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ABSTRACT

The equations of motion of a flexible shuttle-beam—antennas
system are developed and discretized using an assumed modes
® approximation. The system was modeled as & cantilever beam

rigidly attached to the shuttle with a rigid antenna attached

to the free end of the beam., The mass and dimension data for

® the model was taken from a NASA/IEEE Design Challenge Paper

b

[2] dated June 1984, The equations of motion for both the
shuttle-beam-antenns rigid body movement and the vibration of

< the beam with respect to the shuttle were developed making

P 3oa 1.0 L -
[ D
. Y

some simplifyng modifications to fit the modeling as-—

.y -
L)

sumptions. Two proof-mass actuators, capable of producing a

M ¢

TV v v F N
..

P

force in the x and y directions only with no torsionel con-

o

trol about the z axis, were modeled at positions along the

Yo vrroTr

beam. The moments resulting from any torque om the shuttle

Lo

(due to reactiom jets firimng, for example), and moments

X

applied to the antenna at the attach point were also

Lo AT

P T TR S

modeled. The equations of wotion, with the forces and

. moments evaluated, were put in matrizx form. The matrices

e e ™ R il gl s o

were diagonalized, resulting in am identity mass matrix and ﬁ:

diagonal damping and stiffness matrices.

LY A controller was developed for a cursory investigation
into the controllability of the system. The development made
use of linear optimal regulator technmiques which produce

. feedback gains proportional to the state. The state was

vi a




truncated to the amplitudes and velocities of the twelve

modes having the lowest frequencies. Since these amplitudes
and velocities could not be measured directly, state estiia-
tion was used. The feedback gains were developed using
steady state optimal regulator theory. The closed loop
damping coefficient was used as a measure of control improve-
ment. The system was shown to be stable on the very first
control attempt, with a closed loop damping coefficient bet-
ter than the targetted value. Elimination of observation
spillover improved the comtrollability slightly for this
first raun, More runs were made with different weightings of

the controlled modes with similar results.

vii

A !.L;' o

'::
]
x
S
S

L
U




Rl - A4 A4 Bhon kS - Slke il M i Vst Sl el Sl Sl Al Al inilSait Sndl Sal Sdcund Hal o DR S Sl i DAL A P S g Bt B aalr St e A ot B AR a b i

1~

@ MATHEMATICAL MODELING AND CONTROL OF A
LARGE SPACE STRUCTURE AS APPLIED TO

A SHUTTLE-ANTENNA CONFIGURATION

L
I. tro tion

) With the advent of the Space Shuttle, the opportunities
to place large, flexible structures into space are becoming
more and more commonplace. These large structures, along

@ with all their advantages, bring with them control problems
on a scale never before encountered. Extensive rescarch is
being conducted to solve these control problems~-research

L which is constantly being updated eaund improved. The problem
of controlling a large structure containing a virtually ijiwu-
finite number of vibrational modes with limited onboard com-

[ )] puter resources, sensors, and actuators has become the focus
for intense study. Of the control techniques attempted to
date, modern state space control methods seem to be the most

- promising.

In January 1984 an NASA Design Challenge [1] was of-

fered. It is called the Spacecraft Control Laboratory Ex-

® periment (SCOLE) and serves as the focus of a design chal-
lenge for the purpose of comparing different approaches to
control synthesis, modeling, order reduction, state estima-

. tion, and system identification. The SCOLE itself is pre-

1
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sented as a large antenna attached to the shuttle by a flex-
ible beam. The Challenge consisted of two parts—— a mathema-
tical analysis and a laboratory experiment,. Only the mathe-
matical analysis is addressed in this paper.

The first portion of this paper concerns the mathematical
modeling of the shuttle-beam—-antenna system, Unfortunately,
there were many errors in the reference [1]. The paper was
re-released in June 1984 (2] with some of the errors cor-
rected. There were, however, still numerous erzrors in [2]
requiring that almost all of the mathematical modeling be
done from scratch, precluding an extensive investigatiom inmto
the controlling of the system, This thesis therefore pro-
vides a detailed mathematical model of the system. The
system equations of motion were developed assuming the shut-
tle and antenna to be rigid and the beam to be flexible, The
beam was assumed to be capable of transverse bending in each
of two orthogonal directions and to undergo torsional motion
about it's long axis. The assumed modes method was used to
discretize the beam motion and a set of linear first—-order
equations were developed for the system.

Active control of the system was achieved using a trun-
cated dynamical model, uwsing limnear optimal regulator theory

and modal suppression techniques as outlined in [6] and ([7].
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II. Model Configuration

The physical model of the SCOLE is shown in Fig 1. It
consists of the shuttle, a 130 foot flexible beam attached to
the shuttle’s center of mass (an assumption made for modeling
purposes), and a rigid antenna attached at ome cormer to the
beam. The axjis system is as shown: The x (or roll) axis
points out of the nose of the shuttle, the y (or pitch) axis
points out the shuttle’s right wing, and the z (or yaw) axis
points out the bottom of the shuttle, which is nominally
toward the Earth. The xyz reference frame is considered
attached to the shuttle with its origin at the center of mass
(beam attachment point). This frame is frce to rotate about
an XYZ frame, in which the X axis points along the velocity
vector of the shuttle im orbit, the Z axis points to the
Earth’'s center, and the Y axis completes the right-handed
system, The XYZ frame is considered inertial for the pur-
poses of this paper.

Another axis system, fixed to the antenna at the beam-
antenna attachment point, is shown in Fig 2. When the beam
is not deformed, this X4¥424 8xis system aligns itself with
the xyz axis system. When the beam is deformed, the X4Y4%4
axes will be displaced from xyz by what are assumed to be
very small angles. This axis system will be used in the

mathematical development of the equations of motion in the
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next chapter.

Reference [2] furnished the information on the values for
the masses and moments of inertia for the shuttle, reflector,
and entire shuttle-beam-antenna system, This information is
presented in Table I. Also included are the modal damping
and stiffness coefficients for the vibration of the beam,
along with the masses of the proof-mass actuators.

Before developing the mathematical model, the main types
of motion will be aescribed. along with the assumptions made
for both simplification and clarification.

Referring to Fig 1, the first type of motion considered
is the tumbling of the entire shuttle—-beam-~antenna system,
expressed as some arbitrary rotation of the xyz frame about
the inertial XYZ frame. The angular velocity is given as &
(no subscript). A fundamental assumption for the purposes of
this paper is that the shuttle wishes to stay aligned with
the XYZ frame, so any rotation out of that alignment will be
met with the shuttle firing its attitude control jets. This
means that any rotation will be small and of short duration.
The firing of the reaction jets will cause the beam to flex,
resulting in the second type of motion to be discussed.

The flexing of the beam adds a tremendous complexity to
the problenm. Referring to Fig 2, it can be seen that the
bending of the beam will change the overall shape of the
shuttle-beam—antenna system very slightly. An assumption

made here is that the deformations of the beam is small along
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Table I
P Physical Characteristics of SCOLE
Shuttle mass = m, = 6366 .46 slugs
905,443 0 -145,393
™ I, (slug-ft2) = 0 6,789,100 0
Antenna mass = my = 12.42 slugs
e 4,969 0 0
I, (slug-ft?) = 0 4,969 0
0 0 9,938
% Beam mass = mg = 12.42 slugs
Roll Bending: pA = 0.09556 slugs/ft
EI = 4.0 x 107 1b-ft?
E =0.003
o
Pitch Bending: pA = 0.09556 slugs/ft
EI = 4.0 x 107 1p-£t?
» ¢ = 0.003
Yaw Torsion pY = 0.9089 slug-ft
GJ = 4.0 x 107 1v-£¢?
o
¢ =0.003
Proof-Mass
“ Actuators: mass = my = m3 = 0.3108 slugs
O
7
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its entire length, and thus also at the beam—antenna at-

tachment point.

The approach to setting up the mathematical model in this
paper will be to assume the beam and shuttle form a dynamical
system and that the antenna effect is to subject the beam’s
free end to forces and moments. Since the ant;nna is assumed
to be rigidly attached to the beam, the motion of the beam is
totally defined by the rigid-body motion of the shuttle-beam
system plus the elastic motion of the beam tip. The center
of mass of the shuttle-beam—antenna system is assumed to be
unaffected by the elastic motion. This is a good assumption,
considering that the mass of the shuttle is over 500 times
that of the beam—-antenna combination (see Table I).

The overall motion of the beam—-antenna with respect to
the shuttle is to be controlled by force and moment actuators
located on the antenna, along with two proof-mass actuators
(Fig 1), located at positions sn2 and sn3 along the beam to
be chosen by the analyst. The optimum location for these
actuators could be the subject for an entire study. For this
paper, however, the actuators will be assumed to be located
at the 40— and 80-foot positions along the beam (sece Appendix
A). The actuators operate by moving a mass, which causes
forces in the x and y directions only, There is no torsional
input from these actuators. There is, however, a moment
created about the system’s mass center which will tend to

rotate the shuttle-beam-antenna system out of its desired

"




attitude. These moments, although small, will be included in
this study.
Other assumptions made are:

1) The beam does not appreciably stretch, meaning that
it does not deform in the z direction.

2) Any forces in the z direction from the motion of the
antenna are insignificant,

3) There are no specific forces or moments, such as
those due to meteor collisions, solar radiation pressure,
gravity torques, or magnetic or atmospheric effects modeled
in this study. These forces, if they exist, will be small in
comparison to the control torques available,

The nex{ chapter will develop the mathematical model of
the system, which in its general form would be nonlinear and
contain both partial and ordinary differentials. For the
study st hand a linear discrete model was produced using an
assumed modes approach and by considering only small motions

from an undeformed equilibrium position,

AR | RTINS | AT,




ITI. Mathematical Developgent

This section will attack the mathematical development of
the system model in four parts,. The first will be the
choosing of functions to represent the flexing of the beam.
The second will be the derivation of the equations of motion
of the entire shuttle-beam-antenna system, incorporating the
flexing of the beam, and accounting for the rigid antenna
through forces and moments acting on the antenna end of the
beam. The third will be the development of the equations of
motion of the antenna in terms of the displacements and
rotations at the end of the beam, along with the development
of the forces due to the proof-mass actuators. The fourth
section will put the equations of motion together with the
generalized forces and express the system in matrix equation

form for the purposes of applying a control law,

Choosing Proper Fupctions

A discretization approach will be employed in this paper
in choosing functions to represent the motion of the vib-
rating beam with respect to the shuttle, This is known as
an assumed modes approximation. The more modes modeled, the
more accurate the system will be, so this paper will use a
fourteen-mode approximation to ensure that the first several
system modes have converged.

The differential equation of motion for a beam in bending

10
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vibration is given by Meirovitch [1:208-209] as

-a2 EI(x) 32y(z,t) | + f(x,t) = MN(x) 3%y(zx,y) (1)
ax2 322 atz

If the beam is uvniform, this is reduced to

N a2y(x,t) + EI a%y(x,t) = f£(x,t) (2)

at? axt

where y{(x,t) is the transverse displacement, x is a coord-
inate along the beam length, M is the mass per unit length,
and EI is the bending stiffmess. For free vibration the
distributed force f(x,t) = 0. For the case of a2 cantilever

beam the associated boundary conditions are

L}
o

y(0,t)

dy(x, t) = 0
oz x=0

EId2y(x,t) =0 (3)
2z2 zx=L

E1a3y(x,.t) =0

————————

ax3 x=L

Denoting the running length of the beam by s, the mass per
unit length by pA, and definming the two orthogonal components
of bending by u, and u, (see Fig. 3) and assuming the beam

has equal moments of inmertia in these two directions, two
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equations of motion can be written:

® pA 32u_(s,t) + EI a%u_(s,t) =0
at2 asé
pA aznp(s.t) + EI a%u,(s,t) = 0 (4)
@
at? asé4
subject to the conditions
®
2 (0,t) = u,(0,t) =0
du_(0,t) = aup(o.t) =0
' ds ds (s)
EI 32u_(s,t) = EI 32u,(s,t) =0
as2 s=L as2 s=L
@
3 3 =
EI 3%u_(s,t) = EI 9 up(s.t) 0
as2 s=L as3 s=L
®
Since the two deformations u, and u, satisfy identical e
N

relationships, the development will be restricted to u, and

the results applied to both u, and u,. Assume that u, can be

)
da o

written as

u (s, t) = R(sIU_(t) (6)

®
S : .‘ NS

Substituting eq (6) into (4a) and dividing by the product

R(S)Ur(t) yields

)
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G, + EI RIV = 0

L pA R (7)
which implies that
Riv _ “t4n =0 (8)
where
ar4 = —-pA iir = pA mrz (9)
EI U, EI

The above conditions have the general solution
R = A sinays + Bocosays + C.sinha,s + D ,cosha,s (10)
Substituting eq (6) into the boundary conditions yields

R(0) = R'(0) =0 (11)

R"(L) = ll"(L) - o

Solving these four equations simultaneously, the results are
three important constraints which drive the rest of the dev-

elopment:

A, = -C,

o
"
"
|
o
L)
|

= -A (sina L + sinha,L)

(cosarL + cosha,L) (12)

cosa Lcosha L = -1
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h
G
? The last of eqs (12) has an infinite number of solutions.
o
b These solutions will be denoted by a,; and the associated
o
amplitudes by A ;, B.j, Crj, and D ;- The mode shapes are
then given by
¢ R = Agy [(sincris - sinhag;s)
E + (sina ;L + sinha ;L) (cosha ;s - cosarisq (13)
j (cosa,.;L + coshap;L)
!0
The amplitude A.; is arbitrary. For convenience, the
! magnitude Ari will be chosen such that
y
4 L
3 “‘ pA Rikids =1 (14)
" 0
f Expanding (14) and integrating each individual term dir-
o ectly takes a great deal of bookkeeping and substitution (see
b
: Appendix B), but the solution reduces to:
= 1/2
© L —( 1 ) (cosa ;L + coshag;L)
(pAL) (sinariL + sinha ;L)
1/2 (15)
Bei = 1 )
Y (pAL)
! Since the mode shapes have been normalized, they possess the
: convenient property
@
i L
. s pA RiRjds = 511 (16)
0
P. where 8;; is the Kronmecker delta.
;
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The preceeding derivation applies to a cantilever beam
in bending. The beam element in the modél of Fig (3) is
assumed to behave as 2 cantilever in bending in each of two
orthogonal directions (roll and pitch), and in addition to
undergo torsional deformation. The normal modes given by eq
(13) may also be used for pitch bending if the subscripts r

are replaced with p throughout. The roll motion is therefore

given by:
By
ur = : : Ri(S)Uri(t) (17)
i=1
and the pitch motion as
%p
By = 2 : Pi(s)Upi(t) (18)
i=1

where n, is the number of roll modes and n, is the number of

Pitch modes.
The torsional motion about the 2 (yaw) axis, however,
must be treated separately. The differential equation for

the torsional motion on a beam is given by

pJazny - GJOzuy = 0 (19)

at2 3s?

where J is the polar area moment of inertia. The associated

boundary conditions are given by

ny(O.t) =0 (20)
n'y(L.t) =0
16
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Proceeding as in the case of bending vibration, the torsional

mode shapes are given by

Y; = Cyjsinfy s (21)
where

B_:L = (2n-1)n/2 n=1,2,3,... (22)

yi
As before, it is convenmient that the mode shapes be ortho-

gonal, so the condition that must be satisfied is

L
S PJ YiYids = 1 (23)
0

Substituting (21) into (23) results in
L
So pT Cy;2sin?B s ds = 1 (24)

which, after integrating and applying the limits, gives

pJ(2ﬂyiL - sinZﬁYiL) pJL

The sine term goes to zero because 2*beta*L will result in an

integer multiple of pi for all betas.

As before, these functions demonstrate the property

L

The torsional motion may now be described by the relationship

n

ny(s.t) = i Yi(s)in(t) (27)

i=1
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Table 11

Angles, Coefficients, and Squared Frequencies for

the Roll and Pitch Functions

(radians) (tnd/sec)2
1.875102 .20827177241 -,2837201974 18.11807
4.694091 .2889597487 -.2837201974 711.56816
7.854757 .2835001714 -.2837201974 5578.80978
10.995541 .28372971171 -.2837201974 21422 .82836
14.137168 .2837197860 -.2837201974 58541.00381
17.278759 .2837202151 -.2837201974 130635.34107
20.420352 .2837201966 -.2837201974 254837 .51330
23.561945 .2837201974 -.2837201974 451705.09099
26.703538 .2837201974 ~-.2837201974 745221.94382
29.845130 .2837201974 -.2837201974 1162798.20573
32.986723 .2837201974 -.2837201974 1735270.27761
36.128315 .2837201974 -.2837201974 2496900.82710
39.269908 .2837201974 -.2837201974 3485378.78863
42 . 411501 .2837201974 -.2837201974 4741819.36334

where ny is the number of yaw modes, in(t) are time depeu-

dent modal amplitudes and the Yi(s) are given by eq (21).

