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CHAPTER 1 

INTRODUCTION 

A common parameter for describing the accuracy of a weapon is the circular 
probable error, generally referred to as CEP. CEP is simply the bivariate analog 
of the univariate probable error and measures the radius of a mean-centered circle 
which includes 50% of the bivariate probability. In the case of circular normal 
errors where the error variances are the same in both directions, CEP can be 
expressed as a function of the common miss distance standard deviation. Also, CEP 
estimators based on observed miss distances are easily formulated and can be used 
to construct confidence intervals for CEP. In the case of elliptical normal 
errors, CEP cannot be expressed explicitly as a function of the miss distance 
standard deviations. Here, one must obtain CEP by numerical methods or by re- 
ferring to tabular values. This has led to the development of a number of 
approximations by which CEP can be expressed as a function of the miss distance 
standard deviations. While CEP estimators based on observed miss distances are 
easily formulated from these approximations, their probability distributions are 
too complicated to be useful for CEP confidence intervals. In this report, these 
probability distributions are approximated with distributions which are more 
practical for the formulation and application of CEP confidence intervals. Ap- 
proximate CEP confidence intervals are then formulated and their accuracy deter- 
mined through Monte Carlo sampling. 

The first part of this report is tutorial in the development of CEP and 
discusses the commonly used approximations for the elliptical case. The develop- 
ment of approximate confidence intervals begins with Chapter 4. 
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CHAPTER 2 

REVIEW OF CIRCULAR CASE 

In general, it will be assumed that the errors in the X and Y directions 

are independent with mean zero and variances a^ and a^, respectively.  Under the X     y 
circular normal assumption, a2 = QZ = Q:2 ^^^^ ^^^  bivariate distribution of errors 
is given by ^ 

f,(x,y) = 5^ e^"' * y'y^"'       , - . < X, y < » (2.1) 

where the subscript c denotes circular. The distribution of the radial miss 
distance is derived by first obtaining the distribution of the polar variables 
(R, 0) where 

X = R cos e 

Y = R sin e. 

This is found to be 

gj,(r,e) = 2^^ e ^  '^"^     , 0 < r < OS, 0 < e < 2n. (2.2) 

The distribution of R = (X^ + Y^)"^ is now obtained from (2.2) by using the mar- 
ginal rule; i.e., 

27t 2/9 2 

^^^^  = / 8r(^'6)de ^^ ^'   ^  ' , r > 0. (2.3) 

This is the well-known Rayleigh distribution (see Lindgren (1968)) with cumulative 
distribution function 

P(R < r) = Gjr) = 1 - e -'^^/2'7^ (2.4) 

By definition, G (CEP) = .5 and the solution of (2.4) yield the frequently used 
expression 

CEP = [-2 £n(.50)]^ a = 1.1774 a. (2.5) 

2-1 
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Consider now that a (and hence, CEP) is unknown and is estimated from n 
observed miss distances.  These miss distances will be designated as (x.,y.), 

i = 1, ..., n in the X and Y directions, respectively. Moranda (1959) has shown 
that the maximum likelihood estimator for a is 

^ =   E (^i + yi)/2n [ (2.6) 

and the corresponding estimator for CEP is simply CEP = 1.1774 a.  This estimator 

is biased for CEP, i.e., the expectation of CEP is not equal to CEP. However, 
the bias is small and the unbiasing factor is cumbersome. Therefore, it will 
be retained in its slightly biased form. 

To place confidence limits on CEP, it will be necessary to examine the 

probability distribution of CEP. It is well-known under normal theory (see Mood 

and Graybill (1963)) that if {W.], i = 1, . . . , n is a random sample from a normal 

population with mean |J and variance o^, then I(W. - \j)^/o^ has a chi-square 

distribution with n degrees of freedom. One can consider {x.], i = 1, ..., n 

and {y.}, i = 1, . . . , n to be a random sample of size 2n from a normal popula- 

tion with mean zero and variance o^.     Therefore, 

n (^1 + YI) ^  2na2 ^ 2nCEP^   2 
.■^,     a^ a^    CEP^   ^2n 
1=1 

(2.7) 

2 
where "~" designates "is distributed as" and x^ designates a chi-square proba- 

bility distribution with 2n degrees of freedom. The 100 (1 - a)% confidence 
limits are now easily constructed using the probability statement 

P-^{4,a/2<^<^2n,l-a/2}=l -"  • (^.8) 

In this expression, x'^   designates the lOOa percentage point for a chi-square 

with u degrees of freedom. Tabular values for integral u can be found in the 
back of most statistics texts. A more complete table is found in Hald (1952). 
Manipulating the inequality in (2.8) leads to the following 100 (1 - a)% con- 
fidence limits for CEP: 

CEP CEP 

(>^2n,l-a/2/2^)'' '(^2n,./2/20'^ 

(2.9) 

The interpretation here is that one is 100 (1 - a)% confident that the interval 
in (2.9) contains the population CEP.  This formula is valid only for the case 

where the errors are known to be circular, i.e., the case where o^   =   o^   =  o^. '     ' X    y 

2-2 
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Before leaving this review of the circular case, it will be instructive to 
work through an example.  Suppose confidence limits on CEP are desired from the 

ten round sample shown in Table 2-1.  We first need to compute a in (2.6).  One 
notes that the sum under the radical in (2.6) can be expressed as 

Zx2  Zy2 

TABLE 2-1.  10 HYPOTHETICAL MISS DISTANCES (FEET) 

42 -123 
-13 -12 
-50 14 
-70 169 

-191 -58 
117 -79 
158 99 
16 -18 

101 170 
27 65 

The two components are independent estimates of the common variance o^.     If they 
differ significantly, it would cast doubt on the circular normal assumption. 

