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MOMENT INEQUALITIES FOR REAL AND VECTOR p-STABLE STOCHASTIC INTEGRALS

. J. Rosinski2 and W.A. Woyczunski

Universgity of North Carolina at Chapel Hill
and
Case Western Reserve University

1. Introduction.

~

' o e
1n- the present paper we—obtein moment inequalities for single and
double stochastic integrals with respect to p-stable motion.{Section

3). The proofs are based on*3u+'6ﬁﬁlwork on the structure of single
and multiple p-stable integrals) (cf. [12], [11] and [13]) which is
summarized in some"q;EdfT‘ n Section 2, and on the work of R.F. Bass
and M. Cranston [1] é#:inﬁgualijjgs for moments of exit times of a

ST S

p-stable mot%o%A Fheir results, a§‘§§e§§€ in'tl],ldo not apply
directly to the situation in which we want to use them, in particular,
because one dimensional processes are explicitly excluded there. So,
/we-bffer the needed variation of their result.in Section 3 and, for
the sake of comp]egeness, provide its full proof in the Appendix.
‘In Section # we propose an extension of the theory of stochastic
integration with respect to a p-stable motion, to the case when the

latter takes values in a Banach space, ¢ -

T -

2. Single and double p-stable integrals.

Let (Q,F,P) be a probability space and let (Ft)t>0 be a right
continuous, increasing family of p-complete sub-o-fieTds of F. Let
0 <p< 2. We will denote by (M(t))t>o an (Ft)-p-stable motion i.e.
an (Ft)-adapted process with M(0)=0, Sample paths a.s. in D[0,=) and

Eexp [iA(M(t) - M(s))IIF,) = exp [-(t-5)]2|P)

for every 0 < s < t, and » ¢ R. For a simple (Ft)-adapted process SRR

F such that e
¢o(h’) for t=0 .
F(tow) =

¢1(W) for t1 < t i ti+1, ‘=0.].voa.

R
s e, .
PP GP ST
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the stochastic integral is defined as usual:

t n-1
J F(S,w)dM(s,w) = Zo¢i(w)(n(ti+]v"‘)’M(ti"“))*é‘n(“?)(M(tn"‘)'M(tnq""))r
0 j=

ift, <t<t g n=0,1,2,... . Clearly, the above integral is a
process with sample paths a.s. in D[0,=).

DEFINITION 2.1. An (Ft)-adapted measurable process F=(F(t,m))t>0
is said to be M-integrable if there exists a sequence (Fn) of simple”
(Ft)-adapted processes such that for each T > O:

(i) F, =+ F in measure dPdt on Q x [0,T]) as n + =,

(ii) ngndM converge a.s. uniformly in t ¢ [0,T] as n » =,

and the limiting process in (ii) does not depend on the choice of a
sequence (F ) satisfying conditions (i) and (ii). Th1s limit process
(with sample paths a.s. in D[0,»)) will be denoted by f F(s)dH(s),

t > 0.

THEOREM 2.1. ([12]) The process F is M-integrable if and only if
P .
F e La c. i.e. 1f
(T
P [F(t,0)|Pdt < =} =1
0

for each T > 0.

The sufficiency in the above theorem (which also follows from a
general result of 0. Kallenberg [5])is obtained by means of a pathwise
construction which parallels a known Brownian integral construction
and which depends on the following inequality for simple processes F:
there exists a constant ¢ = c(p) > 0 such that for each T > 0

-1 p p t
||F||p < sug APP {sup | FAM[ > 2} < c||F|l
T A>

t<T g p.T

where T
p P
[WFig, ¢ = E J [F(s,w)|Pds.

The inequality implies that the mapping F - SFdM extends to an
isomorphic embedding of Lp(Lp) into a Lorentz space Ap(Lw). The
upper estimate was obtained by E. Giné and M .B. Marcus in [4].




The proof of necessity uses device of the inner clock for p-stable
stochastic integrals the usefulness thereof is established by the
following:

THEOREM 2.2 ([12)). Let F « Lg s be such that

df (u
t(u) = J IF{Pdt » = a.s.
4]

as U + o, Then, if

T-](t) = inf { u: t(u) > t} and At = F

then the time-changed stochastic integral

~ T t)
M(t) = Io F(s)dM(s)

is an (At)-p-stable motion.