A computer program was writtem to calculate the roots of
eq (12¢). Using the first fourteem roots, the first fourteen
roll and pitch functions were evaluated, solving for each Ai
and the (comstant) B;'s. The uiz's were also computed, and

the data is tabulated in Table IXI. The betas, being multi-

2,
y1

calculated for the yaw torsion fumctions. This data is

ples of pi, were found directly and the Cyi's and o S were

presented in Table III,

In the next section, certain integral relationships in-

18
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Table II
Angles, Coefficients, and Squared Frequencies for
Yaw Torsion Equation
BiL Ci “‘iz

(radians) (rad/sec)2
1.570796327 .1301023886 6425.3522
4.712388980 ,1301023886 57828.1697
7.853981634 .1301023886 160633.8047
10.99557429 .1301023886 314842.2572
14.13716694 .1301023866 520453.5273
17.27875959 .1301023866 777467 .6148
20.42035225 .1301023866 1085884.520
23.56194490 .1301023866 1445704 .242
26.70353756 .1301023866 1856926 .782
29.84513021 .1301023866 2319552.140
32.98672286 .1301023866 2833580.315
36.12831552 .1301023866 3399011.308
39.26990817 .1301027 866 4015845.118
42 .41150082 .1301023866

4684081.745

needed. Spec

volving the continuous

ifically,

gies involve the following

In1

In2

In3

coordinates u

np,

and Uy will be

the kinetic and potential energies

associated with these variables are of interest.
L

= 1/2S pAu 2ds
0

L
= 1/28 pAﬁpzds

0

six integrals:

L
1/2S pJayzds
0

These ener-—

(28)
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| ® 4
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; - 2. \2 ]
5 Ing = 1/2§ m(a up> ds s
P 0 3s2 --
; 4
) L ) -
: Ing = 1/28 GJ(Gny> ds 3
k Direct substitution of the modal approximations into these :'f:
' integrals yields 'j
l‘ By |
d . 2 -
) Ing = 1/22 U_.“(t) 1
: & i .
1= .
| 2
t .
jo 5" .
L] 2 :._,i
; i=1 T
‘r 2
4 = =
: Ing = 1/22 wei2Upy?
: i=1
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L4

y L]
- 2 )
. = by
4
) where =
\ -
g
A 2 . -
Ori “ri‘EI g
L ) _— —
PA 4
C i
3 2 _ 4 .J
: wpi® = apj EI (30) 3
® pA y
i 2 . 2
f yi” = Pyi"S]
; pJY
L
t This section has determined the orthonmormal eigen-
functions for a fixed-free uniform rod in both bending and
i. torsion. These fupctions will be used as assumed modes for
the beam part of the shuttle-beam—-antenna system in the next
; section. The properties of these functions given in eqs (29)
o and (30) will prove mngseful in this development.

System Egpations

The system’'s equations of motion will be developed using
a combination of Lagrange’'s equations for the elastic motion
of the beam and Euler’'s moment equations for the overall

l motion of the shuttle-beam combination. To that end the

A

E kinetic and potentiasl enmergies for the shuttle-beam combina-
X

g tion will be developed. The effect of the antenna will be
:

(. taken into account through the gemeralized forces due to the
l

E

5 21

|

| ]

]
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forces and moments present at the beam—antenna attachment
point. The beam is assumed to be rigidly attached to the
shuttle at the center of mass of the system, It is further
assumed to bend in two orthogonal directions normal to its
long axis and to undergo torsional motion around its long
axis. The location of a gemeral point in the shuttle-beam

system relative to the system’s mass center is given by

R=1 + 1 (31)

where © = xx + y@ +27 locates a generic point and u denotes

the elastic displacement of the mass particle at r, Defining

is and ib as position vectors of points in the shuttle and

beam respectively, the equation becomes

R, = £ + y? + 22 (32)

= A
By = (ue(z.t) + x)T + (up(z,t) + yI§ + 22
The system kinetic energy is thus given by

. I I
T=1/2 ntvcz + 1/2[ is -l_ls dm,

S S
+ 1/2 /nb ‘Ry  dmy (33)

where m, is the total mass, V., is the velocity of the mass

[

center, mg and my, 8re the masses of the shuttle and beam

respectively, and the superscript I denotes imertial deriva-

]
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tives. Denoting the angular velocity of the body-fixed shut-

tle axes by w and that of an element of the beam by Wy, the

kinetic energy camn be rewritten as
T=1/2m.v 2+ 1/2/ (06 x By)e(d x Ry)dmg (34)
n

., B . B
+ 1/2 f (Ry, + @p x Rp)*(Ry + @y x Rp)dmy

bl

where the superscript B denotes derivatives seen by an

observer fixed in the shuttle body axis, so isB = 0 since

the shuttle is rigid. Furthermore it should be noted that

Ry = d.(z,0)2 + d,(z,8)% (35)
and that w and Wy, are related by

— - [ A

mb=ﬁ+ﬁb/s=w+ny(z.t)z (36)

where uy(z.t) is the torsional angular displacement of the

The kinetic energy is expanded

2ol

beam element at position z.

and expressed in matrix notation as

aterr sl [l 8o R

0

-3
[]

23

CAAAA i e i SR . el g

el R

AR
KR D

‘.

- &)




r‘l"f" A S S Sadh S S i e b AARRAE -SA e e e Attt M SvinCibte fien (it JUtCIMEC AL ML Sl Bd - A A A A S da i S TS N M Md
3

(X u, T N T - x u,
s (e ) T el G- )
Uy ¢ T x u
s + 3;p§) [51,/.] [%/.](;z's + 3;;;)]«1-,, (37)

where Is is the moment of inerstia matrix for the shuttle.

The matrices o and ;b/s in eq (37) are formed from the

components of the  and ab/s vectors in the form

: 0 -0 ® .
~ z
[m] = ©, 0 —:Z (38)
-0 w
y x
&3
3
. The kinetic energy in eq (37) contains terms through order
{ four in the variables o, Up, Wy, Wy, and L2 and their rates.
W. Since it is desirable to provide s linear set of equations
for the motion of the system in the neighborhood of am equi-
librium where all of these variables and their rates are
© small, Twill be reduced to include only those terms of order o
; two or less in these variables. This yields the kinetic ?}
S o,
. !
4 energy &8s i
r j
r '--
1Y .
g T =12 ol (1] fe} 5
H i
b .
u_ T n_ u, T 0 z -y 3
+1/2 ip§ ip{ + 2 ips -z 0 x| {e} 1
L. mb |10 0 0 y -x 0 o
' ir Tro 2 -y 0 0 -z vy 0 z -yl\(O0 -
¢ + 2 %ﬁps ~z2 0 x ;o 2 + 2 {m}T z 0 -x z 0 x 30 % -
0 -z 0 ° -y x 0 y -x 0]'% s
. y y y 4
y <
24
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0 F zz+y2 -5y -3z 0
+ (0 -xy 24+12 -3z, 0 dmy, (39)
3 -x2 -yz xé+y ﬁy

Expansion of eq (39) yields numerous terms including integ-
rals involving the variables x and y linearly and the combi-
nations xy, xz, and yz, Since the elastic deformations LI
Up, and uy spatially depend only on z, these integrals are

all zero from symmetry considerations. Setting these terms

equal tozero yields the kinetic energy in the form

L 3.\Tra o o3,
T = 1/2{e}T [I,+b]}m} +1/2 S p {Bp) |0 AO|lu,) dz
0 i ] Lo o 7]{s,
L 8,0z 0
+ g pA ﬁp -z ] 0 |jw} dz (40)
0 i) o 0o x2+y?

Substituting the assumed modes from the previous section

results in

T = 1/2 {m}T [Is+b]{u} +1/2 {6}T{6} + {ﬁ}T[Sz]T{m} (41)

where
fu}T = (U U v v )
) r,1 r,2 *°° r,nt p,1 P2
Up,a? Uy,1 Uy 2 ... Uy py) (42)
and the Sz matrix in eq (41) has dimension 3 by (nt+np+ny).

Three blocks of terms in the Sz matrix warrant closer

25
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attention. The lower right corner block is 2 + y2 and,

after matrix multiplication and integration, will result in

“
]

@
L
Sz2(3,k) ’S 203J uyidz (43)
0
® where
i=1,2, 3, ..., ng k=n,  + n, + i
@ These terms are considered insignificant for this analysis,
| since a typical value of J will make the toerms small compared
: to the others in the matrix., Therefore these terms will be
|
@ assumed to be zero.
' The other non-zero terms in the matrix are
|
| L
l 8z(1,j) = -S pAsz(z)dz (44)
L 0 -1
’ and -
! .
1 Sz‘zn i) = "SZ(lpj) (45)
A .
where L
‘. i = 1, 2) 3' LU nr, j = nr + 1, nr + 20 ®ee) nr + np
Substituting the eigenfunction expressions into (44) yields
L
i Sz(1,j) = -pA So[zApjstnapjzdz + zBpicosapjzdz (46)
zApjsinhapjzdz - zBpjcoshapjz]dz
@ Integrating each of the four terms separately, and taking
26
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advantage of the fact that

jL + coshaij) = —Apj(sinaij + sinhtuL) (47)

Bpj(cosap

and

= - 1/2
Bpj 1/ (pAL) (48)
eq (46) becomes
Sz(1,j) = 2(pAL3)1/2 (49)
2 -]
(aij)

The Sz(2,i) term will differ by an algebriac sign, and the

subscripts will become ri instead of pj. The potential

| e SIS AR
[

energy can be expressed as

L L j
'S a2q_\2 32u_\2
vV =1/2 El dz + 1/2 EI dz
0 dz 0 dz
L
du,\?2 (50)
L + 1/2 GY dz
0 2z
Using the assumed mode expressions, this becomes
‘ \
F V= 1/2 {U}T[wz} {u} (51)
F \
ﬁ So, forming the Lagrangian and taking derivatives,
!
N }
{ L=T-V
F < fu.t T | }
E aL {01; + {s:] yo (52)
5 2 {u}
b .
|
3
) 27
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aL = - [‘«,2\]{0}

aju}

Forming Lagrange'’'s equations:

d (aL )__ aL i (53)
dt an FRI

1

]
[~

where Q; are the generalized forces to be developed in the
next section. Substituting in the terms just developed, La-

grange’s equations for this problem become

{ﬁ}i»[SzJT{o')} +[\w2\]{ﬂ:~={0: (54)

This equation assumes no damping in the beanm. The damping
will be figured in as one of the last steps before applying
the control law.

Eq (54) is but one of two equations which canm be obtained
from the Lagrangian method. If derivatives are taken with

respect to w, the result is

T - [IT]{«,} + [Sz] {fl} (55)

dw

Applyiﬂg Lagrange’'s method, the result is

4 [aT +[a] aT ={u} (56)
dt Jw Jw

where M is the sum of all moments on the system. The second

term on the left side of the equation can be ignored since it

28
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is of higher order. The remaining terms give the equation

® d (ot ={u} (57)

dt | dw

which are generally referred to as Lagrange’s equations in

L/

quasi-coordinates. Again, substituting in the previously

.

derived terms, the equation becomes

@ [ITJ {w} . I:Sz] {ii} - {u} (58) -

This equation along with eq (54) will serve as the two equa-

S RENYITR

tions of motion for the entire shuttle-beam—antenna system.
Eq (54) is the rigid body equation of motion with a modifica-
tion taking into account the flexing of the beam. Eq (58) is

Euler's moment equation with a coupling term, again to ac—

count for the beam’s flexing.
Now that the functioms have been chosen and the two equa-

tions of motion derived, it is time to turn to the develop-

° ment of the forces and moments on the cantilever beam. This
next section will focus on the term by term derivation of
;h these forces and moments.
g
i Eorce and Moment Development
Now that the unforced, undamped equations for the roll,
- pitch, and yaw bending have been obtained, the next step is
to develop the generalized forces Q; and the moments M of
E eqs (54) and (58).
- The generalized forces are determined from [4] as
29
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:‘ Qi = E fJ'aEJ + E Ek‘ a—k (59) ::
. - : - : -
P‘. i=2 an k=2 an e

where the fj are the applied forces, the éj is the velocity

of the point of application of the force, and the ﬁi are the

modal velocities from eq (42), where i runs from 1 to n, + n, %

+ n. The Ek are the applied torques and Gk is the angular -F

velocity of the element at which the torque is applied. For

the problem at hand the only applied forces of interest are
those shown in Fig 4 due to the actuators and the forces and
moments due to the antenna. From Fig 4 it can be seen that
the forces and moments are applied at three specific loca-
tions. Specifically, the forces are applied at points sn2
(which is 40), sn3 (which is 80), and at the beam-antenna
attachment point sn4 (which is 130). Notice that the index j

ranges from 2 to 4, This is because all forces at snl (the

b

b

3

-

P

E shuttle-beam attachment point) are zero due to the cantilever

model.

|
PR
L.

3 Moments are applied only at sn4. As before, all moments

idond

at snl are zero, so the index k ranges from 2 to 4. Each of

the forces and moments from eq (59) must now be individually

LB S
>
o 19,

identified.

The proof-mass actuators are designed to apply a force in

->
. .
PN N Y N

1
[
-

the X and Y directions only. The X-direction forces are:

30
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Fig. 4. Beam and Antenna Forces and Moments
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fr,2 = m aznr + Fe,2
at2 |s=40
.
fr,3 = m3 3°u, * Fr,3 (60) '
at2 |s=80 :
where the first term in each equation is the mass of the ;

actuator multiplied by the accelerstion of the beam-actuator .:
X attachment point, and the second term is the force metered
k. out by the actuator itself. The sub'script 2 or 3 denotes the
actuator at position sn2 or position sn3 respectively. The

Y-direction forces have an identical form:

F
)
s _ 2
A fp,2 = my 9 up + Fp-2
at2 |s=40
£ = 3l + F (61)
p,3 = ®3 99y p,3
at2 [s=80

The last forces and moments to contend with are the forces
and moments on the beam-antenna attachment point, The NASA
paper [2] gives expressions for these forces which appear to

be in error, Therefore the expressions for the forces and

moments are derived as follows.

Looking at the free-body diagram of the antenna (Fig 4),

@

S\ the forces will be developed from the force equation. The
position, velocity, and ncceler‘tion of the center of mass of
‘ the antenna with respect to the attachment point p are: J
. -3
‘ -
f
h
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F <
) T, = 18.75%4 - 32.5%,
.; -~ — — — - -
&. Ve = dr, + 04 x T, = g x T,
dt
B, = d(@g x Ty) + iy x (B4 x Fo) = g x Ty (62) ]

———————————————

dt

O 3N

These equations make use of the fact that the antenna is

modeled as a rigid body, so the time rate of change of the

position vector in this frame is zero. All higher order

b _

3 terms have been neglected. Now, using F=MA, and denoting

ig the acceleration of the center of mass of the antenna in this

B

frame as ag:

! f4 = mga, = m4(ip + Ec/p) (63)

e
% R

where Ep is the acceleration of the attachment point and Ec/p

is the acceleration of the mass center with respect to point

o p. The acceleration of point p is, in vector form:

g 2 2. A

H = A

: 8, = 3°u,.x + 9 uoy (64)

’ at2 at2 B
. 1

-

b

: The acceleration of the mass center wrt point p takes a

: little more development. Since the antenna is rigidly

L\ attached to the beam, w, is given by
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(65)

where w is the rotation of the entire shuttle—-beam—-antenna

system,

This effect was addressed in the rigid body equation

derivation and will not appear in the antenna-fixed reference

frame,

Therefore, the time—-derivative of w4 is found to be:

P ——
63ut
asat2 s=130
ig = [ 3w, (66)
3sdt2 | =130
2
2] “y
at2 s=130
. -
which can be written in vector form as:
s A A A
wy = a3u, x + a3np y + azuy z (67)
3s3t2  3sat? at? =130

Before taking the cross product of the 64 and the posi-

tion vector,

the vectors must be in compatable frames. It

can be shown that for very small angles, the X4V424 frame and

the xyz frame are essentially equal.

