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ABSTRACT

The equations of motion of a flexible shuttle-beam-antenna

system are developed and discretized using an assumed modes

approximation. The system was modeled as a cantilever beam

rigidly attached to the shuttle with a rigid antenna attached

to the free end of the beam. The mass and dimension data for

the model was taken from a NASA/IEEE Design Challenge Paper

[2] dated June 1984. The equations of motion for both the

shuttle-beam-antenna rigid body movement and the vibration of

the beam with respect to the shuttle were developed making

some simplifyng modifications to fit the modeling as-

sumptions. Two proof-mass actuators, capable of producing a

force in the x and y directions only with no torsional con-

trol about the z axis, were modeled at positions along the

beam. The moments resulting from any torque on the shuttle

(due to reaction jets firing, for example), and moments

applied to the antenna at the attach point were also

modeled. The equations of motion, with the forces and

moments evaluated, were put in matrix form. The matrices

were diagonalized, resulting in an identity mass matrix and

diagonal damping and stiffness matrices.

A controller was developed for a cursory investigation

into the controllability of the system. The development made

use of linear optimal regulator techniques which produce

feedback gains proportional to the state. The state was
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truncated to the amplitudes and velocities of the twelve

modes having the lowest frequencies. Since these amplitudes

and velocities could not be measured directly, state estima-

tion was used. The feedback gains were developed using

steady state optimal regulator theory. The closed loop

damping coefficient was used as a measure of control improve-

ment. The system was shown to be stable on the very first

control attempt, with a closed loop damping coefficient bet-

ter than the targetted value. Elimination of observation

spillover improved the controllability slightly for this

first run. More runs were made with different weightings of

the controlled modes with similar results.

V

IL

vii
vii :



MATHEMATICAL MODELING AND CONTROL OF A

LARGE SPACE STRUCTURE AS APPLIED TO

A SHUTTLE-ANTENNA CONFIGURATION

I. Introduction

With the advent of the Space Shuttle, the opportunities

to place large, flexible structures into space are becoming

more and more commonplace. These large structures, along

with all their advantages, bring with them control problems

on a scale never before encountered. Extensive research is

being conducted to solve these control problems--research

which is constantly being updated and improved. The problem

of controlling a large structure containing a virtually in-

finite number of vibrational modes with limited onboard com-

puter resources, sensors, and actuators has become the focus

for intense study. Of the control techniques attempted to

date, modern state space control methods seem to be the most

promising.

In January 1984 an NASA Design Challenge [1] was of-

fered. It is called the Spacecraft Control Laboratory Ex-

periment (SCOLE) and serves as the focus of a design chal-

lenge for the purpose of comparing different approaches to

control synthesis, modeling, order reduction, state estima-

tion, and system identification. The SCOLE itself is pre-

1



sented as a large antenna attached to the shuttle by a flex-

ible beam. The Challenge consisted of two parts-- a mathema-

tical analysis and a laboratory experiment. Only the mathe-

matical analysis is addressed in this paper.

The first portion of this paper concerns the mathematical

modeling of the shuttle-beam-antenna system. Unfortunately,

there were many errors in the reference [1]. The paper was

re-released in June 1984 [2] with some of the errors cor-

rected. There were, however, still numerous errors in [2]

requiring that almost all of the mathematical modeling be

done from scratch, precluding an extensive investigation into

the controlling of the system. This thesis therefore pro-

vides a detailed mathematical model of the system. The

system equations of motion were developed assuming the shut-

tle and antenna to be rigid and the beam to be flexible. The

beam was assumed to be capable of transverse bending in each

" of two orthogonal directions and to undergo torsional motion

about it's long axis. The assumed modes method was used to

discretize the beam motion and a set of linear first-order

equations were developed for the system.

Active control of the system was achieved using a trun-

cated dynamical model, using linear optimal regulator theory

and modal suppression techniques as outlined in (6] and [7].

2



II. Model Configuration

The physical model of the SCOLE is shown in Fig 1. It

consists of the shuttle, a 130 foot flexible beam attached to

the shuttle's center of mass (an assumption made for modeling

purposes), and a rigid antenna attached at one corner to the

beam. The axis system is as shown: The x (or roll) axis

points out of the nose of the shuttle, the y (or pitch) axis

points out the shuttle's right wing, and the z (or yaw) axis

points out the bottom of the shuttle, which is nominally

toward the Earth. The xyz reference frame is considered

attached to the shuttle with its origin at the center of mass

(beam attachment point). This frame is frce to rotate about

an XYZ frame, in which the X axis points along the velocity

vector of the shuttle in orbit, the Z axis points to the

Earth's center, and the Y axis completes the right-handed

system. The XYZ frame is considered inertial for the pur-

poses of this paper.

Another axis system, fixed to the antenna at the beam-

antenna attachment point, is shown in Fig 2. When the beam

is not deformed, this x4y 4 z 4 axis system aligns itself with

the xyz axis system. When the beam is deformed, the x 4 y 4 z 4

axes will be displaced from xyz by what are assumed to be

very small angles. This axis system will be used in the

mathematical development of the equations of motion in the

3
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Fig. 1. SCOLE Model
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next chapter.

Reference [2] furnished the information on the values for

the masses and moments of inertia for the shuttle, reflector,

and entire shuttle-beam-antenna system. This information is

presented in Table I. Also included are the modal damping

and stiffness coefficients for the vibration of the beam,

along with the masses of the proof-mass actuators.

Before developing the mathematical model, the main types

of notion will be described, along with the assumptions made

for both simplification and clarification.

Referring to Fig 1, the first type of motion considered

is the tumbling of the entire shuttle-beam-antenna system,

expressed as some arbitrary rotation of the xyz frame about

the inertial XYZ frame. The angular vel'ocity is given as i

(no subscript). A fundamental assumption for the purposes of

this paper is that the shuttle wishes to stay aligned with

the XYZ frame, so any rotation out of that alignment will be

net with the shuttle firing its attitude control jets. This

means that any rotation will be small and of short duration.

The firing of the reaction jets will cause the bean to flex,

resulting in the second type of motion to be discussed.

The flexing of the beam adds a tremendous complexity to

the problem. Referring to Fig 2, it can be seen that the

bending of the beam will change the overall shape of the

shuttle-beam-antenna system very slightly. An assumption

made here is that the deformations of the beam is small along

6
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Table I

Physical Characteristics of SCOLE

Shuttle mass = m 6366.46 slugs

F 905,443 0 -145,393
Ij (slug-ft 2 ) 0 6,789,100 0

-145,393 0 7,086,601

Antenna mass = m4 = 12.42 slugs
S4,969 0 0

14 (slug-ft2 ) = 0 4,969 0
0 0 9,938

Beam mass = mB = 12.42 slugs

Roll Bending: pA - 0.09556 slugs/ft

El 4.0 1 107 lb-ft 2

= 0.003

Pitch Bending: pA - 0.09556 slugs/ft

El - 4.0 x 107 lb-ft 2 ,'

- 0.003

Yaw Torsion pI = 0.9089 slug-ft

GI 4.0 107 lb-ft 2

- 0.003

Proof-Mass
Actuators: mass U2 = m3 = 0.3108 slugs

7
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its entire length, and thus also at the bean-antenna at-

tachment point.

The approach to setting up the mathematical model in this

paper will be to assume the bean and shuttle form a dynamical

system and that the antenna effect is to subject the' bean's

free end to forces and moments. Since the antenna is assumed

to be rigidly attached to the beam, the motion of the beam is

totally defined by the rigid-body motion of the shuttle-beas

system plus the elastic motion of the beam tip. The center

of mass of the shuttle-beam-antenna system is assumed to be

unaffected by the elastic motion. This is a good assumption,

considering that the mass of the shuttle is over 500 times

that of the beam-antenna combination (see Table I).

The overallmotion of the beam-antenna with respect to

the shuttle is to be controlled by force and moment actuators

located on the antenna, along with two proof-mass actuators

(Fig 1), located at positions sn2 and sn3 along the beam to

be chosen by the analyst. The optimum location for these

actuators could be the subject for an entire study. For this

paper, however, the actuators will be assumed to be located

at the 40- and 80-foot positions along the beam (see Appendix

A). The actuators operate by moving a mass, which causes

forces in the • and y directions only. There is no torsional

input from these actuators. There is, however, a moment

created about the system's mass center which will tend to

rotate the shuttle-bean-antenna system out of its desired



attitude. These moments, although small, will be included in

this study.

Other assumptions made are:

1) The beam does not appreciably stretch, meaning that

it does not deform in the z direction.

2) Any forces in the z direction from the motion of the

antenna are insignificant.

3) There are no specific forces or moments, such as

those due to meteor collisions, solar radiation pressure,

gravity torques, or magnetic or atmospheric effects modeled

in this study. These forces, if they exist, will be small in

comparison to the control torques available.

The next chapter will develop the mathematical model of

the system, which in its general form would be nonlinear and

contain both partial and ordinary differentials. For the

study at hand a linear discrete model was produced using an

assumed modes approach and by considering only small motions

from an undeformed equilibrium position.

9
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III. Mathematical Develonment

This section will attack the mathematical development of

the system model in four parts. The first will be the

choosing of functions to represent the flexing of the beam.

The second will be the derivation of the equations of motion

of the entire shuttle-beam-antenna system, incorporating the

flexing of the beam, and accounting for the rigid antenna

through forces and moments acting on the antenna end of the

beam. The third will be the development of the equations of

motion of the antenna in terms of the displacements and

rotations at the end of the beam, along with the development

of the forces due to the proof-mass actuators. The fourth

section will put the equations of motion together with the

generalized forces and express the system in matrix equation

form for the purposes of applying a control law.

Choosing Prover Functions

A discretization approach will be employed in this paper

in choosing functions to represent the motion of the vib-

rating beam with respect to the shuttle. This is known as

an assumed modes approximation. The more modes modeled, the

more accurate the system will be, so this paper will use a

fourteen-mode approximation to ensure that the first several

system modes have converged.

The differential equation of notion for a beam in bending

10
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vibration is given by Meirovitch [1:208-209] as

a2  [ElIx) 82Y(x,t) 1+ f( z,t) M (x) a2Y(Z,y) (1)i

812  La1 2  DO8t

If the beau is uniform, this is reduced to

N a2 y(x, t) + EX c*4 y(x, t) _ f(z,t) (2)

at 2  4

where y(x,t) is the transverse displacement, x is a coord-

inate along the beam length, X is the mass per unit length,

and El is the bending stiffness. For free vibration the

distributed f orce f (z. t) -0. For the case of a cantilever

beam the associated boundary conditions are

* Y(0,t) -0

a I 11=0 -

Ela 2 y(z, t) =0 (3)

ax3 z-L

Denoting the running length of the beam by a, the mass per

unit length by pA, and defining the two orthogonal components

of bending by ur and up (see Fig. 3) and assuming the beam

has equal moments of inertia in these two directions, two



equations of motion can be written:

*pA 82 u r(s,t) + El a4 ur(s,t) =0

at2  8S4

pA 82u p(s.t) + El a4 u p(s~t) =0 (4)

at 2 a3

subject to the conditions -

ur(0.t) U= u(0't) =0

aur(o't) =aup(o't) =0

feas as (5)

El a2ur~~) =E a2u~st

El a3 ur(s~t) El a3 up(s~t) =0

as2  js=L as3  s=L

Since the two deformations ur and up satisfy identical

relationships, the development will be restricted to ur and

the results applied to both ur and up. Assume that ur can be

written as

Ur(set) R(5)Ur(t) (6)

Substituting eq (6) into (4a) and dividing by the product

R(s)U r (t) yields

12



+ El K" = 01

Ur pA R(7

which implies that

Riv - m 4R =0(8j

where 
= p (9

EI U El

The above conditions have the general solution

R =Arsinars + Brcosars + Crainhars + Drcoshars (10)

Substituting eq (6) into the boundary conditions yields

R(O) =RIM) 0 (11)

R''(L) =R''(L) 0

Solving these four equations simultaneously, the results are

three important constraints which drive the rest of the dev-

elopment:

Ar = Cr

Br = Dr= -Ar(sinsrL + sinhaL)

* (coscarL + cosha rl) (12)

cosarLcosharL -1

13
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Fig. 3. Deformation of the Antenna
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The last of eqs (12) has an infinite number of solutions.

These solutions will be denoted by ai and the associated

amplitudes by Ari, Bri, Cri, and Dri. The mode shapes are ..

then given by

6Rri =Ari L(sinaris - sinharis)

+ (sinariL + sinhariL)(cosharis - cosaris)J (13)

(cosariL + coshariL)

The amplitude Ari is arbitrary. For convenience, the

magnitude Ari will be chosen such that

f pA RiRids =1 (14)
0

Expanding (14) and integrating each individual term dir-

ectly takes a great deal of bookkeeping and substitution (see

Appendix B), but the solution reduces to:

Ari 1 1/2 (cosariL + coshdriL)

\(pAL )/ (sinariL + sinhari L)

1(15
Bri = -1 1/2

pAL))

Since the mode shapes have been normalized, they possess the

convenient property

pA RiRjds =ij (16)
*J0

where 6ij is the Kronecker delta.

15
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The proceeding derivation applies to a cantilever beam

in bending. The beam element in the model of Fig (3) is

assumed to behave as a cantilever in bending in each of two

orthogonal directions (roll and pitch), and in addition to

undergo torsional deformation. The normal modes given by eq

(13) may also be used for pitch bending if the subscripts r

are replaced with p throughout. The roll motion is therefore

given by:

n__r

ur - Ri(s)Uri(t) (17)
i=l1

and the pitch motion as

np

Up Pi(s)Upi (t )  (18)

where nr is the number of roll modes and np is the number of

pitch modes.

The torsional motion about the z (yaw) axis, however,
0

must be treated separately. The differential equation for

the torsional motion on a beam is given by

pja 2 Uy - y = 0 (19)

at 2  8s2

where I is the polar area moment of inertia. The associated

boundary conditions are given by

u (0,t) = 0 (20)
y

uy (Lt) = 0

16
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Proceeding as in the case of bending vibration, the torsional

mode shapes are given by

iwhere = Cyisinoyis (21)

yi L = (2n-l)n/2 n = 1,2,3 ... (22)

As before, it is convenient that the mode shapes be ortho-

gonal, so the condition that must be satisfied is

• LS PJ YiYids =1 (23)
0

Substituting (21) into (23) results in

P Cy i
2 sin 2 yi d s = 1 (24)

which, after integrating and applying the limits, gives

Cyi 40y (1/2iL sn~yL 2 1/2 (25)

pJ(2-yiL sin2ypJL)

The sine term goes to zero because 2*beta*L will result in an

integer multiple of pi for all betas.

