-A153 583 SINGULRRI TY SOLUTIONS FOR ELLIPSDIDS IN
LOW-REYNOLDS-NUMBER FLOWS: WITH CU) WISCONSIN
i UNIV-MADISON HRTHEHRTICS RESERRCH CENTER 5 KIH FEB 83
UNCLASSIFIED MRC-TSR-2796 DARG29-88-C-0841 F/G 1271 NL




i.
'

b
"'.

g b
— m32 .
=ilw

T

I
I

I

lles

i ee

I=

.
m

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL 1 STANDAREPS 196 ¢ A




Ll sl Fagatalay shus st o/ -
. La AQRaba A SAG ot s RAE St St BNl S d- Dol Gl A B Aad el ek sedl eei i Aad. e

~

IN LOW~REYNOLDS-NUMBER FLOWS:

HYDRODYNAMIC INTERACTIONS IN
SUSPENSIONS OF ELLIPSOIDS

Sangtae Kim

AD-A153 503

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53705

February 1985

(Received January 31, 1985)

DTG riE COBY

Sponsored by

U. S. Army Research Office
p. O. Box 12211

rResearch Triangle Park
North Carolina 27709

MRC Technical Summary Report #2790

SINGULARITY SOLUTIONS FOR ELLIPSOIDS
WITH

APPLICATIONS TO THE CALCULATION OF

Atte Mt

PDTIC
MAYQ  138%

Approved for public release D
Distribution unlimited

National Science Foundation
washington, DC 20550

LN




UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

SINGULARITY SOLUTIONS FOR ELLIPSOIDS IN LOW-REYNOLDS-NUMBER FLOWS:
WITH APPLICATIONS TO THE CALCULATION OF
HYDKODYNAMIC INTERACTIONS IN SUSPENSIONS OF ELLIPSOIDS

Sangtae Kim*

Technical Summary Report #2790
February 1985

ABSTRACT

"The disturbance velocity fields due to translational and rotational
motions of an ellipsoid in a uniform stream, constant vorticity and constant
rate-of-strain, required in fundamental studies of behavior of suspensions,
have been obtained by the singularity method. These solutions extend earlier
solutions for prolate spheroids. Although equivalent solutions were obtained
by Oberbeck (1876), Edwardes (1892) and Jeffery (1922) by separation of
variable in ellipsoidal coordinates, the singularity solutions are far more
simple in form. Other significant results obtained by the singularity method
include the exposition of the unified structure shared by the three boundary
value problems and the construction of new forms of the Faxen laws for
ellipsoids through application of the reciprocal theorem. The disturbance
solutions and Faxen laws, the basis for Smoluchowski's (1911) method-of-
reflections technique, are used to calculate hydrodynamic interactions between
two or more arbitrarily oriented ellipsoids. In particular, mobility problems
are solved directly to order R-s, where R 1is the centroid-to-centroid
separation between the ellipsoids. |
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SIGNIFICANCE AND EXPLANATION
The calculation of hydrodynamic interactions between nonspherical
particles is needed for the understanding and control of many natural and
manufacturing processes, for instance, those involving sedimentation,

. colloidal stability or suspension rheology. While single-particle solutions
for disks, needles (and in general, ellipsoids) are available, such solutions
are not easily generalized to multi-particle problems, necessary for examining
particle-particle interactions. New forms are presented here which greatly
facilitate this task. A model sedimentation problem involving two ellipsoids

of revolution is used to illustrate the general technique. Future work will

cover other applications of this technique.
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NOTATION
é resistance tensor for spheroids.
a largest semi-axis of ellipsoid.
b inter.sediate semi-axis of ellipsoid,
¢ resistance tensor for spheroids.
c smallest semi-axis of ellipsoid.
d spheroid orientation vector.
E rate-of-strain tensor.
e eccentricity of the generating ellipse.
F force exerted by the fluid on the particle. ?
f density function in singularity distributions. :
g gravitational vector, 4
H resistance tensor for spheroids, rank = 3. ]
; Oseen-Burgers tensor.
L vector operator in singularity solution.
A resistance function for spheroids, ranxk = 4. )
n unit vector normal to the surface.
p pressure.
q density function in singularity distributions.
R center to center separation between two ellipsoids.
r radial coordinate from particle center,.
S symmetric part of the stress-dipole (stresslet).
T torque exerted by the particle on the fluid.
T anti-symmetric part of the stress-dipole.
U particle translational velocity.
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E: v fluid velocity. T
Eﬁ X resistance function for spheroids.
E’ X Cartesian coordinate.
ti x position vector. §
X x' point on the fundamental ellipse. 4
Y resistance function for spheroids.
y Cartesian coordinate.
VA resistance function for spheroids.
z Cartesian coordinate.

Greek Letters

agys aé, aa Constants in Jeffery's (1922) solution.

Pg BO. 6, 88 Constants in Jeffery's (1922) solution.

.1: Yoo Yor Y3 Constants in Jeffery's (1922) solution.
) identity tensor.

alternating tensor.

| Inl

2 polar angle for spheroids.
u fluid viscosity.
D ellipsoidal coordinate (p constant gives ellipsoidal surface).

stress tensor.