34
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obtain the same result, but will go throvgh the cross-product

step by step, showing what assumptions are necessary.
Referring to Fig. (5), three possible rotations out of the
X4y4z4 are shown, along with their respective rotation mat-
rices. Using the small angle assumption that the cosine of
an angle is approximately equal to 1 and the sine is approxi-

mately equal to the amgle itself, these three matrices become

[~ -
1 -e,, 0
R, =|e,, 1 0
B 0 1
[ 1 0 0o |
R, = 0 1 -0,
0 e,, 1
[ 1 0 64y
Ry = 0 1 0
~04, O 1

Multiplying these together and ignoring amy non—-linear terms,

the rotation matrix from the x4y z4 frame into the xyz frame

is

1 -9, e4y

Rz/a = |92 1 ~04x (68)
-e4y e4x 1
35
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1 0

Xy = 0 ccs e4x
O Sin €'4x
—

(3]

Rotations

cos e4y 0

-sin @4y

-sin 94x

94x-J

ces




wvhere the R, ,, denotes rotation of the x4¥42z4 frame with

respect to the xyz frame. Therefore, the position vector

becomes, in column vector form

18.75 + 32.50,,
T, = 18.750,, - 32.5 (69)

Taking the cross product using matrices, the $4 vector is

written in 'tilda’ form and the cross product becomes

ag/p = | 9sc 0 -a4, 18.7564, - 32.5 (70)
—04p 4 O C18.75604, - 32.504,

Therefore, the acceleration of the mass center wrt point p

is given by (ignoring non-linear terms):

Boyp = 32.504% + 18.7504.F + (-18.7554p - 32.534,)7
= 32.502u 2 + 18.750%u,y - [32.50%u, + 18.7563u;\Q (71)

at2 at2 dsat2 dsat? /

The z comﬁonent will be ignored, since the assumption is
that the beam is not stretched in the z-direction. So,

putting all of the terms together inm the force equation,

f, = n4[<azn, + 32.532ny>Q +-<82up + 18.7sazuy)9] (72)
at2 at? at? a2
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Breaking these forces into their respective components,

_ 2 2
f1.4 = III4 9 ur + 32.5!!4 F:) uy
at2 | s=130 at?
_ 2 2
fp4 = m4 0 np + 18.75“4 F:) uy
at? | s=130 at2

These are all of the forces to be modeled in tkis study. The
expressions for the moments will now be developed.

The only moments to derive are those about the beam-
antenna attachment point (see Fig. 4). These are obtained

from Euler’'s moment equations and are

8p,4] = [14]{64} + [34][14]{m4} + {u4} (713)

The middle term will be neglected because it is of second

order. The w, was given by eq (65) as

s —

dsdt|s=130

= 32 + @ (65)

L
N
[

dsdt|s=130

at =130

Taking the time derivative of eq (65) and substituting in the
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mode approximations, the result is

U_R'(130)

6y = { U,P'(130) (14) ]
UyY( 130) :i
R
From Table I, I-4 is given as )
4969 0 0 2 d
-
I4 = 0 4969 0

0 0 9938 .
——d
So the moments become ;4!
Br, 4 4969 0 o |(U R’ (130) T
i . ’ ,;_-’.'_»‘
8p.af =| O 4969 o [jTprazony + (! (75) X

By, 4 0 0 9938 UyY(130) -
which reduces to L;4
-
L1 .-' .1

Br,4 4969U_ R’ (130) + M4, s

Bp, 4y = {4969T,P'(130) + My, (16) o
o T'.:"*
By,4 99380yY(130) + Mg, ‘ !
Now that each force and moment has been identified, each '5
S
Qi must be developed. A sample derivation of Q; follows, R

Every other Q; ranging from Q, through Q(nr+n,+ny) will have

a similar development.

From eq (59), the Ql will be given by
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! nt np
C By = L J0;R;"(130)% + 0,P;'(130)y
] =1 =1
r
¢
L.
K
;.
¢ 40
b
b
.
e ST o . L , - TN

P

Hie

4
DD
j=2

4
i+ :E: By 00y (17)

aul
The ry term is derived from

-

ry = (x + ur)Q + (y + up)9 - sn2%2

n, n,
= - - ° A L A
T, = © X T, + U;R.(40)x + 2 :U-P-(40)y (78)
2 2 =7 i AR RE
i= j=

So the partial derivative with respect to ﬁlis

9%, = Ry (40)% (79)

AN
Similarly,

= R, (80)% (80)

(- Y
HMile
w

@
(=D
[y

and

Hie

4 = B (130)% (81)

»
e
(WY

The angular velocity 54 was given by eq (65). Substituting

the assumed modes yields
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+ ijlkY(sn4)z+ @ (82)

k=1

The derivative with respect to 61 is then
38, = Ry'(130)7% (83)
4 1
20,

The forces are as given in eqs (60), (61), and (72). The

moment is given by

n

b o
8a = 8 = 4969 E:ﬁ-n-'uso)’\ + Mg 1 (84)
4 = 8r,4 = =~ i%i x 4x

Substituting these expressions into eq (77) gives the first

generalized force as

nl‘
Q, = m, Zl:iiixiuomlum + Fp 5R;(40)
1=

nr
1=

I y
+ n4§ :iiixiuao)nluao) + 32.5n4§ :iikrkuso)xluso)
i=1 k=1

Ry
+ 49692 :i,fixi'uao)n'uso) + MggRy'(130) (85)
i=1
where
i=1,2, 3, ..., n, kK = nr+np+1, °r+“p+2' e nt+np+ny
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Each of the Be+np+ny generalized forces can be derived into "]
similar expressions. Since for this model 14 modes for each

of the roll, pitch, and yaw motions are assumed, there are 42

2 _A_--i. L’A'- I

Q;'s in all. The first 14 will have terms associated with
the second derivative of the roll amplitudes, terms asso-

ciated with the soecond derivative of the yaw amplitudes, and

e .'L A

terms associated with the proof-mass actuator forces in the

x-direction, as shown by eq (85). Expanding these terms in

.
Ad 4

matrix form results in three matrices. For example, using

4‘_‘.“

just the 14 roll terms, the matrix associated with the second

derivative of the roll amplitudes is

Y"‘
. T

. - o
- trtl,l trr1'2 trt1’3 oo ttr1'14

trfz,l trrz.z trtz's P trr2,14

Ty = | trrg 4 trry o trry 3 .o trry 14 (86)

- :‘ &

. ¢ -
. . . .

Erfie,1 trri4,z trryg,3 ... trryg g4
_ -

where

trr; = - mpR;(40)R;(40) - maR;(80)R;(80)

- m4Ri(130)R;(130) - 4969R;'(130)R;(130)

The matrix associated with the second time derivative of the

yaw amplitudes looks like
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ttyl,l tryl’z try1'3 “on try1'14
trys,1 tryz, 2 tryz,3 oo tryz,14

Try = tIY3.1 try3'2 try3'3 oo try3‘14 (87)

tryy4,1 try14.2 try14.3 .ne try14.,14

where
tryi'j = -32.5n4Ri(130)Yj(130)

and the matrix of forces and moments is

= —

-F_ ,RB;(40) - F. 3Ry(80) - Mg, Ry’ (130)
~F; aRp(40) ~ F, 3Ry(80) - M4 Ry’ (130)

Tie = | -Fr, 2R3(40) - F. 3R3(80) - My R3'(130) (88)

The pitch equation will have a right side in an identical
form with the only change being that any roll functions are
replaced by pitch functions. The yaw equation simplifies
into a2 somewhat simpler form, but still has a matrix asso-
ciated with the second time derivative of the yaw amplitudes
and a matrix of force and moment terms. There is no coupling
in the yaw equation with either pitch or roll, which is

expected for a fixed-free model. The yaw matrices are
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ty¥1,1 tyys:,2 tyyi,s
tyys,1 tyys,2 tyya,s
Tyy =] tyys .1 tyys,2 tyys,s
ty¥14,1 tY¥14,2 tYV14,3
where
tyyi,; = -7,086,601Y,(0)Y;(0) - 9938Y,(130)Y;(130)
and

ye¢

r:u4zrl(130)
-M4,7,(130)

-H42Y3(130)

-M4,¥q4(130)

e

These matrices come from the last 14 Q;'s,

through Q42.

Final Model

Before

ating the generalized forces,

fied to represent the

antenna system and its time derivative in terms of the corre-
sponding angular displacements and their time derivatives.

The middle term on the left side of eq (54) can be written as

L i T T T

tying together the

angular

rate
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that is,

equations of motion
eq (54) will be

of the

Q9

(89)

(90)

incorpor-
slightly modi-

shuttle-beam-
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[Sz]r :w} = [sz]T 0, ) = [s;]T ! } (91)

where 8y, O,, and 63 are the angles through which the shuttle

system rotates. Similarly, the first term on the left side

of eq (58) can be rewritten as

[ITJ{J,} - [IT:I{} (92)

The left side of eq (54) is in a very simple form, thanks
to the judicious choice of assumed modes. The right side,
however, contains terms in the generalized forces which will
combine with terms on the left side and complicate them
somewhat. Specifically, each of the generalized forces con-
tains terms which will combine with the identity matrix (the
mass matrix) on the left side of the equation. If eq (54) is
rewritten to incorporate the generalized forces, it can be

expressed as

(1] ' ae
IJ'-OJ'-O U, Tee! 0 1 T llU,] (Tee
I 11 j Thabe w2 boo- | 0
ol 1l oliUpt + sz Tiajs w2 40 0 Tpp—: Toyl{TUpt*{Tpe
I l [ - = - |—-— e
0,0, 1|0, | 0 | o Tyo|lOy ] Ty
(93)

where each single term in the matrices accociated with the
second derivative of the amplitudes represents a 14 x 14

block, and each I represents a2 14 x 14 identity matrix. The
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first matrix onp the right side can be combined with the first
matrix on the left side. The resulting equation can be

written as

M, 0 -T. [T, T, e
o M, -T, [{T,¢ + [Sz}T{é} Ew{]{v} = {1, (94)
[ o o M, ||U | Tye
i where
® Mp = I - Ty
Mp = I ~ Tpp )
My = I ~ T},y
. -
A new vector must now be defined to augment the U vector. ’
It is formed by incorporating the 9's and can be written:
@ X = {o U, U, Uyt (95) .j
This is vector of 45 elements with the first 3 elements being ]
’ the angles through which the shuttle-~beam-antenna system _,:
i.o rotates. Eqs (94) and (58) can aow be added, and their sum .1

expressed as

e — r" b 1 , \ . -':

. Ip | Sz 8 ol olotlo ] Mo )
A =t—r-r=—||.| |m+5+--F= -
| Mz 0 | ~Tyy {Urr+_o-|m1:_| 0-:_0_ 1Ur’ <Trc}

| t Pal So g B P M, 2 ] ]
; 27,0 My ~Tpy | [Tp| [0 040”1t O 1] Tpe :
. o | ol w | |© o1 0 o utl|o T o
e ) y... \ y) L ! y-d \ y‘ yc o

[ B
. remembering that Sz is not a square matrix (im fact, it is a q‘
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3 by 42 for a 14-mode approximation). The new mass matrix in
this equation will now be called M (no subscript), and the
force and moment matrix on the right side will be called F.
The stiffness matrix, which now has zeros as the first three
diagonal elements, will continue to be called w2,

One final operation will be performed on this equation
for convenience. It is desirable for the mass matrix to be
the identity matrix as it was prior to the incorporation of
the generalized forces so that the state—-space form will be
easier with which to work. It is possible to accomplish this
and still keep the stiffness matrix in diagomal form by using
some of the properties of matrix manipulation. If an eigen-
value analysis is donme on the unforced (homogeneous) form of
eq (96), the resulting eigenvectors can be put, column by
column, into a transfer matrix [5:182-186). The vector x can

be expressed as

=0 (97)

ello it~ [e2lfol bl - e}

Now, pre-multiplying eq (98) by

[[(p“u]]‘l =[ul‘1 [@]‘1 (99)

the results will be

[‘1\]|;|'|+ I\K\”n|=[3 ”Fl (100)
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le The mass matrix has thus been reduced to the identity

r
.
P )

matrix, and the new stiffness matrix, K, keeps its diagonal
[ form. The terms on the diagonal of K also happen to be the
® eigenvalues of the unforced system. The term on the right

side of the equation will now be called EF, and will figure

prominently in the control portiom in the next chapter.

< Finally, the damping of the beam must be takem into

account. The damping matrix can be defined as

[p] = [2E0] (102)
o
where the ¢ was defined in the reference [2] as .003 for .3
roll, pitch, and yaw motion., This leaves the final mathema- -
© tical representation of this system as <
\ . \ )O \ .l )
1 {q}+ D n}+ K {'q = | E {F} (103) s
\ \ l \ ( :i
Pb Each matrix on the left side is a 45 x 45 diagonal matrix, ‘i
b and the matrix on the right side is a 45 x 1 matrix, which i}
-]
will be modified in the next chapter. o
-9
- The mathematical model of the shuttle-beam-antenna system ~
has now been derived, resulting inm a single matrix egquation. .
The next chapter will apply apply linear control theory to it )
‘ y
L] to investigate how the system might be controlled. @
B!
Rl
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IV. Control Model i

-]

]

The previous chapters have taken a complicated physical }
system and reduced it into a mathematical model. This model j
has simplified the system somewhat by ignoring numerous non- 5

linear terms. The final mathematical expression consists of

a fairly large matrix equation which will now be used to

L P
2 P S UL )

develop a control law,
The bulk of the conmtrol work dome in this paper is a

direct result of in-depth analyses done by Janiszewski [6]

‘L_‘-J-', L

and Aldridge [7]. The computer programs generated by this
work were modified for use on this model, and other than
observing results, no attempt was made to further the study

of the control techniques employed. A brief outline of the

. N

theory will be presented in this chapter. However, anyone

wishing detailed study of this control method should refer to

0! LU
N (D

the works referenced throughout the chapter.

Py

Since it would be impossible to control all of the modes K

of a vibrating structure, a method must be found to control ’j
the most excitable modes while being careful not to drive any
uncontrolled modes unstable, Janiszewski [6] shows how this

\ is done by dividing the modes into three categories: control- ol

A e A St
1
b

. led, suppressed, and residual. The controlled modes will be

actively controlled. The suppressed modes will not be ac-

]
. tively controlled, but care will be taken to avoid exciting qj
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them while working on the controlled modes. The residual
modes will not be controlled or suppressed, with the as-
sumption that their frequencies are either too high to excite
significantly or, if excited, will dampen out through the
natural damping of the beam.

The first step towards comntrolling the system is to
truncate the mathematical model to 2 reasonable number of
modes with which to work. The ACOSS program developed and
modified by Janiszewski and Aldridge could be easily modified
for this model and handled twelve modes. Since the modes
with the lowest frequencies tend to be the most excitable,
the model’s twelve lowest modes were used. To get just those
modes, eq (103) was put in the proper form by judicious use
of the  matrix. The eigenvectors of the eigenvalue problem
solution, which are the columns of () , were ordered so that
the eigenvalues which appear on the diagonal of the K matrix
were in ascending order., The three lowest frequencies (the
square root of the eigenvalues), which are zero, correspond
to the rigid body modes and must necessarily be controlled to
keep the shuttle in the proper attitude. The next nine modes
are the lowest of the roll, pitch, and yaw beam modes, or-
dered from lowest to highest without regard to which axis
they correspond. It is these modes which are the most ex-
citable and must be controlled or suppressed. To properly
truncate eq (103), the left side will have the top left 12 x

12 sub-matrix extracted from each 45 x 45 matrix. The right
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side will have the top 12 x 10 sub-matrix extracted from the

45 x 10 matrix which results after all matrix multiplication
has been performed. This is done within the computer program
SHUTBM (see Appendix C) and passed to the ACOSS program. The
smaller matrix equation cam now be put in state—space form,

If the state vector is defined as

—_ = * . [ [ T
x 6 U, Up Uy o U, Up Uy (104)
then the state equation can be written as
x = AX + Bu (105)
where
|
0 | I
A - -—'——
~-K ’—D
(106)
0
B = -
B¢

The matrix B¢ will depend on what is chosen as the control

vector u{(t). For this analysis, the shuttle can be torqued
about all three axes as can the antenna. The two proof-mass
actuators can each produce forces in the X and Y directions,.
Using moments and forces for the control vector, it can be

written as
= T
u(t) = th sz Fr3 Fp3 Hl! H4x Mly M4y Mlz M4z (107)

where
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Fr2 and F

p2 tre the forces in the roll and pitch axes

directions made by the actuator at S$=40.

Fr3 and F are the forces in the roll and pitch axes

p3
directions made by the actuator at S=80.

Mg Mly.and Mj, are the moments applied to the shuttle.

Myx: H4y,:nd My, are the moments applied to the antenna.

This control vector must be factored out of the term on
the right side of eqn (103) before it is truncated. What is
left of the F matrix after factoring (and before premultipli-
cation by the E matrix) is denoted as Fyp. This matrix must
be modified slightly so that the elements of the control
vector will be roughly of the same magnitude. Referemce [2]
infers that the actuator forces will be in units of pounds
(since the masses being moved weigh 10 pounds and are driven
a distance of only one foot), or perhaps tens of pounds. The
moments, bowever, are limited by the NASA paper [2] to 10,000
ft-1bs. If these moments are expressed in the control vector
in units of thousands of ft-1bs, them the forces and moments
will be of roughly the same order. To make the conversion,
all elements of the Fy matrix corresponding to a moment in
the control vector must be multiplied by 1000. This has been

done in the computer program MODEL (see Appendix C).

