide assistance and consulting service to Army materiel developers and users. We are the logistic coordinator for the Army IR&D program and provide logistic guidance to both IR&D participants and IR&D technical evaluators. NRSA is also the manager of the DOD LSA/LSAR program and it is in this program that the LSA techniques are applied.
LOGISTIC SUPPORT ANALYSIS

SUBJECT: DOD Logistic Support Analysis Support Activity

Commander DARCOM.

The DOD Logistic Support Analysis (LSA) Support Activity mission is hereby assigned to your command. It is appropriate that this mission be further assigned to the DARCOM Material Readiness Support Activity (MRSA).

Richard H. Thompson
Lieutenant General, G5
Deputy Chief of Staff for Logistics

MRSA was assigned the mission of DOD LSA/LSAR program manager by the DOD through DA and DARCOM. As noted in the letters, MRSA was specified by name to manage the program, a rather unusual event in itself.
There are two documents associated with the LSA/SLAR program. One document is MIL-STD-1388-IA, Logistic Support Analysis. This standard recently underwent a major revision and was published in Oct 84.
LOGISTIC SUPPORT ANALYSIS
MIL-STD 1388-1A

PURPOSE

• PROVIDES GENERAL REQUIREMENTS AND TASK DESCRIPTIONS FOR
 THE PERFORMANCE OF LSA DURING THE LIFE CYCLE OF SYSTEMS/
 EQUIPMENT

APPLICABILITY

• ALL SYSTEM/EQUIPMENT ACQUISITION PROGRAMS THROUGHOUT
 ALL PHASES OF THE LIFE CYCLE

The purpose of MIL-STD-1388-1A is as shown. LSA is designed to be applied throughout each phase of a material systems life cycle.
The other document is MIL-STD-1388-2A, Logistic Support Analysis Record. This document has recently been finalized as a draft and will be published in Jun 84. Both standards are DOD documents and are widely acclaimed throughout DOD and industry.
DOD REQUIREMENTS FOR A
LOGISTIC SUPPORT ANALYSIS RECORD
MIL-STD 1388-2A (DRAFT, MAR 83)

(PURPOSE)

- Prescribe standard LSAR data elements, definitions, and data field lengths
- Prescribes format of LSAR reports
- Defines LSAR master file formats as communication link between contractor and government ADP systems
- Defines LSAR input formats when the DOD LSAR ADP system is used

The purpose of MIL-STD-1388-2A is as shown, the LSAR is primarily the record keeping process of LSA.
Logistic Support Analysis

DARCOM ILS STUDY

IDENTIFIED NEED TO:

- STRENGTHEN LSA PROGRAM
- DEVELOP MEANS TO BETTER CONDUCT LSA
- ESTABLISH A CENTER OF LSA EXPERTISE WITHIN DARCOM
- ESTABLISH LSA EXPERTISE WITHIN EACH MSC

In 1982, HQ DARCOM directed that a study be conducted to determine where the ILS program could be improved to be more responsive to the needs of Army materiel developers and users. One of the needs identified was to establish an LSA center of expertise and appoint an LSA executive agent.
LOGISTIC SUPPORT ANALYSIS
EXECUTIVE AGENT

MRSA was designated as the LSA executive agent in Sep 82, by HQ DARCOM.
DARCOM

LSA EXECUTIVE AGENT

MISSION

- COORDINATE/DEVELOP LSA PROCEDURES/TECHNIQUES
- PROVIDE ASSISTANCE TO ALL DARCOM ACTIVITIES ON LSA
- ESTABLISH AN LSA CENTER OF EXPERTISE

This represents the mission assigned to MRSA as the LSA executive agent.
DARCOM

LSA EXECUTIVE AGENT

MAJOR FUNCTIONS

- LSA TECHNIQUES GUIDE AND LIBRARY
- ANALYZE AND DEVELOP EXPERTISE ON SPECIFIC LSA TECHNIQUES
- VALIDATED PARAMETERS LIBRARY
- BRIDGING LSA REQUIREMENTS AND CURRENT TECHNIQUES
- OFF-THE-SHELF ANALYSIS TECHNIQUES

These are the major functions applicable to LSA techniques. The initial effort consisted of determining what LSA techniques/models were available within DOD and industry that could be applied to the LSA tasks identified in MIL-STD-1388-1A. Next was the conduct of a technical review and analysis of each technique to determine applicability and validity and the cataloging of the technique in the central library. The results of the analysis were to be documented in a technical report.
LSA ENHANCEMENT & IMPLEMENTATION PLAN

CHAPTER 1 INTRODUCTION

CHAPTER 2 CONSOLIDATED BASE OF LOGISTIC MODELS
 TASK 2-1: LIBRARY OF CURRENT LSA MODELS
 TASK 2-2: LSA TECHNIQUES GUIDE

CHAPTER 3 INPUT DATA
 TASK 3-1: VALIDATED LOGISTIC PARAMETER LIBRARY

CHAPTER 4 NEW TECHNIQUE REQUIREMENTS

CHAPTER 5 OFF-THE-SHELF ANALYSES
 TASK 5-1: SPARC DATA FOR BATTLE DAMAGE
 TASK 5-2: DISCARD/REPAIR COST MODEL
 TASK 5-3: MTBR CALCULATIONS

CHAPTER 6 LSA TECHNIQUE APPLICATION & CO-ORDINATION
 TASK 6-1: DARCOM/TRADOC LSA PROCEDURES HANDBOOK

This represents the outline of a five year program plan established to accomplish the LSA executive agent mission. Chapter 2 represents actions to identify, analyze, and catalogue techniques, and to document results of each. Chapter 3 represents actions essential to identify, validate and record standard inputs for LSA techniques. Chapter 4 is the effort to develop new techniques for application to LSA tasks where there are no existing techniques. Chapter 5 efforts will be to convert existing or develop new techniques to be "friendly", and rapidly executed with minimum training and hardware requirements.
LSA TECHNIQUES GUIDE
DARCOM PAMPHLET 700-4
(FORMERLY DARCOM HDBK 700.3.1-82)

PURPOSE
- TO CATALOGUE CURRENTLY USED LSA TECHNIQUES
- TO ASSIST IN ACCOMPLISHMENT OF LSA

STATUS
- SCHEDULED PUBLICATION JUN 84

The document that catalogues the LSA techniques that have some applicability to the LSA tasks of MIL-STD-1388-1A is the LSA Techniques Guide, DARCOM PAM 700-4. This document, updated annually, will be published in Jun 84.
LSA TECHNIQUES GUIDE

1.2 TECHNIQUES QUALIFICATIONS
 a. APPLICABLE TO AT LEAST ONE LSA SUBTASK
* b. SUPPORTED BY PROPONENT WITH AVAILABLE DOCUMENTATION
 c. EXPORTABLE TO OTHER GEOGRAPHICAL LOCATIONS
 d. APPLICABLE TO MORE THAN ONE SYSTEM
* e. SUCCESSFULLY APPLIED TO A SYSTEM WITHIN LAST 5 YEARS
* f. NOT SUPERSEDED BY A MORE PREFERRED METHOD AND BE A STAND ALONE TECHNIQUE

1.2.1 PROPRIETARY AND NONPROPRIETARY TECHNIQUES ARE ELIGIBLE
1.2.2 TECHNIQUES UNDER DEVELOPMENT ARE ELIGIBLE

Before a technique can be included in the techniques guide, it must meet these criteria. Exportability can be waived for proprietary models that have good application merits. If a technique is undergoing development, criteria elements may be waived until the technique matters.
LSA TECHNIQUES GUIDE

SUMMARY

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>MET QUALIFICATIONS (33 OF ORIGINAL 52)</td>
</tr>
<tr>
<td>49</td>
<td>FAILED TO MEET QUALIFICATIONS (19 OF ORIGINAL 52)</td>
</tr>
<tr>
<td>16</td>
<td>INSUFFICIENT INFO</td>
</tr>
<tr>
<td>151</td>
<td>TOTAL TECHNIQUES CONSIDERED</td>
</tr>
</tbody>
</table>

The current techniques guide contains detailed information on 86 of the known 151 techniques. A brief reference is made to the remaining 65 techniques in an appendix to the guide. A technical review and analysis will be conducted only on those techniques with known LSA applicability.
LSA TECHNIQUES GUIDE

LSA TECHNIQUES INFORMATION

- PURPOSE AND DESCRIPTION
- PROPOINENT AND CURRENT USER'S
- INPUTS AND OUTPUTS
- AUTOMATION INFO
- DOCUMENTATION AVAILABLE
- MODEL TYPE
- LEVEL OF DETAIL
- OPERATIONAL SCENARIO
- APPLICATIONS
- LIFE CYCLE PHASES INTERFACE
- LSAR INTERFACE
- LSA TASK INTERFACE
- ILS ELEMENT INTERFACE

This is the detail of information contained in the Techniques Guide for each of the techniques having known LSA application, e.g., the purpose for which the technique was designed, the ADP requirements for technique execution, points of contacts for assistance in application.
I would like to discuss the methodology MRSA applies to conduct a LSA Technique Technical Review and analysis or TRA, the products of the TRA and the method of documenting the analysis results.
TECHNICAL REVIEW

- APPLICABILITY TO MIL-STD-1388-1A TASKS
- EQUATIONS/CALCULATIONS
- DOCUMENTATION
- INPUT PARAMETERS
- OUTPUT PRODUCTS
- STRENGTHS AND LIMITATIONS
- CONCLUSIONS
- RECOMMENDATIONS

The initial step is to obtain all available documentation e.g., users guide, programmer manual and program tape for evaluation. Then an evaluation is made to determine the applicability of the technique to the LSA tasks and subtasks. Each significant feature of the model is then evaluated to determine accuracy, authenticity and sensitivity and to determine the strengths and limitations. Conclusions and recommendations are then formed based on analysis results.
The results of each step of the TRA are documented in a LSA TRA report. This is the TRA report on the Logistic Analysis Model or LOGAM. The TRA report is coordinated with the technique proponent prior to publication. We now have six TRA reports ready for publication.
TECHNICAL REVIEW AND ANALYSIS REPORT

END PRODUCTS

- IDENTIFICATION OF APPLICABLE TASKS IN MIL-STD-1388-1A THE TECHNIQUE CAN SATISFY
- DETERMINATION OF CONFORMITY TO REGULATIONS
- DETERMINATION OF RESOURCES REQUIRED TO UTILIZE TECHNIQUE
- DOCUMENT USERS AND POTENTIAL AREAS OF APPLICATION (VARIOUS COMMODITIES)
- ESTABLISH SENSITIVITY OF INPUT DATA AND ANY STANDARD INPUT PARAMETERS
- ANALYSIS OF OUTPUT PRODUCTS AND THEIR USES
- EVALUATE DOCUMENTATION, TRAINING AVAILABILITY AND TRANSPORTABILITY OF THE TECHNIQUE

These are some of the findings within the TRA report that would be of value to a potential user of the technique. The more important finding would be the LSA tasks to which the technique could be applied.
COMPLETED TECHNICAL REVIEW
AND ANALYSIS REPORTS

- LOGISTICS ANALYSIS MODEL (LOGAM)
- GENERALIZED ELECTRONICS MAINTENANCE MODEL (GEMM)
- VENTURE EVALUATION REVIEW TECHNIQUE (VERT)
- OPTIMUM REPAIR LEVEL ANALYSIS (ORLA) MICOM VERSION
- COMPUTER-AIDED ESTIMATION OF FAILURE FACTORS
- OBJECTIVE DETERMINATION OF FAILURE FACTORS (DARCOM-P 750-5)

These are the TRA reports that have been completed and will soon be published. The LOGAM TRA report includes an analysis of LOCAM-5 and a comparison of the two similar models. The VERT TRA report also contains an analysis of intervert, an interactive version of VERT, and a comparison of these two techniques. MRSA has conducted a TRA on eight techniques to date. We have recommended three of the models be recycled and no longer used. (VERT, LOCAM-5, and CAEOFF).
TECHNIQUE DESCRIPTION

- PURPOSE
- TYPE
- SENSITIVITY FEATURES
 - MULTIPLES
 - DISCRETE STEPS
 - ASSIGNED VALUES
- TYPES OF ANALYSES
 - REPAIR LEVEL
 - REPAIR VS DISCARD
 - MANPOWER AND SUPPORT EQUIPMENT REQUIREMENTS
 - SPARES PROVISIONING
 - LIFE CYCLE COST

Each TRA report contains numerous investigations and findings for each model analyzed. These topics relate to the LOGAM, but are addressed for each technique. The types of analyses investigated may not be limited to that defined in the technique documentation.
STRENGTHS

- WIDELY USED
- TRAINING
- FLEXIBLE INPUT
- RANGE OF ANALYSES
- TRANSPORTABLE
- NON PROPRIETARY
- LIFE CYCLE COST EQUATIONS
 IAW DA PAM 11-2,3,4
- DOCUMENTATION

The strengths of each technique are determined during the analysis. Again, examples apply to the LOGAM technique.
LIMITATIONS

- ASSUMPTIONS (STEADY STATE, CONSTANT & SYMMETRIC DEPLOYMENT)
- ACCURACY OF INPUT DATA
- NO CONTROLLED SUBSTITUTIONS
- AVAILABILITY CALCULATIONS NOT IAW AR 702-3

Limitations or weaknesses of the technique are also determined. These also apply to the LOGAM technique.
CONCLUSIONS

- INPUT REQUIREMENTS - APPLICATION DEPENDENT
- AVAILABILITY CALCULATION
- PEACETIME VS WARTIME
- LSA TASK APPLICATIONS
- EXCELLENT DOCUMENTATION
- CONFIGURATION CONTROL
- EXPORTABLE

Conclusions are formed concerning the technique upon completion of the analysis. In the case of LOGAM, the inaccuracies in the availability equation did not significantly affect the outputs.
RECOMMENDATIONS

- REVISE AVAILABILITY CALCULATIONS
- USE FOR LSA TASKS
- ENHANCE OUTPUT FORMAT
- SUPERCEDE LOCAM 5
- OPTIONAL INPUT MODULE

Where appropriate, recommendations are also provided as a result of the analysis. As can be seen, MRSA has recommended that LOGAM-5 be superceded by LOGAM.
LSA TASK - TECHNIQUE SUMMATION

