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List of Symbois

) Orbital Parameters:

\ a Semi-Major Axis

| e Eccentricity

} i Inclination

r f True Anomaly

| n Orbital Mean Motion

| TP Orbital Period

’ Q Longitude of the Ascending Node

; u Gravitational Parameter (DU3 /TU2)

| A Change in Orbital Parameter

|

P Sailcraft eters:

| A Solar Sail Area
A Minor Moments of Inertis (principal) about by and by Axis.
c Moment of Inertia about 53 Axis.
K Sail Reflectivity Constant; (00 < K < 10)
D Sailcraft Acceleration Constant Defined in Section 2 4.
T Thrust Due to Solar Radiation Pressure

) -
W Spin Rate of Spacecraft about b3 Azxis.
Sail Orientation Parameters:

i n Angular Momentum Orientation Angle wrt K Axis
¢ Angular Momentum Orientation Angle wrt 1 Azis
v Precession Rate

: ) Nutation Angle or Coning Angle
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Phase Angle Associated with the True Anomaly
Phase Angle Associtated with the Sail Precession

Coordinstes/Reference Frames:

Body-Fixed Axes of Solar Sailcraft; i=123.

Orbital Plane Inertial Frame.

Body-centric Inertial Frame.

Unit Vectors in the Radial, Tangential, and Orbit Normal Directions,
respectively.

Spacecraft Acceleration Components in the Radial, Tangential and
Normal Directions.

Vectors/Matrices/Functions:

Solar Sailcraft Spin Rate about b axis.

Upew - Upid = Required Change in Control Vector u ; [4x1].
Optimality Vector - ATPC) : [1x4]: i - 1234,

State Function {4x1] =Fi(x , u).

Angular Momentum Vector of Solar Sailcraft.

Partial Differential of [ C] wrt Control Vector U ; [4x4].
Inverse of Matrix [ PC ] = (4x4).

Partial Differential of Function F wrt Control Vector u; {4x4].

Control Vector =(8. N .{ .¢-V¥] ~[8. 1y, PA}: (1 x4]

Solar Direction Vector.

State Vector ={a . e,i. Q);[1x4]
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Shadow Components:

Riimit Radius Limit on Extent of Shadow.

Rg Radius at which Sailcraft enters Shadow = Orbit Radius for Circular orbits.

Rg Radius of Earth 3444 ami.

BE Angle between Earth-Sun line to vector at shadow's point of entry .
(OE »90°)

Bs Shadow Half-Angle (this is the complementary angle to BE).

toy Time spent in shadow

Miscellaneous Parameters:

di Constants defined in Equation (2.29);i=12.3.

t Time.

Bi Constants defined in Equation (2.30);i~-12,..8.

wrt with respect to

Optimization P :

L Lagrangian

) i Parameter used in Equation (3.4)

Performance Index

A Lagrange Multiplier used in Equation (3.16)
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Abstract

This study(addresses the maximization of the circular orbit radius of an earth-orbiting
solar sail under free coning motion. The objective is to find the optimal sail settings
producing the most change in the semi-major axis per orbit. Angular orientations with
respect to sail nutation, precession, mean motion, and its angular momentum control
the magnitude of the solar thrust along the sailcraft's velocity direction. A numerical
search scheme uses a modified Newton-Rapson iteration method to identify sets of
control parameters meeting certain opﬁgg.lity conditions that produce a stationary
value in a selected performance index. Such;scheme displays its vulnerability to a lack
of a good initial guess. Three dimensional perspectives of the small perturbation
equation describing the behavior of the change in semi-major axis facilitates the
understanding of its cyclic nature and provides an excellent tool for identifying the
various locations of possible maxima (and minima) as well as slope-critical area. The
perspectives improves the initial guess for implementing maxima search schemes. A
test case demonstrates the location of particular points of interest with few search
iterations. | - : o R o J
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1.1 Solar Sailing

The Concept. Solar Sailing is a method of propelling an object through space
by the use of solar radistion pressure. Issac Newton formulated the equations that
makes this method realizable and most feasible. Pressure acting on an area equates to
some resultant force (force = pressure x ares) which, if not acted against, would
produce some type of motion in the direction of that force (force - mass x acceleration).
One can think of solar sailing as "sailing with the sun”. Studies accomplished in the
past have showa it to be a most economical method of interplanetary travel. The key to
this economy is in the nature of its propulsion system.

The Propulsion System. The basic propulsion element in s solar sail system is
a highly specularly reflective mirror-like surface that crestes the thrust by reflection
of sunlight. The physics of converting photon energy to spacecraft motion is simply
this: the solar radistion pressure resuits from changes in the momentum of incident
photons on the sails reflective surface. The higher the reflectivity (i.e.. lower
absorbtivity) of the sail, the greater would be this momentum transfer. The pressure
on the exposed sail surface area constitutes the “thrust” on the vehicle which produces
the motion (see Fig. 1.1). This force acts ta incresse or decrease the sail total energy.
This change in energy allows the use of solar sailing as a means of space travel.
Controlling the angle of incidence of the incoming solar raditaion (photons) amounts
to controlling the direction of this resuitant force.
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Fig 1.1: Force Vector Disgram

The Controls System. The only coatrol parameter in a solar sail propulsion
system (with constant sail surface area) isthe “setting angle” of the sail i.e., the angle
between a unit vector normal to the shady side of the sail and 8 unit vector in the
direction of the sun as shown in Fig. 1.1. The effect of a change in this setting angle is
8 change in the direction and magnitude of the resultant solar thrust (force). Since
the sail changes its orientation with respect to an inertial frame from which the
orbital parameters are referenced, this control or setting angle is usually described by
8 set of orientation parameters.

12 Mazimiging the Semi-Msior Azis

Total Energy Approach. In order to increase the semi-major axis a. the total
energy (kinetic plus potential) of the sailcraft must be increased from the energy of
the original orbit to some higher energy level. The rate of energy increase is equal to
the rate that vork is done on the sailcraft by the thrust produced by its propulsion
system (solar sails themselves). It may seem advantageous and optimal to direct the
thrust such that the rate of work done on the sailcrafl is always st or near a maximum.
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This is not necessarily true. For circular orbits, maximizing the semi-major axis is
essenlially maximizing the orbital radius. For small perturbations, this assumption is
valid. Maximizing the rate of energy increase is realized for this sailcraft when the
thrust component in the velocity vector is maximized. Analyses have shown that the
orientation of the sailcraft's orbit with respect to the earth-sun line determines the
maximum posible rate of this enrgy increase. [ Ref: 4] All strategies to increase the
semi-major axis are indeed energy increase strategies.

1.3 Problem Statement

A Solar sail being in a photon rich eaviroment, inevitably experience a perturbational
force which affect the orbital characteristics. These effectss are indeed dependent
upon the sails orientation with respect to the solar radiation source. To effectively use
the resuiting thrust created by this radiation pressure to provide changes in the orbital
parmeters, the orientation must be known. Random orientation will result in random
orbital parameter changes. For space travel, interest lies in the maximum chaagesin
orbital parameter the semi-major axis. Certain combination of solar sail setting angles
can provide the best change for a given cost psrameter ... be it travel time or the
aumber of revolutions to acquire a desired change.

1.4 Objective and Scope.

The objective of this study is to determine what set of control angles would provide the
optimal change in the semi-major axis of an earth-orditing solar sailcraft. The scope
of this effort is to investigate the nature the perturbation of the semi-major axis and
determine, if any, the set of control parameters that produce the maximum change in
this orbital parameter in og¢ revolution.
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13. Solutiog Methodology.

Technique This effort incorporates the deserption of semi-msjor axis
perturbation function and the determination of conditions that maximize it. The
technique of dynamical systems optimization is employed as presented by Bryson and
Ho (Ref: 24]

Tools. This approach requires the identification of the perturbation function
and its corresponding surface followed by the construction of a computer program to
evaluate the sensitivity of the orbital parameters to small perturbational forces and to
search for a set of control angles satisfying a given performance index. This index is
established as the "maximum change in semi-major sxis per orbit”.

1.6 Summary of Report.

Section II provides some background information into the previous studies on
solar sailing and related topics. Their results are summarized. A description of the solar
sail model used in the study along with the basic and simplifying sssumptions that led
to development of the solar sail coning phenomenon follows. A short rationale for the
neglect of any shadowing effects is presented. The general perturbation equation
derived by an earlier researcher is examined for a special resonance case and is
evaluated for three distinct sailcraft motions: spinning, coning, and tumbling.

Section [II discusses the use of surface representstions of the perturbetion

function As as & method to ideatify the regions of maxims and minima. The dynamic
system optimization that follows it bases its region-of-search on these surface
representations. The approach (o the solution via the gradient method is presented.

Section IV provides an insight into the aature of the perturbation equation
by graphically portraying the surface of the perturbation function. These surfaces
represent the fuaction’'s behavior from a three-dimensional perspective at critical
selting angles and provides the best initial guess for the search scheme.
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SectionV preseats the conclusions drawa from the eatire effort. It includes
the lessons learned and suggestions for further study.

The Appendices provide a detailed look at the eclipsing (shadowing)
phenomenon(Appendix A) slong with a rationale for employing the anumerical
technique in lieu of the analytical (Appendix B). The Fortran Programs used to
generate the numerous surfaces and to determine the optimum control settings are
included in Appendix C and D, respectively. Appendix E provides a sample output of &
test case to show the search mechanism using the Stirling approximation techaique.
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o 1. Background

e 2.1 Previous Efforts

There have been several studies in the past that have placed interest in the solar
sailing concepts and in the solar radiation induced orbital perturbation of space
o structures. Studies in the solar sailing concept tend to deal with space travel and the
determination of control {aws to provide optimum changes in orbital parameters such
as somi-major aXis and inclination to sttain escape from a planet's gravitational field.
Studies in the orbital perturbation due to solar radistion have geaerally employed
@ numerical and expansions techaiques to determine orbital motion due to the
“formidability” of muiti-first order. nonlinear coupled differentisl equations.

Tsander. [Ref: 18] . is considered the “father” of solar sailing. His serious
@ investigations of the solar sail problem for spaceflight demonstrated, in principle. the
‘ feasibility of making interplanetary flights with the aid of solar pressure.

¥ solar 3!1;1 (furled)

earth-sua line

4

orbit—\ 5
-
selar seil (unfurled)
L
Fig 2.A: Furling/Unfurling Method
‘ [Ref: 3}
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(direction of motion)

earth-sun \ .
line 2
. ! _ly, Earth
sailcraft

" Sun
{with sail set for approaching sun)

Fig. 2.1B: Optimum Angle Orientation

(Ref: S)

Garwin. fRef: 3], whose work in establishing the concept of solar sailing asa
practical means for space vehicle propulsion. considers the "furling and unfurling
technique to increase the altitude of a sailcraft and escape the earth's gravitational
field. Figure 2.1A shows this method. The objective is to maximize change in
semi-major axis as the sailcraft travels away from the sun and to minimize the change
as it approaches the sun is the apparent rationale for this approach. This study states

that an optimum tilt angle is 8 =35 for mazimizing the semi-major axis. From figure
2.1Bthisangle will result in the largest thrust along the velocity vector (i.e.. along the
direction of motion).