The sensor output can be expressed as

y=Cx (108)

For the problem at hand, the output vector y is given by

4
4
3
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yT = @3 62 63 u (sn2) wup(sn2) wuwrlsn3) upy(sn3) (109)
17 The ACOSS program takes the truncated matrix equation and
forms the state-space equation. It also must be given the C
matrix before it can start the control algorithm, Once it
e has this information along with input options, it can begin el
forming the control law, a brief description of which fol- q
lows,
7. As both Janiszewski [6] and Aldridge [7) point out, the A
state x cannot be measured directly., It can only be measured
through the output y, so a state estimator has been developed
T; for use with this control technique. This estimator takes Hqi
the output y and makes a best estimate of the state x which _4
corresponds to y. The result of this estimator is an equa-— ‘
F tion for the estimated error: g
§.(t) = (Ag -~ E,C.) 8o(t) (110) y
' ;
Hﬁ which includes the estimator gain K,, which was found through :—ﬁ
minimizing the quadratic regulator performance index [8:537]. 3
The same process is applied in finding the control gain G
L(o to be used for feedback purposes in the equations: C
X, (t) = (Ag + BoG)i(t) + B_G&E(t) (111) "
s ¥, = AgZ (t) + BGBE (t) + BGa(t) .j.
The controller and observer gain matrices K and G are
L determined such that the performance indices J. and Jo are 4
! b
*
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minimized where

@

.= | (., Te z, + aTR 5) dt (112)
0
@

I, = o(scTuosc + vIR_¥) dt

The matrices Qc' Q,, R and Ro are chosen by the control

cl
designer. If Q. and Q, are chosen positive semi-definite and
R, and R, positive definite, then A +B.G and A -KC_, are
guaranteed stable.

The closed loop system model can now be formed, as Janis-

zewski [6] by defining a new state vector:
2 = {2 Ty D s Ty g Ty | T (113)

which incorporates the comntrolled sfates. suppressed states,

and estimator error. The closed loop system model can then

be expressed as:

r- —
| !
A, + B.G ' B G | 0
. BV it M
z(t) = 0 | A, - KEC, | ECg | Z(t) (114)
—_——— e o — —
| I
BSG I BSG I AS
e ~

The eigenvalues of the above matrix will show the stabi-
lity (or instability) of the system. All negative eigen-—
values (or complex conjugate eigenvalues with a negative real
part) will show the system to be stable within the limita-
tions of the model. Any positive real parts of eigenvalues

will show the system to be unstable. This would be caused by
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a coupling effect of the KCs term (called observation spill-

over) and/or the ByG terms (called control spillover) since
the optimal regulator theory insures that A.+B.G and A -KC,
are stable matrices.

Once the ACOSS program has built eqn (114), it runs the

eigenvalue problem. At this point it is an unsuppressed run.

o
NN ] I | ) WA |

The program will then run the suppression algorithm, which
effectively stabilizes the system if it was initially un-

stabdble,

KNV MININ

& g
1
P NP T P

The suppression algorithm can be implemented in one of

two ways. The intent is to drive eqn (114) into an upper or

. .
{ lower diagonal form so that the eigenvalues of the matrix !
will be the eigenvalues of the terms on the diagonal, which .q

| all have a negative real part. This can be done by e¢ither

o

driving -
BSG = 0 f
® -1
4 or =
b’, Y
‘ I
; KC, = 0 i
< "

Care must be taken to keep from allowing B.,G or KC_, to become
e zero, lest control or observation be completely lost.
The method used by ACOSS is to find a transformation

matrix T such that the new control vector U(t) will become

a(t) = Tv(t) (115)

LEn g
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This is done through a technique known as Singular Value

Decomposition [9]. Aldridge [7] gives a straightforward

¢ explanation of SVD on pages 42-48.
After having found the T matrix, ACOSS then reruns the
eigenvalues problem, with the results being eigenvalues with
o negative real parts. The system is thus shown to be stable
within the bounds of the mathematical model.
The next chapter will show what the program did to the
. shuttle-beam—antenna system. It is meant as a guide to show
that the system caen indeed be stabilized, and what effect
different control weightings have on its stability. J
‘ A
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V. Results

The intent of this investigation was to show whether or
not the mathematical model developed in Chapter III could be
stabilized, and how the closed loop damping could be improved
over the open loop damping.

No time response was calculated for this system. The
measure of performance was chosen to be the closed loop modal
damping coefficients, cci‘ After each run, this is compared

to each open loop damping coefficient, which was given

oi’
(see Table I) as 0.003. A target value for improvement was
set at ,03, which is a factor of 10 above the opem loop
coefficient.

An initial rum of the ACOSS program was made, using zero
initial conditioms, Initial weighting values of 1 were given
to the weighting matrix F of the matrix—-Riccati equation
[8:541]. The modes selected for control were those with the
six lowest frequencies, These were the three rigid body
modes and the three lowest roll, pitch, and yaw modes. The
suppressed modes were those four with the next lowest fre-
quencies, and the residual modes were the remeaining two,
which had the highest frequencies of those modeled. ACOSS
ran both the unsuppressed and the suppressed algorithms. The
results are shown in Table IV and Table V. Table IV shows

all of the eigenvalues of the modeled system to have negative
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real parts. Table V shows that the .03 performance index was
easily surpassed with these weightings. There is very little
difference between the unsuppressed and suppressed portions
of the run, mainly because the system was stable to begin
with, and no suppression was needed.

Another run was made with the weightings on the control-
led flexible modes set at 50 to determinme the effect on
system eigenvalues. The results, shown in Table VI and Table
VII, as expected, show very heavy damping on the flexible
modes and a very slight change on the rigid body mode
damping, The system is still stable without suppressionmn, so
the suppression portion showed little change as before.

Another run was made to see if the system eigenvalues
could be drivenm unstable. The weighting of the flexible yaw
mode was set at 1000. The system did indeed become unstable,
as shown by the overall system eigenvalues in Table VIII,
There are three complex conjugate pairs of eigenvalues with
positive real parts resulting from this weighting. The sup-
pression algorithm stabilized the system, however, as shown
in Table VIII and Table IX. The eigenvalues again all have
negative real parts, showing the system to be stable, This
shows that the ACOSS program works on this model as it was

designed.
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Table IV

Overall System Eigenvalues

Initial Run

Controlled Modes:

Suppressed Modes:

Residual Modes: 1
@, = q, = EIJ

R, = Ro = [\1\]

1,2,3,4,5,6
7,8,9.,10

1,12

Before Suppression

After Suppression

-0.24024311 + 80.066075361i -0.24019691 + 80.C6608979i
-0.24055247 + 80.188132101 -0.24056484 + 80.18812917i
-0.10488282 + 34.817844031i ~0.,10445463 + 34.818053321i
-0.10461379 + 34.946148591i -0.10483854 + 34.946022741
-0.03907432 + 13.003595411i -0.03902331 + 13.00771146i
-0.03814158 + 13.13582349i -0.03942096 + 13.140260871i
-2.39955811 + 5.0868782941i -2.40027385 + 5.0769074401i
-0.16797683 + 5.594573741i -0.01679353 + 5.597809809i
-0.76047227 + 1.7859636131 -0.75564842 + 1.762731235i
-0.70649699 + 1.8036646171i -0.70786680 + 1.776586936.i
~0.15720756 + 1.8456962471i -0.00556498 + 1.8548716521i
-0.15640709 + 1.836151481i -0.00553401 + 1.8445856981i
-0.86594036 + 0.499810091i -0.86602637 + 0.,499994808i
-0.86622385 + 0.5000386801i -0.86603015 + 0.499998044i
-0.02637183 + 0.0265972911i -0.02661848 + 0.026601183i
-0.00990540 + 0.0099122171i -0.00991154 + 0.0099106171i
-0.00994017 + 0.0100254351i -0.01002882 + 0.010027879i
-0.86602540 + 0.5000000001 -0.86602540 + 0.4999999991i
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Eigenvalues and Closed Loop Damping Coefficients

Table V

A A DA I A S SPI o PR Sadai\ e B

Initial Run

Controlled Modes: 1,2,3,4,5,6

Suppressed Modes: 7,8,9,10

Residual Modes: 11,12
Q. = Q,

¢ BN

R, = R, = [1]

Controlled Modes:

Before Suppression

After Suppression

-0.00991 + 0.00991i & = .707 -0.00991 + 0.00991i ¢ = ,707
-0.01003 + 0.01003i & = ,707 -0.01003 + 0.01003i ¢ = ,707
-0.02662 + 0.02660i & = .707 -0.02662 + 0.02660i & = .707
-2.40027 + 5.07691i & = .427 -2.00427 + 5.07691i ¢ = .427
-0.70787 + 1.77659i ¢t = .370 -0.70787 + 1.77659i &t = .370
-0.75565 + 1.76273i §& = .394 -0.75565 + 1.76273i & = ,394
Suppressed Modes:

Before Supression After Suppression
-0.03902 + 13.0077i & = .003 -0.03902 + 13.0077i & = .003
-0.03942 + 13.1403i & = ,003 -0.03942 + 13.1403i &t = .003
-0.10445 + 34.8181i ¢ = ,003 -0.10445 + 34.8181i ¢ = .003
-0.10484 + 34.9460i & = ,003 -0.10484 + 34.9460i & = .003
Residual Modes:

Before Suppression After Suppression
-0.24019 + 80.0661i & = .003 -0.24019 + 80.0661i & = ,003
-0.24056 + 80.1881i &t = ,003 -0.24056 + 80.1881i ¢t = .003

60

N . N N S e
B et B M A A s e Bt e e le e Bela o B e m e a e mN me & . oen 4t .

R TP PR

BR IO TURIRONUR YO

AP
'_'A,J l/"JA!‘_,.r:..

i
Y

""‘

oA

N |




1 O

......

Table VI

Overall System Eigenvalues

Controlled Modes:

1,2,3,4,5,6

Suppressed Modes: 7,8,9,10

Residual Modes: 11,12

@, =a,=[1 0 0 0 0 0 0 0 0 0 0 o }
o 1.0 0 0 O 0 O O O0 o0 O
0o 0 1 o0 0 O O O O O O0 o
0 0 0 500 0 O O O O O O
0O 0 0 O 500 0 0 O O o0 O
0O 0 0 0 O 500 0 0 o0 0 O
0 0o o0 o0 0 0 1 o0 0 O O0 o
o o o 0 o o 0 1 0 0 O0 O
o 0 0 o o0 O O O 1 0 0 O
0o o 0 0 O O O O0o O 500 O
o 0 0 0 O o O O O O 500
o 0 0 0 O 0 O O O O O 50

R, = R, = [1]

Before Suppression After Suppression
-0.24000054 + 80.065850261i -0.24018449 + 80.066091211i
-0.23968480 + 80.188295571i -0.24056131 + 80.18812968i
-32.9177464 + 0i -32.9345667 + 0i
-0.09589029 + 34.819610221i -0.10445463 + 34.818053311i
-0.09286895 + 34.951973911i -0.10483854 + 34.94602274i
-0.07403583 + 12.887563521i -0.03902331 + 13.007711461i
-0.06884054 + 13.014555791i -0.03942096 + 13.140260871i
-8.07978974 + 01 -8.43563283 + 0i
-7.47846553 + 0i -7.96961656 + 01
-0.27405494 + 5.5863516411i -0.01679357 + 5.5978098091i
-0.55446360 + 1.8588378221i -1.11786810 + 0i
-0.53340846 + 1.81913600214 -0.00556567 + 1.8548716461i
-1.48750669 + 01 -0.00553445 + 1.8445856951i
-0.66519955 + 01 -0.39513958 + 0i
-0.50217705 + 0i -0.43372921 + 0i
-0.02355995 + 0.0258488841i -0.02705426 + 0.026160978i
-0.00994269 + 0.0099897061i -0.00993458 + 0.0098875391i
-0.00877420 + 0.0098945851i -0.01005245 + 0.0100042101i
-1.94580388 + 1.8132021931i -1.94563452 + 1,.81260132914%
-1.94524442 + 1.8123575341i -1.94563911 + 1.812608398i
-1.94564483 + 1.8126041311i -1.94564485 + 1.8126041771
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Table VII
Eigenvalues and Closed Loop Damping Coefficients
@
Controlled Modes: 1,2,3,4,5.,6
Suppressed Modes: 7,8,9,10
& Residual Modes: 11,12
Weightings: See Table VI
Controlled Modes:
@
Before Suppression ter Suppression
-0.00993 + 0.00989i & = ,709 -0.00993 + 0.00989i & = ,709 |
-0.01005 + 0.01000i & = ,709 -0.01005 + 0.01000i & = ,709 .
-0.02705 + 0.02616i & = ,719 -0.02705 + 0.026161 & = .719 ZJ
1A -0.39514 + 0i E =1.0 -0.39514 + 0i §E =1.0 ‘&
-0.43373 + 0i E =1.0 -0.43373 + 0i E =1.0 E
-1.11787 + 0i E =1.0 -1.11787 + 0i E =1.0 B
~-7.96596 + 0i E =1.0 -7.96596 + 0i §E =1.0 S
-8.43561 + 01i E =1.0 -8.43561 + 0i E =1.0 -
-32.9346 + 0i E =1.0 -32.9346 + 0i ¢ =1.0 'J
. «
Suppressed Modes: f1
Before Suppression r Suppression ﬂ?
® -0.03%902 + 13.00771i & = .003 -0.03902 + 13.0077i & = .003 -4
-0.03942 + 13.1403i ¢ = ,003 -0.03942 + 13.14031i ¢ = ,003 O
-0.10445 + 34.8181i ¢t = .003 -0.10445 + 34.8181i ¢ = ,003 -
-0.10483 + 34.9460i & = ,003 -0.10483 + 34.9460i & = .003 {i
.=
Residual Modes: j:
U
Before Suppression After Suppression
-0.24019 + 80.0661i ¢ .003 -0.24019 + 80.0661i ¢ = ,003
-0.24057 + 80.1881i & = ,003 -0.24057 + 80.1881i & = ,003
K g
‘®
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Table VIII

Overall System Eigenvalues

Controlled

Suppressed Modes:

Modes:

Residual Modes:

Q. =@, = 1
0

0

0

0

0

0

0

0

0

0

0

R, =R, = [1]
ejore

-150.26995172
-0.2411541224
-0.2059402063
-38.280270629
-0.0865376915
+0.1107479215
+0.0272984940
+0.5538430430
~-7.3933793757
-0.9721057460
-2.8091057926
-0.5164799305
-1.3225958070
~0.4337955132
~0.2052694774
-0.0224186944
~-0.0091808952
-0.0070312672
-1.9451667499
-1.9457737116
~-1.9456447513

COO0O0COQOCOOOQOOHO

1,2,3,4.,5
7,8,9,10

11,12

COO0O0OO0OO0OOMMROO
COO0OO0OO0COOoOOWLMOOO
COO0OO0OOOOWUMOOOO

uppression

+

I o L B e A S P A E N N Y R Y P

0i

80.05890831i
80.2074037i
0i

34.80520091i
35.29315021i
12.8537225i
11.0878564i
0i

5.50363776i
1.32575141i
1.738385781i
0i

0i

01i

0.02557039i
0.009862271i
0.009426981%
1.812807391i
1.81253073i
1.812604131

» 6

COOQCOQOOHROOOOO

0 o0 O
0 o0 O
0o 0 o0
o 0 0
0 0 o
000 0 0 O
1 0 0O
0 1 o0
0 0 1
0 0 o
0 0 o
0o 0 0
er

-150.300112
-0.24018206
~0.24056305
-39.0747709
-0.10445463
-0.10483854
-0.03902331
-0.03942096
-8.19451804
-0.01679430
-0.00558402
-0.00553445
-0.45336639
-0.21174024
-0.09184072
-0.02703085
-0.01003086
-0.00992552
-1.94563263
-1.94564374
-1.94564486

QO WUMWOOOOOOOOO

a

I IH I + + + 1+ 11+ + 1+ 11+ + 141+ +

(=]

OUNOOODODOOOO0OOOO
HOOQOOOOOOOOOO

000

ression

0i

80.0660909i
80.1881308i
0i

34.81805331i
34.94602271i
13.0077115i
13.1402609i
0i

5.597809811i
1.85487153i
1.844585691
0i

0i

0i

.026180731i
.010023821i
.00989796i
.812608021i
.812604811i
1.81260418i
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Table IX

Eigenvalues and Damping Coefficients

Controlled Modes:

Suppressed Modes:

Residual

Weightings:

Before Suppression

-0.00992
-0.01003
-0.02731
-0.09184
-0.21174
-0.45336
-8.19445
-39.0747
~-150.300

Modes: 11,12

0.00998i ¢
0.01002i ¢
0.02618i ¢
0i t
0i ¢
0i &
0i E
0i ¢
0i E

4+ I

o

Suppressed Modes:

Before Suppression

-0.03902
~-0.03942
-0.10445
-0.10483

Residual

13.00717i
13.14031i
34.81811i
34.94601

*
b
+
hat

Ca X a Ka 2]

Modes:

Before Suppression

-0.24019
-0.24056

+ 80.0661i ¢
+ 80.1881i ¢

See Table VII

1'2.3'4‘5‘6

7,.8,9.10

.708

.707

.718

1.0

CO OO0

.003
.003
.003
.003

.003
.003

te '} essjon
-0.00992 + 0.00998i ¢
-0.01003 + 0.01002i ¢
-0.02731 + 0.02618i ¢
-0.09184 + 0i 14
-0.21174 + 0i &
-0.45336 + 01 14
-8.19445 + 0i £
-39.0747 + 0i &
-150.300 + 014 3

I u ression

-0.03902 + 13.0077i ¢&
-0.03942 + 13.1403i ¢
-0.10445 + 34.8181i ¢

1<

-0.10483 + 34.9460i

ter u ressjion

-0.24019 + 80.0661i ¢
-0.24056 + 80.1881i ¢

b d b ek et

.708
.707
.718
1.0

COO0OO0

.003
.003
.003
.003

.003
.003
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V. Conclusions

[
e 0 ,

A mathematical model was developed for a shuttle-beam-
antenna system. The system was discretized wusing an assumed
modes approximation. The equations of motion were developed

from scratch and linearized by ignoring higher—order terms

5 YO

5 and assuming small beam deflections. The coupling between .
; the rigid-body and flexible motions was takem into account in iﬁ
é. the equations of motion. Fourteen modes were assumed in each i
! of the three directions of motion (roll and pitch bending and }
yaw torsion). The equations of motion were put in matrix )
|
E‘ form, and the matrices diagomalized. .J
: Linear optimal regulator theory was applied to examine ]
E the stability of the mathematical model, A target value of ]
i' .03 for the closed loop modal demping coefficient was used as -i
E a measure of improvement between the open loop and closed
E loop system, The target value was surpassed on the first ﬁ
&‘\ try, using equal weightings on all of the modeled modes. The 2
b weightings were then modified to examine the eigenvalues of {3
the system for openm loop instability. This was found with a E
.;. very large weighting of the flexible yaw mode. The closed !
: loop suppression, as expected, re-stabilized the system. E?
: §
"L :
o “
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;. VII. Recommendatjong

The major emphasis of this analysis was on the mathemati-

cal modeling of the shuttle-beam—antenna system. Unfor-

€ tunately, only a cursory investigation of the control of the
system could be accomplished. A complete study shounld be
made of the time response of the system, using varying ini-

¢ tial conditions to measure how quickly the system cam be

- controlled.

