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This is the Ph.D. dissertation of Ms. Germana Peggion. Georges
Weatherly and I shared the honor to be major professor. This work
brings together knowledge from the fields of physical oceanography,
theoretical turbulence and numerical analysis. The results demonstrate
the effect of strong geostrophic eddies on the turbulent boundary layer
on the ocean floor and the effect of the turbulent regime on the eddy.
The surprising result is the different response of a cyclonic eddy vs
an anticyclonic eddy. A cyclonic eddy decays faster because the
interaction forces it to expand its size and become more susceptible to
extraction of kinetic energy by the turbulent boundary layer. The
anticyclonic eddy contracts by converting kinetic energy to potential
energy and lengthens its life.

One reason that this work is successful is the fine vertical
resolution and horizontal resolution of the model. Thus it is possible
to calculate carefully the effects of turbulence on the eddies without

the realizations being dominated by computational viscosity.
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. ABSTRACT

%? The Benthic Boundary Layer is a region close the ocean bottom

. with features distinct from the oceanic interior. Near the bottom

the ocean is turbulent and the resultant mixing leads to a neutrally
stratified bottom layer. Turbulent closure models have been applied . l‘"iﬁ
to investigate how the structure of the Benthic Boundary Layer is

affected by the flow and the stratification above the layer.

The object of the present research is to analyze how the

L. benthic region affects the dynami;s of the forcing flow. More
specifically, a numerical model based on the level 2 1/2 closure
scheme of Mellor and Yamada is developed to examine the decay of

ii deep mesoscale eddy-1ike flows.

Y
f("/”["’ R

~It is found that the decay of tgﬁ’flow occurs through
conversion of kinetic to potential energy and through dissipation by
l' bottom friction. The relative 1mporta?ce of both processes is
expressed by the Rossby number ¢=U/fR and by the stratification
parameter. s=N2H2/fZRZ (where H is the total depth of the eddy, R the

radius, U fﬁE“Velocjty scale, N the Brunt-Vaiasala frequency, and f
the Coriolis parameter). A larger Rossby number and stratification
L. parameter lead to a larger conversion of kinetic to potential
: energy, but a smaller mechanical dissipation of the same energy.
Examination of the structure of the Benthic Bounddry Layer
indicates that a clear distinction should be made between the mixed

{f layer, or the region neutrally stratified, and the Bottom Boundary

Layer, or the region where most of the turbulent activity occurs. M 3;5¢;}

It is found that the structure of the Bottom Boundary Layer depends




~ ,also on the magnitude of the flow above the benthic region, but the
mixed layer depends also on the sign of the mesoscale activity.
Under a cyclonic flow, the mixed layer is defined by vertical
advection and it is usually much thicker than the Bottom Boundary
Layer. The mixed layer of an anticyclonic flow is the result of
both vertical advection and near bottom turbulence, and the

ambiguity between the mixed layer and Bottom Boundary Layer is

notably reduced.
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1. INTRODUCTION.

. &aswamtsoftatperaun'ea:ﬂsalini.tymadecloeebom'e
bottom of the ocean showed a well-mixed bottom layer a few tens of
meters thick bounded by a sharp interface above which there is a
- nearly-uniformly stratified region. The characteristic well-mixed LI
. region of this Benthic Boundary layer generally does not form a pool
or have a distinctive water mass; thus the layer is fommed by mixing
of the stratified deep ocean (Armi and D'Asaro, 1980; Armi and r_*

Millard, 1976; Bowden, 1978; Weatherly and Niiler, 1974). The
spatial variability of the bottom region sometimes exhibits evidence
of a differential horizontal advection suggestive of forcing due to
mesoscale activity. Ami and D'Asaro (1980) reported explicit s
.T variations in the horizontal structure of the layer with length ____%
scales up to 20 km. Energetic fluctuations within the mixed bottom S
layer respond mainly to near-inertial and tidal frequencies, Near
the bottom there is less near-inertial energy than in the upper
levels, but more energy in the high frequency band. These hish SR
frequency velocities, which are modulated by tidal currents and by SN
the variations of the flow above the layer, have been considered as
measures of the boundary layer turbulent activity (D'Asaro, 1982).
Thus a clear distinction should be made between the mixed layer, or o
v the region neutrally stratified, and the Bottom Boundary Layer (BBL) 5

1
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or the region where most of turbulent activity occurs.

The dynamic role of the BBL was first investigated in relation
with coastal and fluvial regions. Its role in sediment transport
processes is determinant (Nowell, 1983). Typically in such
regions, the near-bottom velocities are not negligible compared to
the near-surface flows, and the BBL has been considered as the
dominant mechanism by which the input of energy by winds and tides
is dissipated (Csanady, 1978).

On the other hand, very little is known about the role of the
BBL on the dynamics of the ocean circulation, and the few
observations available are often controversial. Weatherly (1972)
indicated that bottom friction under the Florida Current is not
important, but the same author (1984) eétimted that bottom friction
in the North Atlantic Ocean may effectively dissipate the energy
input by the wind at the surface.

According to Worthington (1976) and the observations of
Richardson et al. (198l1), and Schmitz (1977), the general
circulation of the deep North Atlantic Ocean is composed of a
well-defined southward flow along the American continental slope and
a northward flow further to the east enclosed in an anticyclonic
subtropical gyre. The northward and eastward flow of the gyre is
adjacent to the Gulf Stream axis, and it is a fundamental question
whether or not the Gulf Stream extends to and interacts with the
ocean bottom circulation. Recent studies (Kelley et al., 1982;




Richardson, 1983; Weatherly and Kelley, 1984) supported the
hypothesis that the Gulf Stream system influences the entire water
colum and excursion of the surface Gulf Stream affects near-bottom
currents.

Following the hypothesis that the Gulf Stream may extend to the
bottom, Clarke (1976) suggested that warm core eddies in the Slope
Water region may extend to the bottom as well. The assumption was
supported by McCartney et al. (1978). The authors reported that the
structure of cold core rings appears to extend all the way to the
bottom. The vertical profile of velocity showed a cyclonic flow in
the upper levels and a level of no motion near 2000 m of depth with a
weak anticyclonic circulation beneath. Kelley (1984) indicated that
energetic fluctuations with time scale of 30-90 days in the records
of near-bottom deep ocean current meters in the lower Scotian Rise
are the results of the barotropic components of Gulf Stream meanders
and warm-core rings. Holland (1978) developed a Quasi-geostrophic
two layer model and postulated that the deep flow might be due to
barotropic and baroclinic instabilities generated by the motion in
the upper strata of the ocean. Numerical simulations of the model
indicated that a mean flow is induced in the lower layer in the same
direction as the current in the upper layer. Schmitz and Holland
(1982) made a detailed comparison of deep ocean observation in the

Gulf Stream region with the results of Holland's model and indicated
that although the model is a crude formulation of the North
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Atlantic circulation, it provides a convincing explanation of the
deep high energetic circulation.

Despite the fact that all those studies have suggested that bottom
friction forces may be an efficient dissipative mechanism in the
spin-down and decay of rings, up to now this physical process has
been neglected. In general, the decay of mesoscale eddies has been
attributed to dissipation of kinetic energy either through internal
viscous effects or through dispersive spreading of Rossby waves at
their own characteristic wave speed. Flierl (1977) examined the
decay of isolated linear vortices in absence of frictional forces and
showed that they dissipated rapidly under the dispersive effect of a
beta-plane. Mied and Lindemann (1979), McWilliams and Flierl (1979)
showed that nonlinearity stabilizes the eddies against beta-
dispersion and allows the vortices to propagate westwards as a stable
entity for longer periods of time. The decay of a ring under the
influences of momentum and bouyancy diffusion has been considered by
Molinari (1970) and Flierl (personal camwunication), but both authors
neglected bottom friction. Thus in these studies the primary

mechanism for the decay is the absorption of the ring in the
surrounding waters.

The aim of the present study is to investigate how bottom

friction may contribute to the decay of an isolated vortex extending -

to the bottom of the ocean. Highlights of the sections in which the ' 3.
W)

work is divided are as follows: o]

In Section Two we present the model formulation which consists




of two distinct parts: one for the flow far from the bottam, and one
for the Benthic Boundary Layer together with appropriate matching
conditions. In deriving the governing equations for the interipr, we
develop the model on an f-plane and we assume that the flow is
incompressible and hydrostatic. In modelling the turbulent BBL
equations, we adopt a modified Mellow and Yamada level 2 1/2 closure

scheme (1982).

Section Three is the explanation of the mumerical model. Campu-
tational efficiency requires consideration of a two-dimensional
formulation of the model. This is achieved by assuming that the
motion is uniform in one of the horizontal coordinates and parame-
trizing a mesoscale eddy as an infinite slab. Perhaps, the best
justification for such a model is its wide range of Qpplicatm.

Section Four includes an application of the model for analyzing
the structure of the Benthic Boundary Layer forced by a steady flow.
Under the assumption that the motion is horizontally homogeneous, we
verify the validity of the mcdel by comparing results cbtained for
neutrally and stably stratified flows with the correspondent values
derived by other turbulence models. When the Benthic Boundary Layer
is forced by mesoscale activity with a steady barotropic component,

the numerical experiments emphasize the different roles that the mixed

layer and BBL play in the dynamics of the system.
mm«mwmlmmxummm
Section Five. An analytical formulation of the problem is presented




6 . D
and campared with the results of the numerical experiments. Since — -
the analytical model has been conceived as an independent entity, we
apologize for the unavoidable repetitions and the different symbols
in this section. S

Section Six cambines the results of Sections Four and Five, and . o7
considers the spin-down of a stably stratified and nonlinear flow. |
Under the hypothesis that the eddy is stationary, the effects of =
stratification and advection on its decay are analyzed. when the |
eddy is assumed to be nonstationary, the study investigates how 1f.§ 4- J
spin-down is affected by a uniform and steady westward translation RERG

Finally, Section Seven sumarizes and discusses this research. . 3
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= 2. MODEL FORMULATION.

A We consider a deep eddy-like flow extending from the bottom of . :
the ocean to the thermmocline. The eddy has radius R and total depth

H. The bottom of the ocean is taken to be flat. The problem is

- formulated on an f-plane with a Cartesian coordinate system (x,y,z) L

| chosen such that in the northern hemisphere the x-coordinate: SEE

increases eastwards, the y-coordinate northwards, and the vertical |

coordinate, z, is zero at the bottam and increases upwards. @ g
We assune that the flow is homogeneous in the north-south

direction. The ocean is hydrostatic and incompressible and the

density is a linear function of temperature alone (Fofonoff, 1962).
_ Since close to the bottom the horizontal frictional force due
approach to the problem is through boundary layer theory. Thus it
is appropriate to present the model equations for the interior and

the BBL separately. sl

2.1. The model equations for the interior flow

The equations governing the motion are those of momentum,
mass and heat conservations, viz:




(2.1.1a)
(2.1.1b)
(2.1.1c)
(2.1.1d)
h (2.1.1e)
g (2.1.1€)

8
“t+mx+wz-fv-'9m-]f-spx+(axux)x+ﬁzz
Ve * Wig +wig + £u = (AyTx)x + Wiz

0=-ps-gp

“x;'"z-o

Te + ulx + Wiz = (A;‘Tx)x"'k'l‘zz

p = poll = aT = To))

The subscripts (x,z,t) denote partial differentiation; the
variables (u,v,w) are the camponents of the eastward, poleward, and
vertical velocities respectively. The variable p (henceforth
indicated as the displacement of the thermocline) is the barotropic
forcing; pmrmﬂw&vﬁMOfdasiwam temperature from
density and temperature associated with a state of rest expressed by
the constants of reference on and T,. The variable p is the
hydrostatic pressure associated with the density distribution p; Ay
and A; and Ayy are the eddy coefficients of horizontal viscosity
and conductivity respectively; v and k are the eddy coefficients of
vertical viscosity and conductivity respectively; a« is the
coefficient of thermal expansion; g is the gravitational
acceleration, and £ the Coriolis parameter.

The matching conditions between the interior and the BBL
solutions provide the dissipative mechanism that governs the spin-
down process of the flow.,
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Bquations (2.1.1) must be satisfied in the region h < z ¢ H, N
-Xo ¢ X < Xo(Xo > R). At the top of the BBL the boundary conditions '
are specified by matching the BBL and the interior solutions; at the :

free surface .the heat flow is assigned and the velocities u, and v

- - q o
PRAK)
AN

:

kept equal to their relative barotropic components. Outside the ‘ s ]
region of interest, the ocean is in a state of rest. The specific
corditions are:

(a,v,Ww) = (O,V,w)
(2.1.2) at z=h

Lo

T=T
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where bar indicates the BBL solutions.

(4,v) = (Ug,Vg)
(2.1.3) %Y at z = H

T I S T

Tz = oz

(u,v) = (0,0)
(2.1.4) at (x| = xo

T = Tr(2)

PR b &

where Tp(z) is the temperature distribution of the ocean at rest.

2.2. The model equations for the Bottom Boundary layer

| o

Using the same notations introduced in Section 2.1 the BBL ,""j

equations are written as follows: )
(2.2.1a) Sp + Ty + Wiz = £7 = = gng = 7 Bx + (glix)x = (A7)

P T T S S O S A
et et e Tt Lt et et et At D SR B S N Y L )
P e N P R R T N A R P R A YL,




(2.2.1b)

(2.2.1¢c)

(2.2.14)

(2.2.1e)

(2.2.2)

........