<table>
<thead>
<tr>
<th>TASK</th>
<th>NUMBER OF TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>101 DEVELOPMENT OF LSA STRATEGY</td>
<td>3</td>
</tr>
<tr>
<td>102 LSA PLAN</td>
<td>4</td>
</tr>
<tr>
<td>103 PROGRAM & DESIGN REVIEWS</td>
<td>1</td>
</tr>
<tr>
<td>201 USE STUDY</td>
<td>12</td>
</tr>
<tr>
<td>202 STANDARDIZATION</td>
<td>19</td>
</tr>
<tr>
<td>203 COMPARATIVE ANALYSIS</td>
<td>53</td>
</tr>
<tr>
<td>204 TECHNOLOGICAL OPPORTUNITIES</td>
<td>16</td>
</tr>
<tr>
<td>205 SUPPORTABILITY DESIGN FACTORS</td>
<td>34</td>
</tr>
<tr>
<td>301 FUNCTIONAL REQUIREMENTS IDENTIFICATION</td>
<td>8</td>
</tr>
<tr>
<td>302 SUPPORT SYSTEM ALTERNATIVES</td>
<td>20</td>
</tr>
<tr>
<td>303 EVALUATION OF ALTERNATIVES & TRADE-OFFS</td>
<td>63</td>
</tr>
<tr>
<td>401 TASK ANALYSIS</td>
<td>12</td>
</tr>
<tr>
<td>402 EARLY FIELDING ANALYSIS</td>
<td>18</td>
</tr>
<tr>
<td>403 I</td>
<td>10</td>
</tr>
<tr>
<td>501 1 One of the tasks recently completed by MRSA was the comparison of LSA tasks in MIL-STD-1388-1A to the known techniques that could be applied to the tasks. This reflects the results of the task. Readily seen is the proliferation of techniques within the Army. This substantiates the need for a central management activity for LSA techniques.</td>
<td>13</td>
</tr>
</tbody>
</table>
TECHNICAL REVIEW AND ANALYSIS CANDIDATES

LEVEL OF REPAIR ANALYSIS MODELS

- DISCARD/REPAIR COST MODEL
- REPAIR vs DISCARD MODEL
- OPTIMAL SUPPLY AND MAINTENANCE MODEL
- NETWORK REPAIR LEVEL ANALYSIS MODEL
- MARINE CORPS LEVEL OF REPAIR ANALYSIS
- LEVEL OF REPAIR (MIL-STD 1390 B)

DIREC
PALMAN
OSAMM
NRLA
MCLOR
MOD III LOR

The current interest at the DA and DARCOM is centered on Level of Repair Analysis (LORA) and it is in this area that MRSA will concentrate for the next series of TRA's. There are approximately 25 known LORA techniques. MRSA has initiated TRA action on the six more significant techniques. Shown here.
Logistic Support Analysis

OFF-THE-SHELF ANALYSIS TECHNIQUES
UNDER CONSIDERATION

- SUSTAINABILITY PREDICTION FOR ARMY SPARE COMPONENTS (SPARC)
- MEAN TIME BETWEEN REMOVAL (MTBR) CALCULATIONS FROM THE AVSCOM MAINTENANCE OPERATING & SUPPORT COSTS (AMOS) MODEL
- ORACLE-MARC I FAILURE RATE MODEL
- DISCARD/REPAIR COST MODEL (DIREC)
- REPAIR vs DISCARD MODEL (PALMAN)

Another area MRSA, as the LSA Executive Agent, is actively pursuing is that of developing friendly techniques that will be easy to use and execute by unskilled A&A personnel. The objective is to produce techniques that can provide outputs from reference books, tables, graphs and simple desk top calculators. MRSA has started investigation of the PALMAN technique for conversion to off-the-shelf and will consider the others listed here also.
VALIDATED PARAMETERS LIBRARY

- 31 NON WEAPON SYSTEM PECULIAR LOGISTIC PARAMETERS IDENTIFIED
- COMMON PARAMETERS INCLUDE
 - MILITARY/CIVILIAN LABOR COSTS
 - PERSONNEL ATTRITION/TURNOVER RATES
 - ORDER/SHIP TIMES
 - COST RETAIN ITEM IN SUPPLY SYSTEM
 - SHIPPING COST/LB
 - TRAINING COSTS
 - TECH PUBS COSTS

Another task in which MRSA has initiated actions is that of establishing a library of non weapon system peculiar input parameters. The standardized input parameters will be used as inputs to appropriate techniques. 31 parameters have been identified to date.
LOGISTIC SUPPORT ANALYSIS
TECHNICAL WORKING GROUP
(LSA-TWG)

An LSA Technical Working Group has also been established to assist in standardizing the LSA techniques within the Army and to provide assistance to technique users.
LSA-TWG

PURPOSE

• PROVIDE TECHNICAL DIRECTION FOR LSA ENHANCEMENT EFFORTS
• ESTABLISH A FORMAL PROCESS FOR ENHANCEMENT OF LSA EXPERTISE WITHIN EACH MSC

ORGANIZATION

• MRSA SERVES AS CHAIRPERSON
• MSC/ANALYSIS ACTIVITY PROVIDES ONE OR MORE MEMBERS

These are the two main purposes of the LSA-TWG. MRSA, as the LSA Executive Agent, serves as chairman.
LSA EXECUTIVE AGENT ACTIONS

- MAJOR FUNCTIONS (DOCUMENTED 5 YR PLAN)
- LSA TECHNIQUES GUIDE (APR 84 PUBLICATION)
- LIBRARY OF TECHNIQUES IN GUIDE (OVER 80 MODELS CATALOGED)
- LSA TECHNIQUES ANALYSIS (9 MODELS ANALYZED IN DEPTH)
- COORDINATE/ASSIST IN LSA ENHANCEMENT EFFORT WITHIN MSC's (LSA-TWG ESTABLISHED)
- BRIDGING LSA REQUIREMENTS AND CURRENT TECHNIQUES (IDENTIFIED Voids)
- VALIDATED PARAMETERS LIBRARY (IDENTIFIED SOME COMMON PARAMETERS)
- OFF-THE-SHELF ANALYSIS TECHNIQUES (CANDIDATE TECHNIQUES SELECTED)

These are some of the major actions at MRSA with respect to LSA techniques that have been addressed. Many have already been initiated.
REQUESTS FOR INFORMATION

COMMANDER US ARMY DARCOM
MATERIEL READINESS SUPPORT ACTIVITY

ATTN: DRXMD-EL
LEXINGTON, KENTUCKY 40511
AUTOVON 745-3985
COMMERCIAL (606) 293-3985

This completes the MRSA presentation on LSA techniques and TRA's. If we at MRSA may be of assistance to you or if you desire copies of our TRA's, this is our address. Thank you for the opportunity of sharing some of MRSA's activities with you.
LOGISTICS OPERATIONAL EFFECTIVENESS NETWORK ANALYSIS

Maureen Stark
US Army Ballistic Research Laboratory
LOGISTICS OPERATIONAL EFFECTIVENESS ANALYSES

MAUREEN M. STARK

Radiation/Engineering Branch
Vulnerability/Lethality Division
Ballistic Research Laboratory
LOGISTICS MODELS/ANALYSES

PRODUCTION → DISTRIBUTION → SUPPLY AND TRANSPORTATION

PORT OCONUS

LIFE-CYCLE COST

MAINTENANCE IMPACTS

CONUS
EFFECTIVENESS MODELS / ANALYSES

THEATER/DIVISION EFFECTIVENESS

COMBAT UNIT EFFECTIVENESS

MAINTENANCE IMPACTS
OPERATIONAL EFFECTIVENESS ANALYSIS NETWORK

PRODUCTION → DISTRIBUTION → SUPPLY AND TRANSPORTATION → COMBAT UNIT EFFECTIVENESS → MAINTENANCE IMPACTS → THEATER/DIVISION EFFECTIVENESS → MOE

LIFE-CYCLE COST

SEP 83
INITIAL APPLICATION

LIQUID PROPELLANT GUN (LPG) AREA

SEP 83
ANTICIPATED ADVANTAGES OF LPG

- IMPROVED FIRING RATE
- ELIMINATES CHARGE SELECTION ERROR
- INCREASED FIRING RANGE
- TRAJECTORY FLEXIBILITY
- REDUCED MUZZLE FLASH/BLAST

- REDUCED CREW SIZE
- REDUCED VULNERABILITY

- IMPROVED SAFETY
- REDUCED TRAINING REQUIREMENTS
- LONGER TUBE LIFE
- REDUCED RESUPPLY REQUIREMENTS
 TRANSPORTATION, HANDLING AND STORAGE
- REDUCED PACKAGING/PRODUCTION COSTS
- SIMPLIFIED DEMILITARIZATION
POTENTIAL ISSUES

- Improved firing rates may require increased resupply
- Reduced vulnerability will reduce catastrophic kills but may increase systems requiring repair
- Automatic loading may increase the complexity and vulnerability of specific components
- Reduced crew size may also reduce ability of crew to internally reconstitute
- Reduced resupply requirements could be obviated by the necessity for additional resupply equipment/vehicles
- Does reduced packaging/production costs translate to reduced life-cycle costs?

Bottom line: This program will identify, evaluate and provide insights into issues of this type

SEP 83
SUPPLY POINT ANALYSIS

- HOLD STOCKAGE LEVELS CONSTANT (NO. OF ROUNDS)
- USE TONNAGES TO COMPUTE AND COMPARE
 - MHE REQUIREMENTS
 - PERSONNEL REQUIREMENTS
 - TRAILER REQUIREMENT (ATP)
PROPELLANT PACKAGING

SOLID
BAG MODULAR
UNI-CHARGE

CURRENT PALLETS CONFIGURATION

LIQUID
55-GALLONS DRUMS/4 PER PALLETS
15-GALLONS DRUMS/12 PER PALLETS
500 GALLON BLADDERS/NO PALLETS*
500 GALLON BLADDERS & 10000 GALLON FABRIC TANKS*

* WOULD UTILIZE FILTERS AND PUMPS REDUCING THE REQUIREMENT FOR MHE
<table>
<thead>
<tr>
<th></th>
<th>ASP/ATP Results</th>
<th>MODULAR</th>
<th>55G DRUM</th>
<th>500G BLADDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAG</td>
<td>6</td>
<td>6</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>FORKLIFTS</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>4(1)</td>
</tr>
<tr>
<td>TRAILERS (2)</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FORKLIFTS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TRAILERS (2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1) PUMP PERSONNEL</td>
<td>6</td>
<td>6</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>(2) ATP TRAILERS</td>
<td>20</td>
<td>4</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

66.
TRANSPORTATION ANALYSIS

APPROACH

1. DETERMINE FOR EACH PROPELLANT CONCEPT:
 - MAXIMUM LOADS FOR RESUPPLY VEHICLES
 - NUMBER OF TRIPS/MAN HOURS REQUIRED TO SUPPORT GIVEN DEMAND RATES
TRANSPORTATION SUMMARY

SAVINGS

<table>
<thead>
<tr>
<th>CONCEPT</th>
<th>BAG</th>
<th>MODULAR</th>
<th>UNI-CHG</th>
<th>55G DRUM</th>
<th>500G BLADDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>689 180 RD/Tube/D/</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUCKS</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>360 360 RD/Tube/DAY</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>TRUCKS</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>32</td>
<td>35</td>
</tr>
</tbody>
</table>
TOTAL POTENTIAL DIVISION SAVINGS

- 100-300 PERSONNEL
- 40-80 FORKLIFTS/TRUCKS

BLADDER (BULK) CONCEPT PROVIDES GREATEST SAVINGS
IMPLEMENTATION ISSUES

WHEN IS TECHNOLOGY MATURE ENOUGH?

- EARLY APPL. SUFFERS FROM INSUFFICIENT DATA
- LATE APPL. SUFFERS FROM MOMENTUM OF PREVIOUS DECISIONS

LEVEL OF DETAIL

- HOW TO QUANTIFY?
- WHAT LEVEL IS REQUIRED?
- WHAT KIND OF DATA IS REQUIRED?

INTERFACE OF VARIOUS ANALYSES

- DIFFERENT ASSUMPTIONS
- DIFFERENT PARAMETERS

GENERIC

- DEVELOP METHODOLOGY OR ANALYSTS?
FORECASTING PERFORMANCE FOR SLOW MOVING ITEMS

Robert Deemer
Army Materiel Systems Analysis Activity
Inventory Research Office
BACKGROUND

- SEPTEMBER 1978 ARMY BEGAN ANALYSIS OF DOD SUGGESTED STOCKAGE POLICY (RETAIL INVENTORY MANAGEMENT AND STOCKAGE POLICY - RIMSTOP)

- POLICY DESIGNED SO CAN PROJECT WHAT WILL HAPPEN WHEN BUDGET CUTS ARE MADE

- IMPLEMENTED IN SAILS-ABX JAN 82 AND DS1SS MAR 82 (DS4 TO BE IMPLEMENTED)

- REPORTS OF IMPLEMENTED SYSTEMS INDICATE MORE ITEMS NOW BEING STOCKED AT REDUCED DEPTH

- REPORTS ALSO INDICATE ACTUAL PERFORMANCE IS MUCH LOWER THAN PROJECTED
PROBLEM

- **OVERALL:** STOCKAGE POLICY AT ARMY RETAIL LEVEL OF SUPPLY

- **SPECIFIC:**

 - ONE YEAR DATA BASE (TRUNCATED)

 - MANY ITEMS WITH FEW REQUISITIONS

 - TO PROJECT STOCKAGE PERFORMANCE FOR NEXT YEAR
PERFORMANCE

- INITIAL FILL - FRACTION OF ALL REQUISITIONS WHICH ARE FILLED FROM
 STOCK ON-HAND

- SATISFACTION - FRACTION OF REQUISITIONS FOR STOCKED ITEMS FILLED
 FROM STOCK ON-HAND

- ACCOMMODATION - FRACTION OF REQUISITIONS FOR STOCKED ITEMS

SAILS-ABX DATA

THEORETICAL PROJECTIONS

 ACCOMMODATION = .65
 SATISFACTION = .86

ACTUAL

 ACCOMMODATION = .29
 SATISFACTION = .61
<table>
<thead>
<tr>
<th></th>
<th>SAILS-ABX</th>
<th></th>
<th></th>
<th>DLOGS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># REQN</td>
<td># REQN</td>
<td>AVG REQN</td>
<td># REQN</td>
<td># REQN</td>
</tr>
<tr>
<td>YEAR 1</td>
<td>YEAR 2</td>
<td>YEAR 2</td>
<td></td>
<td>YEAR 1</td>
<td>YEAR 2</td>
</tr>
<tr>
<td>0</td>
<td>10925 (22)</td>
<td>2.38</td>
<td>0</td>
<td>35439 (13)</td>
<td>1.61</td>
</tr>
<tr>
<td>1</td>
<td>2174</td>
<td>.72</td>
<td>1</td>
<td>11833</td>
<td>.85</td>
</tr>
<tr>
<td>2</td>
<td>1925</td>
<td>1.35</td>
<td>2</td>
<td>8904</td>
<td>1.70</td>
</tr>
<tr>
<td>3</td>
<td>1365</td>
<td>2.15</td>
<td>3</td>
<td>7107</td>
<td>2.47</td>
</tr>
<tr>
<td>4</td>
<td>1321</td>
<td>3.18</td>
<td>4</td>
<td>6118</td>
<td>3.35</td>
</tr>
<tr>
<td>5</td>
<td>1259</td>
<td>4.51</td>
<td>5</td>
<td>5768</td>
<td>4.75</td>
</tr>
<tr>
<td>6</td>
<td>1044</td>
<td>4.88</td>
<td>6</td>
<td>5203</td>
<td>5.34</td>
</tr>
<tr>
<td>7</td>
<td>1052</td>
<td>6.15</td>
<td>7</td>
<td>3927</td>
<td>5.71</td>
</tr>
<tr>
<td>8</td>
<td>937</td>
<td>7.26</td>
<td>8</td>
<td>3233</td>
<td>6.51</td>
</tr>
<tr>
<td>9</td>
<td>990</td>
<td>6.83</td>
<td>9</td>
<td>3193</td>
<td>7.60</td>
</tr>
<tr>
<td>10</td>
<td>843</td>
<td>7.33</td>
<td>10</td>
<td>2734</td>
<td>7.68</td>
</tr>
<tr>
<td>11</td>
<td>687</td>
<td>8.18</td>
<td>11</td>
<td>2822</td>
<td>9.63</td>
</tr>
<tr>
<td>12</td>
<td>767</td>
<td>8.82</td>
<td>12</td>
<td>2514</td>
<td>10.70</td>
</tr>
<tr>
<td>13</td>
<td>841</td>
<td>11.07</td>
<td>13</td>
<td>2480</td>
<td>10.42</td>
</tr>
<tr>
<td>14</td>
<td>925</td>
<td>11.28</td>
<td>14</td>
<td>2446</td>
<td>13.44</td>
</tr>
<tr>
<td>15</td>
<td>590</td>
<td>10.73</td>
<td>15</td>
<td>2336</td>
<td>12.49</td>
</tr>
<tr>
<td>18</td>
<td>589</td>
<td>10.91</td>
<td>16-20</td>
<td>9009</td>
<td>14.84</td>
</tr>
<tr>
<td>22</td>
<td>757</td>
<td>15.14</td>
<td>21-25</td>
<td>7544</td>
<td>17.63</td>
</tr>
<tr>
<td>>24</td>
<td>15368</td>
<td>40.44</td>
<td>>25</td>
<td>140812</td>
<td>79.24</td>
</tr>
<tr>
<td>TOTAL</td>
<td>48749</td>
<td></td>
<td></td>
<td>263422</td>
<td></td>
</tr>
</tbody>
</table>
SOLUTION ATTEMPTS

