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ABSTRACT
The problem of finding a point with largest norm in a bounded polyhedral

set is shown to have a considerable range of complexity depending on the norm . o
. R

employed. For a p—norm with integer p 2 1, the problem is shown to be NP~
complete. For the ®-norm, the problem can be solved in polynomial time.

The problem of finding an upper bound to the largest norm for any p € [1,%]

can be solved in polynomial time by solving a single linear program.

AMS (MCS) Subject Classifications: 03D15, 90C05, 90C346.
Key Words: Optimization, maximum norm, complexity theory, NP-~complete.
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SIGNIFICANCE AND EXPLANATION

" The solution set to many important constrained optimization problems is a
set that is bounded by planes. When such a set is bounded it is useful to
find the size of a largest element in that set. 1In this work we show that
this problem may be extremely easy or difficult depending on the measure of
size (norm) employed. For one such measure the problem is relatively easy
while for all other measures it is intractable. However the problem of merely
finding an upper bound for the size of the largest element turns out to be a

surprisingly simple problem that can be solved by a single linear program.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A VARIABLE-COMPLEXITY NORM MAXIMIZATION PROBLEM
O. L. Mangasarian and T.-H. Shiau

1. Introduction

The problem of obtaining bounds for polyhedral sets has received considerable
attention in mathematical programming (14, 15, 16, 12, 8, 9]. Part of the significance of
this problem stems from the fact that the solution set to a linear program (4, 10] and to a
monotone linear complementarity problem (2] i{s such a polyhedral set. Bounding the
solution set to such problems when possible is then of practical interest. In this work we
shall consider the polyhedral set X in R"™ defined by
(1.1) x = {x | xeRr", ax 3 »}
where A 1is a given m X n real matrix and b is a given m x 1 real vector. We assume
throughout this work that X is bounded. It is easy to show that a necessary and
sufficient condition for X to be bounded is that
(1.2) y={y|yer,ay20, yrol=9¢ .

The problem we wish to consider here is

(1.3) max Ix)
x€X p
n /p
where I°lp denotes the p-norm on R", 1 § p < », defined by lxlp =(} |xi|p) and

1=1
Ixb, = max |x |.
1:1:n

We will show that while (1.3) can be solved in polynomial time for p = ®, it is NP-
complete (6, 11] for integer p 2 1. Since it is widely believed that no NP-complete
problem can be solved in polynomial time (the famous conjecture P ¥ NP in computational
complexity theory), the difference in the difficulty between p = ® and all other integer
p 2 1 is enormous. (The standard complexity theory terms used here are defined in Section

4.) In fact we can summarize the complexity situation for our problem (1.3) as shown in

Table 1.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material ;s
based upon work supported by the National Science Foundation under Grant Nos. MCS=-8200632
and DMS-8210950, Mod. 1.
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Problem Complexity Method of Solution
1. Find an upper bound P Ssingle linear program
to max Nxl for (Deterministic
x€eX p polynomial time)

any p € [1,%]

2. max Ixd P 2n  linear programs
xex

3. max le1 NP-complete 2" linear programs
x€X (Nondeterministic

polynomial time)

4. max Ix} NP-complete Vertex enumeration
x€xX

Integer p 2 2

Table 1. Complexity of max kx| and its method
of solution. x€X p

We note in passing that the minimization problem min Exl is by contrast a much
xeX

simpler convex programming problem for p € (1,®]. In fact for p=1 and o {t can be
solved by standard linear programming techniques [4, 10] or by a polynomial time algorithm
e.g. (7). For p = 2 the problem is a convex quadratic program which can be solved by
standard techniques e.g. [2] or by a polynomial time algorithm ([3].

In the following sections of this paper we will show how each of the problem of Table
1 is solved and its complexity. Section 2 deals with finding an upper bound to (1.3) for

p e [1,]. Section 3 deals with problem (1.3) for p = 1 and ® while Section 4 deals

with the cases of integer p 2 1.