As before, these functions demonstrate the property

L
PJ YiYj ds =ij (26)

10

The torsional motion may now be described by the relationship

n

uy(s~t) = j Yi(s)Uyi(t) (27)
i=l

17



Table II

Angles, Coefficients, and Squared Frequencies for

the Roll and Pitch Functions

2
aiL Ai  B i  wi2

(radians) (rad/ sec) 2

1.875102 .2082777241 -. 2837201974 18.11807
4.694091 .2889597487 - .2 837201974 711.56816

7.854757 .2835001714 - .2 837201974 5578.80978
10.995541 .2837297171 -. 2837201974 21422.82836
14.137168 .2837197860 -. 2837201974 58541.00381
17.278759 .2837202151 -. 2837201974 130635.34107
20.420352 .2837201966 -. 2837201974 254837.51330
23.561945 .2837201974 -. 2837201974 451705.09099
26.703538 .2837201974 -. 2837201974 745221.943 82
29.845130 .2837201974 -. 2837201974 1162798.20573
32.986723 .2837201974 -. 2837201974 1735270.27761
36.128315 .283q201974 -. 2837201974 2496900. 82710
39.269908 .2837201974 -. 2837201974 3485378.7 8863
42.411501 .2837201974 -. 2837201974 4741819.36334

SI

where ny is the number of yaw modes, Uyi(t) are time depen-

dent modal amplitudes and the Yi(s) are given by eq (21).

A computer program was written to calculate the roots of

eq (12c). Using the first fourteen roots, the first fourteen

roll and pitch functions were evaluated, solving for each A i

and the (constant) Bits. The wi 2 ts were also computed, and

the data is tabulated in Table II. The betas, being multi-

ples of pi, were found directly and the Cyi's and wyi 2 's were

calculated for the yaw torsion functions. This data is

presented in Table III.

In the next section, certain integral relationships in-

18
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Table III

Angles, Coefficients, and Squared Frequencies for

Yaw Torsion Equation

W2
Pi L  

Ci i2

(radians) (rad/sec) 2

1.570796327 .1301023886 6425.3522
4.712388980 1301023886 57828.1697
7.853981634 .1301023886 160633.8047
10.99557429 .1301023886 314842.2572
14.13716694 .1301023866 520453.5273
17.27875959 .1301023866 777467.6148
20.42035225 .1301023866 1085884.520
23.56194490 .1301023866 1445704.242
26.70353756 .1301023866 1856926.782
29.84513021 .1301023866 2319552.140

32.98672286 .1301023866 2833580.315
36.12831552 .1301023866 3399011.308
39.26990817 .1301027866 4015845.118
42.41150082 .1301023866 4684081.745

volving the continuous coordinates ur, up, and uy will be

needed. Specifically, the kinetic and potential energies

associated with these variables are of interest. These ener-

gies involve the following six integrals:
L

In1  = 1/2 f  pA r2 d s

In 2 = 1/2 pAi 2ds0

CL
In 3 = 1/2f pJ;y 2 ds (28)

19



1n 1/2~ EI(82ur)2ds

* L
ins 1/2 El /. ds

In6  1/l2~ GJ/uy 2ds

Direct substitution of the modal approximations into these

integrals yields

n.r

In1  1/2E ri 2 (t)

n

In2  1/221 t

I. n
In3  1/2~ U 2 (t) (29)

nr

In 4  1 /2E.. WuriU ri

In 12, i-i pi pi

20
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n
y

.2 U 2'U6 :1/2 E yi2Ui

where

Wri2 -ri4EI

pA

Wpi 2 = upi 4 EI (30)

pA

Wyi2 Pyi 2 GI

p3

This section has determined the orthonormal eigen-

functions for a fixed-free uniform rod in both bending and

torsion. These fupctions will be used as assumed modes for

the beam part of the shuttle-beam-antenna system in the next

section. The properties of these functions given in eqs (29)

and (30) will prove useful in this development.

System Eauations

The system's equations of motion will be developed using

a combination of Lagrange's equations for the elastic motion

of the beam and Euler's moment equations for the overall

motion of the shuttle-beam combination. To that end the

kinetic and potential energies for the shuttle-beam combina-

tion will be developed. The effect of the antenna will be

taken into account through the generalized forces due to the

21
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forces and moments present at the beam-antenna attachment

point. The beam is assumed to be rigidly attached to the

shuttle at the center of mass of the system. It is further

assumed to bend in two orthogonal directions normal to its

long axis and to undergo torsional motion around its long

axis. The location of a general point in the shuttle-beam

system relative to the system's mass center is given by

SR = r + F (31)
A A A

where r = xx + yy +zz locates a generic point and u denotes

the elastic displacement of the mass particle at r. Defining

R. and Rb as position vectors of points in the shuttle and

beam respectively, the equation becomes

- A A A(2s= xx + yy + zz (32)

(ulzt) + x)z + (uplzt) + + zzA

The system kinetic energy is thus given by
I

T = 1/2 mtVc 2 + 1/2 Rd

+ 1/2 R i o

+ 1/2 Rb "Rb dm b  (33)

mb

where mt is the total mass, Vc is the velocity of the mass

center, m s and mb are the masses of the shuttle and beam

respectively, and the superscript I denotes inertial deriva-
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tives. Denoting the angular velocity of the body-fixed shut-

tle axes by N and that of an element of the bean by wb, the

kinetic energy can be rewritten as

lT= 12 mty 2 + 1/2 ( x i).(i x R)dus (34)

SBB
+ 1/2 ( b + "b x Rb)'(Rb + Wb x Rb)dnb

9f mb

where the superscript B denotes derivatives seen by an

observer fixed in the shuttle body axis, so R. a 0 nce

the shuttle is rigid. Furthermore it should be noted that

It B
Rb = u, ( z , t ) x  +  up (Z,t)y (351)-

and that W and ib are related by

b = / x + uy ( z t ) Z  (36)

b +'b/s ~i+ AL (3J

where uy(zt) is the torsional angular displacement of theOy
beam element at position z. The kinetic energy is expanded

and expressed in matrix notation as

t[T = /r[is1 +1 bJg 2 +

12IT SI +/2x iur i Ai
+ +~f );,, [+ [2J () +

23":
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+ 2 + ) u  T [b/, Y( + p

d = b (37)
Sk eb/y i esY op

*,icei is deirabl topoiealnarsto qain

where I is the moment of inertia matrix for the shuttle.[S

libmriwere aldo these aibe n hi ae r

Th matrile rud in eq (37) are formed from the

* wcomponents of the s and rb vectors in the f ormke0 _Wo
-Wy nr a

The kinetic energy in eq (37) contains terms through order

four in the variables ur, UP# (O•, Wy, and u y and their rates.

•e Since it is desirable to provide a linear set of equations

for the notion of the system in the neighborhood of an equi-

librium where all of these variables and their rates are

lnl small, T will be reduced to include only those terms of order

two or less in these variables. This yields the kinetic

energy as

T =112 ~T[ 5 b *

+ u 0 ) • + 2 z [0 -•]

T[ 0p  -• y 0 y zy+ 2 )I;(T[4 j Y] )iy0 + 2 jwtTz i 1t-II)y
24
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0 Z2y 1Y " Ixil
+ -XY z+Z2 Tz2 10Yjdjb  (39

Expansion of eq (39) yields numerous terms including integ-

rals involving the variables x and y linearly and the combi-

nations xy, xz, and yz. Since the elastic deformations ur,

UpS and uy spatially depend only on z, these integrals are

all zero from symmetry considerations. Setting these terms

equal to zero yields the kinetic energy in the form

L fr TA 0 0 r

T i/2 1 -T IIs+b],.4 + 1/2 p aA0 dz

0 Uy 0 0 Uy

L rz 0

+ P, Z 0 J to dz (40)
0 0 0 x2+y 2

Substituting the assumed modes from the previous section

results in

T =1/ ~ ['5+b]{wO + 1/2 {~~J.+~(41)

where

~UT=(Ur, I Ur,2 .. Ur,nr U PI up, 2 ..

Upnp Uy,1 Uy,2 ... Uy,,ny) (42)

and the Sz matrix in eq (41) has dimension 3 by (nr+np+ny).

Three blocks of terms in the Sz matrix warrant closer
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attention. The lower right corner block is x2 + y2 and,

after matrix multiplication and integration, will result in

*L
Sz(3,k) = 2w 3J uyidz (43)

* where

i= , 2, 3 ... , ny k - nr + np + i

These terms are considered insignificant for this analysis,

since a typical value of J will make the terms small compared

to the others in the matrix. Therefore these terms will be

assumed to be zero.

The other non-zero terms in the matrix are

Sz(l,j) - pAzPj(z)dz (44)
0

and

Sz(2,i) -Sz(l,j) (45)

where

i 1 , 2, 3, . , j = r + 1, nr + 2& ... nr + np

Substituting the eigenfunction expressions into (44) yields

fL
Sz(lj) =-pA ) [zApisinapjzdz + zBpicosapjzdz (46)

- zApj sinhapjzdz - zBpjcoshapjz] dz

Integrating each of the four terms separately, and taking
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advantage of the fact that

B (ic oso a.iL + cosha *iL) =-A pi(sinu .iL + sinho *iL) (47)

and

B i -1/(pAL)1 /2  (48)

eq (46) becomes

*Sz(l,j) =2(pAL3 
1 /2  (49)

(a L) 2

The Sz(2, i) term will differ by an algebriac sign, and the

subscripts will become ri instead of pi. The potential

energy can be expressed as

L 82.2 2 8u\
'V /2 E v - dz + 11 EI- d z

L

*+ 1/2~ G. di 50

Using the assumed mode expressions, this becomes

V - 1/2 1UtT W2] 1u (51)

So. forming the Lagrangian and taking derivatives,

L= T - V

aL UI~ + [zT(52)
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8L [ (2 IU
aIu

Forming Lagrange's equations:

d I8L 8 L Q 53

dt \ Ui/ aUi

where Qi are the generalized forces to 'be developed in the

next section. Substituting in the terms just developed. La-

grange's equations for this problem become

+U .[Sz T .d w2 1 JU:. 1 (54)

This equation assumes no damping in the beam. The damping

will be figured in as one of the last steps before applying

the control law.

Eq (54) is but one of two equations which can be obtained

from the Lagrangian method. If derivatives are taken with

respect to w, the result is

8 =[IT])w + [Sz] ~(5

aw

Applying Lagrange's method, the result is

d 8T + E aT 'M (56)

dt Oa aw

where N is the sum of all moments on the system. The second

term on the left side of the equation can be ignored since it
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is of higher order. The remaining terms give the equation

d T ~ =M~ (57) -

dt 8

which are generally referred to as Lagrange's equations in

quasi-coordinates. Again, substituting in the previously

derived terms, the equation becomes

* [IT] { + [Sz] ju = {M (58) -

This equation along with eq (54) will serve as the two equa-

tions of motion for the entire shuttle-beam-antenna system.

Eq (54) is the rigid body equation of motion with a modifica-

tion taking into account the flexing of the beam. Eq (58) is

Euler's moment equation with a coupling term, again to ac-
9

count for the beam's flexing.

Now that the functions have been chosen and the two equa-

tions of motion derived, it is time to turn to the develop-

ment of the forces and moments on the cantilever beam. This

next section will focus on the term by term derivation of

these forces and moments.

Force and Moment Development

Now that the unforced, undamped equations for the roll,

pitch, and yaw bending have been obtained, the next step is

to develop the generalized forces Qi and the moments M of

eqs (54) and (58).

bThe generalized forces are determined from [4] as
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Rg

N M -

Qi = Zf. + 'a k  (59)"

j=2 a i  k=2 a i -

where the fj are the applied forces, the i+ is the velocity

of the point of application of the force, and the Ui are the

modal velocities from eq (42), where i runs from 1 to nr + np

+ ny * The ik are the applied torques and k is the angular

velocity of the element at which the torque is applied. For

the problem at hand the only applied forces of interest are

those shown in Fig 4 due to the actuators and the forces and

moments due to the antenna. From Fig 4 it can be seen that

the forces and moments are applied at three specific loca-

tions. Specifically, the forces are applied at points sn2

(which is 40), sn3 (which is 80), and at the beam-antenna

attachment point sn4 (which is 130). Notice that the index j

ranges from 2 to 4. This is because all forces at snl (the

shuttle-beam attachment point) are zero due to the cantilever

model.

Moments are applied only at sn4. As before, all moments

at snl are zero, so the index k ranges from 2 to 4. Each of

the forces and moments from eq (59) must now be individually

identified.

The proof-mass actuators are designed to apply a force in

the X and Y directions only. The X-direction forces are:

30
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Fig. 4. Beam and Antenna Forces and Moments
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f 2fr,2 = m2 
8 2Ur + Fr,2

8t 2  s=40

fr,3 m3 8ur + F,3 (60)

8t 2  s= 80

where the first term in each equation is the mass of the

actuator multiplied by the acceleration of the beam-actuator

attachment point, and the second term is the force metered

out by the actuator itself. The subscript 2 or 3 denotes the

actuator at position sn2 or position sn3 respectively. The

Y-direction forces have an identical form:

'4 2 1
fp,2 = m2 a2Up + Fp,2-I

at 2  s=40

p, 2 np + F. 3  (1

at2 jS=80

* The last forces and moments to contend with are the forces

and moments on the beam-antenna attachment point. The NASA

paper [2] gives expressions for these forces which appear to

be in error. Therefore the expressions for the forces and

moments are derived as follows.

Looking at the free-body diagram of the antenna (Fig 4).

the forces will be developed from the force equation. The

position, velocity, and acceleration of the center of mass of

the antenna with respect to the attachment point p are:

32

9' . o . -_ - . . i . . , . i. . . . , , , . , . . .



-A Ar 18.75 4 - 3 2 .5 Y4

SvC drc + 4 x rc : 4 x 'c

dt

ac di 4 x ic) + @4 z (@4 X r) = ()4 x c (62)

dt

These equations make use of the fact that the antenna is

* modeled as a rigid body, so the time rate of change of the

position vector in this frame is zero. All higher order

terms have been neglected. Now, using F=MA, and denoting

the acceleration of the center of mass of the antenna in this

frame as ac:

f4 = m4ic = m4 (ip + it/p) (63)

where -a is the acceleration of the attachment point and ac/p

is the acceleration of the mass center with respect to point

* p. The acceleration of point p is, in vector form:

2 A 2 pA
ap= a + a ., (64)

at 2  at 2

The acceleration of the mass center wrt point p takes a

little more development. Since the antenna is rigidly

attached to the beam, i)4 is given by
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au

r 0'4a

asat s=130

4 = p + 0 '0 4 b + ( 6 5 )

,st s=130

at s=130

where (a is the rotation of the entire shuttle-beam-antenna

system. This effect was addressed in the rigid body equation

derivation and will not appear in the antenna-fixed reference

frame. Therefore, the time-derivative of (04 is found to be:

a3u
*3r

asat 2  s-130

@4 3Up (66)p
asat 2  s=130

a 2uy2y

at 2  s=130

which can be written in vector form as:

a4 3 A +  -3  A +  a~u Az(6 )-

4= ur x a up 2 Uy (67)

asat 2  asat 2  at2  =13

Before taking the cross product of the 04 and the posi-

tion vector, the vectors must be in compatable frames. It

can be shown that for very small angles, the x4y 4 z 4 frame and

the xyz frame are essentially equal. This derivation will

34
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obtain the same result, but will go through the cross-product

step by step, showing what assumptions are necessary.