E As mentioned in Appendix A, the choice for the locations

N of the two actuators was based solely upon the mode shapes of
a8 cantilever beam with no mass attached to its free eand. An
analysis could be made to determine the best locations for

* the actuators, incorporating the mass of the antenna into the
mode shapes of the beam.

o The NASA Challenge [2] also gave information (which needs

to be carefully corrected) on line-of-sight calculations.
This would be a better measure of system performance than the
closed loop damping coefficient and should be the subject of

further study. The paper also sets up a maneuvering problem,

Ean S SN NR ZNn SN SEM G A
[Ty .
il

incorporating attitude changes and a slew maneuver of the
; antenna, A complete study can be made on this subject alone.
The major building blocks of a thorough investigationm of
. the control of the system have now been created. The compu-

ter programs have been built with the flexibility to alter
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the locations of the actuators, the weightings of the con-

trolled modes, the number of modes to be controlled and
suppressed, and many other optionms., An investigatiom to find

a complete control law for this system can now be attempted.
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Aggendix A

Cantilever Mode Shapes

The NASA paper [2] gives graphs for the roll, pitch, and
yaw mode shapes of the beam without reference to the type
model used. An investigation into a fixed-free cantilever
beam and a free—-free beam showed that the mode shapes of a
fizxed-free beam closely resemble those in the NASA paper.
The associated frequencies do not match exactly, but no clue
was given as to the number of modes assumed by the paper, and
therefore the accuracy of the frequencies cannot be measured.
The next few pages show the first sevem calculated mode
shapes for a fixed-free cantilever beam using 14 modes for
the roll (and pitch) motion, 14 modes for the yaw motion.
Since the beam bending is identical for both roll amnd pitch,
the roll graphs also accurately depict the pitch modes. A
comparison with the graphs in the NASA paper shows the close
resemblance.

It was necessary to choose the positions along the beam
for the locations of the two proof-mass actuators. This was
done by inspection of the roll (and therefore pitch) mode
shapes using the 14-mode approximation graph. The bhigher the
amplitude of any mode shape at a point along the beam, the
more that particular mode will be influenced by an actuator
located at that point. A best fit was thus made to the seven

curves inspected. The 40-foot point showed adequate ampli-
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tude for all seven modes and was chosen as the position of
actuator number one. The 80-foot point showed adequate am-—
plitude for all but mode number 5. Since the frequency for
mode 5 is fairly high and adequate amplitude was shown at the
40-foot point, it was decided that the 80-foot point would be
adequate for the position of actuator number two. It should
be kept in mind that these are the mode shapes for a canti-
lever beam without any mass at its free end. Since the
shuttle-beam-—antenna system does indeed have such & condi-
tion, the best positions for the actuator locations could
very well be different from those used here. This would
represent 8 completely different study, and the positions

chosen here will serve the purposes of this investigation.
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Appendix B

Derivation of Coefficients for Roll and Pitch Functions

This section shows the development used to solve for the

coefficients of the equation

Ri = A;sinal + Bjcosal + C;sinhal + D;coshal

with the constraint
L
S pAR;R;ds = 1
0

The i subscript will be dropped for convenience, and the pA
will be rewritten as pa to avoid confusion,. Several other

constraints also apply to this problem:

A= -C
B = -D
cosaL*coshal = -1
B = -A(sinSL + sinhagl) = -QA

(cosal + coshal)
Thus the function becomes
R = Asinel - QAcosal - Asinbhal + QAcoshal
Substituting this function into the constraint equation:

L
1 = pa y [Asinas - QAcosas - Asinhas + QAcOshas]2 ds
0
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Carrying out the multiplication results in
1/pa = AZSL[sinzas - 2Qsinas - 2sinassinhas
0

2

+ 2Qsinascoshas + chos as + 2Qcosassinhas

-2Q%2cosascoshas + sinh2as - 2Qsinhascoshas :
+ choshzas] ds B
-
.Q
Integrating each term separately yields ]
1/pa = A2)|s - sin2as|L - 2Qfsin2as|l .
2 4a 0 2a 0 - 4
i L
L
- 2 |coshassinas - sinhascosas
2a 0
- ]
+ 2Q|sinhassinas - coshascosas L %
2a 0
+ Q2 | s + sin2as L
2 4a |0

L
+ 2Q | coshascosas + sinhassinas
2a 0

- 2Q2 [sinhascosas + coshassinas] L

2a 0
+ sinhascoshas - s L - 2q |sinh2as|L
2a 2(0 2a 0

+ Q2 s + sinhascoshas L
2 2a 0
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Plugging in the limits and rearranging terms gives:

1/pa = A2 @2 - 1) sin2al - Qsinal
4a a

a a

- (Q2 + 1) coshal sinal + (1 - Q2> sinhalcosal

+ 2Qsinhalsinel + (Q2 + 1> sinhaLcoshal
a 2a

+ Q2L - QsinhzaL]
QaQ

To simplify this further, a very close look must be taken at

Q, @2, @2 - 1, and @2 + 1:

Q2 =[sinal + sinhaL\2
cosal + coshal

= sin2al + 2sinaLsinhal + sinh2qL

cosZal + 2cosalcoshal + cosh2al
but
cosZaL + 2cosalLcoshal + cosh2al
= cos2al -2 + coshZalL
= (cosZal - 1) + (coshZaL - 1)
=-sin2aql + sinh2al

so, substituting:
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Qz—l = sinzaL + 2sinaLsinhal + sinhzaL - sinzaL + sinhzaL

-sin2qL + sinh2gL

2sin2qL + 2sinalLsinhal

—sinzaL + sinhzaL
in the same manner:

@2 + 1 = 2singLsinhal + 2sinh2al

—sinzaL + sinhzaL

Substituting in these expressiomns for Q, a2, @2-1, and Q2+1:

1/pa = A2| sinal singlL + sinhsL \ sin2ealL

2a -sinzaL + sinhzsL

- (sinal + simhal)(sin2gqL)
a(cosal + coshal)

-2 (sinaLsinhaLcoshal) (sinal + sinhal)

a(-sin2aql + sinhZgL)

- 2sin2qLcosal(sinal + sinhal)

a(—sinzaL + sinhch)

+ 2sinalLsinhaL(sinal + sinhal)

a(cosal + coshal)

+ sinh2aLcoshal(sinal + sinhalL)

a(-sin2al + sinh2al)
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+ L(sin2ql + 2sineLsinhal + sinh2al)

E. —sinzaL + sinhzaL

- sinh?aL(sinal + sinhal)
a(cosal + coshal)

now, let

SR } SNSRI | § SRR

sinal + sinhal = x

—sinzaL + sinhzaL

s0: :
1/pa = A2 zsin2qLcosal - EsinzaL(cosaL + coshal) !
' a 'J
.
- stinaLsinhaLcoshaL - ;isinaLcosaLsinhaL -j
a a =
"

+ 2:}cosaL + coshal)sinhalsinal + :}inhzaLcOshaL

a a

—d
u

+ Lfsinal + sinhaL\2 - Xx(cosal + coshaL)sinhzaL
coselL + coshal a

RN
PIRPURIALI 4

Combining and cancelling appropriate terms:

1/pa = A2 -xsin2eLcoshal - xsinhZaLcosal
a a

+ Lfsinal + sinhaL)2
\fosaL + coshal

Combining the x/a terms and re-substituting for x:
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-x(sin2aLcoshal + sinh2aLcosal) = - | sin3aL + sin3aLcosal

a(—sinzuL + sinhzaL)

2

+ sin“aLcoshalsinhal + singLcoselsinhal

a(—sinzaL + sinhan)

— |sinaLcoshal(1 - cos2al) + coshaLsimhaL(1l - cosZalL)

a(—sinzaL + sinhzaL)

+ sinaLcosaL(cosh2aqL - 1) + sinhaLcosaL(cosh2aL - 1)

a(-sinZaL + sinh?ql)

=—|sinaLcoshal - sinaLcoshaLcos2al + coshgLsinhal

a(-sin2al + sinhZal)

+ -coshaLsinhaLcos2al + sinaLcOsaLcoshzaL

a(—sinhzaL + sinh2ql)

+ -sinaLcosal + cosaLsinhaLcosh2al -sinhaLcosal

a(—sinzaL + sinhzaL)

Every cos®*cosh product can be replaced by -1, so:

- 1 sinaLcoshal + sinaLcosal + coshalsinhal + sinhalcosal
a -sinZgl + sinh2qL
+ -sinaLcoshal -sinalLcosal -sinhalcoshal -sinhal cosal

—sinzaL + sinh2al
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So, the remaining term is the only non—-zero term, resulting
L 4 ;
in:
1/pa = A2L [ sinal + sinhaLl)?
cosal + coshal
|~
Solving for A:
A = 1 1/2/cosaL + coshaL\
°® paL \sinaL + sinhaL}
And solving for B:
\
= - = - 1/2
o B = -QA = 1 /
pal
L 4
@
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PROGRAM MODEL

2 R X A X R A2 R R 2 A A R R R 2 R R R R R R R R E R A R R R R R R R R R E R R R R R R R T

THIS PROGRAM TAKES THE ANGLE DATA FROM 'FDATA1' AND COMPUTES
THE A-, B-, AND C- COEFFICIENTS FOR THE ROLL, PITCH, AND YAW
EQUATIONS. IT ALSO COMPUTES THE OMEGA-SQUARES FOR THESE EQUA-
TIONS. IT THEN EVALUATES THESE EQUATIONS AT BOTH ENDS OF THE
FIXED-FREE BEAM. IT INCORPORATES SOME CORRECTION FACTORS DUE
TO THE MOTION OF THE PROOF-MASS ACTUATORS (LOCATED AT POSITIONS
SN1 AND SN2). THE PROGRAM PUTS ALL OF THIS INFORMATION IN MATRIX
FORM, CREATING TWO MATRICES--A MASS MATRIX 'M’' (STORED IN DATA
FILE 'FMASTM'), AND A STIFFNESS MATRIX 'O’ (MADE UP OF THE OMEGA-
SQUARES AND STORED IN DATA FILE 'FMASTK'). THE REST OF THE PRO-
GRAM SOLVES THE EIGENVALUE PROBLEM FOR THESE TWO MATRICES FOR
COMPARISON WITH THE NASA PAPER.

(A2 A A 2 R R R R AR R R 2 R R R R 2 R 2 2R 2 R R R 2 2 2 2 R 2 2 R R R R R R R R S F R R SR E R T

DOUBLE PRECISION A(14),B(14),C(14),ALPHAL(14),ALPHA(14)
DOUBLE PRECISION BETAL{14),BETA(14),0MESQR(14),0MESQP(14)

DOUBLE PRECISION PHI(14),PHIPR(14),PHIZ(14),PHIPRZ(14),0MESQY(14)

DOUBLE PRECISION THETA(14), THEPR(14), THETAZ(14), THEPRZ(14)
DOUBLE PRECISION PSI(14),PSIPR(14),PSIZ(14),PSIPRZ(14)
DOUBLE PRECISION PHICR1(14),PHICR2(14),THECR1(14), THECR2(14)
DOUBLE PRECISION PHICOR(14,14),THECOR(14,14),PMAT(7,45)

DOUBLE PRECISION FR(14,14),GR(14,14),FP(14,14),GP(14,14),0NE
DOUBLE PRECISION FY(14,14),GY(14,14),M(42,42),0(42,42)

DOUBLE PRECISION Al,A4,.B1,B4,C1,C4,D1,6M1,M4,Y4,Z4,M2,M43, SN1, SN2

DOUBLE PRECISION FBMAT(45,10)

REAL AA(42,42) ,BB(42,42),COMP1,COMP2,VREAL(42,42),HERTZ(42)
REAL WK(1888),BBETA(42), FBMATX(45,10), PMATX(7,45)

COMPLEX ALFA(42),VEC(42,42),VECT(42,42),EIGENV(42),0MEGA(42)
COMPLEX TEMP(42)

INTEGER I,7J,K,L,Q,U,V,V¥,X,Y,2

INTEGER IA,IB,N,I1JOB,IZ, IER

PARAMETER (A1=905443.00,A4=4969.0,B1=6789100.0,B4=4969.0,

1 C1=7086601.0,C4=9938.0,D1=-145393.0,M1=6366.46,M4=12 .42,
1 M2=,3108,M3=,3108,SN1=40.0, SN2=80.0)

PARAMETER (V=14,W=15,X=28, Y=29,Z=42)

A A AR A Al R R R 2 X R A 2 A R R R R R 2 R R R R R R R R R R R R R R R R R R R R R E R R E R R R RN N

INITIALIZATIONS

(AR R R A2 R R R R R 2 A R R R 2 R R R 2 R R R R R N R R E R R R R R N R R R R R E E R R R E R R N ]

Y4=-18.75%M4
Z4=-32.5%M4
ONE=-1.0
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cccceeeecceccceececceccececececccccecccececccccececccccc

c

READ IN THE ANGLE INFORMATION:

¢ceceececcecececceceecceccececccececccecceccecccceccecccccccccce

C

10

50

70

OPEN(UNIT=7 ,FILE="'FDATAl', ACCESS='SEQUENTIAL',6 STATUS='0LD’')

REWIND(UNIT=7)

FORMAT(E31.24)

DO 20 I=1,14

READ(7,10)ALPHAL(I)
B(I)=-1/(SQRT(.09556%130))

A(I)=(-B(I))*(COS(ALPHAL(I))+COSH(ALPHAL(I)))/(+SIN(ALPHAL(I))

1 +SINH(ALPHAL(I)))
OMESQR(I)=(4E7/(.09556%*130%%4))®(ALPHAL(I)**4)

OMESQP(I)=(4E7/(.09556%130%%4))*(ALPHAL(I)**4)
CONTINUE

IF (I.EQ.111) THEN

PRINT#*, ' YOUR COEFFICIENTS ARE:'
PRINT®*, ' '
DO 40 I=1,14
WRITE(*,10) (A(I))
CONTINUE

ENDIF

DO 50 I=1,14
BETAL(I)=(2.0%I-1)*(DACOS(ONE))/2.0
BETA(I)=BETAL(I)/130

CONTINUE

DO 60 I=1,14

C(I)=SQRT(2/(.9089*130))

OMESQY(I)=(4E7/(.9089¢130%%2))*(BETAL(I)**2)
CONTINUE

IF(I.EQ.111) THEN

PRINT®*, 'THE BETA-LS ARE:’
DO 70 I=1,14

WRITE(*,10) BETAL(I)
CONTINUE
PRINT*, 'THE BETAS ARE:'
DO 80 I=1,14

WRITE(*,10) BETA(I)
CONTINUE

PRINT®, ' AND ALL THE CnS ARE:'
WRITE(*,10)C(1)