2. Bounding max Ixl
x€x

It is somewhat surprising that for any p € [1,2], an upper bound to the solution of
the nonconvex problem max Ixl can be obtained by solving a single linear program
x€X

(Theorem 2.1 below). This is especially so since we show (Section 4) that the problems

-2




max Ixi for integer p 2 1 are intractable NP-complete problems. When X is contained
xex
in the nonnegative orthant R: = {x l x e R%, x 2 0} it is evident that a solu:ion to the

1-norm problem max lxl1 is easily obtained by the single linear progrm

xex
(2.1) max .- ex
xean+
where e is a vector of ones. However when X ¢ RE, as may be the case here, solution of
max IxI1 will take 27 linear programs, as shown in Section 3. In fact we will show in
xex
Section 4 that the problem max le1 is NP-complete. However, merely obtaining an upper

xex

bound to max Ixi for any p € [1,%] will take at most a single linear program as shown

xex
by the following result.

2.1 Theorem. Let X be nonempty and bounded, let

(2.2) B := (aTa)~'aT ., d:=Bb
and let B-j denote the jth column of B. Then for any p € [1,] and any x € X

2.3 Ixl < max {141 _, ¥yB, ., + Q}

( ) S p’ Y oy P)
where Y is the maximum value of the following solvable linear program

n ]
(2.4) Y := max{ey | x € R, y@€R, Ax =y =b, y > 0} .
X,y

Proof. Note first that the boundedness condition (1.2) implies the linear independence of

the columns of A and hence the nonsingularity of ATA. 1In addition the nonemptiness and

boundedness of X implies the solvability of the linear program (2.3). Hence

max Ixl = max{lNxl | x € Rn, y e Rm, AXx -y=Db, y2 0}
x€x X,Y
= max{Ixl | x = By + a4, (AB~I)(y+b) = 0, y 2 0, ey ¢ Y}
x,Y
< max{1xi fx=By +4d, y20, ey < v}
X,y
= max{dBy + ab_ | y 2 0, ey g v}
p S
y
= max {tal_, v, + at }
1<j<m
_3—
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where the last equality follows from the fact that the maximum of a convex function on a

bounded polyhedral set is attained at a vertex [13, Corollary 32.3.4]. *
a

Note that if a lower bound to max Ixl is also desired, then we have the following.
xex

2.2 Corollary. Under the assumptions of Theorem 2.1 we have that

1By + dl_ < max Ixi
xex

where ; is a solution of the linear program (2.4).
Since by Khachian's result [7]) a linear program is solvable in polynomial time in the
size of the problem, and since the algebraic operations prescribed in (2.3) can all be

performed in polynomial time, the following holds.

2.3 Corollary. The bound (2.3) can be computed in time which is polynomial in the size

of A and b.

We note that the bound (2.3) of Theorem 2.1 may be sharp as evidenced by the following

example.

2.4. Example A= (=2 1 b=/[-10
5 1 ~10
1 -4 -2

For this example it is easy to verify that

max Ixl = 10 for p= 1,2 and~>® , Y = 42
xex P

B = (’-.0649 .1688 .0260) , d-= (-1.0909)

o Wt e e

.0519 . 0649 -.2208 - .7273
Computing the bound (2.3) of Theorem 2.1 gives for p =1, 2 and = - o ?
max {¢at_, IyB_ . + 4l _} = 10 . o
1<3¢3 J p SN

-f-
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3. max Ix} for p=®® and 1
x€eX P

It is rather obvious that the problem max le, can be solved by maximizing the
xex
absolute value of each component of x separately subject to x being X. This leads to

the following.

3.1 Proposition

The problem max Ixl_, can be solved by solving the 2n linear programs
x€xX
(3.1) max max(:txi | x e R, ax > b} .
1<ign

Since each linear program can be solved in polynomial time [7] we have the following.

3.2 Corollary

The problem max Ixl_ can be solved in time which is polynomial in the size of A

xex
and b.
n
Since the problem max Ixl, is equivalent to max ) |[x,|, its solution can be
x€X i=1

obtained by solving 2" 1linear programs as follows.xex

3.3 Proposition
The problem max lxl1 can be solved by solving the 2" linear programs
xex
(3.2) max max{vx | x € R®, ax > b}
vev x
where V is the set of 2" vertices of the cube in R"™ defined by
n
(3.3) {v)|ver' -egvel .

While 2n 1linear programs can be solved in a reasonable amount of time for inter-
mediate~sized problems, solving 2"  1linear programs is intractable even for n as small
as 15. It is even worse for general p € (1,*) if we try to enumerate the vertices of
X for finding the maximal p-norm, for the number of vertices can be much larger than 27,
One may try to find other algorithms that are computationally effective. Unfortunately, as

shown in the next section, problem (1.3) with p ¥ ® ig no easier than the partition

problem (see (4.1) below) which is inherently intractable.

