
^-AVS5 Vl£ 
RIA-85-U110 

AD/4/53 66^'' 

TECHNICAL REPORT BRL-TR-2640 

TECHNICAL 
LIBRARY, 

A THEORETICAL STUDY OF THE PROPAGATION 
OF A MASS DETONATION 

Philip M. Howe 
Abdul R. Kiwan 

February 1985 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

US ARMY BALLISTIC RESEARCH LABORATORY 
ABERDEEN PROVING GROUND, MARYLAND 



Destroy  this  report when  it  is no  longer needed. 
Do not return it to the originator. 

Additional  copies  of  this  report may be  obtained 
from the National  Technical   Information Service, 
U.   S.   Department  of Commerce,   Springfield,  Virginia 
22161. 

The findings in this report are not to be construed as an official 
Department of the Army position,  unless  so designated by other 
authorized documents. 

The use of trade names or manufacturers'  names in this report 
does not constitute indorsement of any commercial product. 



UNn.ASSTFTF.n 
SECURITY  CLASSIFICATION  OF THIS PAGE (When Data Entered) 

REPORT DOCUMENTATION PAGE 
!.    REPORT NUMBER 

TECHNICAL REPORT BRL-TR-2640 

2. GOVT  ACCESSION  NO 

4.    TITLE (end Subtitle) 

A THEORETICAL STUDY OF THE PROPAGATION OF A MASS 
DETONATION 

7. AUTHORfa) 

PHILIP M„ HOWE 
ABDUL R. KIWAN 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3.    RECIPIENT'S CATALOG NUMBER 

5.    TYPE OF  REPORT &  PERIOD COVERED 

Final 
6. PERFORMING ORG. REPORT NUMBER 

8. CONTRACT OR GRANT NUMBERfs.) 

9. PERFORMING ORGANIZATION NAME AND ADDRESS 

US Army Ballistic Research Laboratory 
ATTN:  AMXBR-TBD 
Aberdeen Proving Ground, MD 21005-5066 

II.    CONTROLLING OFFICE NAME AND  ADDRESS 

US Army Ballistic Research Laboratory 
ATTN:  AMXBR-OD-ST 
Aberdeen Proving Ground, MD 21005-5066 

14.    MONITORING  AGENCY NAME &   ADDRESSf// dlllerenl from Controlling Ollice) 

10. PROGRAM ELEMENT, PROJECT, TASK 
AREA 4 WORK UNIT NUMBERS 

1L162618AH80 

12. REPORT DATE 

February 1985 
13.    NUMBER OF PAGES 

27 
15.    SECURITY CLASS, (ol this report) 

UNCLASSIFIED 

ISa.    DECLASSIFI CATION/DOWN GRADING 
SCHEDULE 

16.    DISTRIBUTION  STATEMENT (ol thle Report) 

Approved for public release; distribution is unlimited,. 

17.    DISTRIBUTION STATEMENT (of the abatract entered In Block 20,  If different from Report) 

18.    SUPPLEMENTARY NOTES 

19.    KEY WORDS (Continue on reverae aide if neceaaary and identify by block number) 

Explosives 
Mass Detonation 
Sensitivity 
Ammunition Storage 

Percolation Theory 
Critical Probability 

20,    ABSTRACT (Conttmia on reveram aid* If n*ceaaary and Identify by block number) 

The mass detonation problem was formulated as a dynamic probabilistic proces ; 
equivalent to a specialized bond problem in percolation theory„  Percolation 
theory predicts that there exists a critical probability, above which there is a 
nonzero probability that an explosion will propagate throughout the munitions 
array. The critical probabilities for the generalized bond and site problems 
provide lower and upper bounds, respectively, for the critical probability for 
mass detonation, 
 (continued) 

DD/j 
FORM 

AN 73 M73 EDITION OF  t NOV 6S IS OBSOLETE UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 



UMCLABSIPIBD 
SECURITY CLASSIFICATION OF THIS PAOEfHTian Datm Bnfnd) 

20„  ABSTRACT  (continued) 

A Monte Carlo model was developed and exercised for two and three dimensiona 
munitions arrayso The effects of synergy resulting from simultaneous detonation 
of nearest neighbors was examined, and anisotropies resulting from heightened 
or reduced propagation probabilities in one direction were addressed.  It was 
shown that significant reductions in mass detonability can be obtained by 
exploiting anisotropic effects resulting from munition design. 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGEfWien Data Entered) 



TABLE OF CONTENTS 

Page 

LIST OF ILLUSTRATIONS  5 

I. INTRODUCTION   7 

A. Mass Detonability  7 

B. Round to Round Propagation   8 

C. Model Development  8 

D. Monte Carlo Estimates  14 

II. SUMMARY AND CONCLUSIONS  20 

REFERENCES  23 

DISTRIBUTION LIST  25 



LIST OF ILLUSTRATIONS 

Figure Page 

1. Storage array for 155 mm separate loading projectiles   9 

2. Simple quadratic lattice showing all possible configurations for 
clusters containing the source munition (x) and possible members 
of the first generation 11 

3. Some configurational members of the second generation 12 

4. Expected probability of cluster size versus mean cluster size for 
general site and bond problem and specialized bond problem for 
a quadratic lattice 15 