ENDIF
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¢cceeeccececcecceccecceccececcccecececceccecceccecceccecececcceccececcecccceccececcccececcceccccecc
C CALCULATE THE PHI, PHI-PRIME, AND PHI CORRECTION FACTORS:
ccececececececceccecccceeecceccecccececccecceccccececceccececcceccecececcceccceccccccccecceccecccecccccc
C
C

DO 90 I=1,14

ALPHA(TI)=ALPHAL(I)/130

90 CONTINUE

DC 100 I=1,14

PHI(I)=A(I)*SIN(ALPHAL(I))+B(I)*COS(ALPHAL(I))

1 —A(I)*SINH(ALPHAL(I))-B(I)*COSH(ALPHAL(I))
C
PHICR1(I)=A(I)*SIN(ALPHA(I)®*SN1) + B(I)®*COS(ALPHA(I)*SN1)
1 - A(I)*SINB(ALPHA(I)®*SN1) - B(I)*COSH(ALPHA(I)®*SN1)
C
PEICR2(I)=A(I)*SIN(ALPHA(I)*SN2) + B(I)*COS(ALPHA(I)*SN2)
1 - A(I)*SINH(ALPHA(I)®*SN2) - B(I)*COSH(ALPHA(I)®*SN2)
C

100 CONTINUE
DO 110 I=1,14
PHIPR(I)=(ALPHA(I))*(A(I)*COS(ALPHAL(I))-B(I)*SIN(ALPHAL(I))
1 -A(I)*COSH(ALPHAL(I))-B(I)*SINH(ALPBAL(I)))
110 CONTINUE
DO 120 I=1,14
PHIZ(I)=0
120 CONTINUE
DO 130 I=1,14
PHIPRZ(I)=0
130 CONTINUE
C
cceeceeeccececececcccececceccecceccccececceccceccecececceccceccccececceccccccecccccccccececcccce
C CALCULATE THE THETA, THETA-PRIME, PSI, PSI-PRIME, AND THETA-
C CORRECTION FACTORS:
¢cceecececcecceccececececcceccececcececececcceccecccececceccecccccecceccceccccccccecccccccececccccce
C
DO 140 1I=1,14
THETA(I)=A(I)*SIN(ALPHAL(I))+B(I)*COS(ALPHAL(I))

1 -~A(I)*SINH(ALPHAL(I))-B(I)*COSH(ALPHAL(I))
C
THECR1(I)=A(I)*SIN(ALPHA(I)*SN1) + B(I)*COS(ALPHA(I)®*SN1)
1 -A(X)*SINH(ALPHA(I)®*SN1) - B(I)*COSH(ALPHA(I)*SN1)
C
THECR2(I)=A(I)*SIN(ALPHA(I)*SN2) + B(I)*COS(ALPHA(I)®*SN2)
1 -A(I)*SINH(ALPHA(I)®*SN2) - B(I)®*COSH(ALPHA(I)®*SN2)
C

140 CONTINUE
DO 150 I=1,14
THEPR(I)=(ALPHA(I))®*(A(I)*COS(ALPHAL(I))-B(I)*SIN(ALPHAL(I))
1 -A(I)*COSH(ALPHAL(I))-B(I)*SINH(ALPHAL(I)))
150 CONTINUE
DO 160 I=1,14
THETAZ(I)=0
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160

170

180

190

200

210
C
C
C

C

220

230

240

260

270

CONTINUE
DO 170 I=1,14
THEPRZ(I) =0
CONTINUE
DO 180 I=1,14
PSI(I)=C{I)*SIN(BETAL(I))
CONTINUE

DO 150 I=1,14
PSIPR(I)=(BETA(I))*COS(BETAL(I))*C(I)

CONTINUE

DO 200 I=1,14
PSIZ(I)=0

CONTINUE

DO 210 I=1,14
PSIPRZ(I)=C(I)*BETA(I)
CONTINUE
CHECK FOR PROPER CALCULATIONS

IF (I.EQ.111) THEN

PRINT®*, 'THE PHI FUNCTIONS EVALUATED AT ZERO ARE:’

DO 220 I=1,14
WRITE(*,10)PHIZ(I)
CONTINUE
PRINT®, ' !
BRIXTS, ITNE1#H]I FUNCTIONS AT 130 ARE:'
WRITE(*,10)PHI(I)
CONTINUE
PRINTs®, ' '
PRINT®, ' THE PHI-PRIME FUNCTIONS AT ZERO ARE:'
DO 240 I=1,14
WRITE(*,10)PHIPRZ(I)
CONTINUE
PRINT®, ' '
PRINT®, ' THE PHI-PRIME FUNCTIONS AT 130 ARE:'
DO 250 I=1,14
WRITE(*,10)PHIPR(I)
CONTINUE
PRINT®, ' '

PRINT#*,'THE THETA FUNCTIONS EVALUATED AT ZERO ARE:'’

DO 260 I=1,14
WRITE(*,10)THETAZ(I)
CONTINUE
PRINT®, ' !
PRINT®*,'THE THETA FUNCTIONS AT 130 ARE:’
DO 270 I=1,14
WRITE(*,10) THETA(I)
CONTINUE
PRINT®, ' '

86

Y YR




% AJMMA UL S At st ¢
”

w
-—

Bl ok Sl an SR A Cad

—r -

v~

[

- e

280

290

300

310

320

aw
w
=]

sNeNsReErisEsEe Ryl

a

321

322

T R R Aafiare Pttt . R W Fw ey

PRINT*,’' THE THETA-PRIME FUNCTIONS AT ZERO ARE:’
DO 280 I=1,14
WRITE(*,10) THEPRZ(I)
CONTINUE
PRINT®, ' '
PRINT®*, 'THE THETA PRIME FUNCTIONS AT 130 ARE:’
DO 290 I=1,14
WRITE(*,10)THEPR(I)
CONTINUE
PRINTs, ' '

PRINT®*, 'THE ASSOCIATED PSI FUNCTIONS AT ZERO ARE:'’
DO 300 I=1,14
WRITE(*,10)PSIZ(I)
CONTINUE
PRINT®, ' '
PRINT#*, 'THE PSI FUNCTIONS AT 130 ARE:'’
DO 310 I=1,14
WRITE(*,10)PSI(I)
CONTINUE
PRINT®*, ' '
PRINT*, 'THE PSI-PRIME FUNCTIONS AT ZERO ARE:'
PRINT®*, ' '
DO 320 I=1,14
WRITE(*,10)PSIPRZ(I)
CONTINUE
PRINT®*, ' '
PRINT®*, 'THE PSI-PRIME FUNCTIONS AT 130 ARE:’
PRINT®*, "' '
DO 330 I=1,14
WRITE(*,10)PSIPR(I)
CONTINUE

ENDIF

I E X E 2 R R R R R R R R R R R RS 2 2R AR R R R R R R R R R R 2 B2

STORE THE PHIPR(I), THEPR(I), PSIPR(I), PHICR1(I), PHICR2(I),
THECR1(I), AND THECR2(I) ARRAYS IN A SEQUENTIAL FILE CALLED 'FRHS’
FOR USE BY SHUTBM.

I R R R R R R R R R R R R R R R R R R R R
OPEN(UNIT=13 ,FILE='FRHS',ACCESS="'SEQUENTIAL',6 STATUS='NEW"')
DO 321 I=1,14
WRITE(13,10)PHIPR(I)
CONTINUE
DO 322 I=1,14

WRITE(13,10) THEPR(I)
CONTINUE
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DO 323 I=1,14
WRITE(13,10)PSI(I)
CONTINUE

DO 324 I=1,14
VRITE(13,10)PHICR1(I)

CONTINUE

DO 325 I=1,14
WRITE(13,10)PHICR2(I)
CONTINUE

DO 326 I=1,14
WRITE(13,10)THECR1(I)
CONTINUE

DO 327 I=1,14
WRITE(13,10)THECR2(I)
CONTINUE

S80S0 CESPBES RSBSOS SPRSEESECESESSS0SSP08S808883888088808888¢20808

STORE THE ANGLES AND CORRECTION IN THE DATA FILE 'FPHCRS’ FOR

CLOSE INSPECTION, IF DESIRED:

S2888002 0308308088808 8883088838888888800838880808088388¢0308%382088¢3808¢

OPEN (UNIT=9,FILE='FPHCRS’,ACCESS='SEQUENTIAL', STATUS='NEV’')
WRITE(9,*)'THE ALPHAnS ARE:'’
WRITE(9,*)' '
DO 311 I=1,14
WRITE(9,10)ALPHA(I)
CONTINUE
WRITE(9,*) "’ !
WRITE(9,*) 'THE ALPHA-40S ARE:'’
WRITE(9,*)' '
DO 312 I=1,14
WRITE(9,10)ALPHA(I)*SN1
CONTINUE
WRITE(9,*)' '
WRITE(9,*) 'THE PHI FUNCTIONS AT 40 ARE:
WRITE(9,*)' '
DO 331 I=1,14
WRITE(9,10)PHICRI(I)
CONTINUE
WRITE(9,%*)’ '
WRITE(9,*) 'THE PHI FUNCTIONS AT 80 ARE:'
WRITE(9,*)’ '
DO 332 I=1,14
WRITE(9,10)PHICR2(I)

K
.
s %
.
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332 CONTINUE

WRITE(9,%) ' '
WRITE(9,*) 'THE THETA FUNCTIONS AT 40 ARE:'’
WRITE(9,%)’ '
DO 333 I=1,14
WRITE(9,10) THECR1(I)

333 CONTINUE

WRITE(9,*)’' '
WRITE(9,*) 'THE THETA FUNCTIONS AT 80 ARE:’
WRITE(9,*)"' '
DO 334 I=1,14
WRITE(9,10) THECR2(I)

334 CONTINUE

e N e Ne e Ne e Ee Ee NeNr Nz ReNe!

ENDFILE(UNIT=9)

5880808803883 0888838000000880888888080088888000088380302800080088080080080¢

THIS NEXT SECTION CREATES THE MATRICES FR, GR, FP, GP, GY,
AND FY., FR IS THE ROLL NASS NATRIX NODIFYING TERM DUE TO THE
MOTION OF THE MASSES ON EACH END OF THE BEAM. FP AND GY ARE
THE PITCH AND YAW MODIFYING TERNS DUE TO THE SAME THING. @GR,
GP, AND FY (WHICH ENDS UP BEING ZERO FOR THE FIXED-FREE MODEL)
ARE MASS MATRIX MODIFYING TERMS DUE TO THE COUPLING BETVEEN
ROLL, PITCH, AND YAW WHEN THE BEAN IS DEFORMED.

0800080050830 08000C88033838088080080080808000888800808038008088008¢800800

DO 340 I=1,14
DO 350 J=1,14
FR(I,J)=—(M1*PHIZ(J)*PHIZ(I) + MA4*PHI(J)SPHI(I)
1 + A1*PHIPRZ(J)*PHIPRZ(I) + A4*PHIPR(J)*PHIPR(I))

350 CONTINUE
340 CONTINUE

C

DO 360 I=1,14
DO 370 J=1,14
GR(I,J)= Z4*(PSI(J)*PHI(I)) + D1*PSIZ(J)*PHIPRZ(I)

370 CONTINUE
360 CONTINUE

DO 380 I=1,14
DO 390 J=1,14
FP(I,J)=-(M1¢THETAZ(J)*THETAZ(I) + M4®TBETA(J) *THETA(I)
1 + B1*THEPRZ(J)*THEPRZ(I) + B4*THEPR(J)*THEPR(I))

390 CONTINUE
380 CONTINUE

DO 400 I=1,14
DO 410 J=1,14
GP(I,J)= Y4*(PSI(J)*THETA(I))

410 CONTINUE
400 CONTINUE
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c
, c

i DO 420 I=1,14 1
@ DO 430 J=1,14 -

a GY(I,J)=(-D1)®(PSIZ(I))*(PHIPRZ(J))
: 430 CONTINUE
420 CONTINUE

DO 440 I=1,14
DO 450 J=1,14

y" FY(I,J)=-(C1¢PSIZ(I)SPSIZ(J) + C4*PSI(I)*PSI(J))
é 450 CONTINUE
' 440 CONTINUE
- C
. C CS00S0SCO OSSOSO 000000SPSSCCESESSSPSSESSESOSOPOSSSSSSCEOSSSOSSOSSROSSSSESSEES
C
o C THIS SECTION CREATES THE ROLL AND PITCH ’'CORRECTION MATRICES'.
C THESE ARE ACTUALLY ADDITIONAL TERMS ORIGINALLY IGNORED IN THE
C DEVELOPMENT OF THE EQUATIONS OF MOTION FOR THE SYSTEARE
C DUE TO THE MOTION OF THE MASSES IN THE PROOF-MASS ACTUATORS.
C
‘- C 5000800800808 80830888080038808088080088083880880088888888080808¢808830808880¢8
: C
DO 451 I=1,14
DO 452 J=1,14
PHICOR(I,J)=-M2¢(PHICR1(I)®PHICR1(J)+ PHICR2(I)*PHICR2(J))
. THECOR(I,J)=-M2¢(THECR1(I)*THECR1(J)+ THECR2(I)*THECR2(J))
1 @ 452 CONTINUE
3 451 CONTINUE
- c
:v (o 0003808 CSSSSPC0SSSSSSSSRSS0PSSERSO0C0ESP008SCS8SSCESSROS
: C
! OPEN(UNIT=19,FILE='FCORS’,ACCESS="'SEQUENTIAL', STATUS='NEVW')
) 16 FORMAT(5(E19.12))
F 17 FORMAT(4(E19.12))
' WRITE(19,%)’ '
WRITE(19,¢) 'THE PHI CORRECTION MATRIX IS:’ .
WRITE(19,*) "' '’ ]
;- k=1 :
« L=5
- 455 DO 456 I=1,14 )
WRITE(19,16) (PHICOR(I,J), =K, L) J
456 CONTINUE :
. WRITE(19,¢)' '
;. K=K+S5
[ L=L+$§
: IF (L.NE.15) GOTO 455 ;
DO 457 I=1,14 1
457 CONTINUE .
: ENDFILE(UNIT=19) -
1t C i
]
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c ;
IF (I.EQ.111) THEN 3
c o
PRINTe, ' '
PRINT®, 'THE U-PHI ROLL MNATRIX IS:’
PRINT®, ' °

DO 460 I=1,14
WRITE(®,10) (FR(I1,7J),J=1,14)
460 CONTINUE :
PRINTs, ' ' o
PRINT®, 'THE U-PSI ROLL MNATRIX IS:'
PRINT®, ' '’
DO 470 I=1,14 -
WRITE(*,10) (GR(I,J),J=1,14) §
470 CONTINUE d

PRINTS®, ' * :
PRINT®, 'THE U-THETA PITCH MATRIX IS:' .
PRINT®,' ' N
DO 480 I=1,14 *

WRITE(*,10) (FP(I,J),J=1,14)
480 CONTINUE
PRINTs, ' '
PRINT®, 'THE U-PSI PITCH MATRIX 1IS:'
PRINTe,’ '
DO 490 I=1,14
WRITE(*,10) (GP(I,7J),J=1,14)
490 CONTINUE

PRINTe, 'THE U-PHI YAW MATRIX IS:' .
PRINTs,’ '
DO 500 I=1,14
WRITE(*,10) (GY(I,J),J=1,14)
500 CONTINUE
PRINTs, ' '

PRINT®, 'THE U-PSI YAW MATRIX IS:'
PRINTe,’ '
DO 510 I=1,14

510 CONTINUE

ENDIF

Q=42
C
C 2000080808000 0008¢0880880008882300¢3000882800828280828082880088¢88300000880¢0¢
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c THIS SECTION CREATES THE MASS MATRIX ‘M’ AND OMEGA-SQUARED
C MATRIX '0’, WHICH WILL HAVE AN EIGENVALUE PROBLEN DONE ON THEM.