Yy
| o]

Si X ellipsoidal harmonic. ‘
E;f Q Dirchlet potential i
E; Q angular velocity of fluid. ‘
F, w particle angular velocity.

HadPial
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labels for particles.
refers to the fundamental ellipse
indices used in the Einstein summation convention.

label for multipoles in the singularity solution.

label for the n-th reflection.

ambient field.
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SINGULARITY SOLUTIONS FOR ELLIPSOIDS IN LOW-~REYNOLDS-NUMBER FLOWS:
WITH APPLICATIONS TO THE CALCULATION OF
HYDRODYNAMIC INTERACTIONS IN SUSPENSIONS OF ELLIPSOIDS

Sangtae Kim®

1. INTRODUCTION

Suspensions of nonspherical particles exhibit non-Newtonian behavior through
the interaction between the flow field and Brownian motion (Giesekus (1962),
Brenner (1972), Hinch & Leal (1972). However, rigorous derivation of the
material functions to date have been restricted to the dilute limit, partly

because of the lack of information on multi-particle hydrodynamic
{nteractions. Existing information on particle-particle interactions is
limited to interactions between prolate spheroids in certaln geometries such
as large particle-particle separations (Wakiya 1965) or special configurations
(Gluckman et. al. 1971; Liao & Krueger 1980). Hydrodynamic interactions
between oblate spheroids, despite widespread occurence, e.g. the disk-shaped
kaolinite minerals in clay/water suspensions, have received even less

attention.

The first steps towards a method-of-reflections solution of

multi-ellipsoid, hydrodynamic-interaction problems are presented here. Our

2 primary goal is the solution of problems where the rigid-body motion of the
particles are to be determined, given the external forces, torques and the
ambient velocity field. Defined by Batchelor (1976) as mobility problers,
these problems appear most frequently in the hydrodynamic interaction terms of

® . the rheological theories mentioned above.

)
b
& .
-
oo *Department of Chemical Engineering and Mathematics Research Center,
t University of Wisconsin-Madison, Madison, WI 53706

@ Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. 1his
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OQur faith in the method-of-reflections approach is based on the
experience with spherical particles where it {s known that one can solve the
mobility problems accurately with a surprisingly small number of reflections
(see for example, Felderhof (1977) and Jeffrey & Onishi (1984)). This~
conclusion appears to hold as well for prolate spheroids. Kim (1984b) has
determined the sedimentation velocities of two arbitrarily oriented spheroids
accurate to order R_5 where R {s the centroid-to-centroid separation, using
i only two reflections beyond the isolated-particle solution.

The method of reflections used here follows Smoluchowski (1911). Readers
who are not familiar with the detalls of this technique are referred to the

.. 1iscussion in Happel & Brenner (1973). The method is summarized as follows.

" The disturbance velocity field generated by a test particle (call this

particle~a) will modify the velocity field seen by other particles (for
i example, at particle-8). We call the disturbance velocity generated by 8 in

response to the disturbance from a as the "reflected field at B". This

process can be continued indefinitely, with each reflected filelds as the
E incident field at higher order reflections.

The disturbance velocity field of an {solated particle can be considered

a reflection with the ambient velocity field as the incident field. We call
J this the zero-th reflection. The first reflection generates reflected fields

it esch particle with the zero-th reflection fields from all other particles

s tne incident flelds. For an M-particle suspension, the N-th reflection
( genarates Mx(M-T)“ reflected fields from Mx(M—1)N-’ incident fields.
é we shall represent the reflected field by a multipole expansion with the 1
? Tiitipcle moments related to the incident field by Faxen laws (Rallison 1978, 3
(] Kim 1983). This approach is direct and simple but its success hinges upon the -i

availability of the Faxen laws for the lower order moments.
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Brennier (1964) has shown, using the Lorentz (1907) reciprocal theorem,

[ that Faxen laws can be constructed if one knows the stress distribution in the

WY N FCTULPLIL TS () VRIS

conjugate velocity problem; i.e. the solution for translating ellipsoids,

rotating ellipsoids and ellipsoids in a rate-of-strain field are required for 9

the Faxen laws for the force (Brenner 1964), torque (Brenner 1964) and

stresslet (Rallison 1978). Furthermore, if the conjugate solution is
axpressed in terms of the fundamental solution of the Stokes equation, (also

l known as the Stokeslet) then as noted by Hinch (1977), Brenner's (1964)
procedure reduces to the simple statement that the Faxen law for the moment
nas the same functional form as the conjugate velocity field. An explicit

i statement and proof is given in Kim (1985a). Therefore, the bulk of the
present work is directed towards finding such singularity solutions for
ellipsolids.

l The singulari.y method has been used by Chwang & Wu (1974, 1975) to solve
exactly the translational, rotational and rate-of-strain problems for prolate

spherolds. These solutions are the conjugates for the Faxen force, torque and

‘-z

stresslet law. In their introduction, they review the history of the
singularity method, including the ploneering works of Lorentz (1892), Oseen

(1927) and Burgers (1938). Other early applications of the singularity method

' are the works on slender-body theory by Hancock (1953) and Tuck (1964). Less
has been done on "thin-body" theory but recent results are available for thin
oblate bodies of revolution, e.g. Barshinger & Geer (1984). As stated by

' Chwang & Wu (1975), "through these investigations, the relative simplicity and
effeciiveness of the (singularity) method have gradually become more

: recognized". However, the primary difficulty is that a priori, one does not

know the type of singularities ind their distributions. In fact, one
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objective of the work of Chwang & Wu (1974, 1975), Chwang (1975) was the

accumulation of a class of exact solutions by the singularity method. Section

2 of the present work adds the general ellipsoidal shape to this collection.

