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As part of this modification, two major features were added:

o

1, A hexahedral element with one-point quadrature and hourglass control;
2, An algorithm for treating projectile-target interaction in situations
where material erosion can occur arbitrarily in the target or projectile.

4
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A key attribute of the interaction algorithm is that it requires no
definition or tracking of sliding interfaces. Instead, the interaction is
handled by operations on slave nodes and master elements. Because of this
feature of the algorithm, the erosion of an element requires no redefinition
of the interface and thus avoids the complexity associated with sliding
interfaces in these situations. The hexahedral element was incorporated
primarily because it simplifies the new interaction algorithm. However, it
also increases the speed of the computer program and avoids the excessive
stiffness of the tetrahedra.

Solutions are presented for three projectile penetration problems,
ranging from a simple problem primarily intended to verify the computer code
to a large-scale problem involving erosion of both the projectile and target.
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INTRODUCTION

This report documents modifications which were incorporated in the EPIC-~3
{5,6] computer program (Elastic-Plastic Impact Computations in Three
Dimensions) in order to treat impact and penetration with erosion. EPIC-3 is
a finite element program with explicit time integration which is primarily
intended for simulation of solids subjected to short intense loads, such as in
impact or explosive detonations. A variety of material laws including
elastic-plastic solids, concrete/geological materials and explosives are
included.

As part of tiis modification, two major features were added:

1. a hexahedral element with one-point quadrature and hourglass control;

2. an algorithm for treating projectile-target interaction in situations
where material erosion can occur arbitrarily in the target or projectile.

The hexahedral finite element is an isoparametric element with 8 nodes and
24 degrees of freedom. The stresses and strains are evaluated only at a
single point in the element, which makes certain physically unrealistic modes
of deformation, known as hourglass modes, possible., These are avoided here by
the use of hourglass control. ’

A key attribute of the interaction algorithm is that it requires no
definition or tracking of sliding interfaces. Instead, the interaction is
handled by operations on slave nodes and master elements. Because of this
feature of the algorithm, the erosion of an element requires no redefinition
of the interface and thus avoids the complexity associated with sliding
interfaces in these situations, The hexahedral element was incorporated
primarily because it simplifies the new interaction algorithm. However, it
also increases the speed of the computer program and avoids the eXcessive
stiffness of the tetrahedra.

The element is described in Section 2, the interaction algorithm in
Section 3, Section 3 describes some sample problems which were solved by this
algorithm. The modified input manual is given in Section 4. Equations in
this report are numbered by section and sub-section, so that each equation
number consists of 3 numbers: the section number, the sub-section number, and
the number of the equation with the sub-section. However, when referring to
an equation, the first number, the section number, is included only when the
equation is in a different section.
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Section 1

HEXAHEDRAL, ELEMENT

1.1 Overview and Notation

The hexahedral element consists of 8 nodes and 6 sides as shown in
Fig. 1. The positions of the nodes are completely arbitrary although the
local node numbering must be in accord with the following convention:

i) nodes 1 to 4 must be placed sequentially on a single surface so that the
thumb of the right hand points to the interior of the element when the
fingers follow the nodes in sequence;

ii) nodes 5 to 8 must each be connected by edges to nodes 1 to 4, respec-
tively; i.e., nodes 1 and 5, 2 and 6, 3 and 7 and 4 and 8 must each lie on
the same edge.

The element is an isoparametric element with the displacement field
defined in terms of the coordinates of reference cube in £, n, [ space, see
Fig. 1« In terms of the reference coordinate system, the displacement and
velocity field are trilinear, with none of the coordinates appearing in the
polynomial in a power higher than linear. The resulting strain fields are
then bilinear.

However, only one quadrature point is used in evaluating the strain and
stress fields in the element. This implies that for purposes of evaluating
the nodal forces, the strain-rates and stresses are considered constant.

The assumption of a constant stress field implies that certain deforma-
tion modes of the element will not be resisted by nodal forces; this pheno-
menon is known as hourglassing; see Ref., (1]. To avoid the severe mesh
distortions brought about by hourglassing, an hourglass procedure developed by
Flanagan and Belytschko [2] will be used. This hourglassing procedure is
advantageous in that it does not compromise the formal consistency of the
resulting difference equations, so convergence is not impaired; see Ref, [1]).

In the following, we first give the fundamental equations for the hexa-
hedral element. Two types of B matrices for one-point quadrature have been
incorporated; one is based on centroidal evaluations of the B matrix as in
Ref. {3] the second is based on the uniform strain procedure given in
Ref, [2]. The centroidal method is cheaper but loses accuracy as the element
distorts. 1In particular, if the element is degenerated to a pentahedron or
tetrahedron, it becomes very inaccurate, whereas the Flanagan-Belytschko
formulas (2) remain exact.

After the desvelopment of the B-matrices, the hourglass control procedure
is given. Then the formulas for estimating the stable time steps based on
Ref. (4], which are used for the hexahedron, are presented.
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Standard indicial notation will be used in this report. Lower case Latin
indices pertain to components and have a range of three; when they are
repeated a summation over their range is implied. Upper case indices pertain
to nodes of an element and have a range of 8, The range of Greek letters is
specified whenever they are used. Commas denote derivatives with respect to
the spatial variables, i.e. f,i = 3f/3xi.

Where convenient, matrix notation is used. Matrices are denoted by tilde

subscripts, such as p. Lower case letters designate column matrices or
vectors, whereas upper case letters designate rectangular matrices. The
superscript "T" denotes a transpose, as in n’.

1.2 Mapping, Displacement Field and Fundamental Equations

The mapping between the physical and reference domains of the element,
which are shown in Fig. 1, are given by

xi = in NI(E' ’ﬂ, c) (1‘2.1)
where £, n,  are the coordinates in the reference cube of dimension 2x2x2
with the origin at the centroid of the element.