5. Mean explosion size for two dimensional square lattice, with and 
without synergistic effects 18 

6. Mean explosion size versus interaction probability for simple 
cubic lattice:  effects of anisotropy 19 

7. Probability of getting an explosion of at least n munitions, as a 
function of the interaction probability, for 3D cubic lattice: 
effects of anisotropy 19 

8. Comparison of results for square lattice and the simple cubic 
lattice, with P = 0.01 21 

z 



I.  INTRODUCTION 

A.  Mass Detonability. 

Ammunition items are assigned to various hazard classes, based on the 
level o£ risk considered acceptable for stipulated exposures. The maximum 
amount o£ explosives permitted at any location is determined by the pre- 
vailing distance from that location to other explosives.  United Nations 
Organization (UNO) Class 1, Division 1 is composed of "mass detonating" am- 
munition and explosives. A "mass detonation" is defined as the "virtually 
instantaneous explosion of a mass of explosives when only a small portion 
is subjected to fire, severe concussion or impact, the impulse of an ini- 
tiating agent, or to the effect of a considerable discharge of energy from 
without."  The majority of large caliber ammunition, e.g., 155 mm, 175 mm, 
8" separate loading projectiles and general purpose bombs, are classified 
as mass detonating, and the constraints of mode of storage and transpor- 
tation imposed to provide adequate safety create a significant economic and 
operational burden.2  By use of appropriate packaging or shielding3 or by 
use of different storage configurations,4 the round-to-round propagation 
tendency can be reduced significantly with concommitant reduction in the 
tendency for mass detonation. The purpose of this effort was to determine, 
as a function of the munition array, how much the tendency for round-to-round 
propagation needs to be reduced to control explosion size and prevent imss 
detonation. 

A Monte Carlo model was developed5 and is exercised for two and three 
dimensional munition arrays. The effect of synergism resulting from simultaneous 
detonation of nearest neighbors is examined.  The effects of anisotropics re- 
sulting from heightened or reduced propagation probabilities in one direction 
are also considered.  It is shown that significant reductions in mass detonability 
can be obtained by exploiting the anisotropic effects resulting from munition 
design in their storage configuration. 

lDARCOM Regulation 385-100„  p 2-7  (17 Aug 81). 
2,'Safe Transport of Munitions, " MTMC Report MTT81-1   (Jun 81). 
3For example. Ml  105 mm HOWITZER Ammunition is not mass detonating when 
packaged in its standard fashion,   two to a box. 

hP.  Howe,   "STROM Task 10 Report," in press. 
5A.  Kiwan,   "A Monte   Carlo   Solution to the Problem of Survivability of 
Munitions Stores," ARBRL-TR-02163,   Ballistic Research Laboratory,  Aberdeen 
Proving Ground,  MB  (1979).     (AD A071  459) 



B. Round to Round Propagation. 

Numerous experiments have been performed with various types of am- 
munition to ascertain the nature of round to round propagation.6"9  Of 
special interest to this effort, it was found that a straightforward 
criterion for round to round propagation could be developed; if a munition, 
in a regular array, subjected to the blast/fragment field of a detonating 
neighbor munition itself "detonated," then the blast/fragment field it gen- 
erated could cause the next munition in the array to detonate, and pro- 
pagation could continue within the array.10  If, however, the munition sub- 
jected to the donor blast/fragment field reacted with subdetonation violence, 
the process would extinguish. No dependence upon the number of nearest neigh- 
bor munitions within the array was found; testing could be performed with a 
linear array (indeed, an array with one donor and one acceptor) and the re- 
sults could be applied to two dimensional quadratic or hexagonal arrays. 
Apparently, the confinement provided by multiple nearest (second nearest, etc.) 
neighbors does not appreciably affect the ability of one munition to cause 
another munition to detonate.  In the development of a model of propagation of 
detonation between munitions, one can thus apply a quantal response criterion, 
and treat the interaction probabilities between munitions pairs as independent.11 

C. Model Development. 

Consider a large, two dimensional array of munitions.  (See Figure 1, show- 
ing a storage array for 155 mm separate loading projectiles. Here, the array 
is three dimensional, but little loss in generality occurs as a result of 
considering the two dimensional case.) Of interest is the size of the ex- 
plosion (i.e., the number of participating munitions) resulting from the 

6P. Howe,   "The Response of Munitions to Impact," ARBRL-TR-02169,  Ballistio 
Research Laboratory, Aberdeen Proving Ground,  MD  (1979).     (AD B040 2Z0L) 

7G.   Gibbons,   "Multiple Round Fragmentation Hazards and Shielding, " ARBRL-TR- 
02329,  Ballistic Research Laboratory,  Aberdeen Proving Ground, MDdSSDjAD BOSS 793) 

BJ.  Thomas and P. Howe,   "Effectiveness Testing for Antipropagation Shields 
Developed for M456 HEAT Tank Ammunition,   "ARBRL-TR-02370,  Ballistic Research 
Laboratory,  Aberdeen Proving Ground, MD  (1981).   (AD A107 037) 

9F.  Porzel,  et al,   "Naval Explosives Safety Improvement Program (NESIP): Summary 
and Status," NSWC-TR-81-27,  Naval Surface Weapons Center,  Ddhlgren,   VA  (1976). 
Detonation- the quotation marks are provided,  because it is not absolutely 
clear that the target rounds need detonate according to a rigorous definition 
of a detonation.    For test purposes,  a  "detonation" was considered to occur if 
the  target munition reacted with design mode violence,  as indicated by pro- 
duction of numerous high velocity,   small fragments,  consumption of all the ex- 
plosive,  and perforation of a 2.5 cm thick mild steel witness plate.     We 
currently believe that this level of violence can be obtained from a constant 
volume explosion, followed by very rapid case rupture.    The point of importance 
is that an unambiguous quantal response criterion for propagation can be esta- 
blished. 