The organization of this paper is as follows. In Section 2, the

ellipsoidal solutions of Oberbeck (1876) and Jeffery (1922) are re-expressed
as singularity solutions, i.e. in terms of the fundamental solution of the
Stokes equation. (Edwardes' (1892) work is contained within Jeffery's
solution). The form of the singularity solution is surprisingly simple. In
addition, the singularity method reveals a unified structure which is not
apparent in the traditional expressions in ellipsoidal harmonics. This
structure suggests new forms for the velocity representations for nonspherical
particles in capillaries and other bounded domains. The speclal case of
oblate and prolate ellipsoids of revolution, including a complete discussion
of the resistance tensors, is provided in the appendix. Section 3 is a
discussion on new forms of the Faxen laws for the forc¢e, torque and stresslet
on an ellipsoid with applications to the method of reflections for two

ellipsoids. The hydrodynamic interactions between two sedimenting oblate

spheroids have been determined and are compared with the results obtained in

Kim (1985b) for prolate spheroids.

et
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2. THE SINGULARITY SOLUTION FOR ELLIPSOIDS

In this section, we will derive the singularity solution for an ellipsoid in
Stokes flow. We will start by describing the classical boundary value problem
followed by a description of the singularity solution. The derivation is )

outlined in the appendix.

2.1 Descrigtion

Consider an ellipsoid with semiaxes of lengths a, b and ¢, with az2bec. The

P W W SR

2

ellipsoid surface satisfiles:
2 2 2
'x_f"%!'*%!"‘]' (2.1)

The governing equations for the velocity, v, and pressure, p, are the Stokes

equations for low-Reynolds-number flow,

-¥p + Wiy = 0, (2.2)

where u is the viscosity; and the equation of czntinulty for incompressible
flow,

V-v = 0. (2.3}
The boundary condi{tions are:

1) On the ellipsoid surface, v is equal to the particle's rigid-body mo*:.

v—>yv =U + 02 xx + E-x,

whe~e U and @ are the partlicle translational anz ~otsiional velocities ar: b
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gw and E are the uniform stream, ambient rotation and rate-of-strain. From

(2.4b), it follows that g° is one-half of Vx!-, the ambient vorticity.

The solution to this problem can be expressed using a distribution of

i(x-x')/(8myu), the fundamental solution of the Stokes equation.

Oseen-Burgers tensor given by

1

Lij = 785y * po¥y¥yy  with oo~ Ix|,
arnd its pressure fleld, p, = g%x ,
J

satisfy the Stokes equation with point forcing,

2

- 2p .-
axi + uv Iij 8nu6ij6(§).
)
and the continuity equation, 5;1J =0

{ see Happel & Brenner (1973) Chapter 2).

I.

the

(2.53)

(2.5b)

(2.6a)

(2.6b)

It is now claimed that the disturbance velocity fleld, !~g.. can be

(2.8a-e)

tten as:
- 2 2,2
vixi-v (x) = I L(n)-(( £, (xty{r + 9—3—v2} I(x-x")/(8mu) dx'dy’, (2.7
== = 1} ) 4n-2 ===
n=1
E
L {(2n-1) 2n-3
with f (x,y) = =——=q .
(n) ZWaEbE
2 231/2
%, y) = [1 - 25 - L17%
E E
s - (222, b - (b2-c2)1/2

Bt I:.(n) - { B E L n=1,
2V + 7.7 if n=2.

Tre folloWwing i3 2 description of the terms whizch appears in the sclution.
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the orlentation trajectories are followed from 9=0 (horizontally

oriented oblate spherolds and vertically oriented prolate spheroids) the
curves in Flgures 2 and 3 fall into two groups, depending on the initial value
of 7. For bdoth oblate and prolate spheroids, if R (at 8=0) exceeds a critical
value, then the particles monotonically drift apart. Their corientations
appronnn asymptotically a limiting value of 8, singe at large separations w
soes to zero, Howsver, for initial values of R less than the critical value,
the rotational motion {s sufficiently large to cause the particles to rotate
v2vond 8=%/2, w~hereafter, the particles drift back towards each other along
trajectories which are mirror images of the outward trajectories. The
separatrix which starts at the critical value of R has the asymptote eu-n/2
{hortzontal orientation).

Av large values of R, the trajectories can be approximated accuarately by
taking just the leading terms on the right-hand-side of evolution equations

f2.12) and (3.13). These approximate equations have exact solutions,

A

- (2/3)(1/Y - 1/XA)(00526 - cosZSo).

el

ohlate spheroids: LI
R 0

= (2/3)(1/%" - 1/¥*)(c0s26 - cos2e,).

3| —

znd prolate spheroids:

0|
(

0
. - © A A 1
Ine resistance functions X and Y are defined in the appendix.