These components will be referred to as s^ and s^ so that a in (2.6) becomes 
X      y 

For this example, one finds 

s2 = Zx^/n = 9565.3 
X      1 

s^ = Zy2/n = 9688.5 

a = [(9565.3 + 9688.5)/2]^' = 98.12 

CEP = 1.1774 a = 115.53. 

To form confidence limits, the computations in (2.9) are required.  Let us 
consider 95% limits so a = .05 and the tabular values required are 

2 

^20,.025 = ^-^^ 
2 

^20,.975 ^ 34.20. 

These would both be divided by 2n = 20 to form the terms under the radical in 
(2.9). One could also use a table of chi-square percentage points divided by the 
degrees of freedom here to avoid the latter step. Such a table is in Hald (1952) 
and provides 

2-3 
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^20,.025^^^ 
2 

X^ 

.4796 

110 =  1.7085 '20,.975' 

The 95% confidence limits on CEP can now be completed and are found to be 

115.53    115.53 
1,  » r) = (88.39, 166.82) 

(1.7085)'  (.4796)' 

The units are feet, the same as the miss distance units in Table 2-1. The 
interpretation is that one is 95% confident that the true (or population) CEP 
lies in the interval (88.39, 166.82). The result is valid only if the probability 
distribution of miss distances follows a circular normal distribution. Applica- 
tion of (2.9) when the probability distribution is elliptical can lead to serious 
errors.  A discussion of the elliptical case begins with Chapter 3. 

2-4 
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CHAPTER 3 

CEP DERIVATION AND APPROXIMATIONS FOR ELLIPTICAL ERRORS 

In the elliptical case, the error variances are unequal and the bivariate 
distribution of errors is given by 

1   -h[i-lo,)'  + (y/a )2] 
» < x,y < » 

x'y 

where the subscript E denotes elliptical. The distribution of the radial error 
R for this case was derived by Chew and Boyce (1961). They proceeded, as in 
the circular case, by first obtaining the distribution of the polar variables 
(R,0).  This was found to be 

X y 0 < e < 27t 

where 

a^ + a^      a^    -  a^ 
- y   X   K - y   X 

^ - (2a a Y   '  " (2a a Y   ' 
^ X y/       V  X y/ 

Using the marginal rule, the distribution of R was obtained by integrating g_(r,e) 
E 

in (3.1) with respect to 6 between 0 and In.     This integration cannot be expressed 
in tractable form, so they expressed their result in terms of a modified Bessel 
function as 

2 
ggCr) = —^ e  ~  ^^    lo(br2), 0 < r < * . (3.2) 

X y 

In this expression, the subscript E denotes elliptical and IQ  is a modified Bessel 
function of the first kind and zero order, i.e., 

-r / N _ 1  r    -XCOSO j„ Io(x) = - /  e      de. 
n -'o 

The cumulative distribution function for R is denoted by 

P(R < r) = Gj,(r) = ^  gg(t) dt. (3.3) 

3-1 
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However, Gj,(r) cannot be expressed in tractable form because gp(t) cannot be so 

expressed. This means that the radius of the 50% circle for the elliptical case 
cannot be expressed by a simple formula as it was in the circular case. One has 
to solve G„(CEP) = .5 by numerical methods or by referring to tables prepared by 

Harter (1960), DiDonato and Jarnagin (1962), and others. To avoid using these 
tables or numerical procedures for CEP evaluation, a number of approximations have 
been developed over the years. Five of the most common are shown below; they are 
designated as CEPi through CEP5: 

CEPi = 1.1774 ' ^ 

(j2 + (j2 \ -§ 

CEP2 = 1.1774 
0+0 
_^ y 

^^P3M2xS^.5o/o^^^ 
g2  +  (j2  \ -^ 

2 

X     V 

CEP4 = .565 a + .612 o  .   , o  .  /a > .25 
max       min mm max ~ 

= .667 o + .206 o  .   , o  .   /o < .25 max       min' mm max 
1 

CEP5 = 2Y1 - ^ 
3    -   - 1. 

2   ^x 
g2  +  (j2  \  2 

CEPx and CEP2 were taken from Groves (1961); CEP3 was formulated using the chi- 

square approximation for calculating hit probabilities provided by Grubbs (1964). 
It was also derived independent of the Grubbs approximation by Thomas and Taub 
(1978).  CEP4 is a piece-wise linear combination of standard deviations which is 

commonly used in the missile community; CEP5 was formulated by Terzian (1974) 

using the Wilson-Hilferty approximation for calculating hit probabilities provided 
by Grubbs (1964).  Plots of each approximation versus the true CEP as a function 
of a   .   /o are shown in Figures 3-1 through 3-5.  These give a fairly good mm max * * ^ ^ *■ 
indication of how well each performs.  It is seen that CEP^ deteriorates rapidly 

as we depart from the circular case (for which CEPi degenerates to 1.1774 a), 

CEPo is reasonably good if the ratio o   .   la is not less than about .2; CEPQ 
^ ^ * mm max '   "^ 

appears good for all ratios, and CEP4 and CEP5 appear good to a lesser extent 

for all ratios. 
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a- CEP, = 1.1774 j      2  ' 1 
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FIGURE 3-1.  CEPj APPROXIMATION VERSUS TRUE CEP 
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FIGURE 3-2.  CEPg APPROXIMATION VERSUS TRUE CEP 
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FIGURE 3-3.  CEP3 APPROXIMATION VERSUS TRUE CEP 
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FIGURE 3-4.  CEP4 APPROXIMATION VERSUS TRUE CEP 
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CEP, -\}H\-^V    ^   '       ' 

E    a»- 

CEP 5 

TRUE CEP 

0.4 0.S OJ 
O  min/O  ma* 

FIGURE 3-5.  CEPs APPROXIMATION VERSUS TRUE CEP 

To recap the elliptical case thus far, for known values of a  and a , one 
X     y' 

can compute the exact CEP by solving G (CEP) = .50 or compute an approximate CEP 

by using an approximation such as CEPi to CEPQ.  Consider now that a and o  (and 
X     y 

hence CEP) are unknown and are to be estimated from n observed miss distances. 