The shape functions N_ are given by

I

1
NI(E, n, g} = 3-(1 + 515) (1 + nIn) (1 + cIcI) {1.2.2)

where EI, n.., &
are all '+ 1,

I are the coordinates of node I in the reference domain, which

The displacement and velocity fields in the element are given by the same
shape functions since the element is isoparametric, hence

ui = uiI NI (1.2.3a)

v, = v,_ N (1.2.3b)

i iI 1

where u, and v, are the displacement and velocity fields and u,_ and v

i i it i1
the components of the nodal displacements and velocities of node I.

The velocity strains are given by

N N
€ -l(—-v +"—IV )
ij 2 axj it axi T

(1 '2.4)

and the spin rates by

w (1.2.5a)

£ %4k ik
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The element nodal forces are given by [2]

£.. =[] =0, av (1.2.6)

where di. are the stresses. If we let B, be an average value of the gradient
of shapejfunction matrix, then in one-polnt quadrature Eq. (2.6) is replaced
by

e

g7V (Byp o5+ Yor

). (1.2.7)
Only the first term on the right side of (2.7) originates from (2.6);

Q ., @a= 1 to 4, are the generalized antihourglass stresses and Y are the
hourglass operators which are defined later and must be added to control
hourglass modes.

1.3 B - Matrix

Two forms of the B-matrix are incorporated in the program. In the form
given in Ref. (2],

Byy = 12VBy, = v, (250 + 25,) + ¥32), + ¥, (238 + 250)

+ ys(z86 + 242) + Yg2g53 * YgZ4s (1.3.1a)

where

Xpg= %Xg = Xpp Yyg= Y= ¥pr Z, 3= 2= 25 (1.3.1b)

The other terms of the B matrix in row 1 are obtained by simply permuting the
nodal coordinates according to Table 1.
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where

(5) _
T

B:S) = %5 [(2y5 - ¥y) 2, v Y, (2ga + Z5,) vy, (mzgy - 252)]

57 =3 vy = 2vg) 2y + vy (agy 200 vy Cagy - 2gy)]

5,7 =43 (v, = 2900 2y, v vy (g + 2 vy Cagy -z

B25) - %5 [(ZYS - yz) 2y, + Y, (zg, + 253) * Yy (-252 - 251)
|

)z - (z

(Ygum ¥55023,7 (Y53 = ¥gy)2,,; 51 7 %5304, * (2

2= 254)¥3 ]
(2.3.5)
In using these formulas, nodes 1 to 4 must define a side of an element and

must be numbered so that they are counterclockwise when viewed from a point
inside the element.

As soon as any volume is found to be negative, the slave node can be

considered to definitely lie outside the element. All 6 pentahedral volumes
must be positive if the nodes are inside the element,

2.4 Normal Directions

An important ingredient in defining the interaction of the slave nodes
and master elements is that any transfer of momentum which occurs between the
target and penetrator {other than that due to friction, which is not con-
sidered here) should be in directions normal to the interface., For this pur-
pose, the normal vectors must be available when the positions of the slave
nodes are adjusted. Since an interaction surface is never defined, it is
necessary to construct normals in an alternative manner.

The assembly procedure of the finite element method provides a very
natural and concise way of computing these normal vectors. We will first
present the procedure in a two dimensional setting so that its ingredients may
be understood and visualized more readily and then present the three
dimensional equations.

The basic idea of this method is that the normals for each side of the
element are computed and added component by component into a normal vector
array according to node numbers. The procedure is illustrated in Fig. 6.
Note that on interior nodes the assembled normal vectors essentially cancel, c
so their components are very small or zero. On exterior nodes, the normal .
vectors point out from the domain with a direction which reasonably approxi- ~ﬂu
mates a normal to a surface on the edge of the domain. 1In particular, the e
normal at a corner takes an average direction of the surfaces that meet at the
corner,

In three dimensions, the procedure consists of the following: for each

side of the element with local nodes 1, 2, 3, 4, a vector normal to the side
is approximately computed by

25 N
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where

2 2
U= 212 = (= x)% 4 (v - v))% + (2 - 2,) (2.3.3)

and where the correspondence between I, J and K is given by

J

b W o -
w & O g ®
[T, T S N

The square of the radius is used in all computations.

All slave nodes which are located in cells which are occupied by nodes of

the master element are processed to check whether they are in the element. If
an element node occurs in a cell which has a leading zero in LOCSLA, then the
cell contains no slave nodes, so no checks need to be made, Otherwise, the
process of determining whether a slave node occurs in the element begins.

In order to reduce computations, the slave nodes which are sufficiently far
from the master element are first eliminated from consideration by the radius
check.

If a slave node is within the radius R_ of the master element, the more
exact and time consuming checks are made on the slave to see whether it is
within the element. If the slave node is within the element, the position of
the slave node is adjusted and the corresponding momentum is transferred to
the appropriate nodes of the master element. 1In addition, the slave node
number is deleted from the LOCSLA list so that this slave node is not checked
against other elements, The details of this are given in Section 2,5.

Once a slave node has passed the simple checks for possible penetration,
definitive check is made as to whether the node is within the element, This
is accomplished by constructing six pentahedra, each consisting of a side of
the hexahedron and the slave node, as shown in Fig. 5. If the volumes of all
six pentahedra are positive, the slave node must be within the element.

The volumes of the pentahedra are computed by using Eq. (1.3.4) with
nodes 5 to 8 considered coincident. This gives the following formula for the
volume of the pentahedra

5
ve 1 x B;S) (2.3.4)
I=1
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calculations performed so far. The number of slave nodes per cell is
presently limited to 40 but this can easily be increased by changing the
dimension of the array LOCSLA, as described later.