METHOD I

- TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION (BARTKO - VJS 1961)
- USE METHOD OF MOMENTS TO GET PARAMETERS
- INVOLVES RATIO OF

 NUMBER OF ITEMS WITH ONE REQUISITION

 TO

 TOTAL NUMBER OF ITEMS
DLOGS DATA

Probabilities of # Items

<table>
<thead>
<tr>
<th># REQN</th>
<th>ACTUAL</th>
<th>A. CUMULATIVE</th>
<th>THEORETICAL</th>
<th>T. CUMULATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4377</td>
<td>0.4377</td>
<td>0.2968</td>
<td>0.2968</td>
</tr>
<tr>
<td>2</td>
<td>0.1598</td>
<td>0.5975</td>
<td>0.1511</td>
<td>0.4479</td>
</tr>
<tr>
<td>3</td>
<td>0.0884</td>
<td>0.6859</td>
<td>0.0960</td>
<td>0.5439</td>
</tr>
<tr>
<td>4</td>
<td>0.0561</td>
<td>0.7420</td>
<td>0.0696</td>
<td>0.6135</td>
</tr>
<tr>
<td>5</td>
<td>0.0369</td>
<td>0.7789</td>
<td>0.0536</td>
<td>0.6671</td>
</tr>
<tr>
<td>6</td>
<td>0.0300</td>
<td>0.8089</td>
<td>0.0429</td>
<td>0.7099</td>
</tr>
<tr>
<td>7</td>
<td>0.0216</td>
<td>0.8305</td>
<td>0.0352</td>
<td>0.7451</td>
</tr>
<tr>
<td>8</td>
<td>0.0152</td>
<td>0.8457</td>
<td>0.0294</td>
<td>0.7745</td>
</tr>
<tr>
<td>9</td>
<td>0.0128</td>
<td>0.8585</td>
<td>0.0250</td>
<td>0.7995</td>
</tr>
<tr>
<td>10</td>
<td>0.0110</td>
<td>0.8695</td>
<td>0.0214</td>
<td>0.8209</td>
</tr>
<tr>
<td>11-15</td>
<td>0.0369</td>
<td>0.9064</td>
<td>0.0717</td>
<td>0.8926</td>
</tr>
<tr>
<td>16-20</td>
<td>0.0198</td>
<td>0.9262</td>
<td>0.0392</td>
<td>0.9318</td>
</tr>
<tr>
<td>21-25</td>
<td>0.0140</td>
<td>0.9402</td>
<td>0.0231</td>
<td>0.9549</td>
</tr>
<tr>
<td>>25</td>
<td>0.0599</td>
<td>1.0000</td>
<td>0.0451</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

M = 1.71
σ² = 29.27
SOLUTION ATTEMPT

METHOD II

SEARCH PROCEDURE FOR PARAMETERS (N.B.D.)

USE RELATIONSHIPS:

\[m = (1 - P_0) \text{Et}(x) \]
\[s^2 = (1 - P_0) \text{Et}(x^2) - (1 - P_0) \text{Et}(x)^2 \]

A. SET \(\hat{P}_0 \)

B. EVALUATE ABOVE EQUATIONS

C. DETERMINE \(\bar{w}, \bar{k} \)

D. COMPUTE \(P_0 (\bar{w}, \bar{k}) \)

E. \(\bar{w}, \bar{k} \) CHOSEN SO THAT

\[|\hat{P}_0 - P_0| = \text{MINIMUM} \]
METHOD II - RESULTS

(SAILS-ABX DATA)

- CONVERGES TO REALISTIC NBD PARAMETERS

- THEORETICAL PERFORMANCE IS CONSIDERABLY LOWER BUT STILL NOT
 LOW ENOUGH

 - ACCOMMODATION = .46

 - SATISFACTION = .85
METHOD II - RESULTS

(SAILS-ABX DATA)

<table>
<thead>
<tr>
<th>Po (SET)</th>
<th>Po (DERIVED)</th>
<th>w</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.4847</td>
<td>0.0619</td>
<td>-0.1421</td>
</tr>
<tr>
<td>0.10</td>
<td>1.4407</td>
<td>0.0642</td>
<td>-0.1329</td>
</tr>
<tr>
<td>0.15</td>
<td>1.3932</td>
<td>0.0667</td>
<td>-0.1225</td>
</tr>
<tr>
<td>0.20</td>
<td>1.3422</td>
<td>0.0696</td>
<td>-0.1104</td>
</tr>
<tr>
<td>0.25</td>
<td>1.2875</td>
<td>0.0729</td>
<td>-0.0965</td>
</tr>
<tr>
<td>0.30</td>
<td>1.2288</td>
<td>0.0768</td>
<td>-0.0803</td>
</tr>
<tr>
<td>0.35</td>
<td>1.1659</td>
<td>0.0813</td>
<td>-0.0612</td>
</tr>
<tr>
<td>0.40</td>
<td>1.0985</td>
<td>0.0866</td>
<td>-0.0384</td>
</tr>
<tr>
<td>0.45</td>
<td>1.0263</td>
<td>0.0929</td>
<td>-0.0109</td>
</tr>
<tr>
<td>0.50</td>
<td>0.9490</td>
<td>0.1006</td>
<td>0.0227</td>
</tr>
<tr>
<td>0.55</td>
<td>0.8663</td>
<td>0.1100</td>
<td>0.0650</td>
</tr>
<tr>
<td>0.60</td>
<td>0.7777</td>
<td>0.1218</td>
<td>0.1184</td>
</tr>
<tr>
<td>0.65*</td>
<td>0.6830</td>
<td>0.1371</td>
<td>0.1919</td>
</tr>
<tr>
<td>0.70</td>
<td>0.5819</td>
<td>0.1575</td>
<td>0.2929</td>
</tr>
<tr>
<td>0.75</td>
<td>0.4745</td>
<td>0.1862</td>
<td>0.4434</td>
</tr>
<tr>
<td>0.80</td>
<td>0.3616</td>
<td>0.2293</td>
<td>0.6908</td>
</tr>
<tr>
<td>0.85</td>
<td>0.2452</td>
<td>0.3013</td>
<td>1.1718</td>
</tr>
<tr>
<td>0.90</td>
<td>0.1313</td>
<td>0.4455</td>
<td>2.5108</td>
</tr>
<tr>
<td>0.95</td>
<td>0.0361</td>
<td>0.0785</td>
<td>25.6261</td>
</tr>
</tbody>
</table>
METHOD II - RESULTS

(DLOGS/DS4 DATA)

- CONVERGENCE DOES NOT YIELD APPROPRIATE VALUES

- PROJECTIONS OF NUMBER OF REQUISITIONS IS NOT VERY GOOD

<table>
<thead>
<tr>
<th>ACTUAL REQN IN</th>
<th>PROJECTED REQN</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 2 WHICH HAD ZERO IN YEAR 1</td>
<td>IN YEAR 2</td>
</tr>
<tr>
<td>35439</td>
<td>13748</td>
</tr>
</tbody>
</table>
Method II - Results

<table>
<thead>
<tr>
<th>Po (SET)</th>
<th>Po (DERIVED)</th>
<th>(\bar{w})</th>
<th>(\bar{k})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>10.4891</td>
<td>0.0032</td>
<td>-0.4095</td>
</tr>
<tr>
<td>0.10</td>
<td>10.1826</td>
<td>0.0034</td>
<td>-0.4080</td>
</tr>
<tr>
<td>0.15</td>
<td>9.8642</td>
<td>0.0036</td>
<td>-0.4063</td>
</tr>
<tr>
<td>0.20</td>
<td>9.5329</td>
<td>0.0038</td>
<td>-0.4044</td>
</tr>
<tr>
<td>0.25</td>
<td>9.1874</td>
<td>0.0040</td>
<td>-0.4023</td>
</tr>
<tr>
<td>0.30</td>
<td>8.8262</td>
<td>0.0043</td>
<td>-0.3998</td>
</tr>
<tr>
<td>0.35</td>
<td>8.4475</td>
<td>0.0046</td>
<td>-0.3970</td>
</tr>
<tr>
<td>0.40</td>
<td>8.0491</td>
<td>0.0050</td>
<td>-0.3937</td>
</tr>
<tr>
<td>0.45</td>
<td>7.6285</td>
<td>0.0054</td>
<td>-0.3898</td>
</tr>
<tr>
<td>0.50</td>
<td>7.1824</td>
<td>0.0060</td>
<td>-0.3851</td>
</tr>
<tr>
<td>0.55</td>
<td>6.7071</td>
<td>0.0066</td>
<td>-0.3793</td>
</tr>
<tr>
<td>0.60</td>
<td>6.1974</td>
<td>0.0074</td>
<td>-0.3721</td>
</tr>
<tr>
<td>0.65</td>
<td>5.6469</td>
<td>0.0085</td>
<td>-0.3629</td>
</tr>
<tr>
<td>0.70</td>
<td>5.0471</td>
<td>0.0099</td>
<td>-0.3505</td>
</tr>
<tr>
<td>0.75</td>
<td>4.3863</td>
<td>0.0118</td>
<td>-0.3331</td>
</tr>
<tr>
<td>0.80</td>
<td>3.6482</td>
<td>0.0147</td>
<td>-0.3068</td>
</tr>
<tr>
<td>0.85</td>
<td>2.8103</td>
<td>0.0196</td>
<td>-0.2627</td>
</tr>
<tr>
<td>0.90</td>
<td>1.8431</td>
<td>0.0293</td>
<td>-0.1732</td>
</tr>
<tr>
<td>0.95</td>
<td>0.7392</td>
<td>0.0585</td>
<td>0.1064</td>
</tr>
</tbody>
</table>
METHOD III

- KEEP NBD AS DISTRIBUTION
- USE RECURSIVE RELATIONSHIP OF NBD
 \[F(1) = \left(\frac{R+I-1}{I} \right) \cdot F(I-1) \]
- USE THIS RELATIONSHIP IN FORM
 \[\frac{F(I)}{F(I-1)} = R_0 + Q(I-1) \]

WHICH IS OF LINEAR FORM

\[Y = A + BX \]
METHOD III

• GET A, B VIA LINEAR REGRESSION

 WHERE KNOW I, F(I), F(I-1) FROM DATA

• NOT ACCEPTABLE RESULTS

 • NEGATIVE INTERCEPT (A) VALUE FOR DLOGS DATA
METHOD III - REVISED

• WEIGHTED LINEAR REGRESSION

• WEIGHTS ARE

\[
\frac{n(i) + n(i-1)}{2} \quad i = 2, \ldots, 10
\]

PROJECTION OF NUMBER OF REQUISITIONS IS NOT VERY GOOD

<table>
<thead>
<tr>
<th>ACTUAL REQN IN YEAR 2 WHICH HAD ZERO IN YEAR 1</th>
<th>PROJECTED REQN IN YEAR 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>35439</td>
<td>11301</td>
</tr>
</tbody>
</table>
OTHER ATTEMPTS

- PLOT OF REQUISITIONS LOOKS LIKE EXPONENTIAL DISTRIBUTION

- TRIED GEOMETRIC

 - DOESN'T ACCOUNT FOR VARIANCE SUFFICIENTLY

 - ACTUAL DISTRIBUTION MUCH MORE SKewed

 - PROJECTION OF NUMBER OF REQUISITIONS IS NOT VERY GOOD

<table>
<thead>
<tr>
<th>ACTUAL REQN IN</th>
<th>PROJECTED REQN</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 2 WHICH HAD ZERO IN YEAR 1</td>
<td>IN YEAR 2</td>
</tr>
<tr>
<td>35439</td>
<td>3552</td>
</tr>
</tbody>
</table>
SUPPORTING THE FUTURE FORCE

J. Russell Wiltshire
HQ
Department of the Army
SUPPORTING

THE

FUTURE

FORCE
DR. J. RUSSELL WILTSHIRE
ARMY RESEARCH OFFICE
LOGISTICS R&D WORKSHOP
8 MAY 1984

SLIDE 1 ON -- "DCSLOG"

0 GOOD AFTERNOON LADIES AND GENTLEMEN
00 PLEASURE TO ADDRESS: ARMY RESEARCH OFFICE LOGISTICS AND R&D WORKSHOP

0 ARMY PLACING CONSIDERABLE EMPHASIS ON R&D TO REDUCE SUPPORT AND LOGISTICS REQUIREMENTS.

0 GIVEN TIME - LENGTH AND COST OF R&D, YOUR INTEREST IN LOG R&D IS MOST WELCOME.

0 IT SHOULD BE NO SURPRISE TO YOU THAT "WEAPONS" CREATE MORE INTEREST THAN "LOGISTICS." LET ME CITE A SINGLE EXAMPLE OF WHAT CAN HAPPEN WHEN WEAPON DEVELOPERS loose SIGHT OF THE LOGISTICAL IMPACT OF THEIR DECISIONS.

SLIDE 1 OFF
REFueling OPERATIONS - M1 TANK
SLIDE 2 ON -- M1 TANK BEING REFUELED.