These miss distances will be designated as before, as (x.,y.), i = 1, ..., n in 

the X and Y directions, respectively.  The maximum likelihood estimators for a 

and a pose no problem.  They are given by 

(3.4) 

as shown in Lindgren (1968). These estimators are slightly biased and as before, 
they will not be corrected due to the cumbersome nature of the correction factor. 
They can now be substituted for the unknown a's in (3.3) to obtain a numerical 
estimate of CEP by solving G„(CEP) = .50 or they can be substituted into CEPj to 

CEP5 to obtain estimates of the approximate CEP. These latter estimators will 

be referred to as CEP^ to CEP5 and have the appeal of being explicitly expres- 

sible. Hence, estimates of CEP for the elliptical case can be rather easily 
obtained. 

3-5 
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The problem of obtaining confidence limits for CEP in this case is more 
complex. The complexity is based on the fact that to find confidence limits for 
a parameter, one needs information regarding the probability distribution of the 

estimator for the parameter.  As previously noted, CEP can be obtained by solving 

G„(CEP) = .50.  Symbolically, we can write 

CEP = Gg "^ (.50) (3.5) 

but to obtain it requires recursive numerical integration or the use of previously 
noted tables. Hence, the formulation of confidence limits based on this esti- 
mator holds little promise for a practical solution. Therefore, we shall consider 
the formulation of confidence limits based on the estimators of the approximate 
CEP. The distributions of these estimators are extremely complicated since they 
involve radicals and linear combinations of sample variances and standard devi- 
ations. Hence, these distributions were approximated and confidence limits 
formulated on the basis of the approximate distributions. This development is 
provided in Chapter 4. 

3-6 
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CHAPTER 4 

APPROXIMATE DISTRIBUTIONS OF CEP ESTIMATORS 

The five estimators for CEP fall into two classes.  One class involves the 
square root of linear combinations of sample variances and the other involves 

linear combinations of sample standard deviations.  CEPi, CEP3, and CEP5 fall into 
the first class and can be written in the form 

(s2 + s2\ '"^ 
CEP. = K. ^% y^  , i = 1, 3, 5 (4.1) 

where 

Ki = 1.1774 

\ 

K5 = [2^/^ (1 - 2/9u)] ^/^  . 

CEP2 and CEP4 fall into the second class and can be written in the form 

CEP. = ai s   + ao s .  , i = 2, 4 (4.2) 1   ^ max   ^ min '     ' ^~<-'-) 

where for i = 2,   ai = a2 = \.\llkll 

and for  i = 4,   ai = .565 and 32 = .612 when s . /s   > .25 
min max - 

ai = .667 and a2 = .206 when s . /s   < .25. mm max 

The distribution of the square of each estimator can be approximated by a 
chi-square distribution with appropriate degrees of freedom.  The following is the 

rationale for these approximations.  The squares of CEPi, CEP3, and CEP5 are 

linear combinations of sample variances. Satterthwaite (1946) has shown that 
one can approximate the distribution of such linear combinations with a chi-square 
distribution with degrees of freedom chosen so the approximate distribution has a 
variance equal to that of the exact distribution. Here, one is approximating the 
distribution of a linear combination of sample variances with a chi-square. A 
natural extension is to approximate the distribution of a linear combination of 
sample standard deviations with a chi-distribution (see Appendix C).  Hence, 

the distributions of CEP2 and CEP4 were approximated by a chi-distribution with 

degrees of freedom chosen so the approximate distribution has a variance equal 

4-1 
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to that of the exact distribution.  Since the square of a chi-variable has a 

chi-square distribution, the squares of CEP2 and CEP4 also have approximate chi- 

square distributions.  The major task is to find the appropriate degrees of free- 
dom for each class of estimator. 

First, one sees that CEP]^ has the same form as the maximum likelihood 

estimator for CEP in the circular case. In that case, the degrees of freedom 

associated with CEP were 2n. These same degrees of freedom will be retained here 

for CEPj. This will eventually show how poorly CEP;^ performs as an estimator for 

CEP when the error distribution is elliptical vice circular. 

Next, consider CEP3 and CEP5 of the first class.  Each has form 

g2 + s^ \ ^ 

CEP. = K. 
1    1 

To obtain u' , the degrees of freedom for our chi-square, we need to equate the 

variance of u'CEP?/CEP? with 2u' (the variance of a chi-square with u' degrees 

of freedom) and solve for u'.  Now 

U'CEP2   u' K^fs^ + s2^ 
1        1 \ X    V / 

CEP2        2 CEP2 
1 

and the variance of this expression is 

(u')2 K^ /2a'*  20^ \ 
 ^[^^  + —^  . 
4 CEP"*  \ n    n / 

1 

(j2 + (j2 N-^ 

Upon substituting K. I ^ j     for CEP., this becomes 

(^■)2 (^4 ^ ^4-) 

V X   y/ 

Equating this expression to 2u' and solving for u' yields 

n (a^  + o^Y 
u- = ^ ^^ = n u (4.3) 

(a4 + a*) 

where U was previously defined to be 

4-2 
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a* + a^ 
X   y 

(4.4) 

Consider next, CEP2 and CEP4 of the second class.  Each of these estimators 
has the form 

CEP. = ai s   + ao s .      i = 2, 4 . 
1      max   ^    min ' 