-5~

. ® o -.>Q‘n. . . . - - .
TR 2t ata® 4ty et RN AP P




4. The intractability of the norm maximization problem for p # ®

We begin this section with some basic concepts of complexity theory (6, 11). Problem
A reduces (in polynomial tim2' to problem B, denoted by A < B, iff the following holds:
If there is a polynomial time algorithm for B, then one can construct a polynomial time
algorithm for A wusing the algorithm for B as a subroutine. Problems A and B are poly-

nomially equivalent iff A B and B * A. An NP-complete problems is one which is poly-

nomially equivalent tu any one of the standard intractable problems such as the

satisfiability, partition, or travelling salesman problems [6, 11]. These problems are

considered intractable because any algorithm which solves any one of them requires, in the
worst case, an amount of time which is exponential in the problem size. An NP-hard problem
is any problem such that some NP-complete problem reduces to it in polynomial time. Thus
an NP-hard problem is at least as difficult as an NP-complete problem. We will now shown
that our norm maximization problem (1.3) is NP-hard for p # ® by reducing the following

NP-complete partition problem to it:

(4.1) Given integers CqeCoreeesCpy is then a set s < {1,2,...,n}
such that k c, = l cj ?
jes I igs

4.1 Theorem. The norm maximization problem (1.3) is NP-hard for p e [1,=).

Proof. We will show this by reducing (4.1) to (1.3). Let p € [1,#). We first reduce

(4.1) to the following problem:

(4.2) Given integers C4,Cp,+++,Cy, 1is there an x € R? such that:

n P o
) cy;xg =0, -1 < x5 £ 1, 1 £i &£n, lep >n? - o
i=1 S
1
It is easy to see that (4.1) has a solution S iff (4.2) has a solution x with |xi| =1 _ .. 4
for 1 ¢4 ¢n and x; =1 for i€@8 and x; = -1 for i ¢ S. Now it is easy to see R ;
that (4.2) can be reduced to an instance of problem (1.3) by defining "~t.'-' h
’ J

L
1
R
-6—
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-1 -e
A 3= , b=
cT 0
{-CT 0
and answering the question:
(4.3) 1s max{ixt_ | x e R", ax 3 b} > n/P 2

Hence if we can solve (1.3) in polynomial time we can sclve each of (4.3), (4.2) and (4.1)

in polynomial time. Hence (4.1) « (1.3) and (1.3) is NP-hard.
a

We go on to show now that our norm maximization problem (1.3) is in fact NP-complete
for integer p # ®. 1In order to do this we introduce additional concepts from complexity

theory. A nondeterministic algorithm is an algorithm which at each step has a finite

number of moves from which to choose (instead of only one for deterministic algorithms) and
it solves a problem in a finite sequence of choices leading to a correct answer. NP is the
class of prcblems solvable by a nondeterministic algorithm in polynomial time, including
(4.1) and all other NP-complete problems. In fact NP-complete problems are the class of
most difficult problems in NP in the sense that each problem in NP reduces in
polynomial time to each NP-complete problem. By Cook's theorem [1, 6, 11}, all we need to
show for (1.3) to be NP-complete is that it is NP-hard (which we already have done in
Theorem 4.1) and that it is in the class NP, which we proceed to do now. In order to do
that we introduce the following decision problem related to our optimization problem (1.3):
(4.4) Given A, b with integer entries satisfying (1.2), and nonzero integers r, s, p,

is there a vector x in R" such that

r

IxtP > £ 2
Ax 2 b, IxUD > o

Note that in the proof of Theorem 4.1 we have already established that the decision problem
(4.4) in NP-hard, because we reduced the partition problem (4.1) to (4.2) which is an
instance of (4.4). We will now first show that (4.4) is in NP and hence it is NP-complete.
Then we will show that an optimization problem (1.3) is polynomially equivalent to the NP-

complete decision problem (4.4). Note that condition (1.2) which is imposed on problem

-7-

S et - AR o e e T e e e e e - .
O R S S A YN I P U RPN Y PP Y T G T SNl N LN




L s e s e e e DI PN P T ——————y

.4) which is a necessary and sufficient condition for the boundedness of X, plays an

sential role in Proposition (4.2) below which establishes that (4.4) is in NP. .
2 Proposition. Problem (4.4) is in NP for integer p 2 1.

cof. It follows by the convexity of the norm and the boundedness of X by (1.2) [13],
P, cee 1ugP o I
at |x|p > < for some x € X iff lvlp > 5 for some vertex v of X. Moreover, Vv
a vertex iff there is a Jc< {1,2,...,m}, |J] = n such that v is the unique solution
Ajx = bi’ ieJ, and ij 2 bj for j ¢ J. Consequently we can prescribe the

llowing nondeterministic algorithm for solving (4.4).