HEAMAC RN e i Y O S A A A A A AT AL R R i A ah 0n aeu e iy N

In the equations, thetem-u;ui, and-u-:']e' (we will use the
usual tensor notation when it does not create ambiguities) represent
Reynolds average turbulent fluxes. The equations (2.2.1) must be
satisfied in the region 0 ¢ z ¢ h, = X5 < X < xg. At the top of the
layer and at the lateral boundaries, the boundary conditions are
specified as in (2.1.2) and (2.1.4), respectively. At the rigid
surface, the boundary conditions are specified by prescribing the
no-slip boundary condition and no flux of heat, viz.:

Since we have assumed that turbulence is mainly confined to the
BBL region, we must require that the Reynolds stresses vanish at
z = h. Unfortunately, it is not possible to have a priori knowledge
of the BSL thickness. Therefore, for numerical purposes, it is
convenient to remove the upper boundary at a depth, 4, derived from
cbservations and measurements, chosen such that: hcic and assume: -

.....................
..............................
...........
3

10
Ve +uvg + Wiz + fu s (Axy;x)x‘ (Wivh)g
0=-Pz-gp

-|:x+-w.z.°

i‘t + -\I-T-x + ﬁz = (A;Ex)x - (W)z

(u,v,w) = (0,0,0)
at zs= 0

Tz-o
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----------------

(2.2.3) - u:'.'ui = ujfe' =0 at z = 4

The remaining problem is to specify the Reynolds stresses, - “5“;'

and, - u:;e', so that the equations (2.2.1) are a closed set of
equations.

2.3 The closure scheme

A rigorous theory for analyzing the structure of turbulent flows
is not available, and most of the difficulties lie in the definition
of the turbulent fluxes. For many applications it is sufficient to

assume:

(2.301.) -Ql;u;. = K Ei

with the eddy coefficient K kept constant and defined from cbserva-
tions and measurments. Unfortunately, this assumption is not advisable
for our study. Parameterizing turbulence with constant eddy coeffi-
cients cannot represent turbulent processes that are of scale smaller
than the grid system of the numerical model. Therefore, the use of
constant eddy viscosity implies a grid so fine that is not suitable
for numerical computations (Sommeria,1976).
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Deardoff (1973) suggested the use of the entire second-order
momentum equations for modelling the Reynolds stresses. In order to
resolve the higher order stresses that appear in the equation, the
method implies the addition of at least ten time-dependent equations,
and the scheme is not efficient.

The most common closure schemes resolve the Reynolds stresses by
postulating empirical definitions for the higher order stresses.
These models are generally derived by one of two different approaches,
depending on the nature of the problem. Thus if the purpose of the
analysis is to study the response of the boundary layer to the
variations of the forging flow or its spectral distribution, it is
necessary to cunsider closure schemes where the Reynolds stresses are
defined from individual transport equations. On the other hand, if
the analysis is focused on the effects of the boundary layer on the
circulation above that layer, it is sufficient to develop closure
schemes that parameterize the effects of turbulence via eddy
coefficients and calculate only the mean value of the quantities.

For the latter approach, Mellor and Yamada (1974) obtained an
expression for the turbulent fluxes. They are related to the shear
of the mean flow via eddy coefficients proportional to the square

root of the local value of the turbulent kinetic energy q2 = %‘- a'u!,
i

and a mixing length scale 1 dependent upon the distance from the wall
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ﬂ th:mxghap:wortiaulcoe.fﬁcientwhidxtakesintoam:ﬂtthe
" stratification of the fluid, i.e.: '
(2.3.22) (= WUT, = WV") = Syq(uz,Vz)
n
' (2.3.20) - W'e' = SpeqT,
Thus the problem is closed when one specifies:
"' i) an equation for the turbulent kinetic energy, q2
ii) an equation for the mixing length scale, ¢
__ iii) the functions Sy and Sp
©2.3.1 The turbulent kinetic energy equation
. ' \. The equation for the turbulent kinetic energy of the flow may be
o derived by formulating the dynamics equations for the velocity
o fluctuations and forming the time-averaged equations for the stress
. canponents (Monin and Yaglom, 1971). This yields an equation which

containg correlation terms that must still be parameterized. The
nature of t:heassmptionsmde in order to close the gZ-equation
leads to different turbulence models. We adopt the turbulent kinetic
mrgyeqmtimaccordi:ngtothelevel 2 1/2 closure scheme of Mellor
and Yamada (1982). The equation is written as follows:

K.
P

(2.3.3) V2R +ud +wad ) mBa By + By ¢
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where the term P3 represents vertical diffusion of the turbulent
kinetic energy. In analogy with the definitions (2.3.2), it is

defined as:
(2.3.42) P = (1/2)(5qeq(q2)z)z

The function Sq is usually kept constant.
The term Pg is the production of turbulent kinetic energy by

the mean flow, i.e.:
(2.3.4b) Pg = = (W' ug + wiv! vz)

The term P, is the gravitational potential energy of the
turbulent flow, i.e.:

" (2.3.4¢) Py =gawe'

The term -¢ represents dissipation of the turbulent kinetic
energy by internal friction. Under the Kolmogorov hypothesis it is
dimensionally correct to define:

(2.3.44) - ¢ =qi/ce
' where the constant ¢ must be defined empirically.

2.3.2 The turbulent length scale

There are many ways to define the turbulent length scale. It
may be specified empirically from the gross features of the flow
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geametry, or it may be predictéd from a semi-empirical dynamcal _.__l
N differential equation. Using the latter approach, Rotta (1951) N
derived an equation for the quantity q2-¢. However, in order to i:_-f.l_f.{f
specify the terms in the equation, it is necessary to introduce more “1
l. parmtetsthaninthecaseofthel\?eymldsstresseseqmtm,where A'»_:
many of the terms are determined precisely without recourse to 1
further parameterization. Therefore, the q%~¢ equation is less -
- convincing than some other model equations and more likely to be '
; substituted by other g-closure schemes.
! - Vager and Nadezhina (1975) used a differential equation for ¢
‘ obtained by manipulation from the original q2-¢ equation. The
_ _expression is still dependent on many constants that must somehow be
‘i E determined. The Laykhtman-Zilitinkevich relation, which is basically
a further simplification of the g-equation, is widely used in the
Soviet literature.
i B It appears fairly clear that the turbulent length scale cannot
o exceed some some fraction of the total spread of the turbulent region
_ (represented by the variable, g5), and that somewhere in the s
W neighborhood of the wall, it should be proportional to the distance ,1

from the wall. Therefore there are two fundamental conditions for
the quantity ¢:

L~2 as z + 0

L~2028 2 +em,

z .
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From those simple constraints, Mellor and Yamada (1974) used an
algebraic expression for 2:

(2.3.5) L= W:-_"_’J

where ¢ is the Karman constant.

The maximum scale f, is defined as follows:

(2.3.6) to = v S5 2a3z/f, Pz

where y is an empirical constant.

In this st@, the variable g is determined from (2.3.5) and
(2.3.6) rather than from the g2-¢ equation which is an intrinsic
camponent of the level 2 1/2 closure scheme.

2.3.3. The functions Sy and Sy.

From the Mellor and Yamada (1982) level 2 closure scheme, it is
possible to derive algebraic expressions for the functions Sy and Sy
as functions of either flux Richardson number:

(2.3.7) Rf = Ms
or gradient Richardson number:

o
(2.3.8) B = T R

' M A AN
G
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The level 2 closure scheme differs from the 2 1/2 level as the
eddy kinetic energy equation does not contain a time derivative and
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the diffusion terms. It is our belief that the model will not be L
particularly susceptible to variations of the functions Sy and Sy
and, following Yamada (1983), we take:

1.96 {32 Rﬂ"im-—‘;i-( PR Re < 0.16

0.085 Re > 0.16

(203093) % =

Sw 2%—:%%%%1.318 Re < 0.16

(2.3.90) Sp =
0.095 Re > 0.16

Therefore our closure scheme is intermediate to the Mellor and
Yamada levels 2 and 2 1/2 and we propose calling it a level 2.3.
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3. THE NUMERICAL MODEL.

Turbulent closure schemes have been intensively applied to study
the atmospheric planetary boundary layer, and many numerical models
are available for that purpose (Brown, 1970; Mason and Sykes, 1980;
Sommeria, 1976; Yamada, 1979, 1982, and 1983). However, there exists
a need at present to develop numerical models for the Benthic
Boundary Layer to understand the dynamic role which that region has
on the oceanic circulation.

Weatherly and Martin (1978) developed a one-dimensional model
derived from the level 2 closure scheme of Mellor and Yamada (1974);
Richardson (1982a, 1982, and 1984) presented one-dimensional and
two-dimensional models applied to a multi-layered ocean, where the

Reynolds stresses are defined from individual transport equations.
The aim of all those studies is to investigate how the flow and the
stratification above the BBL affects the structure and the thickness
of the benthic region. However, to my knowledge, no attempts have

been made to analyze how the Benthic Boundary Layer affects the
structure of the forcing flow. '

The numerical model described in this section is specifically
designed to examine the decay of a deep eddy-like flow subjected to _
bottom friction forces. =) ﬁ
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3.1 The numerical model equations

Define (ug,vg) to be the velocity components representing the
migration of the eddy in the ocean; in order to reduce the number of
the mesh points and increase the efficiency of the scheme, the model
equations are rewritten in a coordinate system:(X,y,Z) moving with
the eddy. This is achieved by applying the transformation:

X=X+ Ut

(3.101) y = 9 + Vot
zZ =3z

If ug and vy are assumed to be constant, in the new coordinate system
the model equations are as follows:

(3.1.23) Ug + Wy + Wiz - f(v + Vo) ® = Qng - -{;” Px + (Axe)x + (mﬂZ)z
(3.1.20) Ve + uvg + wvg + £(u + Ug) = (AgyVg)x + (Kuvz)z
(3.1.2¢) 0 =-py=gp

(3.1.28) T¢ + uTyg + wTz = (ATy)x + (RqTz)z

(3.1.2F) 1/2(q + ua} + wal) = 1/2(Kg(q)z)z + Ku(u} + v2) + Kp(= gaTz)

- q3/cz
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(¥1.29) Ky = v + Syeq ; Kp = k + Sped; Kg = Squq "."‘
where tilde has been dropped. s '~
The set of equations (3.1.2) is resolved in the region 0 ¢ z < h; B “_
- Xo € X < X, With the boundary conditions: 1
(U,v,W) = (= uy, = vg, 0) .
(3.1.3) atz =0 _
Tz = % = Q —_
(u,v) = (Uy,Vq)
(3.1.4) ’ %% at z = H ool
(3.1.5) q=0 at z =d -
(uv) = (= ug, - Vo) "' "'
(3.1.6) T =Ty(z) at Ixl = xo
q=0
-y
The value of the depth d and of the other constants used in the T
numerical simulations are given in Table 3.1. :I_
Let h be the thickness of the BBL, integration over depth of the ’
continuity equation (2.1.1d) leads to: . T
(3.1.7a) /R uxdz = 3} + ve
dh -
(3.1.7d) Vg = a—t' + w(x,h(x))
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‘ Bquations (3.1.7) imply that the spin-down process acts primarily ikﬂ
on the depth averaged components of the motion. Thus it is convenient
to rewrite the functions u,v, and T as:
R ’
- usu'+Uy .
b :
(3.1.8) vay' +Vy A
T= T +Tg ' )

where ( )g represents the barotropic camponent of the motion

associated with thermocline displacement.

’
With the decamposition (3.1.8) it is possible to introduce two o
different time scales intrinsic to the physical nature of the problem: .
the larger time scale (hereafter, expressed by the variable, ) that i—
controls the decay of the flow, and the smaller time scale (hereafter,
expressed by the variable, t) that controls the deviations of the fields
from their barotropic components (which can be regarded as constant with !--;
respect to this time scale). (See Section 5.1.1 for a camplete f
dimensional analysis of the equations 2.1.1). If we assume that '1:12
advection, diffusion, and thermal wind effect respond to the smaller .
time scale, we derive the following equations for the barotropic motion: B
(3.1.9a) Uge = Vg = = gng , -
U
.
""""""""" A e I e e G D e S L e L e
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(3.1.94) Uy + gip e = 0

Bpation (3.1.9d)hnb;alwr1tunm:tbetiqid 1id approximation.
The term wg/(H-h) of (3.1.9d) is defined from average value over the
period ay. Purthexmore, in resolving equations (3.1.9) it is necessary ]
b also to define the thickness of the BBL. In general, the thickness of
the BBL is defined as the height at which the flow is parallel to the
forcing flow but slightly greater in magnitude, or as the height at o o]
which the turbulent kinetic energy is reduced by a factor of 99% with
respact to its valus at the surface. Since the model includes advective :
texms and the thermal wind effect which affects the vertical profile of """"‘
the velocity distribution, we prefer to relate the BBL thickness to the Lo
turbulent kinetic energy. o

Y

No special treatment is required in the integration of the -
equations (3.1.9). Therefore we focus our attention on the resolution
of the system (3.1.2).

3.2. The grid system. .

e equations (3.2.1) are solved using a grid of spatially stag-
gered variables,chosen so that application of the boundary conditions is
made easier. Since the vertical structure of the turbulent eddies is
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small near the bottom and increases upwards, a vertical grid equally
spaced in a log-plus-linear vertical coordinate is often used. This
varies approximately logaritimically at the bottom and linearly at
the higher levels; i.e.

Z = c12 +c2ln(2/%)
where Z is the transformed coordinate, z, the roughness parameter, ¢
and c; constants (Yamada,1978). Because our study is not
particularly focused in the lower levels of the BBL, but in the
region of transition between the boundary layer and the interior
flow, we prefer to introduce a variable vertical grid, where the
distance between two levels is function of height.