Fimple (Ref: 4]. analyzes the use of solar sails for an earth escape Lrajectory
from s circular orbit using the maximum time rating energy increase approach.
Trajectory analyses for two different orbit geometries (see Figure 22) reveals that
orbdits parallel to the solar radistion (Orbit A) results in 8 radical orbit eccentricity
change. Orbits normal to the solar radistion (Orbit B) result in s slowly changing orbit
eccentricity or quasi-circular trajectories. Hence, Ordbit B enhances the chaange in
orbit semi-major axis; launching into this ordit is . however, & difficulty.
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Io = Tearth
3 Ts = Igolar sail
sunlight e v = velocity
earth-sun -,
line N
Fig 22: Orbit A Geometry
[Ref: 4)
sunlight k
T .
+—edge view
of circular orbit
earth-sun -,
line 14
Is
T Io = Tearth
Is = T'solar sail

[Ref: 4]

Fig 2.2B: Orbit B Geometry
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Sands. (Ref: 15) , studied the similar use of solar sails for escaping the
gravitational infuluence of a given planet employing the total energy change
approach. Results show that placing the sailcraft in an initially circular orbit

spinning at a rate (W - 1/2 period constitutes an inefficent escape maneuver. An
alternative suggested was an eliptical orbit with energy level as the original starting
orbit.

Cotter. [Ref: 27], introduces a very important number called the "lightness” of
the sail. This lightness is the ratio of the maximum solar radiation pressure force to the
solar gravity force on & given sailcraft. Sinca these two forces are functions of the
inverse square law in which its value varies inversely as the square of the distance

B | AR

(;
from the sun, this ratio independent of this distance from the sun. This makes this
ratio uniquely a directly proportional measure of the inertia of the sailcraft (i.e.. the
larger the ratio, the greater the acceleration of the sailcraft).
 }
This study discusses the feasibility of solar sailing and demonstrates it application for
interplanetary travel. Travel limitations are in time and temperature. The
temperature limitation (operating temperature envelope of the sailcraft) dictates a
o prudent use of near-sun trajectories; the time limitations restrict planetary travel to
the nearer portions of the solar system. The advantage of having unlimited "fuel”
supply makes this solar sailing concept most promising.
4
3
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London. [Ref: 12) . provides some insight into the motion of a solar sailcraft
with constant sail settings. The study employs the logarithmic spiral trajectories as s
solution and concludes that it (solution) is not optimum. It encourages the use of other

4

. trajectories for more efficient sail utilization. _j
Tsu. [Ref: 19]), evaluates the neccessity and importance of low mass to ares J

ratios for solar sail design along with the travel time and optimization of the sail tilt :Si

® angle 0 for interplanetary trips with minimum time as a constraint. The optimum sail i

setting for such application is found to be dependent upon the acceleration X of the
sailcraft (due to radiation pressure acting on the sail area) and the sun's gavitational
acceleration at earth’s orbit.

The Lime of travel hetween radii r, and ris

(rn 3/2 _ rL312)l R

172

t = 1/3

(a,/«x - cos’g) V/ 2] (2.18)
sin8 cos?8

g
o PORARE

W]

where r, - initial orbit radius,
rg = final orbit radius,
e 8, - sun's gravilational acceleration,
. O = sailcraft acceleration due to solar pressure,
B8 - angle of incidence.

N For shortest time,
: d (a/x - cos38)2| | (2.1b)
de sind cos20 [

from which the optimum tilt angle 8 opt €an be found. Tsu plots this out and finds that

for a,-0, the optimum tilt angle eopt is approximatetly 35°. Thisis the same result found
by Garwin [Ref: 5).




Yan der Ha and Modi. [Ref: 21A] ., have done the most extensive analytical studies
of orbital perturbation cwad by solar radiation. This study considers a more realistic
solar radiation model (than the model presented in section 22) and analyze three special
orientation cases with a) fixed angle with respect (wrt) to the solar radiation source, b)
fixed angle wrt an jnertial frame and c) a general fixed orientation wrt the earth.

?\:—aﬂh-sm /f——_“‘imlg;%titt —
line™-_ \ /

. / N\
[J);’\‘\- \5
swvitch on ( \__\\.‘ \r
T ]
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earth 7 o
\ / “2)
' < gwitch off
K\-\‘-\_,_,_Fﬁj

Fig. 2.3: Switching Points Configuration
[Ref: 21A)

In another study (Ref: 21C]. these same authors employed on/off switching strategies to
increase the semi-major axis. Such strategies involve instantaneous switching coatrols
which in effect turns the solar pressure force off during certain parts of the orbit. The
strategy calls for “switch-on" when the sailcraft is (roughly) near the earth-sun line
(point 1) and "switch-off" at (point 2) as shown in Figure 2.3 (circular orbit shown).

Although instantaneous on/off switching may be technically impractical, it is
theoretically effective in the sense that the rate of change of the total energy is always
positive during the on-phase since the component of the perturbing force along the
instantaneous velocity vector is positive.
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Jenkins. [Ref: 10]. is the only individual to date who has explored the behavior of
the coning solar sail. The coning motion of a given sailcraft greatly affects the
magnitude and direction of solar radiation pressure force. His study generated the

perturbation algorithms that determines the changes in orbital parameters (a, e, i, Q) as
a function of specified sail setting angles which relate the saiicraft orientsition with
respect to an inertial frame.
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22 The Coning Solar Sail.

Solar Sail Model. In general, a solar sailcraft must meet one critical
criterion before it can literally “sail” anywhere. The mass-to-area ratio is this critical
parameter that must be established. It is the ratio of the total solar sail area to the total
mass of the sailcraft (sail + structure + electronics + payload). Studies have shown that
the mass/area must be very low. This is quite apparent from the equation for
acceleration due to solar measure. The solar acceleration due to solar pressure is
expressed as

X solar pressure = Po A/M 22)
where p, - solar radiation pressure at earth’s orbit radius.

A = Ares of Solar sail and M - total mass of solar sailcraft.

&= body spin rate
- W =angular velocity

flat rigid
plate .

JI

Fig 2.4: Solar Sail Model

(Ref: 10}
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Typical values for p, is about 9 x 10-4 dyne/cmz. For any appreciable amount of

acceleration for space travel, A/M must be high (or its reciprocal M/A be very low).

This essentially requires that sail area A be much larger with respect to the sailcraft -

mass. [Ref: 19]

The solar sail model used in this effort is modeled as a perfectly, specularly reflective
(both sides) thin, flat rigid plate as shown above in Figure 2.4. Recall, a highly
specular surface means that all incident photons are reflected. Hence, the solar sail is
assumed to have a reflectivity of 1.0 which implies that all incident radiation is
converted to thrust. Having both sides with the same sail characteristics means that all
surfaces exposed to direct solar radiation will be contributing to the overall thrust of
the vehicle. The A/M ratio for this model is assumed large enough to make its design
feasible for solar sailing.

Basic Assumptions. The basic assumptions made in the course of this effort anu
in the development of the perturbation solution which follows are enumerated below
categorically:

A. For satellite motion, it is assumed that,....

fa. the solar sailcraft is initially injected into a high altitude circular
orbit;
2a. the gravitational field is central;
3a. perturbations to the central force gravity field due to oblateness and
the gravitational effect of other celestial bodies (e.g.. moon, sun)
are neglected; also neglected are any magnetic distorbances.
4a. the solar sail motion is torque-free; therefore, the angular

momentum H is conserved.

Sa. the angular velacily vector @ is not necessarily colinear with the

14
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angular momentum vector H;

3

for any orientation. d8/dt - 0 - nutation angle 8 - constant;

for any orientation. dv/dt - 0 » precession rate V - constant; B
orbit plane is considered inertial; !
perturbational changes are small; and

2
L

10s. the body spin rate X is large enou_h for spin stabilization. N

B. For the solar sail it is assumed that.. ..

sail surface does not deform under loads;
2b. the solar sail surface characteristic are essentially homogenous
and time invariant,
@ 3b. the solar sail is perfectly specular reflective on both sides; and
‘ 4b. the mass/area ratio « 1.0.

k(‘ 1b. the spinning solar sail is an axi-symmetric rigid body whose
3

o C. For solar radiation, it is assumed that. ..

lc. reflection of earth surface is neglected; the sun is the only source
of radiation; and

1\ 2c. po shadowing or eclipsing of sailcraft occurs. This is due to the

' high altitude and the inclination of the orbit in case.

-------------------
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°
2 Torque-Free Motion and the Coning Phenomenon. This section considers the
B torque motion of the solar model which is axis-symmetric and has s principal Moment
of Inertia [A’ A’ C) with A’ along the symmetric body axes and C along the bj axis
o perpendicular to the plane of the sail. The general equation of torque-free motion is
: = ME!T = dH/dt = 0 (2.3)
o
since (by definition) Torque-Free | moment M equalszero. H must be constant in both
! direction and magnitude; ie.,
€ i
H = H, 2.4) ;
)
) ® where Flo is the inijtial angular momentum of the sailcraft about its center of mass

(which is assumed to coincide with its geometric center). The direction of H is fized in
- inertial space and can, therefore, can be arbitrarily referenced to an inertial frame.
‘Rd Figures 2.3A & 2.3B depict this solar sailcraft with respect to three different reference
frames: [Ref: 2]

a) Body Fixed Frame: (by by b3)

b) Orbital (inertial) Frame: (ij k) q
¢) Body-Centric (inertial) Frame: (T J K) 8
,.; ‘
LY
: 16
¢

..............................................................

...................



S~

V= precession rate B.’ L.k
= spin rate Ty S
6= nutation rate 5 Ve

Orbit Plane

Fig.2.3B: Coning Angle (8) Orientation

Using the same angle notations as found in [Ref: 10] , ﬁo can be expressed in terms of

Euler angles as follows:

Flo = H, sin® sinat 51 + H, sin8 cosat b, + H, cos8 53

(250)
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1
i However, for principel axis, this H , equates (by definition) to the following expression:
Ay = Awyby + Awyby + Cuwszbs [Ref:9]  (23b)
e where {A' A’ C'] are the Principal Moments of Inertis. In matrix notation, this can be
expressed readily as follows:
AR U S
HO sind sinoct bl A Ubl b 1 (26a)
®
H, =| H, sinB cosat byt = (A W) b, (2.6b)
{HO cos8 J b3 LC' ‘l’bs b3 (2.6¢) 4
& : -
Equating term per term and solving for the angular velocity about each body axis, ... :
Wy - HosinBsinat _ &y, . d |H, sin8 sinat (278) |
. - A —— -~ C -
A dt A’ .
, wyz . HysinBsinat _, &, . d [H, sind cosxt @27b) ]
G - N S ——— T -t
A al A o
. C dt C ‘q
The Euler equations for dynamical motion (as applied to this sailcraft) are given as '
follows: [Ref: 11]:
3 =4
* My, - A Sy - (A -C) wypwy, - 0 (230) 5
k. . 9 Y :
. @ N
. =My - CBy; - 0 (28¢) o
k B
t
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Applying the respective values for the time derivatives of the aagular velocities, the

resuits are as follows.