Tre Influence of the aspect ratio is seen by comparing Figures 2 and 3
Yoroaspect ratios of 10 and 2 respectively. As the aspect ratio is reduced,
“ne ~rrlon cccupled by perlodic trajectories enlargens and the trajectories
ntmalziten Into the vertical lines of the spherical case., Finally, at a fixed

at-nger nydrilynamic Interactions hetween oblate spheroids

NENE I

—*

’

Al i 4 far greater regfon of periodic trajestories,
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Figure 1. Mirror symmetry geometry of two inclined spheroids with their
) axes in a common plane. The solid and dashed axes are the
: symmetry axes for oblate and prolate spheroids, respectively
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4. now ronsider two inclined oblate spheroids settling with their axes
Ly.ng in a common vertical plane (Figure 1). At all times, the geometry is
gperified by the dimensionless center-to-center separation, R/a and 8, the

oolar angleu between g1 and the x-axis. At all but small separations, the
two- reflection solution provides accurate answers. The convergence behavior
is similar to that reported in Kim (1985b) for prolate spheroids.

Tne evolution of the geometry is caused by the anisotropy in the mobllity
tensors and the rotation of the spheroids about the y-axis (which for oblate
spheroid is co-incident with a major principal axis). Since the mobility is
less in the axial than in the transverse direction, an inclined spheroid
drifta horizontally as it settles. At the same time, the spheroid rotation
changes the orientation of the axis. These two effects, under the

quasi-steady assumption, are governed by the dimensionless equations (with R/a

rewritten now as R)

fav]

- uy(R,O) (3.12)

b= » B3

= -2V (R,8) (3.13)

Figures 2 and 3 show the evolution of R and 6 as determined by
integrating (3.12) and (3.13) with a fourth order Runge-Kutta routine. The
solid lines are the new results for oblate spheroids and the dashed lines are

the earlier results for prolate spheroids. The plots include the curve
R = 2(1 - e’cos'6)1/2,

for ~ontact between the two spheroids.

4, This 8 differs from the one used in Kim (1985b) for prolate spheroids by
7/2 in order that the same value of 8 in the two problems yields identical
cross-sections in the x-z plane.
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The contributions to the sedimentation and angular velocities on

ellipsoid 1 at the second reflection are obtained by using v,, as the {ncident

12
field in the Faxen laws. The method of reflections result for U, is now

1
accurate to O(R’s). An error of O(R-6) comes from the neglected quadrupole

fields in v,, (for which the Faxen laws are as yet unavailable). Thus the
solution for ellipsoids has been developed to the same level as that presented
for prolate spheroids in Kim (1985b).

It should be clear from the steps used at the first and second
reflections that in general, at higher order reflections, the contribution to

the sedimentation velocity of ellipsoid a from the n-th multipole from

ellipsoid B is of the form:

(m) ([ (f ' :
Lo J) J) T %) (n)2g)
E E
a B

[1+ (3

22 2.2 N 2 ot ’
405 *+ cgag/(4n 2) Jvz} I(xzxp)/(8mu) dA  dA,,
{
where Qén) is the appropriate multipole moment on ellipsoid B obtalned at the

previous reflection. An analogous procedure can be followed to determine the
contribution to the angular velocity.
In actual computatation, the integrals over the fundamental ellipses were

parametrized with the elliptic coordinates:
X = aEpcos¢, Yy = bEpsin¢.

Three-point Gaussian quadratures were adequate for the p-integration (the
Gaussian quadratures were performed after the change of variable, 52 = 1-p2).

Simpson’'s rule was used for the ¢-integration.

v

v

d

A B A

A B o sl al s s

o b e bk

S P SAPATITCIIATLS Py ST P P

EISES TORE TN,

Ly

(305 Vo3 ST SPLTEPLT [

._A./' .




L I T S i e Heetii" Bt S i St i b M i ahadt Mdh Mgy Segs Bo hedt Sk o Ben 2

n vegwew iy e e Jheon 4 -y ~ Py
(llia Sdatulintatint e s At iev San Jhe S iatdint e i iate dat oot fiar s Jhe dape S i g

13 1

weighted by density functions which appear in the singularity solution of the ]
conjugate boundary value problem.

3.1 Sedimentation of two ellipsoids :

We proceed to solve the sedimentation problem for two ellipsoids by the method

of reflections as an application of the general results of Section 2. The 4
zero—-th order solution at particle-a is simply the velocity field generated by
an i{solated ellipsoid subject to an external force Ec' For example, at

ellipsoid 2,

0t - anE, (3.10a)
v. o r -l e (x {1+ 16%6%92) 1(x-x')/(8nu) dx'dy" (3.10b)
=%t fanytxy 2 A% 3¢ W y' .
E R