The above theorem can also be used to establish properties of
integrals which are "pathwise inherited" from the properties of
p-stable motion itself. Ffor example, the above result immediately
yields the following corollary to the classical Khinchine's result
on the local behavior of processes with stationary and independent
increments:

THEOREM 2.3 ([12]). Let F be ae in Theorem 2.2 and suppose that
¢: (0,») > R is such that t]/p¢(t) i8 increasing and 1imt+0¢(t)=w.
Then t
jor(s)dn(s) = o(«"P(t)e(x(t)))  a.s.

as t + 0, if and only if

] "HL' :

I £ Ve P(t) dt < « .
0

Theorem 2.1 implies that the necessary and sufficient condition
for existence of the double integral
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T
(2.2) p{j [F(t)|Pdt < =) = 1, -
0 o
where t T
F(t) = J f(s.t)dM(s), t e [0,7] . o
The condition (2.2) is equivalent to the property that the integral f;
operator . T n
tP'[0,712 ¢ - j fs,t)x,(s,t)e(t) dt ¢ LP[0,T], - @
0
where 1/p'+1/p=1, and &4 = {(s,t): 0 < s < t < T}, is O _-radonifying
(or, by Kwapien-Maurey Theory, completely summing) (cf. [7], [3]). o

The above equivalence follows, in particular, from the following
result which gives a natural necessary condition for f to satisfy
{2.2). Although this result may have been known in the folklore, L
we were unable to locate a published proof of it and decided to R

provide our own proof below. Proof of Thm 2.4 relies on Prop. 2.1. ,
PROPOSITION 2.1. Let T be a measurable space, u be a o-finite B
measure on T, and let o
1 L3
X(t) = j flt,s)dM(s) , te T, =
0 =
be a p-stable process, where f: T x [0,1]+R is a jointly measurable 'a -
function. Then if '
REGILMCTIREE a.s.
T .
then bt
! p
[ ] et Puar) as < o
0'’r
Proof. Observe that Vg < p3 cCVy t1.....tn € T ’ L
! 19 1/ 1 0 /p\1/ .
(2.3) (| LT 1f0e.9)1%0) P c(ed ] 1x(ey) 1?9/ 2
0" i "N ! R
o

Note, that (2.3) is just a special case of the "stable-cotype-p"
inequality (valid in an arbitrary Banach space E, cf. e.qg. [7],
Cor. 7.3.5).

..............................................................................
.............................................................
..................................................
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where f is taken to be as follows:

m
m

(U)f(ti.S) € Lp[(O,]),dUJ =

e n
(2.4) £ [0,0) 2531 .,

i=1 n’'n
Assume initially that u(T) = 1, and define (on a new probability
space (QU,PU)) a sequence of i.i.d. random variables Up: 9y > T,
n=1,2,..., such that L(Un) = y. Then, by (2.3) for each wy € 92

n
C(Ey [+ ] 1|x(ui)|°]Q/°)'/q
i=

(2.5)

tv

1 n
1 Pycy1/P
(jo B 190 Pes)

n
CESRITICASIRLA )1/P
i=] LY((0,1),ds)
Now, by the Kolmogorov's Law of Large Numbers, for each w such that
fIX(t,w)Ipdu(t) < » we get that
LS E (S S LA - (D T LA [ IX(tw) [Pdu(t) < «
1 P,-a.s. T

HWes-13
-

U

as n + », By Fubini’'s Theorem, for Pu-almost anl wu‘s

1 7 P P
B L IRl 0 1P [1x()Pau(e)  peass.
1=
Since for any p-stable random vectors Y,Y],Yz,... with values in a

Banach space E, and any q < p, IIYnHE + HYIIE in P if and only if
EIIYnIIg - EIIYIIE. (cf. [7), Prop. 7.3.11) we can use the same idea
as in (2.4) to obtain that PU-a.s.

E

=

n
NEIDRETAIL LA EX(JTtx(t)!pdu(t))Q/p

as n » o, By (2.5)
n
a

p
¢ llf(ui")lle(ds) < =, Py-a.s.,

sup
n

S|

and by Kolmogorov's Law of Large Numbers




[ 1eceas)1Pasuton) = gyliecug, 00
70

p
LP(ds)

which completes the proof in the case u(T) = 1.
Notice now, that letting n - = in (2.5) one immediately obtains
the inequality

1
(j J |f(t.s>lpdsu(dt))"°5c<s<j 1X(t)Pdu(t))9/Py1/a
7’0 T

<CCE[XC) |ifppy) /% < =

from which the extension to o-finite u's follows. Q.E.D.