A d H, sin@sinat , (C-A) H? sinBcosd sinat _ o (29)

dt A AC
A'd H sinfcosat, (A'-C) H?sinBcosBsinxt _ o (29)
dt A AC
A" d Eo cosd _ 0 (29¢)
dt C

From Equation (2.9¢), the derived conclusion is that H (c088)/C’- Constant. hence,

0 = Bo = constant (2.10)

since H, and C'are established as constants. Hence the nutation angle or the coning
angle remains fixed.

Using this fact in Equation (2.9b) and carrying out the differentiation. the result is as
follows: The magaitude of the angular velocity is.....

& - U‘:CC) H, cos8, 21

from which is known that (recall, the Moment of Inertia terms and !lo are constant)...

& = the body angular velocity = constant. (2.12)

The precession is found from the components of the angular velocity sbout body axis
b;. This happens to be (as reference from Figure 2.5A)

Wy = & + vcosd = Hocos8/C' (2.13)

19
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Solving for v (with (X as expressed above), the result is

V - Hy/A - constant 219

2
o

SN

Fig.2.6: Velocity Vectors

Solving for the total angular velocity ( is the vector sum of & and V (see Figure 26).
W - +« ¥ 2.15)

and would be at & set angle € from the K direction. With ¥ (precession rate) fixed
along K direction and & (body spin) fizxed along body 53 direction, this phenomenon

displays the vector W as "sweeping out” a cone. The resultant motion of this

axis-symmetric rigid body in which the angular velocity vector G is not colinear with

the aagular momentum vector H is known as “coning”. This behavior is shown in
Figure 27.

. L
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v Fig. 2.7: Coning Motion

The coning angle (as referred to in thistext) is 8. It, too, dispiays the "sweeping” cone
phenomenon. Thisis easily seen with a projection of the body 53 axis on the 1] plane.
This is accomplished in Figure 28 . Line OX is this projection and it precesses about the

K axis at a rate V. the precession rate.
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Fig.2.8: Precession
[Ref: 2.9]
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The Orieptation Angles (8. N, {, &-¥). The coning angle 8 (as discussed
previously) is the angle between the anguiar momentem vector H and the Solar Sail

body b axis [Ref: Fig. 25B). The Angulsr momentum vector H is referenced to the

orbital plane vis angles T) and { as shown in Figure 2.9A below:

ijk Orbital Inertial
I1JX Body-centric Inertial

""*_,..—-""i
—--="{ Sail

Fig.29A: T and ¢ Orientation

[Ref: 10)

The TJK Frame is defined to be sail body-centered with the | axis in a plane
perpendicular to the orbital plane. This study refers heavily on the difference
between two phase angles, & and V. This difference, suitably called PA, equals $-\¥
ie.,

PA - -y (2.16)
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1. Angle & references the solar thrust components in the UVW directions (U =
radial, V = tangential, and ¥V s normal) to the Orbital (i j k) Frame. Angle ¢ then fixes
the initial position of the sailcraft in its orbit. At ¢ =0, the sailcraft will be initially
between the carth and the sun for ectiptic motion or in a plane perpendicular to orbit
plane and laying in the earth-sun line.

2. Angle W denotes the phase of the Body (bybyb3) Frame's precession about

the angular momentum vector H to the Body-Centric (IJK) Frame. These are shown
below in their respective coordinates orientation Figures 2.9B and 2.9C.

T
~
N . | SR

{ ¢ Phase Angle
;- n Mean Motion

to reference time

h® UVW Acceleration Comp
ijk Orbital Inertial

o ol

————p |

Orbit____

. RANTRY, 1%

Fig. 29B: Angle ¢ Orientation
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8 Coning Angle
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done in Figure 2.9D below:

Fig. 29C: Angle  Orientation

With,8 = 7} = { = 0°, the ($-) angle can be best seen for understanding as is

bl

WPy

4

T T rrY

————

——

Fig. 29D: Angle (¢-V¥) Orientation
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23 Shadowing Or Ecliosing Effect.

Eclipsing or shadowing of the solar sail was not considered in the formulation of the
perturbation solutions. Investigation of this shadow phenomenon lead to the conclusion
that for a given orbit inclination and altitude. shadow effects can be ignored. From a
general geometrical perspective, one can safely conclude that shadowing will occur if
the orbit lies in the ecliptic (earth-sun) plane. This is theortically true. The interesting
question is this: At what orbit inclination and altitude is shadowing a problem? Stoddard
(Ref: 25) evalutes this phenomenon and arrives at a set of equations that determine the...

8) minimum inclination before shadowing effects can be considered dominant
and  b) the altitudes a satellite must be at to avoid shadowing.

Fixier (Ref: 6) circumvents this entire issue by studying solar sailing at orbits
perpendicular to the ecliptic plane. This approach surely removes any uncertainties of
shadow effects completely. Solar sails, as dependent as they are to the amount of
incident radiation for propulsion, can be so placed in an orientation that minimizes this
eclipsing phenomenon.

Figure 2.10 below shows the shadow and no-shadow situations. From this, one can state
that there does exist some physical limit to the shadowing. Stoddard explains and
develops a method to analyze this situation. He preseats his arguments using the
cylindrical shadow theory and concludes that the critical inclination for a given orbit
radius is...

i = cos™ [Ry/Ryl (2.17)
Stoddard claims that for

Rg < Rg csci=> an eclipse will take place. (2.18a)

Ry > Rgcsci=> an eclipse will not take place. (2.18b)
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:_i His arguments on this issue. along with a determination for the duration of shadowing (if

g any), are provided in Appendix A. The results are interesting. They show the

i comparison of & system with aad without shadow effects accounted for. The bottom line is ]
[ ¢ this: For low-earth orbit solar sails within the shadow limits, shadowing effects are 9
2 dominant and must be considered. By increasing the orbit inclination and the altitude, a K

E, satellite can circumvent this shadowing. This shadowing phenomenon and its effects
?. are circumvented in this study by employing non-ecliptic planes and orbit altitudes

;;._L';';

beyond the shadow regime. With this understood, the tasks of analyzing solar sail
behavior in & photon rich eavironment is pursued here.

3 /

¢ ; ISUN é
| solar sail's

orbit plane

MR R

L i
- Fig. 2.10: Shadow Geometry -
| [Ref: 26)

.
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; 2.4 General Perturhation Equation.
b,
r
Py Continuing Work This study continues the work initiated by Jenkins (Ref: 10)
: on the study of the "Orbital Motion of Coning Solar Sails" in which he succeeded in
r developing s set of algorithms for determining the perturbations in certain orbital
! parameters (s. ¢ 1. ) as a function of the solar sail settings. These solar settings are
i. just the orse: uon angles (8, T, {, §-Y) of the solar sail with respect to the solar

vector 5 Siace these setlin g angles control the behavior of the solar sailcraft, it was of
particular inlerest o determine what angle (s) is/are dominant in producing the
‘ . greatest changes in the orbital parameter(s) selected. This set of algorithms was

derived from the Lagrangian Planetary Equations and are presented below in & more

modular fashion than found in (Ref: 10). 5

 ® Perturbation Equations ]

.

T

ha = L (da/dt) dt (2.19a) 5

o . !

Oe = L (de/dt) dt (2.19b) 2

-

L} r q

: Ai = L (disdt) dt (2.19¢) .

B . |

. AQ = L (dQ/dt) dt (2.19d)

: For circular orbits (e = 0), the Langrangian Planetary Equations reduce to the
. following:




with

one-to-one resonance occurs when the mean motion of the satellite about its planet

da /dt = 2D (5;05)(B;e¥)

n

de/dy = D (6,08)%(b,e0) sinf , 2 D((5,05)%(b,eV) cos f]

dizdt = D (0;05)2 (b,eW) cosf

na

dQ/dt = D (b,08) (b,eW) sinf

na sin i

D = Sail constant - 3k Ag/m
f = trueanomaly
53 = body vector b-3 expressed in orbital reference frame

e s dot product

§ - solar vector (direction of sun)

(2.20a)

(2.20b)

(2.20¢)

(2.20d)

(UVW) - (Radial, Tangential, Normal) components of thrust per unit mass.

One-To-One Resonance Perturbation In the context of this study. the
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equals its precession rate about it angular momentum vector H. If the integration in
Equation 2.19 is taken over one orbital period with the orbital motion (n) equal to its

-I'L-L"_-y.' Gt

© precession rate (V), the following expressions result:
1) Aa = a'>DTP/u[da,+ da,+ day + da, + dag+dag 221)

L
_ where
y ¢ da, = % D,2[(2+3p4) cos(¢-) - (3p1+BS) sin(-¥) | (2.220)
- da, = %D, D, [(B2-p4) sin(¢-¥) + (B5-B1 ) cos(d-¥) ] (2.22b)

: da, = 2D, D, [B6cos(¢-¥) + B3 sin(¢-)] (2.22¢)

o

. da, = 2D,D, [B3cos(¢-v) + B6 sin(¢-¥) ] (2.22d)

da; = '%D,D, [(3B2+f4) cos(¢-¥) - (B1 +3BS)sin(¢-¥) | (2.22¢)