2.3 Element Penetration Detection

Any slave nodes which penetrate an element are treated during a loop
through the elements; this loop is separate from the element loop in which the
nodal forces are updated, and considers only master elements. The element
level steps consist of the following for each element e:

l. determine whether any slave node has penetrated element e;
2. 1if a slave node has penetrated element e, place the node outside the
element and transfer the momentum loss to the element nodes.

Note that this procedure is carried out only for master elements so the
subdomain of the target that is designated to consist of master elements must
be sufficiently large so that no slave node can penetrate the target without
penetrating a master element,

The algorithm for step 1 must be streamlined as much as possible in order
to insure that computer time is not wasted. The cell scheme is used to mini-
mize as much as possible the number of computations required, The details of
the procedure are as follows.

The cell number of each node of the element is determined. As shown in
Fig. 4, it is possible for the element to be in several cells. (Note for
future work, it may be possible to avoid this by using an overlapping cell
lattice so that for any element in the cell, all slave nodes contained in the
element must be in the same cell as the centroid of the element.) The cell
numbers of the nodes are determined in subroutine LOCNOD, which is the same
subroutine that is used for determining the slave node cell location, If
ICELL = 0, the nnde is not in the interaction zone, so it need not be
considered. The cell numbers of all nodes of the element are checked against
those of the other nodes so that no duplicate cell numbers are considered in
checking for slave node penetration of .the element.

To determine which slave nodes are in an element, all slaves in the sgame
cell as the element are checked. First a rough check is made. For this
purpose, the centroid of the element is defined by

e 1
== 1 x (2.3.1)
c 8 I=1 I
where 51 are the coordinates of node I. The radius cf the element is defined
by
R2 = l-max F x - x_ ) for 1=1 to 4 (2.3.2)
e 4 3 SN t
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(Ymin' Ymax' NCY) (2.2.2) ;%
(2 0+ Zp. 0 NCZ) (2.2.3) 1

Here xmin and x ¢ are the x-coordinates of the extreme points of the cell -
domain and NCX 1s the number of cells in the x-~direction; the definitions of -
the terms in (2.2) and (2.3) are analogous. -]
.

The cell location of a node with coordinates (x, y, z) is computed in two
steps, First the integer cell numbers in the x, y and z directions are Y
computed by

= » - - N .
X = NCX* (x xmin) / (xmax xmin) + 1 (2.2.4a) f?
= * - - elo *

IY = NCY* (y Ymin) / (ymax ymin) + 1 {2.2.4b) ]
IZ = NC2* (z -z , ) / (2 -~z . ) +1 (2.2.4c) -~
min max min .

These numbers are then used to compute the cell number of the node, ICELL, as
follows., If the node is outside the cell domain, the cell number ICELL is set
to zero, i.e.

ICELL = 0 if IX <1 or 1IX > NCX
or IY < 1 or IY > NCY (2.2.5)
or IZ < 1 or IZ > NCZ

Otherwise, ICELL is computed by
ICELL = (IZ~1)*NCX*NCY + (IY-1)*NCX + IX (2.2.6)

The locations of all slave nodes are stored in an array K=LOCSLA(IC,J)
where IC is the cell number and K is the node number of the J'P slave node in

cell IC, IF LOCSLA(IC,1)=0, then no slave nodes are located within cell IC.,

The identification of the cell locations of slave nodes is made during
the time integration loop. As the new positions of slave nodes are calculated
(prior to any adjustment for interaction with master elements), the cell
number is obtained by the subroutine LOCNOD.

For purposes of efficiency, the cell structure should extend only over
the domain in which interaction is expected. This includes the domain occu-

pied by the master elements in the undeformed configuration and any part of }:
the domain into which master elements are anticipated to move as a result of {y
the interaction. Although the optimal relation between cell size and master }A
element size has to be determined, a cell should span at least two element w3
lengths in each direction to reduce the number of elements which occupy more =
than one cell. A cell structure consisting of 3 x 3 x 1 cells in the x, y and o
z directions as shown in Fig, 3 has been found quite effective in the e

r'-}
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identify all slave nodes in a cell, and then in treating an element to o
identify the cell number in which it is located and to check the slave nodes i
which occupy the same cells in the interaction algorithm, iyf

The steps of the interaction procedures within the structure of the =3
complete algorithm is shown in Table 4. As can be seen, the locations of the B
slave nodes are determined during the time integration of the velocities, :ﬂ
Penetration of master elements by slave nodes is then determined in a loop ;ﬁ
over all master elements. This loop must precede the element loop in which T
new nodal forces are determined because the interaction algorithm modifies the o
velocities of the slave nodes and master element nodes, -

Table 4

1. 1initial conditions: velocities and positions of all nodes
2. 1integrate wvelocities to obtain new displacements
3.* determine the cell locations of all slave nodes

4.* for each master element:

4. compute surface normal vectors and assemble into global array

4b. determine cells in which element is located

4c. by checking all slave nodes in these cells, determine if any slave
nodes are in the element

4d. 1if a slave node is in the element, move it back to an outside surface
and transfer the momentum to the element nodes, which modifies its
nodal velocities

5. for each element:
Sa. compute strain-rates from the nodal velocities and stress-rates from

the constitutive equations

5b. integrate stress-rates to obtain new stresses and compute nodal
forces

Sc. assemble nodal forces into global array

6. find nodal accelerations from equations of motion
7. integrate accelerations to find new wvelocities; go to 2

* denotes steps which pertain to the interaction algorithm

2.2 Cell structure and Location of Nodes

The cell structure which is used to identify the slave nodes and master
elements for which interaction is possible is shown in FPig. 3. The cells are
uniform in size in all directions and their edges are parallel to the x, y and
z coordinates.