C 9038802880380 080830888083808888080308088838828880880828800808808088802000830¢0808

DO 520 I=1,V
DO 530 J=1,V
IF (I.EQ.J) THEN
N(I,J)=1-FR(I,J)-PHICOR(I,J)
ELSE
ENDIF
530 CONTINUE
520 CONTINUE

DO 540 I=1,V
DO 550 J=Vv,IX
M(I,J)=0
550 CONTINUE
540 CONTINUE

DO 560 I=1,V
L=J-X
M(I,J)=-GR(I,L)
570 CONTINUE
560 CONTINUE

C
c
DO 580 I=VW,X
K=I~V
DO 590 J=1,V
M(I,J)=0

590 CONTINUE
580 CONTINUE

DO 600 I=VW,X
K= I-V
DO 610 J=V,X
L=J-V
IF (I.EQ.J) THEN
M(I,J)=1-FP(K,L)-THECOR(K,L)
ELSE
M(I,J)=-FP(K,L)-THECOR(K,L)
ENDIF
610 CONTINUE
600 CONTINUE

DO 620 I=VW,X
K= I-V
DO 630 J=Y,Z
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L=J-X
U(I.J)'-GP(‘. L)
630 CONTINUE
620 CONTINUE
C
Cc
DO 640 I=Y,Z
K=1I-X
DO 650 J=1,V
I(IOJ)B-G!("J)
6350 CONTINUE
640 CONTINUE

DO 660 I=Y,Z
DO 670 J=V,X
l(I.J’)'O
670 CONTINUE
660 CONTINUE

DO 680 I=Y,Z
K=I-X
DO 690 J=Y,Z
L=J-X
IF (I.EQ.J) THEN
M(I,J)=1-FY(K,L)
ELSE
.(IaJ)--FY(lpL)
ENDIF
690 CONTINUE
680 CONTINUE
C
C WRITE THE N MATRIX
C
IF (I1.EQ.111) THEN
PRINT®, 'THE M MATRIX IS:'
PRINTs, ' '
DO 700 I=1,Z
DO 710 J=1,2Z
WRITE(*,10)M(I,7J)
710 CONTINUE
700 CONTINUE
ENDIF

¢ccceecececccecceccecceccecccececcecccecceccceccccecccececcceccccececce -
C PUT THE M MATRIX IN A FILE CALLED FMASTM 3
¢cececececccececececcccecceccecceccccececceccceccecceccecccccececcccccecce g

OPEN(UNIT=8, FILE='FMASTM'’, ACCESS='SEQUENTIAL'’, STATUS="'NEW') q

DO 711 I=1,2
DO 712 J=1,2
WRITE(8,10)M(I,J)
712 CONTINUE
711 CONTINUE
ENDFILE(UNIT=8)
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c
ccccececececececcecccececcecceccecccccceccccccecc
C CREATE THE OMEGA-SQUARED NATRIX
cccceccececceccceccceccccecceccccccecccecccccc
C
DO 720 I=1,V
DO 730 J=1,Z
IF (I.EQ.J) THEN
0(I,J)=OMESQR(I)
ELSE
0(I1,J)=0
ENDIF
730 CONTINUE
720 CONTINUE

DO 740 I=VW,X
K=I-V
DO 750 J=1,Z
IF (I.EQ.J) THEN
0(I,J)=OMESQP(K)
ELSE
0(I,J)=0
ENDIF
750 CONTINUE
740 CONTINUE

DO 760 I=Y,Z
K=I-X
DO 770 J=1,2
IF (I.EQ.J) THEN
0(I,J)=0MESQY(K)
ELSE
O(I.J)-O
ENDIF
770 CONTINUE
760 CONTINUE
C

cceeceecececcecceccecceccecccecceccececcecccccceccecccccccececcccccccccc
C VRITE THRE O MATRIX INTO A FILE CALLED FMASTK
cccececcecececcecccecceccecccecccecceccecccccecccececccccccecceccecccccccceccc

C

OPEN(UNIT=11,FILE="'FNMASTK' ,ACCESS='SEQUENTIAL'’, STATUS='NEVW’)

c
DO 761 I=1,Z
DO 762 J=1,2
WRITE(11,10)0(I1,7J)
762 CONTINUE
761 CONTINUE
ENDFILE(UNIT=11)

DO 780 I=1,Z
DO 790 J=1,2
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790
780

s e NN NeNeNeRr N e Re Nr Ke Kz

1010
1000

1020

1030

AA(I,J)=REAL(0(I,J))
BB(I,J)=REAL(N(I,J))

CONTINUE
CONTINUE

8888000088053 058883088380555¢80¢0008080883808088030830888820080038¢8388

THIS SECTION BUILDS THE [FBI]
LEFT OVER ON THE RIGHT HAND SIDE (OTHER THAN THE INVERSE TRANS-
FORMATION MATRIX) AFTER THE CONTROL VECTOR [FC] IS BROKEN OUT.

THE RIGHT HAND SIDE LOOKS LIKE:

S80S 80088388508808888830388388888888080883808088888388808808¢8088880880¢¢3

DO 1000 I=1,45
DO 1010 J=1,10
FBMAT(I,J)=0
CONTINUE
CONTINUE

FBMAT(1,2)=S8N1
FBMAT(1,4)=8N2

FBMAT(1,5)=1000.0
FBMAT(1,6)=1000.0

FBMAT(2,1)=-8SN1
FBMAT(2,3)=-SN2

FBMAT(2,7)=1000.0
FBMAT(2,8)=1000.0
FBMAT(3,9)=1000.0
FBMAT(3,10)=1000.0

DO 1020 I=4,17
K=I-3

FBMAT(I,1)=-PHICR1(K)
FBMAT(I,3)=-PHICR2(K)
FBMAT(I,6)=-PHIPR(K)*1000.0

CONTINUE

DO 1030 I=18,31
K=1I-17

FBMAT(I,2)=-THECR1(K)
FBMAT(I, 4) =-THECR2(K)
FBMAT(I,8)=-THEPR(K)*1000.0

CONTINUE

DO 1040 I=32,35
K=I-31

FBMAT(1,10)=PSI(K)*1000.0

R P L P

'FBMAT', WHICH IS WHAT IS

[E]1[FB]FC.
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1040 CONTINUE

DO 1050 I=1,45
P DO 1060 J=1,10
FBMATX(I,J)=REAL(FBMAT(I,J))
1060 CONTINUE
1050 CONTINUE

C
C $8800080800608880083000080800808083080830303080030808888800888888
c c
C THIS SECTION CREATES THE P-MATRIX, WHICH IS FROM THE EQUATION
C Y=p*X, THE P-NATRIX WILL BE MULTIPLIED BY THE NATRIX OF EIGEN-
C VALUES IN 'SHUTBM’ TO PUT THE STATE VECTOR IN MODAL COORDINATES.
Cc
C $00.:00000000800000000038083088080800000350800080388328083800808¢8080080¢
L) Cc
C
DO 1070 I=1,7
DO 1080 J=1,45
PMAT(I,J)=0
1080 CONTINUE
< 1070 CONTINUE
C
PMAT(1,1)=1.0
| PMAT(2,2)=1.0
PMAT(3,3)=1.0
C
L) DO 1090 J=4,17
E=J-3
PMAT(4,J)=PHICR1(K)
PMAT(6,J)=PHICR2(K)
1090 CONTINUE
C
P DO 1100 J=18,31
[ E=J-17
| PMAT(5,7J)=THECR1(K)
PMAT(7.J)=THECR2 (K)
1100 CONTINUE
o
¥ PO 1110 I=1,7
DO 1111 J=1,45§
PMATX(I,J)=REAL(PMAT(I,J))
1111 CONTINUE
1110 CONTINUE S
c —...._:
L' C SOPOS 008000880880 0088880000880880082¢RR008208080300888088888888888¢88¢¢ _,_.__
Cc STORE THE FBMATX AND THE PMATX IN A FILE CALLED 'FBMATX': oo
C $90000808008008080080080080000808008808008000800008808803008880800¢ L
(o .
c T
. OPEN(UNIT=12,FILE='FBMATX', ACCESS='SEQUENTIAL' , STATUS="'NEW') ’.
c -
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12 FORNMAT(E14.7)

DO 1120 I=1,45
WRITE(12,12) (FBMATX(I,J),J=1,10)
1120 CONTINUE

DO 1130 I=1,7
WRITE(12,12) (PMATX(I,J),J=1,45)
1130 CONTINUE

C
ENDFILE(UNIT=12)
C
c
c
C 80325300030 0838880080888888800830080088308083088088888880880080038
C :
C THIS SECTION SOLVES THE EIGENVALUE PROBLEM A*®*X = LAMBDA®B*X,
C VWHERE A IS THE 'O’ MATRIX AND B IS THE '‘M’ MATRIX. IT USES THE
C IMSL ROUTINE EIGZF, WHICH RETURNS THE EIGENVALUES (EIGENV) AND
C EIGENVECTORS (VEC).
c
C $58088880803880483083008888888000300883088823880888888383088888808888¢
C
C
IA=Z
IB=2Z
1Z=2
N=Q
IJ0B=2
c
CALL EIGZF (AA,IA,BB, IB,N, IJ0B, ALFA, BBETA, VEC, 1Z, WK, IER)
c
C
DO 800 I=1,Q
IF (BBETA(I).NE.O) THEN
EIGENV(I)=ALFA(I)/BBETA(I)
ELSE
EIGENV(I)=999999.9
ENDIF
800 CONTINUE
C
c

¢cceceeeececcececcececcececcececcceccececccecceccecceccccecccecceccccecc
C SORT THE EIGENVALUES AND EIGENVECTORS
cceceecececcececececceecccccecccececcecccececceccecccececccccccc
C
IF (I.NE.111) GOTO 861
U=a-1

810 IF (U.NE.O0) THEN

DO 820 I=1,T

KE=I+1
COMP1=REAL(EIGENV(K))
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COMP2=REAL(EIGENV(I))

IF (CONP1.LT.COMP2) THEN
TENP(I)=EIGENV(I)
EIGENV(I)=EIGENV(K)
EIGENV(K)=TEMP(I)

DO 830 J=1,Q
VECT(J,I)=VEC(J,I)
VEC(J, I)=VEC(J,K)
VEC(J,K)=VECT(J,I)

830 CONTINUE
ENDIF 4
820 CONT INUE =
U=0-1 -
GOTO 810
ENDIF
c - of
c ‘ﬂ
861 CONTINUE ]
C ' '
c
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC "
C MAKE THE DOUBLE PRECISION NUMBERS INTO REAL -
v

C CALCULATE THE FREQUENCIES IN RADIANS PER SECOND (OMEGA)
C CALCULATE THE FREQUENCIES IN CYCLES PER SECOND (HERTZ)
cccecececececececccecececccecccececcececceccccececceccecccceccceccccee
c g
DO 840 I=1,Q =4
pO 850 J=1,Q fﬂ
VREAL(I,J)=REAL(VEC(I,J)) .
850 CONTINUE
840 CONTINUE

DO 860 I=1,4Q

OMEGA(I)=SQRT(EIGENV(I))

HERTZ(I)=0MEGA(I)/(2*AC0S(~-1.0))
860 CONTINUE
C
C
ccceecceccecceccccceccececcececceccecccecccecccecceccecccccercecccceccececccecccecccccceccccc
C STORE THE INFORMATION IN FILES 'FFREQQ’ AND 'FIGVCT'.
cccceececececccecceccecceccececcccececccccecccecccecceccccceccccecceccccccecccceccecccccccccccce
C
C

OPEN(UNIT=15, FILE='FFREQQ’ ,ACCESS='SEQUENTIAL', STATUS="'NEW’)
7 FORMAT (A24)
WRITE(15,7) "' '
WRITE(15,7)'THE EIGENVALUES ARE: '
WRITE(15,7)"' '
DO 870 I=1,42
WRITE(15,12)EIGENV(I)
870 CONTINUE

98

.............




L i o ey Sn S gns Aok s

Yooy yr

ﬁfT‘wvvw
[ [ 4

T YT yey

e NeNe Nyl

a0

950

940

= o0

ENDFILE(UNIT=15)

OPEN(UNIT=10,FILE='FIGVCT',ACCESS='SEQUENTIAL’, STATUS="'NEW')
FORMAT(6(E14.7))

WRITE(10,*) 'THE UNSORTED EIGENVECTOR MATRIX IS:'
WRITE(10,%*)' '
K=1
L=6
DO 940 I=1,42
WRITE(10,11) (VREAL(I,J),J=K, L)
CONTINUE
WRITE(10,*)"' '
K=K+6
L=L+6
IF (L.NE.48) GOTO 950
ENDFILE(UNIT=10)

END
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PROGRAM SHUTBM

THIS PROGRAM SOLVES AN EIGENVALUE PROBLEM OF THE FORM
A*X = LAMBDA*B*X. THE A MATRIX IS A 45X45 MATRIX MADE UP
OF THE 42X42 MATRIX 'O’ FROM FMASTK. THE UPPER LEFT CORNER
HAS THREE ZEROS ON THE DIAGONAL. THE B MATRIX IS A 45X45
MADE OF FOUR PARTS. THE UPPER LEFT 3X3 IS THE MOMENT OF INERTIA
MATRIX FROM THE NASA PAPER. THE LOWER RIGHT 42X42 IS THE M
MATRIX FROM FMASTM. THE UPPER RIGHT 3X42 (THE LOWER LEFT 42X3
IS THE TRANSPOSE) IS A CORRECTION MATRIX WHICH TAKES INTO AC-
COUNT THE ROTATION OF THE SHUTTLE-BEAM-REFLECTOR SYSTEM. IT
IS FILLED WITH ZEROS EXCEPT FOR THE LOWER LEFT CORNER, WHICH
CONTAINS THE SZ'S.

DOUBLE PRECISION DALFAL(14),DPM(42,42),DP0(42,42)
DOUBLE PRECISION DPHIPR(14),DTHEPR(14),DPSI(14),DHICR1(14)
DOUBLE PRECISION DHICR2(14),DHECR1(14),DHECR2(14)

REAL BETA(45), ALPHAL(14),M(42,42),0(42,42),A(45,45),B(45,45)

REAL WK(2888),SZ(14),SZMAT(3,42), INRTIA(3,3) ,EIGENV(45)
REAL EIGVEC(45,45), MTILDA(45,45), FBMATX(45,10), PROD1(45,45)
REAL INVRSE(45,45),PROD2(45,45),PROD3(45,45) ,KTILDA(45,45)
REAL DTILDA(45,45),PHIPR(14), THEPR(14),PSI(14),PHICR1(14)
REAL PHICR2(14),THECR1(14),THECR2(14) ,DMAT(45,10),A4,B4,C4
REAL CMAT(7,45),PMAT(7,45)

COMPLEX ALFA(45) ,DIGENV(45) ,DIGVEC(45,45),0MEGA(45)
INTEGER I,J,K,L,IDGT ,LL, MM, NN, IC
INTEGER IA, IB, N, 1JOB, IZ, IER

PARAMETER (A4=4969.0,B4=4969.0,C4=9938.0)

(I 222222222222 R 2222 R 2222 R 222222222 R 22 2

READ IN THE INFORMATION FROM 'FDATA2' (THE ANGLES),
'FMASTM' (THE MASS MATRIX), AND 'FMASTK' (THE STIFFNESS NATRIX)

S22 85538588088¢8 SRS ESSSS8805800808308808888380¢00008088088888¢s

OPEN(UNIT=7,FILE="'FDATA2', ACCESS='SEQUENTIAL’, STATUS='OLD')
OPEN(UNIT=8,FILE='FMASTM', ACCESS='SEQUENTIAL’, STATUS='OLD')
OPEN(UNIT=9,FILE='FMASTK' , ACCESS='SEQUENTIAL'’, STATUS='OLD’)
OPEN(UNIT=12,FILE='FRHS', ACCESS='SEQUENTIAL', STATUS='OLD’)
OPEN(UNIT=11,FILE='FBMATX',ACCESS="'SEQUENTIAL', STATUS='OLD’)
REWIND(UNIT=7)

REWIND(UNIT=8)

REWIND(UNIT=9)

REVWIND(UNIT=12)

REWIND(UNIT=11)

FORMAT(E31.24)
FORMAT(E14.7)
FORMAT(10(E11.4))
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FORMAT(4(3(4X,E14.7).,/)./)
FORMAT(5(E14.7))

DO 20 I=1,14
READ(7,10)DALFAL(I)
ALPHAL(I)=REAL(DALFAL(I))

CONTINUE

DO 30 I=1,42
DO 40 J=1,42
READ(8,10)DPM(I,J)
M(I,J)=REAL(DPM(I,J))
READ(9,10)DPO(I,J)
0(I,J)=REAL(DPO(I,J))
CONTINUE
CONTINUE

R ) SR

DO 41 I=1,14
READ(12,10)DPEIPR(I)
PHIPR(I)=REAL(DPHIPR(I)) _

CONTINUE R

R Y R

DO 42 I=1,14 q
READ(12,10)DTHEPR(I) :
THEPR(I)=REAL(DTHEPR(I))

CONTINUE

DO 43 I=1,14
READ(12,10)DPSI(I)
PSI(I)=REAL(DPSI(I))

CONTINUE

" W v‘-L.