A dag = Dy % [(B2 +B4) cos(d-w) - (1 + BS) sin(¢-¥) ] @2.220)
;3( 2)  Be = 2*DTP/8y [de, + de,+ dey+ de, + de,] (223)
Ez ;»
5 where
¢ o
E} de, = D, % [-B3sin(2(¢-y)) + P6 (6 + cos(2(d-¥))) | (2248) 2
g de,=2D, D, [ B3 cos(2(é-¥)) + B6 sin(2(é-w)) | @240) :
. ¢
g
: ;
E‘ 30 8
: 3
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© s
. 1
; de, = 2 D, D, 1(B2+f4) cos(2(4-¥))-(B1+B5) sin(2(¢-¥)) + 6 p4) ]  (224¢) 5
. de, = 2 D, D, [(B2+B4) sin(2(¢-w))+(B1+B5) cos(2(4-¥))-685 | (224d) 3
des - 12D, 2p6 (224e) 1
L oA
: X
- g
3)  ai- o*DTP/2p [ dij « di | (223)
|
s vhere
di, = 288 D, D, cos(¢-¥) + D, sin(¢-y)| (226)
di, = B7 [ (D, 275 (D,)% Dy ?) sin(¢-¥) +5 D, D, cos(¢-¥) | (2.260)
o
49  a0- o#DIP/Qusini) [dQ, + dQ,] @27)
©
where
dQ, =p,l(25D,2+ 75D,2+D,2lcos (¢ - ¥) -5D, D, sin (¢ - W) (2280)
.
| dQ, = 2B, D, [D, sin (¢-¥) - D, cos(¢ - ¥)I; (228b)
t
. The other parameters ace as follows:
!
; D, - sin® cos { cosi (22%)
D,= sin® sin¢ cosncosi + %in@ sinn sini (22%)
Ls
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- a
Dy= cos8 sin{ sinTMcosi + cosB cosT sin i (22%) g
¢ and -
Bl = sin@ cos¢ (2.308) 8
P2 = sind sin¢ cosn (2.30p)
° 83 = cosd sing sinn (230¢)
B4 = sinB sin¢ (2.30d)
@S5 = sind cosn (2.30e)
¢ B6 = cos8 cos¢ sinm (2.300) :
B7 = sind sinn (2.30¢) ;
. B8 = cosB cosn (2.30n) 1
° i
It is quite evident from the above equations how the coning angle 8, along with the
’ orientation angles (N ,{ . - V) can control the changes in each orbital parameter
o s.c.i,and Q. Judicious choice of these angles can lead to mazimum changes in orbital
state parameters .
.
. a
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Special Cases.  Jenkins [Ref:10) derives certain conclusions with a solar sail
system which is in one-to-one resonance and whose motion is in the ecliptic plane.
That analysis shows that there exist unique certain sail setting providing maximum
changes in the semi-major axis in each of the three cases below:

a) spinning
b) tumbling
¢) coning

By singularly varying the sail setting angles in the perturbstion equations (221 -
2.30) the condition for maximum change in semi-major aXxis can be graphically shown.
This fact is ister shown from a three dimensional perspective.

Spinning Case. The solar ssil assumes a strictly spinning orientation

when the coning angle 8 equals 90 degrees. There is no "coning” behavior. This
configuration is shown in Figure 2.11. For motion in the ecliptic plane (i «0) with the

angular momentum vector H aligned perpendicular to the orbital plage ()= { =-0°),
this "spinning” orientation affords the most semi-major axis change. As will be shown
later, this is also true for a certain range of orbital inclinations (0° $i % 45°). At

inclinations greater than 45°, the spinning orientation actually results in a decrease
in semi-major axis.

[ 4
.

ol
L]

-
el
w
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w

Earth Sail

Motion in the Ecliptic Plane

Fig. 2.11: Spinning Case
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Tumbling Case. Thisis the case where the angular momentum vector A

is parallel to i or j orbital plane reference components. With A parallel to the i orbital

axis, the solar sail experiences no change in any of the orbital parameters. This is the
case when the solar sail is parallel to the solar radiation and hence no resuitant thrust

component is produced. With A parallel to the direction vector, the changes are in the
radial and normal direction. This results in changes in the semi-major axis and in the

inclination angles which are coupled via the ¢ -\ phase angle. The strong
implication is that conditions favoring a change in a will also resuit is an
accompanying change in inclination (which can be unwanted).

Coning Case. Coning occurs, when the sailcraft's axis of symmetry b3

is not colinear with the angular momentum vector H. Jenkins investigated this coning
motion with B8 - 45° and discovered the importance of the (¢ - ) parameter in
controlling the magnitude of Aa, and that there exist trade off possibility between Aa

and Ai, the resuitant change is inclination. The nature of this coning action is further
investigated in this study.
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I11. Discussion

3.1 Dynamic System Optimization.
Single-Stage Sysitem. Bryson and Ho (Ref: 24) describe the single-stage

transition from some initial state x(0) to a new state x(1) via some choice of control
vector u(0) aad a given Operating Function F* mathematically as.....

x(1) = F° [ x(0), u(0)] (3.1)

and schematically as ...

u(o)

2(0) ={ F° x{1)

Fig. 3.2:Flow Chart for a Single-Stage System
(Ref: 24]

with a performance index of the form

J=¢Ix(1)} =L* [ x(0), u(0)] (32)
wvhere

x(0) = known state at initial time ¢, (n-dimensional)

u(0) - control vector (8,1, ¢, ¢ - ¥) (m-dimensional)

x(1) - State at some future time t;

L'[ ] - Lagraagian of the initial state
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The objective of an optimization problem leads to the maximization of this performance
index ] . Bryson and Ho present an adjoined performance index J by adding (F*[x(0),
u(0)] - x(1) = 0)) to Equation (3.2).

J = ¢laml+1 [x(0), u(0)] - AT(1) {Flx(0)u(0)] - x(1)}  (33)

with constant Langrangian multiplier AT(1)
Introducing H* - L°[x(0), u(0)l + AT(1)F*[x(0), u(0)] (3.4)

into equation (3.3) resultsin......

J = ¢ Ix(1) + H[X(0), u(0),1(1)] - ATx(1)] (35)

The total derivative of ] is expressed as

6 = (20 -AT(1)) dx(1) , OH' dx(0) , H' du(0) (36)
ax(1) 2x(0) 2u(0)

With the judicious choice of )\T (1) = 0¢/93x(1), Equation (3.6) simplifies to the

following:
- OH° oH® 7
-2 @02 o 47
0x(0) du(0)
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where

dH*/31(0) = gradient of Jwrt x(0), holding u(0) constant and satisfying Equation (3.1);
and

oH’/3u(0) = gradient of Jwrtu(0), holding x(0) constant and satisfying Equation (3.1)

Optimization leads to finding a stationary value of J (i.e.. dJ -0) for & given initial state
1(0) and dx(0) - 0. Therefore. the stationary value of J is found if

dJ =3H"/3u(0) =0 (38)

Once the conditions satisfying Equation (3.8) are met, J can then be obtained. Equation
(3.8) is called the Optimality Condition. Applying this condition to Equation (3.4) this

condition states that
oH* aL® d T
2 L o] -2 [Wrrowon] -0 69
ou(0) ou ou
Multiple-Stage System. Progression from a single-stage system to a muitiple

stage system can be easily done by re-expressing Equation (3.1) as
x(i + 1) = F [ x(i), u(i) | (3.10)

where the initial state x(0) is given and i -0, 1, .. N-1 with N = nth stage. Here,
Equation (3.10) describes a sequential set of equality constraints with x(i) as &
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sequence of n-vectors to be determined by another sequence u(i) of m-vectors
Schematically, this is expressed as a cascade system.

u(0) u(1) u(N-1)
l l

x(0)=| F° [=x(1)=3| F! |[=x(2) -~ x(N- 1)=>{F¥1|=x(N)

Fig. 3.3: Flow Chart for Multiple-Stage System

[Ref: 24]
The corresponding adjoined performance index J is

J = ¢lx)] + = Lifx(i), u@l+ AGe D{FIAG,G) -AGs 1)1 (3.11)

Using similar operation as for the single-stage case, the eptimality ceaditien is
expressed as

3H / du(i) = 0 (3.12)
where  Hi = Lifx@u@] + ATCi+D {FL1@u®]-16:1)) 313
for i=01, .. N-1

Hence, to find a control vector sequence u(i) that produces a stationary value of the

performance index J. effort must be placed in solving the following difference

equations:
x(i+1) = Flx(du(i)] - (3.148)
and
M) = [3F/ax(i)IT A(i +1) + [aLizax()IT (3.14b)
308
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u(1) is that control sequence that makes Hism.iona.ry. (From Equation 3.12) Thatis

dHi/ du(i) = ALi/du(i) + AT(i+ 1) 3Fi/du(i) =0 (3.15)

(REF: 24]

Application to Problem. The single-stage optimization can easily be applied to
the present objective of maximizing the final semi-major axis. The probliem parameters
were established as follows:

let u(0) = (B144-¥) - (BNLPA) (3.168)
x(0) = initial state (3.16b)
(1) = final state (3.16¢)

X =[a,e,i,Ql

FF[]=1Ix + A1l (3.16d)
A= [AgAedphg ] (3.16e)
L* = 0 (3.160)

Applying equation (3.16) to the single-stage system optimality condition, the condition
to be met is found to be

H'/0u(0) = AT(1) oF,/du(1) =0 (3.47)
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For maximizing the semi-major axis, the Langrange multiplier vector becomes
A 2 11,0001 (3.18)
)
Since F° constitutes the changes in the state vector, we can express it formally as.....
- -1 r W
° a,+ Aa !-‘a
B - e, + Ae . Fe
i, + Al Fi
i 9+ A9 | Fa (3.19)
Similarly, the control vector u(0) is expressed as
®
u(l)  [BLnleh(8sy)]
u(1) = fuy! u? ugt u )
) u(l) = (uil) for i = 12.3.4 (3.20)
By definition, the expression dF°/du lpecomes (with PA = d+y),
. r - i
OF‘IOG BFalan aF,/ac al-‘,/am -'_;L\
OF /38 F,/dn OF /3 dF,/3PA
. oFfaul =[c] -
aFi/ae 3Fi/an oF;/3¢ aFi/bPA
- OFn/08 OdFq/dn dFQ/d( OFn/dPA (3214)
L d
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Since AT(1) is not identically zero in equation (3.17), the following must hold true.

oFasaul = [ - ol (3.224)

The scope of the problem is trmeadously reduced by setting the performance index to

be the optimum change is Aa per orbit. Interest then lies only in the function Fa
which constitues the initial semi-major axis and its change. Furthermore, equation
(3.21 reduces the complication one more degree by taking the partial derivatives. Since
8, isthe initial state and is constant, its presence in the differentiation can be ignored.

The remainder is plain Aa. The scope of the problem in hence greauy reduced by an
order of magnitude.

Th?s means that equation (3.21A) can be reduced in size to the folfowing.
OF,/0u(1) - [ OF,/98, OF,/0T, OF,/9¢, OF,/0PA] (3.21B)

using the notation expressed in equation (3.20) this can be rewritten as
oF,/0u(1) = | al-‘a/bul, bFa/auz, bFa/bu‘,,‘ oF,/8 u3] (3.21C)

or

F,/du(1) - [ 9F,/du,]  for i - 1234 (3.21D)

The control vector u(l) that satisfied this Optimality Condition Equation (3.22) will
determine the stationary value of the performance index ], where | is stated above as
the maximum final orbit: J =~ a(N). For thissingle-stage. | - a(l) = the semi-major
axis after 1 orbit. The search for this control vector is the quest of this effort. The
solution approach follows.
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3.2 Solution Approach.

Solution Formulation. F" is given asa function of the control parameter (u;).

Specifically, looking at Fa only.
F, = F,(u, v, u,, u,) = F(u) for i-=-1234 (3.23)

where (“1- Uy, Uy, uq) =(8,1n,¢,0-y) (3.24)
Fa is essentially a single function of four variables. The interest is in finding values
of ( "i) at which F, is a maximum. Under certain conditions, at such “places” in the

space of variables (u;).