Referring to Fig. (5), three possible rotations out of the

x 4 y 4 z 4 are shown, along with their respective rotation mat-

rices. Using the small angle assumption that the cosine of

an angle is approximately equal to I and the sine is approxi-

mately equal to the angle itself, these three matrices become

= 0z 0

0 0 1

1 0 0

R 2 = 0 I 0x

0 04 •1 0 04  04;y4

R 3  0 1 0

-e4y 0 1

Multiplying these together and ignoring any non-linear terms,

the rotation matrix from the x 4 y 4 z 4 frame into the xyz frame

is

[ 1 44z 0 4y]

Rx/4 = 04x (68)

-O4y 0 x 1
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x

Fig. 5. Rotations

36



where the R,/ 4 denotes rotation of the x 4 y 4z 4 frame with

respect to the xyz frame. Therefore, the position vector

becomes, in column vector form

18.75 + 3 2 . 5 0 4z

rc = 1 8 . 7 5 0 4z - 32.5 (69)

-18.7504y- 3 2 . 5 0 4 x

Taking the cross product using matrices, the vector is

written in 'tilda' form and the cross product becomes

0 -4c W4b 18.75 + 32.504z

ac/p = 4c 0 -L4a 1 8 . 7 5 0 4z- 32.5 (70)

-4b W4a 0 - 1 8 . 7 5 0 4y- 32.54x

Therefore, the acceleration of the mass center wrt point p

is given by (ignoring non-linear terms):

ac/p= 32.5L4c + 18.7544cA + (-18.7544b - A54az

-y32.582 Uy + 18.758 2U y 32.58 ur + 18.7583 u z (71)

at 2  at 2  a as g t a sat 2

The z component will be ignored, since the assumption is

that the beam is not stretched in the z-direction. So,

putting all of the terms together in the force equation,

m a /ur+ 32.58 2u A + a .+ 18.7582 y)A] 72
4 , N r y 2  upy (2

Rat2 8t 2  ka t2 a t2)
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Breaking these forces into their respective components,

fr4 = 4 82url + 32"5m4 a 2 uy

s=130 at 2

fp4 N a 2 u + 18.75m4 a 2 uy

at 2 - s=130 at 2

These are all of the forces to be modeled in this study. The

expressions for the moments will now be developed.

The only moments to derive are those about the beam-

antenna attachment point (see Fig. 4). These are obtained

'4_ from Euler's moment equations and are

( r, 4
*gp, 4  =[4] 4} + [a4][14]{w4 + J4 (73)j

gy,4

The middle term will be neglected because it is of second

order. The w4 was given by eq (65) as

J 8a2u r
r

8sat s=130

24 = 8 2 up + (65)

asatls=130

o nU y

at s=130

Taking the time derivative of eq (65) and substituting in the
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mode approximations, the result is

irR'(130)

U UP'(130) (74)

i Y( 13 0)

From Table 1, 1-4 is given as

04 4969 998

So the moments become

gr,4~ 4969 0 0 rR'(13O))

p,4 = 0 4969 0 P9'(130 ) + (75)

gy, !)

which reduces to

gr,4 4 9 69 rR'(13t) + 14x

5p4=4969U P'(130) + K4y (76)

g, ~9938U yY(130) + z

Now that each f orce and moment has been identified, each

Qimust be developed. A sample derivation of Q, follows.
0

Every other Qi ranging from Q2 through Q(nr+n,+ny) will have

a similar development.

From eq (59), the Q, will be given by
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J=2 aU 1  k=2 86 1

The r 2 term is derived from

'2 (x + ur)x + (y + Up) - sn2z

nr  ) np

r2 x + ZDRi(40) 1 J] ZuP(40) (78)
w r i=1 j =1

So the partial derivative with respect to U1 is

8r2 = R1(40)x (79)

Similarly,

ar 3 R(8o)X (80)

o 0and

ar4 = Ri(13o)x (81)

The angular velocity @4 was given by eq (65). Substituting

the assumed modes yields

nr p
A

G= EUiRi'(130)x + 6 _UjPj'(130)Y
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n

+ U kY(sn4)z + i (82)
k=1

The derivative with respect to 61 is then

8@ A (83)
4 R1'(130)x

The forces are as given in eqs (60), (61), and (72). The

moment is given by

nr

4 = r,4 = 4969 ZUiRi'(130)x + M4x xA (84)
i=1

Substituting these expressions into eq (77) gives the first

generalized force as

nr

Q1 m2ZUiRi40)Rl(40) + Fr, 2 R1(40)
i=l

nr

+m 3 JZ iRi(80)R(80) + Fr, 3 R1 (80)

i=1

nr n y
+ m4 ZUiRi(130)RI(130) + 32.5m 4 ZUkYk(130)R(130)

i=l k=1

nr

+ 4969 J iRi(130)R(130) + M4 xR 1 (130) (85)

i=1

where

i 1, 2, 3 ... nr  k= nr+np +1, nr+np+2 ..... nr+np+ny
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Each of the nr+np+ny generalized forces can be derived into

similar expressions. Since for this model 14 modes for each

of the roll, pitch, and yaw motions are assumed, there are 42

Qi's in all. The first 14 will have terms associated with

the second derivative of the roll amplitudes, terms asso-

ciated with the second derivative of the yaw amplitudes, and

terms associated with the proof-mass actuator forces in the

x-direction, as shown by eq (85). Expanding these terms in

matrix form results in three matrices. For example, using

just the 14 roll terms, the matrix associated with the second

derivative of the roll amplitudes is

trrl,l trrl, 2  trrl, 3  .. • trrl, 1 4

trr 2 ,1  trr 2 ,2  trr 2,3  ... trr 2 ,1 4

Trr = trr 3 ,1  trr 3 ,2  trr 3 ,3  ... trr 3 ,1 4  (86)

trr 14 ,1  trr 14 ,2  trrl4, 3  ... trrl4,4
L _J

where

trri j =-m 2 Ri(40)Rj(40) - m3 Ri(8O)Rj(80)

- m4Ri(l 3O)Rj(130) - 4969Ri'(130)Rj(130)

The matrix associated with the second time derivative of the

yaw amplitudes looks like
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try1 1l tryl,2  try 1 ,3  .. tryl1 4

trY2,1 try 2 ,2  try 2 ,3  ... trY 2 ,1 4

Try try 3 ,1  try 3 , 2  try 3 , 3  . trY3 1 4  (87)

try 1 4 ,1  try4,2  try 1 4 ,3  ... try 1 4 ,1 4

S

where

trYi, j  = -32.5m4Ri(130)Yj(130)

and the matrix of forces and moments is

-Fr,2Ri(40) - Fr, 3 Ri(80) - M4 xRi,(130)

Fr,2 R 2 (40) - FV. 3 R2 (80) - M4xR2'(130)

Trc -Fr,2 R3 (40) - Fr, 3 R 3 (80) - M 4 xR 3 '(130) (88)

-Fr,2R14( 8 0 ) - Fr3Rl4 (80) - M 4 xRl 4
1(1 3 0)

The pitch equation will have a right side in an identical

form with the only change being that any roll functions are

replaced by pitch functions. The yaw equation simplifies

into a somewhat simpler form, but still has a matrix asso-

ciated with the second time derivative of the yaw amplitudes

and a matrix of force and moment terms. There is no coupling

in the yaw equation with either pitch or roll, which is

expected for a fixed-free model. The yaw matrices are
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tyy1 , 1  tyyl 2  tyyl 3  . tyyl 1 4

tYY2 , 1  tYY2 2  tyY2 3  ... tyy2 1 4

T = tyy 3 1  tYY 3 2  tyy 3 3  .. tYy3 1 4  (89)

tYY1 4 ,1  tYY 1 4 .2  tyy 1 4 ,3  .. tyy1 4 ,1 4

where

tyyi = -7,086,601Yi(0)Yj(0) -9938Yi(l30)Y (130)

and

-M4z Yl130)

-M 4 zy2 (1
3 0)

T =C -~y310 (90)

-M4 zyl 4 ( 130)

These matrices come from the last 14 Qi5 s, that is,~ Q2 9

o through Q42 ,

Final Model

Before tying together the equations of motion incorpor-

ating the generalized forces, eq (54) will be slightly modi-

fied to represent the angular rate of the shuttle-beam-

antenna system and its time derivative in terms of the corre-

sponding angular displacements and their time derivatives.

The middle term on the left side of eq (54) can be written as
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[SZ]T : =[SZ eT 92 [szr T (91)1

O3

where 01, 02, and 03 are the angles through which the shuttle

system rotates. Similarly, the first term on the left side

of eq (58) can be rewritten as

[' iI4 I (92)

The left side of eq (54) is in a very simple form, thanks

to the judicious choice of assumed modes. The right side,

however, contains terms in the generalized forces which will

combine with terms on the left side and complicate them

somewhat. Specifically, each of the generalized forces con-

0 tains terms which will combine with the identity matrix (the

mass matrix) on the left side of the equation. If eq (54) is

rewritten to incorporate the generalized forces, it can be

expressed as

1 0 r Frr 0 TrylUr Trc

01 0 Up + Sz Ti+ W2 IU T Tpy U + Tp
0 I 0 1 IVy 0 0 TYy!JU Tyc

(93)

where each single term in the matrices accociated with the

second derivative of the amplitudes represents a 14 x 14

block, and each I represents a 14 x 14 identity matrix. The
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first matrix on the right side can be combined with the first

matrix on the left side. The resulting equation can be

written as

r .p-, (T "
Mr0 Try Ur TrcI_ I TycI

where

*M I Tr
r  rr

M = I -T

my I- T yy

A new vector must now be defined to augment the U vector.

It is formed by incorporating the G's and can be written:

X ={ U U p Uy T (95)

This is vector of 45 elements with the first 3 elements being

the angles through which the shuttle-beam-antenna system

rotates. Eqs (94) and (58) can now be added, and their sum

expressed as

ITI Sz e 0 I I o e M

IMr j 0 1-Try Ur + 0 1wr21 o 0 Ur Trc
S TrO-- M -I---- -- - -- Up- p

Io  p I y Uy 0 10 0 10

0y y t i y y Tyc

(96)

remembering that Sz is not a square matrix (in fact, it is a
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3 by 42 for a 14-mode approximation). The new mass matrix in

this equation will now be called M (no subscript), and the

force and moment matrix on the right side will be called F.

The stiffness matrix, which now has zeros as the first three

diagonal elements, will continue to be called w2

One final operation will be performed on this equation

for convenience. It is desirable for the mass matrix to be

the identity matrix as it was prior to the incorporation of

the generalized forces so that the state-space form will be

easier with which to work. It is possible to accomplish this

and still keep the stiffness matrix in diagonal form by using

some of the properties of matrix manipulation. If an eigen-

value analysis is done on the unforced (homogeneous) form of

eq (96), the resulting eigenvectors can be put, column by

column, into a transfer matrix [5:182-186]. The vector x can

be expressed as

x= ij ¢(97)

so eq (96) can be rewritten as

[ILol + Io2 11011.l = (98)

Now, pre-multiplying eq (98) by

the results will be

Flirt + I\K,1I1 =(E ilFI (100)1
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where

[K] [)L]-l [(pJ-l [w2][Qp] (101)

The mass matrix has thus been reduced to the identity

matrix, and the new stiffness matrix, K, keeps its diagonal

form. The terms on the diagonal of K also happen to be the

eigenvalues of the unforced system. The term on the right

side of the equation will now be called EF, and will figure

prominently in the control portion in the next chapter.

Finally, the damping of the beam must be taken into

account. The damping matrix can be defined as

[D] = [2[w] (102)

where the was defined in the reference (2] as .003 for

roll, pitch, and yaw motion. This leaves the final mathema-

tical representation of this system as

1]1 '] +[ K]j T'( [E F (103)

Each matrix on the left side is a 45 x 45 diagonal matrix,

and the matrix on the right side is a 45 x 1 matrix, which

will be modified in the next chapter.

The mathematical model of the shuttle-beam-antenna system

has now been derived, resulting in a single matrix equation.

The next chapter will apply apply linear control theory to it

to investigate how the system might be controlled.
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IV. Control Model

The previous chapters have taken a complicated physical

system and reduced it into a mathematical model. This model

has simplified the system somewhat by ignoring numerous non-

linear terms. The final mathematical expression consists of

a fairly large matrix equation which will now be used to

develop a control law.

The bulk of the control work done in this paper is a

direct result of in-depth analyses done by Janiszewski [6]

and Aldridge [7]. The computer programs generated by this

work were modified for use on this model, and other than

observing results, no attempt was made to further the study

of the control techniques employed. A brief outline of the

theory will be presented in this chapter. However, anyone

wishing detailed study of this control method should refer to

the works referenced throughout the chapter.

Since it would be impossible to control all of the modes

of a vibrating structure, a method must be found to control

the most excitable modes while being careful not to drive any

uncontrolled modes unstable. 3aniszewski [6] shows how this

is done by dividing the modes into three categories: control-

led, suppressed, and residual. The controlled modes will be

actively controlled. The suppressed modes will not be ac-

tively controlled, but care will be taken to avoid exciting
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them while working on the controlled modes. The residual

modes will not be controlled or suppressed, with the as-

sumption that their frequencies are either too high to excite

significantly or, if excited, will dampen out through the

natural damping of the beam.

The first step towards controlling the system is to

truncate the mathematical model to a reasonable number of

* modes with which to work. The ACOSS program developed and

modified by Janiszewski and Aldridge could be easily modified

for this model and handled twelve modes. Since the modes

with the lowest frequencies tend to be the most excitable,

the model's twelve lowest modes were used. To get just those

modes, eq (103) was put in the proper form by judicious use

of the 0 matrix. The eigenvectors of the eigenvalue problem

solution, which are the columns of 0, were ordered so that

the eigenvalues which appear on the diagonal of the K matrix

were in ascending order. The three lowest frequencies (the

square root of the eigenvalues), which are zero, correspond

to the rigid body modes and must necessarily be controlled to

keep the shuttle in the proper attitude. The next nine modes

are the lowest of the roll, pitch, and yaw beam modes, or-

dered from lowest to highest without regard to which axis

they correspond. It is these modes which are the most ex-

citable and must be controlled or suppressed. To properly

truncate eq (103), the left side will have the top left 12 x

12 sub-matrix extracted from each 45 x 45 matrix. The right

50

#4



side will have the top 12 x 10 sub-matrix extracted from the

45 x 10 matrix which results after all matrix multiplication

has been performed. This is done within the computer program

SHUTBM (see Appendix C) and passed to the ACOSS program. The

smaller matrix equation can now be put in state-space form.

If the state vector is defined as

i = je Ur Up u y 6 Ur Up P yIT (104)

then the state equation can be written as

x = Ai + Bii (105)

where

A=

(106)

B=

The matrix Bf will depend on what is chosen as the control

vector u(t). For this analysis, the shuttle can be torqued

about all three axes as can the antenna. The two proof-mass

actuators can each produce forces in the X and Y directions.

Using moments and forces for the control vector, it can be

written as

u~) F F FIT07
u(t) = Fr2 p2 Fr3 Fp 3 Mlx M4x Mly M4y Mlz M4 z

where
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Fr 2 and Fp 2 are the forces in the roll and pitch axes

directions made by the actuator at S=40.

Fr3 and Fp 3 are the forces in the roll and pitch axes 0

directions made by the actuator at S=80.

Mlx, Mi., and M ax are the moments applied to the shuttle.

M4 x, M4y, and K 4 z are the moments applied to the antenna.