- M1 TANK - EXCELLENT ARMORED VEHICLE - EASY TO OPERATE, ADVANCED ARMOR, HIGH SPEED, LASER AIMING, SINGLE SHOT ACCURACY.
- IT ALSO USES 60 PERCENT MORE FUEL THAN THE TANK IT REPLACES.
 - RESULT: INCREASE IN NUMBER OF SUPPORTING FUEL TRUCKS, ADDITIONAL DRIVERS, MORE TRANSPORT - RELATED MAINTENANCE AND PARTS.
 - INCREASED TRAFFIC ON ROADNET, MORE FUEL TO BE DELIVERED TO THEATER, BOTH FOR TANK AND THE EXTRA FUEL TRUCKS.
- IT IS REFUELED BY GRAVITY FUEL SYSTEM - JUST LIKE THE FAMILY CAR.
 - THIN-SKINED, WHEELED FUEL TRUCKS, WHICH CAN BE DESTROYED BY SINGLE TRACER BULLET.
 - FUEL TRUCKS HAVE A LIMITED CROSS-COUNTRY MOBILITY - TANKS MUST DISENGAGE, PULL TO ROADSIDE.
 - TRUCKS DRIVER MUST DISMOUNT - CONNECT FUEL HOSES - TAKES UP TO 40 MINUTES.
- IT IS RE-ARMED IN THE SAME WAY.
 - THIN-SKINED, UNARMORED, WHEELED AMMUNITION VEHICLES.
 - TANK MUST HALT - 1 ROUND AT A TIME THROUGH TOP OF TURRET.
 - CREW EXPOSED TO ELEMENTS - AND SMALL ARMS FIRE.
 - FULL RELOAD - 50 ROUNDS - 1 AT A TIME: 40 MINUTES.
- IN SHORT - THE BEST TANK IN THE WORLD ON THE SECOND DAY OF BATTLE WILL BECOME A PAPER WEIGHT - IF THE LOGISTIC SYSTEM CANNOT PROVIDE IT WITH FUEL AND AMMUNITION.

(CONTINUED NEXT PAGE)
WE ARE WORKING ON THESE PROBLEMS (E.G., PRESSURIZED RE-FUEL SYSTEM; ARMORED FORWARD AREA RE-ARM VEHICLE), BUT THEY REQUIRE R&D, AND SOLUTION IS YEARS AWAY.

TODAY'S LOGISTICS SYSTEM IS INCAPABLE OF PROVIDING ADEQUATE SUPPORT FOR THE TYPE OF COMBAT ENVISIONED FOR THE TWENTY-FIRST CENTURY.

THAT IS THE THEME OF MY TALK, THIS (AM PM) ________ - "SUPPORTING THE FUTURE FORCE."

SLIDE 2 OFF
LIEUTENANT GENERAL JAMES M. GAVIN

"ORGANIZATIONS CREATED TO FIGHT THE LAST WAR BETTER ARE NOT GOING TO WIN THE NEXT."
SLIDE 3 ON

GAVIN QUOTE

- Moreover, we can't plan to fight or support the next war the way we did Vietnam - or even the operation in Grenada.
- Viet Nam-long duration, immense stockpiles; long lead times; manpower intensive; push system of supplies; rapid turnover of personnel made it a series of "one year wars."
- Grenada - very short combat operation; not intense combat; little sustainment required; dependent on accompanying supplies; little demand on wholesale system; replenishment airlifted from CONUS.
- We must find improved or new ways to do the job.
- The next couple of slides will give you some concept of the magnitude of the problem facing us today.

SLIDE 3 OFF
FUEL CONSUMPTION IN A DAY OF COMBAT

63% INCREASE

33% INCREASE

ARMOR DIVISION OF 348 TANKS CONSUMES IN 1 DAY OF COMBAT
121,000 GAL. FUEL (M60)
203,500 GAL. FUEL (M1)
SLIDE 4 ON

FUEL CONSUMPTION

- Fuel consumption is a major problem.
- New equipment typically uses more fuel than that which it replaces.
- Two examples--
 - M1 tank uses 63 percent more fuel than the M60A3.
 - UH-60 helicopter uses a third more than the UH-1.
- An armor division in 10-20 days of combat consumes as much fuel as it does in a year of training.
- An armor division equipped with
 - M-60s uses 121,000 gal fuel per day.
 - M-1s uses 203,000 gal fuel per day.
- We are trying to develop more fuel-efficient engines. The adiabatic engine - now being tested at TACOM - holds great promise. The test engine is installed in a 5 ton truck, has no radiator or cooling system, and promises 20% decrease in fuel consumption while increasing power by about 30%.
- Provide alternative sources of power (e.g., pony engine for M-1 tank).
- Provide more fuel trucks - 7,500 gal tanker.
- Fuel is not the only problem.

SLIDE 4 OFF
THREE DAYS OF SUPPLY
MECHANIZED INFANTRY BRIGADE

TOTAL NUMBER TRUCKS REQUIRED

DRY CARGO (STON) — 4,012 = 802 VEHICLES
WET CARGO (GAL) — 536,555 = 180 TANKERS*

LENGTH OF CONVOY ON MOVE — 59 MILES!
TIME TO PASS A GIVEN POINT — 3+ HOURS!
LENGTH OF CONVOY (BUMPER TO BUMPER) — 4 MILES!

*LOAD TO 3,000 GAL. FOR CROSS COUNTRY

NON-SURVIVABLE UNDER ARMY 21

GROUND RULES

1. 72 HOURS WORTH
2. MECH INF BDE ≡ ARMY 21 REGT
3. NO RESTRICTIONS ON LOAD MIX
4. ASSUME 80% AVAILABILITY RATE FOR VEHICLES
5. USE CURRENT PLANNING FACTORS FM 101-10-1, ETC.
6. GRAVEL ROAD
7. 5-TON VEHICLES
8. NO MAJOR ITEM RESUPPLY
SLIDE 5 ON

THREE DAYS OF SUPPLY

- When you look at the requirements for a three-day operation by a single mechanized infantry brigade,
 using current equipment, employed under the Army 21 concept,
 it would take at least:
 - 802 5 ton truck loads of dry cargo.
 - 180 3,000 gal tanker loads of fuel and water.
 - 1000 drivers and supervisory personnel

- If available to support the brigade, these vehicles would make a march column that was 59 miles long.
 Would take 3 hours to pass a single point

- Conclusion: The inescapable conclusion is that a current mech inf brigade would not be supportable under conditions envisioned for the Army's future warfighting concept, Army 21 (formerly AirLand Battle 2000).

- We must find ways to:
 - lessen the requirement - so we have to provide less,
 - increase the efficiency of the logistics system - so we can provide more with fewer people and vehicles.

- One aspect of the solution is to "lighten the division" (e.g., get rid of unneeded or seldom used equipment, substitute agility and firepower for mass). This still leaves a large logistics challenge -- (pause for next slide)

SLIDE 5 OFF
LOGISTICS
IMMUTABLES

1. A TON
 IS A TON

2. A CUBIC
 YARD IS A
 CUBIC YARD

3. A MILE
 IS A MILE

4. A MINUTE
 IS A MINUTE

5. SIMPLICITY
 IS GOODNESS

CERTAIN THINGS ARE IMMUTABLE
NOW - IN 20 YEARS - IN 100 YEARS
THE CHALLENGES - LOG IMUTABLES

0 THE CHALLENGE IS TO FIND A WAYS TO BEAT THE "LOGISTICS IMUTABLES".

0 A TON IS ALWAYS A TON - BUT UP TO 50 PERCENT OF AMMUNITION WEIGH IS PACKAGING MATERIEL. IF WE CAN REDUCE ITS WEIGHT, WE CAN CARRY MORE (E.G., LOGISTICS R&D - "IMPROVED AMMO PACKAGING" - USING PLASTIC AND FOAM TUBES TO REPLACE HEAVY STEEL "AMMO CANS" USED TO PACK ARTILLERY PROPELLANT CHARGES)

0 A CUBIC YARD - OR METER - CANNOT BE MADE SMALLER - BUT UP TO 30 PERCENT OF AMMUNITION BULK IS PACKAGING MATERIEL. WE CAN SAVE HERE (E.G., PLASTIC, ILO STEEL OR WOOD AMMO BOXES.)

0 A MILE IS A MILE - BUT MORE FUEL EFFICIENT VEHICLES WILL REDUCE POL REQUIREMENTS, AND BETTER POL PIPELINES CAN ELIMINATE "HIGHWAY MILES".

0 A MINUTE IS A MINUTE - BETTER AND MORE MATERIELS HANDLING EQUIPMENT CAN DO THE JOB QUICKER AND WITH FEWER PEOPLE (E.G., THE PALLETTIZED LOADING SYSTEM; ROBOTIC MHE-

00 TERMINAL TRANSFER UNIT BY INCREASED FORKLIFTS FROM 15 TO 39 INCREASED CAPACITY FROM 900 ST/DH TO 3000 ST/DH.

00 ROBOTIC FORKLIFT BEING DEVELOPED FOR THE BATTLEFIELD ROBOTIC AMMUNITION SUPPLY SYSTEM (BRASS) WILL HAVE A CYCLE TIME OF 20 SECONDS.

(CONTINUED NEXT PAGE)
Complex equipment takes smart people to operate and smarter ones to maintain - but if we can develop better built-in test equipment, they can do it quicker and better. The Fault Detection Location System (FDLS) in the Apache is an example.

With these "immutables" and our approaches in mind, I'd like to lead you into our concept of "Supporting the Future Force."

Slide 6 off
BATTLEFIELD PERSPECTIVE YEAR 2000

- GLOBAL IN SCOPE
- FULL SPECTRUM OF CONFLICT
- MULTIPLE SCENARIOS
- AGILE, FAST MOVING, MOBILE
- INTEGRATED BATTLEFIELD - ARMS & SERVICES
- INTEROPERABILITY
- INCREASED LETHALITY/DISRUPTION/DIMENSION
- CHEMICAL/NUCLEAR/ELECTRONIC
- FIGHT IN DISPERSSED CELLS
- RAPID DECISION MAKING
- HI-TECH/SOPHISTICATION/AUTOMATION
- MAJOR RESOURCE REQUIREMENTS
- CONSTRAINED RESOURCES
BATTLEFIELD PERSPECTIVE -- (21ST CENTURY/YEAR 2000 AND BEYOND)

- This is a logistician's perspective of the battlefield of the 21st century.
- Today's equipment, distribution and support systems and procedures will not meet our battlefield needs.

- We will live with constrained resources. But I believe the challenges can be met; here are some of them.
 - Global in scope -- not just one or two theaters;
 - Full spectrum of conflict -- from terrorism to nuclear war;
 - Multiple scenarios -- occurring simultaneously;
 - Agile, fast moving, mobile -- due to technology;
 - Integrated battlefield -- all combat and support forces coordinated;
 - Interoperability -- forces and materiel designed/organized to meet multiple requirements.

- New concepts - such as Army 21 -- will dramatically change the nature of warfare and present enormous challenges to the logistician.
MATERIEL IMPLICATIONS YEAR 2000

- MATERIEL THAT IS:
 - TECHNICALLY SUPERIOR • HIGHLY MOBILE • MULTIFUNCTIONAL
 - INTEROPERABLE • SURVIVABLE • AFFORDABLE • SUPPORTABLE
 - TRANSPORTABLE • RELIABLE • MODULAR • DURABLE • EASILY OPERATED AND MAINTAINED

- DISTRIBUTION WHICH:
 - IS RAPID AND RELIABLE • INSURES ISSUE OF ALL OF A SYSTEM'S COMPONENTS
 - MINIMIZES TURBULENCE DURING EQUIPMENT TRANSITION • EMPHASIZES PREDICTIVE DISTRIBUTION PLANNING • ASSET VISIBILITY TO THE LOWEST LEVEL

- SUPPORT WHICH IS:
 - COMPLETE • CONTINUOUS • HIGHLY PRODUCTIVE
 - EFFECTIVE • RELIABLE • TAILORABLE • INTEROPERABLE • MAXIMIZES INDUSTRIAL BASE, WHOLESALE SYSTEM AND INSTALLATION SUPPORT
 - NEAR REAL TIME • FULLY INTEGRATED • LESS RESOURCE INTENSIVE

- MATERIEL MANAGEMENT WHICH:
 - INTEGRATES MATFRIEL, DISTRIBUTION AND SUPPORT FUNCTIONS • SUPPORTS THE TOTAL ARMY • PREDICTS AND AVOIDS MATERIEL FAILURES
 - STANDARDIZES AND CONTROLS PLANNING FACTORS AND DATA BASES
 - STABILIZES REQUIREMENTS AND PRIORITIES • CONTINUOUSLY Balances COST AGAINST BATTLEFIELD CAPABILITY
MATERIEL IMPLICATIONS - YEAR 2000

(SLIDE 9 ON)

1. GIVEN THE BATTLEFIELD PERSPECTIVE, HERE'S A LOOK AT WHAT IS REQUIRED TO EQUIP AND SUSTAIN THE TOTAL ARMY. IT'S NOT ALL INCLUSIVE, NOR WILL I DISCUSS EACH ITEM.

2. THE "MATERIEL" CATEGORY ENCOMPASSES DEVELOPMENT AND ACQUISITION. (PAUSE)

3. SHOULD EMPHASIZE THAT SUPPORT MUST REPRESENT A CONTINUOUS FLOW WHICH CAPITALIZES ON SUPPORT CAPABILITIES OF THE INDUSTRIAL BASE AND OUR WHOLESALE AND RETAIL LOGISTICS SUPPORT SYSTEM -- INCLUDING INSTALLATIONS -- IT MUST BE RESOURCED EFFICIENTLY -- AND MUST BE CAPABLE OF TRANSITIONING SMOOTHLY FROM PEACE TO WAR AND SURGING TO MEET MOBILIZATION NEEDS. (PAUSE)

4. ONCE WE'VE ACCOMMODATED THE FIRST THREE, WE MUST TIE THEM TOGETHER WITH EFFECTIVE, COHESIVE MATERIEL MANAGEMENT.

5. THE IMPLICATIONS SHOWN LED TO THE DEVELOPMENT OF FOUR SPECIFIC OBJECTIVES WHICH I'LL COVER IN DETAIL.

(SLIDE 9 OFF)
TOTAL ARMY GOALS

The mission of the Total Army is to deter any attack upon
U.S. national interests and, if deterrence fails, to engage
and defeat any enemy in any environment.

READINESS
A Total Army prepared for the "three days of war": to deter the day
before war; to fight and win on the day of war; and to terminate conflict in
such a manner that on the day after war, the United States and its allies
have an acceptable level of security.

HUMAN
A Total Army composed of military and civilian professionals who loyally
serve their nation in rewarding careers.

LEADERSHIP
A Total Army whose leadership:

MATERIEL
A Total Army equipped and sustained to win
any land battle.

FUTURE DEVELOPMENT
A Total Army sensitive to innovative approaches to accomplish its mission.

STRATEGIC DEPLOYMENT
A Total Army organized, manned, and equipped so as to be capable of
deploying, with transportation assistance, to any part of the globe to counter
a wide spectrum of threats.