To obtain U", the degrees of freedom for the chi-square in this class, we equate 

(0")"^ CEP. 
the variance of 

CEP. 
— with U" - 2 

fr ( ^" "■ - '1 ' "v     2 

L   r(r) 
(the variance of a chi-random 

variable with u^'^ degrees of freedom) and solve for U".  Now, 

(U-^)''' CEP.   (u^V)^ /ai s   + 32 s . ") 
  1 _     V   max   ^ mm/ 

CEP. /ai a   + ao cj . \ 
(^   max      min ) 

and the variance of this expression is 

U" faf V (^s  ^+ a§ V /s . )") 
V    V max/  ^      \   mm// 
/ai o   + ao a . Y~^   ■ 
\   max      min ^ 

If we denote the function H(x) as 

^x + 1 

(4.5) 

Htx) = VI 
r 

Kl)   ' 
(4.6) 

then the variance of a sample standard deviation based on n observations, i.e., 
the variance of s  or s  shown in (3.4) can be expressed as 

X    y ^ 

V(s ) = V(s ) = aMl - H2(n)]. 
X       y 

Using this notation in (4.5) and equating the latter to the variance of a chi- 
random variable yields 

(a? o2 + ai a2)(l - H2(n)) 

ai a + ao 
X    y ^ ) V / 

= 1 - H2(U") 

or 

H(U") = 1 - |l - H2(n)[ 
fa? a^ + a| a^ ") 
V ^    X y \. 

(ai a^ + ^2 a ) 
(4.7) 

The value of U" cannot be computed explicitly but is easily obtained using the 
following procedure. 
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Evaluate the right-hand side of (4.7) using estimates of a and o    obtained 
X      y 

from n sample data points and values of aj and a2 determined by (4.2).  Call 

this value w. Refer to Appendix B which contains tabled values of x and H(x). 
Enter the table and find the value of x for which H(x) = w. This value of x 
is U".  An example which incorporates this procedure begins in Chapter 5. 

Clearly, u' and U" may take on fractional (non-integral) values. However, 
this poses no problem. Although the question of fractional degrees of freedom 
is rarely addressed in standard statistics texts, an extensive table of chi- 
square percentage points with fractional degrees of freedom has been generated 
by DiDonato and Hageman (1977). Also, one can obtain such percentage points 
using the MDCHl subroutine available in IMSL (1982). 

For each of the five CEP estimators, it has been shown that the distribution 
of 

u. CEP2 

CEP'-^    i = 1, 2, ... 5 (4.8) 
i 

can be approximated by a chi-square distribution with u. degrees of freedom where 

u^ is either 2n, u' , or U" defined previously.  Since the form of a confidence 

interval for a chi-square random variable is well-known, construction of con- 
fidence intervals for CEP, using (4.8), is straightforward. 
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CHAPTER 5 

APPROXIMATE CEP CONFIDENCE INTERVALS 

An approximate 100 (1 - oi)%   confidence interval for the true (population) 
CEP can be constructed using the probability statement 

r        u. CEP2 ^ 

P'^^^l^^u^, a/2 < ilPf^ < ^l,   l-a/2|= ^ " « " (5.1) 

1 
The subscript i is used to indicate the approximation on which the estimate CEP. 

and the degrees of freedom, u., are based. Rewriting (5.1) in terms of CEP. yields 

CEP. CEP. 
T < CEP. <^ TT 1 • (5.2) 

X^u.,l-a/2/^)''    ' (>'u.,a/2/"i) 

However, CEP  represents an approximation to the true CEP for any i.  Therefore, 

(5.2) may be considered an approximate confidence interval for CEP and expressed 
as 

CEP. CEP. 
^    -^ < CEP < . i -p I  . (5.3) 

.(^u.,l-a/2/"x)'^      (x5.,a/2/"x)'^ 

In the following example, approximate confidence intervals will be computed 

for CEP using two CEP estimators, CEP3 and CEP4.  Using (3.4), estimates of a 

and a can be computed for the 12 sample miss distances given in Table 5-1. 

TABLE 5-1.  12 HYPOTHETICAL MISS DISTANCES (FEET) 

X y 

-163 -363 
104 -56 
-47 224 
-13 -61 
-84 -267 
53 -85 
93 383 
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TABLE 5-1.  (Cont.) 

X y 

197 -147 
-266 61 
135 626 
107 187 

-112 -11 

For these data, one finds 

n 
s2 =  ^ x2/n = 17,505.00 
^   i=l  ^ 

s^ =  X! y^/n = 72,191.75 .2 

'y 

1 

, / s2 + s2 N^ 

i=l 

As previously defined, 

Since u assumes values between 1 and 2 inclusively, a table of the (2x  so^^^ 

factor is readily constructed using chi-square percentage points taken from 
DiDonato and Hageman (1977). Table 5-2 is a short table that has been prepared 
to facilitate computation. 

g2 + g2 ,^ 

TABLE 5-2.  MULTIPLYING FACTORS OF V^—^j FOR CEP3 APPROXIMATION 

^ (^^o,.50/") 

1.0 .9538 
1.1 .9928 
1.2 1.0258 
1.3 1.0542 
1.4 1.0789 
1.5 1.1005 
1.6 1.1195 
1.7 1.1365 
1.8 1.1516 
1.9 1.1652 
2.0 1.1774 

_KJL1) u = 
a"* + t 

y 
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The 12 sample miss distances in Table 5-1 are used to obtain estimates of u 

and u' given by u and u' below: 

^s2 + s2 
X  yy _ 

s"* + s' 
1.46 nu = 17.52 

Interpolation in Table 5-2 gives (2 x-  so^^)^ ~ 1.0919 so that 

CEPs = (1.0919) (211.77) = 231.23  . 

To form confidence limits, the computations in (5.3) are needed. If 95% limits 
are considered, the chi-square tabular values for a = .05 are obtained via 
interpolation in DiDonato and Hageman (1977) and are 

^u' ,.025 ^ ''■^^ 

X^,^.975- 30.89  . 