11 In order to treat a particular situation,  the  "independent" condition will be 
relaxed later in this paper. 
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Figure 1.  Storage array for 155 mm separate loading projectiles.  Each box 
represents a pallet for 8 rounds. 

detonation of a single munition.  Since the munitions are nearly equidistant, 
the array can be represented by an infinite regular lattice, the vertices 
of which represent individual munitions sites.  Because of translational 
symmetry, a chosen site is typical of the rest, and the origin can be chosen 
arbitrarily.  Interest then centers upon the cluster of sites, containing 
the origin, and representing the number of munitions which participate in 
the explosion. Three assumptions are made: 

1. Propagation of detonation occurs only through nearest neighbor 
interactions.  Experimental evidence has been obtained in support of this. 
The nearest neighbor munitions effectively shield next nearest neighbors 
from direct fragment attack. 

2. The interaction probabilities (i.e., the probability that one 
round will detonate another) are independent. 

3. The process of propagation of detonation is Markovian. Only the 
last state of the process (whether or not set of rounds under considera- 
tion detonated) is relevant in determining whether or not the next set of 



nearest neighbors will detonate. Experimental results generally support 
this assumption. However, in the limit of high packing densities, large 
munitions, thin munition walls, and deformation sensitive explosives, it 
is expected that this assumption would break down. 

Let p be the interaction probability, i.e., the probability that de- 
tonation of one round will cause detonation of its nearest neighbor.  Ex- 
perimentally, p can be measured by observing results of a large number of 
repetitions of an experiment involving a donor and an acceptor round, sep- 
arated by a spacing identical to that in the array of interest, and noting 
the fraction of acceptor rounds which "detonate," according to the criterion 
discussed in the introduction. Clearly, q = 1 - p is the probability that 
the interaction is too weak to cause a round to detonate, given the detonation 
of the donor.  In a quadratic lattice (for example), the donor or source 
has four nearest neighbors, which comprise members of the first generation. 
(By definiton, the source will be considered the zeroth generation.) The 
nearest neighbors of the munitions which detonated in the first generation 
comprise potential members of the second generation. The possible configurations 
for the zeroth through the first generation are shown in Figure 2.  Note 
that the number of configurations for a given number of the first generation 
detonations is represented by the coefficients of the terms of the expansion: 

4 4 3 2  2 3 4 (p+q)     =p    +4pq+6pq    + 4pq    + q   . 

The individual terms on the right hand side of this expression represent 
the probabilities of a given number of these neighbors being detonated.  De- 
noting the expected or mean number of neighbors detonated by E(S) one has 

E(S) = 4.p4 + 3.(4p3q) + 2.(6p2q2) + 1.(4pq3) + O.q4 

E(S) = 4p. 

and S(p) = 1 + E(s) = 1 + 4p and is the mean explosion size, including 
the donor. 
This is to be expected because of assumption 2. 

In Figures 2 and 3, the bonds indicate that a munition has detonated. 
In principle, this procedure of direct enumeration can be continued through 
r generations, where r is arbitrarily large.  In practice, direct enumeration 
is difficult because of the extremely rapid growth in the total number of 
clusters. An additional complication arises in the situation of interest 
here, in that there is the physical constraint that we do not detonate the 
same round twice.  In enumeration beyond the first generation, one must 
exclude forbidden configurations (see Figure 3).  The means explosion size, 
S(p),is then equivalent to the mean number of bonds associated with clusters 
containing the source munition.  Thus, in general, we can write 

S(P) =  i a pn 

n=0    n 

where the infinite cluster is excluded. 

10 
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Figure 2.  Simple quadratic lattice showing all possible configurations for 
clusters containing the source munition (x) and possible members 
of the first generation.  The bonds indicate an interaction has 
occurred.  Undetonated rounds are suppressed. 
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The description provided above of an explosion in a munitions array is a 
special case o£ a "bond" percolation problem.12-13  It differs from the gen- 
eral case in that closed loops, as shown in Figure 3, are prohibited.  Tra- 
ditionally, the subject of percolation theory has been divided into two types of 
problems, the "bond" problem and the "site" problem.11'  In the bond problem, each 
pair of neighboring lattice sites has a probability p of being connected, inde- 
pendently of all other such pairs.  In the site problem, each site has a prob- 
ability p of being in state A and a probability q = 1 - p of being in state B.  A 
site is contained within a multi-site cluster if there is at least one nearest 
neighbor in the same state. The site problem arises, for example, in models of 
binary alloys,15 dilute ferromagnetic crystals,16 and thermal conductivity of 
disordered two-phase materials. 7  The bond problem arises naturally in models 
of single phase dispersive flow of a liquid through a porous medium,18 the 
propagation of a blight through an orchard,1' or gelation of polymers.20 The 
site problem is not a natural choice for modeling an explosion in stacked 
munitions, as the site probabilities are not easily measured experimentally 
while interaction probabilities (=bond probabilities) are, at least in principle, 
directly measurable.  However, it can be shown^1 that 