3 Algorithm
(i) choose J, a subset of {1,2,...,m} with cardinality n.
(ii) Solve A;x = bi' ieJ for one x, or conclude that the system is
inconsistent.
(iii) if solution x found and Ayx 2 by for j ¢ J and #xi" > é then print x;

success; else failure; endif.

ep (ii) can be performed in polynomial time (e.g. by Gaussian elimination). Since we
ve assumed that p is an integer, |x|g can be evaluated in 0O(log, p) multiplications
d 0(log2 n) additions. Hence Algorithm 4.3 is a polynomial time algorithm and (4.4} is

NF.
0

Now we show that the NP-complete decision problem (4.4) and our optimization problem
.3) are polynomially equivalent, thus establishing the NP-completeness of (1.3). First
is obvious that if nne can solve the optimization problem (1.3), then one can answer the
cision problem (4.4). The reverse is usually done by a binary search technique showing
at the optimization problem can be solved by a polynomial number of decision problems.
is is all rather obvious for discrete combinatorial problems, but not for our continuous
oblem (1.3). To do this here, we shall use arguments similar to those of Khachian [(7!.

fine ®
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n,n R
L= ) 1092(lAijl MR l 1°gz‘lbil + 1) + logy(nm+1) + log,(p¥1) . g
i,3=1 i - y
L is the total length of binary digits representing the input A, b, n, m, p of problem ® y
(1.3). S
4.4 Theorem. For any integer p 2 1, problem (1.3) is in NP and hence it is NP~complete. f ]
- C
Proof. Since an optimal solution of (1.3) is at a vertex of X (13}, such a vertex can be . ® L
D1 02 Dn T
written by Cramer's rule as (Er-' Dot ETJ + where D and D; are determinants of

submatrices of [A bl. Hence

T

D
peees 33) . Ip| < 2%, |p |

PGP SR

D
1
(i) For any vertex v = (B—

< 2%, Ivlﬁ < 2PL,  (see (5]

for details.)
D, D T B, BT
(ii) For any two distinct vertices Ivip # lwlp, v = (E_ reees B—) y W= (E_ ,...,E—]

it follows that

P P P p
llD1| oot |Dn| i |B1l L IBnl I ] | 2L

o|? |s|P UTYEINE

[1vi® - 1P} =
P P

Hence we can reduce (1.3) to (4.4) by binary search on the interval [O,ZPL] until the
range is less than 2'2PL. Since each iteration reduces range by half, 3pL iterations

will do that if we have:

(1) L + 0, u+ 2pL

(i) for i =1 to 3pL do

(iiy) solve the decision problem (4.4) for input A, b, § = % (L+u)
{iv) if answer is yes then 1 « % else u + E endif

(v) end for
If (iii) can be done in polynomial time, then (i) to (v) can be done in polynomial time.
After (v), we known that there exists an x € X such that £ = u—2'2PL, Hx“ﬁ 2 £, whereas
there is no x € X such that ﬂxlg 2 u. Hnece if we now use Algorithm 4.3 with input

% =%, A and b, the x printed in step ({ii) of Algorithm 4.3 is an exact vertex

9=




solution of (1.3) obtained in polynomial time. Hence (1.3) is in NP, and since by Theorem

4.1, (1.3) is NP-hard it follows that (1.3) is NP-complete. . [ ]




1.

10.

11.

12,

13.

REFERENCES

S. A. Cook: "The complexity of theorem proving procedures”, Proceedings 3rd ACM
Symposium on the Theory of Computing ACM. 1971, 151-158

R. W. Cottle and G. B. Dantzig: “Complementary pivot theory of mathematical
programming”, Linear Algebra and Its Applications t, 1968. 103-125.

S. J. Chung and K. G. Murty: “Polynomially bounded eilipsoid algorithms for convex
quadratic programming" in O. L. Mangasarian, R. R. Meyer and S. M. Robinson (editors)
"Nonlinear programming 4", Academic Press 1981, 4:9-485.