The approximate 95% confidence interval for CEP based on approximation 3 is, 
therefore 

231.23    / .„!, ^    231.23 
 i~ < CEP <  r 

(30.89/17.52)' (7.91/17.52)' 

or 

(174.14 < CEP < 344.13) . 

The interpretation here is that one is approximately 95% confident that the true 
CEP lies in the computed interval. 

Let us next consider the approximate 95% confidence interval obtained by 

using CEP4.  Before using estimator 4, one must compute the ratio c = s . /s 

to determine which half of the piece-wise approximation should be used.  In this 
case, c = .49 so that 

CEP4 = .565 s   + .612 s .  = 232.78. 
^       max       min 

This is reasonably close to the 231.23 obtained for CEP3. 

To determine O", an estimate of U", evaluate 

H(u>V) = 1 - (1 - H2(n)) 
565 2 s2  + .6122 s2 

max min 

.565 s   + .612 s . 
max        min 
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H (n) may be determined using tabled values of the gamma function provided in 
the National Bureau of Standards Applied Mathematics Series document by Salzer 
(1951). An abbreviated version is given in Appendix A. H(n) may also be read 
directly from the table provided in Appendix B. 

Now 

H2(n) = (2/12) [^J^ )  = .9592 

and 

H(u^V) = .9888 . 

Entering Appendix B with .9888 and interpolating between .9887 and .9890 yields 

U" = 22.17.  From DiDonato and Hageman (1977), obtain 

^G*,.975= 37.00 

via interpolation.  An approximate 95% confidence interval for CEP using the 
fourth estimator is, therefore, given by 

232.78    ^ ^j,p ^    232.78 

(37.00/22.17)^       (11.10/22.17) 17)0 
or 

(180.19 < CEP < 328.98). 

One notes that these two intervals are different. Had the other three 
estimators been used to construct confidence intervals, they too would have 
been different. We now have the problem of deciding which estimator to use for 
constructing confidence intervals.  This will be discussed in the next chapter. 

Before leaving this chapter, something needs to be said regarding the as- 
sumption of zero means. Throughout the development in the report, it has been 
assumed that the errors have zero mean in both directions. An error has been 
assumed to be a miss distance from a target, and zero mean implies there is no 
bias, i.e., the target coincides with the distribution mean. There are applica- 
tions where the errors are not miss distances, per se, but deviations from the 
mean impact point. This occurs when there is bias in either or both directions or 
when there is no target, i.e., the firings are conducted to estimate dispersion 
without regard to a target.  In either case, the impact distribution is no longer 
centered on the target but on an unknown point (|j , |J ), and CEP is the radius 

X  y 
of the 50% circle which is centered on this point vice the target.  To apply the 
methodology in this report to these cases, the squares of s and s  in (3.4) must 
be modified to read ^ 
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n 

s2 = a2 
X     X 

s2 = a2 

i=l 
n - 1 

E (y. - y)= 
i=l 

n - 1 

E x2 - (E x.)2/n 
i=l      i=l 

n - 1 

(5.4) 

E yf - (E ypVn 
i=l      i=l 

n - 1 

In (5.4), X and y are the averages of the impact point locations in the x and y 
directions, respectively. In addition, the degrees of freedom associated with 
each estimator must be reduced by replacing n with n - 1 in each as follows: 

ESTIMATOR MODIFIED d.f. FOR NON-ZERO MEANS 

2 (n - 1) 

(n - l)u 

H(U") = 1 -I 1 - H2 (n - 1)} ^ 
(aiQ + aoO  ) 

^ X   ^ y 

This reduction in degrees of freedom means a slight reduction in precision. In 
effect, it requires n + 1 deviations from the mean to provide the same precision 
as n miss distances. 
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CHAPTER 6 

MONTE CARLO VERIFICATION 

To ascertain if the formulated approximations produced confidence intervals 
with confidence close to 1 - a, a Monte Carlo simulation was written for the 
CDC 6700. This would also provide a means of comparing the estimators with 
respect to their confidence level and their expected confidence interval length. 
One replicate of the simulation entailed generating a sample of n miss distances 
from a bivariate normal distribution with zero mean and variances o^   and o^ 

X      y' 
These n values were then used to compute a CEP confidence interval using the 

five estimators CEPi to CEP5.  The length of each interval was computed, and for 

each interval, it was determined whether the interval contained the true (popula- 
tion) CEP. This process was replicated N = 10,000 times. The proportion of 
replicates in which the confidence interval contained the true CEP provided 
an estimate of the confidence associated with each estimator, and the average 
interval length for each provided an estimate of the expected length. 

The values of the parameters used in the simulation are: 

n = number of miss distances = sample size = 5, 10, 20 

N = number of replicates = 10,000 

1 - a = nominal confidence level = .95 

'  = %in/^max= ^'O' ■^^'   '^O, -35, .20, .05. 

It was necessary to run a large number of replicates to ensure results with 
reasonable precision. The 10,000 replicates used provided estimates of confidence 
with an error of less than .01 with probability .95. Because of the large N, 
the sample sizes were restricted to small values to keep the computer time 
within bounds. A nominal value of a = .05 ( > a nominal confidence level of 
.95) was used in the construction of all confidence intervals within the simula- 
tion. It follows that if the confidence intervals were exact (vice approximate), 
the Monte Carlo confidence estimates should be within .01 of .95 or .95 ± .01 
with probability .95. Hence, any confidence estimate which departs seriously 
from .95 ± .01 will reflect poorly on the estimator which produced it. One 
additional comment is required before discussing the results. The simulated 
confidence levels depend only on the ratio of the sigmas so that it was not neces- 
sary to vary both standard deviations.  The larger was designated a and set equal 

to unity while the smaller was designated a and set equal to the ratio c.  While 

the average confidence interval lengths are dependent on both sigmas, they were 
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only constructed for a^ = c, a = 1.  This is all that is required for comparison 

purposes.  If such lengths are needed for values of a and a other than c and 1, 
X     y ' 

they can be obtained by multiplying the tabled entry for appropriate c by a = 
a . y 
max 