This control vector must be factored out of the term on

the right side of eqn (103) before it is truncated. What is

left of the F matrix after factoring (and before premultipli-

cation by the E matrix) is denoted as Fb. This matrix must

be modified slightly so that the elements of the control

vector will be roughly of the same magnitude. Reference [2]

infers that the actuator forces will be in units of pounds

(since the masses being moved weigh 10 pounds and are driven

a distance of only one foot), or perhaps tens of pounds. The

moments, however, are limited by the NASA paper [2] to 10,000

ft-lbs. If these moments are expressed in the control vector

in units of thousands of ft-lbs, then the forces and moments

will be of roughly the same order. To make the conversion,

all elements of the Fb matrix corresponding to a moment in

the control vector must be multiplied by 1000. This has been

done in the computer program MODEL (see Appendix C).

The sensor output can be expressed as

= C i (108)

For the problem at hand, the output vector j is given by
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T 01 )2 03 u,(sn2) up(sn2) ur(sn3) up(sn3) (109)

The ACOSS program takes the truncated matrix equation and

forms the state-space equation. It also must be given the C

matrix before it can start the control algorithm. Once it

has this information along with input options, it can begin

forming the control law, a brief description of which fol-

lows.

As both Janiszew ski [61 and Aldridge [7] point out, the -

state x cannot be measured directly. It can only be measured

through the output y, so a state estimator has been developed

for use with this control technique. This estimator takes

the output y and makes a best estimate of the state x which

corresponds to y. The result of this estimator is an equa-

tion for the estimated error:

ec(t) (Ac -[cCc) ic(t) (110)

which includes the estimator gain Kc which was found through

minimizing the quadratic regulator performance index [8:537].

The same process is applied in finding the control gain G

to be used for feedback purposes in the equations:

Xc(t) = (Ac + BcG)iC(t) + BcGi(t) (111)

s = Asis(t) + BsGi (t) + BsGi(t)

The controller and observer gain matrices K and G are

determined such that the performance indices Ic and 0 are
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minimized where

Ic = (icTQC i + TRcj) dt (112)f0
Jo = L+cTQoc + vTRov) dt

The matrices Qc' Qo, R., and R are chosen by the control

designer. If QC and Qo are chosen positive semi-definite and

R c and R o positive definite, then Ac+BcG and Ac-KC c are

• guaranteed stable.

The closed loop system model can now be formed, as Janis-

zewski [6] by defining a new state vector:

i(t) = icT(t) 11 a T(t) 11 i T(t) T (113)

which incorporates the controlled states, suppressed states,

and estimator error. The closed loop system model can then

be expressed as:

Ac + BeG BcG 0

0(t) = 0 A0 - [Cc I [Cs i(t) (114)

I I
BsG BsG AS

The eigenvalues of the above matrix will show the stabi-

lity (or instability) of the system. All negative eigen-

values (or complex conjugate eigenvalues with a negative real

part) will show the system to be stable within the limita-

tions of the model. Any positive real parts of eigenvalues

will show the system to be unstable. This would be caused by
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a coupling effect of the [C term (called observation spill-
over) and/or the BsG terms (called control spillover) since

the optimal regulator theory insures that Ac+BcG and Ac-KCc

are stable matrices.

Once the ACOSS program has built eqn (114), it runs the

eigenvalue problem. At this point it is an unsuppressed run.

The program will then run the suppression algorithm, which

effectively stabilizes the system if it was initially un-

stable.

The suppression algorithm can be implemented in one of

two ways. The intent is to drive eqn (114) into an upper or

lower diagonal form so that the eigenvalues of the matrix

will be the eigenvalues of the terms on the diagonal, which

all have a negative real part. This can be done by either

driving

BsG = 0
€S

or

KC = 0
4

Care must be taken to keep from allowing BcG or KCc to become

zero, lest control or observation be completely lost.

The method used by ACOSS is to find a transformation

matrix T such that the new control vector U(t) will become

i.(t) = T (t) (115)
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This is done through a technique known as Singular Value

Decomposition [9]. Aldridge [7] gives a straightforward

explanation of SVD on pages 42-48.

After having found the T matrix, ACOSS then reruns the

eigenvalue problem, with the results being eigenvalues with

negative real parts. The system is thus shown to be stable

within the bounds of the mathematical model.

The next chapter will show what the program did to the

shuttle-beam-antenna system. It is meant as a guide to show

that the system can indeed be stabilized, and what effect

different control weightings have on its stability.
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V. Results

The intent of this investigation was to show whether or

not the mathematical model developed in Chapter III could be

stabilized, and how the closed loop damping could be improved

over the open loop damping.

No time response was calculated for this system. The

measure of performance was chosen to be the closed loop modal

damping coefficients, ci" After each run, this is compared

to each open loop damping coefficient, oi, which was given

(see Table I) as 0.003. A target value for improvement was

set at .03, which is a factor of 10 above the open loop

coefficient.

An initial run of the ACOSS program was made, using zero

initial conditions. Initial weighting values of 1 were given

to the weighting matrix F of the matrix-Riccati equation

[8:541]. The modes selected for control were those with the

six lowest frequencies. These were the three rigid body

modes and the three lowest roll, pitch, and yaw modes. The

suppressed modes were those four with the next lowest fre-

quencies, and the residual modes were the remaining two,

which had the highest frequencies of those modeled. ACOSS

ran both the unsuppressed and the suppressed algorithms. The

results are shown in Table IV and Table V. Table IV shows

all of the eigenvalues of the modeled system to have negative
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real parts. Table V shows that the .03 performance index was

easily surpassed with these weightings. There is very little

difference between the unsuppressed and suppressed portions

of the run, mainly because the system was stable to begin

with, and no suppression was needed.

Another run was made with the weightings on the control- S

led flexible modes set at 50 to determine the effect on

system eigenvalues. The results, shown in Table VI and Table

VII, as expected, show very heavy damping on the flexible

modes and a very slight change on the rigid body mode

damping. The system is still stable without suppression, so

the suppression portion showed little change as before.

Another run was made to see if the system eigenvalues

could be driven unstable. The weighting of the flexible yaw

mode was set at 1000. The system did indeed become unstable,

as shown by the overall system eigenvalues in Table VIII.

There are three complex conjugate pairs of eigenvalues with

positive real parts resulting from this weighting. The sup-

pression algorithm stabilized the system, however, as shown

in Table VIII and Table IX. The eigenvalues again all have

negative real parts, showing the system to be stable. This

shows that the ACOSS program works on this model as it was

designed.
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Table IV

Overall System Eigenvalues

Initial Run

Controlled Modes: 1,2,3,4,5,6

Suppressed Modes: 7,8,9,10

Residual Modes: 11,12

Qc = 0o =

R c = R o =ti'1,

Before Suvi~ression After Sul2.re ssion

-0.24024311 + 80.06607536i -0.24019691 + 80.C6608979i
-0.24055247 + 80.18813210i -0.24056484 + 80.18812917i
-0.10488282 + 34.81784403i -0.10445463 + 34.81805332i
-0.10461379 + 34.94614859i -0.10483854 + 34.94602274i
-0.03907432 + 13.00359541i -0.03902331 + 13.00771146i
-0.03814158 + 13.13582349i -0.03942096 + 13.14026087i
-2.39955811 + 5.086878294i -2.40027385 + 5.076907440i
-0.16797683 + 5.594573741i -0.01679353 + 5.597809809i
-0.76047227 + 1.785963613i -0.75564842 + 1.762731235i
-0.70649699 + 1.803664617i -0.70786680 + 1.776586936i
-0.15720756 + 1.845696247i -0.00556498 + 1.854871652i
-0.15640709 + 1.836151481i -0.00553401 + 1.844585698i
-0.86594036 + 0.499810091i -0.86602637 + 0.499994808i

-0.86622385 + 0.500038680i -0.86603015 + 0.499998044i
-0.02637183 + 0.026597291i -0.02661848 + 0.026601183i
-0.00990540 + 0.009912217i -0.00991154 + 0.009910617i
-0.00994017 + 0.010025435i -0.01002882 + 0.010027879i
-0.86602540 + 0.500000000i -0.86602540 + 0.499999999i
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Table V

Eigenvalues and Closed Loop Damping Coefficients

Initial Run

Controlled Modes: 1,2,3,4,5,6

Suppressed Modes: 7,8,9,10

Residual Modes: 11,12

c = 0=

Ro Ro [i.

Controlled Modes:

Before Suyyression After Suppression

-0.00991 + 0.00991 i = .707 -0.00991 + 0.00991 i = .707
-0.01003 + 0.01003i = .707 -0.01003 + 0.01003i .707
-0.02662 + 0.02660i = .707 -0.02662 + 0.02660i .707
-2.40027 + 5.07691i .427 -2.00427 + 5.07691i = .427
-0.70787 + 1.77659i = .370 -0.70787 + 1.77659i .370
-0.75565 + 1.76273i = .394 -0.75565 + 1.76273 1 = .394

Suppressed Modes:

Before Suvression After Suppression

-0.03902 + 13.0077i = .003 -0.03902 + 13.0077i = .003
-0.03942 + 13.1403i .003 -0.03942 + 13.1403i = .003
-0.10445 + 34.8181i = .003 -0.10445 + 34.8181 1 = .003
-0.10484 + 34.9460i = .003 -0.10484 + 34.9460i = .003

Residual Modes:

Before Suppression After Suvvression

-0.24019 + 80.0661i = .003 -0.24019 + 80.0661i = .003
-0.24056 + 80.1881i = .003 -0.24056 + 80.1881i = .003
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Table VI

Overall System Eigenvalues

Controlled Modes: 1,2,3,4,5,6

Suppressed Modes: 7.8,9,10

Residual Modes: 11,12

Q= Qo 1 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 50 0 0 0 0 0 0 0 0
* 0 0 0 0 50 0 0 0 0 0 0 0

0 0 0 0 0 50 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 50 0 0
0 0 0 0 0 0 0 0 0 0 50 0
0 0 0 0 0 0 0 0 0 0 0 50

R , R o - 1.

Before Suppression After Suppression

-0.24000054 + 80.06585026i -0.24018449 + 80.06609121i
-0.23968480 + 80.188295571 -0.24056131 + 80.18812968i
-32.9177464 + Oi -32.9345667 + 01

-0.09589029 + 34.81961022i -0.10445463 + 34.81805331i
-0.09286895 + 34.95197391i -0.10483854 + 34.94602274i
-0.07403583 + 12.88756352i -0.03902331 + 13.00771146i
-0.06884054 + 13.01455579i -0.03942096 + 13.14026087i
-8.07978974 + Oi -8.43563283 + Oi
-7.47846553 + Oi -7.96961656 + Oi
-0.27405494 + 5.586351641i -0.01679357 + 5.597809809i
-0.55446360 + 1.858837822i -1.11786810 + Oi
-0.53340846 + 1.819136002i -0.00556567 + 1.854871646i
-1.48750669 + 01 -0.00553445 + 1.844585695i
-0.66519955 + Oi -0.39513958 + Oi
-0.50217705 + Oi -0.43372921 + Oi
-0.02355995 + 0.025848884i -0.02705426 + 0.026160978i
-0.00994269 + 0.009989706i -0.00993458 + 0.009887539i

-0.00877420 + 0.009894585i -0.01005245 + 0.010004210i
-1.94580388 + 1.813202193i -1.94563452 + 1.812601329i
-1.94524442 + 1.8123575341 -1.94563911 + 1.812608398i
-1.94564483 + 1.812604131i -1.94564485 + 1.8126041771
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Table VII

Eigenvalues and Closed Loop Damping Coefficients

Controlled Modes: 1,2,3,4,5,6

Suppressed Modes: 7,8,9,10

Residual Modes: 11,12

Weightings: See Table VI

Controlled Modes:

Before SupDression After Supvression

-0.00993 + 0.00989i = .709 -0.00993 + 0.00989i = .709
-0.01005 + 0.01000i = .709 -0.01005 + 0.01000i = .709
-0.02705 + 0.02616i = .719 -0.02705 + 0.02616i = .719
-0.39514 + Oi 1.0 -0.39514 + Oi = 1.0
-0.43373 + Oi = 1.0 -0.43373 + Oi = 1.0
-1.11787 + Oi = 1.0 -1.11787 + Oi 1.0
-7.96596 + Oi = 1.0 -7.96596 + Oi 1.0
-8.43561 + Oi = 1.0 -8.43561 + Oi = 1.0
-32.9346 + Oi = 1.0 -32.9346 + Oi = 1.0

Suppressed Modes:

Before Suppression After Suppression

-0.03902 + 13.0077i = .003 -0.03902 + 13.0077i = .003
-0.03942 + 13.1403i .003 -0.03942 + 13.1403i = .003
-0.10445 + 34.8181i = .003 -0.10445 + 34.8181i = .003
-0.10483 + 34.9460i = .003 -0.10483 + 34.9460i = .003

Residual Modes:

Before Suppression After Suppression

-0.24019 + 80.0661i = .003 -0.24019 + 80.0661i = .003

-0.24057 + 80.1881i = .003 -0.24057 + 80.1881i = .003
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Table VIII

Overall System Eigenvalues

Controlled Modes: 1,2,3,4,5,6

Suppressed Modes: 7,8,9,10

Residual Modes: 11,12 j

Qc Qo = 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0
0 0 0 0 50 0 0 0 0 0 0 0
0000 50 0 0 00 0 0
0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 50 0 0
0 0 0 0 0 0 0 0 0 0 50 0
0 0 0 0 0 0 0 0 0 0 0 1000

R =R I.]