(Each ellipsoidal particle in the suspension has its own fundamental ellipse
and constants. This dependence is not expressed in order to simplify the

notation). The contributions to the sedimentation and angular velocities on

(1)
1

ellipsoid 1 from the first reflection, U and g§1). are obtained by using

v,(x) as the incident field in the Faxen laws for :he translational and

rotational velocities on a force-free and torque-free ellipsoid. The leadirng

term in the reflected field, Your

v, (X) = (3(1)-V)-[f £ (x',y' {1 + 102 2V2} I(x-x")/(8nu) dx'dy’ 13

21'= 22 JJ (2) 'Y -gcq FAR S 4 u Y. 3.0
E

[ . with the stresslet determined from the appropriate Faxen law, equation (3 M I

is a Stokes-dipole field,

“'T, e G ANk SIS0 aa o ou

~

—— N e e e o

The first reflection at ellipsoild 2 follows in a similar fashion, and the

- expression for the analogous dipole field, v is obtained by switching the

12’

¢ particle labels.
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4
T- NE'JfJ[ £y (xtoy') [ 37 (x") - w ] ax'ay’ (3.5)
R E
?‘ + Wi {} f(z)(x',y'){1 + Bczqzvz} e (x') dx'dy' %
E 4
S M (f £ (x,y) {1 + Jo? 2g2} e, (x') dx'dy' (3.6)
15 " Wigke)) f@t Y 54 ke ' % y -
E
+ It £ (x,y") | 19y (x') - ) dx'dy'
kig)) Ty L3V 8.y XAy
E

For force-free and torque-free particles, these results can be rearranged
into the following expressions for the translational veloecity, rotational

velocity and stresslet.

U - }{ f(l)(x vy {1+ —e2q=v2} v (x*) dx'dy’', (3.7)
E
” - LI L P tdyt |
= r(2)(x ¥') [5¥xy (x )], dx'dy (3.8)
E
+ (c")ijﬂkljff f(z)(x'.y'){1 + %c’qzvz} e:i(g') dx'dy"'
E
-1
Sy = u[Mim - Hpgy(C )mﬂm] (3.9)

[f

x J] f(e)(x',y'){1 + %c=q2v2} 9:1(!') dx'dy’'. 1

E 1

4

® Equations (3.4) to (3.9) reduce to the appropriate Faxen laws for prolate . : #
- spheroids derived by Kim (1985a) in the limit as b —> c.

3 Thus the force, torque and stresslet on an ellipsoidal particle in and .

¢ ambient flow field g‘ are obtained by integrating the ambient velccity, i

vorticity and rate-of-strain (respectively) over the fundamental ellipse,




1

5. ©aXEN LAWS FOR ELLIPSOIDAL PARTICLES

A correspondence between singularity solutions and Faxen laws follows as a
corollary of the Lorentz (1907) reciprocal theorem (Brenner 1564, Kim 1985a).
The new forms of the Faxen laws obtained in this manner are more useful than
earlier infinite series expansions derived by Brenner (1964) and Rallison

(1978) when the higher order derivatives of the velocity field are not

ekl BB

avallable.
The linear relations between the drag, torque and stresslet on the i

ellipsoid and the ambient field can be expressed as:

® 1
- - 4
Fi ”Aij(u U)J (3.1)
T C,.(2"-w), + uH,, E (3.2)
* g = Wy (R Tl g By 3
-
R ©
E Sy = WMy Bl ¥ (070 (3.3)
;: where A, B, ¢, H and M are material tensors whose components may be deduced )
{" from equations (2.9), (2.10) and (2.11). The Faxen relations are

generalizations of (3.1), (3.2) and (3.3) since they give F, T and S in any
ambient velocity field that satisfies the Stokes equations over the unbounded
domain. We apply the reciprocal theorem to the singularity solutions as shown
in Kim (1985a) to obtain the following forms of the Faxen laws for the force,
torque and stresslet:

(f

F = uﬂ'JJ f(1)(x'.y'){1 + %czqzvz} g.(g') dx'dy' - uA-U, (3.4)
E
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In summary, the basic results are:

1
)
1) The disturbance velocity field for a translating ellipsoid (or a fixed ;
ellipsoid in a uniform stream) is generated by a distribution of stokes-
lets and potential doublets over the fundamental ellipse.

2) The disturbance fields for a rotating ellipsoid (or a fixed ellipsoid in
a constant vorticity field) and for a stationary ellipsoid in a rate-of-
strain field are generated by a distribution of rotlets, stresslets and
Stokes-octupoles over the fundamental ellipse.

3) For prolate spheroids, the fundamental ellipse degenerates into a line
segment from one focal point to the other and the singularity solutions of
Chwang & Wu are recovered. For oblate spheroids, the fundamental ellipse

" degenerates into a circular disk with a diameter equal to the focal length
of the ellipse of rotation.

In all cases, the density functions for the dominant singularities are similar

to those which appear in analogous problems in potential theory.
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obtained by evaluating the following harmonic functions at A-0.3

x(1) = abe { [P(x)]"dx. (2.12)
A
a(1A) = abe { [(az*k)P(A)]-1dA. (2.13)
A
with P(A) = [(a2+1)(b2+a)(c?+r)]/2

The lower limit of the definite integral, A(x,y,z), is the positive root of

xz 2 zz
ater T oEex terer T 1t

The functions 8(A) and Y(A) are obtained by successive cycling of the

dependence on a, b and ¢. The ' functions are defined by:
a' (1) = (Y-)/(p%=c?), (2.14)

with B'(A) and Y'(1) defined by successive cycling of the dependence on a, b

and ¢ (and therefore also, a, B and Y). The " functions are defined by:
a"(A) = (b28-c2¥)/(b%-c?), (2.15)

with B8"(A) and Y"(A) defined by successive cycling of the dependence on a, b
and ¢ (and therefore also, a, 8 and Y). This completes the description of the
singularity solution. For the special case of ellipsoids of revolution, these
constants are gliven in the appendix along with a complete description of the
resistance tensors. Asymptotic expressions for the spheroidal resistance

functions are also provided for slender, flat and near-sphere limits.