The results of the simulations are set out in Tables 6-1 and 6-2. Let us 
first discuss the simulated confidence levels shown in Table 6-1. One first 
notes that all five estimators provide confidence within (or nearly within) the 
sampling variations (±.01) of .95 when c = 1.  This is the circular case and 

all the estimators except CEP5 degenerate properly to the maximum likelihood 

estimator for CEP. Hence, the result that all do well for c = 1 is not unex- 
pected.  Next, one notes that as c departs from unity (that is, as the impact 

distribution departs  from circularity), the confidence associated with CEPi 

departs seriously from .95.  For example, with n = 10 and c = .20 (5 to 1 ratio 

of the sigmas) the confidence associated with CEPi is only .689. This means that 
if one were to use circular theory to construct a 95% confidence interval for 
CEP when the distribution was elliptical with a 5 to 1 ratio of the sigmas, his 

interval would have confidence of less than .7!  This rules out CEPi unless one 

is nearly certain that the impact distribution is circular normal. This result 
is also not unexpected, but it does quantify how poorly the circular estimator 
performs in the elliptical case. 

In general, the others do reasonably well unless c is small. One notes this 

especially for CEP2 when c = .05; the confidence falls from .930 for n = 5 to 

.912 for n = 20.  It would continue to decrease as n increases due, to the error 

in CEP approximation for small c (see Figure 3-2). The distribution of CEP2 
becomes more concentrated about the approximate CEP as n increases. If the 
approximation is in serious error (which it is for small c), then the distribution 
is concentrated about the wrong value. The simulation was run for n = 100 at 
c = .05 with a resulting confidence estimate of only .714. We see the same 
behavior at larger c values but to a lesser extent. For example, at c =; .35, 
the confidence estimate is .942 for n = 20 but dips to .922 for n = 100.  The 

upshot here is that CEP2 would be a problem for small c or even moderate c if 

the sample is large enough.  With regard to CEP3, one sees that small values of 

c pose no problem.  In fact, the confidence for CEP3 is asymptotic to .95 at 

c = 0. Also, for values of c around .5, the confidence estimates are slightly 
higher than .95. It tends to peak out at about .97. Selected runs for n = 100 
show that this result changes very little with n. There is a slight price to 
pay for this extra confidence, and this will be addressed when Table 6-2 is 

discussed.  CEP4 provides confidence close to .95 for all values of c except 

those where CEP4 departs from CEP (see Figure 3-4).  At those values, there is 

a reduction in confidence which increases with n but not as severely as for 

CEP2.  The performance of CEP5 is not poor with respect to confidence.  However, 
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TABLE 6-1.  SIMULATED CONFIDENCE LEVELS 

c CEPi CEPj> CEP3 CEP4 CEP,s 

1.0 .950 .947 .963 .946 .963 
.75 .941 .947 .965 .945 .965 
.50 .894 .941 .968 .944 .967 
.35 .830 .937 .963 .939 .961 
.20 .753 .932 .952 .923 .950 
.05 .714 .930 .950 .936 .948 

10 

c CEP^ CEPj> CEP 3 CEP4 CEP,s 

1.0 .947 .945 .955 .944 .955 
.75 .935 .944 .958 .943 .959 
.50 .876 .941 .967 .943 .966 
.35 .789 .939 .967 .941 .965 
.20 .689 .939 .959 .931 .955 
.05 .640 .931 .951 .943 .948 

20 

C CEPi CEP5, CEP3 CEP4 CEPs 

1.0 .952 .952 .956 .951 .956 
.75 .938 .951 .960 .951 .960 
.50 .858 .945 .970 .948 .969 
.35 .724 .942 .970 .947 .968 
.20 .567 .946 .961 .937 .955 
.05 .506 .912 .950 .946 .946 
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TABLE 6-2.  AVERAGE CONFIDENCE INTERVAL LENGTHS 

n = 5 

CEPi CEPc CEPc CEP, CEPr 

; 

.0 

.75 

.50 

.35 

.20 

.05 

1.213 
1.071 
.950 
.897 
.856 
.841 

1.160 
1.028 
.923 
.889 
.876 
.912 

305 
175 
118 
129 
149 
176 

1.145 
1.014 

.918 

.917 

.985 
1.054 

317 
186 
131 
144 
168 
196 

= 10 

.0 

.75 

.50 

.35 

.20 

.05 

CEPi 

.792 

.698 

.622 

.587 

.564 

.553 

CEP2 

.776 

.685 

.614 

.586 

.573 

.579 

CEPa 

.817 

.735 

.697 

.693 

.694 

.695 

CEP^ 

.768 

.676 

.601 

.586 

.636 

.662 

CEPs 

.823 

.741 

.705 

.702 

.706 

.707 

n = 20 

1.0 
.75 
.50 
.35 
.20 
.05 

CEPi 

.537 

.475 

.423 

.400 

.384 

.378 

CEP^ 

.533 

.472 

.421 

.401 

.388 

.387 

CEP.-, 

.5^5 

.492 

.465 

.460 

.455 

.453 

CEP^ 

.531 

.467 

.411 

.393 

.429 

.441 

CEPs 

.549 

.496 

.470 

.466 

.462 

.461 
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there is little rationale for its use in constructing confidence intervals. The 
Wilson-Hilferty approximation avoids the use of chi-square percentage points for 

fractional degrees of freedom in forming CEP4.  However, they are needed in the 

computation of the interval, so little effort is saved. 