(C] =[3F,/3u;) = [0]  for i~-1234 (3.25)

One method of searching for this special (u;) is as follows:
a. assume aa initial guess U° and that [ OF,/du;°] exist.

b. assume thatFy(u,) -0 can be expanded as

Fa(“p“z'“y“q) = Fa(ul‘,uz',u3',u4')

n
+ Fz' aFa/aul (ul ’uz ,u3 vuq ) (ui' U] )
n n

+% 2 20F,/(duduy) (u,"u,"u,"0,7) (U u;) (Ug- ug’).. (3.26)

=1 13t

and aFa/aui(ul.uz,ua,u4) = aFa/aui(ul‘,uz‘,u3’.u4°)

,Zn' °Fq/(u;0u) 8Fa/(duduy) (u,"u,"u,"u,") (u;- u;°) (3.27)
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Letting

in Equation (3.27) and using Equation (3.25). gives
n
Ui= U‘. - )Szi [mi’]-‘ICl (U|°.Uz.,U3'.U4.). (329)
Defining  8u = (u,-u,"), (3.30)

Equation (3.29) can be expressed as

' n
i Su = -2 [PCl ;i ~(Cl (u,"). (3.31)
° ) )
Understanding that the summation must be taken, a simplified expression can be stated
. as
b
I ©
E su = -fac/aul! [Cl (u;'). (3.32) -]
} j-L:
‘ . In Equation (3.32).[C] (u i‘ ) denotes the Optimality Vector evaluated at the initial guess %
{ control vector U." fori - 1.2.34.
é
e Su denotes the required change in control vector u that would satisfy the condition ‘
for a stationary performance index |. Iterations of an "initial guess” is necessary until ﬁ
this 8U= 0. A reduction of the iteration frequency can be achieved by providing a
“good” initial guess. A graphical method of determining this guess is presented in 4
. Section IV under Surface Representation. 1
. <
&;.Ei e e e R T e T




Analvtical VS Numerical. Solution to Equation (3.32) requires the evaluation of
the partial derivatives of four state parameter functions (Fa, Fe, Fi, FQ) with respect

to four control variables ($, | ,{ ,PA). This invoives the determination of a [4x4]
matrix and its derivative. -  Recall, the objective is to find the control parameters
leading to 2 maximum change in the semi-major. From the C Equation (3.21),itis
apparent that interest lies in the 1st row elements. This row constitutes the optimality
vector. This reduces the main effort considerably. This simplification provides the
following:

[C] = [0Aa/38 dAa/dn 3Aa/d{ dAa/dPA] (3.33)

Disguised in Aa are horrendous amounts of differentiation that can easily lead to any
amount of errors. The choice made here was to circumvent the series of
differentiations and use numerical techniques to determine the elements in Equation
(3.26). To appreciate this approach, one must initiate the series of differentiation.
Appendix B provides the reader this insight. The reason for the aumerical method

choice and why the analytical approach is avoided is apparent.
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3.3 Numerical Formulatiop and Model.

The Numerical Models. As a first approximation to the partial derivative of the
multi-variable function F(ui), the numerical differentiation techniques called
Newton's Forward and Backward were used. These are expressed as...

F(ui+8ui) - F(U‘)

Fly;) (Forward) (334)

Sui

F(Ui) - F(Ui+8lli)
(Backward) (3.35)

aad F( Ui)

8ui

For a simple two-variable case, these can be interpreted as the slopes of the two lines
shown in Figure 3.8.

___—backward
e
e B —~———
A
P
Flu)

Fig. 3.8:Derivative Approximation Models
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Initial Results. Initial Results were not encouraging. Initial intuitive
expectation were filled with optimism for a semi-well behaved derivative of the

: © function F(u;). This was not the case. These formalas displayed a "wandering" type

nnd i

behavior with the approximated derivatives for each iteration. The Forward Formula
can be re-expresssed as

Au = {F(u)pey, - Flulyg)/8u = -Fu)/Flu)  (346)

L

Using this formulation, the expectation was for some kind of rough coavergence.
Instead, the Au; were fluctuating after each updated estimate F(u;)new.

; r_l-L_,L L0

Sources of Errors. A study of test cases suggested that approximate
derivatives obtained from from such polynomial F(u;) be viewed with skepticism unjess

v PR
'.'.1{:‘. Lokt

very accurate data are available. Even with accurate data (or initial guess as it is
commonly called), the accuracy diminishes with increasing order of the derivatives.
This is the problem dealt with the second order derivatives . The dominant error
source is in the input errors. These proved very critical. Even when the initial guess
was close to the theoretical value, the input was still very critical because the
approximating (along with the perturbation) algorithms magnify them enormously.

RN, (R

The crucial factor seemed to be the magnitude of Su. The magnification of input error R
behaved inversely to this value whereas the inevitable truncation error was directly
affected.

Improved Model. The models intially used were abandoned after
countless futile attempts to contain the "wandering” derivatives. From Figure 3.8 it was
evident that a more accurate approximation would be achieved by using the slope of a
line connecting points A and B. This approsch is commonly called the Stirling Method.
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It is basically the Newton method modified. This well-known formula also known as
central differencing is expressed as

F(u) = {F(u+8u) - F(u-8u)} /(25u)  (Stirling) (347)

Numerical Formulstion. This formula was employed in determining the
required derivative expressed in Equations (3.44) of the previous section. Appendix B
shows how it was coupled to accomodate a function of four variables.

Results. The use of Stirlings Method provided better results. The
"wandering” phenomenon experienced with the previous Newton's methods was
greatly diminished by an order of magnitude.

From the perspectives peak points were selected as test cases. Known maxima is
inputed. With the appropriate coordinates for the maxima (from perspectives as input,
convergence to within. .1 degree was achieved. This related the fact that & maximum
did indeed exist within the area of search. This gave additional credence to the
perspectives. The various identifisble coordinates were checked with similar results.
Convergence was achieved in two iterations. The bottom line was that the required
calculated change in control parameters was within .1 degree a change so small that
virtually a maximum was discovered. This was satisfaction but not with surprise since
approximate -oordinates of the maxima were inputted. The real test follows.
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Approximating 02F/(duidui). The Stirling Method is used to approximate

the azl’/(buibui) matrix. For simplicity, the following definition is made:

Lee (PGl = PF/audy - /Ay

where C - 3F/ dy (3.36B)

(3.36A)

The subscripts i and j indicate 8 particular control vector from the set (uy, up, uz, uy) =

(8. M. ¢. PA). Recall, that for an initial guess control vector, F is defined as
F = Flu", u,’, us’, uy’) (3.37)
where the superscript (°) denotes the initial guess. Note that for if any iteration is

desired, the u;" term would be the updated value which would become the new initial

guess.
Hence, (U™ up' ug' uy7) - (8°. n°. ¢*. PA") = initial guess.

With this notation, equation (3.36) can easily be expanded using Stirlings Method.

Example Toshow how the matrix is constructed, the PC,_2 component is

selected as an example.

3%,

PCLZ - (3.38)

alllaUz




Al ol A N S = R

OF, (ug”+Bupup uz’ug’) . OF, (ug” -dupup’ug’ug’)
buz allz
P2 -

28 5
Py il | (3.39) q
P

Expanding the ar, / auz terms via the same method, this equation becomes

Faluy®+8uqup’ 08u2,u3‘ ug')-Faluy® fSul.uz‘-Suz.u3' ug)

PCia. 1/28u 25uy

5
' . - F(u1°-8ul.uz’ *802,03' .04' )- F(Ul'-sul.llz'-SUZ.U3' .04. )] q
28“2 : 3
(3.40) ]
@ .
Gathering terms and simplifying, Equation (3.40) can be expressed as ?
F(Ul' + 801,02' + 802,“3' .04') - F(Ul' * 8“1,02' - 8“2.“3' .04')
o - F(uy” - 8ugup” + Sugus ug’) - Flup® -8upup® - Bupusz’ug’)
PCia-
45u,8u,
(3.41)
&
For the diagonal elements (i - j), the case (i = 1, j = 1) is shown below: -
PC, , - 3%F,/(3u,du,) = 3%F,/(du,)? (3.42) 3
. ol
F‘(u|' * 5u|,u2' .US',U4.) -2 aF‘(ul. .UZ. .03. .U4.) * F‘(u' - su.,us. ,04. ) C_i
Py, - x
4 8u|2 ]
(3.43) L
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By following the same procedure for the other elements, | Pcij] matrix can be
constructed as follows:

[ 0%, /(0u)2 3%, /(Buduy)  3%,/(Buduy)  %F,/(du,duy)]
O%F,/(Budu))  3%F,/(3u,)? 3%,/ (duydus)  3%F,/(du,yduy)

[Pci.il -
3%Fy/Buzduy)  3%F,/(Bugduy)  3%F,/(duy)? 3% 4/(dugduy)

Lazr,/(au.‘au,) 0%F,/(Bugduy)  3%F,/(3uduy) azr,/(au‘,)ZJ

(3.44)

This matrix is used in computing the change in control parameters necessary to
determine the stationary value of the performance index J]. From Equation (3.),

Auj - upey -Uoid = -(C)/IC]  fori-1234 (3.45A)

where (C*) denotes the OF,/du; evaluated at the initial control values and [C'] denotes
the azr,/(auiaui) - [Pcii]- The C notation is later used in the algorithm developed to

compute the Au;. Hence,

Auj = ugey ~Ugd = -(CV/ “’Cii‘ (3.438)

Note that (C") is a four-element row vector and [PCij] is a [4¢x4] matrix. Performing the
appropriate operation, the required change in the control vector sought here is
plainly,

Au; - Upey -Ugyq = - [PC;17H(CY) (3.450)

Ta T e

o e
PR AT

A




A stationary value is achicvable if there exist a control varisble set u; such that the
Au; is approximately zero. That is,

Aui - Unev -“Qld - - [PCii]'l (C') - (0} (3451))

This would indicate that there are no changes necessary in the previous control

variables set to arrive at the optimum Aa. Such is the particular { set of controls that

would render the performance index ] stationary.

Software Development. Equation (3.45D) is the basis of the software that is
developed to find the stationary value of the Performance Index ]J. The process
involves the coding of the perturbation solution equations presented by Jenkins

[Ref:10]. The Aa equation is the only equation generating the required vectors and
matrices in Equation (3.4) since the objective solely called for maximizing this
function. The incorporation of the other state functions, as expressed in Equation
(3.19), can readily be employed with little transitional difficulty. The mechanism of
the search process inciuded several iterations to construct the elements of (C) vector
and [PC] matrix. Once this [PC] matrix was found, a specially formatted program is used
to compute its inverse PCI. Equation (3.45D) is then incorporated to determine the
neccesary changes in the control vector u. The process continues uatil a specified
convergence criterion is established. The interactive program outputs all the

computed (intermediate and final) vectors and matrices along with the required Aui

values.
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@ 3.4 The Nature Of The Aa Function.