MANAGEMENT
A Total Army which efficiently and effectively uses the resources made available.

John F. Mack, Jr.
Secretary of the Army
MATERIEL GOAL

• MATERIEL OBJECTIVE
 MATERIEL WHICH MEETS THE NEEDS OF THE ARMY THROUGH THE YEAR 2000

• DISTRIBUTION OBJECTIVE
 MATERIEL DISTRIBUTED TO THE RIGHT PLACE ON TIME, IN THE QUANTITY REQUIRED

• SUPPORT OBJECTIVE
 RESPONSIVE LOGISTICS SUPPORT SYSTEMS

• MATERIEL MANAGEMENT OBJECTIVE
 INNOVATIVE MANAGEMENT OF RESOURCES
MATERIEL GOAL

THE MATERIEL GOAL IS FURTHER EXPANDED INTO FOUR SUPPORTING OBJECTIVES WHICH PROVIDE FUTURE DIRECTION AND CONTINUITY TO OUR EFFORTS.

- THESE FOUR OBJECTIVES - "MATERIEL," "DISTRIBUTION," "SUPPORT," AND "MATERIEL MANAGEMENT" - PROVIDE THE LINK FROM THE BROAD "MATERIEL" GOAL TO OUR FUTURE STRATEGY, AND WILL FORM THE FRAMEWORK FOR THE CONTINUATION OF MY REMARKS.

(SLIDE 11 OFF)
STRATEGY FOR ARMY 21

0 A TRULY COMPREHENSIVE STRATEGY IS NEEDED.
0 IT'S NOT A "STRAIGHT SHOT" BETWEEN NOW AND YEAR 2000--AS WE ARE MOVING FORWARD MUST
INSURE THAT BALANCE IS ACHIEVED THROUGHOUT THE TRANSITION, BALANCE SO-
0 THAT MATERIEL IS READY WHEN NEEDED--READINESS IS ENHANCED AS WE MODERNIZE;
0 THAT TOTAL ARMY REQUIREMENTS ARE CONSIDERED--BOTH ACTIVE AND RESERVE COMPONENTS;
0 THAT OLD AND NEW SYSTEMS WORK TOGETHER;
0 THAT WE CONSTANTLY WEIGH COST VERSUS BENEFIT TO BE GAINED;
0 WE CAN ALSO LOOK AT IT AS A CHAIN WHICH TAKES US FROM ONE MATERIEL SYSTEM TO
ANOTHER AS WE PROGRESS FROM THE SUPPORT REQUIRED TODAY TO THAT OF TOMORROW--MUST HAVE LINKS
TO INSURE SMOOTH TRANSITION AND IMPROVED EFFECTIVENESS.

(SLIDE 12 OFF)
SLIDE 13 ON

LOGISTICS EVOLUTION

- THERE IS ANOTHER IMPORTANT THING THAT WE MUST REMEMBER ABOUT LOGISTICS IMPROVEMENTS--
 - THEY ARE "EVOLUTIONARY;" NOT "REVOLUTIONARY."

- WHEN AN M-60 TANK BATTALION RECEIVES M-1S, THE CHANGE IS "REVOLUTIONARY" TO THAT UNIT - NEVER AGAIN DOES IT NEED TO CONCERN ITSELF WITH THE LIMITATIONS AND TACTICS OF THE M-60.
 - WHEN THE "FREED-UP" M-60S REPLACE THE M-48S IN ANOTHER UNIT, THAT UNIT IS LIKE WISE "REVOLUTIONIZED," AND SO ON.

- BUT THE LOGISTICAL SYSTEM CAN CHANGE ONLY EVOLUTIONARILY, FOR AS LONG AS THE ITEM IS IN OUR, OR AN ALLY'S, INVENTORY, WE MUST DISTRIBUTE IT, SUPPORT IT, AND, IF ITS IS OUR INVENTORY, MANAGE IT.

SLIDE 13 OFF
CHALLENGE

ARMY 21

LOG 21

INTEGRATED SUPPORT SYSTEM
- RAPID, RESPONSIVE DISTRIBUTION
- LESS STOCKAGE
- FEWER PEOPLE - AUTOMATION/ROBOTICS
- LESS MATERIEL - INTERCHANGEABLE/STANDARD
- PREDICTIVE MODELS - ANTICIPATE REQUIREMENTS

AIRLAND BATTLE

LOGISTIC SYSTEM TRANSITION

FUNCTIONAL SYSTEM
- SLOW, COMPLEX
- MANPOWER INTENSIVE
- MULTIPLE STOCKAGE LEVELS
SLIDE 14 ON

HERE IS THE CHALLENGE. LOOKED AT AS WE TRANSITION,

 o THE LOGISTICS COMMUNITY IS WORKING HARD TO DEVELOP NEW INTEGRATED SUPPORT CONCEPTS
 AND SYSTEMS TO ESTABLISH AN EVOLUTIONARY TRANSITION PLAN FROM THE PRESENT TO THE
 FUTURE.

 o THIS PLAN, THE ARMY LOGISTICS LONG RANGE PLAN, (KNOWN AS "LOG 21,") SHOULD BE
 PUBLISHED IN JUNE 1984.

 o THE TRANSITION MUST
 oo BE ORDERLY,
 oo PERMIT THE BEST POSSIBLE SUPPORT AT EVERY STAGE; AND
 oo ACHIEVE THE SEVERAL BALANCES ALONG THE EVOLUTIONARY RAMP I'VE DESCRIBED.

 o WE WILL LOOK INTO THE FUTURE USING THE FOUR MATERIEL OBJECTIVES, FIRST "MATERIEL,"
 FOLLOWED BY "DISTRIBUTION," "SUPPORT" AND "MATERIEL MANAGEMENT," IN THAT ORDER.

SLIDE 14 OFF
MATERIEL OBJECTIVE —

"MATERIEL WHICH MEETS
THE ARMY'S NEEDS
THROUGH YEAR 2000"
(SLIDE 15 ON)

HERE IS THE MATERIEL OBJECTIVE.

THE MATERIEL OBJECTIVE IS FOR THE ARMY TO HAVE EQUIPMENT WHICH MEETS ITS NEEDS INTO THE YEAR 2000 AND BEYOND.

THE ARMY IS MODERNIZING ITS EQUIPMENT.

0 OVER 400 NEW "SYSTEMS" WILL ENTER THE INVENTORY IN THIS DECADE. (LEFT BOX)

0 TRANSLATES TO 389,000 "EACH’S" (RIGHT BOX)

0 YET IT’S SAFE TO ASSUME THAT MOST OF THE MAJOR SYSTEMS, INCLUDING SOME OF THOSE DISPLACED, WILL BE WITH US IN THE YEAR 2000 AND BEYOND.

0 THE M1 TANK, BRADLEY FIGHTING VEHICLE, APACHE AND BLACK HAWK ARE EXAMPLES.

0 WITH THEM WILL BE OLDER WEAPONS, LIKE THE M60A3 TANK AND THE M109 HOWITZER. THERE WILL UNDOUBTEDLY BE PRODUCT IMPROVEMENTS OVER THE YEARS - IN FACT, WE CONSCIOUSLY PLAN FOR THIS; OUR COBRA FLEX PROGRAM, BEING ONE EXAMPLE.

0 MAJOR REASON FOR PRODUCT IMPROVEMENTS IS TO IMPROVE EQUIPMENT "SUPPORTABILITY."

(SLIDE 15 OFF)
DISTRIBUTION OBJECTIVE —

"MATERIEL DISTRIBUTED TO RIGHT PLACE, AT RIGHT TIME, IN RIGHT QUANTITY"

LACK OF A ROAD NET NOT A LIMITING FACTOR
(SLIDE 18 ON)

THE DISTRIBUTION CHALLENGE.

- AT THE RISK OF BEING REDUNDANT, THE DISTRIBUTION SYSTEM OF THE FUTURE MUST BE BASED ON RESPONSIVE RESUPPLY, AUTOMATIC INVENTORY STATUS REPORTING, AND PREDICTIVE DEMAND AND USAGE RATES.
- WE NEED VEHICLES, SUCH AS THE PALLETIZED LOADING SYSTEM (PLS), WHICH CAN BE VIEWED AS A DISTRIBUTION SYSTEM, NOT JUST A TRANSPORTATION TRUCK.
- TAILORED, PALLETIZED, CONTAINERIZED UNIT SUPPORT PACKAGES WILL BE THE NORM.
 - SUPPLIES WILL BE DELIVERED TO UNITS IN ONE-, TWO-, OR FIVE-DAY PACKAGES.
 - MANY SHIPMENTS WILL COME DIRECTLY FROM THE SUSTAINING BASE TO THE UNIT.
- THE NET RESULT WILL BE MOVEMENT OF SMALLER QUANTITIES, MORE OFTEN, TO MULTIPLE, DISPERSED SITES.
- WE MUST HAVE COMPUTERS, COMMUNICATIONS, AND TRANSPORTATION THAT WILL ENABLE US TO:
 - FORECAST UNIT REQUIREMENTS.
 - FIND OUT WHERE THEY ARE LOCATED.
 - RESPONSIVELY MEET THEIR DAILY NEEDS.
 - BE ABLE TO PRIORITIZE AND CONTROL TRANSPORTATION.

(CONTINUED NEXT PAGE)
DISTRIBUTION

LOG 21

- SCHEDULED RESUPPLY
- TAILORED, PREPACKAGED SUPPORT PACKAGES
- STANDARD CONTAINERS, POWERED TRANSFER
- DIRECT SHIPMENTS TO USER
- MOVEMENTS CONTROL CRITICAL

- MORE SCHEDULED RESUPPLY
- IMPROVED CONTAINERS
- IMPROVED PACKAGING

ARMSLAND BATTLE

- DISTRIBUTION BASED ON DEMAND
- CONTINUOUS FORWARD MOVEMENT
- CONSOLIDATED SHIPMENTS
- THROUGHPUT
(SLIDE 17 ON)

OUR DISTRIBUTION OBJECTIVE is to ensure that the right materiel is distributed to the right place, on time, and in the quantity required.

- **Current System** is reactive, based on demand, and involves an almost continuous forward movement of supplies.

- **Strategy:**
 - Our strategy calls for developing simplified, rapid distribution techniques through enhanced use of automation, communications, and rapid transport.
 - We can reduce both the depth and breadth of stockage and cumbersome field requisitioning through predictive planning and "inventory in motion" techniques—emphasis on aggressive support from the wholesale level rather than waiting for, or requiring, the field commander to initiate the action.
 - Through reduced or common data bases and management levels we can promote responsive distribution while improving accountability, again, exploitation of technology, much of which is existant, is the key.

(SLIDE 17 OFF)
WE MUST IMPROVE OUR BULK FUEL DISTRIBUTION CAPACITY.

DEVELOPING LIGHTWEIGHT ALUMINUM PIPE AND SNAP-LOCK COUPLINGS TO REPLACE THE HEAVY STEEL PIPE AND COUPLINGS NOW IN USE.

LOGISTICS R&D WORKING ON AN AUTOMATED PIPELINE CONSTRUCTION EQUIPMENT SYSTEM (APCES) WHICH WILL PERMIT 2 MEN TO LAY 18 MILES OF PIPE - CURRENT RATE FOR A PIPELINE COMPANY IS 1 MI/DA.

(SLIDE 18 OFF)
SUPPORT OBJECTIVE —

"RESPONSIVE LOGISTICS SUPPORT SYSTEMS"

ARMY 21

MAINTENANCE SUPPORT SUPPLY
SUPPORT OBJECTIVE

THE THIRD MATERIEL OBJECTIVE, "SUPPORT," CALLS FOR A RESPONSIVE LOGISTICS SUPPORT SYSTEM THAT CAN BE SUSTAINED. "SUPPORT" IS A COMBINATION OF SEVERAL FUNCTIONS, TO INCLUDE "MAINTENANCE" AND "SUPPLY".
MAINTENANCE

- 3 LEVEL SYSTEM DEVELOPED: UNIT, INTERMEDIATE, DEPOT; LOGC FINALIZING NOW; ALL COMMODITIES/TOTAL ARMY.
- THRUST: REPAIR BY REPLACEMENT IN CORPS (GRN SUITERS); DETAILED REPAIR OUT OF CORPS (CONTRACT MAINT).
- 3 MAINT PRIORITIES FOR HI-TECH DESIGN: DISCARD, REPLACE FWD, EVAC (IN THAT ORDER).
- PCB (PRINTED CIRCUIT BOARDS) POLICY: IN REVISED AR 750-1 (MAR 83); UNIQUE IN DOD.
- FIRST COMPREHENSIVE POLICY TO GUIDE INCORPORATION OF NEW ELECTRONIC TECHNOLOGY
- SETS GOALS: MAX BIT/BITE (BUILT-IN-TEST/EQUIP); FAULT ISOLATE TO "BLACK BOX"
- TMDE: CENTRAL MGMT STRUCTURE ESTABLISHED -
- MODERNIZATION PROG: EXPLOITS TECH, MORE OFF-THE-SHELF/NON-DEV ITEMS
- MORE AUTOMATIC TEST EQUIP (ATE) W/EMPHASIS ON GEN PURP AND STANDARD SOFTWARE LANGUAGE (ATLAS-AUTO TEST LANG FOR ALL SYS)
- ALREADY MENTIONED - "FAULT DETECTION LOCATION SYSTEM" (FDLS) IN THE APACHE WHICH PROVIDES A "GO/NOGO" TEST AVILITY.
SUPPLY

- PAPERLESS SYSTEM
- SCHEDULED RESUPPLY
- TAILORED SUPPORT PACKAGES
- REDUCED STOCKAGE
- RESPONSIVE DISTRIBUTION SYSTEM
- REDUCE REQUIREMENTS BY INCREASING EQUIPMENT EFFICIENCY
- MORE AUTOMATIC RESUPPLY
- PAPERLESS SYSTEMS
- PAPER, DEMAND SYSTEM
- LAYERS OF STOCKAGE

ARMY 21

- THREE CATEGORY
 - BATTLEFIELD SUPPORT
 - RECONSTITUTION
 - SUSTAINING BASE

UNIT-DS-GS-DEPOT
(SLIDE 21 ON)

SUPPLY CHALLENGES.

NOW FOR THE SUPPLY FUNCTION:

OUR SUPPLY SYSTEM IS TOO COMPLEX, TIME CONSUMING, HIGHLY PAPER-BOUND, MANPOWER INTENSIVE, AND HAS TOO MANY LAYERS OF STOCKAGE.

- LOGISTICANS REFER TO THESE REDUNDANT STOCKAGE LEVELS AS "THE IRON MOUNTAIN."
- THESE "MOUNTAINS OF IRON" ARE MAJOR CONTRIBUTORS TO THE LONG SUPPORT TAIL, AND, RESULT IN MAINTENANCE AND SUPPLY UNITS HAVING SO MUCH STOCK ON HAND, THEY CANNOT MOVE IT TO KEEP UP WITH THE UNITS THEY SUPPORT.
- LIKE MAINTENANCE, THE major CHALLENGE IS TO REDUCE THE ECHELONS OF SUPPLY AND THE INVENTORIES WITHIN THOSE ECHELONS.