Let us now discuss the average confidence interval lengths in Table 6-2.  As 

previously noted, these lengths depend on both a and o    but were computed only 
X     y 

for values of the ratio of a  to a  for comparison purposes.  However, we need 
X     y 

not compare all five since some were eliminated as viable candidates in our 

discussions of Table 6-1.  CEPj was eliminated because its confidence eroded 

seriously as c departed from unity.  CEP2 had a less serious but similar problem, 

and CEP5 was eliminated because it offered no improvement over CEP3 and only 

a slight reduction in computation.  This leaves only CEP3 and CEP4 to discuss 

here.  One notes that the average lengths are uniformly less for CEP4 than for 

CEP3.  At mid values of c, this is due in part to the inflated confidence 

inherent in the approximation of the distribution of CEP3, i.e., the higher the 

confidence, the longer the confidence length. However, not all of the difference 
in length can be attributed to higher confidence.  A study by Taub and Thomas 

(1982) shows that the variance of CEP4 is less than the variance of CEP3, and 

this is the primary reason for the difference in length.  Even so, CEP4 suffers 

from the bias caused by the error in approximation shown in Figure 3-4.  This has 

an effect on the confidence level associated with CEP4 for some values of c, but 

it would not be appreciable for small n. 

In summary, we can state that the logical choice lies between CEP3 and 

CEP4. The third holds for all values of c, regardless of n, and is easy to imple- 

ment. The fourth offers somewhat shorter confidence lengths but it is cumbersome 
to implement and would provide a reduced confidence level for some values of n 
and c. 

It would be highly desirable to have a CEP estimator with a variance as 

small or smaller than CEP4 which would have negligible bias for all 0 < c < 1, 

and which would avoid the cumbersomeness of a piece-wise linear function. The 
authors have several ideas along this line and hope to explore their merits in 
the near future. 
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APPENDIX A 

TABLE OF r(n) AND r(n + %) FOR n = 1, ... 100 

Excerpted from National Bureau of Standards 

Applied Mathematics Series - 16 

by 

Herbert E. Salzer 
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10 
II 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 
43 
44 

46 
47 
48 
49 

50 

1. 00000 00000 00000 (0) 
1. 00000 00000 00000 (0) 
2. 00000 00000 00000 (0) 
6. 00000 00000 00000 (0) 
2. 40000 00000 00000 (1) 

1. 20000 00000 00000 (2) 
7. 20000 00000 00000 (2) 
5. 04000 00000 00000 (3) 
4. 03200 00000 00000 (4) 
3. 62880 00000 00000 (5) 

3. 62880 00000 00000 (6) 
3. 99168 00000 00000 (7) 
4. 79001 60000 00000 (8) 
6. 22702 08000 00000 (9) 
8. 71782 91200 00000 (10) 

1. 30767 43680 00000 
2. 09227 89888 00000 
3. 55687 42809 60000 

(12) 
(13) 

  (14) 
6. 40237 37057 28000 (15) 
1. 21645 10040 88320 (17) 

2. 43290 20081 76640 (18) 
5. 10909 42171 70944 (19) 
1. 12400 07277 77608 (21) 
2. 58520 16738 88498 (22) 
6. 20448 40173 32394 (23) 

1. 55112 10043 33099 (25) 
4. 03291 46112 66056 
1. 08888 69450 41835 
3. 04888 34461 17139 

(26) 
(28) 

  (29) 
8. 84176 19937 39702 (30) 

2. 65252 
8. 22283 
2. 63130 
8. 68331 
2. 95232 

1. 03331 
3. 71993 
1. 37637 
5. 23022 
2. 03978 

85981 
86541 
83693 
76188 
79903 

47966 
32678 
53091 
61746 
82081 

21911 
77923 
36935 
11886 
96041 

38614 
99012 
22635 
66011 
19744 

(32) 
(33) 
(35) 
(36) 
(38) 

(40) 
(41) 
(43) 
(44) 
(46) 

8. 15915 28324 78977 (47) 
(49) 
(51) 
(52) 

2. 65827 15747 88449 (54) 

3. 34525 26613 16381 
1. 40500 61177 52880 
6. 04152 63063 37384 

1. 19622 22086 54802 
5. 50262 21598 12089 
2. 58623 24151 
1. 24139 
6. 08281 

(56) 
(57) 

11682 (59) 

r(n+J) 

15592 53607 
86403 42676 

(61, 
(62) 

3. 04140 93201 71338 (64) 

1. 7724 539 (0) 
8. 8622 693 ( - 1) 
1. 3293 404 (0) 
3. 3233 510 (0) 
1. 1631 728 (1) 

5. 2342 778 (1) 
2. 8788 528 (2) 
1. 8712 543 (3) 
1. 4034 407 (4) 
1. 1929 246 (5) 

1. 1332 784 (6) 
1. 1899 423 (7) 
1. 3684 337 (8) 
1. 7105 421 (9) 
2. 3092 318 (10) 

3. 3483 861 (11) 
5. 1899 985 (12) 
8. 5634 974 (13) 
1. 4986 121 (15) 
2. 7724 323 (16) 

5. 4062 430 (17) 
1. 1082 798 (19) 
2. 3828 016 (20) 
5. 3613 036 (21) 
1. 2599 063 (23) 

3. 0867 705 (24) 
7. 8712 649 (25) 
2. 0858 852 (27) 
5^ 7361 843 (28) 
1. 6348 125 (30) 

4. 8226 969 (31) 
1. 4709 226 (33) 
4. 6334 061 (34) 
1. 5058 570 (36) 
5. 0446 209 (37) 

1. 7403 942 (39) 
6. 1783 994 (40) 
2. 2551 158 (42) 
8. 4566 842 C43) 
3. 2558 234 (45) 