3. a, B and Y are as defined in Happel & Brenner (1973) and differ from
Jeffery's definition by a factor of (abe). This also holds for the ' .-+
" functions.
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an elliptical disk, as can be seen by looking at the limit ¢ = 0 in equation
(2.7).

The function q(x,y) which appears in f(n) plays a prominent role in the
potential theory for ellipsoidal particles (see Miloh (1974)). 1In fact, in
potential theory, q-1 is the requisite charge distribution over the
fundamental ellipse which generates ellipsoidal equipotential surfaces.
Chwang & Wu (1975) have noted that the distribution of Stokes multipoles in
low-Reynolds-number problems is similar to the distribution of multipoles in
analogous problems in potential theory, except for the presence of additional

degenerate multipoles (the V2

I term) in equation (2.7). The presence of such
quadrupoles (or potential doublet) when n=1 and octupoles when n=2 in (2.7)
are consistent with (and in fact extend) the rules stated by Chwang & Wu
(1975) for prolate spheroids.

To complete the solution, we must relate F, T and S in terms of the
knowns, g“—g, 2-w and E. These relations are found in Oberbeck (1876) and
Jeffery (1922), some of which are shown below. Expressions for other

components can be obtained by the well known mnemonic of cycling the

subscripts x, y and z, and the dependence on a, b and c.

2,-1, o
Fx = 161ruabc(x0 + a,a ) (Ux-Ux) (2.9)
16 2 20 11,02, 20 % 2 2.1
T, = —3muabc(b By + c7Y) [(bS+c Y@ -w ) + (b-c )Z(Eyz+zzy)] (2.10) ]
- 16 - —y vyt ' ' -1 ]
Sxx = —§ﬂuabc (ZuBEXX BgEyy YbEzz)(BbYo + Ybag + absg) (2.11a) :
5,, =5 _ = §ﬂuabc(a2a + b8 )—1 (2.11d) i
Xy ¥x 3 0 0 o

2 2 o
x [(a"-b7)(Qq_- v1-1 1
[ z70g) (GO+BO)[Y0] E(EXY+EYX)]'

Here, Xgr g BO’ YO’ aé. Bé. Yb. ag. BB and YB are constants which are

2
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(n) (1)

rirst consider L » the vector operator. For n=1, L ] = -F.I, the

= - =

Stokes monopole field, where F is the force exerted on the ellipsoid by the

fluid, {.e.

(2)

For n=2, L'“"«1 = [($+T)+V]-I is the Stokes dipole field, where § and T are

the symmetric and anti-symmetric parts of the stress-dipole on the ellipsoid,
§ (gen)x dA

S 1s called the stresslet in Batchelor & Green (1972)1. T is related to the
torque exerted on the ellipsoid by the fluid, by the usual relation between

anti-symmetric dyadic¢s and pseudo-vectors,

:
Tyy =~ 2= Tk

E(x',y'), the integration domain, is the interior of the fundamental

ellipse,

g— + %1 =1, z = 0,

The fundamental ellipse is the degenerate elliptical disk in a family of
confocal ellipsoids. The major and minor semi-axes of the fundamental
ellipse, aE and bE’ are given iIn equation (2.80)2. The density function

f(n)(x',y') in E(x',y') is physically the surface singularity distribution for

1. The isotroplic part of the symmetric stress-dipole usually has no physical
significance. Batchelor and Green (1972) remove this degree of freedom by
setting the trace of the stresslet to zero.

) a0 A A e s e 4
: A

2. Hcbson (1955) and Miloh (1974) use k and (k’-hz)”2 in place of our ac

o and bE'
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Appendix 1. DERIVATION OF THE SINGULARITY SOLUTION
We show here that the singularity solution, equation (2.7), is equivalent to 1
T the solutions obtained by Oberbeck (1876) and Jeffery (1922), i.e., the ‘

solutions obtalned by separation of variables in ellipsoidal coordinates.
- The proof is simple once certain integral representations for x(1) and a
Q(A), the Dirchlet gravitational potential for a solid ellipsoid, are

established. The Dirchlet potential is defined by>:

[*, x? y? z? di
2(1) = mabc J, i = e b (A.1)

The lower limit of the definite integral, A(x,y,z), 18 as defined earlier,

\ The required {ntegral representations are:

®
A
” [} (] 1 ] ]
X = 2abe “ f(”(x ,y)-l—!—_—-!,—l-dx dy’', (A.2)
E
0 = -Y4rabe J{J[ t‘“)(x'.y') qz(x'y') -r!_%r dx‘'dy', (A.3)
E

with f(1) given by equation (2.8a).
The integral representation for yx is derived in Miloh (1974) in the more
general setting of representation theorems for external Lame functionsb. Fﬁ.