The necessary condition for a.s. p-integrability of sample paths
of p-stable processes established by Proposition 2.1 is, however,
not sufficient and the following result gives full analytic descrip-
tion of kernels f which have the property (2.2):

THEOREM 2.4. [12]. Let 1 < p < 2 and let the parameter set T ke
a serarable metric srace equipped with a O-finite Borel measure u.

For a measurable summetric p-stable process
1
X(t) = J f(s,t)dM(s) , terT,
0

we have that
Py [ IX(t)1Pu(dt) < =} = 1,
T .

if and only if

df
A (f) =

1
lf(s.t)|°jTj0|f(s.t)lpu(at)ds

]
Ljolf(s.t)|p[1+1og+ Jdsu(dt) < = .

J {f(s.t)lpdsj If(s.t)|Pu(dt)
0 T

The proof depends on the following two facts:

(1) X(t) has sample paths a.s. in LP(r,u) if and only if the
series 23'1/P rjvj(t) converges a.s. in Lp(T,u), where (r,) are
Rademacher r.v.'s and Vj are independent copies of a process V(t),

t ¢ T, which has sample paths a.s. in a sphere of Lp(T.u). and which el
has finite dimensional distributions completely determined by f fij}

N




(cf [12] but the idea really goes back to [8], Remark 3.15); ’
(ii) for i.i.d. symmetric r.v.'s X,X],Xz,... .

- p
e Vel IP (14109, LX) T3T1Px 1PeceX1P(1 + t0g, AL

where 0 < p < q, and ¢ = c(p) is a numerical constant (cf [3]).
COROLLARY 2.1 ([12]). rLet < p < 2. The double integral

JAJ fls,t)dM(s)dM(t)

6 = {(s,t): 0 <s <t < T)exists if and only if Ap(fIA) < o,

For f constant on rectangles the double integral (2.1) becomes a
random quadratic form

0%(a) = ] a(i,3) MM,
i<j
where M], M2"" are i.i.d. p-stable random variables, and one
immediately obtains from Corollary 2.1 the following

COROLLARY 2.2 ([3)). et 1 < p < 2. Q%(a) converges a.s. if and
only if

la(i,3)1P
T (a(i,3){P[1+10g, ] <.
'i(j i=1 co
T la(nu, )Py ati,n)P
1=1 1=j+1

Although we don't have at this point a good theory of n-tunle
p-stable integrals for n > 3, the theorem below, concerning general
multilinear random forms may be considered as a step towards such a 11f:%
theory. ) ‘

THEOREM 2.5 ([13]). et 0 < p < 2. Let X,X{,Xyso. be i.1.6. .
with gymmetrie digtributions euch that v

Yim xPP{X] >x) = ¢ > 0.

X+

Y'. 1 LS 'I
., AN
.,




R T T—_—— . A S e sane 2ene aesay ey Ty T T Y YW T e e, v

df
. . k-1, . . -
Nék)(a) = ] [a(iyse. i ) (PO 10gK Haliy, i) 1T < -
i]<i2<. <'ik
then the sequence
o{k)(a) = ] alipe.ad )X, ook, m=l2,.l,

. . 1 Tk
iy<iy<a. i <n
converges unconditionally (i.e. O(k)(ca) converges for all

€ + {-1,1}) in LY for every q<p to a 0( )(a) which, for all x>0

sat;sfzes the following inequality

pr1olk) (a) >x) < DL pX P(1 + logf 1x)"lék)(a).

where Dk p 18 a corstant.
]

The proof relies on the tail estimation for ng)(a) which uses the
fact that

- k .
Tim xp(p log x)1 kP |x]-X2'...'Xk|>x} = ¢ /(k-1)!
X+

For further results in this direction see a recent paper by W.
Krakowiak and J. Szulga [6].

3. Moment inequalities for exit times of stable processes and for
p-stable stochastic integrals.

In this section we present a version of R.F. Bass and M.
Cranston's [1] inequalities for moments of exit times of a stable
process X in the case when X takes values in a separable Banach space
E. As corollaries we also obtain moment inequalities for singie and
double stochastic integrals with respect to p-stable motion.