3.3. The treatment of the equations,

The numerical scheme chosen in the treatment of the equations
(3.1.2) is based on the centered difference method. Since the
system uses a variable vertical resolution, the value of any given
function ¢ at any mesh point between two consecutive ¢-levels (not
necessarly the middle point) is computed by linear interpolation.

All the terms areleapftcgged in time except for horizontal and
vertical diffusion and for the term, -¢, of equation (2.3.4d), that

are treated using the Dufort-frankel, The Crank-Nicholson, and a
semi-implicit scheme, respectively. This scheme is affected only by
the CFL stability condition applied to the advective terms:
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wat
(3.3.1) (-AT“ «1l

where W is the scale of the vertical velocity and (az)yin the
smallest distance between two consecutive levels.

With the Crank-Nicholson scheme, the equations containing
vertical diffusion are reduced to a system of linear algebraic
equations for the variables at time step (n+l) and horizontal
location j, where all the variables at the time steps n and (n-1) are
known. Because of its tridiagonal nature, matrix solutions can be
efficiently obtained by a special form of the Gaussian Elimination
Method (Carnaham et al., 1969). 4

Unfortunately, the Crank-Nicholson scheme requires that the
vertical eddy coefficients be computed at time step (n+l). This
constraint camplicates the solution of the g2-equation. A reasonable
approximation is to compute the eddy coefficient Kq of (3.1.2f) at
time step n. However, once q is known at time step (n+l), the eddy
coefficients Ky and Kp can be defined at the new time step, and the
Crank-Nicholson scheme is applied naturally in the resolution of the
momentum and heat conservation equations.

Following Yamada (1978), the horizontal eddy coefficients are
defined as follows:

(3.3.2) Ay = Ay = Agy = 2a(ax) 2lugl, + v

where a is a constant of proportionality.
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ﬂ The numerical procedure described above is computationally very
efficient; the time step is suitable for long term simulations and
computer storage is limited. We retain the variables for two

" consecutive time steps except for the eddy coefficients Ky and Ky,

which must be saved for three time steps. Furthermore, no artificial
conditions are required during the numerical experiments except in

' - the definition of q when the g2-equation presents negative values of

' the turbulent kinetic energy. In this case, dissipation exceeds

production of the same energy, and the variable q is set equal to

zero.

Unfortunately, if numerical computations are performed for an
extended period of time (greater than 8-9 months), it is necessary to
correct the scheme to prevent nonlinear instability. It is well

known that the use of the leapfrog scheme in the treatment of the

advective terms induces a distortion in the values of speed and group
velocities. The computational error affects the short waves: the
smallest waves resolved by the scheme (wave-length 2ax) have zero
camputational speed velocity and their energy is propagated in the
opposite direction to the correct group velocity (Grotjahn and
O'Brien, 1976). In order to control computational inaccuracy,
numerical schemes are usually developed that include such additional
frictional terms such as harmonic or biharmonic terms (Richards,
1984) or smoothing procedures (Yamada, 1978). However, the

ROBIND TS
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corrections might alter the physics of the problem, reducing the
contribution of advection in favor of a merely dissipative regime.

In our case, we must modify the numerical schems to prevent the
consequences of the nonlinear instability essentially at the center
of the eddy where the short waves hﬂ\maméimmcumrgmor
divergence of energy contrary to the physics of the problem. Thus
in order to improve the accuracy of the leapfrog scheme, horizontal
advective terms and the continuity equation are resolved by a
centered fourth-order space differencing (Grotjahn and O'Brien, 1976)
and the horizontal eddy viscosity coefficients are specified as
follows:

.
\

Py = A, = vy + 10a(ax)2lugl,

Pxy = 10«

(3.3.3)

where vy is a computational horizontal eddy viscosity coefficient.

Although the choice of the horizontal eddy coefficients has been
suggested merely by cmputational arguments, equations (3.3.3) may be
partially justified as follows. According to Ragallo and Monin
(1984), for three-dimensional numerical models, the horizontal eddy
coefficients may be computed from:

' 2, .2.1/2
Ax =A = huAy(ux + vy)

(3.3.4)
My = 22axay(ug + vp) /2

al

il




Furthermore, a two-dimensional formulation of the model equations
(3.1.2) implicitly contains the assumptions:

<«
(3.3.5) H w
» UKV

where Ly and L, are the dimensional length scales of x- and

y-directions, respectively, and U and V the dimensional scales of the
- x=- and y=components of the geostrophic motion respectively. Thus ’
| with the constraints {3.3.5), equation (3.3.4) can be reduced to

(3.3.3).

3.4 The treatment of the boundary conditions

l At the lower boundary it is assumed ttiatthevelocity varies
logarithmically with height above the bottom

(3.4.1) la(2)1, = 2 u, n(z/zo)

where us is the friction velocity and « is the Karman's constant oo
(Bowden, 1978). Measurements made close to the oceanic floor =
indicate that the relation is certainly applicable in the region

just above the surface (Wimbush and Munk, 1971; Kundu, 1976; T
Weatherly, 1977). 'mus.our model considers the lower boundary not -
at the effective rigid wall but at a height 2; where the logarithmic
profile is still valid. Therefore, in order to apply the new

_ boundary condition we must specify the friction velocity us and the
v direction of the flow at the level z).

b g
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Consistent with the level 2 1/2 closure scheme and
observations, the friction velocity is computed from the turbulent
eddy kinetic energy at the lowest grid point:

(3.4.2) ur = q/(B)1/3

where B is constant.

The direction of the flow at the lowest grid points is specified
equal to the direction of the flow at the second level, henceforth
represented by the angle a. The assumption is justified by
observations and experiments that indicate that the Ekman veering is
about constant in the lowest levels of the BBL (Kundu, 1976).

A new problem now arises because of the chosen coordinate
system. Weassmttattheloga;iﬂmiclayetismvimwithmeeddy
as unity and the boundary conditions (3.1.3) are changed into:

U= -us + % ur cos(a) 2n(21/%g)

(3.4.3) v = o + 2 us sin(a) (2)/20) at z = z)
Tz=qz =0 s T

At the lateral boundaries the ocean is assumed to be at rest.
However, the eddy induces a recirculation in its closest neighborhood

which must supply (absorb) the mass of water pumped in (out) the BBL.
Thus in order to preserve the number of mesh points without closing
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the recirculation inside the domain, the boundary conditions (3.1.6)
are modified by requiring that both the u-velocity and the
temperature distribution be horizontally unifowm.

3.5 The initial conditions

In the following discussion, let the superscript o indicate the
— initial values of the relative variables, assigned for two

consecutive time steps. The thickness h® of the BBL is taken to be:
(3.5.1) hO = 0.4 uQ/f

where the friction velocity us is computed as:

(305-2) ug = 0003( (ng + %)2 4+ (w; + vo) 2)1/2

(Weatherly and Martin, 1978).

: = Above the BBL the functions u®, vO, and T° are specified and €

. is kept equal to zero. At the lowest grid points the initial value
‘ © is caomputed from (3.4.2) and the velocity components from (3.4.3),
specifying a ten degree Exman veering. After the functions u, v, and

: q are defined at the lowest levels, they are matched with their ) . :
- relative values above the BBL by linear interpolation.
The initial temperature profile considers a bottom layer T

neutrally stratified, assuming a complete mixing of the temperature E.;:_.;;i

distribution. Although the initial mixed layer and BBL are identical, ’

it is advisable to underestimate their thickness so as not to 35’»_3'5}%
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alter the final temperature profile. If the initial mixed layer
is too thick, no physical process can reestablish stratification
inside it.

The vertical eddy coefficients are computed from the initial
distribution of the turbulent kinetic energy, with the functions Sy
and Sp given for neutrally stratified flows.

The scheme results not particularly sensitive to the
adjustment procas from the previous initial conditions. In general,
the steady state configuration is reached after about three or four

days, the period necessary to mix the upper strata of the BBL.

3.6 The choice of the time steps
Numerical tests indicate that if a coarse near-bottom vertical )
R
resolution is used, the logarithmic layer does not instantaneously ]
. :J
respond to the variations of the flow at the upper points. Thus to — i
=
preserve the computational efficiency of the scheme, it is necessary ;;-_'_-j
to apply equations (3.4.3) with the variable q of (3.4.2) and values
of the angle o averaged values over a period aTg. o
Therefore the numerical procedure illustrated in the previous . -
sections depends upon which of the following parameters is chosen: -]
- At the time step used for the resolution of the equations - ’
N ]
ey
- At the time step used for the correction of the barotropic i;':;fjl
et
-
:\_ _j
=
R
7
I S L e L e e e




i it S

PE—————

PCIRAL SBE S N A W S ST S S

conditions), but long enough to allow the BBL to adjust itself to the
new state. Numerical simulations indicate that the evolution of the
flow above the BBL is not sensitive to the choice of Ar; however, for
large time steps a noise of frequency 1/(24at) can appear in the BBL
thickness configuration. The phenaomenon, known as 2ax-instability
(Lilly, 1965; phillips, 1959), is a consequence of the fact that the
BBL time variations are modulated on two different time scales: the
inertial period associated with the BBL time scale and the much
larger time scale that controls the variations of the forcing flow.
Thus if Ar is too large, the scheme cannot adequately resolve the

inertial oscillations that are incorrectly interpreted as frequencies

.............................................................
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E - AT¢ the average period used for the adjustment of the 'i’." =
velocity field at the lower grid points.
- AS the shift between the time steps ar and ATg. :
B It appears natural to consider the time steps atr, AT¢, and as D
‘ multiples of At and to choose At as a multiple of AT¢ to avoid the
: shift aAs being a function of time.
— First, let us consider the parameter AT¢. Since turbulent flows ’
respond to inertial oscillations (D'Asaro, 1980), the natural choice
' is AT¢ = 12 hours. B
* ” With respect to the parameter ar, we must choose a time step ’
1 short enough to avpid the flow reaching a steady state at each
t correction (we do not want to start repeatedly from initial L

) - N
l.i.""l .
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of order 1/(2at). To filter the high frequency noise as much as
possible , numerical experiments suggest a period ar = 48 hours.
In order to define the parameters ass, we have essentially
considered the cases ss = 0 and 4As = 6 hours. Numerical tests

indicate that inside the BBL, for any given interval r, the flow
might present different instantaneous configurations, but averaged
b values over the period ATg and the evolution of the flow above the
layer do not present substantial differences. Thus we conclude that
+ the scheme is not affected by the shift as.
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Table 3.1: Values of constants used in the numerical experiments.

Symbol

<

"3 & T

n-:ngwtﬂ

(AZ)p

(az)M
At
At
ATE

AsS

.......

value

2x10-4(C0)-1

lcmis~l
105cm2s-1
0.lcm2s-1

1 gmcm—3
10-4s-1
981cm2s-1
107cm
1.75x107cm
4x105cm
1.3x104cm

1.25x106cm
100cm
2x104cm
lhour

48 hours

12 hours

...............................

DS
...................

Remark
Thermal expansion coefficient.
Vertical viscosity coefficient.
Camputational eddy coefficient.
Vertical conductivity coefficient.
Reference temperature.
Reference density.
Coriolis paramater.
Gravitational acceleration.
Radius of the eddy.
Domain extent.
Total depth of the eddy.

Level of maximum possible penetration for
turbu]_.eme.

Horizontal grid -size.

Minimum vertical grid size.

Maximum vertical grid size.

Time sgtep.

Time step for the barotropic components.
See Section 3.4.

See Section 3.4.

......................

...............................
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z} 25cm See Section 3.4.
Sq 0.2 See equation (2.3.6a)
c 15. See equation (2.3.6d)
Y 0.20 See equation (2.3.8)
a 0.01 See equation (3.3.2).
B 16.6 See equation (3.4.2).

'3 0.4 Karman's constant.

.................................................................
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4. PRELIMINARY ANALYSIS OF THE MODEL: STRUCIURE AND DYNAMICS OF THE
BENTHIC BOUNDARY LAYER.
'meainsofthissec'timaretostxﬂythesmofme

Benthic Boundary layer forced by a mesoscale activity and to inves-

tigate how the Benthic Boundary layer might affect the dynamics of

the forcing flow. For the present, we assume that dissipation by
bottom friction does not affect the barotropic camponent of the
motion, so that the the thermocline displacement is kept constant
with time.

As we have already discussed, the numerical model described in
the previous sections has been developed with particular attention to
its applicability to long term simulations. Storage and computer time
are reduced by the use of an unequally spaced vertical resolution and
of the logarithmic law at the lowest levels. Although for an accurate
analysis of the Benthic Boundary layer structure the model should be
applied with very fine mesh point, we prefer to present results
obtained with a coarse grid (the minimum vertical increment is 1m),
and discuss how camputational efficiency affects the accuracy of the
solutions.

4.1. Horizontally homogeneous flow.

Although the present case is irrelevant in the dynamics of
mesoscale motions, it makes it possible to analyze the structure of
35
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the Benthic Boundary layer as a function of various velocities and to
test the accuracy of the scheme by comparing the numerical results
with predictions derived by previous works on turbulence.