The change in the semi-major axis is the main objective of this study. It almost seems

f
SR VOGRS VU

as a trivial task until the function itseif is confronted. Aa is a function of four

variables. Aa = Aa(8,n,¢, ¢-¥). The main difficulty in maximizing this
fuaction analytically is with the complexity of the derivative of the funcgion (as was
explained in section 3.1 and Appendix B). The wise choice of employing numerical

O | T

® techniques to determine the maxima of Aa still presents another difficulty-the initial
guess. This initial quess becomes the starting point in the search of the set of control

vector which masximizes Aa. Due to the search pattern of the modified
Newton-Rhapson (or Stirling Method), this initial guess becomes critical and must
¢ serve as a "good” starting point. Thisis where the difficulty begins: What is a "good
initial guess”? How can a region of "good guesses be established?” The answers can

be provided by a surface representation of the function Aa. The next section -]

'. explains an In-House capability available through UNIX/VAX system that provides N
this surface representation. !

- Representation . .

°o 335 Surface %

A canned plotting package called "S-Package” residing in the UNIX/VAX system is

used to provide three-dimensional perspectives of the Aa function. This program
& provides an quasi-isometric three-dimensional perspective of an output function
with respect to two input variables with the output function as the third dimension.

. o e e e,
[y PSRRI

Analyzing Aa is accomplished by holding the angular momentum orientation angles

(N and {) stationary while allowing variations in the coning angle (6) and the phase

j' l T
R . PPN I

angle (PA - $-). The resulting perspectives show the behavior of the Aa function

as these selected parameters are varied. These are presented in more detail in the
i Resulits section. Such surface representations describing the behavior of the change _
| . in semi-major axis with respect to a coning Solar Sail have never been seen before! i




These perspectives, provide very valuable information on the nature of the Aa
function as certain orientations are approached. More importantly, the
perspectives serve as a source of information on the region of search from which
one can determine a "good initial guess”. The maxima and mimina are apparent.

Additionally, problem areas that might cause a gradient search scheme to wander
excessively and perhaps fail can be avoided simply by identifying critical areas from
the perspectives.

No matter what scheme is used to present a function of more than two, there still
remains the question of the behavior of all the variables. Man, limited to working
with three dimensions, representing a function of more than three variables is quite

atask. In thisstudy, Aa isa function of four variables; therefore, a five-dimensional
perspective is ideal to explicitly show its true behavior with respect to all the
variables. Accepting this limitation and expressing the function with respect to
three-dimensions is the best anyone can presently do. Despite the limitation. the
benefits of having at least a five-dimensional representation is overwhelming.
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IV. Results

4.1 Surface Perspectives.

The nature of the Aa function is analyzed for the occurrence of maxima as the various
control parameters (8, T). {, PA) are varied. Being a multi-variable function, it

becomes practically impossible to look at the overall nature of this Aa function as all
the parameters are allowed to vary. It is instructive to hold any two less dynamic
variables and perspectively look at the function with the two more dynamic variables

allowed to go free. This would constitute a three-dimensional representation of the Aa
function. Abundant information can be read off such perspectives since all the
variations and and resultant behavior of the function can be readily seen in a given
perspective. Anomalies are conspicous by their presence (if any are preseat). The
extrema (maxima and minima) can easily be spotted and located for the conditions
given. It is also very helpful in identifying areas of "stagnation” or "stability” in
which the fuaction can very well remain stationary even with small perturbations.
This very fact that one has a three-dimensional interactive look at the behavior of the
function makes a valuable preliminary tool in the optimization process where
attaining a "good initial guess” is so paramount. Such information is available with
perspectives. Such dynamic information is found absent in tabular formatted data.

The information contained in the perspectives found in this study contributes to the
search scheme developed to find the optimal control setting angles to achieve an
optimum change in the semi-major axis per orbit. The "initial guess” barrier has just
been broken.

Varistion in Inclination. Interest exists in the behavior of the change in the
semi-major axis Aa due to changes in the sailcraft's orbit inclination. Figure 4.1 shows

the relative Aa magnitude of three select inclination with changing coning angles.
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Fig.4.1: Coning Angle (0°)

Note the decreasing Aa magnitude as the inclination increases and then its subsequent
increase to form two maxima as the inclination is greater than 45°. This behavior was
graphically evaluated more closely as inclination varied from 0 to 90 degrees. Figures
42A through 4.2G (presented in the following pages) show the peculiar behavior of

this Aa function as the inclination is increased. Fach figure depicts a different case
with with its corresponding Aa magnitude. Although these relative Aa magnitude

differences are not shown in these figures, the maximum Aa experienced per case is
indicated. The important information is in the overall behavior of this change in

semi-major axis. The intersesting aspects of this Aa behavior are summed as follows:

As the inclination is increased from 0° to 90°,
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a. the magnitude of Aa decreases as the inclination approaches 45
degrees.

b. the magnitude of Aa increases as the inclination becomes greater
than 45 degrees but does not attain its original maximum value.

c. the local maximum shifts location away from 8 =90° (ati=0") to

form two maximatﬂl-35' and 82 =145 (ati=90");

d. maxima occur at PA =-90° and remains stationary at this value.ie.,
it does not vary with changes in inclination;

The three select cases are further examined in the following pages to show why such

particular control angles work to maximize Aa. The three cases looked at are as follows:
Case 1: 0° inclination
Case 2: 43 inclination

Case 3: 90° inclination
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0 Degree Inclination. Motion in the ecliptic plane with the coning
angle set at 90° and the phase angle at -90° has produced the largest change in the
semi-major axis at 2.337x10"4 DU. Figures 4.1 compares the behavior in this inclination

with other inclined orbits; Figure 4.2A perspectively portrays the behavior of the Aa

function as any of the other control parameters (B8 and PA) are varied. For a coning
angle of 90°, the sofar sail is (at certain intervals in the orbit) perpendicular to the
solar radistion; in such an orientation, there is maximum thrust produced in the
direction away from the sun. However, maximum thrust does not always equate to

maximum Aas. It could very well work against maximizing As; such a case is vhen the

thrust vector has a component working against the orbital velocity vector. Correct

phasing angle PA allows the optimum use of maximum thrust conditions leading

towards maximizing Aa.

direction of
motion

¢ - -9%°
y= 0°
Sun

> —b

Fig. 4.3: 0° Inclination

This PA parameter relates the initial point of the sailcraft in the orbit and its initial
orientation wrt the Body-centric Inertial IJK Frame. For 8 -90°, the latter information
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(proper phase angle) is inconsequential since the sail is in a pure spin motion.
However, for any other non-pure spin alttitude, this information is of critical
importance. Hence, angle PA only relates where the sailcraft is in the orbit for this
. pure spin configuration. At PA--90°, the sailcraft is configured as shown above in
© Figure 4.3. Note where the sailcraft is allowed to start its journey from: 90°

counter-clockwise from the i axis. Thisorbit configuration produces the most Aa (Aa
=2.337 x10°%Du) the torque-free solar sail can muster optimally at improving its radial
distance from the planet earth.

45 Degree Inclination. As seen earlier, Figure 4.1 provided an
indication of what would happen to Aa when the orbit inclination is increased. The

A shift of the single maximum at (8, PA) = (90,-90) to form a pair of maxima can be very

clearly seen in the perspective, Figure 4.2D. No longer does B at 90 degrees monopolize
the maximum point at this inclination: the two maxima occur at (55°, -90°) and (125°,
-90°). This is important to understand: the pure spin configuration, though it may
present the most exposed surface, does not present the optimum condition.

. n-=o0° ¢ =-90°
o c =0° i ﬁ w: g°

. Fig. 4.4A: 45" Inclination
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® Figure 4.4A above shows the various positions in the orbit reiation to the attitude of the
solar sail wrt the sun. Only the 55° coning angle case is depicted here. The 125°
coning case contributes the same effect. This is studied next.

¢ ' The relationship between the two coning options are investigated to determine the
resulting components of thrust along the velocity vector. Both diagrams shown here
in Figure 4.4B relate to the position of the sailcraft at its starting position. Since the
sailcraft's precession rate is equated to its orbital mean motion, the coning motion will

i d be cyclic and in phase with the orbital period.
Diagram A (0 =55°) Diagram B (8 = 125°)
G
o T"
@
Fig. 4.4B: Coning Angle Comparison
L
From Diagram A: Ty = Tcos35" - 819T
|
| = T, (8 -55") =T, (8 -125")
<0 FromDiagramB: T, - Tsin33' - 819T '

Since the two components are identically equal, their corresponding Aa effects will
also be equal. For the configurations of higher inclinations, this offers an option in
the choice of coning angle.

66

T T

-
-




90 Degree Inclination. This special inclination is depicted in Figure
(4.5) below. Fimple [Ref: 5] states that this orientation affords the sailcrafl continuous
energy increase throughout the orbit. However, the magnitude of Aa is smaller than

for that seen in the 0° inclination case because of the small thrust component in the
direction of the orbital velocity vector.

;
T

— EI

b

f/._
Earth's‘mf'd\\ 7 f'd p f\ '
Line \E} 7/ \.E}_'/z \Ff 7/ MJ
\‘\-\-4
Orbdit 4
Plane— 53/ 8
L

Fig.4.5: 90° Inclination

Figure 435 shows three control setting configurations with the angular mementum

vector H parallel to the orbit plane normal. This then requires H to stay fixed towards

the sun. Configuration A shows a coning angle of 0° and no thrust component in the

orbital velocity vector direction; therefore, Aa equals zero. The corresponding
perspective for this 90° inclination (Figure 2.4G) clearly shows this fact: Asthe coning

angle is increased, a maximum Aa is achievedat 8 « 35" andat 8 - 145°. The angle of
35° coincides with the results of a study done earlier by Garwin [Ref: 5) in which he

finds that a tilt angle of = 33 degrees provides the largest thrust component along the

.

L

o




.....

T
L4
—

® velocity vector (see Section II. Previous Efforts). Given the similar orientation Garwin

refers (o, this tilt angle is just the coning angle 8 of this study. Tsu (Ref: 19] also 1
arrives at this optimum titl angle of 35 degrees. Configuration B depicts this control
setting. For comparison with the same setting but at a different phase angle (PA -

-270°), the thrust component is no longer working to maximize As, but working to

o

minimize Aa. In fact, the minimum Aas is experienced with this control setting.