Before Supvression After Suppression

-150.26995172 + 0i -150.300112 + 0i
-0.2411541224 + 80.0589083i -0.24018206 + 80.0660909i
-0.2059402063 + 80.2074037i -0.24056305 + 80.1881308i
-38.280270629 + Oi -39.0747709 + Oi
-0.0865376915 + 34.8052009i -0.10445463 + 34.8180533i

ft +0.1107479215 + 35.2931502i -0.10483854 + 34.9460227i
+0.0272984940 + 12.8537225i -0.03902331 + 13.0077115i
+0.5538430430 + 11.0878564i -0.03942096 + 13.1402609i
-7.3933793757 + Oi -8.19451804 + Oi
-0.9721057460 + 5.50363776i -0.01679430 + 5.59780981i
-2.8091057926 + 1.32575141i -0.00558402 + 1.85487153i
-0.5164799305 + 1.73838578i -0.00553445 + 1.84458569i
-1.3225958070 + Oi -0.45336639 + Oi

-0.4337955132 + Oi -0.21174024 + Oi
-0.2052694774 + Oi -0.09184072 + Oi

-0.0224186944 + 0.02557039i -0.02703085 + 0.02618073i
-0.0091808952 + 0.00986227i -0.01003086 + 0.01002382i
-0.0070312672 + 0.00942698i -0.00992552 + 0.00989796i
-1.9451667499 + 1.81280739i -1.94563263 + 1.81260802i
-1.9457737116 + 1.81253073i -1.94564374 + 1.81260481i
-1.9456447513 + 1.81260413i -1.94564486 + 1.81260418i
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Table IX

Eigenvalues and Damping Coefficients

Controlled Modes: 1.2,3,4,5,6

Suppressed Modes: 7,8,9,10

Residual Modes: 11,12

Weightings: See Table VII

Before Suppression After Suvvression

*-0.00992 + 0.00998i =.708 -0.00992 + 0.009981 .708 -
-0.01003 + 0.01002i = 707 -0.01003 + 0.01002i .707
-0.02731 + 0.02618i ..718 -0.02731 + 0.02618i .718
-0.09184 + 0i = 1.0 -0.09184 + Oi = 1.0
-0.21174 + Oi = 1.0 -0.21174 + 0i = 1.0
-0.45336 + Oi = 1.0 -0.45336 + 0i 1.0
-8.19445 + Oi = 1.0 -8.19445 + Oi = 1.0
-39.0747 + Oi = 1.0 -39.0747 + Oi = 1.0
-150.300 + Oi = 1.0 -150.300 + Oi = 1.0

Suppressed Modes:

Before Suppression After Suvoression

-0.03902 + 13.0077i = .003 -0.03902 + 13.0077i : .003
-0.03942 + 13.1403i = .003 -0.03942 + 13.1403i .003
-0.10445 + 34.8181i = .003 -0.10445 + 34.8181i = .003
-0.10483 + 34.9460i .003 -0.10483 + 34.9460i = .003

Residual Modes:

Before Suppression After Supyression

-0.24019 + 80.0661i = .003 -0.24019 + 80.0661i .003
-0.24056 + 80.1881i = .003 -0.24056 + 80.1881i = .003
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V. Conclusions

A mathematical model was developed for a shuttle-beam-

antenna system. The system was discretized using an assumed

modes approximation. The equations of motion were developed

from scratch and linearized by ignoring higher-order terms

and assuming small beam deflections. The coupling between

the rigid-body and flexible motions was taken into account in

* the equations of motion. Fourteen modes were assumed in each

of the three directions of motion (roll and pitch bending and

yaw torsion). The equations of motion were put in matrix

form, and the matrices diagonalized.

Linear optimal regulator theory was applied to examine

the stability of the mathematical model. A target value of

.03 for the closed loop modal damping coefficient was used as

a measure of improvement between the open loop and closed

loop system. The target value was surpassed on the first

try, using equal weightings on all of the modeled modes. The

weightings were then modified to examine the eigenvalues of

the system for open loop instability. This was found with a

very large weighting of the flexible yaw mode. The closed

loop suppression, as expected, re-stabilized the system.

r
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VII. Recommendat ions

The major emphasis of this analysis was on the mathemati-

cal modeling of the shuttle-beam-antenna system. Unfor-

tunately, only a cursory investigation of the control of the

system could be accomplished. A complete study should be

made of the time response of the system, using varying ini-

tial conditions to measure how quickly the system can be

controlled.

As mentioned in Appendix A, the choice for the locations

of the two actuators was based solely upon the mode shapes of

a cantilever beam with no mass attached to its free end. An

analysis could be made to determine the best locations for

the actuators, incorporating the mass of the antenna into the

mode shapes of the beam.

The NASA Challenge [2] also gave information (which needs

to be carefully corrected) on line-of-sight calculations.

This would be a better measure of system performance than the

closed loop damping coefficient and should be the subject of

further study. The paper also sets up a maneuvering problem,

incorporating attitude changes and a slew maneuver of the

antenna. A complete study can be made on this subject alone.

The major building blocks of a thorough investigation of

the control of the system have now been created. The compu-

ter programs have been built with the flexibility to alter
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the locations of the actuators, the weightings of the con-

trolled modes, the number of modes to be controlled and

suppressed, and many other options. An investigation to find

a complete control law for this system can now be attempted.

V I:
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Appendix A

Cantilever Moe Shakes

The NASA paper [2] gives graphs for the roll, pitch, and

yaw mode shapes of the beam without reference to the type

model used. An investigation into a fixed-free cantilever

beam and a free-free beam showed that the mode shapes of a

fixed-free beam closely resemble those in the NASA paper.

The associated frequencies do not match exactly, but no clue

was given as to the number of modes assumed by the paper, and

therefore the accuracy of the frequencies cannot be measured.

The next few pages show the first seven calculated mode

shapes for a fixed-free cantilever beam using 14 modes for

the roll (and pitch) motion, 14 modes for the yaw motion.

Since the beam bending is identical for both roll and pitch,

the roll graphs also accurately depict the pitch modes. A

comparison with the graphs in the NASA paper shows the close

resemblance.

It was necessary to choose the positions along the beam

for the locations of the two proof-mass actuators. This was

done by inspection of the roll (and therefore pitch) mode

shapes using the 14-mode approximation graph. The higher the

amplitude of any mode shape at a point along the beam, the

more that particular mode will be influenced by an actuator

located at that point. A best fit was thus made to the seven

curves inspected. The 40-foot point showed adequate ampli-
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tude for all seven modes and was chosen as the position of

actuator number one. The 80-foot point showed adequate am-

plitude for all but mode number 5. Since the frequency for

mode 5 is fairly high and adequate amplitude was shown at the

40-foot point, it was decided that the 80-foot point would be

adequate for the position of actuator number two. It should

be kept in mind that these are the mode shapes for a canti-

lever beam without any mass at its free end. Since the

shuttle-beam-antenna system does indeed have such a condi-

tion, the best positions for the actuator locations could

very well be different from those used here. This would

represent a completely different study, and the positions

chosen here will serve the purposes of this investigation.
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Appendix B

Derivation of Coefficients for Roll anA Pitch functions

This section shows the development used to solve for the

coefficients of the equation

R i = AisinaL + BicosaL + CisinhaL + DicoshaL

with the constraint

pARiRids = 1
0

The i subscript will be dropped for convenience, and the pA

will be rewritten as pa to avoid confusion. Several other

constraints also apply to this problem:

A = -C

B =-D

cosaL*coshaL -1

B = -A(sinSL + sinhaL) = -QA

(cosaL + coshaL)

Thus the function becomes

R = AsinaL - QAcosaL - AsinhaL + QAcoshaL

Substituting this function into the constraint equation:

1 pa J [Asinas - QAcosas - Asinhas + QAcoshas] 2 ds
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* Carrying out the multiplication results inI

1/pa = A2 1L~sin 2 as - 2Qsinczs - 2sinassinhas

+ 2Qsinciscoshas + Q2 cos 2 a + 2Qcosassinhas

-2Q2 cosascoshas + sinh2 as -2Qsinhascoshas

+ Q2 cosh2 axs] ds

Integrating each term separately yields

1/pa =A2~F sin2as1 L - 2Q [sin2asl L

[Is 4a 2a ]J0

2 [coshassinas - sinhascoszsl

I.+ 2Q Fsinhassinas - coshazscosasl L
[ 2a 0o

+ Q2 s+ sin2asl L
[24a 0O

+ 2Q [coshczscosczs + sinhassinasl

-2Q
2 Isinhascosas + coshassinasiL[ 2a 0O

+ [sinhascoshas - iL - 2Q [Inh2 as] L
[ 2a J0 2a 0O

+ Q2 Vs + sinhascoshas L~
22a20
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Plugging in the limits and rearranging terms gives:

1/pa A2  1)Q sin2aL - Qsin 2 aL
4a

-(2a+1 coshaLsinaL + (1,Q2) sinhaLcosaL

" 2QsinhaLsinaL + (Q+ 1) sinhaLcoshaL

0 ~a

+ Q2 L - Qsinh2 aLI
a J

To simplify this further, a very close look must be taken at

Q, 02, Q2 -1, and Q2+ 1:

Q2 (sinaL. + sinhaL\2

c osa + coshal)

-sin
2aL + 2sinaLsinhaL + sinh2 aL

cos 2 aL + 2cosaLcoshaL + cosh2 aL

but

Cos2 aL + 2oosaLcoshaL + cosh2 aL

-cos
2 aL -2 + cosh 2 aL

=(cos
2 aL -1) + (cosh 2 aL -1)

-- sin 2aL + sinh2 aL

%P so, substituting:

77



*Q 2 -1 =sin
2 aL +2sinaLsinhaL + sinh2 aL -sin

2 aL + sinh2 aL

-sin 2 aL + sinh2 aL

re 2sin2ciL + 2sinaLsinhaL

-sin 2 aL + sjnh2ciL

in the same manner:

Q+ 1 =2sinaxLsinhaL + 2sinh2 aL

-sin 2 aL + sinh2 aL

Substituting in these expressions for Q, Q2, Q2-1, and Q2 +1:

1/pa =A
2 FsinaL (_sincaL + sinhsL sin2aL

0 2a kL sin2aL + sinh2 sL

-(sinaL + sinhczL)(sin2caL)
a(cosaL + coshaL)

-2 (sinazLsinhcLcoshaL)(sinaL + sinhaL)

a(-sin2 aL + sinh2 aL)

* - 2sin2 aLcosaL~sinaL + sinhaL)

a(-sin2 aL + sinh2aL)

+ 2sinaLsinhaL(sinaL + sinhaL)

a(cosciL + coshaL)

+ sinh2 aLcoshaL(sinaL + sinhaL)

(0g a(-sin 2czL + sinh2 aL)
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1W~

+ LUsin 2 al, + 2sinaLsinhaL + sinh2 aL)

-sn@l + sinh2 a

-sinh
2 aL(sinaL + sinhl.)1

a(cosaL + coshaL)J

now, let

sinaL + sinhaL = x

40 -sin 2 al. + sinh2 aL

so:

1/pa A 2 xsin2 aLcosaL -xsin aL~cosaL + coshaL)
3 3

- 2xsinaLsinhaLcoshaL - 2xsinaLcosaLsinhaL

+ 2x(cosaL + coshaL)sinhaLsinaL + xsinh2 aLcoshuL
a a

0 + L lsinal. + sinhaL, 2 - (cosaL + coshaLL)sinh2aLj

kcosal. + coshuL)

Combining and cancelling appropriate terms:

1/pa =A
2  -xsin2 aLcoshaL - xsinh2 aLcosaL

a a

( LsinaL, + sinhaL2
cosaL + coshaL

Combining the i/a terms and re-substituting for x:

79



-x(sin 2ciLcoshaL + sinh2 aLcosaL) - sin3aL + sin3 aLcosaL 1
La( -sin 2czL + sinh2 aL)

+ si 2iLcoshaLsinhaL + sinaLcosaLsinhaL1

a(-sin2 azL + sinh2 aL)

- sinaLcoshaL(l - cos2 aL) I- coshaLsinhaL(1 cos2 aL)

0 L a(-sin al. + sinh ciL)

+ sincLcosaL(cosh2aL - 1) + sinhaLcosaL(cosh2aL -1)1
a(....n 2 acL + sinh2 aL)J

[sinaLcoshal. - sinaLcoshaLcos2ciL + coshczLsinhaL

a(-sin2 aL + sinh2 aL)

+ -coshcaLsinhczLcos 2 aL + sinaLcosciLcosh2 aL

cI(-sinh2cLL + sinh2 aL)

+ -sinciLcosciL + cosczLsinhaLcosh2 aL -sinhaLcoszL1

a(-sinail. + sith al.)j

Every cos*cosh product can be replaced by -1, so:

-1 [sinaLcoshaL + sinciLcosciL + coshciLsinhaL + sinhaLcosaL

a -sin 2 zl, + sinh2 zl.

+ -sinciLcoshaL -sinciLcosciL -sinhciLcoshaL -sinhaLcosiL

-sin 2aL + sinh 2 il I
80
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So, the remaining term is the only non-zero term, resulting

win:

1/pa = A2 L sinaL + sinhaL\2

cosGL + coshaL]

Solving for A:

A c / osaL + csa
aL sinaL + sinhaL

And solving for B:

B = -QA = - 1 /2

w 6
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Appendix Cj

Comp~uter Listings
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PROGRAM MODEL
C

C
C THIS PROGRAM TAKES THE ANGLE DATA FROM 'FDATA1' AND COMPUTES
C THE A-, B-, AND C- COEFFICIENTS FOR THE ROLL, PITCH, AND YAW
C EQUATIONS. IT ALSO COMPUTES THE OMEGA-SQUARES FOR THESE EQUA-
C TIONS. IT THEN EVALUATES THESE EQUATIONS AT BOTH ENDS OF THE
C FIXED-FREE BEAM. IT INCORPORATES SOME CORRECTION FACTORS DUE
C TO THE MOTION OF THE PROOF-MASS ACTUATORS (LOCATED AT POSITIONS
C SN1 AND SN2). THE PROGRAM PUTS ALL OF THIS INFORMATION IN MATRIX 0
C FORM, CREATING TWO MATRICES--A MASS MATRIX 'M' (STORED IN DATA
C FILE 'FMASTM'), AND A STIFFNESS MATRIX '0' (MADE UP OF THE OMEGA-
C SQUARES AND STORED IN DATA FILE 'FMASTK'). THE REST OF THE PRO-
C GRAM SOLVES THE EIGENVALUE PROBLEM FOR THESE TWO MATRICES FOR
C COMPARISON WITH THE NASA PAPER.
C
C ******S******************s**..**.**..*..*..............****.*.

C
DOUBLE PRECISION A(14),B(14),C(14),ALPHAL(14),ALPHA(14)
DOUBLE PRECISION BETAL(14),BETA(14),OMESQR(14),OMESQP(14)
DOUBLE PRECISION PHI(14),PHIPR(14),PHIZ(14),PHIPRZ(14),OMESQY(14)
DOUBLE PRECISION THETA(14),THEPR(14),THETAZ(14),THEPRZ(14)
DOUBLE PRECISION PSI(14),PSIPR(14),PSIZ(14),PSIPRZ(14)
DOUBLE PRECISION PHICRl(14),PHICR2(14),THECR1(14),THECR2(14)
DOUBLE PRECISION PHICOR(14,14),THECOR(14,14),PMAT(7,45)

C
S DOUBLE PRECISION FR(14,14),GR(14,14),FP(14,14),GP(14,14),ONE

DOUBLE PRECISION FY(14,14),GY(14,14),M(42,42),0(42,42)
DOUBLE PRECISION Al,A4,Bl,B4,Cl,C4,Dl,Ml,M4,Y4,Z4,M2,M3, SN1, SN2
DOUBLE PRECISION FBMAT(45,10)

C
REAL AA(42,42),BB(42,42),COMP1,COMP2,VREAL(42,42),HERTZ(42)
REAL WK(1888),BBETA(42),FBMATX(45,10),PMATX(7,45)

C
COMPLEX ALFA(42),VEC(42,42),VECT(42,42),EIGENV(42),OMEGA(42)
COMPLEX TEMP(42)
INTEGER IJ, K, L, Q, U, V. W, X, Y, Z
INTEGER IA, IB, N, IJOB, IZ, IER

C
PARAMETER (Al=905443 .O0,A4=4969.0,Bl=6789100.0,B4=4969.0,

1 C1=7086601.0, C4=9938.0,Dl=-145393 .0,M1=6366.46, M4=12.42,
1 M2=.3108,M3=.3108,SNl=40.0, SN2=80.0)
PARAMETER (V=14,W=15,X=28,Y=29,Z=42)

C
C *****..*.S*********.*..**.**..................................O.

C INITIALIZATIONS
C ****************************************....