1. 2860 502 (47) 
5. 2085 035 f48) 
2. 1615 290 (50) 
9. 1864 981 (51) 
3. 9961 267 (53) 

1. 7782 764 (55) 
8, 0911 574 (56) 
3. 7623 882 (58) 
1. 7871 344 (60) 
8. 6676 018 (61) 

4. 2904 629 (63) 

50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

65 
66 
67 
68 
69 

70 
71 
72 
73 
74 

75 
76 
77 
78 
79 

80 
81 
82 
83 
84 

85 
86 
87 
88 
89 

90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

100 

3. 04140 93201 71338 
1. 55111 87532 87382 
8. 06581 75170 94388 
4. 27488 32840 60026 
2 30843 69733 92414 

1. 26964 03353 65828 
7 10998 58780 48635 
4. 05269 19504 87722 
2 35056 13312 82879 
1, 38683 11854 56898 

8. 32098 71127 41390 
5. 07580 21387 72248 
3. 14699 73260 38794 
1, 98260 83154 04440 
1, 26886 93218 58842 

8. 24765 05920 82471 
5. 44344 93907 74431 
3^ 64711 10918 18869 
2. 48003 55424 36831 
1. 71122 45242 81413 

1. 19785 71669 96989 
8. 50478 58856 78623 
6. 12344 58376 88609 
4.47011 54615 12684 
3. 30788 54415 19386 

2. 48091 40811 39540 
1. 88549 47016 66050 
1. 45183 09202 82859 
1. 13242 81178 20630 
8. 94618 21307 82975 

7. 15694 57046 26380 
5. 79712 60207 47368 
4, 75364 33370 12842 
3. 94552 39697 20659 
3. 31424 01345 65353 

2. 81710 41143 80550 
2. 42270 95383 67273 
2. 10775 72983 79528 
1. 85482 64225 73984 
1. 65079 55160 90846 

1. 48571 59644 8)761 
1.35200 15276 78403 
1. 24384 14054 64131 
1, 15677 25070 81642 
1. 08736 61566 56713 

1.03299 78488 23906 
9, 91677 93487 09497 
9 61927 59682 48212 
9. 42689 04488 83218 
9. 33262 15443 94415 

64) 
66) 
67) 
69) 
71) 

73) 
74) 
76) 
78) 
80) 

81) 
83) 
85) 
87) 
89) 

90) 
92) 
94) 
96) 
98) 

100) 
101) 
103) 
105) 
107) 

109) 
111) 
113) 
115) 
116) 

118) 
120) 
122) 
124) 
126) 

128) 
130) 
132) 
134) 
136) 

138) 
HO) 
142) 
144) 
146) 

148) 
149) 
151) 
1 53) 
155) 

r(n+J) 

9. 33262 15443 94415 (157) 

4, 2904 629 
2. 1666 838 
1. 1158 421 
5. 8581 712 
3. 1341 216 

1. 7080 963 
9. 4799 344 
5. 3561 629 
3. 0797 937 
1. 8016 793 

1. 0719 992 
6. 4855 951 
3. 9886 410 
2. 4929 006 
1. 5829 919 

1. 0210 298 
6. 6877 450 
4. 4473 504 
3. 0019 615 
2. 0563 436 

1. 4291 588 
1. 0075 570 
7. 2040 324 
5. 2229 235 
3. 8388 487 

2. 8599 423 
2. 1592 564 
1. 6518 312 
1. 2801 692 
1. 0049 328 

7. 9892 157 
6. 4313 187 
5. 2415 247 
4. 3242 579 
3. 6107 553 

3. 0510 883 
2. 6086 805 
2. 2565 086 
1. 9744 450 
1. 7473 838 

1. 5639 085 
I. 4153 372 
i. 2950 336 
1. 1979 060 
1. 1200 422 

1. 0584 398 
1. 0108 100 
9. 7543 169 
9. 5104 590 
9. 3678 021 

63) 
65) 
67) 
68) 
70) 

72) 
73) 
75) 
77) 
79) 

81) 
82) 
84) 
86) 
88) 

90) 
91) 
93) 
95) 
97) 

99) 
101) 
102) 
104) 
106) 

108) 
110) 
112) 
114) 
116) 

117) 
119) 
121) 
123) 
125) 

127) 
129) 
131) 
133) 
135) 

137) 
139) 
141 ) 
143 1 
1151 

147) 
1491 
150; 
1 52 • 
151; 

9. 3209 631 i 156^ 
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APPENDIX B 

TABLES OF X AND H(x) FOR x = .1 TO 400 
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APPENDIX C 

THE CHI DISTRIBUTION 
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A discussion of the chi-square probability distribution can be found in most 
probability and statistics textbooks. It is a special case of the more general 
gamma distribution and its density function is given by 

f^(x) . n/2 

tl n/2 e    , 0 < X < w 

Rarely, however, is the CHI distribution discussed in detail.  Because this dis- 
tribution i^s critical to the development of the approximate distributions for 

CEP2 and CEP4, the following is a brief introduction to the CHI distribution. 

If X is defined as a chi-square random variable, then Y =Vx is distributed 
as a CHI random variable whose density function is written as 

fy^y) = 
n - 

n 
.2 

1  2 e 

r(H)2- 

The mean of Y is given by 

0 < X < 00 

rrs_±J)2^ 
E(Y) 

and the variance of Y is given by 

2 

V(Y) = n - 2 

th 

\  2 

L r(j) J 
In general, the r  moment of Y is given by 

ECY'') 
<^, 

,r/2 

r(l) 

C-1 
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If s is the sample standard deviation with u degrees of freedom, then the previous 
results can be used to establish that 

E(s) _^ K^) 
and 

These results are needed to determine the degrees of freedom associated with 

CEP2 and CEP4. Additional information on the CHI distribution may be found in 

Krutchkoff (1970). 
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