- CONCURRENTLY, WE MUST MAKE MAXIMUM USE OF NEW TECHNOLOGY WHICH WILL GIVE US:
 - PAPERLESS TRANSACTIONS:
 - RAPID COMMUNICATIONS TO TRANSMIT UNUSUAL REQUESTS:
 - TAILORED UNIT SUPPORT PACKAGES:
 - SCHEDULED RESUPPLY
 - LOW WEIGHT, LOW-BULK ITEMS; AND
 - A FASTER, MORE RESPONSIVE DISTRIBUTION SYSTEM TO ALLOW REDUCED INVENTORIES AND STOCKAGE.

(SLIDE 21 OFF)
SERVICES.

THE TRULY UGLAMOROUS SIDE OF OUR BUSINESS, YET -

- A MAJOR REQUIREMENT FOR THE MAN ON THE BATTLEFIELD ARE SERVICES, SOME OF WHICH ARE SHOWN ON THIS SLIDE.
- THESE ARE ALSO A MAJOR HEADACHE AND WE NEED TO DO SOMETHING ABOUT THEM.
- FOR EXAMPLE:
 - WE HAVE SOLVED THE WATER PROBLEM WITH ROWPU (REVERSE OSMOSIS WATER PURIFICATION UNITS). BEYOND THIS WE ARE LOOKING AT OTHER PROMISING TECHNOLOGIES.
 - THE FOOD SERVICE AND BAKER REQUIREMENT HAVE BEEN LESSENED WITH THE MEAL READY TO EAT AND TRAY PACK RATION.
- WE STILL NEED TO FIND A WAY TO IMPROVE BATH, LAUNDRY, AND CLOTHING EXCHANGE SERVICES, WHICH WILL LESSEN - NO INCREASE - WATER AND SUPPLY REQUIREMENTS.
- A MAJOR UNSOLVED PROBLEM IS DECONTAMINATION AFTER CBR ATTACK.
- GRAVES REGISTRATION (GR) IS A HIGHLY SENSITIVE SERVICE THAT WE MUST LEARN TO COPE WITH ON THE BATTLEFIELD OF THE FUTURE. THE DEFICIENCIES OF PRESENT U. S. MORTUARY EQUIPMENT AND PROCESSES BECAME ALL TOO EVIDENT IN THE AFTERMATH OF THE TERRORIST BOMBING OF THE MARINE HEADQUARTERS IN BEIRUT.
ARMY 21

RECONSTITUTION SITE

TASK

1 BE PREPARED - SECURE SITE
2 PROVIDE 72 HRS WORTH OF ASSETS
3 PROVIDE NECESSARY MAINTENANCE
4 EXTRACT RESIDUAL SUPPLIES
5 EXTRACT CASUALTIES
(SLIDE 23 ON)

RECONSTITUTION SITE. LET ME TALK ABOUT A SINGLE EXAMPLE.

- Because of the extreme requirements generated by combat under Army 21 (Air Land Battle 2000), we have developed a concept for restoring combat units, called "reconstitution" - this is not new, it's a return to a concept of the past.
- The purpose of reconstitution is to return the combat unit to a mission capable status, in the shortest time and possible.
- When the combat unit completes a mission, it will rendezvous with designated theater combat service support units.
- The support units will bring with them a "tailored" battlefield support package.
- The package will consist of equipment and supplies reported thru data link, as battle damaged or consumed, plus those needed for the next mission.
- All requisitions will be "paperless"; most will be automatic.
- Key to maintenance under the reconstitution concept is "battlefield replacement" of components and spares, to make the end item servicable. Not "battlefield repair:"
- Describing the "reconstitution" concept is much easier than implementing it.
- The entire concept presupposes reliable, real time, survivable, miniaturized battlefield combat service support automation integrated with other primary systems (C&C, fire support, air defense, and intelligence),
- Equally reliable and survivable logistics communications and data links.

(SLIDE 23 OFF)
MATERIEL MANAGEMENT OBJECTIVE

"INNOVATIVE MANAGEMENT OF OUR RESOURCES"

THE MAN

THE MACHINE

THE SYSTEM
MATERIEL MANAGEMENT OBJECTIVE.

THE "CAPSTONE" OBJECTIVE IS THE MATERIEL MANAGEMENT OBJECTIVE.

- IT TIES THE OTHER THREE OBJECTIVES TOGETHER FOR A COORDINATED FOCUS.
- SIMPLY STATED, WE MUST DEVELOP A SOUND, COOPERATIVE PROCESS WITH INDUSTRY TO EXPLOIT MODERN TECHNOLOGY AND TECHNIQUES.
- WE REQUIRE HIGHLY INNOVATIVE MANAGEMENT OF ALL OUR RESOURCES.
 - THIS MEANS THAT WE ALL HAVE TO WORK CLOSELY AND PROVIDE GOOD INFORMATION FEEDBACK ACROSS ORGANIZATIONAL BOUNDARIES.

(SLIDE 24 OFF)

- WE THINK IT CAN BE DONE -- WE'VE SEEN PROGRESS.
OTHER CONCERNS
TODAY AND IN THE FUTURE

- DEMOGRAPHY
- PLANNING FACTORS
- STRATEGIC MOBILITY
- EQUIPPING THE FORCE
- TRAINING OF RESERVE COMPONENT
- MANAGEMENT OF FORCE STRUCTURE
- RESERVE COMPONENT LOGISTIC MISSION
- ADEQUACY OF COMBAT SERVICE SUPPORT STRUCTURE
- MOBILIZATION
- SUSTAINABILITY
OTHER CONCERNS TODAY AND IN THE FUTURE

WHILE FOCUSING ON THE FUTURE AND ON OUR OBJECTIVES, WE MUST KEEP IN MIND OTHER FACTORS WHICH WILL IMPINGE ON OUR ABILITY TO DO THE JOB. FOR EXAMPLE:

- DEMOGRAPHY
 - THE DECLINING POPULATION OF MILITARY AGE CITIZENS WILL RESULT IN FEWER TROOPS FOR COMBAT SERVICE UNITS, AND A FAR HIGHER PROPORTION OF WOMEN SOLDIERS. FACTORS WHICH MUST BE CONSIDERED IN ANY SOLUTION, BOTH IN FORCE STRUCTURE AND THE KINDS AND QUANTITY OF EQUIPMENT, SUCH AS MATERIEL HANDLING EQUIPMENT.

- RESERVE COMPONENTS HAVE:
 - AMMO 90 PERCENT
 - POL 80 PERCENT
 - MAINT 70 PERCENT

- MAKE-UP OF THE PROGRAMED FORCE
 - 25 PERCENT OF FY 89 KEY LOG UNIT REQUIREMENT UNRESOUCEED
 - 25 PERCENT OF REQUIREMENT IS HNS
 - 14 PERCENT IN ACTIVE COMPONENT
 - 36 PERCENT IN RESERVE COMPONENTS (EQUATES TO 72 PERCENT OF U. S. STRUCTURE)
LOGISTIC AREAS OF EMPHASIS

- SUPPORT CHARACTERISTICS GIVEN EQUAL CONSIDERATION TO OPERATIONAL CHARACTERISTICS DURING LIFE CYCLE DEVELOPMENT
- FAMILIES OF VEHICLES AND EQUIPMENT WITH STANDARD, INTERCHANGEABLE COMPONENTS
- EQUIPMENT SIMPLE TO OPERATE AND MAINTAIN
- REDUCE NUMBER OF LINE ITEMS AND ITEMS TO BE STOCKED
- REDUCE BULK AND WEIGHT OF EQUIPMENT RATIONS, AMMO, AND FUEL
- LOGISTIC AUTOMATION AND COMMUNICATIONS ON THE BATTLEFIELD
- IMPROVED TRANSPORTABILITY CONTAINERIZATION, PACKAGING AND MATERIEL HANDLING

REDUCE LOGISTIC CONSTRAINTS, THROUGH TECHNOLOGY, ON THE ARLAND BATTLEFIELD
LOGISTIC AREAS OF EMPHASIS.

- In summary, then, we need to emphasize certain areas towards which we can focus logistics research and development.
- Other speakers will provide specifics on the Army logistics R & D program.
- For my part, we need to --
 - Ensure that "supportability" is considered throughout the RITE process - not just at the end
 - Require developers to use common parts and specifications whenever possible
 - Reduce bulk and weight wherever possible
 - Place logistics communications and data transmission equipment on a par with operations communications equipment
- In short, transform logistics from an "operations constraint" to a "force multiplier"
- The slides that follow are even more specific

(Slide 26 off)
LOGISTICS NEEDS

MATERIEL NEEDS -

- EQUIPMENT WHICH IS:
 - RELIABLE, AVAILABLE, AND MAINTAINABLE
 - SELF RECOVERABLE
 - STANDARD DESIGN/MODULAR COMPONENTS
 - MAKES MAXIMUM USE OF COMMERCIALLY AVAILABLE ITEMS/COMPONENTS

DISTRIBUTION NEEDS -

- NON-TERRAIN RESTRICTED TRANSPORT CAPABILITY
- REMOTELY PILOTED VEHICLES/DRONES
- IMPROVED TRANSPORTATION MOVEMENTS CONTROL SYSTEM

MAINTENANCE SUPPORT NEEDS -

- REDUCE_MANPOWER INTENSIVE
- REPLACE FORWARD- REPAIR REAR
- THREE LEVELS
LOGISTICS NEEDS (CONT)

SUPPLY NEEDS -

- ALTERNATIVES FOR CL III, AND V WHICH DRastically REDUCE, OR EVEN ELIMINATE RESUPPLY REQUIREMENTS
- DECREASE MANPOWER REQUIREMENTS FOR DISTRIBUTION AND HANDLING OF POL AND AMMO

MATERIEL MANAGEMENT NEEDS -

- REAL TIME ASSET REPORTING
- ACTUAL ASSET LOCATION SYSTEMS
 - MAJOR ITEMS
 - PARTS/SUPPLIES
 - RESPONSIVE, PAPERLESS, DISTRIBUTION SYSTEM
- FLEXIBLE MODELS
 - TO PREDICT SUPPORT REQUIREMENTS
 - TO PREDICT SUPPORT UNIT REQUIREMENTS
SLIDES 27 AND 28 ARE A LIST OF "LOGISTICS NEEDS".

- TO RE-CAP, HERE ARE SOME OF THE LOGISTICS NEEDS THAT MUST BE SATISFIED FOR US TO SUPPORT THE ARMY OF THE 21ST CENTURY.
- (PAUSE - ALLOW APPROX 15 SEC READING TIME PER SLIDE)
- EACH OF THESE AREAS OFFERS POTENTIALS FOR "THE APPLICATION OF LOGISTICS TECHNOLOGY AND IR&D."

(SLIDE 28 OFF)
SLIDE 29

LTG THOMPSON - FM ROMMEL QUOTE

- Let me conclude with these words
 - The TACTICIAN is a man who knew a great deal about combat - Field Marshal Erwin Rommel.
 - The LOGISTICIANS is a man who knows a lot about logistics - LTG Richard Thompson, the DCSLOG.

- If the Army of the 1995 - 2030 time frame is to be capable of defending the United States --
 - It must be capable of being logistically supported.

- And our logistic support begins with your ideas and equipment.

- Together we can do the job.

- Thank you
A LOGISTICIAN'S VIEW

"LOGISTICS CANNOT BE A CONSTRAINT TO THE SUCCESSFUL ACCOMPLISHMENT OF THE MISSION AND OBJECTIVES OF COMMANDERS IN THE FIELD."

A TACTICIAN'S VIEW

"THE BRAVEST MAN CAN DO NOTHING WITHOUT GUNS, NOTHING WITHOUT AMMUNITION - AND GUNS AND AMMUNITION ARE OF LITTLE USE IN MOBILE WARFARE UNLESS THEY CAN BE TRANSPORTED BY VEHICLES SUPPLIED WITH SUFFICIENT FUEL AND WATER."
OVERVIEW OF SELECTED TOPICS IN LOGISTICS R&D

Wilson Heaps
Army Materiel Systems Analysis Activity
OVERVIEW OF SELECTED TOPICS AND METHODOLOGY NEEDED

IN

LOGISTICS R & D

PRESENTED

ARO WORKSHOP ON

ANalytical AND COMPUTATIONAL

ISSUES IN LOGISTICS R & D

8 MAY 1984
TOPICS

• SPARC/APPLICATIONS
 NEED: QUICK SPARC METHOD

• MOBSIM
 NEED: EFFICIENT METHODS FOR ESTIMATING RESOURCE REQUIREMENTS AND READINESS

• TMDE REQUIREMENTS
 NEED: QUANTITATIVE METHODS FOR DEVELOPING DEFENDABLE REQUIREMENTS
SUSTAINABILITY PREDICTIONS
FOR
ARMY SPARE COMPONENT
REQUIREMENTS
FOR
COMBAT
(SPARC)
SPARC OBJECTIVE

ENHANCE COMBAT SUSTAINABILITY OF CRITICAL SYSTEMS BY:

1. PREDICTING PARTS THAT WILL BE DAMAGED IN COMBAT.

2. PRODUCT IMPROVING THESE PARTS, WHERE FEASIBLE.

3. DEVELOPING FIELD EXPEDIENTS AND COMBAT DAMAGE REPAIR PROGRAMS.
SPARC METHODOLOGY

TARGET DESCRIPTION

THREAT IDENTIFICATION

ASSESSMENT OF INDIVIDUAL THREATS

RESULTING DATA TYPES
ASSESS EFFECT OF WEAPON VS TARGET
FOR "SPECIFIC" CONDITION

CONDITION:
TARGET: M60A1
WEAPON: 125MM KE
RANGE: 1500 M
EXPOSURE: FULLY EXPOSED

CONSIDERATIONS
WEAPON ACCURACY
AIM POINT
ATTACK ANGLE (CARDIOD DISTRIBUTION)
WEAPON PENETRATION CAPABILITY
ARMOR ENVELOPE CAPABILITY

SAMPLE SHOTLINE
PRODUCT A "POT" OF EFFECTS DATA FOR THE SPECIFIED CONDITION

CONDITION

TARGET: M60
WEAPON: 125MM KE
RANGE: 1500 M
EXPOSURE: FULLY EXPOSED

EXAMPLE RESULTING DATA BIN
(CONTAINS ONLY NON-KILL SHOTLINES)

<table>
<thead>
<tr>
<th>SHOTLINE NUMBER</th>
<th>PROB. OF OCCURRENCE</th>
<th>NUMBER OF PARTS REQD</th>
<th>REPAIR LEVEL</th>
<th>AND TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.0062</td>
<td>3 0 0 0 1</td>
<td>ORG</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>.0013</td>
<td>0 0 2 1</td>
<td>DS</td>
<td>1.3</td>
</tr>
<tr>
<td>3</td>
<td>.0009</td>
<td>1 1 1 1 0</td>
<td>GS</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>. . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>. . . .</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARTS REQUIRED TO REPAIR COMBAT DAMAGE

DRAW SAMPLE SHOTLINES FROM BINS IDENTIFIED

<table>
<thead>
<tr>
<th>M60A1</th>
<th>M60A1</th>
<th>M60A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULLY EXPOSED</td>
<td>HULL DEFILADE</td>
<td>FULLY EXPOSED</td>
</tr>
<tr>
<td>1500 M</td>
<td>2000 M</td>
<td>1500 M</td>
</tr>
<tr>
<td>125 MM KE</td>
<td>125 MM KE</td>
<td>HEAT</td>
</tr>
</tbody>
</table>

(5) (1) (3)

NO. PARTS REQUIRED

<table>
<thead>
<tr>
<th>SHOTLINE</th>
<th>#1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPAIR LEVEL
CONVERSION OF RESULTS TO "FAILURE FACTORS"

LET FF(CD) BE THE NUMBER OF A PARTICULAR PART REQUIRED FOR REPAIR OF COMBAT DAMAGE TO A SYSTEM, PER 100 SYSTEMS PER YEAR.