Working on the hypothesis of horizontally homogeneous flows,
most of the studies have related turbulent quantities such as the BBL
thickness, friction velocity, and Exman veering to the forcing flow.
It can be showed that the friction velocity and the Ekman veering

satisfy the relations:

(40102.) Sinc = bD /—C-D

where ur is the friction velocity, Uy and Vg are the velocity
catéonentsoftheﬁo:cingflow, a is the magnitude of the Ekman
veering at the surface, Cp the dtag coefficient, and bp a constant of
proportionality (Csanady, 1967; Blackadar and Tennekes, 1968; Monin
and Yoglom, 1971; Tennekes and Lumley, 1972). It is usually
considered that the drag coefficient is a monotonic decreasing
function of the surface Rossby number Ro =|U;l/fzo, such that for a
representative oceanic range 106<Ry<107, 0.03</Cp<0.04 (Deardoff,
1970; Weatherly, 1972)." Yamada (1975) suggested a value bp = 7.55
for flows with small velocities and weak stratification,such as those

considered in our experiments.
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n- More intriguing is the definition of the BBL thickeness. Several
authors have defined the BBL thickness as the height, hg, at which the .
flow is parallel to the forcing flow but slightly greater in magnitude

| m (Wimbush & Munk,1970; Kundu,1976; Caldwell,1976). The same and other
authors predicted the thickness of the BBL as the height he such as:

(4.1.3) he = .4 unr/f

(Weatherly, 1972; Richards, 1984). A physically more realistic '
definition is to consider the height, hq, at which the BBl~generated ! 1
turbulence goes to zero (Weatherly & Martin,1978). Finally, Richards
(1982a) has related the BBL thickness to the temperature profile and
defined the BBL thickness as the height, hp, at which the temperature Lo 4
gradient is maximm. This definition is the least convincing because

it jdentifies the BBL with the mixed layer. As we will discuss later,
this relation creates some ambiguities and imprecisions. "‘
1In the following sections, we present the values of turbulent
quantities for neutrally and stably stratified flows. All the %
numerical simulations have been made for forcing flow within the o
range of the deep ocean values. However, values have been restricted
toawsegrea:e:thmo.oa;m-lbecausemecoarsegrmdoesmcanow
a correct application of the logarithmic law for ;:nallet velocities.
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4.1.1. Neutrally stratified flow.

The results of the case are depicted in Fig. 4.l., 4.2, and 4.3.
The values of the friction velocity were determined by considering
the values of t:he turbulent kinetic energy at the lowest levels as

in equation (3.4.2) or by evaluating the bottom stresses, i.e.:
(4.1.42)  pu? = (9% ()HV2

where
B
Tx = fI (V-Vg)dz

(4.1.4b)

H
W =~ (u-Ug)dz
Zo

Cbviously, the magnitude of the drag coefficient computed from
equation (4.1.4a) is in a better agreement with observations and
predictions, but in neither case are the drag coefficient or the Ekman
veering a decreasing function of the forcing flow. However, the range
of velocities used in our experiments is too narrow for presenting.
marked evidence of monotony.

The ambiguity in defining the depth of the BBL is clearly
illustrated by the numerical simulations. The defintion (4.1.2) leads
to the thinner BBL, but the function, hs, is definitely correlated
with the variable hg., The best fit between hx and hg is obtained for
hs = 0.65us/£. On the other hand, relating the BBL thickness to
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i the turbulent kinetic energy gives the largest value: turbulence not
;, inhibited by the buoyancy forces propagates upwards where the last
\ residuals of the Exman spiral can be still found.
A

4.1.2. Stably stratified flow.
- All the results presented in the following section consider a
"_H Brunt-Vaiasala frequency Ne7.6x10~4s-l,

Both Ekman veering and drag coefficient have the same distortion

~ found for neutrally stratified flow (Fig. 4.1, and 4.2), but the
' ambiguity between the functions he, hg, and hg is highly reduced
}';" (Fig. 4.4). However, the numerical simulations confirm that the mixed
i layer and the BBL cannot be identified with one another. The mixed
layer is much thicker than BBL and is a measure of the level at which
- the Ekman spiral vanishes. In the upper strata of the mixed layer
i the work done against the buoyancy forces balances the input of

turbulent kinetic energy by the shear of the mean flow, and no
: turbulent activity can be maintained at those heights.
;: For the completeness of our analysis, the vertical profiles of

the mean flow, temperature distribution, turbulent kinetic energy,
: and momentum vertical eddy viscosity coefficient are depicted in Fig.
| 4.5. Since those quantities exhibit similar patterns for neutrally |
stratified flows (except for the level of zero turbulence), we do not
present the relative profiles.
- )
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4,1.3. Discussion.

We now briefly campare the results relative to neutrally
= and stably stratified flow. Both Exman veering and drag coefficient
L [ | are slightly greater when the flow is stably stratified, but the ’
level of zero turbulence is much lower. Those results confirm a well

known statement that stratification affects the depth of the BBL at a
E - rate much greater than that of the level of turbulent activity inside )

the layer (Weatherly and Martin,1978). Furthermore, since Ekman

veering is a measure of the bottom friction forces acting on the
flow, an increment of turbulence (u*) must correspond to an analogous
increment of Exman veering.

Our numerical results are consistent with most of the theories
and models of turbulence. However, .t.he vertical coarse mesh point )
sensibly affects the values of Ekman veering and friction velocity. A
finer vertical resolution increases those values, but does not
particularly change the value of the bottom stress. ’ Y

In order to verify that those inaccuracies are due to the coarse S
resolution rather than to a mistake in the scheme (viz, the
boundary conditions), we compute the Exman veering from equation
(4.1.2) with the drag éefficient evaluated from ux specified as in
equation (3.4.2) or (4.1.4), and we campare those results with the
values predicted by Deardoff (1970). As Fig. 4.6 indicates, there

are no substantial differences between the values given by the

nurerical experiments and the Exman veering as computed from the
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kinetic energy at the lowest level (i.e., a coarse resolution affects
turbulent kinetic energy and Ekman veering equally). On the other
hand, the best fit between results and Deardoff's predictions is
obtained by camputing the friction velocity from equation (4.1.4)
(i.e., a coarse resolution does not influence the value of the bottom
stress).

All things considered, we conclude that the inaccuracies of the
scheme do not alter the dynamics of the motion, and the small
distortions due to coarse mesh point are compensated for by the
computational efficiency of the model.

4.2. The interaction between the Benthic Boundary Layer and meso-
scale motions.

Inthissectimwewishboshowthattheim:eractionsbetween
the Benthic Boundary Layer and a mesoscale eddy-like flow are a
conseqt.\enceofthemtraintinposedonthemtionbythe
quasi-geostrophic approximation. Such an assumption requires that
the vorticity changes be geostrophic and the temperature changes be
hydrostatic (Pedlosky, 1979). The adiabatic temperature variations
due to rising (sinking) of water parcels must also keep the vorticity
changes geostrophic, and the vertical motion keep the temperature
variations hydrostatic (Holton,1979). Since both adiabatic
temperature variations and vertical velocity are proportional to the
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b Rossby number, only the magnitude of those general features of the -
quasi-geostrophic model are basically affected, if the motion is s
fully nonlinear.

T T

w,

YWY
. JR
P T .

In view of those observations, we focus our attention to the -
structure of the Benthic Boundary layer associated with cyclonic
(cold), and anticyclonic (warm) eddies.

F There xs an old questién whether or not the point of maximum
velocity of mesoscale flow is close to the edge. The paucity of
{ observations for deep motions makes it impossible to resolve the

i‘.‘ controversy. Therefore, in order to define the stucture of the -
motion, we refer to observations made for Gulf Stream rings, which

indicate that the point of maximum velocity is more likely to be

o1

located at about 2/3 of the radius (Olson, 1980; Joyce, 1984). -
Therefore, the numerical experiments are performed for deep eddy-like .
flows of total depth H=4000m, total extension R=1SGkm, and a linear N
velocity distribution of maximum Uy = 0.15ms-1 at 100km from the o
center. The initial temperature distribution far from the bottom is

horizontally homogeneous and stably stratified with a Brunt-Vaiasala

frequency N=7.6x10-4s-1, T

4.2.1. Cyclonic flow.

In order to understand the evolution of the temperature
distribution as depicted in Fig. 4.7, we recall that inside a cyclonic
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50 _
eddy the Exman velocity associated with the bottom friction forces has e

the form of an upwelling. Recirculation implies that there must be a
downwelling at the edge, which pumps warm water in the lowest levels,

removing the original oold bottom water. Conservation of mass requires ~
that the enviromment supply water to the BBL beneath the eddy. As this |
water is injected in the BBL, it is advected upwards and mixed by

turbulence. Thus the thickness of the mixed layer increases and the
isotherms of the interior temperature distribution are lifted upwards.
Once the original cold water is removed from the bottom, warm water is
supplied to the Benthic Boundary layer at the edge of the vortex, the
temperature of the mixed layer increases, and the sharp interface
between the mixed layer and the interior is slowly ercded.

g

As the thickness of the mixed layer increases, the BBL is o
imbedded in a neutrally stratified layer, and the level of zero
turbulence increases as described in Section 4.1.1. and depicted in o
Fig.4.8. - o

4.2.2. Anticyclonic flow.

With respect to cyclonic flows, the distribution of the vertical
velocity is reversed. There is a downwelling inside the vortex and
an upwelling at the edge. However, the physical mechanisms
associated with the vertical velocity are identical to those described
in the previous section.
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‘i Downwelling inside the eddy has the tendency to remove cold
water from the bottom and reduce the thickness of the mixed layer.
Turbulence inside the layer, which is primarily determined by the

B magnitude of the forcing flow, does not allow complete erosion of the

. mixed layer. Thus as warm water is continuously pumped downwards
from the upper levels of the eddy, the interface between mixed layer

- and interior becomes sharper and sharper, and the bottom layer is
heated only by the heat flux across the interface (E‘ig'. 4.9).

4.2.3. Discussion,

The features illustrated in the previous sections indicate that

‘ the structure of the Benthic Boundary layer is quite different for
cyclonic and anticyclonic flows.

Under a cyclonic eddy, the structure of the mixed layer is

. primarly defined by vertical advection. It is warmer and thicker

i than the mixed layer of a correspondent anticyclonic eddy, and its
horizontal extent is equal to the radius of the vortex (Fig. 4.7).

( The associated BBL is much thinner than the mixed layer and not
particularly affected by vertical advection. The dynamics are
equivalent to those found for horizontally homogeneous and neutrally
stratified flows (Fig. 4.3, 4.8).

On the other hand, the mixed layer of an anticyclonic vortex is

the result of both advective and turbulent processes, and the

......................................................
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.....
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ambiguity between the mixed layer and BBL is greatly reduced as for

n stably stratified flows. Furthermore, since vertical advection tries
to remove water from the bottom, the mixed layer spreads outwards and
2 the spatial extent of Benthic Boundary layer is greater than the
g radius of the eddy.
Although cyclonic and anticyclonic Benthic Boundary Layers have
quite different structures, their influences on the relative forcing
g flow are comparable. The dynamic of the flow far from the bounadry is
primarly affected by the thermal wind effect induced by the vertical
e advection of temperature, and the motion deviates from its its
original barotropic configuration (Fig. 4.10).
!
-
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5. THE DECAY OF AN HOMOGENEOUS VORTEX UNDER A LINEAR REGIME. ‘
i S
The classical approach in fluid dynamics is to consider the SRR
simplest formulation of the problem in order to derive a mathematical S <

framework suitable for analytical diagnostic solutions and to verify
whether these simple representations are able to describe gross
features of the motion. In general, the mathematical difficulties

which arise are nonlinearities due to stratification and the presence

: of advection in the governing equations. These terms are therefore T
generally dropped from the model. Thus as a preliminary study of the L
i decay of an isolated vortex, we assume that the flow is linear and —

homogenecus. A dimensional analysis of the motion equations provides
the limits within which the above assumptions might apply. i;i: E'f}l-‘-x

-

: 5.1. The analytical model.

; In the following section, we present an analytical model for the

' decay of a deep eddy-like flow. It is necessary during the R
, formulation of the model to define a correct parameterization of ) {
; turbulence, suitable for carrying simple analytical solutions. From - ]
.'-_ this point of view, it is appealing to represent turbulence with . J
constant eddy viscosity coefficients, so that the problem becomes g
. equivalent to the usual Ekman Boundary Layer theory. Thus the ) -
| -
: 56
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starting point of the analysis is to use, as far as possible, of the
similarities between Laminar Boundary layer (LBL; viz, BBL defined by
viscosity coefficients that are constant with depth) and Turbulent
Boundary layer (TBL; viz, BBL defined by viscosity coefficients that
are function of height) of equal depth and forced by the same flow.

S.1.l. Formulation of the problem.

We consider a deep eddy on a f-plane subjected to bottom friction
forces. The eddy is circular and axially symmetric of radius R and
total depth H. A cylindrical coordinate system is chosen such that
the radial coordinate r”* is zero at the center of the eddy and
increases outwards and the vertical coordinate z* is zero at the
bottom and increases upwards. The fluid is assumed to be
incompressible and Boussinesq. We neglect horizontal diffusion of
mamentum and temperature (i.e., there is not substantial exchange
between the eddy and the surrounding water). WVertical diffusion is
also neglected inside the eddy but not close to the bottom, where it
defines a BBL of thickness h*. Thus the equations for the flow
away from the BBL are:
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(5.1.1c) 0= =P * =9p .
l ' IR Y *
(5.1.1d) ;;-(r uiie* +wr =0
* * *
(5.1.1e) Pt + u*pr. + W*(DB + p")z* = 0

The subscripts (r*,z*,t*) denote partial differentiation, the
variables u*, v* and w* are the mean components of the radial,
azimuthal, and vertical velocities respectively. The variable * is
the deviation of density from the state of rest, expressed by the -

*
linear function pB(z*). The variable p* is the deviation of the

hydrostatic pressure from the hydrostatic pressure associated with the

state of rest, g is the gravitational acceleration, £ the Coriolis
parameter and po a constant reference value of density.