Recall that a non-zero E-valued stochastic process X(t), t > 0,
s said to be a eymmetric p-stable Lévy process, 0 < p < 2, if )

2 Al

(i) X has indepengent and stationary increments,
(i1) X(t) - x(s) = |t - s|'/Px(1) for every t,s > 0,
($41) X(.,w) e DE[O.D) and X(0) = 0 a.s.

} -

The characteristic functional of X{(t) can be written in the form f;é?




T W T YTy

(3.1) E exp[ix*x(t)] = exp[-t Julx*xlpm(dx)],

where m is a unique, finite, symmetric (i.e. m(-B) = m(B) for every
Borel set BcU) positive measure on the unit sphere U of E. Such an
m is called the spectral measure of X. The distribution of X(t) is
infinitely divisible without the Gaussian component and with Lévy
measure represented in polar coordinates as tcpm(dx)dr/r1+p, (ryx) e
(0,=) x U, where c_ > 0 depends only on p. )

Let X(t), t > 0, by a symmetric p-stable Levy process in E and
let {At}t>0 be a right continuous filtration such that X(t) is

At-measurabIe and o(X{(u)-X(t)) is independent of At for every u>t>0.
We will say that a continuous function ¢:[{0,») »~ [0,=) grous
more slowly than Ap,,pno 0, if there exist constants Crag and g < p

such that

d(ar) < cado (1)

for all 1 > 0 and all a > a,.
The proof of the following version of a theorem of R.F. Bass and M.
Cranston [1] is supplied in the Appendix.

Theorem 3.1, If #& grone more slowly thanw )p, 0 < p < ?2, ther
there exist poesitive constants <, and o depending only on PsCraq
and q such that for every finite {At}-stopping time T

E8(1!/P) < Eo(x*(1-)) < B (X%(1)) < c,Ee(x'/P),

where X*(1-) = sup ||X(t)!|]| and X*(1) = sup ||X(t)]].
t<t t<T

Define now, a p-stable process starting at x ¢ £ by means of the
formula

Y (1) = x + x(t), t >0, x ¢ E.

Then, with the help of Theorem 3.1, one can ohtain the followinn

COROLLARY 3.1, If & grows more slowly thar AP0 < p < 2, then
there exist positive constants d, and d, derendiny onl:. on PsCLny _
and q such that for every finite (At]—stopping time 1 und x ¢ £ j:“‘i

......




LES (O Par) Py <Be (Yo (1)) <Ee (YA (1)) <d B ([ Ix ]| Per) /Py

Proof. An elementary application of the triangle inequality
rields that

JO() + 1 ]) € ¥A(T) < X () + [x]].
Similar inequality holds for X*(1-) and Y;(T-). Hence, with L~P
standing for the inequalities ¢y < R < CL, where C is a positive
constant depending perhaps on PsCran, and g, we have

e(Yr(o))-e(x*(x) + Hix[1) = o)), (X*(x))

where ¢u(k) = &()» + u), and an analogous result obtains for X*(t1-)
and Y;(T-). Since @u(ax) < caq¢u(x) for all » > 0, u > 0 and
a > aOV1, Theorem 3.1 gives that

1/p - *( - *
which concludes the proof. Q.E.D.

We shall apply now the above theorem to obtain moment estimates
for stochastic integrals.

THEOREM 3.2. Let M(t) be a real (Ft)-p—stable motion and let

F e Lg .- If ¢ grows more slowly than AP then there exiet rositive
congtunte 3 and C2 derendinz onl; on p,c,a0 and Q suek that For ocar2v
n

u t
cree((] [F1Pat)/P) < eetsup || F(s)amis)])
0, t<u /0

< E¢(sup IJ F(s)dM(s)]) < c2E¢((JulF(t)lpdt)‘/p)
t<u 0 0

Froof. Since u is fixed here, we can always extend F in such a

way that
u
T(u) = J [FIPdt » = a.s.
0

Therefore, by Theorem 2.2




X(t) = j F(s)dM(s)

is an (At)-p-stable motion, where

A, = F
t T—](t)

and
r"(t) = inf {u: t(u)> t}

Applying Theorem 3.1 to X(t) and 7 = 1(u) one immediately obtains
our result. Q.E.D.