EXAMPLES:

0 1220-01-019-4548 LZR RNGE FINDER $49,30Q

216 RNGE FINDERS = FF(CD) ; FF(CD) = 117 FFII = 10
67,632 TANK DAYS 36,500 TANK DAYS

0 2590-01-022-5578 TURRET CNTRL HARNESS $139

321 HARNESSSES = FF(CD) ; FF(CD) = 173 FFII = 4
67,632 TANK DAYS 36,500 TANK DAY

0 INTENSE PERIOD - FIRST 60 DAYS
0 NEED TO EXPAND TO FULL 180 DAY SCENARIO
0 SCALING FACTORS NEEDED
SPARC APPLICATIONS

- MARC (IMPROVED MACRIT)
- MOST FREQUENTLY DAMAGED COMPONENTS/HARDENING/BATTLEFIELD EXPEDIENT REPAIRS
- INCORPORATION OF COMBAT DAMAGE INTO STANDARD PROVISIONING METHODS

 STANDARDIZED COMBAT ASL
 PROTOTYPE WAR RESERVES COMPUTATIONS W/TACOM
- ARMOR CREW CASUALTY ANALYSIS

NEED: A QUICK, EASILY IMPLEMENTABLE METHOD FOR ESTIMATING COMPONENT DAMAGE FREQUENCIES FOR SYSTEMS WHICH CANNOT BE SUBJECTED TO A THOROUGH SPARC ANALYSIS.
DARCOM

MOBILIZATION SIMULATION

MODEL

(MOBSIM)
BACKGROUND

MR STRENGTH vs IOE

FROM: DARCOM BASELINE STUDY
MOBSIM

WHAT IS IT?

0 SIMULATION
0 REQUISITION DRIVEN ACTIVITIES OF DARCOM CENTRAL SUPPLY SYSTEM
0 SUPPLY CLASSES II, V, VII AND IX

WHAT ARE ITS GOALS?

0 TO ESTIMATE RESOURCES REQUIRED OVER TIME BY MODELED ACTIVITIES TO SUPPORT PEACETIME OR PEACE TO MOB TO WAR ACTIVITIES
0 TO ESTIMATE DARCOM'S CAPABILITY TO PROVIDE THE SUPPLY SUPPORT IDENTIFIED AS REQUIRED BY OPLANS, EXERCISES, COMBAT ANALYSES, ETC.
NOTIONAL OUTPUT GRAPHIC REPRESENTATION

ITEM MGRS REQUIRED

PEACE

WAR

MOB TDA

MOBSIM REQT

TIME
Therefore, management can plan for exercising options: trade-offs, training, increasing workforce, policy changes, etc.
TMDE REQUIREMENTS

- RESPONSE TO "UNDER" QUESTION -
 "IMPACTS OF NOT MEETING REQUIREMENTS"

- HOW ARE REQUIREMENTS CURRENTLY ESTABLISHED?

- HOW ARE WE DOING?
 SURVEY OF SELECTED SYSTEMS

NEED: DEFENDABLE METHODS FOR ESTABLISHING TMDE PERFORMANCE REQUIREMENTS.
SUPPORTABILITY IN OPERATIONAL TEST AND EVALUATION

Douglas McGowen
Operational Test and Evaluation Agency
ISSUE

OPERATIONAL AVAILABILITY AS DEFINED IN AR 702-3 IS NOT A GOOD INDICATOR OF WARTIME (COMBAT) READINESS OR AVAILABILITY
OPERATIONAL AVAILABILITY
(AR 702-3)

THE PROPORTION OF TIME A
SYSTEM IS EITHER OPERATING OR
IS CAPABLE OF BEING OPERATED,
WHEN USED IN A SPECIFIC MANNER
IN A TYPICAL MAINTENANCE AND
SUPPLY ENVIRONMENT. ALL CALENDAR
TIME IS CONSIDERED.
OPERATIONAL AVAILABILITY
(AR 702-3)

OT = THE OPERATING TIME DURING A GIVEN CALENDAR TIME PERIOD

TCM = THE TOTAL CORRECTIVE MAINTENANCE DOWN TIME IN CLOCK HOURS DURING THE GIVEN PERIOD

ST = STANDBY TIME (NOT OPERATING, BUT ASSUMED OPERABLE) PER GIVEN CALENDAR TIME PERIOD

TPM = THE TOTAL PREVENTIVE MAINTENANCE DOWN TIME IN CLOCK HOURS DURING THE STATED OT PERIOD

TALDT = TOTAL ADMINISTRATIVE AND LOGISTICS DOWN TIME SPENT WAITING FOR PARTS, MAINTENANCE PERSONNEL, OR TRANSPORTATION PER GIVEN CALENDAR TIME PERIOD
OPERATIONAL AVAILABILITY
(ARINC)

THE PROBABILITY THAT THE SYSTEM IS
OPERATING SATISFACTORILY AT ANY
POINT IN TIME WHEN USED UNDER STATED
CONDITIONS, WHERE THE TOTAL TIME
CONSIDERED INCLUDES OPERATING TIME,
ACTIVE REPAIR TIME, ADMINISTRATIVE TIME
AND LOGISTICS TIME
OPERATIONAL AVAILABILITY (ARINC)

OT = THE TIME DURING WHICH THE SYSTEM IS OPERATING IN A MANNER ACCEPTABLE TO THE OPERATOR

ART = THE PORTION OF DOWN TIME DURING WHICH ONE OR MORE TECHNICIANS ARE WORKING ON THE SYSTEM TO EFFECT A REPAIR

LT = THE PORTION OF DOWN TIME DURING WHICH REPAIR IS DELAYED SOLELY BECAUSE OF THE NECESSITY FOR WAITING FOR A REPLACEMENT PART OR OTHER SUBDIVISION OF THE SYSTEM.

AT = THE PORTION OF DOWN TIME NOT INCLUDED UNDER ACTIVE REPAIR TIME AND LOGISTICS TIME
OPERATIONAL READINESS
(ARINC)

THE PROBABILITY THAT, AT ANY POINT IN TIME,
THE SYSTEM IS EITHER OPERATING SATISFACTORILY
OR READY TO BE PLACED IN OPERATION ON DEMAND
WHEN USED UNDER STATED CONDITIONS, INCLUDING
STATED ALLOWABLE WARNING TIME. THUS, TOTAL
CALENDAR TIME IS THE BASIS FOR COMPUTATION
OF OPERATIONAL READINESS.
OPERATIONAL READINESS (ARINC)

OT = THE TIME DURING WHICH THE SYSTEM IS OPERATING IN A MANNER ACCEPTABLE TO THE OPERATOR.

ART = THE PORTION OF DOWN TIME DURING WHICH ONE OR MORE TECHNICIANS ARE WORKING ON THE SYSTEM TO EFFECT A REPAIR.

LT = THE PORTION OF DOWN TIME DURING WHICH REPAIR IS DELAYED SOLELY BECAUSE OF THE NECESSITY FOR WAITING FOR A REPLACEMENT PART OR OTHER SUBDIVISION OF THE SYSTEM.

AT = THE PORTION OF DOWN TIME NOT INCLUDED UNDER ACTIVE REPAIR TIME AND LOGISTICS TIME.

FT = THE TIME DURING WHICH OPERATIONAL USE OF THE SYSTEM IS NOT REQUIRED. THIS TIME MAY OR MAY NOT BE DOWN TIME, DEPENDING ON WHETHER OR NOT THE SYSTEM IS IN OPERABLE CONDITION.

ST = THE TIME WHICH THE SYSTEM IS PRESUMED TO BE IN OPERABLE CONDITION, BUT IS BEING HELD FOR EMERGENCY I.E. AS A SPARE.
OPERATIONAL AVAILABILITY (IRESON)

THE PROBABILITY THAT IT IS OPERATING SATISFACTORILY AT ANY POINT IN TIME WHEN USED UNDER STATED CONDITIONS. OPERATIONAL AVAILABILITY CONSIDERS OPERATE AND TOTAL DOWN TIME.
OPERATIONAL AVAILABILITY
(IRESON)

OT = OPERATE TIME

TDT = TOTAL DOWN TIME
OPERATIONAL READINESS
(IRESON)

THE PROBABILITY THAT AT ANY POINT IN
TIME A SYSTEM OR EQUIPMENT IS EITHER OPERATING
SATISFACTORILY OR READY TO BE PLACED IN
OPERATION ON DEMAND WHEN USED UNDER STATED
CONDITIONS, INCLUDING STATED ALLOWABLE
WARNING TIME
NOTES FROM ARINC

- Operational readiness can be enhanced by using free time for maintenance.
- Free time can compensate to some extent for poor reliability and poor maintainability.
- Free time and storage time alleviate the effects of equipment inadequacies and gain operational readiness.
- Free time and storage time have no connection with improving equipment.
NOTES FROM IRESON

CAN HAVE HIGH READINESS ON EQUIPMENT OPERATING FOR SHORT PERIODS AND HAVING LONG OFF TIME
OPERATIONAL AVAILABILITY
(AR 702-3)

AR 702-3 DEFINITION OF OPERATIONAL AVAILABILITY IS:

- NOT CONSISTENT WITH LITERATURE DEFINITION
- LITERATURE DEFINITION OF OPERATIONAL READINESS
- DIFFICULT TO EVALUATE IN TEST
- INSENSITIVE TO LARGE BLOCKS OF STAND BY TIME
EXAMPLE OF AR 702-3
OPERATIONAL AVAILABILITY

\[OT = 288 \text{ HRS} \]
\[TCM = 94 \text{ HRS} \]
\[TPM = 16 \text{ HRS} \]
\[TALOT = 152 \text{ HRS} \]
\[ST = 8210 \text{ HRS} \]

\[A_o = \frac{288 + 8210}{288 + 8210 + 94 + 16 + 152} = \frac{8498}{8760} = .97 \]

\[A_o = \frac{7922}{8472} = .94 \]

\[\Delta A_o = .03 \]
EXAMPLE OF ARINC OPERATIONAL AVAILABILITY

\[
A_0 = \frac{288}{288 + 94 + 16 + 152} = .53
\]
SUGGESTED WARTIME OPERATIONAL AVAILABILITY

THE PORTION OF TIME A SYSTEM IS EITHER OPERATING OR CAPABLE OF BEING OPERATED WHEN OPERATED UNDER GIVEN CONDITIONS AND SUPPORTED IN A WARTIME SUPPORT ENVIRONMENT. THE TIME CONSIDERED IS MISSION OPERATE TIME, MISSION STANDBY TIME, NON DEFERABLE MISSION CRITICAL MAINTENANCE (CORRECTIVE AND PREVENTIVE), AND MISSION CRITICAL ADMINISTRATIVE AND LOGISTICS DOWNTIME.
SUGGESTED WARTIME OPERATIONAL AVAILABILITY

OT = OPERATING TIME STATED IN THE MISSION PROFILE AND OPERATIONAL MODE SUMMARY

MST = MISSION STANDBY TIME IN THE MISSION PROFILE AND OPERATIONAL MODE SUMMARY

MCCM = MISSION CRITICAL CORRECTIVE MAINTENANCE

MCPM = MISSION CRITICAL PREVENTIVE MAINTENANCE

MCALDT = MISSION CRITICAL ADMINISTRATIVE AND LOGISTICS DOWNTIME
ADVANTAGES OVER AR 702-3
OPERATIONAL AVAILABILITY

- MORE REFLECTIVE OF THE CAPABILITY TO "FIGHT SYSTEM" OVER TIME
- ELIMINATES INSENSITIVITY TO LARGE BLOCKS OF STANDBY TIME
- PROVIDES A MORE REALISTIC ESTIMATE OF WARTIME MAINTENANCE
- EASIER TO EVALUATE FROM TEST DATA
ILS QUANTIFICATION

Thomas Lanagan
Army Logistics Center
TITLE: Risk Assessment Procedures for Quantifying Integrated Logistics Support (ILS) Product Development

AUTHORS: Mr. Charles Santilli and Mr. Thomas Lanagan (presentation to be given by Mr. Lanagan)

ORGANIZATION: Commander
US Army Logistics Center
ATTN: ATCL-MRI (Mr. Santilli)
ATCL-OMM (Mr. Lanagan)
Fort Lee, VA 23801

AUTOVON: 687-2360/1845
COMMERCIAL: (804) 734-2360/1845

ABSTRACT: The thrust of the paper is to develop an approach which quantifies ILS assessments and which provides a measure of risk in terms of the system meeting logistic objectives at the time of fielding. The proposed process provides as objectives a performance envelope which varies over time and which takes into account learning curve phenomena and hardware/software improvements. This permits demonstrated performance to be tracked against a specified performance envelope as well as to have future performance forecasted. In assessing the applicability of risk assessment to ILS quantification, the methodology was designed so as to complement the MIL Standard 1388-1A and the Logistic Support Analysis (LSA) Process. This was accomplished by developing risk assessment procedures for use under two modes. First, the process could be employed as a PMO management tool to assess ILS Product Development in terms of cost and schedule which represents a classical use of risk assessment. Alternatively, risk assessment can be employed to assess the impacts which ILS Product Performance has upon the Army in the field. The second mode represents an application of risk assessment procedures which has not received extensive application in the past. In summary, the paper describes a methodology which provides for a systematic review of all 15 assessment areas (defined under AR 700-127) and which weights them by their wartime criticality. This process synthesizes available data with current expert insight into an overall system review which quantifies impacts in terms of resource shifts, operating and support cost deltas, and availability changes.