The variables are nondimensionalized by assuming geostrophic and
hydrostatic balances, and scaling the temporal variable with the -
spin-down time scale for ﬁ bottom layer (henceforth LIBL) defined by a
characteristic thickness D and by an eddy viscosity c¢oefficient

constant with depth (Greenspan, 1968). Therefore, the variables are
scaled in the following manner:

r* = Re z* = Bz h* = th ' -ft-':.f-_:J
(5.1.2) (U, v*) = U(u,v) Wt = P* = oofULp ]
=
" EE LA Ef. ‘::3
P = Po g P e (F Lt

e
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i Introduce the parameters: ¢
(5.1.3a) e = U/fR The Rossby number
(5.1.3b) E = (D/H)2 The Ekman number
| (5.1.3¢) N2 = (- gp_ /poH) The square of the Brunt-Vaisala
. 4 Bz frequency.
34 N2H2 The stratifi .
(5.1.3d) S = T2RZ e stratification parameter

- (5.1.3e) A= /E /e

Therefore, the momentum equations in the nondimensionalized form

- are:
(5.1.40) ez-u-(l+el)ve-p
Dt : r
D . v
K
1
. (5.1.4d) ‘E‘ (m)r + Wy = 0
where
i (5.1.48) B =ad-+ul 4wl

ot ar 3z

The boundary and initial conditions of the problem (S5.l1.4) must
be carefully assigned. Since we are concerned with the decay of the
eddy, we neglect the early stages of the evolution of the flow.
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et B .
A
e




60
Thus we assume that dissipation by bottom friction starts- being
{ ) effective after the geostrophic flow of the eddy is fully developed.
The equations (5.1.4) are satisfied within the region 0<r<l, Oc<z<l.
The bottom of the eddy is at z = 0 and the thermocline displacement

at z = 1. The azimuthal velocity, v, must vanish at the center of

the eddy. We assume that at the edge the pressure is the hydrostatic

pressure associated with the state at rest (i.e., the eddy is at rest
E with respect to the surrounding water). We do not close the problem -

with lateral boundary layers. This is equivalent to assuming that -
L all the water exchanged between the eddy and the surrounding water is - *‘F:F

; exchanged via the BBL. At the bottom of the eddy the boundary

| conditions are specified by matching the interior and the boundary BRES
layer solutions. In particular, since the BBL is characteristically "' "'""
a well-mixed region, stratification does not affect the order of ‘
magnitude of the vertical velocity pumped out of the bottom layer;

—
i.e.,

(5.1.5) W=/E v

where the tilde indicates the BBL solution and wg = 0(1l) (Pedlosky,

o 1979). S
3 Assume: o )

(5.1.6) ¢ << 1 o
{‘ and expand all the variables in their asymptotic expansion with : ?

respect to the parameter ¢. Thus the variables are scaled in the
following manner:

R
X
A
.
e
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i vavwW+evl +, .,
u-Eul +* o0 * :-.‘:_1

ws Cwl * o o0 _:_.-
(5.1.7) e

K SyE - - . >
' P == (° +ept +.. . X

S/E_

p’n°+€n1+oco+e ('?P+él+oooo

‘ﬁ't" X-EE*" 0(e)

Assume:

(5.1.8) SYE << ¢2

Thus in first approximation it follows: ]
(5.1.82) O == 2 e
(5.1.80) avg +ul =0
B (5.1.8c) Z{rul)y + wx = 0 5~
| (5.1.84) 0==-p2-30 '
(5.1.8) Ape -wl=0

Here the variable p represents the displacement of the thermocline. ’
Thus for the range'of the parameters:
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it follows that the effects of bottom friction on stratification are
of secondary importance on the spin-down process of the eddy and the
eddy decays homogeneously.

In order to verify the applicability of the model to a deep~eddy-

like flow, let us consider typical values for such a flow located at
middle latitude (Armi and D'Asaro, 1980):
H=4x103 m D=20m R=105m

(S.1.10a)
U = 15 ans—! £f = 10~4s~1 N2 = 0.7 x 10~7s~2

These values imply:

/E = 0.5 x 10~2
e =1.5 x 10~2

s =1.1 x 102
(5.1.10b)

sf‘ = .36 x 10~2

A =0.3

and the relation (5.1.9) is satisfied. Integration over depth of the
continuity equation (5.1.8c) and equation (S.l1.8b) lead to:

(5.1.11)  A(F=)2n8 = A%he = 3o 2 (fvO)pg = 0 -

where Ly = /gH/f is the barotropic radius of deformation. The term
containing ny represents the contribution of the free surface

variations to the potential vorticity by vortex-~tube stretching

Aad A bk

—
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(Pedlosky, 1979). Since R << Lp, this contribution is unimportant
and can be neglected (i.e., the free surface appears no different e
from a rigid lid). Therefore, we simplify equation (5.1.11) by
neglecting this term. J
»
| S5.1.2. The Bottam Boundary Layer solution.
i_ To close the problem, we must now define the functions Wy and h ;‘ :
- of the equation (S.1.11) from the BBL solutions. The mathematical o
- difficulties of the problem depend on the turbulent nature of the BBL i__ ﬁ
b - In order to present simple analytical solutions, it is appealing i :
8 to parameterize turbulence via eddy viscosity coefficients that are
’ constant with depth. Thus we compare the dynamics of a Turbulent
—

Boundary layer (henceforth TBL) with the dynamics of a IBL of equal U
depth and forced by the same flow.
Let the superscript L indicate values for the LBL; thus the LBL

is defined by the eddy viscosity coefficient b (constant with 4
. .Y

depth):
(5.1.12)  Ji(r) = %D-;m(:) ' Vo 1
In Appendix A we show that the constant eddy viscosity _ 1‘.
coefficient vl is a good estimate of the mean value of the eddy
viscosity coefficient Ry(z) which defines the TBL. However, there is !
a fundamental difference between the assumptions that the eddy x

L

........
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coefficient is constant throughout the boundary layer or that it is a
function of height. One of the main disagreements observed between
IBIs and TBLs is that close to the rigid wall, the Ekman veering is
45° and 10° respectively, (Weatherly, 1972). Thus phencmenon is a
measure of the different friction forces that drive laminar and
turbulent motions.

Cutside the boundary layer, the Coriolis forces Fo balance the
pressure gradient forces Fp exactly (Fig. 5.la); inside the layer,
the forces that act on the layer as a whole are the pressure gradient
forces Fp (depending only upon the thickness of the layer and the
geostrophic flow of the interior), the friction forces Fg and the
Coriolis forces Fo (Fig. 5.1b). If we require that the Exman
veering is at an angle g with respect to the flow above the layer it
follows that:

- 8 B <j
Fp+Fccoss+Ffsm3=0

(5.1.13)
B i - 8 =
Fc sin g E‘f cos g =0

where the superscript g indicates values for the given Ekman veering

at the rigid wall. Bguations (5.1.13) imply:

(S.1.14) F&/Fp = sing

.......................
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Figure S.1. The balance of forces acting at the top (a) and at
bottom (b) of the boundary layer. F,=pressure gradient forces; R
F_=Coriolis forces; F.=friction forces; v_=direction of the for- ®
c?ng flow; v-directioﬁ of the flow at the’rigid surface.

.............




e S . BLARAC T Iy i EacaRde P ——— R ke al I ACEA dral S hreh

RINA A R T A AR A TN i ¢

66
and therefore, ' ~

(5.1.15) FrO/Ed® = .25 ' LU

Therefore we conclude that IBls are more dissipative than TBLs -
for equal boundary layer depth and equal forcing geostrophic flow.

L el
. g
o Aaad,

a). The Exman velocity _ -
F As the previous analysis indicates, a LBL cannot satisfactorily o

e 4 4 a4

T parameterize a TBL. Therefore, in order to derive an appropriate A
E. expression for the term w, we assume that the Ekman Boundary Layer _ .,.
| theory is applicable only above the logarithmic layer. Thus the ]
non-slip boundary condition at the rigid surface is transformed into:

- (S.1.16)  (u,v) = (uyc0Sg,upsing) .

where u, is the magnitude of the wvelocity at the top of the

¥
7
.

logarithmic layer and g the Exman veering. It can be showed that
(Holton, 1979): '

W = (cosg - sing) (U3 + v3) 1’2

where (Ug,Vg) are the velocity components of the forcing flow. Thus,

neglecting terms O(¢),the solution above the layer is given by:

(S.1.17a) u = «Oe=fsinz + VO (cosg-sing)e~Esin(e-g)
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(5.1.170) v = vO(l-e~fcost) + vO(cospg-sing)e~&cos(eg-g)
where
£ = xz/(YE h(r))
Thus the Exman velocity at the top of a TBL is :

(5.1.182) W = /E w, = /B kg

(5.1.180) k = ﬂ}iﬂ

(5.1.18¢) Wy = H{rtvO)y

An Ekman veering g=10° leads to the value k=0.08.

b). The thickness of the Bottom Boundary layer

We first recall that the thickness of a IBL does not vary with
time and it is independent of the forcing flow, but the
characteristic scale of a TBL thickness must somehow be related to
the forcing flow. Usually the thickness of a TBL is taken to be
(Wimbush & Munk, 1974; Weatherly, 1972; Weatherly and Martin, 1978):

(5.1.19) D = 0.4ux/f

where the friction velocity us can be related to the flow above the
bottom layer:

(5.1.20) ue = ay

The constant of proportionality, a, is usually assumed to range from

................................................
...........

, o
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b i




o e e
E..’ E"j";.:“
o Sy
;o -
E 68 ; :
0.03 to 0.04 (Kundu, 1976). Therefore, with the non-dimensionalized ~
variables we might assume: J
(5.1.21) h = |yOl, + 0(c) S
The relation (S5.1.21) is particularly appealing because of its .
simplicity; however, it must be applied under the correct ;'- j
circumstances. As we have pointed out, during the decay of the - -

vortex, the effects of stratification are of secondary importance,

but during the phase in which the interior flow builds up the BBL,
stratification plays an important dynamic role, mixing the bottom -]
layer and creating the sharp interface that inhibits the upward -
propagation of turbulence. For steady state flows, the mixed layer i o

is the region in which most of the turbulent activity occurs and the
relation (S.1.21) applies. On the other hand, as the forcing flow
decays, we might expect a reduction of turbulence and a consequent

reduction of the TBL thickness. However, once the initial TBL has :“ :
been mixed, there are no mechanisms (except molecular diffusion) for N
reestablishing stratification, and therefore, turbulence can still ]
propagate upward to the upper levels of the mixed layer. Then, the T 1.
TBL retains some memory of the original forcing flow which highly _ ]
camplicates the relation between the BBL thickness and the interior - .' }4
flow. Thus we can conclude that the relation (5.1.21) might be o
applied at least in the early stage of the spin-down process, when ;
the mixed layer and the TBL are in balance. ) B

%
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£ Independent of the validity of equation (5.1.21), substituting
’ (5.1.8), (5.1.9Win (5.1.3e) it follows:

(5.1.22) 1= /E/c =0.423 =0F x 10-2)

E
Thus the parameter ) is related only to the spatial dimensions of
the vortex.
| 5.1.3. The model equation
1 Substituting (5.1.16), (5.1.17), and (5.1.21) into (5.1.11l) using
.
the rigid lid approximation, the model equation is reduced to:
: (5.1.23)  (rvP)pt +arlWle + K(XIWPIW)r =0 ©30
o

subjected to the boundary and initial conditions:
(S.1.24a) v°(0,t) =0

(5.1.24b) vO(r,0) = V(r) t<0

Furthermore, because of the boundary condition at the center of the

[ S P ", tL
",'4"1:'

eddy, the initial velocity distribution V(r) may be written as follows:
(5.1.24c) V(r) = Araef(r)

where A is constant, £(0) = 1, and 0.
Consider equation (5.1.23) and its term |vPlg. Since the
thickness of the BBL is related to the magnitude of the forcing flow,

-
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the term [vOl; is always negative and in the decay process of the flow
might be considered equivalent to an apparent upwelling. Then, we
conclude that the BBL time variations are a dissipative mechanism for
cyclonic eddies, but they imply a production of relative vorticity for
anticyclonic eddies. Therefore, we expect that cyclonic vortices decay
faster than anticyclonic with equivalent features.

Although the nonlinear nature of equation (5.1.23) does not make
it possible to present an expression for the general solution of the
problem, additional information can be derived. Introduce the new
variables :

p =\

(5.1.25)
v =kt

Pquations (5.1.23) and (5.l.24c) are transformed into:

(5.1.26)  (pW), ¢ + Il + (pIWCIW) = 0

;; (5.1.27) V = AA"%paf(p/2)

# Bquation (5.1.26) implies that the eddy does not respond
simultaneously to dissipation by bottom friction, but with a time
shift expressed by the factor A=c. - Then we conclude that the solution TR
is of the form: .

(5.1.28) VO = vO (ar, kt + vy)




7

i and the associated decay time scale T is given by:
(5.1.29) Tg = r—;&— *y

2 where y represents the shift factor. The essence of the solution
(5.1.28) can be summarized as follows:
i) Al

- puring the spin-down process "fat® eddies spread and lose most
of their kinetic energy in the early stage of the decay. However,

A the case is of purely academic interest. "Fat" eddies require a

= radius so large that the rigid lid approximation is no longer valid
and (5.1.26) cannot be applied.

| ii) ‘\x«l

| "Slim" eddies contract and respond with a delay to dissipation
by bottom friction. Here, we recognize two different phases of the
decay: the early stage during which eddies preserve their initial

' . features almost unchanged, and the final stage during which eddies

. rapidly lose their kinetic energy. .

iii) A=1

_! We first assume ) = 1. During the decay the horizontal

scale of the eddy does not change, and the eddy responds

simultaneously to bottom friction dissipation. On the other hand, if
we assume )\ » 1, the flow might evolve in accordance with any of the

previous cases. We recall that the previous possibilities can never
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F be found in the decay process of the same eddy; during the spin-down -~ 3
- fat eddies become fatter and slim eddies slimmer. o :‘-:
- Finally, we recall that according to the values of (5.1.10a) - B
. typical deep eddy-like flows evolve as illustrated in case ii), and S
the associated time scale of the decay is: .
(5.1.30) Tg = 1.2 years o
b [
On the other hand, if we suppose that the eddy is subjected to a LBL, ]
) 1

the associated time scale is : .