P(s)(n|p) < P(b:)(n|p), 

(s) 
where P"- ^ (n |p) refers to the probability of obtaining a cluster of size n, 

given an interaction probability, p, for the site problem, and P*- -'(n|p) is 

l2M.Sykes,  M.  Glen,   "Percolatian Processes in Two Dimensions I:    Low Density 
Series Expansions," J.  Phys.  A:    Math.   Gen.  9,   87,   (1976). 

13A.  Dunn,   J.  Essam,   and D.  Httehie,   "Series Expansion Study of the Pair 
Conneotedness in Bond Percolation Models," J.  Phys.  C:  Solid State Phys 8, 
4219,   (1975). —  

lhFor an excellent review of percolation theory,  see J.  Essam,   "Percolation 
and Cluster Size" and C.  Bomb and M.   Green,  Phase Transactions and Critical 
Phenomena 2,  Academic Press,  NY (1972). 

lbS.  Broadbent and J.   Hammersley,   "Percolation Processes,  I Crystals and 
Mazes," Proc.   Cambridge Philosophical Soc.   53,   629  (1957). 

167. Shante and S.  Kirkpatrick,   "An Introduction to Percolation Theory," 
Ady.   in Phys.,   20,   325   (1971). 

17Y.  luge,   "Three Dimensional Site Percolation Problem and Effective 
Medium Theory:    A Computer Study," J.  Stat.  Phys.,   18,   339  (1977). 

l%. E.  Fisher,   "Critical Probabilities for Cluster Size and Percolation 
Problems, " J    Math Phys.,   2,   620  (1961). 

13H.  Todd,   "A mte on Random Associations in a Square Point Lattice, " Roy. 
Stat.   Cos Supplement 7,   79,   (1940). 

20P.   Flory,   Principles of Polymer Chemistry,   Cornell UP,  Ithaca,   NY  (1953). 
21J.   Hammersley,   J.  Math Phys.,   2,   728   (1961). 
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the probability of getting a cluster of size n for the bond problem.  Since 
oo 

S(p) = E n P(n|p), 
n=0 

S  (p) < S^ -^ (p) and we can use the mean cluster size for the general 

site and bond problems, as lower and upper bounds, respectively, for the 
specialized bond problem of interest here. Vyssotsky, et al, have reported 
Monte Carlo estimates for the general bond problem in two and three dimensions 
for several lattices.22 Frisch, et al, have reported similar estimates for 
the general site problem.23  Plots of expected probability, p(n), of clusters 
of size n versus cluster size for their site and bond results are shown in 
Figure 4, for the simple cubic lattice. 

For infinite lattices, a percolation probability, p(p), can be defined 
as the probability that an infinite number of sites will belong to the cluster 
containing the source. Thus, 

pCp) = lim Pn(p), 
n-Ko 

where P (p) is the probability of obtaining clusters at least of size n. 

A critical probability, p , is defined as 

p = Supremum plp(p) = 0. 

For p>p , there exists a nonzero probability that there will be an infinite 

cluster, i.e., that the detonation will propagate to an infinitely large extent. 
For p<p , the mean explosion size remains bounded but grows exponentially as 

p->p and becomes infinite at p . Critical probabilities have been estimated 

for common lattices for site and bond problems by series expansion techniques 
and by Monte Carlo methods .   Some calculated values are shown in Table 1. 

D. Monte Carlo Estimates. 

The series expansion description described above provides useful infor- 
mation regarding mass detonation phenomena, but it does not have the flexibility 
required, to address readily, certain additional issues.  For example, munitions 
rarely have isotropic interaction probabilities:  design features are usually 
such that nose-nose or base-base interactions are enhanced or depressed vis a 
vis side-side interactions. Furthermore, experiments have shown that simultaneous 
or near simultaneous detonation of collocated munitions can generate an extremely 
lethal collimated blast/fragment field with high probability of detonation of 
munitions within its path. Thus, if a round causes two nearest neighbors to 
detonate simultaneously, the probability of detonation of the next nearest 

z2V. Vyssotsky^  et al,   "Critioal Percolation Probabilities  (Bond Problem)," 
Phys.  Review 122,   1566,   (1961). 

23#. Frisch,  et al"  "Critioal Percolation Probabilities  (Site Problem)," 
Phys Review 124,   1021,   (1961). 