Y4=-18.75*M4
Z4=-32.5*M4
ONE=-1 .0

C O

83



C READ IN THE ANGLE INFORMATION:
cc cc cc CCCC CCCCCccccc cc cccc ccc cccc cc Ccc

REWIND(UNIT=7)
10 FORMAT (E3 1.2 4)

DO 20 I=1,14j
READ( 7,10) ALPHAL( I)

B(I)=-l/(SQRT(.09556*130))
A(I)=(-B(I))*(COS(ALPHAL(I))+COSH(ALPHAL(I)) )/(+SIN(ALPHAL(I))

1 +SINH(ALPHAL(I)))
OMESQR(I)=(4E7/(.09556*130**4))*(ALPHAL(I)**4)
OMESQP(I)=(4E7/(.09556*130*04fl(ALPHAL(I)*4)

20 COTINUEIF (I.EQ.111) THEN

PRINT*,'YOUR COEFFICIENTS ARE:'
PRINT*,'
DO 40 I=1,14 WRITE*,10)A~l)

40 CONTINUE
C

ENDIF

DO 50 I=1,14
l* BETAL(I)=(2.0*I-1)*(DACOS(ONE) )/2.0 -

BETA( I) =BETAL( I) /130
50 CONTINUE

DO 60 I=1,14
C(I)=SQRT(2/(.9089*130))
OMfESQY(I)=(4E7/(.9089t130*02))*(BETAL(I)**2)

60 CONTINUE
C
C

IF(I.EQ.111) THEN
C

PRINT*, 'THE BETA-LS ARE:'
46 ~ DO 70 1=1,14a

WRITE( *,10) BETAL( I)
70 CONTINUE

PRINT*, 'THE BETAS ARE:'
DO 80 1=1,14
WRITE(0, 10) BETA( I)

80 CONTINUE
C

PRINT*, 'AND ALL THE CnS ARE:'
WRITE( *, 10) C( 1)

CC ENDIF
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CCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCcc

C CALCULATE THE PHI, PHI-PRIME, AND PHI CORRECTION FACTORS:
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

w C
C

DO 90 I=1,14
ALPHA( I) =AL PH AL( I) / 130

90 CONTINUE
DO 100 I=1,14
PHI( I)=A(I) *SIN(ALPHAL( I) )+B( I) *COS(ALPHAL( I))

1 -A(I)*SINH(ALPHAL(I) )-B(I)*COSH(ALPHAL(I))
C

PHICR (I) =A( I) *SIN( ALPHA( I) *SN1) + B( I) *COS( ALPHA( I) *SN1)
1 - A(I)*SINB(ALPHA(I)'SN1) -B(I)*COSH(ALPHA(I)OSN1)

C
PHICR2( I)=A(I)*SIN(ALPHA(I)*SN2) + B( I)*COS(ALPHA(I)*SN2)

1 - A(I)*SINH(ALPHA(I)*SN2) -B(I)*COSH(ALPHA(I)*SN2)

* C
100 CONTINUE

DO 110 I=1,14
PHIPR(I)=(ALPHA(I))*(A(I)*COS(ALPHAL(I))-B(I)*SIN(ALPHAL(l))

1 -A(I)OCOSH(ALPHAL(I))-B(I)*SINH(ALPHAL(I)))
110 CONTINUE

DO 120 I=1,14
PHIZ( I)=0

120 CONTINUE
DO 130 I=1,14

PHIPRZ(I)=0
130 CONTINUE
C
CC CCC C CCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCeCC CCCCCC CCCCCCCCCCC CCCCCC
C CALCULATE THE THETA, THETA-PRIME, PSI, PSI-PRIME, AND THETA-
C CORRECTION FACTORS:
CCCC CCCCC CCCCCCCCCCCCeCCCCCCCCCC CCeCCC CCCCCCCCC CCCCCC CCCCCCCCCCCC
C

DO 140 I=1,14
THETA(I)=A(I)*SIN(ALPHAL(l))+B(I)*COS(ALPHAL(I))

1 -A(I) *SINH(ALPHAL(I) )-B(I)*COSH(ALPHAL(I))
C

THECR1(I)=A(I)*SIN(ALPHA(I)*SN1) + B(I)*COS(ALPHA(I).SN1)
1 -A(I)*SINH(ALPHA(I)*SN1) - B(I)*COSH(ALPHA(I)*SN1)

C
THECR2(I)=A(I)*SIN(ALPHA(I)*SN2) + B(I)*COS(ALPHA(I) *SN2)

1 -A(I)*SINB(ALPHA(I)*SN2) - B(I)*COSH(ALPHA(I)*SN2)
C

140 CONTINUE
DO 150 1=1,14

THEPR(I)=(ALPHA(I) )*(A(I)*COS(ALPHAL( I) )-B(I)*SIN(ALPHAL(I))
1 -A(I) *COSH(ALPHAL(I) )-B(I) *SINH(ALPHAL(I)))

150 CONTINUE
DO 160 1=1,14
THETAZ(I)=0

85



160 CONTINUE
DO 170 1=1,14

THEPRZ (I) =0
170 CONTINUE

DO 180 I=1,14
PSI(I)=C( I)*SIN(BETAL(I))

180 CONTINUE
DO 190 1=1,14

PSIPR(I) =(BETA(I)) *COS( BETAL(I)) *C (I)
190 CONTINUE

DO 200 I=1,14

PSIZ(I)=0
200 CONTINUE

DO 210 1=1,14
PSIPRZ(I) =C(I)*BETA(I)

210 CONTINUE
C
C CHECK FOR PROPER CALCULATIONS
C

IF (I.EQ.111) THEN
C

PRINT*, 'THE PHI FUNCTIONS EVALUATED AT ZERO ARE:'
DO 220 1=1,14

WRITE( *, 10) PHIZ(I)
220 CONTINUE

PRINT*,'
BBIIT*,II11iHI FUNCTIONS AT 130 ARE:'
WRITE(*,10)PHI(I)

230 CONTINUE
PRINT*, '
PRINT*,'THE PHI-PRIME FUNCTIONS AT ZERO ARE:'
DO 240 I=1,14
WRITE(*,10)PHIPRZ(I)

240 CONTINUE
PRINT*,'
PRINT*,'THE PHI-PRIME FUNCTIONS AT 130 ARE:'
DO 250 I=1,14

WRITE( *, 10) PHIPR(I)
250 CONTINUE

PRINT*, ' '

C
C

PRINT*,'THE THETA FUNCTIONS EVALUATED AT ZERO ARE:'
DO 260 1=1,14

WRITE( *,10) THETAZ (I)
260 CONTINUE

PRINT*,'
PRINT*,'THE THETA FUNCTIONS AT 130 ARE:'
DO 270 I=1,14

WRITE( *,10) THETA(I)
270 CONTINUE

PRINT*, ' *
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PRINT*,'THE THETA-PRIME FUNCTIONS AT ZERO ARE:'

DO 280 I=1,14
WRITE( *, 10) THEPRZ(I)

280 CONTINUE

PRINT*, '

PRINT*, 'THE THETA PRIME FUNCTIONS AT 130 ARE:'
DO 290 I=1,14

WRITE(*, 10)THEPR(I)

290 CONTINUE
PRINTS, '

C

PRINT*,'THE ASSOCIATED PSI FUNCTIONS AT ZERO ARE:'
DO 300 1=1,14

WRITE( *,10) PSIZ (I)
300 CONTINUE

PRINTS,'

PRINT*,'THE PSI FUNCTIONS AT 130 ARE:'

DO 310 1=1,14
WRITE(*, 10)PSI(I)

310 CONTINUE
PRINT*, '
PRINTS, 'THE PSI-PRIME FUNCTIONS AT ZERO ARE:'
PRINT*,' '
DO 320 I=1,14
WRITE( *,10) PSIPRZ(I)

320 CONTINUE

PRINT*,'
PRINT*,'THE PSI-PRIME FUNCTIONS AT 130 ARE:'

PRINT*,' '
DO 330 I=1,14
WRITE( *, 10) PSIPR(I)

330 CONTINUE

C
ENDIF

C
C 55555555555555555555555555555555555555555555555S55555555555S555S55

C
C STORE THE PHIPR(I), THEPR(I), PSIPR(I), PHICR1(I), PHICR2(I),
C THECR1(I), AND THECR2(I) ARRAYS IN A SEQUENTIAL FILE CALLED 'FRHS'

C FOR USE BY SHUTBM.

C
C
C

OPEN(UNIT=13,FILE='FRHS',ACCESS='SEQUENTIAL',STATUS='NEW')

C
DO 321 1=1,14

WRITE(13,10)PHIPR(I)
321 CONTINUE
C

DO 322 1=1,14
WRITE( 13,10) THEPR(I)

322 CONTINUE
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C
DO 323 1-1,14.

WRITE( 13.10) PSI (I)
323 CONTINUE
C

DO 324 1-1,14
VRITE(13 ,10)PHICR1 (I)

324 CONTINUE
C

* DO 325 1-1.14
WRITE(13 ,i0)PHICR2( I)

325 CONTINUE
C

DO 326 1-1,14
VRITE(13 ,1O)THECR1( I)

*326 CONTINUE
C

DO 327 1-1.14
VRITE(13 ,10)THECR2( I)

327 CONTINUE
C

ir C
C * * * * * ** * * * * * * * *~
C
C STORE THE ANGLES AND CORRECTION IN THE DATA FILE 'FPHCRS' FOR
C CLOSE INSPECTION, IF DESIRED:
C

* C
C

OPEN (UNIT-9,FILE-'FPHCRS ,ACCESS-' SEQUENTIAL' ,STATUS=-NEV')
WRITE(9,S)'TIE ALPHAxS ARE:'
WRITE(9,')'
DO 311 1-1,14

* WRITE(9,10)ALPHA(I)
311 CONTINUE

WRITE(9,S)'
WRITE(9,*P*THE ALPHA-40S ARE:'
WRITE(9,*)*
DO 312 1-1,14

4, WRITE(9,10)ALPHA(I)*SN1
312 CONTINUE

VRITE(9,*)'
VRITE(9,*)'THE PHI FUNCTIONS AT 40 ARE:'
VRITE(9,*)'
DO 331 1-1,14

* VRITE(9,10)PHICR1(1)
331 CONTINUE

VRITE(9,O)l
WRITE(9,*)'THE PHI FUNCTIONS AT 80 ARE:'

WRITE(,O~l

DO 332 1-1,14
* IRITE(9,1O)PHICR2(I)
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332 CONTINUE
WRITE(9,*)'
WRITE(9,*) 'TE THETA FUNCTIONS AT 40 ARE:'
WRITE(9,*)'
DO 333 1=1,14

WRITE(9, 10) THECRI(I)
333 CONTINUE

WRITE(9,*)'
WRITE(9,*)'TIE THETA FUNCTIONS AT 80 ARE:'
WRITE(9,*)'
DO 334 1-1,14

WRITE(9. 10) THECR2(I)
334 CONTINUE

ENDFILE( UNIT-9)
C

* C
C .***

C THIS NEXT SECTION CREATES THE MATRICES FR, GR, FP, GP, GY,
C AND FY. FR IS THE ROLL MASS MATRIX MODIFYING TERM DUE TO THE
C MOTION OF THE MASSES ON EACH END OF THE BEAM. FP AND GY ARE
C THE PITCH AND YAW MODIFYING TERMS DUE TO THE SAME THING. OR,
C OP. AND FY (WHICH ENDS UP BEING ZERO FOR THE FIXED-FREE MODEL)
C ARE MASS MATRIX MODIFYING TERMS DUE TO THE COUPLING BETWEEN
C ROLL, PITCH, AND YAW WHEN THE BEAM IS DEFORMED.
C
C **********************************************************....
C

DO 340 1=1,14
DO 350 3-1,14
FR(I,J)--(MI*PHIZ(J)$PHIZ(I) + M4*PHI(J)*PHI(I)

1 + Al*PHIPRZ(J)*PHIPRZ(I) + A4*PHIPR(J)*PIPR(I))
350 CONTINUE
340 CONTINUE
C

DO 360 1-1,14
DO 370 3-1,14
GR(IJ)= Z4$(PSI(3)*PHI(M)) + D1*PSIZ(J)OPHIPRZ(I)

370 CONTINUE
360 CONTINUE
C

DO 380 1-1,14
DO 390 -1,14
FP(I,)--(M1*THETAZ(3)*THETAZ(I) + M4$THETA(J)*THETA(I)

1 + BI*THEPRZ(I)*THEPRZ(I) + B4*THEPR(I)*THEPR(I))
390 CONTINUE
380 CONTINUE
C

DO 400 1=1,14
DO 410 3-1,14
GP(I,3)- Y4*(PSI(J)*THETA(I))

410 CONTINUE
400 CONTINUE
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C
C

DO 420 1-1,14
-• DO 430 3-1.14

GY(I 3)-(-D1)*(PSIZ(I)) (PHIPRZ(3))
430 CONTINUE
420 CONTINUE
C

DO 440 1-1,14
DO 450 3-1.14
FY(I.)--(ClePSIZ(I)*PSIZ(J) + C4*PSI(I)*PSI(l))

450 CONTINUE
440 CONTINUE
C
C ******************************ooooo~ooo~oooo***oo*****o***..

* C
C THIS SECTION CREATES THE ROLL AND PITCH 'CORRECTION MATRICES'.
C THESE ARE ACTUALLY ADDITIONAL TERMS ORIGINALLY IGNORED IN THE
C DEVELOPMENT OF THE EQUATIONS OF MOTION FOR THE SYSTEARE
C DUE TO THE MOTION OF THE MASSES IN THE PROOF-MASS ACTUATORS.
C
C ***.************************** ******S*.SSo*
C

DO 451 1-1,14
DO 452 3-1,14
PHICOR(I,3)--M2*(PHICRI(I)ePHICR1(3)+ PHICR2(I)ePHICR2(l))
THECOR(I,3)--M2*(THECR1(I)*THECR1(1)+ THECR2(I)*THECR2(J))

* 452 CONTINUE
451 CONTINUE
C
C ****** ********************************************
C

OPEN(UNIT-19,FILE-'FCORS' ,ACCESS-'SEQUENTIAL' ,STATUS-' NEW')
*• 16 FORMAT($(E19.12))

17 FORMAT(4(E19.12))
VRITE(19,*)'
VRITE(19,e)'THE PHI CORRECTION MATRIX IS:'
WRITE(19,e)'
K-i
L-5

455 DO 456 1-1,14
VRITE(19,16) (PHICOR(I,I),J-KL)

456 CONTINUE
WRITE(19,*)'
K-1+5
L-L+5
IF (L.NE.15) GOTO 455
DO 457 1-1,14
WRITE(19,17)(PHICOR(1,3),.-11,14)

457 CONTINUE
ENDFILE(UNIT-19)

C
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* C
IF (I.EQ.111) THEN

* C
PRINT*,*
PRINTS, 'TIE U-PHI ROLL MATRIX IS:'
PRINT*'
DO 460 1-1,14
IRITE(0,10)(FR(IJ) .3-1,14)

460 CONTINUE
* PRINT*,'

PRINT', 'THE U-PSI ROLL MATRIX IS:'
PRINT*,'
DO 470 1-1,14

WRITE(',10) CGR(I,J) .3-1,14)
470 CONTINUE

* C
C

* C
PRINT*,'
PRINTS,'THE U-THETA PITCH MATRIX IS:'
PRINT*,'
DO 480 1-1,14

VRITE(*,10)(FP(I,JL3J-1,14)
480 CONTINUE

PRINT*,'
PRINT','THE U-PSI PITCH MATRIX IS:'