.
»
» 5

The cell domain is described by the following:

.
LN

, NCX) (2.2.1)
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Section 2

INTERACTION ALGORITHMS
2.1 Overview

The basic purpose of this algorithm is to treat the interaction of two
bodies with eroding elements. Eroding elements are elements which are
destroyed during the course of the computation because of very high strains,
which implies that they represent elements of the target or penetrator which
have ceased to play a significant role in the physics of the problem.

Algorithms with eroding elements in three dimensions are very difficult
to treat within the conventional framework of master and slave contact sur-
faces., It is difficult to design algorithms to redefine the contact surfaces
when elements are destroyed, particularly in three dimensions. Moreover, the
corners which are created in the surfaces by the erosion of elements present
severe algorithmic difficulties.,

Therefore, this new algorithm uses a concept of slave nodes and master
elements. One of the two bodies, usually the projectile, is defined by the
nodes, hereafter called slave nodes, the second body is defined by elements,
called master elements. If a slave node is found to be inside a master
element, it is then brought back to an outside surface. In order to determine
the outside surfaces, a set of normal vectors is assembled for all master
elements as described in Section 2.4. Because of the character of the
assembly process, a nonzero normal vector will only result on outside surfaces
and will provide an effective average normal to the surface.

The mechanics of the interaction of the two bodies is executed completely
through the interaction of the slave nodes with the master elements. The
rules of this interaction are as follows:

1) Slave nodes are not permitted to penetrate master elements.

ii) whenever penetration of a slave node into a master element is detected,
the slave node is returned to the surface of the element it has penetrated
and the associated loss of momentum is transferred to the appropriate
nodes of the master element. If a check on nodal normals shows that this
is not an exterior surface, the node is moved to the appropriate edge.

The efficacy of this procedure hinges strongly on the use of explicit time
integration, since stability requirements then limit the time step so that the
master element which is penetrated effectively represents the zone of the -
interaction. Because of the large number of slave nodes and master elements ':-'.
involved in this process, special techniques are needed to quickly identify .
the slave nodes and master elements between which interaction is possible.
This is accomplished by using a cell structure which is fixed in space. Cells
are considered to be substantially larger than elements and so may include
many master elements and slave nodes. The basis of the procedure is to

.
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2
At -‘3- [(1 + Ez) - g] (106.2)
]

where £ is the fraction of critical damping in the maximum frequency. This
time step is always smaller than the stable time step for linear problems.
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In the above, the vectors Eu are defined in Table 3.
Table 3. The Ea and s vectors for the hexahedron

Is= 1 2 3 4 5 6 7 8

h g +1 +1 -1 -1 -1 -1 +1 +1

- - - + -

th +1 1 1 +1 1 1 +1 1
h3I +1 -1 +1 -1 +1 -1 +1 -1

- - + - + -

h,q 1 +1 1 +1 1 1 1 1
A, -1 +1 +1 -1 -1 +1 +1 -1
AZI -1 -1 +1 +1 -1 -1 " +1

-1 - -1 - + + +
A3I 1 1 1 1 1 +1

The hourglass strain-rates give the rates of the generalized hourglass
stresses

v .

Qa * %14 Ya (1.5.3)
where the rate of Qic is related to its frame-invariant rate of QZG by

L ] v .

Qa ™ %Ua * ¥15 Ya (1.5.4)
The constants Gij are given by ‘

Gij = € W 61j (1.5-5)

where w is an estimate of the maximum frequency and € a user-controlled
parameter, Values of 0,03 to 0.10 are recommended for €.

1.6 Element Frequency and Stable Time Step

The stable time step for the element is computed by using the following

upper bound for the maximum element frequency taken from Ref. (4]

2 -2 2
wmax w 8¢ BiI BLI

where ¢ is the dilatational wavespeed. The time step computed by

(1.6,1)
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The advantage of this form over Eq. (3.1) is apparent in Bq. (3.6), which
shows that the last four terms of B, . need not be computed. On the other

hand, Bg. (3.1) applies to deqenera%g hexahedra such as tetrahedra, whereas
Eq. (3.5) does not,

1.4 Stress-Strain Relationship

The element can use any nonlinear stress-strain law, but for an aniso-
tropic stress-strain law the material matrices must be updated as indicated in
Ref. [5], which is indicated by Eg. (1.4.4).The measure of stress in this
element is the Cauchy stress, or physical stress, and the measure of deform-
ation is the velocity strain, also known as ‘rate-of-deformation. This will
usually be called the strain-rate. In order to maintain frame-invariance in a
stress-strain law based on these measures, a frame-invariant stress rate must
be used. Here, the Jaumann rate is used. If the material stress rate is
related to the strain rate by

o, =C ¢ (1.4.1)

ij ijkL "k& *Te

then the rate of change of the stress is given by
. v

°1j = °1j + Wy °kj + "5k % . (1.4,.2)
For any isotropic material, Bg. (4.1) can be written as
v . .

where A and §4 are the Lame constants,

This form of the stress-strain relations is frame-invariant only if the

material is and remains isotropic. For anisotropic materials, the { matrix
must be updated as follows {5]

: v
Cisxt = Cijxe * "ia Cajxt * "ib Civkt * "ke Cijer * "ia Cijxa .

(1.4.4)
1.5 Hourglass Control

when the nodal forces of the hexahedron are evaluated by one-point
quadrature, it possesses 12 spurious zero~energy modes or hourglass modes.
The modes occur independently in the x, y and z directions. The four modes in
the x-direction are shown in Fig. 2; the modes in the y and z directions can
be envisioned by simply replacing the x-axis by the y or z axes.