CLASSIFICATION OF PAPER: Unclassified
METHODOLOGY FOR QUANTIFICATION OF ILS

I. INTRODUCTION & BACKGROUND
II. BASIC METHODOLOGY
III. REMAINING CHALLENGES
REMAINING CHALLENGES

MR. SANTILLI, MSD

MR. LANAGAN, OAD

BASIC METHODOLOGY

BACKGROUND

INTRODUCTION AND

QUANTIFICATION OF ITS

METHODOLOGY FOR
QUANTIFICATION OF ILS

OBJECTIVES

MEASURE THE LIKELIHOOD OF ATTAINING ILS OBJECTIVES

QUANTIFY THE SYSTEM SUPPORTABILITY IMPACTS ON THE ARMY IN THE FIELD

DEVELOP METHODOLOGY

MATERIEL ACQUISITION PROCESS
QUANTIFICATION OF ILS OBJECTIVES

* QUANTIFICATION OF ILS WILL ACCOMPLISH TWO BASIC FUNCTIONS FOR THE ARMY

** MEASURE THE LIKELIHOOD OF ATTAINING THE ILS OBJECTIVES

** QUANTIFY THE SUPPORTABILITY IMPACTS ON THE ARMY IN THE FIELD
QUANTIFY ILS IMPACTS

**METHODOLOGY MUST PRESENT ILS QUANTITATIVE IMPACTS ON PROGRAM

*** COST
*** SCHEDULE
*** ADDITIONAL RESOURCES REQUIRED FOR REALIGNMENT (SUPPORT CATCH-UP)

**PROVIDE LOGISTICS MANAGERS AND ACQUISITION DECISION MAKERS A COMPLETE AND COMPREHENSIVE PICTURE OF THE ILS STATUS
15 ILS ASSESSMENT CONSIDERATIONS
15 ILS
ASSESSMENT
CONSIDERATIONS

THE CONCEPT FOR QUANTIFYING ILS IS BASED UPON 15 ASSESSMENT CONSIDERATIONS ESTABLISHED IN AR 700-127
DEGREE OF QUANTIFICATION
OF THE 15 ILS
ASSESSMENT CONSIDERATIONS

- Maintenance Planning
- Support/Test Equipment
- Supply Support
- Transportation/Transportability
- Manpower & Skills
- Design Influence
- RAM
- Cost Analysis

- Technical Data
- Training & Training Devices
- Facilities

- Computer Resources Support
- Materiel Fielding Planning
- Standardization/Interoperability
- Support Management

Level of Quantification
- Minimal Degree
- Moderate Degree
- High Degree
DEGREE OF QUANTIFICATION OF THE 15 ILS ASSESSMENT CONSIDERATIONS

- CATEGORIZING THE 15 ILS ASSESSMENT CONSIDERATIONS BY THE LEVEL WHICH THEY CAN BE QUANTIFIED
 - HIGH DEGREE
 - MODERATE DEGREE
 - LOW DEGREE
BACKGROUND INFORMATION

LOGISTICS CENTER HISTORY
DR SIMS

DEFENSE TECHNICAL INFORMATION CENTER

QUANTIFICATION OF I. L. S.

LOGC CONFERENCE

DLSIE
BACKGROUND INFORMATION

**CONDUCTED LITERATURE SEARCH FOR QUANTIFICATION OF ILS METHODOLOGY

*** DEFENSE LOGISTICS STUDIES INFORMATION EXCHANGE (DLSIE)

*** DEFENSE TECHNICAL INFORMATION CENTER (DTIC)

*** DR SIMS (LOGC HISTORIAN)

**LOGC HOSTED CONFERENCE-14 NOV 83

HQ TRADOC SSC
MRSA AMSAA
ATSC LOGC (MSD/OAD)

**LOGC DEVELOPED RISK ASSESSMENT METHODOLOGY -FEB 84

**CG LOGC METHODOLOGY REVIEW-5 MAR 84
METHODOLOGY FOR ILS QUANTIFICATION

ILS RISK ASSESSMENT METHODOLOGY

HIGH RISK

LOW RISK

QUANTIFIES DEGREE OF UNCERTAINTY IN MEETING ILS GOALS
RISK ASSESSMENT FOR ILS

TO PROVIDE METHODOLOGY WHICH QUANTIFIES
THE DEGREE OF UNCERTAINTY WHICH MAY SUR-
ROUND DEVELOPMENTAL SYSTEMS IN TERMS OF
MEETING ILS GOALS/OBJECTIVES.
PROCESS DEFINITION

SYSTEMS UNDER DEVELOPMENT → SELECT SYSTEM → SYSTEM EVALUATE 15 ILS AREAS (ISSUES/IMPACTS/FIXES) → ILS EVALUATION

ASSIGN HIGH/LOW SUCCESS PROB BY FUE DATE

LIKELIHOOD OF FAILURE FOR 15 ILS AREAS → CALCULATE RANGE ON PROB OF FAILURE BY FUE DATE

LIKELIHOOD OF SUCCESS FOR 15 ILS AREAS

(1 - P(S))
PROCESS DEFINITION

- SELECT SYSTEM
- EVALUATE 15 ASSESSMENT AREAS BY THE LOGISTIC EVALUATION GROUP (PER AR 700-127)
 - ISSUES
 - PROPOSED FIXES
 - QUALITATIVE IMPACTS
- HOST DELPHI MEETING TO ASSIGN HIGH/LOW SUCCESS LEVEL
 - SUCCESS = EACH ASSESSMENT AREA WILL BE ON SCHEDULE AND WORK AS INTENDED BY FUE
- CALCULATE RANGE ON FAILURE LEVEL FOR EACH AREA
 - FAILURE = 1 - PROBABILITY OF SUCCESS
PROCESS DEFINITION

A
ASSIGN LEVEL OF IMPORTANCE IN WARTIME (DELPHI)

RANK ORDER ILS PROBLEM AREAS BY WARTIME SIGNIFICANCE

CALCULATE SYSTEM PROB OF FAILURE BY FUE DATE

PROVIDE IMPACT STATEMENT TO ILS PROBLEM AREAS

LIKELIHOOD OF FAILURE IN ILS FOR SYSTEM BY FUE

RISK ASSESSMENT

PQT DT/OT BCE BOIP QQPRI ROC

FORCE STRUCTURING TRAINING BASE REPLEN SPARES WRMR MP & A
PROCESS DEFINITION

- Assign an importance factor by Delphi group to each assessment area for its criticality in a wartime deployment (increasing value increasing importance)

- Calculate overall system score across all fifteen assessment areas weighted by their wartime importance

- 'Quantify' these areas which were identified as problem areas by applying decision criteria

 - Decision criteria (e.g.,) maximum success probability by FUE of less than 50%
DELPHI PROCESS

- DELPHI GROUP PROVIDED WITH FOLLOWING BY LOG EVALUATION GROUP (LEG)
 - IDENTIFIED ISSUES FOR EACH ASSESSMENT AREA
 - QUALITATIVE IMPACTS TO ARMY OF PRESENT PERFORMANCE
 - IDENTIFIED FIXES IF REQUIRED TO GET BACK ON TARGET GOALS

- DELPHI GROUP OBJECTIVES
 - ASSIGN A RANGE (HIGH/LOW) SUCCESS PROBABILITY TO EACH ASSESSMENT AREA
 - ASSIGN A WARTIME IMPORTANCE FACTOR TO EACH AREA

- BASED ON DELPHI RESULTS THE LEG PROVIDES TO ARMY MGMT
 - SYSTEM LEVEL SUCCESS RANGES
 - "QUANTIFIED" IMPACTS WHEN POSSIBLE
 - FORECASTED PERFORMANCE LEVELS COMPARED TO TARGET GOALS
INTERFACE WITH LSA

ILS RISK ASSESSMENTS

LOGISTIC SUPPORT ANALYSIS

SYSTEM ILS IMPACTS
(FIELDING ASSESSMENTS)

- LSA TASK 303
- LSA TASK 402

ILS PRODUCT MANAGEMENT
(COST VS SCHEDULING)

- LSA TASK 103
INTERFACE OF ILS RISK ASSESSMENT & LSA TASKS

- Two modes for assessing risk
- ILS product management
- System ILS impacts

- Three LSA tasks for including risk assessment under two modes
- LSA 103 - Program & Design Reviews (Management Assessment)
- LSA 303 - Evaluation of Alternatives & Tradeoff Analysis (System Impacts)
- LSA 402 - Early Fielding Analysis (System Impacts)
SYSTEM GROWTH UNDER RISK

• ESTABLISH A PERFORMANCE ENVELOPE AS SYSTEM OBJECTIVES IN LIEU OF POINT ESTIMATES
 • USER TO SET FUE & MATURE WINDOWS THROUGH REQUIREMENTS DOCUMENTS
 • MATERIEL DEVELOPER TO SET DT/OT WINDOWS THROUGH LSA PLAN

• PROACTIVE RESPONSE TO DOD & GAO INQUIRIES
 • ALLOWS ARMY MANAGEMENT TO TRACK BOTH DEMONSTRATED AND FORECASTED PERFORMANCE VS STATED OBJECTIVES
 • BY SETTING 'UPPER' AS WELL AS 'LOWER' PERFORMANCE BOUNDS, ARMY AVOIDS 'GOLD PLATING' CRITICISM

• NOT ALL FIFTEEN ASSESSMENT AREAS ARE AMENABLE TO CONTINUOUS MEASURES
SYSTEM GROWTH ACROSS TIME --- EXAMPLE

ROC RQMT = 320 MMBMF
DARCOM LOG BURDEN ESTIMATE = 42 MMBUMA

MEAN MILES BETWEEN UNSCHEDULED MAINTENANCE ACTIONS [MMBMA]
APPLICATION OF WEIBULL INTENSITY GROWTH FUNCTIONS TO PQT/C

\[\rho(k) = \lambda \beta k^{\beta - 1} \]

\[\lambda = 0.07145 \]

\[\beta = 0.80864 \]

- \(\text{MKBMD} = \rho(k)^{-1} \)
- \(K(\text{final}) = 9656 \text{ km} \)
- \(\text{MKBMD(f)} = 100.1 \text{ km} \)
- \(80\% \text{ CI} = (83.2 - 122.1) \)
APPLICATION OF LEARNING CURVES TO WEAPON SYSTEM DIAGNOSTICS

\[Y = A X^b \]

\[A = 0.2749 \]

\[b = -0.095305 \]

Percent Learning = 93.6%
ILS RISK ASSESSMENT

SYSTEM

WGT ELEMENT

5 MAINT PLAN
9 SPT/TEST EQUIP
4 SUPPLY SPT
7 XPORT & XPORT
1 TECH DATA
4 MNPWR & PERS.
2 TRAIN & TR DEV
1 FACILITIES
5 COMP RES SPT
2 MATL FIELD PLAN
8 DESIGN INFL
1 STD & INTEROP
9 RAM
1 SPT MGMT ANALYSIS
1 COST ANA & FUND

PROBABILITY OF SUCCESS IN ILS BY FUE DATE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
DELPHI RISK ASSESSMENT

- Each assessment area has following provided
 - Wartime importance factor (indicated by WGT column)
 - Range on success by FUE (indicated by blocks - or - circle, if range inappropriate)

- Overall system score obtained by weighting each assessment area by its wartime importance
QUANTIFY RISK ASSESSMENT -- HARD DATA

APPLY DECISION CRITERIA TO DELPHI RESULTS

IDENTIFY & PROVIDE EXAMPLE OF QUANTIFICATION FROM "HARD" DATA

RAM

FORCE STRUCTURE IMPACTS

REPLENISHMENT SPARES IMPACTS
QUANTIFY RISK ASSESSMENT --- HARD DATA

ASSESSMENT

AREA: RAM

SUCCESS LEVEL: 20%----40%

DIVISIONAL PEACETIME IMPACTS

<table>
<thead>
<tr>
<th>FORCE STRUCTURE</th>
<th>TRAINING BASE</th>
<th>REPLENISHMENT SPARES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+] 39 MECHANICS</td>
<td>[+] 12 MECHANICS</td>
<td>[+] 3.45 MILLION FY 84$</td>
</tr>
</tbody>
</table>

DIVISIONAL WARTIME IMPACTS

<table>
<thead>
<tr>
<th>FORCE STRUCTURE</th>
<th>TRAINING BASE</th>
<th>WAR RESERVE MATERIEL RQMT PER BDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+] 39 MECHANICS</td>
<td>[+] 12 MECHANICS</td>
<td>[+] 18 MILLION FY 84$</td>
</tr>
</tbody>
</table>

CLASS IX MOVEMENT RQMT INTO BDE TRAINS

[+] 3 FIVE TON LIFTS PER DAY

[+] LIFT IN SUPPORT OF CBT DAMAGE REPAIR
QUANTITY RISK ASSESSMENT
--- SOFT DATA

ASSESSMENT
AREA: DESIGN INFLUENCE

SUCCESS LEVEL: 20%---40% RISK LEVEL: 60%---80%

ISSUE: AMMO DEGRADATION DUE TO STORAGE RACK/TUBE DAMAGE TO 120MM AMMO.

ASSUME:
- WARTIME DAILY ASR---16
- WARTIME RND DAMAGE RATE---1 PER 32 RNDs

WARTIME DAILY EVACUATION REQMT FROM DIVISION:
- 174 RNDs PER DAY
- 4.1 TONS PER DAY FOR EVACUATION ---- OR
 ---- DESTROY W/IN DIV
QUANTIFICATION OF ILS

BENEFITS

SYSTEM ASSESSMENTS

REALISTIC THRESHOLDS

CRITICAL ISSUES/FIXES

FIELDING IMPACTS

SYSTEM SUPPORTABILITY
Specific performance levels

Quantifies the impact of fielding a system at

Prior to a decision milestone

Identifies critical issues and proposed fixes

Againsat which system progress may be measured

Provides realistic thresholds/objectives

DO

Provides a systematic approach for a system

Benefits

Quantification of ILS
QUANTIFICATION OF ILS

REMAINING CHALLENGES

CORRELATION OF ASSESSMENT AREAS

SUBJECTIVITY OF DELPHI PROCESS

AVAILABILITY OF ILS DATA

AVAILABILITY OF DELHI EXPERTS

INSTITUTIONAL RESISTANCE
QUANTIFICATION OF ILS: REMAINING CHALLENGES

* GENERAL QUESTIONS

** WHAT MECHANISM WILL BE USED TO ASSURE THE AVAILABILITY OF ILS DATA?

** WHAT IS THE AVAILABILITY OF THE "EXPERTS" TO PARTICIPATE IN THE DELPHI PROCESS?

** CAN WE OVERCOME THE INSTITUTIONAL RESISTANCE TO QUANTIFY ILS?

* ANALYTICAL QUESTIONS

** SUBJECTIVITY OF THE DELPHI PROCESS

** LACK OF INDEPENDENCE ACROSS 15 ASSESSMENT AREAS AS DEFINED BY AR 700-127

*** IMPLIES SOME DEGREE OF DOUBLE ACCOUNTING

*** IMPLIES CORRELATION OF ASSESSMENT AREAS
QUANTIFICATION OF ILS

- CONTINUING EFFORT
 - LOGC WILL HOST TWO DAY WORKING GROUP MTG

 DCSLOG
 DARCOM HQ
 TRADOC HQ
 OTEA
 USACAC

 LEA
 MRSA
 AMSAA
 SSC
 TNG SPT CEN

- INTEGRATE WORKING GROUP CONCERNS INTO METHODOLOGY