The harmonic x is related to the Lame functions by x(1) = 2achg(p) with

~1 e S SRa AR Ja 3 e o (i g i
.o .. . e
. . . . AN - R

p?=a?+A. The integral representation for Q follows from the representation

for x. From Kellogg (1953),

Q= ‘Zﬂfé x(i3;u)/u du. (A W)

L
The parameter u is introduced by replacing a, b and ¢ in the expression for yx
L a This definition 1s the same as in Happel & Brenner (1373) but differs from

Jeffery's by a factor of mabe.

b. These functions are defined in the extensive treatise by Hobson (1955).
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with ua, ub and uc. According to (A.4), Q i{s a superposition of x functions
for a family of ellipsoids imbedded inside the original ellipsoid. This
representation is one way of demonstrating that § is a harmonic. The desired
result, (A.3), can be obtained by inserting (A.2) into (A.4) and performing
the u-integration first.

We are now in a position to recover Oberbeck's solution as given by
equation (5-11.8) in Happel and Brenner (1973) for an ellipsoid in a uniform

stream (streaming in the x-direction with velocity U’):

a2 320 ®
e m T 5 lgregan) T R+ UTlxgraa) T (xgh - 1)+ u
_a? @ 2,-1 3% 2,-1 3y
vy - E?U (x0+°0a ) 9x 3y + U (X0+°0a ) xay (A.5)
a? = -1 _3%q ® 2,1 _3x
V2 = T o (Xgregd % w3z * U (Xgtega ) xg

The distribution of Stokeslets, Iij(!-!')' in the singularity solution

can be decomposed as

-1 -1
—x') = -(x, & -1 ar . |x-
Iij(g x') (xJ %, ;GIJ) + xj B, with r = |x-x']. (A.6)

The x-term in Oberbeck's solution is obtained by taking the first term on the

right-hand-side of (A.%) and recognizing that the integral over the

fundamental ellipse in (2.7) is precisely the integral representation for ¥,

L2 A B es 2 e
- .o

equation (A.2). It is not difficult to show that the integral of the

®
. remaining term on the right-hand-side of (A.6) over the fundamental ellipse is
.
b related to the second derivatives of @, l.e.,
-
= f

Urabe | vyt 1 i_ ! 1Ay' = 2 _ 2 320 (A.7)

L@ /] f(1)(x 'y X] 5% =T dx'dy’, (aJ c”) 3% Tx -
: E r == £
-
}
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with the temporary notation, a,=a, a2-b and a3-c. This completes the

transformation of the Stokeslet distribution.

The potential doublet satisfies
V21 = -2we(r )

for r«0. Therefore, the integral of the potential doublet over the
fundamental ellipse in (2.7) is just the second derivative of the integral
representation for 4. Thus the Q-terms in Oberbeck's solution are obtalned by
combining (A.7) and the distribution of potential doublets in (2.7).

By a similar albeit more tedious procedure, one can relate the n=2 case

in the singularity solution to Jeffery's (1922) solution for rotation and

rate-of-strain. Readers are referred to the (1922) paper for the details of
the ellipsoidal-coordinate solution. In his equations (18), (19) and (20) for
the velocity components, the terms containing the constants A, B, C, F, F', G,

G', H and H' may be rearranged into the stresslet and rotlet distributions of
2_2 '

-c ).
3 )

algebraic rearrangementc, these octupoles and the terms containing the

equation (2.7) plus octupoles of strength (a After some lengthy

constants R, S, T, U, V and W in the (1922) paper (these terms satisfy

Vzg = 0) reduce to the octupoles in equation (2.7). )

c. These steps are omitted here but are avzilable from the author.

PP YT
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Appendix 2., COLLECTION OF RESULTS FOR ELLIPSOIDS OF REVOLUTION 9
The scalar coefficients which arise in the solution of the resistarice problems 3
for ellipsoids of revolution are scattered throughdut the literature. Here, ﬁ

the complete set of resistance coefficients for both prolate and oblate

spherolds are furnished for the convenience of the reader in Tables 1-3. The

information 1s grouped as follows:

1) The expressions for the ellipsoidal constants, ug, Bas oo YB in the limit
_ of oblate and prolate spheroids, are given in Tatle ?.

2) The definitions of and expressions for the eight resistance functions which
relate the force, torque and stresslet on oblate and prolate spheroids to
the net translation, net rotation and ambient rate-of-strain are given in
Table 2. Following Chwang & Wu (1975), the shape-dependence is expressed
in terms of the eccentricity, e, of the generating ellipse.

3) In Table 3, asymptotic formulae are given for all eight functions in the
limit as e —> 0 (near-spheres) and e —> 1 (flat disks and thin needles).