To control these modes, 12 additional generalized strain-rates are
defined by

9q = Yor iz (1.5.1)

where the range of Greek letters is 4, and
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"In the centroidal form, the B matrix is evaluated at the centroid of the

element, that is, the point £ = n = { =0, In this form, the B natti.x is
given by
1
B ™ ER [(25, + 2g3) ¥y + (24, + 2g4) Yg3 + (255 + Zg3) Y]
B -l—[(z +2.,) Yo, = (2 + 2., Yea = (2. + 2,.) ¥y ]
x2 Jo 63 5S4 n 61 74 53 n 75 64
1 . .
B3 * T, [-(24; + 2g¢) ¥3, - (2,4 + 2y) Ypq = (25 + 2g)) ¥g,]
®x¢ =T [-(2g3 + 255) ¥qy = (25, + 259) Yog * (28 *.23;) Y53
(1.3.5)
where J 1is the Jacobian at the centroid. The terms Bxs to B 8 are then
obtaine3 by x
Bx5 = -Bx3
Bxs = -Bx4
(1.3.6)
Bx? -Bx1 :
Bxs = -sz

The terms of B associated with y and 2, i.e. the second and third rows, are
obtained by the same permutations of x, vy, and z on the right hand side as

indicated in Table 2.

The Jacobian is given by

il Yrg 2rg
Jo = det x,n Yo z,, (1.3.7)
| Xz Yer By
where
X, , =LA, _x (1.3.8a)

i,§ 8 11 “iIx

LY (1.3.8b)

i,n =8 "21 *i1

- l.A (1.3|8C)

i,0 78 "31 *i1
are given in Table 3.
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Table 1. Permutations of node numbers for generating B1I from B”

1 2 3 4 5 6 7 8
2 3 4 1 6 7 8 5
3 4 1 2 7 8 5 6
4 1 2 3 8 5 6 7
5 8 7 6 1 4 3 2
6 5 8 7 2 1 4 3
7 6 5 8 3 2 1 4
8 7 6 5 4 3 2 1
For example

12V By = v (Zgy + 295) ¥ ¥y 24+ ¥plZig ¥ 2y)
(1.3.2)
+ ¥ylzgg + 254) + Yg 29y + Yg 237
The other three rows are obtained by interchanging x, y, z according to
Table 2.
Table 2. Permutations of coordinates for generating

rows 2 and 3 from row !

Row
1 Yy z
2 X
3 x y

For example

12V Byy = [x, (¥g  + ¥g,) + X, Yo *+ (¥ + ¥4q)

(1.3.3)
v X, (ygg + Ypu) * Xg Yo * Xg Y] .
The volume of the element is obtained by
V= l—-B- X =l—-l; X 8-1-—; x (1.3.4)
12 °11 “11 0 12 21 T2r 0 12 31 31 . °o
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O .4
. D= X,o X Xy (2.4.1) o
where (x) designates a vector cross-product. This vector n is normalized and %f

) then assembled into the global arrays of the normals of 4 nodes by adding each =
o component of the vector p to the existing vector in the nodal array. When the .
. contribution of each element has been added to the nodal arrays, the procedure e
= is complete. The procedure can be summarized as follows: ﬁi
-i 1. 1Initialization at beginning of time step: zero the vectors Ry for all }i‘
" nodes I. Qj
. 2. For each element e in the set of master elements: @a
.. 2.1 For each side of the element, compute p ; st4
- 2.2 add n into the arrays Dp of the four nodes which define the side. s
. =
Remarks: e

b

1« In order to avoid difficulties with master elements at the edge of the "

master element domain, the master elements should be defined, to extend L;

sufficiently far so that the edge master elements are not penetrated from _

the sides. ,aj

. 2. For nodes of master elements which lie on a plane of symmetry, the A
~o components of the normal vector which do not lie in the plane of symmetry b
i are set to zero, ?ﬁ
3. For master elements which lie on the bottom of the target (opposite to the -4

original position of the projectile), the normals to the bottom surface =

are omitted to avoid driving the slave nodes in the wrong direction, {}

=

2.5 Adjustment of Slave Node Positions =

. ‘\a

Y

s Once it is determined that a slave node has penetrated a master element, *
- it is necessary to adjust its position consistent with the fact that its ;i
- normal momentum has been transferred to the target. This procedure involves 25
3 two steps: ]
-

1. using the normal vectors associated with the element, determine in which L

direction the position of the slave node has to be adjusted; S

2. displace the slave node to an outside surface in the direction of the o

normal p; S

3. if the surface to which a slave node is brought is not an outside surface, =

bring the slave node back to an edge of the surface, —

{' The procedure is implemented as follows. The average normal of the ;k
- element is found by ~
.‘- \~‘.
2 .8 -
o p=(1 n)/0 1 (2.5.1) -
I=1 o

where the divigsion by "! 1" designates normalization of the vector, the norm

is defined in Eq. (3.3).Let the current coordinates of the slave node be b 3 =ﬁ

27




Then the node is displaced by the procedure
B

where N is an undetermined parameter n > 0.