Taking f(s,t) such that Ap(f) < «» and substituting in the above
Theorem t
F(t) = J f(s,t)dM(s)
0

one immediately obtains from Corollary 2.1 the following result:
COROLLARY 3.3. If ¢ grows more slowly than AP then there exist

ositive eongtants €4 and c, depending only on P,C,oan and q such that
p 1 2 < 0]

for each u > 0

vyt P
c]Eo[( I I f(s,t)dM(s)]| dt) ]
o' "0
vt
< E®[sup J ] f(S.t)dM(s)dM(t),]
v:u 00

I A

°25°[(J:| J:f(s,t)dM(s)lpdt)]/p :

The following theorem summarizes recent results concerning moment
inequalities for double p-stable stochastic integrals:

THEOREM 3.3. Let 1 < q < p < 2. Then there exist positive
constants Cy,C, and Cq depending only on p,q, such that

Ty

o .




PN S et el el o N i ~ i ) T W W T

¢ (A (£))9/P

.

u |t P _a/p
< et || fis.tremis)| ar) :
Al o /o s
l'
u t q o
<E J [ £ts.tramisyame) L
00 1
v (t 9 »
< E sup J J f{s,t)dM(s)dM(t)
AL 0’0
< co(A (f))Q/p :
-— 3 p L ] -.V
)

The proof of the two sided estimate between the first and second '
quantities has been recently obtained by J. Rosinski [10], between
the second and third quantities by T. McConnell and M. Taqqu [9]. o

In this situation Theorem 3.3 follows directly from Corollary 3.3. ’
4. Intégration with respect to a vector-valued p-stable motion.

Let X be a symmetric p-stable Levy process, 0 < p < 2, with ;ﬁ:
values in a separable Banach space E (see Section 3), and let !ﬁi
{F Y450 be @ right continuous filtration such that X(t) is S
Ft-measurable and o(X{(u)-X(t)) is independent of Ft for every u>t>0. :i;

i;a

THEOREM 4.1. For each real process F e Lp 5. there exiets an ‘
E-valued process Y(t) (denoted joF(s)dX(s)) wzt% sample paths in
D [0 =) guch that for each x* € E* and t ¢ ]R we have that -;.-

t
x*Y(t) = J F(s)d(x*X(s)) a.s. d
0
Proof. Without loss of generality we can assume that ﬁ?f
t (]
() = I IF(s)|Pds » =
0 __;“.
a.s. as t » ». For each x* ¢ E* the process .»

alx*)x*X(t), t > 0, where a(x*) = (j Lx*x|Pm(ax))"1P < o
U




A Y e

and a(x*)=0 otherwise, is a real p-stable motion (see (3.1)). By
Theorem 2.2, for any fixed x* ¢ E*, the real processes

T-](t)
7 (t) = [ F(s)d(x*X(s)), t > 0, and x*X(t), t > 0,
x*

0

have the same finite dimensional distributions. Moreover, Zx*(t) is
A,-measurable and the increments Zx*(t+h)- Zx*(t), h > 0, are inde-
pendent of At'

Observe now, that for any fixed t > 0, Z ,(t), x* « E*, is a
linear process on E*, equidistributed with the linear decomposable
process~x*x(t), x* ¢ E*. Therefore, there~exists an E-valued random
vector X(t) such that for each x* e E*, x*X(t) = Zx*(t) a.s. Also,
by the above remarks, the process X(t) is (At)-adapted and the
increments X(t+h)-X(t),h > 0, are independent of At‘ Therefore
X(t), t > 0, has the same finite dimensional distributions as X(t),
t > 0, and we can select a modification of X (also denoted by X) with
all sample paths in D.[0,»). Hence Y(t), t > 0, defined by the

formula

Y(t) = X(t(t)),

has sample paths in DE[O,m) and satisfies, for any x* ¢ E* and t > O,

the formula
t

x*Y(t) = J F(s)d(x*X(s))  a.s.
0
0.£.D.

Remark. The above construction, with obvious modifications,
works for an E-valued Brownian motion as well.

The following result, besides providing moment estimates for the
integral fF(s)dX(s), shows that the latter exists also in the strong
sense. It follows immediately from the construction given in the
proof of Theorem 4.1 and from Theorem 3.1,

THEOREM 4.2. 7If ¢ grows more slowly than )p, 0 < p < 2, then
there exist positive constants <y and sy depending only on PsCsuy
and q such that

t 1 ]
L3 t 1
CIEO’([ |F(s)|pds) P ] < E¢[su llfur(s)dx(s)I|]5c2€¢[(I IF(s)l%s)p].
0 o 0

ust

1
At 1l st

U N

cwy o




Appendix

Proof of Theorem 3.1. (cf. [1]). Clearly,it suffices to prove
that

(A.1) B8 P) < Ee(x*(1-)),
and
(A.2) Eo(X*(1)) < c, Eo(t'/P).