(5.1.31) ré‘ = (/E £)-1 = 1 month,

It is unnecessary to emphasize that the T3 value expresses a much -
more realistic estimate than Tg" and that the evolution of the flow .4

according to our model is also in good agreement with observations
(The Ring Group, 198l1).

S.l.4., Discussion.

The model suggests that spin~down occurs on a time scale of
about one year. ‘The result is indeed in good agreement with
observations and measurments. A dimensional analysis indicates that
dissipation affects primarly the barotropic component of the motion,
provided that the stratification parameter s and the square root of . 3

L PP
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s the Ekman number E is much smaller than the square of the Rossby ;~
number ¢. Thus if we assume also that the Rossby number is much less
than unity, the eddy might be considered linear and homogeneous.
[ 4 The results of the model might be summarized as follows: '. )
- IBLs are more dissipative than TBL of equal depth and forced by the
same flow. The Exman velocity at the top of a TBL is proportional to
- the Exman velocity of the correspondent LBL through a constant of ®
proportionality which is a function of the Ekman veering at the wall.
- The BBL time variations are a dissipative mechanism of kinetic j
- energy for cyclonic flows, but they imply a production of relative 'o —

vorticity for anticyclonic flows. Thus cyclonic eddies decay faster
than anticyclonic eddies of equal features.

- The evolution of the flow depends upon the range between the

radius and the total depth of the vortex. For realistic values of

those spatial dimensions, eddies contract and the spin-down occurs in
two phases: the early phase, during which eddies preserve their original
features, and the final stage, during which eddies rapidly lose their

kinetic energy.

S.2. The numerical experiments.
Inspite of the assumptions made throughout the formulation of p" 4
the problem, the analytical model is able to reproduce most of the o
- features observed during the decay of mesoscale eddies and suggests i
t
a simple parameterization for the BBL turbulent activity. Therefore we L4

.....................................................................
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apply the numerical model to investigate the decay of a deep
eddy-like flow under linear regime. The eddy is assumed to be
hamogeneous except close to the bottom where density is a linear
function of depth. The condition is required for generating a bottom
mixed layer and for maintaining a sharp temperature gradient at the
top of the layer which inhibits turbulence for propagating upwards.

The eddies considered in the numerical experiments have the
typical dimensional values given in (5.1.10), and linear initial

velocity distributions.

5.2.1. Cyclonic and anticyclonic flows.

We consider two eddies of equal spatial dimensions, but initial
velocity distributions of opposite sign. Numerical simulations
indicate that the decay patterns are virtually identical inside the
vortices (Fig. 5.2, and 5.3). Both eddies lose more than 80% of
their initial energy in the first year of the spin-down. The result
is in good agreement with the estimated decay time scale of the
analytical model.

On the other hand, cyclonic and anticyclonic eddies induce
different circulations in the surrounding waters. As Fig. 5.4
illustrates, the radius of the anticyclonic eddy contracts about

2% of its initial value in the first year of the spin-down, but the

o

b
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i cyclonic eddy preserves its original radius. The features are a . i

consequence of the role played by the BBL time variations during the
decay of the flow. T

¢ Let us consider a cyclonic eddy. At the edge of the vortex the 2
Ekman velocity has the form of a downwelling, but the BBL time

variations are equivalent to an upwelling. Thus each effect

- opposes the other, tending to preserve the original radius of the ® l
eddy. In contrast, at the edge of an anticyclonic eddy both the Ekman i g

upwelling valocity and BBL time variations work to increase the L

gradient cZ the forcing flow and an anticyclonic eddy must contract. 'Y :

]

S

5.2.2. The Ekman velocity. N

il

»

We consider the decay induced by an Ekman velocity computed as:
(S.2.1) We = < k(hvg),J(H-h) >

where the constant k is defined in (5.1.18b) and < > indicates
average value over the period ax.

aAs Fig. 5.5 indicates, no substantial differences are found in

°
- 1
the evolution of the flow when the Ekman velocity is computed as in :
]
(3.1.7d) (the term hy being neglected) or defined as in (5.2.l1). R
Thus we conclude that the definition (5.1.18) is the correct 0 |

parameteriziation of the Ekman velocity present at the top of a TBL.
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5.2.3. The evolution of the Bottom Boundary Layer

The evolution of the BBL thickness is depicted in Fig. 5.6. . :{f j{i':
Although the rate of the decay for the forcing flow is uniform, the L
BBL evolves in four distinct phases: ' '-Z-
i) The initial stage, during which the BBL decreases (the high o
frequency noise of Fig. 5.6 is a consequence of the 2ax-instability .. s

- 1

and an indication that the inertial oscillations have been excited).
ii) The early stage (about 1.5 months), during which the BBL

a4y

preserves the new configuration.

iii) The intermediate stage (about 2.5 months), during which the BBL

' M
‘ S <, 1
NIRRTy

thickness decreases with a well-defined pattern.

iv) The final stage (after 4 months fron the begining of the decay), —.-'--*
AR

during which the BBL appears to maintain a steady configuration. "':"fs:::j:(
These features might be explained as follows. At time t=0 of ‘

the decay, the BBL and mixed layer are in a condition of equilibrium.
When dissipation is primed, there is an initial loss of kinetic
energy and a reduction of the BBL thickness. Then the BBL is
imbedded in a neutrally stratified layer and turbulence, not
inhibited by the buoyancy forces, can propagate upwards in the upper
levels of the mixed layer. As the forcing flow continues to decay,

the supply of kinetic energy from the mean flow cannot support 9 1
turbulent activity in the upper strata of the mixed layer and the BBL |
decreases at a rate faster than that of the forcing flow. From Fig.

5.2 and 5.6 we estimated that the BBL thickness is not responsive to s
L'q
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a reduction of the kinetic energy of the forcing flow up to 25% of its —
original value. Four months after the begining of the decay, both

BBL and forcing flow are reduced by a factor of 30%, but the mean

kinetic energy is now sufficient to mantain turbulence in the upper

levels of the new BBL, and the BBL thickness reaches a new constant

configuration.

S.3. Comparison between analytical model and numerical experiments.

The numerical experiments confirm most of the results of the
analytical model, but some of the features suggested by the model are
reproduced only in minimal measure or not at all. The numerical
simulations ratify that the Ekman velocity has been correctly parame- -
terized as in (5.1.18), and the decay time scales of both analytical
model and numerical tests are in good agreement.

The discrepancies depend upon the dynamic role of the BBL time -
variations. In the formulation of the analytical model, we have
supposed that the BBL thickness is proportional to the magnitude of
the forcing flow. This includes the implicit assumption that the BBL
time variations are of the same order of magnitude as the time var-
iations of the forcing flow. Under such an hypothesis, the BBL
variations became responsible for the different decay pattern for
cyclonic and anticyclonic eddies, for the contraction, and for the
delay with which the flow responds to dissipation by bottom

friction.
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Thus the numerical experiments indicate that the weakness of

the analytical model is due to the definition of the BBL. The BBL

thickness was related to the forcing flow through the friction
velocity (equations (5.1.19), (5.1.20)), but the ratio between
friction velocity and forcing flow is found to be constant during the

spin-down of the motion (Fig. 5.7).

' - The evolution of the BBL thickness depends upon the dynamic role ,"-.' .
of the buoyancy forces. Thus a correct parameterization of the BBL |
thickness presents an intriquing problem which does not have an easy

ﬁ - solution. From our analysis, we might propose to modify the relation :' 1

- (5.1.21) as follows:

]

(5.3.1) h = ¢|vOl + O(e) - : .__..

where ¢ is an empirical (unknown) function dependent upon the ?{.-_5

magnitude of the initial velocity distribution and stratification. ”_:‘

However, the problem requires an analysis which is beyond the bounds . _.1;1
of the present research. -
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: 6. THE DECAY OF A DEEP MESOSCALE EDDY~LIKE FLOW. -
p e
E . The analysis presented in the previous section indicates that J
- bottom friction forces are an important mechanism for the decay of ‘ "
isolated vortices. However, the formulation of the model precludes ‘

certain types of spin-down mechanisms and observed features. ’ l

Perhaps the most important cmissions are the assumptions that the ' :

eddy does not interact with the sirrounding water, that the Rossby =

number, ¢, is much less than unity, and that the product of the j

stratification parameter, s, and the square root of the Ekman number, .‘. 1

T

E, is much less that the square of the Rossby number. Scaling
arguments do not completely support the validity of the last

conditions. Here we anaiyze how the physical mechanisms of
advection and stratification affect the dynamics of a deep mesoscale
flow during the decay induced by bottam friction forces.

Since the simulations are performed for extended periods of
time, the numerical scheme is modified to prevent nonlinear
instability as has been described in Section 3.3. The correction ;\' K
does not alter thedynam.cs of the problem (Fig. 4.7a, 6.la; 4.9a, ‘
6.2a). The new horizontal eddy coefficients affect the structure of
the mixed layer, reducing the horizontal gradient of temperature at !
the edge of the vortex. This also prevents any instability that
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might be caused by adiabatically advecting parcels of fluid through -
a strong thermal front.

6.1. . Stationary flow.

Here we analyze the response of stationary flows to o
dissipation by bottom friction. When it is not indicated otherwise, -
all the numerical experiments consider the initial values given in :
Section 4.2. These features imply a Rossby number ¢=1.5x10-2, an
Ekman number E=0.25x10-4, and a stratification parameter s=9.2x10~2. ~ =
In that case the assumptions (5.1.8) of Section 5 are violated. We
also assume that spin down starts being effective after one month of
numerical simulation, so that the flow may adjust from the initial
conditions.

The importance of advection in the dynamics of the motion is
represented by the Rossby number, which can be modified by altering
either the velocity scale or the spatial scale of the flow. Changes
of the velocity field imply changes in the turbulent activity of the
BBL and, consequently, changes in the evolution of the decay. On
the other hand, changes.of the horizontal scale affect both the
Rossby number and the stratification parameter without requiring :
additional alterations of the flow structure. Thus numerical o
experiments in Section 6.1.2 are performed only for different values o
of the radius of the vortices.
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6.1.1. Cyclonic and anticyclonic flows.

First let us consider the decay pattern of cyclonic and
anticyclonic eddies of equal spatial features but with initial
velocity distributions of opposite sign.

Fig. 6.1 and 6.2 illustrate the evolution of the mixed layer
which might be explained with arguments similar to those used in
Section 4.2, and which are therefore not repeated here. The decay
of the maximum velocity and the evolution of the thermocline
displacement are depicted in Fig. 6.3 and 6.4 respectively. It
follows that spin~down occurs mainly in the first six months, after
which the flow reaches an almost-steady configuration.
Unexpectedly, although both eddies lose approximately 50% of their
initial kinetic energy at the location of maximum velocity, in their
total extensions the cyclonic eddy decays faster than the
anticyclonic. Furthermore, the cyclonic eddy expands and the
anticyclonic contracts.

Before explaining these features, let us recall that if the
eddy is nonlinear and stratified, the thermal wind effect, caused by
vertical advection of. temperature, implies a reduction in magnitude
of the bottom velocity regardless of its sign at the free surface
.(Fig. 4.10). Under such a circumstance, turbulent activity inside
the BBL is reduced and consequently nonlinear and stratified
flows decay on a larger time scale than the time scale of the

correspondent linear and homogeneous flows. In addition, most of
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Figure 6.4. The displacement of the thermocline at time
t=0, 6, and 12 months; (a) cyclonic flow, (b) anticyclonic
flow.
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the dissipation must occur in the early stage of the decay, when
turbulence inside the BBL is strong enough to control the dynamics of
the motion.

From these premises, it follows that both advection and
stratification work to amplify the effects of the BBL time
variations. Let us consider an anticyclonic eddy. The downwelling
inside the vortex has the tendency to reduce the thickness of the
mixed layer. If the forcing flow is steady, turbulence inside the
BBL does not allow a camplete erosion of the mixed layer; but as the
forcing flow decays, turbulent activity is reduced and the BBL
decreases as a result of both vertical advection and decay. Therefore
the BBL time variations are not a dissipative mechanisnm.

In the case of a cyclonic flow, vertical advection and
spin-down play opposite roles in detemmining the thickness of the
BBL. Thus the BBL evolves similarly to the linear case of Section
five, and cyclonic eddies decay faster than the correspondent
anticyclonic eddies.

Analogous arguments might be applied to the dynamics of the
flow at the edge of the vortices to explain the features of Fig. 6.3
and 6.S.

6.1.2. Flows for different spatial extensions.

The mumerical simulations described above have indicated that
vertical advection of temperature and consequent thermal wind work
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against dissipation by bottom friction, reducing turbulent activity
- inside the BBL. Furthermore, vertical advection and stratification
i emphasize the role of the BBL time variations during the decay of
. the flow.
: Although the BBL time variations are an important feature for
differentiating the decay of cyclonic and anticyclonic eddies, the
thermal wind introduces a much more determinant factor in the
dynamics of the motion. Several experiments, whose features and
parameters are described in Table 6.1, have been considered.
Since the difference between eddies of opposite velocity signs have
been discussed in the previous section, we compare results relative
to cyclonic and anticyclonic flows separately.