14 
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Figure 4.  Expected probability of cluster size versus mean cluster size for 
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does not significantly change bond calculation results. 
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neighbor in common with these two munitions is essentially unity.  To address 
these problems and olthers, a Monte Carlo model was developed . 5  This model 
is capable of handling both site and bond problems in one, two, and three dimensions 
The computation is started by setting up the computational lattice as specified 
by the input.  A site of the lattice, representing a munition round, is selected 
at random.  The selected round is considered to be detonated.  If the input 
specified that more than one round is initially detonated then a program sub- 
routine is called to select the remaining rounds of the initial reaction set 
(ISET) from the nearest neighbors of the randomly selected site.  An array (IND) 
in this computational model keeps record of the status of each round in the 
lattice.  Thus, in a two dimensional bond problem, IND(i,j,l) = 1, if the reaction 
propagated to the round at (i,j,l), IND(i,j,l) = 0, otherwise.  At the beginning 
of a typical cycle of calculations, the bonds emanating from all sites at the 
reaction front are examined to see which bonds block the reaction.  This deter- 
mination is achieved by using a random number generator to generate a continuous 
random number, r, such that 0 < r < 1, and r has a uniform probability density 
distribution f (r ).  The sample space for r is partitioned into two events; 

(i) the event E  (r < p), that the bond is unblocked and propagates the reaction 

to a neighboring round, and (ii) the event, E„, (r > p), that the bond is blocked 

and does not propagate the reaction to a neighbor.  Because of the assumption that 
a round can only be initiated by an immediate neighbor, the search process is 
limited to the first generation neighbors of the reaction front.  The newly 
detonated rounds form the reaction front for the next cycle of calculations. 
The location of the new reaction front at the end of each cycle is saved in 
coordinate arrays.  The calculation cycles are terminated when no new rounds 
are detonated.  This will complete a trial and a new trial is initiated up 
to an input specified number of trials, NTRIAL. At the erid of each trial, the 
total number of reacted rounds in the reaction cluster for the trial is saved 
in an array, ND(j).  At the end of the run, the mean reaction cluster size, 
and its standard deviation are computed and printed. 

Several values of the interaction probability can be computed in a single 
run.  The code has a number of options that can be either selected on input or 
achieved with a change of a few cards.  The code will print out the hierarchy 
of the reaction branching process through the ammunition lattice if input 
specified.  It is also possible to treat the nonisotropic case of unequal 
interaction probabilities p , p , and p .  Another option treats the synergistic 

x  y     ^ 
case of collimated blast/fragments, by making the interaction probability 
p = 1, when two neighboring rounds detonate simultaneously. 

The mean explosion size, for a simple cubic lattice, as determined by our 
Monte Carlo calculations, is juxtaposed with the results of Vyssotsky, et al. 

17 



and Frisch, et al, in Figure 4. Our results are essentially identical to the 
results of Vyssotsky, et al, for the general bond problem. Evidently, re- 
stricting cluster configurations only to those which contain no closed loops 
has little effect upon calculated mean cluster size, or estimates of critical 
probabilities. Of special interest is the fact that the mean explosion size 
remains very small for p < p and it is reasonable to take p as an upper 

bound of an acceptable interaction probability, with prevention of mass deto- 
nation the objective. As p->p , mean explosion size grows very rapidly, 

approaching infinity at the critical point. 

Shown in Figure 5 is the mean cluster size with and without the synergistic 
effect ("specialized bond") included, for the quadratic lattice. Note that the 
synergistic effect lowers somewhat the probability required to get an explosion 
of any given size, but does not radically change the results. 
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Figure 5.  Mean explosion size for two dimensional square lattice, with 
and without synergistic effects. 



In Figure 6, mean explosion size is plotted versus the interaction prob- 
ability in the x and y directions, with P fixed at various values.  Note 

that small values of P lead to greatly reduced explosion sizes. The roll- 

over at the top of each curve is due to edge effects caused by the finiteness 
of the 10 x 10 x 10 computational array.  Not shown in Figure 6 is the curve for 
P fixed at unity.  It would be to the left of the curve for P = P = P . z J z   x   y 
Figure 7 shows calculations for the probability of getting an explosion of at 
least n rounds, as a function of P, in a 10 x 10 x 10 array for P  unity 

and for P equal to a fixed fraction of p. As expected, the results of P 

equal to unity lie to the left of the results for P equal to a fraction of 

p. Holding P constant simulates fixing the munition design and spacing 

between rounds in the z direction.  Letting P vary with P allows one to 

account for variation in explosive sensitivity, as well. 

lOOQ 

P, ■ 0.01 

pntP> 

Figure 6.  Mean explosion size versus 
interaction probability 
for simple cubic lattice: 
effects of anisotropy. 

Figure 7.  Probability of getting an 
explosion of at least n 
munitions, as a function of 
the interaction probability, 
for 3D cubic lattice:  effects 
of anisotropy. 
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Very high values of P are representative of a shaped charge warhead 

detonation,where the formed jet represents a very severe threat to 
the opposite round in the next layer.  Very low values of P  are 

representative of artillery munitions, such as 155 mm and 8" shell, where 
the interaction probabilities between noses and bases are expected to be 
far weaker than the side-side interactions. The calculations show that this 
anisotropy can greatly reduce explosion size, for large three dimensional 
arrays. These calculations were used to design tests in which it was shown 
that explosion size could indeed be controlled by exploiting orientational 
effects. Thus, it was shown experimentally that 155 mm M107 shell (filled 
with TNT or composition B) will not propagate in base-base orientation when 
separated by as little as 25 cm, for pallet sized units. As unit size was 
increased above the standard 8 round pallet, larger spacings were required, 
but it was shown that explosion did not propagate between units as large as 
8 pallets (64 rounds, with approximately 15 pounds explosive per round) 
oriented base to base, and nose to nose and separated by less than 60 cm 
(2 feet).  It follows from these results that it is advantageous to store 
munitions in arrays such that the z-axis, with low interaction probabilities, 
is the long axis of the array.  For transportation on rail, for example, 
artillery ammunition should be oriented nose-nose and base-base, with the 
munition axes parallel to the train axis, in order to minimize explosion size. 