To obtain (A.1), it is enough to show that for g>1, &>0 and) >0
PLtT/P > px, X*(1-) < 62) < c(8,8)PLt'/P52],
where c(B8,2) -~ 0 as either B + = or § - 0 (see Burkholder (1973),

Lemma 7.1; the assumption ${(0)=0 is not necessary in this case).
Setting a = AP and b = (81)P one obtains

PLv'/Poer, X*(1-)<en] = PLasb, X*(1-) < 6a)<Plr>a,||X(b)-X(a)||<2¢) )

PLr>alP[||x(b)-X(a)||<2681]

1/p < 28
PLEEARPL I e 5y T

which proves (A.1).
To obtain (A.2), we define an {A }-stopping time

o = inf {t>0: ||X(t A T)]] > A}
Then we have that

PIX*(7) > Br, 1'/P < 82] =

= PIX*(1)>82,7 /P<on, | 1X(0) | [<BR1+PLIX* (1) [[>8,1 /Peon, | 1X(0) | [>52]

= 1+,

Put a = (éx)p. For ¢ > 2 we have
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I = pXx*(1) > BA.11/p§ol, [1X{a) ] < gl' o < 1]
< Plsup ||X(o + t) - X(o)‘(>§l s C < 1] —

t<a o

PIx*(a) > 221 7 [0 < 1]

2P LX) 1| > 551 ¢ PIX*(1) > 2] :

A

<2 {gﬁ]pAp (X) PIX*(t) > A1,

where A(X) = sup APP [1IX(1) || > 2] < w.
P 2>0 °

Next, we obtain an estimate for J. Note that if n is the Levy
measure for X(1) then

n(Bg) = I(R ) ucp“‘(dx)dr‘/rHp = c,m(u)pRP = cRP, *

where BR is the ball in E with radius R and center at 0. LlLet

Y(t) =] I(]|sx(s)|| > R), .
S_<_t

where AX(s) is the jump process associated with X(s). Then Y(t) is
a8 Poisson process with parameter n(Bg).so that Y(t)-t n (Ba) is a
martingale (with respect {At})‘ By the optional sampling theorem,
for every bounded {At} stopping time 7

EY I(!|eX(s)]|| > R) = EY(1) = n(Ba)ET
s<T

'@ L
-'n.-.‘ ) N

Let o = 0 a1 ra. If scoy <o a1 then | 1ax(s)|] < 2% by defini-
tion of o. Hence, if R > 2) then

PLIIoxX(oy) 1) > RY = € ] 1(1)aX(s)|] > R) = n(BR) E o). ’
$<0
Since 0y < T we have X*(1) > ||X(o])||, and, consequently, for R>c :
we obtain that DR
J = P[X*(1) > Br,7 < 2, ||X(0)]]| > gl » 0 < 1)

< PLHIaX(op) 1] > (5 - 102 = "8 | EN
L.




c(§ - NP Peoy = 3P(5 - NPn(BS) E o

1

39(% - PRI X ] > 3] < 3P(5 - TP IX(o) |1 > )

| A

3°(§ - 1)"PpLx*(1) > »).

Putting together estimates for I and J we get that

PLX*(1)>e2] < PLX*(7) > gx,1 /P<sa] + P[1V/P > 43]
< c(8,6,p)P[X*(1)>2] + P[TV/P 5 011,
where -p
e(s,6,p) = e P[2P NPh (x) + 3P(3 - 1) 1.
p B
Therefore

Eo(g” ' x*(1)) = 0(0) + ]wptx*<r) > BAlde(r) <
0

A

$(0) + c(B,G,p)J:P[X*(T) >x]do(r) + [mP[r1/p>AA]d®(A)
0

(e, &,p) E6(X*(1)) + E¢(s 'x'/P).

| A

1

If g > ag and § < aa then

Eo((x*(1)) = Ee(2e” x*(1)) < ce%e(8™ x*(1)),
and
Ee(6” 01 /P) < cs7%e(<"/P).

Finally, we obtain the inequality

[c”'e™%c(e,6,p)] Ea(X*(1)) ¢ c5™%Ea(r'/P)

which proves (A.2) since the constant on the left hand side can be
made positive by taking B large enough and § small enough {(remember @
that q < p).
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