The notation for the resistance functions follows that used by Jeffrey &
Onishi (1984). The letters X, Y and Z are assigned according tom = 0, 1 and
2 respectively, where m is the azimuthal constant which appears in bound;ry
condition. Superscripts A, C, H and M indicate the relation with the

appropriate resistance tensor. The form taken by tensors A and C in Table 2

1s simply the decomposition of the translation and rotation problems inte
motions parallel and perpendicular to the axis of symmetry. The form taken >y

M i{s also a consequence of the particle symmetry. Finally, as a conseg.enca

,tfj;*"ﬁ'-a;',

of the Lorentz reciprocal theorem, YH appears both a3 the torque on a soheroid

in a rate-of-strain field and also as the stresslet on a rotating spherc:®d as

RO
@

L shown by Hinch (1972).

&;. The exact and asymptotic formulae for the resistance functions are

:? plotted in Figures (4a) to (5h), from which it is agparent that the asy ..tctic
b

L forms are accurate over a wide range of aspect ratiscs. Rather curiously, for

-~ ~ 3
(W i

a flat disk, all three torque functions, X7, Y and 7

T ST

are egzual (and nonzors
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Taole 2

A o
F, = 6nua{r‘did RS UTEE X BHCEERR

3

3¢1,C C ®
T, = 8vua {x didj +Y (61j didj)}(n m)j
3 H1
+ 8myua’y > O eikldj)dlgjk

.20 3. M. (1) (2) M, (3)
Spp =3 e Ky, * YMdijk!. * 24 By

1 @
=) 7 ey * dyey,) 4@ - W),

(1) .3 -1 -1
4 e E(dd § )(dkdz 36

(2) 1 -
dijier = 7 (93858 * 448,09 + 4,854, % d48;1dy 4d,d,4,d,)

3 .1 -
45er = 5 Ouedin * S5l ™ Suyfe * 49t * Cgtds

~dy 844y ~ d 8 4dy - d,8,4d, - dy8;,d, + didjdkdz)
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]
.:j::ﬂ Table 2 (continued)
Resistance Functions for Oblate Spheroids
u 1
) XA = % e3 2(2e2-1) c:ot:-1 (___]._—_e___) + 2ev l-e ]
g _ e
= - 4
mo o 2
- YA = -3— e3 (2e2+1) cot 1(—-—1——8———-) - e/ 1l-e ]
F - e
- T -1
/ 2
€ = % e3 cot-l( l—e___) _ e; 1_e2J
e
"~ -1
¢ = ; e3(2-e2) ev 1~e2 - (1-2e2) cot”! (__l-:_%_)
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Table 2 (continued)

......

. Resistance Functions for Prolate Spheroids

L

A

X = ; eﬁ(e) - .g_ 33" 2e + (1+e )108

(1+e)
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[ A 8 16 3| 1+ey] !
Y - B e -
3 eop(e) = — [_ e + (3e? l)los(1 e)]
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| xC - g‘. ey(e) = % e3(1-e?) l—ze - (1-e )log(1+:)]

cC_4 3

Y' = s-e Y (e) = é-e (Z-e ) L -2e + (1+e )log(i+e]]

.
L}
u|a~

15

x [Ze(Ze -3) + 3(1l-e )log(1+e)}| ~2e + (l+e )log(i+e)]

V M 4
) res
M 16 5

5

-e

2" =2 e(1-e )' 3(1-e2) 1og(i"’e

- -1
L 2e + (1+e )1og(1+e)]

M _ 8 B 1+e -1
X' = I- -e )log(1 =2 - 6e]

SI-Ze(l -2e%) - (1-e )log(;-':)]

~-e
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ltey _ 2e(3-5e2)]

=1
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Table 2. The resistance functions for oblate and prolate spheroids
(scaled to the spherical result), as a function of e, the

eccentricity of the generating ellipse.

The constants

o) (e), a(e), v(e) and Y'(e) are as in Chwang & Wu (1975).
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Asymptotic Behavior of Oblate Functions ;
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Table 3 (continued)

Asymptotic Behavior of Prolate Functions ‘g
]
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Table 3. Asymptotic behavior of the spheroidal resistance functions in
the 1imit of spheres, needles and disks.
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Figure 4. The rusistance functions for oblate spheroids, scaled by the
results for spheres. The dashed curves are the asymptotic
forms of Table 3. .
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a. Force/translation (parallel to axis) function XA. ‘ _4
b. Force/translation (perpendicular to axis) function YA. ]
c. Torque/rotation (parallel to axis) function XC. -
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d. Torque/rotation (perpendicular to axis) function Y . ‘j
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Figure 4. (Continued)
e. Torque/rate-of-strain function YH.
\
f. Stresslet/rate-of-strain (axisymmetric straining) function ;\"i
g. Stresslet/rate-of-strain (hyperbolic straining) function YM.
1Y
h. Stresslet/rate-of-strain (hyperbolic straining) function 2"
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Figure 5. The resistance functions for prolate spheroids, scaled by the
results for spheres. The dashed curves are the asymptotic
forms of Table 3.

a. Force/translation (parallel to axis) function XA.

b. Force/translation (perpendicular to axis) function YA.
c. Torque/rotation (parallel to axis) function XC.

d. Torque/rotation (perpendicular to axis) function YC.
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g. Stresslet/rate-of-strain (hyperbolic straining) function YM.
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80 that C becomes i{sotropic and

(c™hy

Hmij

mank£ reduces to

i S et e i o

3,H,(2)
L)

in (3.9), the Faxen law for the stresslet on a torque-free spheroid.
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