It might be expected that restricting the interaction probability to 
low values in one direction essentially reduces the three dimensional problem 
to the appropriate two dimensional problem.  Thus, setting P =0.01, for 

example, for arrays with simple cubic symmetry would produce results nearly 
equivalent to those for square arrays.  In Figure 8, we show mean cluster 
size results for the simple cubic lattice, with P = 0.01, and results for 

the two dimensional square lattice.  For small cluster sizes, the two problems 
are nearly equivalent. However, as the critical point is approached, the mean 
cluster size increases more rapidly for the three dimensional problem than for 
the two dimensional case. This is because propagaton in the z direction depends 
not only on P , but the number of sources, which depends on the size of clusters 

in the two dimensional arrays. Of considerable practical importance, it is 
noted that, as long as P is small, the same ci 

used for both two and three dimensional arrays. 

noted that, as long as P is small, the same critical point criterion can be 

II.  SUMMARY AND CONCLUSIONS 

The mass detonation problem has been formulated as a dynamic probabilistic 
process, equivalent to a specialized bond propagation problem in percolation 
theory.  A Monte Carlo model was constructed, with the flexibility of treating 
both bond and site percolation problems, but subject to the constraint that 
no munition be allowed to detonate more than once.  This constraint is equi- 
valent to forbidding existence of closed loops in the cluster configurations. 

Calculations were made for two and three dimensional arrays. 
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Figure 8.  Comparison of results for square lattice and the simple cubic 
lattice, with P =0.01. Note divergence of results at large 

cluster sizes. 

Results of three dimensional calculations were compared with Monte Carlo cal- 
culations for the general site and bond problems as reported in the litera- 
ture. The results of our specialized bond problem calculations are essentially- 
indistinguishable from those for the general bond problem, indicating that 
the restriction of permissible configurations to trees has little influence 
on the results.  Of special importance, it was found from plots of mean explo- 
sion size versus interaction probability that, as long as the interaction 
probability did not lie in the immediate neighborhood of the critical prob- 
ability and to its right; the probability of achieving a mass detonation 
remains small.  Thus, the critical interaction probability can be used to 
make estimates of the required munitions sensitivity to prevent mass detonation. 
The synergistic effect associated with simultaneous detonation of two rounds, 
causing near-unity probability of detonation of the next nearest neighbor, 
was treated and found to have a noticeable, but not strong effect on the 
mean explosion size and critical probability. 
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Anisotropic interaction probabilities can exert a very strong influence 
upon mean explosion size and probability of mass detonation. Thus, it was 
found that setting the interaction probability in the z direction to a high 
value - e.g., 0.8 -, as would be observed experimentally for stacked shaped 
charge warheads, led to very large explosion sizes, even for relatively low 
values of p = p . Alternatively, it was found that low values of p were x   y ' rz 
very effective in limiting explosion size. This was verified experimentally 
using 155 mm projectiles, and it was found that there are significant re- 
ductions in mass detonability obtained by oriented artillery shell in nose-nose 
and base-base configurations. 

22 



REFERENCES 

1. DARCOM Regulation 385-100, p 2-7 (17 Aug 81]. 

2. "Safe Transport of Munitions," MTMC Report MTT81-1 (Jun 81). 

3. For example. Ml 105 mm HOWITZER Ammunition is not mass detonating 
when packaged in its standard fashion, two to a box. 

4. P. Howe, "STROM Task 10 Report," in press. 

5. A. Kiwan, "A Monte Carlo Solution to the Problem of Survivability of 
Munitions Stores," ARBRL-TR-02163, Ballistic Research Laboratory, 
Aberdeen Proving Ground, MD  (1979).  (AD A071 459) 

6. P. Howe, "The Response of Munitions to Impact," ARBRL-TR-02169, 
Ballistic Research Laboratory, Aberdeen Proving Ground, MD (1979). 
(AD B040 230L) 

7. G. Gibbons, "Multiple Round Fragmentation Hazards and Shielding," 
ARBRL-TR-02329, Ballistic Research Laboratory, Aberdeen Proving 
Ground, MD  (1981).  (AD B058 793L) 

8. J. Thomas, and P. Howe, "Effectiveness Testing for Antipropagation 
Shields Developed for M456 HEAT Tank Ammunition," ARBRL-TR-02370, 
Ballistic Research Laboratory, Aberdeen Proving Ground, MD (1981). 
(AD A107 037) 

9. F. Porzel, et al, "Naval Explosives Safety Improvement Program (NESIP): 
Summary and Status," NSWC TR-81-27, Naval Surface Weapons Center, 
Dahlgren, VA  (1976). 