. s - C . BN 1 N
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Variation in PA. If the variation in B is restricted 0 < 0 <360 °, a maximum Aa

occurs at PA equal -90°. Such occurence at this value can be seen analytically by
studying Equations (2.21) and (2.22) shown below:

fa = a'SDTP/p[da;+ da,+ da; + da, + dag+ dag] @21
da, = %D, 2((B2+3p4) cos(¢-¥) - (3B1+p5) sin(¢-) ] (2.22a)
da, = %D, D, [(p2-p4) sin(¢-y) + (B5-p1 ) cos(¢-y) | (2.22b)
da, = 2D, D, [P6 cos(¢-¥) + B3 sin(¢-v)] (2.22¢)
dag = 2D,D, [P3cos(¢-y) + B6 sin(¢-¥)] (2.22d)
dag = % D,D, [(382+p4) cos(d-y) - (B1 +3B5)sin(¢-¥) | (2.22¢)
da, = Dy % [(B2 +p4) cos(d-) - (B1 + B5) sin(¢-¥) | (2.22f)

From Equation (2.22), one can say that maximizing the summation of the da terms
equates to maximizing Aa. A plot (see Figure 4.6) of these da terms above for variations

in the PA (recall, PA - $-§s) component explicitly shows that the summation is indeed
maximum at PA equal to -90 degrees.
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A\, los
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140 -120 -100 -80 -60 -40 -20 O 20
Phase Angle P4 (deg)

g———a__y
[ e . =

Fig. 4.6: Variation of Angle PA

Interestingly. the minimum occurs when PA - +90 degrees. In all the cases studied in
which the 1 JK frame is congruent to the orbital frame, the following applies:

Aa maximaoccuratPA = ¢ - ¢ = -90°

Aa minimaoccuratPA = ¢ - = +90°

This is not the case when two inertial frames are not congruent. As will be seen fater,

for Tyand ¢ not equal to zero, the maximum location shifts relative to angie PA.
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Variation in the Angular Momentum Yector Orientation. The angles I and { which

describe the angular orientation of the angular momentum vector A with respect to

the orbital reference frame (ijk) has been superficially neglected. In this study, they
have taken on common values of 0° or 90°. Earlier, these angles were termed the
“lesser dynamic”® parameters and, therefore, were not varied in the previous

perspectives. On the contrary, variations is T and { have sufficient control on the

behavior of Aa or else they would not have been included. Their major is the shifting
the location of the maxima. Here are sample variations:

Fixed 7). Figures 4.7A,B,C show just such behavior as T was held fixed at
zero and { was allow to vary from 30° to 90" for motion in the 30° inclination plane. As

¢ is increased, the maxima no longer becomes stationary at PA = -90 but seems to
propagate or shift towards PA = 35°.

Fized {. A similar but out of phase situation occurs when ( is fixed at
zero with T) allowed to vary. At T} = 30°, the Aa function assumes the same shape as in

the (M, {) - (60.0). This case is depicted by Figures 4¢8A.BandC. The (1], ¢) = (90.0) is
essentially the tumbling case Jenkins [Ref: 10] investigated earlier.
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42 Optimizati

The search of the optimum set of controls to achieve a maximu change in a per orbit
required the use of the perspectioves as a guide in establishing a good intial guess to
start up the search algorithm. After noting the location of the maxima from the
particular perspective of interest, convergence is almost expected at that graphical
coordinates.

Observations. In employing the Stirling Method in search of the required set of
optimal control vector, a few peculiar observations were made.. The Stirling Method

uses a step size 3u to increment through the local ares of interest in search for the
zero of the function.

a. The search scheme is very semsitive to the step size Su. When the
coordinates of the maxima (from perspectives) are inputted, the value of the (C’)
vector components become very small often in the neighborhood of 1 x 107 . Since

(C’) is the initial OF,/du; evaluted at the initial input control values, using

near-maxima control values would make the incremental step size too small to
differentiate a change that can be discernable by the search scheme. This is where
larger step sizes can be used without losing any appreciable accuracy.

b. If the conditions generating the perspectives are used as initial guess inputs,
the maxima depicted can be reaccomplished to a higher degree of accuracy. Test cases
show this accuracy to be good to the seventh order.

c. The degree of accuracy beyond the seventh order seems to be hampered by
round-off or truncation error despite the fact that all computations are accomplished
in double-precision mode.

Test Cases. Several test cases were made primarily with the use of the data
extracted from Figures 2 4A through 2.4G. Since the intent of the preliminary searches

CaliC et




is to use these figures as the primary feedback for the behavior of the 8a function and
the verification of the output of the search algorithm, deviations from the initial
conditions generating the figures were not made. The results on these preliminary
evaluations can be summed up as follows:

1. Searches using coordinates of maxima from the perspectives yielded similar

Su required essentially equal to (00, 00, 00, 0.0). This implied that the point of
interest is & maxima to begin with and that no changes in the control parameters are
required. Convergence is achieved in a single iteration. Further forced iterations
resulted in the same; ie. when search was continued until an iteration limit was

reached, the required Su remained at zero. This displayed stability. Larger step sizes
did not affect the convergence.

2. Devistions in any single control parameter (holding the other three at initial
maxima condition values) resulted in more than one but less than three iterations to
converge to a local maxima. From the perspectives, deviations of less than ten degrees
seem to be well behaved and predictable in that there are no other local maxima within
a 10° radius of any given maxima. Convergence limits of 001 degree and better are
realizable.

3. The search algorithm does not provide a check for a global maximum  This
handicap and the convergence criterion are responsible for the search converging at
s minima adjacent to a maxima. This was a subject of interest in this study.

Results on a test case are presented in Appendix E. The test case selected is for motion
in an orbit inclined at 43 degrees. This was of particular interest because of the two
adjacent maxima separated by a minimum. This search scheme only searches for the
condition in which the first derivative is equal to zero. It is interesting to note that the
figure 4.2D (test case, i=43"), displays 17 different areas at which convergence can be
achieved. At any of these areas, the siopes are indeed zero and the search scheme
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| would these out. Achieving convergence does not signify a maximum Aa. It is -

apparent from the perspective that there are only four areas in which As is maximum.
Without reference to the perspective. it would be most difficult to reiate convergence
® values to maxims, minima or inflection points. This makes it so imperative that the --

search be accomplished hand-in-hand with the corresponding perspective. Only then -
can the control parameter changes bemeaningful.
‘ -
|7 -
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V. Conclusion

Working in a region of unknowns and searching for an entity yet to be
described is just what was initially pursued in this effort. Given a multi-variable

function describing the change in the semi-major axis (Aa) with an established
objective of finding the maximum change experienced by that function began as a
formidable task of high interest and expectation. The pursuit of a solution using
known search methods ¢.g.. Stirling Method, to evaluate extrema provided much hope
for convergence. Futile preliminary attempts to identify convergence conditions was

due to poor initial guesses. This led to question the nature of the Aa function at hand.
Understanding what the function does is quite different from knowing what it looks

like. The big question is this: What doesthe Aa function represent graphically? Asa

resort to a good guess, the four-variable Aa function was graphed perspectively in
three-dimensions with two variables held fixed and two varied against the value of the
function. The resuiting perspectives represent the surface of the fuaction for the
given set of “control” conditions. These perspectives give a good averall picture of the

behavior of the Aa function. Information that was earlier a guess can now be
verified. Regions of diminishing returns and high yield can be identified and search
patterns can be concentrated on specific areas. Now a bound exist. Now the initial
guess can be nailed down. Search schemes which are sensitive to "good initial guesses”
have improved reliability for convergence. The Stirling Method is by no means
excluded here. The input of good starting points (u°) to initiate the search for the

optimum control setting that yields the maximum Aa is of critical importance.

Convergence in two or three iterations shows the power of the search method used.
Moreover, it shows the goodness of the starting search point. Convergence to
coordinates that are known apriori is only possible from reference to the applicable
perspectives provided that the starting point is not far from the shown perspective.
Deviations far from the local maximum will allow the search mechanism to deviate
away from the intended area and converge on another unexpected maximum. This is
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normal behavior of such search scheme and there is not need for alarm The
coanverged control settings can be graphically ealuated by the use of the perspectives
defined by the converged control values. As noted earlier, convergence can be
achieved at any area satisfying “zero slope” conditions (e.g., maxima, minima, or
inflection points). Only by looking at the function's perspectives or by computing its
second derivative caan the actual maxima desired be ideatified. The cross-relstion
between the search scheme results and the perspectives are most necessary for a
meaningful output.

Comment on the Equations of Motion

Jenkins [Ref: 10] provided perturbation equations for the one-to-one resonance
case. These equations have been tharoughly verified in more than one ways.

1. The equations of motions were integrated for the resonant case (i.e., when
the orbital mean motion is equal to the sail precession rate) and found to be
correct.

2. VWhen the equations of motion were used to generate the applicable perspec-

tives at a 90° inclination, it was discovered that at a coning angle 8 =33".a
maximum occurs. Thisis in direct agreement with previous results arrived
at by Tsu (Ref: 21] and Garwin [Ref: 5] in which they found that a tilt angle
of 35 ° with respect to the sun provides optimum change in the semi-major
axis. The constant coning angle is the tilt angle of the sail with respect to
the sun.

These indicate that the perturbation equations arrived at by Jenkins do indeed describe
the appropriate motion of a freely coning solar sail.
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It is fitting that whatever was learned from this academic effort be shared with
anyone interested in pursuing a similar quest. The work done here is without its
troubles and periods of despair. The biggest difficulty was searching for the maximum
of a multi-variable function without any apriori knowledge of its behavior under
given conditions. The suggestion here is this: represent the surface (or function) in
some kind of perspective (two-dimensional or three-dimensional) and observe its
behavior as certain variables are changed while holding others fixed. This would
provide valuable insight into what can be expected of the function. Look at it first so
that they are no surprises later. This is the biggest lesson learned from this academic
effort.

Recommendations

The behavior of this solar saif is just partially known by the exploitation of the

Aa function. More can be learned by numerically looking at the behavior of changes
in the other state functions eccentricity, inclination and longitude of ascending node.
Although, a particular aspect of the inclination is addressed here, it deserves its own

segment. The numerical evaluation for a selected performance index can very well be
supplemented by producing the three-dimensional perspectives associated with the
case of interest.

T

Another pursuit would be to extend the single-stage dynamic system to a
multi-stage dynamic system. This would be the case in finding the optimum series
r controls which would generate the maximum change in semi-major axis in n
e revolutions. This would entail applying the single-stage system r.-1 consecutive times

as shown previously in Figure 3.3. Such a multi-stage system can have practical

TR Y YTy

applications.
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Appendix_ A

Eclipsing Effects

The eclipsing or shadowing of any solar radiation dependent spacecrafl is an important
phenomenon that must be understood and compensated for in the design stage and/or
by some control mechanism of such spacecraft. For this solar sail. the only propulsion
source is solar radistion. This makes shadowing & more critical phenomenon for & solar
sailcraft than for s spacecrafl with a variable-mass propulsion system. To achieve the

objective in maximizing select orbital parameters (which are dependent upon the r‘
amount of solar radistion incident on the surface). the aspects of shadowing. ¢.g..
a. when does shadowing occur, aad q
b. duration of shadowing,

become particularty interesting to the mission designer in determining the optimum
steering controls necessary. The dependence of the changes of the orbital parameters
on the shadow time for this particular coning solar sail can be readily seen in the
period TP term in Eqn (2.21). Note that TP is the orbital period and is also the time spent
in the solar radiation environment during one orbit. Shadowing would result in
reducing this TP value and, hence. in sdjustments to the amount of perturbational
changes the sail's orbit experiences. Just how does one determine a and b above?