= + 0 (2.5.2)

The magnitude of n is determined by checking which of the sides of the
hexahedron is intersected by the line of Bj.(2.5.2). This is accomplished as
follows. Each side is subdivided into 2 triangular surfaces (note that this
is only an approximation to the surface of an isoparametric hexahedron but it
simplifies computations enormously). By taking 3 nodes of the surface in
turn, the surface is defined by

E I=1=%o3 (205.3)

X, = X 1

i ir

B, 46, +Ey=1 . (2.5.4)

The intersection of the line defined by Eg. (5.2) and the plane is
determined by solving the 4 equations in 4 unknowns represented by Eqs. (5.3)
to (5.4). The solution is given by

%13 X3 *03
-1
L 243 223 Z03
X03 X3 Py
b | -
L203 23 e
=
X3 X03 Ry
1 -
52 = B-det Y3 Yo3 ny (2.5.5¢)
213 203 n,
53 w | - 51 - 52 (2-5.5d)
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where
X3 X23 Py
%13 %23 R o

A particular triangular surface is intersected by the parametric ray of
Eq. (5.2) if and only if

n>0 (2.5.7)°
0<g <1 for I=1to3 (2.5.8)

Once the surface on which the slave node is projected is determined, the
surface is checked to ascertain whether it is an outside surface. This is
done by checking whether the 4 normals of the nodes of the surface are non
zero. 1If this check fails, the node is projected to an edge of the surface as
shown in Fig. 7.

The equations which govern this realignment of the slave node are the
following, Let X, be given by
old

= X +Atx

X (2.5.9)
=n <o

where x is the position of the slave node at the beginning of the time step
as shown in Fig. 7. The edges of the side are then considered in turn and its
nodes are generically identified as 1 and 2, with the vector connecting them
denoted by X5 The previously computed new position of the node is denoted
by Xn where

x = x +A4r, (2.5.10)

The node is then repositioned on the intersection of the line x  with plane
defined by the vectors Xn and X The equations to be solved are
§

x X 0 (2.5.11)

~10 + 521 E1 ~ Ron E2 - 25mn 3 =

where §., 1 = 1 to 3, are the unknowns. If the edge x is the correct

one §_ must satisfy 0 < ;1 < 1, Otherwise, another edge of the surface is
consiéered.

The final position is denoted by Xe which is given by
Be = %+ &y By (2.5.12a)
where 51 is the above solution. The reposition wector is then redefined by

= = - «5.12b
Ar Xen = X¢ X, ‘ (2.5.12b)
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If a slave node is on a plane of symmetry, the component normal of Ar
to the plane of symmetry is now set to zero.

One situation which can foil even this check and allow a slave node to
remain within the target is shown in Fig. 8. Here the slave node has
penetrated element with nodes numbered 1 to 8. The repositioning will place
the node on the surface defined by nodes 1 to 4, and because a single intact
element, defined by nodes 1 to 4 and 9 to 12 lies above the intact plane, the
normals will be nonzero on each of the four nodes, 1 to 4. Therefore, the
node will remain on this surface. However, if all projectile nodes are slave
nodes, a subsequent slave node should engage the element defined by nodes 1 to
4 and 9 to 12,

Once the new position of the slave nocde is determined the change in its
velocity is computed by

Ay = Ar/At (2.5.13a)

where 4r is the total displacement of the slave node needed. The velocity of
the slave node is then modified by

vV o v°1d + Av . (2.5.13b)

In unusual circumstances it is possible for the normal of an element to
form an angle of more than 900 with the slave node velocity. This situation
is illustrated in Fig. 8, for node B, where a is the angle between the
velocity vector and the normal. If the previously described procedures are
used, the repositioning of the slave node will increase its welocity and its
kinetic energy as shown; note the new velocity vector is longer than the
original velocity vector. This repositioning is of course completely contrary
to physical laws, since it increases the kinetic energy of the system.

In order to avo%idthis, the new wvelocity xnew is compared with the
original velocity, v « It is required that the following inequality be
satisfied by these wvelocities

P vV < o vpld

~

1 . (2.5.14)

If this is not satisfied, the node is moved back along the vector xnew until
its velocity satisfies the following equation

new
I el K

~

12 (2.5.15)

+ 0 Az 12 g
This implies that the angle between 4 r and znew will be a right angle.
Although this procedure will usually position the glave node outside of the
target, it insures that energy is not generated by the procedure. In
subsequent time steps the slave node will acain penetrate a master element so
the procedure is not harmful,
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4
The momentum loss associated with this adjustment is MAy, where M is the .
mass of the slave node. This mass is now transferred to the nodes in contact {e
with the 2 triangles on the penetrated side. The formula used is o
, o
-M T -
AvJ - — n Av {no sum on J) (2.5.16) 3
r J &J ~ ~ .,:4
where .
4
'r_.
r= ] p;p (2.5.17)
I=1 ‘

This formula apportions the momentum to the nodes according to how strongly
their vectors point in the direction of the interface normal n.
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Section 3
NUMERICAL, EXAMPLES

The sample problems include a very simple, small problem which can be
used to quickly check the performance of the program in a new installation and
a moderate size problem and large scale problem. In each case, a table of key
problem parameters, a printout of the card images of the input data deck and
some computer graphics of the evolution of the response are given. The
execution speed of the program is 100 elements per time step per CPU second on
a CYBER 170/730, 1000 elements per time step on a CDC 7600,

Examgle 1

The first example involves a simple copper projectile consisting of 24
elements striking a target modeled by 48 elements. The material properties
and dimensions are given in Table 5. The evolution of the problem is shown in
Fig. 9. 238 can be seen from Fig. 9, because of the small size of the target,
although erosion commences, subsequent momenturn transfer causes the target to
move away from the projectile.

Examgle 2

The second example is a problem of moderate scale, involving 88 elements
in the projectile and 500 elements in the target., Table 6 gives the problem
parameters and card images of the data. The evolution of the problem is shown
in Fig. 10. Erosion is only evident in the projectile for the first 77 time
steps (cycles) which were run.