10. "Detonation" - the quotation marks are provided, because it is not 
absolutely clear that the target rounds need detonate according to a 
rigorous definition of a detonation.  For test purposes, a "detonation" 
was considered to occur if the target munition reacted with design 
mode violence, as indicated by production of numerous high velocity, 
small fragments, consumption of all the explosive, and perforation of 
a 2.5 cm thick mild steel witness plate. We currently believe that 
this level of violence can be obtained from a constant volume explo- 
sion, followed by very rapid case rupture. The point of importance is 
that an unambiguous quantal response criterion for propagation can be 
established. 

11. In order to treat a particular situation, the "independent" condition 
will be relaxed later in this paper. 

12. M. Sykes and M. Glen, "Percolation Processes in Two Dimensions I:  Low 
Density Series Expansions," J. Phys. A: Math. Gen. 9^, 87, (1976). 

13. A. Dunn, J. Essam, and D. Ritchie, "Series Expansion Study of the Pair 
Connectedness in Bond Percolation Models," J. Phys. C:  Solid State 
Phys 8, 4219 (1975).   

23 



14. For an excellent review of percolation theory, see J. Essam , "Perco- 
lation and Cluster Size" in C. Domb and M. Green. Phase Transactions 
and Critical Phenomena, 2_,  Academic Press, NY (1972). 

15. S. Broadbent and J. Hammersley, "Percolation Processes, I Crystals 
and Mazes," Proc. Cambridge Philosophical Soc. 55, 629 (1957). 

16. V. Shante and S. Kirkpatrick, "An Introduction to Percolation Theory," 
Adv in Phys., 20, 325 (1971). 

17. Y. Yuge, "Three Dimensional Site Percolation Problem and Effective 
Medium Theory: A Computer Study," J. Stat. Phys., Ij5, 339 (1977). 

18. M. E. Fisher, "Critical Probabilities for Cluster Size and Percolation 
Problems," J. Math Phys.. 2,   620 (1961). 

19. H. Todd, "A Note on Random Associations in a Square Point Lattice," Roy. 
Stat. Cos Supplement 7_ 79. (1940). 

20. P. Flory, Principles of Polymer Chemistry, Cornell UP, Ithaca, NY (1953). 

21. J. Hammersley, J. Math Phys., 2,   728 (1961). 

22. V. Vyssotsky, et al, "Critical Percolation Probabilities (Bond Problem)," 
Phys. Review 123, 1566, (1961). 

23. H. Frisch, et al, "Critical Percolation Probabilities (Site Problem)," 
Phys Review 124, 1021, (1961). 

24 



DISTRIBUTION   LIST 

No. of 
Copies Organization 

No. of 
Copies Organization 

12  Administrator 
Defense Technical Info Center 
ATTN:  DTIC-DDA 
Cameron Station 
Alexandria, VA 22314 

1  HQDA 
DAMA-ART-M 
Washington, DC 20310 

2 Chairman 
DOD Explosives Safety Board 
ATTN:  Dr. T. Zaker 

COL 0. Westry 
Room 856-C 
Hoffman Bldg 1 
2461 Eisenhower Avenue 
Alexandria, VA 22331 

1  Commander 
US Army Materiel 
Command 

ATTN: AMCDRA-ST 
5001 Eisenhower Avenue 
Alexandria, VA 22333 

1 Commander 
Armament R&D Center 
US Army AMCC0M 
ATTN: SMCAE-TDC 
Dover, NJ 07801 

1  Commander 
Armament R&D Center 
US Army AMCC0M 
ATTN:  SMCAE-TSS 
Dover, NJ 07801 

1  Commander 
Armament R&D Center 
US Army AMCC0M 
ATTN:  SMCAR-LCE, 

Dr. R. F. Walker 
Dover, NJ 07801 

1  Commander 

Armament R&D Center 
US Army AMCCOM 
ATTN: SMCAE-LCE, Dr. N, Slagg 
Dover, NJ 07801 

1  Commander 
Armament R&D Center 
US Army AMCCOM 
ATTN: SMCAE-LCN, 

Dr. P. Harris 
Dover, NJ 07801 

1  Commander 
US Army Armament Materiel 

and Readiness Command 
ATTN:  SMCAR-ESP-L 
Rock Island, IL 61299 

1  Director 

Benet Weapons Laboratory 
US Army AMCCOM , ARDC 
ATTN: SMCAR-LCB-TL 
Watervliet, NY 12189 

1  Commander 

US Army Aviation Research 
and Development Command 

ATTN: AMSAV-E 
4300 Goodfellow Boulevard 
St, Louis, MO 63120 

1  Director 
US Array Air Mobility Research 

and Development Laboratory 
Ames Research Center 
Moffett Field, CA 94035 

1  Commaiider 
US Army Communications- 

Electronics Command 
ATTN: MSEL-ED 
Fort Monmouth, NJ 07703 

25 



DISTRIBUTION LIST 

No. of 
Copies   Orgaruzat.iQn 

1  Commander 
US Army Electronics Research 

and Development Command 
Technical Support Activity 
ATTN:  DELSD-L 
Fort Monmouth, NJ 07703-5301 