Pig. 6.6 illustrates the evolution of the flows at the location
of maximum velocity, whose initial vertical profiles are depicted in
Fig. 6.7. We do not present the vertical profiles for cyclonic
flows because they are virtually identical to those of the
correspondent anticyclonic. Finally, the evolution of the
thermocline displacement is depicted in Fig. 6.8.

It is evident that experiments 3 and 7 confirm the validity of
the analytical model. If the motion is defined by a small Rossby
number and stratification parameter, eddies decay as homogeneous ‘and
linear. On the other hand, flows subjected to a stronger thermal
wind effect decay on a much larger time scale.




Experim; R(km) 0(m) e-—g- VE=d N2He -
S s\E
fR Rl ';252' -{g:
Cyclonic Flow
1 100 29 |1.5x1072 [ .75x10-2 0 0
2 100 27 |1.5x10°2 | .5x10-2 | 9.2x10-2 | 3.x107%
3 200 32 |.75x1072 | .75x1072 | 2.3x1072 | 2.3x1072
4 50 21 | 3.x10-2 | .5x1072 [3.7x107! | 6.x10"2
Anticyclonic flow
5 100 | 28 |isx0?|.7sa0?| o 0
6 100 28 |1.5x1072 | ..5x10°2 | 9.2x10-2 | 3.x1072
7 200 33 |.75x1072 | .75x107% | 2.3x1072 | 2.3x10-2
8 50 21 | 3.x1072| .5x102 |3.7x107 | 6.x1072
Table 6.1. The characteristic dimensional scales and parameters relative

to the experiments. All the experiments have the following common
features: H=4000m, U=0.15ms-1, and N=7.6x10-4s-1, The length scale O
is derived from the initial values of the BBL thickness. See section
5.1. for definition of terms.
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In order to explain those features, a simple mdel fof the
thermal wind is presented in Appendix B. The model furnishes a

diagnostic solution to the decay of nonlinear and stratified flows
when the velocity at the thermocline and the stratification
parameter s are known. As Table 6.2 confirms, the predictions are in
good agreement with the numerical simulations. Indeed, the model
does not take in account the nonlinear terms of the momentum
equation, and in deriving equation (B.4) we referred to predictions
relative to linear and homogeneous flows. '

We have already discussed how the weakness of the analytical
model of Section S depends on the definition of the BBL thickness and
the consequences of such definition. MNonlinearity and
stratification further complicate the evolution of the BBL.

' a@erimntamybemideredagood‘e'xanpleof the last
statement.

The case is defined by a large stratification parameter and
Rossby number. The velocity, vy, at the top of the BBL is very small
carpared with the velocity, vy, at the thermocline, and there is a
strong downwelling inside the vortex. As the. flow decays and
turbulent activity is reduced inside the BBL, both mixed layer and
BBL decrease. The ultimate configuration is a complete erosion of
the Benthic Boundary Layer and, after about three months, the flow
decays only from the effects of molecular dissipation. (Fig. 6.9).
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Figure 6.6. The decay of the barotropic component of the flow e
at the location of maximum velocity; (a) experiments 1-4, (b) RN
experiments S5-8.
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Figure 6.7. The tnitial vertical velocity profile . ‘
at the location of maximum velocity relative to RN

experiments 5-8. - -
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Figure 6.8. The displacement of the thermocline at time L
t=12months. The ordinate represents the horizontal extent of the
eddy nondimensionalized with respect to the original radius of
each experiments. The abscissa represents the thermocline displa-
cement nondimensionalized with respect to the tnftfal maximum
displacement. (a) experiments 1-4, (b) experiments 5-8.
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Predictions Values

t‘ ‘: - —— —

o Experim. v:(ms'l) Ts(years) vH(ms°l) v:(MS'I) vH(ms'l] k/K®

Cyclonic flow

1 015 l 0055 015 .06 81: o '_A'.:_J
2 .136 1.1 .11 .109 .109 56% .
3 .146 1 .057 .142 .065 86% e
4 .094 1.5 .139 .061 134 23% K
Anticyclonic flow - T?
5 | .15 1 085 [l .15 055 81% =
6 .136 1.1 A1 .11 .10 40% Lo
7 .146 1 057 .142 .07 84% 4 .
8 .094 1.5 .139 074 | .137 192 o
B -
A

vy

Table 6.2. Comparison between predictions and numerical computations
relative to each experiment. The velocity, VH, is computed after one
year of decay. In order to reduce the distorsion due to our paremete-
rization of the therm3l wind, the values in column 3 are computed from
the raltive values, v9, of column 4. The last column indicates the frac-

tion of initial kinetic energy which has been dissipated. See Appendix 2o
B for definition of terms. .
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‘ Experiment 8 also highlights the inadequacies of the diagnostic i__,_
solution that assumes a smooth exponential decay which is not Z:;‘.;.
supported by the numerical computations. This may indicate that the
! agreements between predictions and numerical tests are a result of a ;—~——
‘ mere coincidence rather than of the validity of the model. In R
defense of the model we present the following arguments.
- The model assumes that turbulence is determined by the value of i—*-*
the velocity at the top of the BBL independent of the barotropic
- component of the motion. It does not seem unreasonable to postulate
= that although thermal wind does affect bottom friction forces, the 5*--
barotropic component of the motion also contributes to defining o
turbulence inside the BBL. This might be confirmed by Tables 6.1
] and 6.2: the initial thickness of the BBL is not proportional to -
o the values of the velocity,w,. In our model we have underestimated e

the effects of dissipation in the early stage of the decay when
‘ dissipation is more efficient, and spread the surplus of friction i _,,_,_
forces along the time scale of the decay.

L 6.2. Monstationary flow. °__

re-

We have previously considered stationary eddies and a

motionless ocean. Both assumptions are unrealistic. It is well 'm_
known that Gulf Stream rings move westward (The Ring Group, 1981); ;E;I:E:Ij
Nof (1984) indicated that the translation is the result of the %
b balance between pressure, Coriolis and beta-effect forces that act ll_
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over the vortex as a unity. 'rides,mmts,mdu:éualedeep
ocean circulation models confute the hypothesis of a motionless
ocean,

Therefore, we now assume that the vortices move westwards with a
uniform and steady velocity. 'nnassulptionthat-ttneddyismving.
is important in our analysis because the resultant new motion does
not preserve symmetric properties, but adds a new source of bottom
turbulence, so the migration of the eddy furnishes a background
of bottom turbulence available for the spin-down of the mesoscale
flow.

Although the direction of the motion has been chosen to be
consistent with the features of Gulf Stream rings, the following
study cannot be considered an application for investigating the
migration of eddies. The correct formulation of the problem is
fully three-dimensional and cannot be parameterized by our
two-dimensional model. In addition, the original formulation of the
problem does not require particular conditions at the center of the
vortex. As we have discussed in Section 1, formulating the problem
in a more appropriate cylindrical coordinate system does not allow a
two-dimensional formulation of the migration of the vortices. Thus
the numerical tests described in this section cannot be considered a
direct simulation of the decay of nonstationary vortices, but an
indication of the tendencies induced by the migration.
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. 6.2.1. Cyclonic and anticyclonic flow. =
L

& The numerical tests discussed in this section consider the

initial features of experiments 2 and 6 of Section 6.1l., with the
; vortices advected by an uniform oceanic current ug= -0.05ms~l.
The evolution of temperature distributions near the bottom are
depicted in Fig. 6.10, and 6.11. It follows that the mutual

- interactions between mixed layer and BBL are basically preserved ‘

_- ' inside the vortices as discussed in the previous sections. However,

o the background of turbulence due to the translation of the eddies o
o

does not allow a camplete erosion of the Benthic Boundary layer when
the anticyclonic flow weakens under the effect of the decay. Under
& such a circumstance, the flow maintains a well defined mixed layer,
about 30m thick, separated by a sharp interface from the interior
stratified region. Furthermore, the effects of the translation are
. more determinant in the recirculation of the surrounding water,
- where a clear downstream wake is generated.
The loss of symmetric properties is even more evident in the
L evolution of the forcing flow. As Fig. 6.12 indicates, there is a
' downstrean deepening of the thermocline, regardless of the initial
velocity distribution, but the location of the maximum thermocline R
displacement of cyclonic and anticyclonic flows moves downstream and :;
upstream, respectively. R
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i 6.2.2. Discussion.
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% mstletmnunﬂmt,mo:dingu.othemlammm
. Wlmrth&q,ﬂnhﬂmimoﬁamiﬁcmuﬂsteaﬂy
currvent modifies the structure of the boundary layer (viz, the

: vertical profile of the velocity components) without altering the
= decayofamsoscaleﬁlw(viz,tmamnvelocityatthemoftm
layer). Under more realistic circumstances, we must always take in
account the differences between the structure of the Benthic Boundary
tayerandtbedissipatimhﬂucedinﬁxeforcingﬂw. Furthermore,
the nonlinear nature of the relationship between turbulent activity
andf:rcingflowdoesmtgmtthatdissipatimisanhwariant
with respect to stationary and nonstationary flows.

In order to understand how the translation affects the dynamics
of the motion, in Appendix C we derive an expression for the Exman
velocity at the top of the BEL. We have assumed constant eddy

f'} viscosity coefficients and imposed a given Exman veering at the top

t of the logarithmic layer. For the purposes of our study, it is

E convenient to rewrite the solution (C.3) in nondimensionalized

; variables as follows: J
Ef:'. _ ‘*_.'f
i (6.2.1a) Wg = wgg + WgT Y
" T
gf where: R
._'-_‘_'.' _ . 1
b (6.2.10) wgg = / E (8in28/21) Vgx ot
- -
- Sk
t:-- i
e e e e e
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Figure 6.12. The displacement of the thermocline at time t=0
(dashed line) and t=12 months. (S) stationary flow, (T) non-
stationary flow. (a) anticyclonic flow, (b) cyclonic flow.
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b :

2 2
(6.2.1c) wgr=/E (- sin 2g) - ugvgec:szmvgx/(2«(0g +V))

q LT
BN
where wgg is the Ekman velocity relative to stationary flow, and wgp a \«J

the perturbation due to the uniform translation.
With the aid of equations (6.2.1) we are able to attempt an

explanation for the features described in Section 6.2.1. However,

before proceeding in our analysis it is necessary to remember . -
that the ultimate aim of spin-down is not a zero forcing flow or a g
zero thermocline displacement, but is rather constant values of these _ ,...,.}
variables. o -]

Iet us consider an anticyclonic flow. In Fig. 6.13 we briefly ; J
sketch how translation affects the decay of the flow with respect to . i ____4
its correspondent stationary eddy. The assumption that the flow is oA

unperturbed upstream, and the fact that dissipation is more efficient

at the left edge assure a greater smoothing of the thermocline than

o

that of the correspondent stationary flow. In region B, where = !
friction forces are less dissipative, the thermocline preserves most
of its original gradient. The matching condition between regions A O
and B leads to the downstream deepening of the thermocline. Since ORT

Exman pumping is more efficient at the left side of the center of the
vortex than at the right side, it follows that the location of maximum
thermocline displacement (viz, the location of zero forcing flow)

moves upstream, implying a contraction of the region of positive

forcing flow (Fig. 6.12a). “ -

...................................................

---------------------------------------------------------
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The differences between regions A and B are also responsible
for the temperature distribution near the bottom. At the lefr edge
of the eddy, the upwelling is stronger than at the right, leading to
the features as depicted in Fig. 6.1l.

Reverse arguments must be applied when the flow is cyclonic.
The eddy contracts at the left edge under the influence of
translation, and the gradient of the thermocline is not sufficiently
smoothed inside region B. Since the friction forces are more
dissipative in region A, the thermocline deepeens slightly in the
first portion of this region (viz, the forcing flow preserves
negative values). Thus there is a contraction of the region of
positive forcing flow and a downstream deepening of the thermocline

.(Fig. 6.120). Once more, the differences between regions A and B
lead to the temperature distribution depicted in Fig. 6.10.




.....................................

Figure 6.13. The effects of a uniform westward translation
on the decay of anticyclonic (a), and cyclonic flow (b).
Regions A and B indicate regions where dissipation is more

- and less effective with respect to the correspondent stationary

flow, respectively. Arrows represent the direction of the
Ekman velocity at the top of the BBL.
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7. SUMMARY AND CONCLUSIONS.

Although the primary goal of the present research has been to
analyze the effects of the Benthic Boundary Layer on the decay of an
isolated vortex, the study also provides additional contributions to
the understanding of the nature of turbulent motions and of the
structure of the Benthic Boundary Layer. For this reason, we prefer
to describe the findings of the investigation in three different
statements.

i) Methods of analysis of turbulent flow.

In this research we are using the principle that: ®In the
abeemeofaga\eralarﬂrigomappmmm.solutionof
problems in turbulence, it ig impossible to make accurate
quantitative predictions without relying heavily on empirical data®
(Tennekes and Lumley, 1972). Therefore our analysis develops from
the classical Exman Bomdaty Layer theory, corrected with the
introduction of new elements derived from cbservations and
measurements. Basically we have depended strongly upon the
existence of a near bottom logarithmic layer and upon a priori
knowledge of the thickness of the bottom layer and of the Ekman
veering close to the wall.

It is found that the depth of the BBL furnishes an appropriate
reference for defining a laminar-constant eddy.viscosity
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: coefficient, which is a good estimate of the mean value of the

2 turbulent momentum eddy coefficient, and that the Ekman veering is a
suitable measure of the friction forces that drive the motion.