DO 44 I-1,14
READ(12,10)DEICR1(I) -
PHICR1(I)=REAL(DHICR1(I)) -

CONTINUE

DO 45 I=1,14
READ(12,10)DHICR2(I)
PHICR2(I)=REAL(DHICR2(I))

CONTINUE

DO 46 I=1,14
READ(12,10)DHECR1(I)
THECR1(I)=REAL(DHECR1(I))

CONTINUE

DO 47 I=1,14
READ(12,10)DHECR2(I)
THECR2(I)=REAL(DHECR2(I))

CONTINUE

''''''''''''''''''''''''''''''''''''''''''''''''''''
---------

-------
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DO 48 I=1,45
READ(11,11) (FBMATX(I,J),J=1,10)

48 CONTINUE
C
DO 49 I=1,7
READ(11,11) (PMAT(I,J),J=1,45)
49 CONTINUE
c
ENDFILE(UNIT=7)
ENDFILE(UNIT=8)
ENDFILE(UNIT=9)
ENDFILE(UNIT=12)
C

ccceececceccecccecceccecccceccccceccccccc
C FORM THE INRTIA MATRIX:
cccceececcececcecececceccececccceccceccecceccccce
C
INRTIA(1,1)=975423.0
INRTIA(1,2)=0
INRTIA(1,3)=-145393.0
INRTIA(2,1)=0
INRTIA(2,2)=6859080.0
INRTIA(2.,3)=0
INRTIA(3,1)=-145393.0
INRTIA(3,2)=0
INRTIA(3,3)=7086601.0
C
cceceeececccecccecceccecccccecccccce
C CALCULATE THE SZ'S:
cccceceececccceccecccceccceccce
C
DO 50 I=1,14
SZ(I)=(2*130*SQRT(.09556*130))/ (ALPHAL(I)®**2)
50 CONTINUE
C
cceccecececececccceccceccceccccccecccccce
C BUILD THE SZNAT NATRIX:
cceccecececceceeccceccccceccecceccceccccc

C
Do 60 I=1,3
DO 70 J=1,42
SZMAT(I,J)=0
70 CONTINUE
60 CONTINUE
C
C
C
C
DO 80 J=1,14
SZMAT(1,J)=(A4*PHIPR(]))
SZMAT(2,7J)=+8S2(J)
80 CONTINUE
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DO 81 J=15,28
K=J-14
SZMAT(2,J)=B4*THEPR(K)
SZMAT(1,7J)=-SZ(K)
81 CONTINUE

DO 82 J=29,42
Kk=J-28
SZNAT(3,J)=C4*PSI(K)
CONTINUE

[

S80S0 00S00800880000000CC00083C200088008308808308088000808800800¢08

THIS SECTION FORNS THE LARGE 'A’ MATRIX, WHICH CONSISTS OF
THE OMEGA-SQUARES ON THE DIAGONAL WITH ZEROS AS THE FIRST THREE
OMEGAS. IT THEN BUILDS THE ’'B’ MATRIX, WHICH IS MADE UP OF
THE INERTIA MATRIX, THE MASS MATRIX, AND THE SZ-MATRIX (SZMNAT)
IT WILL LOOK LIKE:

L L L
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L I L S L %
L I L s L -
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L TTT L L
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L SSSSSSS ZZZZZ L M MM M L
L s Z L M M L
L s z L X " L
L SSSSSSS 2ZZZZ L N N L
L L L
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°
(7]

DO 100 I=1,45
DO 110 J=1,45

A(I,J)=0 :
110 CONTINUE ]
100 CONTINUE K

DO 120 I=4.,45 N
E=1-3 q
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L,

DO 130 J=4,45
L=J-3
A(I,J)=0(K,L)
130 CONTINUE
120 CONTINUE
C
ccccececceccececceecccececcceccecceccecceccceccce
C CREATE THE LARGE B MNATRIIX:
ccecececececeececcecceccecececccecceccecceccecccceccccecce
C
C
DO 140 I=1,3
DO 150 J=1,3
150 CONTINUE
140 CONTINUE

DO 160 I=1,3
DO 170 J=4,45
L=J-3
B(I,J)=SZMAT(I,L)
170 CONTINUE
160 CONTINUE

DO 180 I=4.,45
K=1I-3
DO 190 J=1,3
B(I,JY)=SZMAT(J,K)
190 CONTINUE
180 CONTINUE

DO 200 I=4.45
K=I-3
DO 210 J=4,45
L=J-3
B(I,J)=M(K,L)
210 CONTINUE
200 CONTINUE
C
cceceecececcececcececccecccecceccecccceccccccceccccccc
C CHECK THE INRTIA AND SZMAT MATRICES:
cceeeeeccceccceccccceccececccccceccecccceccc
C
IF (I.EQ.111) THEN
PRINT®, 'THE INERTIA MNATRIX IS:'
PRINTe, "’ '
DO 220 I=1.,3
WRITE(®,11) (INRTIA(I,J),J=1,3)
220 CONTINUE
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221
C

FORMAT(3(E14.7))

PRINT®, ' '
PRINT®, 'THE SZ TRANSPOSE MATRIX IS:’
PRINT®,' '
DO 221 I=1,42

WRITE(®,19) (SZMAT(J,I),J=1,3)
CONTINUE

ENDIF

ccececeececececceccececcececcecccececcecceccceccecccecceccecccccececcecececccecceccecccceccecce

e N NeNeNr Nz Ne Nyl

250

252
251

aaOcann

S8 0808000830880 880808038888000808080008¢38888553838850388880882%¢8800%888

THIS SECTION SOLVES THE EIGENVALUE PROBLEM A®*X = LAMBDA®*B*X,

GIVING BACK THE EIGENVALUES AND EIGENVECTORS OF THE SYSTEM.

.‘...‘Oﬂ......‘..‘....‘..."........O......‘..‘.‘.‘....“...‘..“.‘

IA=45
IB=45
N=45
1J0B=2
I1Z=45

CALL EIGZF(A,IA,B,IB,N, 1JOB, ALFA,BETA, DIGVEC, IZ, WK, IER)

PRINT®*,'THE IER FOR EIGZF IS: ', IER
PRINT®, ' THE PERFORMANCE INDEX FOR EIGZF 1IS: ’',WK(1)

DO 250 I=1,45
IF (BETA(I).NE.O) THEN
DIGENV(I)=ALFA(I)/BETA(I)
ELSE
DIGENV(I)=99999999.9
ENDIF
CONTINUE

DO 251 I=1,45
EIGENV(I)=REAL(DIGENV(I))
DO 252 J=1,45
EIGVEC(I,J)=REAL(DIGVEC(I,J))
CONTINUE
CONTINUE

0088000080000 080800800C3082000800080000¢0000000008%CRCSSSSSSSTE

SORT THE EIGENVALUES FROM LOVWEST TO HIGHEST, SORTING

THIER RESPECTIVE EIGENVALUE ALSO.
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C 993308800400 00088383080080800000388088080833830880800880803800008
C

CALL SORT(EIGENV, EIGVEC,45)
C
c
cceceeceececceccececcececceccececccecceccecccceccceccecccecceccccecececcecccccecccccccccecccceccccccccce
C CHECK THE EIGENVALUE AND EIGENVECTORS:
CCCCCcccceccececcecececccececceccecceccecceccecceccceccceccecccccecccceccccccceccccecceccccceccececcceccce
C

OPEN(UNIT=10,FILE='FIGENV',ACCESS='SEQUENTIAL’, STATUS='NEW’)

FORMAT(5(E14.7))

DO 260 I=1,45
WRITE(10,17)EIGENV(I)

CONTINUE

WRITE(10,%*)"' '

k=1
L=S5
DO 262 I=1,45
WRITE(10,17) (EIGVEC(I,J) ,J=K,L)
CONTINUE
WRITE(10,%)' '
K=K+5
L=L+5
IF (L.NE.50) GOTO 261
ENDFILE(UNIT=10)

LL=45
NN=45
NN=435
IC=45
IDGT=5

C
CO25858800888088888383088308000880880080808828008080008¢8

Cee2003330008880080003800808030008008023300008288080¢00000¢

cccccecececceccceccecceccccceccecccecccccceccecccecccceccecccecccccc
C MNULTIPLY B*TRANSFORMATION MATRIX:
ccccececeeccececccecccecceccccecceccccccccecceccccceccceccccccc

CALL VMULFF(B,EIGVEC,LL, NN, NN, IA, IB, PROD1, IC, IER)
C

PRINT®, 'THE IER FOR VMULFF (B,EIGVEC) IS: ', IER
ccccecececcececccceccecceccccecccceccecccccccccccccccccce
C INVERT THIS PRODUCT




ccceecceccccecceccceccecccececccecccceccccecccccecccceccccce
C
CALL LINV2F (PROD1,N, IA, INVRSE, IDGT, VK, IER)
PRINTe®, 'THE IER FOR LINV2F (PROD1) IS: ', IER
C
cccceececccececcecceccececcceccecceccecceccecccccceccccccccccceccccccce
C NULTIPLY THE INVERSE AND B:
ccceccececeecccececccececcecccceccecccecccceccecccccccceccccccecccccc

C

CALL VMULFF (INVRSE,B,LL, MN, NN, IA, IB, PROD2, IC, IER)
C

PRINTe, 'THE IER FOR VNULFF (INVERSE,B) IS: ',IER
C

cccceceeeecececcecccecceccecceccecececcecceccecccccceccccececccceccecccccecccecccccccccc
C MULTIPLY THIS RESULT BY THE TRANSFORMNATION MNATRIX:
ccccececececeeccceccececccccececcecccccccecccccecccecccccceccceccccecccceccce

C

CALL VMULFF(PROD2,EIGVEC,LL, MK, NN, IA, IB, MTILDA, IC, IER)
C

PRINTe, 'THE IER FOR VNULFF (PROD2,EIGVEC) IS: ',IER
C

ceceecececcccececccececcceecccecccecceccccecceccceccecccccccceccccecccccccccc
C PREMULTIPLY THE INVERSE TRANSFORMATION MATRII BY A:
ccecceeecececcecccececccccecceccccecceccececccceccecceccccceccccceccceccecccceccccccceccc

C

CALL VMULFF(INVRSE,A,LL, MM, NN, IA, IB, PROD3, IC, IER)
C

PRINT®, 'THE IER FOR VMULFF (INVERSE,A) IS: ', IER
c

€ccccececeecceccecceccececccecccececcceccecccecccecccccecccccececccccccecccccccceccce
C MULTIPLY THIS RESULT BY THE TRANSFORNATION NATRIX
ccceceecccccecceeccceccecceccecceccccceccccccceccceccccccecceccecccccccccce

C

CALL VMULFF(PROD3,EIGVEC, LL, MM, NN, IA, IB,KTILDA, IC, IER)
C

PRINTe, 'THE IER FOR VNULFF (PROD3,EIGVEC) IS: °‘,IER
C

cccecececceeccececcecceccececccececccecccceccecccecccececccecceccceccecccceccccccecccceccccceccccecccceccccce
C MULTIPLY INVRSE AND FBMATI TO GET DMAT, WHICH WILL BE THE REHS
C MNATRIX IN ’'FCNTRL'.
cccececececececcecececccececccceccececccecceccecceccceccceccecceccceccecccecccceccceccceccccceccccecccecccecccccccccce
C

CALL VMULFF(INVRSE, FBMATX,LL,MNN,10, IA, IB, DNAT, IC, IER)
C

PRINT®, 'THE IER FOR VNULFF (INVRSE, FBMATX) IS: ', IER
C
cccceeeccecececcecceccecccecceccecccecceccecccccceccecccccceccecccceccceccccccccccceccccccccceccccccccce
C MULTIPLY PNAT AND EIGVEC TO GET CMAT, WHICH VILL BE READ INTO
C ACOSS DIRECTLY:
c¢cceeececcccececcccecccccecccceccecccececcccececcccecccceccccceccceccccceccceccccceccccceccccce
C
2222 CALL VMULFF (PMAT,EIGVEC,7,45,45, 7,45,CNAT, 7,I1ER)
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@
c
PRINT®, 'THE IER FOR VMULFF (PNAT,EIGVEC) IS: ', IER
c
Py c
C 8000800008838 8380888808838080808383300088883808880385383800883888%8080808800¢8
("
C PUT MTILDA AND KTILDA THROUGH A FILTER TO TAKE OUT THE VERY
C SMALL NUMBERS (SET THEM TO ZERO)
c
. C S008I SERS SV ESSPRSCEEPSSESPSSSOSSSESSSSSSS888S0888OS
c
DO 510 I=1,45
DO 520 J=1,45
IF (MTILDA(I,J).LT.1E-4) THEN
MTILDA(I, J)=0
® ENDIF
IF (KTILDA(I,J).LT.1E-4) THEN
KTILDA(I,J)=0 ]
ENDIF -
520 CONTINUE ;
510 CONTINUE s
? ¢ =]
C -9
c R
C _;
c S80SV CSSPROPPSRPRPSC 000009880000 SSSSSESPRPSSSESSSSSPSOESBPSISESES
c R
P C THIS SECTION CREATES THE DAMPING MATRIX 'DTILDA’. IT TAKES -
C THE SQUARES OF THE EIGENVALUES, WHICH ARE ON THE DIAGONAL OF 1
C 'KTILDA’, AND FORMS 2ZETASOMEGA, WHERE ZETA IS A CONSTANT .003, o
C AND OMEGA IS THE SQUARE ROOT OF EACH EIGENVALUE. THE RESULT T
C IS A DIAGONAL MATRIX CORRESPONDING TO THE DIAGONAL STIFFNESS »
C MATRIX (ETILDA). T
® C -
C S883380028028388080808880028800380808808380830¢3380838038880838888808080808888¢083800¢¢8¢ ?!
R
c 5
DO 530 I=1,45 ]
DO 540 J=1,45
[ IF (I.EQ.J) THEN
DTILDA(I,J)=2.0*.003*SQRT(KTILDA(I,J))
ELSE
DTILDA(I,J)=0
ENDIF
540 CONTINUE
(P 530 CONTINUE
c
OPEN(UNIT=1S5,FILE='FMTILD',ACCESS="'SEQUENTIAL', STATUS="'NEW')
OPEN(UNIT=17,FILE="'FKTILD', ACCESS='SEQUENTIAL', STATUS="'NEV')
OPEN(UNIT=18, FILE='FDTILD', ACCESS="'SEQUENTIAL’, STATUS='NEV')
OPEN(UNIT=16, FILE='FTRANS’, ACCESS='SEQUENTIAL’, STATUS="'NEV"')
» OPEN(UNIT=13,FILE='FDMATX',ACCESS='SEQUENTIAL', STATUS="'NE¥W"')
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499

500

600

601

610

anaon

611

2218
2219

K=1

L=5

WRITE(15,*) 'THE DIAGONAL MASS MATRIX-UNSORTED-IS:'
WRITE(17,%*)'THE DIAGONAL STIFFNESS MATRIX-UNSORTED-IS:'
WRITE(18,*) 'THE DIAGONAL DAMPING MATRIX-UNSORTED-IS:'

WRITE(15,%*)' '

WRITE(17,%) "' '

WRITE(18,%*) ' '

DO 500 I=1,45
WRITE(15,16) (MTILDA(XI,J),J=K,L)
WRITE(17,16) (KTILDA(I,J),J=K,L)
WRITE(18,16) (DTILDA(I,J),J=K,L)

CONTINUE

WRITE(15,%) " '

WRITE(17.,%*)' '

WRITE(18,*)"' '

K=K+5

L=L+5

IF (L.NE.50) GOTO 499

DO 600 I=1,45
WRITE(16,16) (INVRSE(I,J),J=1,45)
CONTINUE

WRITE(13,*) 1, 1, 1

WRITE(13,¢) 1.0

WRITE(13,*) 6, 4, 2 ,10, 7 ,0.003
DO 601 I=1,12

WRITE(13,14) (EIGVEC(I,J),J=1,12)

CONTINUE
WRITE(13,°'(//)"’)

DO 610 I=1,12

WRITE(13,13) (DMAT(I,J),J=1,10)
CONTINUE
WRITE(13,°'(///)")

WRITE IN THE FIRST 12 ROWS OF CMAT TRANSPOSED,
PROPER FORM FOR ACOSS TO HANDLE

DO 611 I=1,12

WRITE(13,13) (CMAT(J,1),J=1,7)
CONTINUE
WRITE(13,°'(///)")

FORMAT(2F3.1)
FORMAT(12F3.1)
DO 620 I=1,12
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WRITE(13,11) SQRT(KTILDA(I,I))
CONTINUE

WRITE(13,°(//)"*)

DO 2200 I=1,4
WRITE(13,2219)(0.0,J=1,12)

CONTINUE

WRITE(13,'(//)")

DO 2201 I=1,12
WRITE(13,2218)(0.0,J=1,2)

CONTINUE

ENDFILE(UNIT=15)
ENDFILE(UNIT=17)
ENDFILE(UNIT=18)
ENDFILE(UNIT=16)
ENDFILE(UNIT=13)

END
SUBROUTINE SORT(A,B,D)

REAL A(45) ,B(45,45),TEMP(45) ,VECT(45,45)
INTEGER I,J,K,D,U

U=D-1
IF (U.NE.O) THEN
DO 30 I=1,T
K=1I+1
IF (A(K).LT.A(I)) THEN

TENP(I)=A(I)

A(I)=A(K)

A(K)=TEMP(I)

DO 40 J=1,45
VECT(J,I)=B(J,I)
B(J,I)=B(J,K)
B(J,K)=VECT(J,I)

CONTINUE

ENDIF
CONTINUE
U=U-1
GO TO 20
ENDIF
END
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