G. B. Dantzig: "Linear programming and extensions”. Princeton University, Princeton,
New Jersey 1963.

P. Gacs and L. Lovasz: "Khachian's algorithm for linear programming”, Mathematical
Programming Study 14, 1981, 61-68.

M. R. Garey and D. S. Johnson: “"Computers and .intractability: a guide to the theory
of NP-completeness”, W. H. Freeman, San Fre .isco, California 1979.

L. G. Khachian: "A polynomial algorithm in linear programming”, Doklady Akademiia
Nauk SSR 244:S, 1979, 1093-1093. Translated in Soviet Mathematice Doklady 20 (1979)
191-194.

0. L. Mangasarian: "Characterizations of bounded solutions of linear complementarity
problems”, Mathematical Programming Study 19, 1982. 153-166.

0. L. Mangasarian: "Simple computable bounds for solutions of linear complementarity
problems and linear programg", University of Wisconsin Computer Sciences Tech. Report
519, October 1983, to appear in Mathematical Programming Study.

K. G. Murty: "Linear programming", Wiley, New York, 1983.

C. H, Papadimitriou and K. Steiglitz: "Combinatorial optimization: algorithms and
complexity", Prentice-Hall, Englewood Cliffs, New Jersey 1982.

S. M. Robinson: “A characterization of stability in linear programming®™, Operations
Research 25, 1977, 435-447.

R. T. Rockafellar: “Convex analysis", Princeton University Press, Princeton, New

Jersey 1970.

-11-




14. A. C. Williams: “Marginal values in linear programming", Journal SIaM 11, 1963, 82-

94. [}
15. A. C. Williams: "Boundedness relations for linear constraint sets", Linear Algebra

and Its Applications 3, 1970, 129-141.
16. A. C. Williams: “Complementa:ity theorems for linear programming”, SIAM Review 12,

1970, 135-137.

T

. e

OLM/THS/ jvs




T T Y N T ee———m— —

— P gy
. " v -
. YA gt A st aon Sre e ses e e er e g n T

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Fntered) °
READ INSTRUCTIONS L

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORS

2, GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

t. REPORY NUMBER

#2780 DAIS3IS Iy '
’ 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED : T
_ . o Summary Report - no specific o
: A Variable-Complexity Norm Maximization Prohlem reporting period .o
. 8. PERFORMING ORG. REPORT NUMBER
. 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) o
| MCS-8200632
O. L. Mangasarian and T.-H. Shiau DAAG29-80-C-0041 = .' -

DMS-8210950, Mod. 1

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::g‘ii‘coe&&sms?ITT'N;’U‘:AOBJEEF(R:;' TASK . -
Mathematics Research Center, University of  |work Unit Number 5 - SR
’ 610 Walnut Street Wisconsin | optimization and o
d Madison, Wisconsin 53706 Large Scale Systems n ]

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ®
January 1985 ' ) {

See Item 18 below 13. NUMBER OF P AGES
12

15. SECURITY CLASS. (of thia report)

14, MONITORING AGENCY NAME & ADDRESS(If dillerent (som Controlling Otfice)

’ _ UNCLASSIFIED

iSa. DECL ASSIFICATION/DOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

N \ S

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it ditlerent frozn Report)

18. SUPPLEMENTARY NOTES
U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550

) Research Triangle Park
North Carolina 27709
19. KEY WQRDS (Continue on teverse aide {{ necessary end identily by block number)
Optimization, maximum norm, complexity theory, NP-complete.

20. ABSTRACT (Continue on reverse aide {{ neceseary end {dentily by dlock numbder)
- The problem of finding a point with largest norm in a bounded polyhedral
. set is shown to have a considerable range of complexity depending on the norm
employed. For a p-norm with integer p > 1, the problem is shown to be NpP-
complete. For the »-norm, the problecm can be solved in polynomial time. The
problem of finding an upper bound to thc largest norm for any p € [1,~] can .9
S e
1

be solved in polynomial time by solving a single linear program.

0D ,"55%, 1473  eoition oF 1 nov 6315 0BSOLETE UNCLASSIFIED

SECYRITY CLASSIFICATION OF THIS PAGE (Hhen Dara Entered)




END

FILMED

6-85

PR T S )

3
ol

’
.
e