Therefore we have concluded that laminar boundary layers are
more dissipative than turbulent boundary layers of equal depth and
forced by the same flow. The BEman velocity at the top of a TBL is
propon;.ioml to the Exman velocity of the correspondent LBL through -
a constant of proportionality which is a function of the Ekman

-4-41
I

veering at the rigid surface. Furthermore, the assumption that at
the rigid wall the flow is not at an angle g= /4 (counterclockwise
looking down) with the forcing flow implies that dissipation is not
an invariant with respect to an uniform and steady translation of . --i
the mesoscale flow. IR
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Comparisons between the model and numerical simulations
confirm that this modified Ekman Boundary Layer solution is suitable
for deriving satisfactory diagnostic estimates of the frictional T

11
§700 B B

forces associated with the Benthic Boundary lLayer.
ii) The structure of the Benthic Boundary Layer

‘A numerical model based on the level 2 1/2 closure scheme of
Mellor and Yamada (1982) has been applied to investigate the
structure of the Benthic Boundary layer. The study ratifies that
"a clear distinction should be made between the height of the mixed
layer and the height at which the flow is affected by the presence .. '
of the boundary” (Richards, 1984). More precisely, a preliminary O




analysis on horizontally homogeneous flows confirms that the most
appropriate definition of the BBL thickness is the height at which
the BBL~generated turbulent kinetic energy goes to zero, that the
stratification reduces the depth of the BBL, and that the mixed
layer is thicker than BBL.

On the other hand, if the Benthic Boundary Layer is forced by a -
mesoscale activity, the dynamics are strongly affected by vertical
advection. A near-bottom downwelling has the tendency of removing
the mixed layer, but turbulence inside the layer does not allow a
camplete erosion of the layer. The resultant balance leads to a
Benthic Boundary Layer structure equivalent to that associated with
horizontally homogeneous and stably stratified flows. On the
contrary, a near-bottom upwelling implies the growth of the mixed
layer. The BBL is then imbedded in an homogeneous region and the
Benthic Boundary layer evolves as expected for horizontally
homogeneous and neutrally stratified flows.

Furthermore, recirculation outside the mesoscale activity
implies different temperature distributions for cyclonic and
anticyclonic motions. If the motion is cyclonic, the mixed layer
receives the warm water which is adiabatically advected downwards at

the edge of the flow. Cyclonic flows usually develop a mixed

layer warmer than the mixed layer associated with equivalent
anticyclonic activities.

These findings are in good agreement with the observations on
the Madeira Abyssal Plain reported by Saunders (1983) and Thorpe
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(1983). In our study, two major events occurred at the mooring
sites: the passages of an anticyclonic and a cyclonic flow at days
70 and 130 respectively, as indicated by Saunder's figure 9. In the
first case, before the transit of the flow (viz, during an upwelling
activity), stratification is weak in the whole sample column (about
80 m), but the depth of the mixed laye:‘is clearly reduced when the
high pressure is over the site (viz, during a downwelling activity).
On the other hand, the passage of the cyclonic flow is related
marked evidences of a near bottom warm front.

Another interesting place for our study is the station DEEP
(39° S53'N, 62° 82'W) in the HEBBLE Area. This mooring site is
particularly important because Koenig, Harkema, and Weatherly (1983)
made a complete compilation of the data from Oct. 1980 to Oct. 1981,
and Relley (1984) represented the frontal position of the Gulf Stream
and rings relative to the station for the same period of time.
Although the records present several events that might reinforce the
validity of our results, we focus our attention to the period Dec.
28, 1980 ~ Jan. 9, 198l.

For almost the entire length of that period, the mooring site is
Clearly under the influence of the recirculation associated with a
Gulf Stream meander (viz, an upwelling region), and the Benthic
Boundary layer presents a warm mixed layer about 50 m thick. The

region above the mixed layer is weakly stratified. On January 4,




121
'j' ISBIMSQMqum:mailiMOEM
- GQulf Stream meander (viz, a downwelling region), and the mixed layer

becomes colder. Its thickness decreases and the region above is

i ) more stratified. Furthermore, the records confirm that the
thickness of the mixed layer is not proportional to the magnitude of
the forcing flow: the maximum bottom velocity occurred during

[ _ January 1-3, when the depth of the mixed layer started to decrease.

- iii) The effects of the Benthic Boundary Layer on the decay of

isolated vortices.

The approach to the problem is to develop an analytical
model for investigating the decay of linear and homogeneous flows.
The study indicates that the spin-down occurs on a time, scale
proportional to the order c;f magnitude of the vertical velocity
pumped in (out) the bottom layer. During the decay, reductions of
the BBL thickness are dynamically equivalent to_.an apparent
upwelling. Furthermore, under the assumption that the BBL time
variations are of the same order of magnitude as the forcing flow
variations, and for realistic values of the spatial dimensions of
the vortices, eddies contract.

Comparisons between the model and numerical simulations confirm
the dynamic role of the BBL time variations. However, the numerical
experiments emphasize that during the decay of the flow, the
evolution of the BBL depends strongly on the dynamic role of the
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buoyancy forces, so that the relation between BBL thickness and
forcing flow is complex and not easily understood.
Withﬂum&atﬂ\eﬂowissublysmdthdu\d
nonlinear, the study suggests that vertical advection of temperature
and consequent thermal wind effect work against dissipation by
bottom friction and reduce turbulent activity inside the BBL.
. Furthermore, both vertical advection and stratification amplify the
role of the BBL time variations during the spin-down of the eddies.
Finally, tﬁiauorkinvutigatesthedecayofamleflcu
advected by an uniform and steady oceanic current. The analysis -
indicates that a translation of the mesoscale flow implies a loss of :

N |

symmetry of the motion features and a downstream deepening of the
thermocline regardless of the initial velocity distribution. .
T™wo fundamental questions remain unanswered. Are the bottom
‘ friction forces a capable dissipative mechanism? If so, in which
i regions of the ocean are they dominant? A satisfactory answer to
- these questions can be given only by applying the results of this

-y .o

1y

: work to the general ocean circulation. As representative samples we
) choose three regions: the Florida Qurrent, the Gulf Stream warm -
core rings 81D, and:the Subtropical Gyre. '
- The Florida Qurrent

This region has been selected as representative of flow
characterized by a marked vertical shear for which the effects of
bottom frictions are rather small (Weatherly, 1972).
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K Typical values of the Florida Currents are total depth H = 700
m, width L = 50 km, near surface velocities ranging from l-2ms-1,
bottom currents of about 0.3 ms=!, and a Brunt-Vaiasala frequency

2 N = 7.2x10-3s~! (Brooks and Niiler, 1977; Weatherly, 1972). Those
features imply a Rossby number ¢=0.5, and a stratification parameter
s = 0.94. From these parameters, we estimate thaf. the thermal wind

- implies a reduction of the bottom velocity of about 94% with respect

to the near-surface current and that therefore bottom friction

cannot be dynamically efficient.

- The GQulf Stream warm-core ring 81D.

Following Joyce (1984), the features of the ring can be
parameterized by a two layer system of radius R = 100 km, with the

K
upper layer of depth H; = 1000 m, and maximum near surface velocity
vy = 1 ms~1; and the lower layer of depth H, = 4000 m, and maximum
' velocity v, = 0.15 ms~l. In the lower layer, the flow appears to be

cyclonic and essentially barotropic.
Qur study predicts that the BBL dissipates about 84% of the

kinetic energy contained in the lower layer during the first year of

life of the ring. If we assume that velocity distribution of the
upper layer is linear with depth, we estimate that the kinetic .
energy of the lower layer is about 54% of the kinetic energy of the . )
upper strata. Consequently, the BBL dissipates about 25% of the
kinetic energy contained in the whole water column.

-
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Dissipation by bottom friction could have been an important
mechanism in the spin-down process of ring 81D.
- The Subtropical Gyre.
Weatherly (1984) indicated that the interactions of the GQulf

Stream and rings with the bottom dissipate something between 50-100%
of the energy input by the wind in the subtropical gyre and that
this dissipation occurs in only about 20% of the total extent of the
gyre. Fofonoff (1980) esti.mf.edtherat:e of energy input by the
wind for unit area to be about 2 ergs s-l,

From the point of view of our analysis, the subtropical gyre
can be considered a large-scale eddy-like flow. The system is
therefore gepr:esmted by very small Rossby number and stratification
parameter. We might expect that bottom friction is dynamically
important. tbimthevalmsof.ttnareabeweenestimtedm
of the deep kinetic energy reported in Weatherly's Table 3 and from
the modified Exman Boundary Layer solutions, we compute the
dissipation rate, P, of the system, assuming that the thickness of
theBBLi.sD-O.Mvg/tandd\eanveeringisa-lO‘. It
follows that the dissipation rate per unit area in the region of the
Qulf Stream is P = 8.82 ergs s~1. Since the Gulf Stream System
covers only 208 of the total area of the gyre, the rate of
dissipation for unit area in the whole subtropical gyre is about 1.7
ergs s”! or about 868 of the eneryy input by the wind in the same

region. Therefore, our estimates are in very good agreement with i
Weatherly's study. RO
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) In conclusion, our answer to the questions at the opening of '.

this discussion is: Yes, bottom friction forces are a capable

T
T
-4

- 3
S
0

dissipative mechanism, provided that the flow is represented by a

n small stratification parameter and a small Fossby number. Bottom
friction is dynamically important for large scale motions, such as
the subtropical gyre, or for weakly stratified mescoscale flows, such

- as deep eddies.
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Appendix A. An approximated vertical profile of the turbulent eddy
viscosity coeffiecient.

It is well known that close to the rigid surface, in the
log-layer, eddy viscosity coefficients are linear functions of height
(Rrauss, 1972) and it is usually observed that they are monotonic
decreasing functions fram the top of log-layer to the top of the
total boundary layer (Wyngaard et al., 1974). Therefore, with the
boundary condition that the eddy viscosity coefficient Ry goes to
zero at the rigid wall and at the top of the TBL, it is possible to
approximate Ky(z) by linear interpolation once the thickness Dlog of
the log-layer and the value Kpax = Ku(Dyog) are known.

. From this vertical profile we deduce that:

(A.1) ®> = = fDku(z)dz = 0.5 Kpay

In order to estimate the variable Djog and Kpaxs we refer to the
studies of Weatherly (1972) and Wyngaard et al. (1974), respectively:

(A.3) Kpax = 0.02 u2/f
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Therefore,
(A.4) Ky> = 1.x10~2 u/f

BEquations (S.1.12) and (5.1.19) imply:

(A.S) <Kq> = 0.04 D2f = 0.82 &
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Appendix B. The effect of stratification on the decay of a deep
mesoscale flow: a diagnostic solution.
Assume that the flow is uniform in the poleward direction,
geostrophic and Boussinesg. Assume that density distribution is
under a purely advective balance. Thus the motion equations might

be written as follows:

1
(B.la) fvz = ~-g oo pX
(B.1b) Upg + Wpy = 0

Scaling the equations as in (S.1.2) leads to:

(B.2a) ¥ = - 5

where tilde indicates nondimensionalized variables. Bquation
(B.2d) implies ;2' = 0(s), and therefore:

(B.3) vh = vy(l-s)

where the subscripts h and H represent values at the top of the BBL
and at the thermocline, respectively.
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reduces the velocity at the top of the BBL by a factor (l1-s) with
respect to the value at the free surface. If we assume that the
a initial thickness of the BBL is proportional to the magnitude of the
velocity wy,, it follows that the time scale of the decay Tg is given
by:
{ = (B.4) Tg = 1/(/ E £k|1-s])

Thus we estimate that the decay of the velocity w, is expressed as:

(B.5) Vh = VD exp(~t/Ts)

where the superscript o refers to initial values. From equation
(B.S) we are finally able to derive an expression for the evolution
of the flow at the thermocline. Since we have assumed that
spin-down acts only on the barotropic component of the motion, Vgi

the velocities v, and vy can be written as follows:

Vh = W+ VR - Vg

or, )
Substitution of (B.3), (B.5) into (B.6) leads to: T
!“ b

(B.7) v = vg((1-s)exp(~t/T5) + 3)
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Appendix C. An analytical expression for the Ekman velocity at
the top of the Bottom Boundary Layer.

Following the analysis and the symbolisms of Section 5, we
consider a laminar boundary layer of constant height D, forced by a
geostrophic flow of components (Ug, Vg). Generalizing the study
presented in Section 5, the velocity camponents at the top of the
logarithmic layer are:

(C.la) (u,v) = (upcos(y + 8), upSin(y + 8))

where g is the Exman veering and

(C.1b) Uy = (COSg - sine)(u; + v;) 172

(C.lc) v = atan(Uy/Vq)
The solution above the logarithmic layer is:
(C.2a) u = Uy(l-e~Ccosg) - vge"Esing +

(cosg - sina)(ng + V;) 1/ Za=6cos(g - v - 8)

(C.2D) vs Uge"Esin; + Vg(l-e‘ﬁcpsg) +

~(cosg - smanu; + v;) 1/ 29-£gin(g - y - 8)

.......................

--------
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5 where .
(COZC) E = ‘I'Z/D
| In deriving (C.2), we have repeatedly used the relationships:
- /2, csn o 2 2,172
cosy Ug/w; + v;) 1 siny = Vg/(U7 + V)
- Assume that [ is constant; then the Hdman velocity at the top
: of the layer is given by:
— D =
(C.3) Wz*-foouxdzs--;fouxdg-
D .. l-sin2g) = Vi 2
py (sin2g + ¢ 3 ) 2 Vgx
tJg + Vg
|

For g = y/4, the modified spiral (C.2) and the Exman velocity
(C.3) reduce to the solution of the classical Ekman Boundary layer