1  Commander 
US Army Missile Command 
ATTN:  AMSMI-R 
Redstone Arsenal, AL 35 

1  Commander 
US Army Missile Command 
ATTN:  AMSMI-YDL 
Redstone Arsenal, AL 35898 

1  Commander 
US Army Missile Command 
ATTN:  AMSME-RK, Dr. R.G. Rhoades 
Redstone Arsenal, AL 35898 

1  Commander 
US Army Tank Automotive Command 
ATTN:  AMSTA-TSL 
Warren, MI 48090 

1  Director 
US Army TRADOC Systems 

Analysis Activity 
ATTN:  ATAA-SL 
White Sands Missile Range 
NM 88002 

1 Commandant 
US Army Infantry School 
ATTN:  ATSH-CD-CSO-OR 
Fort Benning, GA 31905 

1  Commander 
US Army Development & Employment 

Agency 
ATTN:  MODE-TED-SAB 
Fort Lewis, WA 98433 

No. of 
Copies Organization, 

1  Commander 
US Army Research Office 
ATTN:  Chemistry Division 
P.O. Box 12211 
Research Triangle Park, NC 27709-2211 

1  Commander 

Office of Naval Research 
ATTN:  Dr. J. Enig, Code 200B 
800 N. Quincy Street 
Arlington, VA 22217 

1  Commander 
Naval Sea Systems Command 
ATTN:  Mr. R. Beauregard, 

SEA 64E 
Washington, DC 20362 

1  Commander 

Naval Explosive Ordnance 
Disposal Facility 

ATTN:  Technical Library 
Code 604 

Indian Head, MD 20640 

1  Commander 
Naval Research Lab 
ATTN:  Code 6100 
Washington, DC 20375 

1  Commander 

Naval Surface Weapons Center 
ATTN:  Code G13 
Dahlgren, VA 22448 

9 Commander 
Naval Surface Weapons Center 
ATTN: Mr. L. Roslund, R122 

Mr. M. Stosz, R121 
Code X211, Lib 
E. Zimet, R13 
R.R. Bernecker, R13 
J.W. Forbes, R13 
S.J. Jacobs, R10 
Dr. C. Dickinson 
J. Short, R12 

Silver Spring, MD 20910 

26 



DISTRIBUTION LIST 

No. of 
Copies Organization 

4 Commander 
Naval Weapons Center 
ATTN:  Dr. L. Smith, Code 3205 

Dr. A. Amster, Code 385 
Dr. R. Reed, Jr., Code 388 
Dr. K.J. Graham, Code 3835 

China Lake, CA 93555 

1  Commander 
Naval Weapons Station 
NEDED 
ATTN:  Dr. Louis Rothstein, 

Code 50 
Yorktown, VA 23691 

1  Commander 
Fleet Marine Force, Atlantic 
ATTN:  G-4 (NSAP) 
Norfolk, VA 23511 

No. of 
Cpp.ie.s. 

1 

Organization 

Director 
Sandia National Lab 
ATTN:  Dr. J. Kennedy 
Albuquerque, NM 87115 

Aberdeen .PrQyj,ng .Ground 

Dir, USAMSAA 
ATTN:  AMXSY-D 

AMXSY-MP, H. Cohen 
AMXSY-R, R. Simmons 

Cdr, USATECOM 
ATTN:  AMSTE-TO-F 

Cdr, CROC, AMCCOM 
ATTN:  SMCCR-RSP-A 

SMCCR-MU 
SMCCR-SPS-IL 

1  Commander 
Air Force Rocket Propulsion Laboratory 
ATTN: Mr. R. Geisler, Code AFRPL MKPA 
Edwards AFB, CA 93523 

1  AFWL/SUL 
Kirtland AFB, NM 87117 

1  Commander 
Ballistic Missile Defense 

Advanced Technology Center 
ATTN:  Dr. David C. Sayles 
P.O. Box 1500 
Huntsville, AL 35807 

1  Director 
Lawrence Livermore National Lab 
University of California 
ATTN:  Dr. M. Finger 
P.O. Box 808 
Livermore, CA 94550 

1  Director 
Los Alamos National Lab 
ATTN:  John Ramsey 
P.O. Box 1663 
Los Alamos, NM 8754H 

27 



USER EVALUATION SHEET/CHANGE OF ADDRESS 

This Laboratory undertakes a continuing effort to improve the quality of the 
reports it publishes.  Your conunents/answers to the items/questions below will 
aid us in our efforts. 

1. BRL Report Number Date of Report 

2. Date Report Received 

3. Does this report satisfy a need?  (Comment on purpose, related project, or 
other area of interest for which the report will be used.) 

4.  How specifically, is the report being used?  (Information source, design 
data, procedure, source of ideas, etc.) 

5.  Has the information in this report led to any quantitative savings as far 
as man-hours or dollars saved, operating costs avoided or efficiencies achieved, 
etc?  If so, please elaborate. 

6.  General Comments.  What do you think should be changed to improve future 
reports?  (Indicate changes to organization, technical content, format, etc.) 

Name 

CURRENT 
ADDRESS 

Organization 

Address 

City, State, Zip 

7.  If indicating a Change of Address or Address Correction, please provide the 
New or Correct Address in Block 6 above and the Old or Incorrect address below. 

Name 

nLD Organization 
ADDRESS 

Address 

City, State, Zip 

(Remove this sheet along the perforation, fold as indicated, staple or tape 
closed, and mail.) 