* PRINT*,'
DO 490 1-1,14

WRITE(',10) (GP(I,3) .3-1,14)
490 CONTINUE
C

PRINT'.'THE U-PHI YAW MATRIX IS:'
* PRINT',*'

DO 500 1-1,14
WRITE(',10) (G!(I,I) .3-1,14)

Soo0 CONTINUE
PRINT*''

C
C

PRINT*,# THE U-PSI YAW MATRIX IS:'
PRINT','
DO 510 1-1.14
VRITE(',10) (FY(I,3) ,3-1,14)

*510 CONTINUE

ENDI F
C
C

Q- 42
C
C



,T-2

C
C THIS SECTION CREATES THE MASS MATRIX 'M' AND OMEGA-SQUARED
C MATRIX O' WHICH WILL HAVE AN EIGENVALUE PROBLEM DONE ON THEM.
* CC

C
DO 520 I-,V

DO 530 -1,V
IF (I.EQ.J) THEN
M(I, )--FR(I.J)-PHICOR(I°3)
ELSE

M(I,3)--FR(I,3)-PHICOR(I,3)
EN DI F

530 CONTINUE
520 CONTINUE
C

DO 540 I-1,V
DO 550 J-W1,

M(I, 3)=-0

550 CONTINUE
540 CONTINUE
C

DO 560 I-1°V
DO 570 3-Y,Z
L--X
M(I, 3) -- GR(I, L)

570 CONTINUE
560 CONTINUE

C
C

DO 580 I-W,X
K- I-V
DO 590 J-1,V

M(I,j)-0
590 CONTINUE
580 CONTINUE
C

DO 600 I-W,X
K- I-V
DO 610 J=WX

L-3-V
IF (I.EQ.T) THEN

M( ID)-=-FP(K, L)-THECOR(K, L)
ELSE

M(I, J) =-FP(K. L)-THECOR(K° L)
ENDIF

610 CONTINUE
600 CONTINUE
C

DO 620 I-W,X
K-I-V
DO 630 3-Y,Z
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M(1) -- GP(K, L)
630 CONTINUE
620 CONTINUE
C

DO 640 I-Y,Z

M (1, J) -- GY (K, J)
650 CONTINUE
640 CONTINUE

DO 660 I-YZ
DO 670 3-1.1

* M(IJi)-0
670 CONTINUE
660 CONTINUE
C

DO 680 I-YZ
K-I-I
DO 690 J-YZ

L- 3-I
IF (I.EQ.3) THEN
NCI,3)-1-FY(K,L)
ELSE

MCI, J) -- FY (K, L)
* ENDIF

690 CONTINUE
680 CONTINUE
C
C WRITE THE M MATRIX
C

* IF (I.EQ.111) THEN
PRINT*D'TEE M MATRIX IS:'
PRINT*,'
DO 700 1-1,z

DO 710 3-1,Z
WRITE(*, 10)M(I J.)

710 CONTINUE
700 CONTINUE

ENDI F

C PUT THE M MATRIX IN A FILE CALLED FMASTM

OPEN(UNIT-8,FILE-'FMASTM',ACCESS-'SEQUENTIAL',STATUS-'NEW*)
DO 711 1-1,Z

DO 712 3-1,Z
WRITEC 8,10)M(I. 3)

*712 CONTINUE
711 CONTINUE

0 ENDFILE(UNIT-8)

93



C

C CREATE THE OMEGA-SQUARED MATRIX
ccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc
C p

DO 720 I-1.V
DO 730 3-1,Z

IF (I.EQ.1) THEN
O( I.3)-OMESQR(I)

* ELSE
0(1, 3)-0

ENDI F
730 CONTINUE
720 CONTINUE
C

* DO 740 I-1
K-I-V
DO 750 3-1,Z

IF (I.EQ.J) THEN
0(1, 3)-ONESQP(K)

ELSE
a O(I.j)-0

ENDI F
750 CONTINUE
740 CONTINUE
C

DO 760 I-YZ
* K-I-X

DO 770 3-1,Z
IF (I.EQ.3) THEN

0(1,3) -OIESQY(K)
ELSE

0(1.3) -O
* ENDIF

770 CONTINUE
760 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C WRITE THE 0 MATRIX INTO A FILE CALLED FIASTI

a CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

OPEN(UNIT-11,FILE-'FMASTK' ,ACCESS-'SEQUENTIAJ2 ,STATUS-'NEW')
C

DO 761 1-1,Z
DO 762 3-l,Z
IRITE(11,10)0(1,3)

762 CONTINUE
761 CONTINUE

ENDFILE( UNIT-li)
C

DO 780 I-1.Z
DO 790 3-1,Z
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AA( I, 3)=REAL(O( I, J))
BB( I,3) =REAL(M(1,J))

790 CONTINUE
780 CONTINUE
C
C
C
C ****************************************************************

C
C
C THIS SECTION BUILDS THE [FB] MATRIX 'FBMAT', WHICH IS WHAT IS
C LEFT OVER ON THE RIGHT HAND SIDE (OTHER THAN THE INVERSE TRANS-
C FORMATION MATRIX) AFTER THE CONTROL VECTOR [FC] IS BROKEN OUT.
C THE RIGHT HAND SIDE LOOKS LIKE: RHS = [EE FB]FC.
C
C

C
C

DO 1000 1=1,45
DO 1010 3=1,10

FBMAT(I, 3) =0
1010 CONTINUE
1000 CONTINUE
C

FBMAT( 1,2) =SN1
FBMAT(1 , 4)=SN2
FBMAT(1,5)=1000.0

* FBMAT(1,6) =1000.0

FB MAT (2, 1) =- SN1
FBMAT(2,3) =-SN2
FBMAT(2 , 7) =1000.0
FBMAT(2 , 8)=1000.0
FBMAT(3, 9) =1000.0
FBMAT(3, 10) =1000.0

C
DO 1020 1=4,17

K-I-3
FBMAT(I 1) =-PHICR1(K)
FBMAT(I,3)--PHICR2(K)
FBMAT(1,6)=-PHIPR(K)*1000.0

1020 CONTINUE
C

DO 1030 I=18,31
K- 1-17
FBMAT(I, 2) -- THECRI (K)
FBMAT( I, 4) =- THECR2 (K)

FBMAT(I, 8) -- THEPR(K) *1000.0
1030 CONTINUE
C

DO 1040 1-32,35
K=1-31
FBMAT(I,10)-PSI(K)*1000.0
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1040 CONTINUE
C

DO 1050 1-2.45
DO 1060 3-1,10
FBMAT(I,T)=REAL(FBMAT(I,T))

1060 CONTINUE
1050 CONTINUE
C
C ************************.***********************e*Ss******e*

C THIS SECTION CREATES THE P-MATRIX, WHICH IS FROM THE EQUATION
C Y-PoX. THE P-MATRIX WILL BE MULTIPLIED BY THE MATRIX OF EIGEN-
C VALUES IN SHUTBM' TO PUT THE STATE VECTOR IN MODAL COORDINATES.
C
C .*....***********..*..*..........*****......*..*.......*

C
C

DO 1070 1=1,7
DO 1080 J=1,45

PMAT(I,3)-0
1080 CONTINUE
1070 CONTINUE
C

PMAT(1,1)- =.0
PMAT(2,2)=1 .0

PMAT(3,3)-1 .0
C

DO 1090 J-4,17

K-J-3
PMAT(4,)=PHICR1(1)
PMAT(6, 1)=PHICR2(K)

1090 CONTINUE
C

DO 1100 J=18,31
=$- 17
PMAT(5,J)=TECR1(K)
PMAT(7, 1)-THECR2(K)

1100 CONTINUE
C

DO 1110 1-1,7
DO 1111 J=1.45

PMATX(I, 3) -REAL(PMAT(I, 3))
1111 CONTINUE

1110 CONTINUE
C
C ********e******e *****************S**** *

C STORE THE FBMATX AND THE PMATX IN A FILE CALLED 'FBMATX':
C *
C
C

OPEN(UNIT-12,FILE-'FBMATX ,ACCESS-'SEQUENTIAL' ,STATU S-'NEW') 
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* 12 FORNAT(E14.7)
* C

DO 1120 1-1,45
WRITE(12,12)(FBMATX(IJ),J=1,10)

1120 CONTINUE
C

DO 1130 1-1,7
WRITE(12,12)(PMATI(I.1).J-1,45)

1130 CONTINUE
* C

ENDFILE( UNIT=li)

C
CALEGF(AIDI,,JOLABEAVCIKIR

C
C

C THI SECTNISONES TH IENVAU RBE * ABABX

C INS ROUIEEVI)=FAIHBRETRSTH(I)NAUS EGNV N

C IGN EIGRS(ENVC).999.

C
C

C
CL IGF (NE.111) GOTO 861BEAECIZKER

DO 80 I=1,U

COMP1=REAL(EIGENV(K)

END97
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COMP2=REAL(EIGENV(I))
IF (COMP1.LT.COMP2) THEN

TEMP ( I) EIGENV( I)
EIGENV(I)=EIGENV(K)
EIGENV(K)=TEMP(I)
DO 830 3=1,Q

VECT(J, I)-VEC(3, I)
VEC(JD I)=VEC(J,K)
VEC(JK)=VECT(3. I)

830 CONTINUE
ENDI F

820 CONTINUE
U= U-i
GOTO 810
ENDI F

* C
C
861 CONTINUE
C
C
C
CCCCCCccccccccCCccCCCcCccCCCcccccccccCCCcCCCCccCc
C MAKE THE DOUBLE PRECISION NUMBERS INTO REAL
C CALCULATE THE FREQUENCIES IN RADIANS PER SECOND (OMEGA)
C CALCULATE THE FREQUENCIES IN CYCLES PER SECOND (HERTZ)
CC CCCCCCCC CCCCC CCC CCCCCCCCCCCCCCCC CCCCCCC CCCCC CCCCCCCCCCCC
C

* DO 840 I=1,Q
DO 850 J=1,Q
VREAL( I,3) =REAL( VEC( I, ))

850 CONTINUE
840 CONTINUE
C

* DO 860 I=1DQ
OMEGA(I)-SQRT(EIGENV( I))
HERTZ(I)=ONEGA(I)/(2*ACOS(-1.0))

860 CONTINUE
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C STORE THE INFORMATION IN FILES IFFREQQ' AND 'FIGVCT'.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C

OPEN(UNIT-15,FILE='FFREQQ ,ACCESS='SEQUENTIAL' ,STATUS='NEV')
* 7 FORMAT(A24)

WRITE(15,7)'
WRITE(15,7P*TIE EIGENVALUES ARE:
WRITE(15,7)'

DO 870 I=1,42
WRITE(15,12)EIGENV( I)

*870 CONTINUE
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ENDFILE(UNIT=15)
C -

C
*C

OPEN(UNIT=10,FILE='FIGVCT' ,ACCESS=' SEQUENTIAL' ,STATUS='NEV')
C
11 FORMAT(6E14.7))
C

WRITE(1O,4) 'THE UNSORTED EIGENVECTOR MATRIX IS:'

K=1
L=6

950 DO 940 I=1,42
WRITE(1O,11)(VREAL(I,J),J=K,L)

*940 CONTINUE

K=K+6
L=L+6
IF (L.NE.48) GOTO 950
ENDFILE( UNIT=1O)

C
C

*1 END
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PROGRAM SHUTBM

CI
C THIS PROGRAM SOLVES AN BIGENVALUE PROBLEM OF THE FORM
CA*X = LAMBDA*B*X. THE A MATRIX IS A 45X45 MATRIX MADE UP

C OF THE 42142 MATRIX '0' FROM FMASTK. THE UPPER LEFT CORNER
C HAS THREE ZEROS ON THE DIAGONAL. THE B MATRIX IS A 45X45
C MADE OF FOUR PARTS. THE UPPER LEFT 3X3 IS THE MOMENT OF INERTIA
C MATRIX FROM THE NASA PAPER. THE LOWER RIGHT 42X42 IS THE M
CMATRIX FROM FMASTM. THE UPPER RIGHT 3X42 (THE LOWER LEFT 4213I

C IS THE TRANSPOSE) IS A CORRECTION MATRIX WHICH TAKES INTO AC-
C COUNT THE ROTATION OF THE SHUTTLE-BEAM-REFLECTOR SYSTEM. IT

*C IS FILLED WITH ZEROS EXCEPT FOR THE LOWER LEFT CORNER, WHICH
C COTISTH ZS
C CNAN H ZS

DOUBLE PRECISION DALFAL(14),DPM(42,42),DPO(42,42)
DOUBLE PRECISION DPHIPR(14),DTHEPR(14),DPSI(14),DHICR1(14)
DOUBLE PRECISION DHICR2(14),DHECR1(14),DHECR2(14)
REAL BETA(45),ALPHAL(14),M(42,42),0(42,42),A(45,45),B(45,4S)
REAL WK(2888),SZ(14),SZMAT(3,42),INRTIA(3,3),EIGENV(45)
REAL EIGVEC(45,45),MTILDA(45,45),FBMATX(45,1O),PROD1(45D45)
REAL INVRSE(45,45),PROD2(45,45),PROD3(45,45),KTILDA(45,45)
REAL DTILDA(45,45),PHIPR(14),THEPR(14),PSI(14),PHICR1(14)
REAL PHICR2(14),THECR1(14),THECR2(14),DMAT(45,1O)DA4,B4DC4
REAL CMAT(7,45),PMAT(7,45)

C
COMPLEX ALFA(45),DIGENV(45),DIGVEC(45,45),OMEGA(45)
INTEGER I,J,KDLIDGT ,LL,MM,NN,IC

9 ~INTEGER IA, IB, N.IJOB, IZ, IER

PAAEECA=990B=990C=980
C

PAAEECA=99OB=99OC=98O
C
C REDITH INOMTOFRMFDT2 (TEAGE)
C RADN (THE INFOMATION, FROM 'FDAST' (THE ANGLFES, ATIX
C 'FAT'(HMASMTI) AN 'FAT'(HSTFNS MARX
C

CI
OPEN(UNIT=7,FILE='FDATA2',ACCESS='SEQUENTIAL' ,STATUS='OLD')
OPEN(UNIT=8,FILE='FMASTM',ACCESS='SEQUENTIAL',STATUS='OLDI)

OPEN(UNIT=9,FILE='FMASTK' ,ACCESS= SEQUENTIAL' ,STATUS='OLD')
OPEN(UNIT=12,FILE='FRHS',ACCESS='SEQUENTIAL',STATUS='OLD')

OPEN( UNIT=11 ,FILE= 'FBMATX',*ACCESS='SEQUENTIAL' ,STATUS= 'OLD') ~
REW IND (UN IT= 7)
REWIND(UNIT=9)

REW IND( UNIT=12)
REWIND(UNIT=11)

C
10 FORMAT (E31 .24)
11 FORMAT( E14 .7)
13 FORMAT(10(Ell.4))
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14 FORMAT(4(3(41.E14.7),/),/)
16 FORMAT(S(E14.7))
C