Exarple 3

Example 3 is taken from Ref. [7]. It consists of a copper rod striking a
steel plate at 2000 meter/second. The projectile is modeled with 414
elements, the target with 1014 elements. The copper is assigned a failure
strain of €_ = 2,0. A complete listing of material and problem parameters is
given in Table 7, Note that arbitrary erosion can occur in both the target
and projectile,

R

The simulation is shown in Fig. 11. Note that the projectile starts o
jetting in the positive x-direction early in the simulation. These large _

shears result in rapid erosion of the projectile. Subsequently, large =

deformations in the target result in shear failure in the target. Erosion ]
takes place in both the target and projectile. R

In Fig. 11, gaps often appear to develop between the target and
projectile. This is partially a result of the use of a two dimensional plot _.
of the plane of symmetry, which cannot show the contact between the projectile : 1
and target away from the plane of symmetry. -
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Projectile

shape
dimensions
density

bulk modulus
shear modulus
yield stress
ultimate stress

initial velocity

Target

shape
dimensions
density

bulk modulus
shear modulus
yield stress
ultimate stress

initial welocity

c e et e
. . LT

ISP PO

- » -'..- -t .
PERT S ALTE JOY Sl Sl SN Sl S

0

TABLE 5

Parameters and input for Example 1

rod

3 in long, radius 0.6 in
0.000831 lb-secz/in4
20,739,000 psi

6,380,000 psi

20,300 psi

65,300 psi

x-component - 2588,.0 in/sec
z-component - 9659.0 in/sec

plate

6 in x 3 in x 0.5 in (half plate)
0.0005 1b-sec2/in?

24,200,000 psi

9,300,000 psi

160,000 psi

160,100 psi

0
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1 1 1
l 1 PROJECTILE MATERTAL
»00073 410000.0 23810000,
30000,  250000. 310000,
999, a99, 2,0
> 1 TARGET MATERTAL
,00073  410000.0 27780000,
50000, 160000, 185000,
9qg9, Q99, N0.1
1.0 1.0 .!.0
?
d 0 4 0 1.0
0.6 0.0 V6
1.0 1.0 1.0
. 1
3 4 3 3 4 1
-3.0 0.0 0.0
1 3 1 0 1 0
A 1
3 3 2 61 2 1
\ 3 1 61 1 60 60
2 4 1 Q 1
578245 0.0 -526133,1
36
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Table 5 Continued

9999999,
9999999,
0.2

1.0

0.3

3.0

8 3

15,0

-0

w

1.0 1,

1.0 1.

0.000001
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Table 8

MAIN ROUTINE INPUT DATA

DESCRIPTION CARD (12A6)

. e s e e s Ve e e .
D St . P
o ML IUIRrN ad 2 d 2" 2 | PR

[Descrip..ion of Problem l ]

IDENTIFICATION CARD (315,5X,P10.0,E15.8,5X,F10.0)

Lcase {cycre | rpres | | cpmax| mwax] FHGHA;J ]

INTEGRATION TIME INCREMENT CARD AND CELL STRUCTURE (7710.0) -'jJ

[omwax [omum | sse | mox | xozs | wors [ zozs | I

CELL PARAMETER CARD (6E10.3)

Isxmax | sxmmw | symax | symmw | szmax | szmin| |

51




R T N N N = ————ro—-

If NX1 = 1, NX2 = NLX, NY2 = NLY and N22 - NLZ-1, all elements in the target
are master elements,
Main

Identification Card (315, SX, F10.0, E15.8, F10.3) - Add one additional
parameter SFAIL in column 51-60.

SFAIL: hourglass failure criterion; (10.0 ~12.0 is recommended)

Integration Time Increment Card (8F10.0) -~

column variable name description
1 - 10 DTMAX maximum time step
11 - 20 DTMIN minimum time step
21 - 30 SSF time step safety factor, < 1.0
31 - 40 TMAX time problem is allowed to run
41 - 50 HRCON hourglass control factor, 0.05 to
0.2 is recommended.
51 - 60 XDIS size in x-direction for a cell
61 - 70 YDIS size in y-direction for a cell
71 - 80 ZDIS gize in z-direction for a cell

Cell Parameter Card (6E10.3) - See Section 2.2

This card should follow right after the Integration Time Increment Card.

column variable name descrigtion
1 - 10 SXMAX xmax
11 - 20 SXMIN xmin
2t - 30 SYMAX Yy
max
31 - 40 SYMIN Ymin
41 - 50 SZMAX z
max
51 - 60 SZMIN 2
min

Only the metallic material (material code = 1) can be used. The input format

for the Main Program is summarized in Table 8.

Postprocessor

Only the plane of symmetry can be plotted when the hexahedra and erosion
features are used.

50
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Section 4

INPUT FORMAT

The input format is almost identical to that of the original EPIC-3 code
(6,7]. The major differences are that the cell description has been added to
the integration time increment card and a subsequent card, and there are some
restrictions on the features which can be used with the hexahedron and
erosion.

The following restrictions apply to the hexahedron and erosion interface:
1. the erosion interface can not be used with tetrahedral elements;
2. the anisotropic material cannot be used with the hexahedra.