DO 20 1-1,14
READ(7 ,10)DALFAL( I)
ALPHAL(I)=IEAL(DALFAL(I))

20 CONTINUE

CI
DO 30 1-1,42o DO 40 3-1.42

READ( 8,10)DPM(I, 3)
N( I, )-REAL(DPI( 1,3))

READ( 9.10)DPO(I,3)
0(1, 3)=REAL(DPO( 1))

40 CONTINUE
*30 CONTINUE

C
DO 41 1-1,14

READ(12,10)DPHIPR(I)
PHIPR(I)=REAL(DPHIPR(I))

41 CONTINUE
C

DO 42 1-1,14
READ(12 ,10)DTHEPR( I)
THEPR(I)-REAL(DTHEPR(I))

42 CONTINUE
C

* DO 43 1-1,14
READ(121 0)DPSI(I)
PSI(I)=REAL(DPSI(I))

*43 CONTINUE
C

DO 44 1-'1,14
* READ(12,10)DHICR1(I)

PIICR1(I)-REAL(DHICR1(I))
*44 CONTINUE
* C

DO 45 1-1,14
READ( 12 ,10)DHICR2( I)
PHICR2(I)-REAL(DHICR2(I))

45 CONTINUE
C

DO 46 1-1,14
READ(12 ,10)DHECR1( I)
TIECR1(I)-REAL(DHECI1(I))

46 CONTINUE
C

DO 47 1-1,14
READ( 12.10) DHECR2( I)
THECR2(I)-REAL(DHECR2(I))

47 CONTINUE
C
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DO 48 1-1,45
READ(Il.11)(FBMATI(I.1),31.110)

48 CONTINUE

S DO 49 1-1.7

READ(11 ,11) (PMAT(I, ) .3-1.45)
49 CONTINUE
C

ENDFILE( UNIT-7)
ENDFILE(UNIT=S)
ENDFILE(UNIT-9)
ENDFILE( UNIT-12)

C
CCCCCCcCCCccCCCcCCcCCCC
C FORK THE INRTIA MATRIX:
CCCCCCccCCCCCcCcCCCCcccC
C

INRTIA(l.1)-975423 .0
INRTIA( 1,2) -0
INRTIA(1,3)=-145393 .0
INRT IA (2, 1) =0
INITIA(2,2)-6859080.O
INRTIA(2.*3)=0
INRTIA(3 ,1)=-1453 93.0
INRTIA(3 ,2)=0
INITIA(3.3) -7086601.0

C
S CCCCCCCCCCCCCCCCCCCCCC

C CALCULATE THE SZ'S:
CCCCcCCCCCCCCCCcCCCCCC
C

DO 50 1-1.14
SZ(I)=(2'130*SQRT(.095560130))/(ALPHAL(I)*02)

s0 CONTINUE
C
CCCccccCCCCcCCCccCCCcCCCCC
C BUILD THE SZXAT MATRIX:
CCCCCCCCCCCCcccccCCCCCCC
C

DO 60 1-1,3
DO 70 J-1.42

SZNAT( I, 3) -0
70 CONTINUE
60 CONTINUE
C

Lp C
C
C

DO 80 J-1.14
SZMAT(1.3)-(A4*PHIPR(J))
SZNAT(2,J)-+SZ(J)

Is go CONTINUE
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C
C

DO 81 J-15,28
K3-14
SZMAT(2, J) -B40THEPR(K)
SZXAT(1, J) -- SZ(K)

81 CONTINUE
C

DO 82 J-29,42
K--28
SZMAT(3DJ) -C4*PSI(K)

82 CONTINUE
C
C

*C ************************esee*****e~eeee e***e**s***e***e***C

C THIS SECTION FORMS THE LARGE 'A' MATRIX, WHICH CONSISTS OF
C THE OMEGA-SQUARES ON THE DIAGONAL WITH ZEROS AS THE FIRST THREE
C OMEGAS. IT THEN BUILDS THE 'B' MATRIX, WHICH IS MADE UP OF
C THE INERTIA MATRIX, THE MASS MATRIX, AND THE SZ-MATRIX (SZMAT)
C IT WILL LOOK LIKE:
C
C L L L
C L 111111111 L SSSSSSSS L
C L I L S L
C L I L S L
C L I L SSSSSSSS ZZZZZ L

- C L I L S Z L
C L I L S Z L
C L IIIIIIIII L SSSSSSSS ZZZZZ L
C L L L

C L TTT L L
* C L SSSSSSS T L MM MM L

C L S T L M M M M L
C L S L N N M M L
C L SSSSSSS ZZZZZ L M MM M L
C L S Z L M N L
C L S Z L M M L
C L SSSSSSS ZZZZZ L N M L

C L L L
C
C *****S******.******************* S*

C
995 DO 100 1-1,45

DO 110 3-1,45
A(I,3)-0

110 CONTINUE
100 CONTINUE
C

DO 120 1-4.45
K-1-3
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DO 130 3-4.45
L- 3-3
A(I. 3) -0(1, L)

130 CONTINUE
120 CONTINUE
C
ccCCCcccccccccCCccccCCcCCCCCcCc
C CREATE THE LARGE B MATRIX:
CCCC CC CCCC CCCCC CCCC CCCCCCCCCCCCC
C
C

DO 140 1-1,3
DO 150 J-1,3

B(I, 3)-INRTIA(I, 3)
150 CONTINUE
140 CONTINUE
C

DO 160 1-1.3
DO 170 1=4.45

L-1-3
3(1,3J) -SZMAT(I, L)

170 CONTINUE
160 CONTINUE
C

DO 180 1-4.45
K-1-3
DO 190 J-1,3

3 ( 1. 3) -SZ MAT C 3 K)
190 CONTINUE .-

180 CONTINUE
C

DO 200 1-4.45
K-1-3
DO 210 3-4,45

L- 3-3
B3(1,31) -M(K, L)

210 CONTINUE
200 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C CHECK THE INITIA AND SZNAT MATRICES:
CC CCCCCC CCCC CCC CCCCCCCC CCCCC CCCCC CCCCC
C

IF (I.EQ.111) THEN
PRINT0,'THE INERTIA MATRIX IS:'
PRINT*,'
DO 220 1-1.3
WRITE(*,11)CINRTIA(I.1),J-1,3)

220 CONTINUE
C
C
C
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C
19 FORMAT(3E14.7))
C

PRINT*'
PRINT*.'TIE SZ TRANSPOSE MATRIX IS:'
PRINT*,'
DO 221 1-1.42
WRITE(*,19)(SZMAT(3,I),3-1.3)

221 CONTINUE

ENDIF
* CCcccccCCCCccccCCcccccccccccCCCCcCCCccCccc
* C

* C
C THIS SECTION SOLVES THE BIGENVALUE PROBLEM AOX = LAMBDA'3'X,
C GIVING BACK THE EIGENVALUES AND EIGENVECTORS OF THE SYSTEM.
C
C
C

IA- 45
IE-45
N- 45
1303-2
IZ-45

C
CALL EIGZF(A. IA,BI, N, IIOB,ALFA,BETADIGVEC, IZWK, lER)

* C
PRINT*S'THE ZER FOR EIGZF IS: ',IER
PRINTO,'THE PERFORMANCE INDEX FOR EIGZF IS: ',WK(1)

* C
DO 250 1-1,45

IF (BETA(I).NE.0) THEN
o DIGENV(I)-ALFA(I)/BETA(l)

ELSE
DIGENV( I)-99999999.9

END IF
250 CONTINUE
C

4,DO 251 1-1,45
KIGENYC I)-REAL(DIGENV( I))
DO 252 3-1.45
EIGVEC(II)-REAL(DIGVEC(I,3))

252 CONTINUE
251 CONTINUE
C
C
C
C
C SORT TEE LIGENVALUES FROM LOWEST TO HIGHEST, SORTING
C TE11R RESPECTIVE EIGENVALUE ALSO.
C
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C ' -..

C-C

C AL *e~eeeSTEIGENVEIGVE********SS**********
C

C

C CHECK THE EIGENVALUE AND EIGENVECTORS:
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

OPEN(UNIT-1,FILE-'FIGENV' ,ACCESS- SEQUENTIAL' DSTATUS-NEW')

* 17 FORMAT(5E14.7))
DO 260 1-1,45

WRITE( 10 .17)EIGENV( I)
260 CONTINUE

L- 5
261 DO 262 1-1,45

WRITE(10,17)(EIGVEC(I,1),I-K.L)
262 CONTINUE

WRITE(10,*)'
K-K+5
L=L+ 5
IF (L.NE.50) GOTO 261
ENDFILE( UNIT-10)

C
C
C
998 LL-45

MM-45
NN-45

* IC-45
I DGT- S

C

C
C
C
C

C

C MULTIPLY 3*TRANSFORKATION MATRIX:

CALL VKULFF(3,EIGVECDLLNNNN, IA, 13,PROD1.IC, IER)
C

PRINT*, 'TEE IER FOR VIULFF (B,EIGVEC) IS: '.111
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C INVERT THIS PRODUCT
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CcCCCCCCcccccccccCCcCCcCCCCccccCCCCcc
C

CALL LINV2F (PROD1,N, IA, INYRSE, IDGT,WK, IER)
PRINT', 'TNE IER FOR LINV2F (PRODI) IS: ',111

ccCCccccccccccCCccccCccccccccCccccCcc
C MULTIPLY THE INVERSE AND B:

CccccCCCCCCCcccccccc~cCccCCcCCCCccccCcc
CALL VMULFF (INVRSE,LL,MNN, IA IBPROD2,IC, IER)
PRINT*.'TKE IER FOR VMULFF (INVERSE,3) IS: ',IER I

C

CAMLTLYTI MLF(RSULTEBY TELRMANNOMAI, BMTIX: C I

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCR

CPRUTOIPYTE IERS RNFORMATIFF(PON2GV MTIS: BY A:

C

CAPMLTLY TMHLFFINVRSEATLRMMNFOMAION MATPRDIC BYEA)

C
* CALNTV,'TFE(INVRFORAVMULFF NINVERSEA) IS: C,IER)

C

C ULILYTHIST RL FOY TEL TRANFORMEAI MATIR

C

C
CARLN'TElE ORULF(PROD3,EXGELXNIGVEC) IS: 'I,IER)

C

C MULTIPLY INVRSE AND FINATI TO GET DMAT, WHICH WILL BE THE RIS
C MATRIX IN 'FCNTRL'.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

CALL VMULFF(INVRSEFIMATXDLL,N10,IA,ID, DMAT. IC, IEI)
C

PRINTO,'THE IER FOR VMULFF (INVRSE,FDMATI) IS: ',IBI
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C MULTIPLY PMAT AND BIOVEC TO GET CMAT, WHICH WILL BE READ INTO
C ACOSS DIRECTLY:
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

* 2222 CALL VMULFF (PMAT,EIGVEC,7,43,43, 7,43,CMAT, 7,IER)
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C
PRINT*,'THE IER FOR VMULFF (PMAT.EIGVEC) IS: ',IER

C

C PUT XTILDA AND KTILDA THROUGH A FILTER TO TAKE OUT THE VERY
CSMALL NUMBERS (SET THEM TO ZERO)

C
C

* C THI SECTINCATES1 LTHE-4 DAMPN ARXDID.I A

C KTILDA', AD FRS ZTAMG HEEZTAI ACNSAT 03

CISA F DIAGONL MARIX CORREPODIN TOHDAOALSIFNS
C MTRX KTILDA).,)-

* C
C********************************S*
C
C

C THE I SQUAE .3 THTE IENVLEWIHAEOTEDAGNLF
C 'KTIDA TILADAFORMS 2.00*ZEA RT(IHERLZEAIS CNTAT.03

C MTRID(TILDA( ,3 -

C

OPN(UI-17* FLE- KTL CS-20.QTKILSEQENTIL ,sATS' E

OPE(UIT-1S,IEFTL A1ES) SEUNIL-0TTS E'

OPEN(UNIT-15,FILE-'FTINS'.ACCESS-'SEQUENTIAL,.STATUS-'NEWV)
(9 OPEN(UNIT-13,FILE-IFDMTI' .ACCESS-' SEQUENTIAL' .STATUS- NEW')
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C
[=1
L= 5
WRITE(15,*) 'THE DIAGONAL MASS MATRIX-UNSORTED-IS:'

0 WRITE(17*) 'THE DIAGONAL STIFFNESS MATRII-UNSORTED-IS:'
WRITE(18,0) 'TIE DIAGONAL DAMPING MATRIX-UNSORTED-IS:*
WRITE(15,*)'
WRITE (17,*)

* 499 DO 300 I=1,45
WRITE(1S,16)(MTILDA(I.3L3=-K,L)
WRITE(17,16) (KTILDA(I,3) ,J=K,L)
WRITE(18,16) (DTILDA(I,J) ,J-K,L)

500 CONTINUE
VRITE(15.0)'

*WRITE(17,)
VRITE(18,*)''
K=K+5
L=L4-5
IF (L.NE.50) GOTO 499

C
DO 600 1-1,45
WRITE(16,16)(INVRSE(I,1)JLJ=14S)

600 CONTINUE
C

WRITE(13,*) 1, 1, 1
WRITE(13,*) 1.0

* WRITE(13,O) 6. 4. 2 .10, 7 .0.003
DO 601 1-1,12

WRITE(13,14) (EIGVEC(I,J) .3-1,12)
601 CONTINUE

WRITE(13,'(f/) ')
* C

C
DO 610 1-1,12
WRITE(13,13)(DMAT(I,3J,-1,10)

610 CONTINUE
WRITE(13,U(///) I)

C WRITE IN THE FIRST 12 ROWS OF CIAT TRANSPOSED, WHICH IS THE
C PROPER FORM FOR ACOSS TO HANDLE
C

DO 611 1-1,12
WRITE(13 .13) (CMAT(J.DI) .3-1.7)

* 611 CONTINUE
WRITE(13,'(II/) ')

C
C
2218 FORNAT(2F3.1)
2219 FORMAT(12F3.1)

* DO 620 1-1.12
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IRITE( 13.11) SQRT(KTILDA( 1,1))

620 CONTINUE

C WRITE(13,'(//)')

DO 2200 I=1.4
WRITE(13,2219)(0.0,1=1,12)

2200 CONTINUE
WRITE(13,'(//) D)

DO 2201 1-1,12
WRITE(13 ,2218) (0.0,3-1,2)

2201 CONTINUE
C

ENDFILE( UNIT-iS)

ENDFILE(UNIT-17)I
* ENDFILE(UNIT-16)

ENDFILE(UNIT-16)

C
999 END
CI

SUBROUTINE SORT(A,D,D)
C

REAL A(45),D(45,4S),TEMP(45),VECT(45,45)
INTEGER I,I,K,D,U

C
U-D-1

20 IF (U.NE.0) THEN
* DO 30 1=1,U

IF (A(I).LT.A(I)) THEN
TEMP(I) -AC I)
A(I)-A(K)
A(K-TEMP(I

* DO 40 3-1,45
VECT(3, 1)-BY, I)
B(3, I)-D(3,K)
3C3,K)-VECTCJ, I)

40 CONTINUE
ENDI F

lb 30 CONTINUE
U-U-i
GO TO 20
ENDI F
END
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