PreEtocessor

The master elements must be identified through the element description
cards. This is accomplished by specifying MIDEN in columns 61-65 for the
composite-element-description cards or columns 31-35 for any other element
description cards. MIDEN is specified as follows:

0 (or blank) if the element is not a master element
MIDEN = 1 if the element is a master but not on the bottom layer
2 if the element is a master on the bottom layer of the target

For a plate target, MIDEN can be generated automatically if the master
elements are to occupy a regular domain in the target. Recall that the flat-
plate target consists of NLX layers of elements in the x-direction, NLY layers
in the y-direction, and NLZ layers in the z-direction. We assign numbers to
the layers beginning with lowest value of the coordinate and in the direction
in which the coordinate increases. The master elements identification (MIDEN)
can then be generated automatically whenever all elements between layers NX!
and NX2 in the x-direction, between layers 1 and NY2 in the y-direction, and
layers 1 and N22 in the z-direction are master elements. In that case,
columns 31-35 of the flat-plate element description card are as follows:

Flat Plate Description Card

|
Columns variable Name Description ”ﬂ

31-35 MIDEN leave blank when automatic generation )
of MIDEN is to be used.
36-40 NX1 lowest layer number for master elements
in x-direction -
41-45 NX2 largest layer number for master 1
elements in x-direction ,{3
46~50 NY2 largest layer number for master "o
elements in y-direction -
51-5% NZ2 largest layer number for master ;C

elements in z-direction
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6.000
T TIME =.000015092
CYCLE =62
4,000+
N 2.000+
.000 4
-2.000 + $ $ $ $
-4.000 -2.000 .000 2.000 4.000 6.000
X
6.000
TIME =.000030019
CYCLE =148
4,000 +
N  2.000+
000 -
-2.000 $ -+ $ — +
-4.000 -=2.000 .000 2.000 4,000 6.000
X

Fig. 11b Evolution of mesh on plane
symmetry for example 2.
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L

TIME =.000003184
CYCLE =13

4.000 A

T
.

PO A
o p A ¢ 2 gt 4

N 2.000 -

e e
P R R I SRR

.000

PR

~2.000 + —- —+ } +
—4.000 -2.000 .000 2.000 4.000 6.000

X

L]

6.000
TIME =.000007094

CYCLE =29

4.000 +

N 2.000+ :
.000 -
:_‘1
-41

-2.000 - + = ¢ +-

-4.000 -2.000 .000 2.000 4.000 6.000

X .
Fig. 1lla Evolution of mesh on plane of :-T:1
symmetry for example 3.
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3 1 :
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TABLE 7

Parameters and input for Example 3

Projectile

shape : rod with a round nose
dimensions : 4.9 in long, 0.5 in radius
density . : 0,000831 lb-secz/in4

bulk modulus : 20,739,000 psi

shear modulus 6,380,000 psi

yield stress

20,300 psi

ultimate stress 65,300 psi

initial velocity x-component 55660.0 in/sec

z-component -55660.0 in/sec

Target

shape : plate

dimensions : 7.9 in x 3.95 in x 0.375 in (half plate)
density : 0.000734 lb-sec2/in?

bulk modulus : 24,200,000 psi

shear modulus

9,300,000 psi

yield stress

160,000 psi
ultimate stress :+ 203,000 psi

initial wvelocity

o

45

0 - - - . -

PR e e e e e e
R R AR I PR
o e PRI S A [P I I

e LT ST e c0




e VT, .- PSP N I . e
- DAMCAE AN .¢.. Aq.. Y .‘J... - ....--..e- ' % " --l-\.-rn. ’ T
Bt M - P « . - R P Vel e
B . . P . . BARUE . ) . .
P u-....-..--.nu. Iy : Tt S . . SRR ... . ..n.‘............ s ST .--.nn--/l.- * et ‘.
A R LR L LY. R W A . . . Sl P . - - N . B
...... - R A L R ‘ s K

..............

¢ 91dwex? 10j yssm Jo uo¥iInjoad 01 314

X
000°C 000°L 000° 000'k—  000Z—  000'C—  000+—
h ' . } 000°Z—

L

.
AN
2

- 0001 -

e

L
al

o

.

.. _r.'{

t
o
&

-000°1 T

] ..
5
1+ 000°¢ g
LL= DA
61S210000"= 3NIL ,




T L Fe )

-

4

...h-‘u

"

i

7 °1dwexa 103 ysaw jo uoyInioag qo1 314 .m

-

3 000°C 000’1 000° 000°L— 000°C~- 000°c— 000 — ¥
: } } 4 + + } 000C¢— L
; %
- gy
-~w ...-..4
4 ....5.
. 1000t - R
5 A ]
-. ..--‘
g ..
3 K .‘
g d B

¢ N 3 :

n

+ 000t

+ 0002
O¥= J10AD
621£400000°= 3INL

AR A At A il

'-.".'-'

™ v

T
-~

CREE ot SRE iy

S

C ot




— g Ty
A N

b e

-

-
-

L2 0% 200 e e~

rREaASAS
AN -

L p/S i v s

-

LR

LRI S N AR AN AN

000°¢ 000°¢ 000°L

¢ atduexa oy ysaw jo uorinjoay eQr ‘814

X

000"+~

1 L) L]

0= J10A0
000000000°= JINIL

000" 000°L— 000°2—- 000°'¢—

000°¢—

i

- 000" 1—

-000°L

1 000°¢

42




~ -, tnd RN AN G-I AP S S B et SIS AV G AP At N S Ak S ST AR
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TABLE 6

Parameters and input for Example 2 -

Projectile T

shape : rod 3
3
dimensions t 4.04 in long, 0,201 in radius R

density : 0.00073 lb-sec2/in4 :

bulk modulus : 23,810,000 psi

# shear modulus 11,630,000 psi

yield stress

250,000 psi

ultimate stress 310,000 psi

- initial wvelocity i X-component 56155.,0 in/sec .
2-component -32421.0 in/sec

Target -

i -
shape : Pplate -

dimensions : 5.6 in x 0.7 in x 1 in (half plate) :

- density : 0.00073 1b-sec2/in4
bulk modulus : 27,780,000 psi .
shear modulus : 11,360,000 psi .
yield stress : 160,000 psi
ultimate stress : 185,000 psi i}
initial velocity : 0 | i
-
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