Stoddard (Ref: 19) simplifies the aspects of shadowing and preseats a means of
determining whether or not an srtificial satellite in a circular orbit is shadowed and, if
it is, what its duration in the shadow. The “circular cylindrical shadow" model is
employed instead of & “conical shadow” model which considers the umbra and
peaumbrs shadow components (as presented by Fixler in Refl: 6) to arrive at the
following relstionships which are referenced in Figures Al and A2:
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- 21 % -
. cosB8z= 2 (1/eg) [1-(Rg/Ry) l' (A-19)
= = (secigy) [1 - (Rg/Rg] % (A-18)
@
BE - 2(180°-8); (A-2)
o= (85/360°) TP; (A-3)
@
where
BE = geocentric angle of travel of the satellite during eclipse.
&
isyy @ Seocentric angle between the sun and the satellite’s orbit plane.
Note: From Figure Al, this is equivalent to the orbit inclination i.
® 8 = geocentric angle measured in the orbit plane between the satellite and the
conjunction point P (Figure A2).
egy & eccentricity of the elliptical projection of the earth’'s shadow on the
satellite’s orbit piane.
® Nete: Thiscan be geometrically shown to be equivalent to cos igyy. This
is accomplished in (Ref: 19]
Rg # earth radius - 1 DU.
¢ . . .
Rg # satellite orbit radius.
TP = orbital period.
Y tgy ® time the solar sail is in the earth’s shadow = duration of shadow.
The limiting case between eclipse or no eclipse is obtained from Equation (A-1) when 6
= 180 degrees. Therefore, ...
L
A-3
]
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Rg = Rp cscigyy = Rpesci ‘ (A-4)

Equation (A-4) is valid for the geometry sad the definition of the inclination of the
orbit as described in text. That is, if the inclination is defined as the inclination of the
orbit plane wrt the ecliptic plane, then this Equation (A-4) will be valid. For any
application, reference to the Stoddard article is highly recommended.

From Equation (A-4), eclipsing criteris can be established as follows:

if Ry < Rposcigy = sshadow will take place; eise (A-3)
if Ry > Rgpcscig,, => ashadow willnottake place. (A-6)
60.00

shadow area
[Jno shadow erea)

L

1 2 3 4 5 6 7 8 9 1011 12 13 14 15
Inclination (deg)

Fig. A3: Solar Sail Shadow Limits

From Equation (A-3), one can determine that say artificial sstellite in the ecliptic
plane (i =0°) will experience shadowing. Shadow limits for various inclination i and

orbit radius Rq can be seen from the plot of Equation (A-5) in Figure A3 above. The
ares to the right of the "Limit Line" indicates the region of 'NO SHADOW'.
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L Table Al shows the behavior of the various parameters in this relationship as the orbit
radius Rg is varied from 2 DU to 10 DU.

Table Al: Shadow Parameters

Rg CosB 8° 8 ° TP(T)  tg(Tu) tg(Mm) (%)

20 3866 150.00 60.00 17.77 296 3982 11.65
L 30 943 160.56 38.88 32.64 353 4747 1081
40 968 165.47 29.06 50.26 404 5436 8.04
50 980 16352 22.96 70.25 450 6055 6.41
6.0 986 170.40 19.19 92.34 492 66.19 5.32
70 990 171.79 1643 116.37 531 7140 4.56

L~
8.0 .992 172.82 14.36 142.17 5.67 76.27 399
9.0 .994 173.60 12.76 169.64 6.01 80.84 3.54
10.0 995 174.26 11.48 198.69 6.34 85.19 3.18
@
For the case in point, the solar sail (at Rg - 2 DU) would have to have aa inclinatioa i
greater than or equal to 30° to escape any shadowing effects. For solar sail motien ia
® the ecliptic plane, the duration of the shadow Loy is approximately 40 minutes long.
This is determined as follows:
TP = 21 Rg!3 = 2n (23 = 17.77 TU.
7
8 = cos! [ 2(sec0(1-(1/2)1% ] - 150.00°.
Ba = 2(180° - 150°) = 60° .
{9
tey = (60°/360°) 17.77 TU = 2.96 TU = 39.82 min.
These 40 minutes spent in the shadow of the earth equates to 40 minutes less of direct
7] solar radistion exposure. This directly affects the magnitude of the perturbational
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changes. From Table Al, one might be alarmed at the increasing magnitude of the
shadow time tg; for increasing orbit radius Rg and its resultant decrease in these

perturbational changes. The shadow times do indeed increase; but, the percentsge
increase of shadow time over the period TP decreases as the orbit radius increases.

This indicates the relative impact tg, has for high orbiting solar sails. The further out

the sailcraft is , the lesser the chances of shadowing become. For the solar sailcraft
initisting its maneuver at low-earth-orbit altitudes, this phenomenon is an important
issue.

The question is “how much shadowing is tolerable without considering its affects?
The eclipse factor has generally been used to answer this question. The eclipse factor
is defined as the ratio of time spent in the sahdow to the orbital period of the satellite.
From Eqn (A-3), this can be expressed as

Eclipse Factor = tgy/TP = 8;/360° [Ref: 17] (A-8)

If this ratio is small. then shadowing can be neglected. Some type of decision criterion
must be formulated to determine an answer to this question. Such criterion will
definitely include this eclipse factor and other satellite/mission dependent parameters
such thermal constraints, etc.

To get a general conceptusl feel for this shadowing effect on 8 solar sailcraft in the
ecliptic plane, a “simply spinning™ case with shadowing and another without
shadowing were evaluated and contrasted. The data in Figure A4 indicate the decrease

in total change in Aa when shadowing effects are considered. There seems to be

apprecisble relative differences between these computed sets of values, thus indicating
the importance of the shadow phenomenon.

Cases dealing in the ecliptic plane are very much affected by this phenomenon.
Moving out in sititude and to inclinations greater than zero reduces this effect. This
study avoids this phenomenon by having the initial state at s high orbit altitude and a
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non-ecliptic inclination such that condition (A6) is satisfied.

Escobal and Johnson [Ref: 3] obtain compact, closed-form expressions for the
maximum and minimum eclipse durations of a circular orbit with known semi-major
axis and inclination via simple geometric constructions. The method outline provides
the designer with the tool to evaluate the envelope of eclipse durations a spacecraft
would experience throughout its lifetime.

Polyakhova [Ref: 14] providesa more extensive and thorough coverage of the
shadowing phenomenon. This study develops the solar constant equation from the
basic quantum theory of light. It further investigates the shadow effects in the case of
the radiation-pressure infiuence on the secular acceleration of the satellite, i.e., on the

quantity ATP/TP (the variation of the satellite peried during one orbit). It addresses

orbits of arbitrary eccentricity and develops a shadow equation and provides sofution
for certain simplifying conditions. The author develops the equation using
non-standard reference frames. For this reason, the development is not pursued here.
Strong recommendations is made to it for those pursuing s more rigorous approach to
this shadow phenomenon.
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Forming the Seasitivity Matrix [C]

This following exercise is preseated to bring awareness to the extend of labor one must

® suffer in determining the partials of the change in the semi-major axis Aa to

incremental changes in the control parameters (8, N, {, PA). Recall. PA 3 (¢-¥).
This exercise is as follows:

‘4
. = losaae 2sarom 2sara¢ 2 asasopa | D :
where (from Equation (221), 3
* 4a = a‘-—"DTP/ulda + da, + da, + da  + dac + da ] ;
 +dag+ day + dag+ dag + dag (B-2) 1
. Using the chain rule for differeatiation and looking at the first element in Equation W
i o (B-1), ?
d4a [a'IDTPJfoda, dda, oada; aday adag odag :
- [ + + + 4+ + (8'3) "%
28 u 0 28 % 28 28 29 3
«
Working solely with the first term da on the rhs of Equation (B-3),
. da; _ %(d;)? ((38,+BgcosPA - (38, +Bg)sinPA} . (B
.
B-1
¢

.....
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ada; /o8 = (d;)2/08 {(3p,+B) cosPA - (38, + Bs) sin PA }

+ (d))2 (308,728 + 08,4728 } cos PA
- (d;)2 {398,/28 + 2B5/28 } sin PA

Expanding the dl and 0p's terms above, Where...

sin 8 cos { cos i,

[~
_—
L}

and
sin 6 cos ¢,

sin @ sin ¢ cos 1,
sin 0 sin ¢,
as = 8in 6 cos N,

>® T T
o N e
[] L] [}

one arrives at the following results:

dda /38 = 1/8 [ 2320 c2( i ((3303((:11 + 398¢)cPA - (398¢( - sscn)sPA]

+ (1 -¢20) {(Sces(cn + cB8¢)cPA - (3¢8¢c( + chn)sPA] ]

whereCsC0S and 9= Sin.

Note that Equation (B-8) takes care of the first term in Equation (B-3). There are
several more terms that require similar expansions and differentiations wrt the control

parameter 0. Specifically,

aday/28 = 2 ddag/8 = 2.

B-2

(B-8)

(B-5)

(B-6)

(B-72)
(B-7b)
(B-7¢)
(B-7d)
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Extending this to the partials of the remaining control parameters (1), ¢, and PA), one
can easily imagine the amount of isbor required and the countiess room for error(s).

daa/om = 2 A2/ =2 0A2 /OPA = 7

AR GER, et o i o

This study circumvents this potentially troublesome ares and approaches the
determinstion of the Seasitivity Matrix C by employing numerical techniques. This
approach is discussed in the text.

~

B-3
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Appendix C
The Surface Program. The Fortran Program constructed to generate the various
3-dimensional perspectives of Aa is inciuded here in its entirety. It is designed to be
user friendly; it will lead any prospective user 10 easily generate similar perspectives
provided that there is some basic understanding of the mechanics of the UNIX/VAX

systems and the operation of the HP7220v Plotting Table.

Geperating the Data  Equations (221) , (222), (229) and (230) were
programmed in a user-interactive program called ZDATA to generate the changes in
the semi-major axis parameter. Desired inputs queried include the following:

a. the initial semi-major axis

». the ordit inclination

c. the angulsr momentum orientation angles (n and )

d. the range in the coning angte (), and

e. the range in the phase difference angle (PA = ¢-y).

Additional inputs in scale factor are required to arrive at a data valus that can be easily
unterpreted. Scalex increments the ranges of the angles 6 and PA to allow a
macro-perspective or a micro-perspective of the afunction. Scalez raises the datato
a value between -100 and 100 for easy interpretation of relstive magnitudes of da
The actual Aa is preserved in the parameter called Z .

The information generated is placed into a data file (called plotdata) compaetidie to the
plotting routine. The Program Listing is attached.

The Plotting Routine. This is basically the set of instructions for getting the
data piotted on an HP7220v Plotting Tabie. Additional information ¢an de odbtained from
the S-Package routine. The instructions are as follows:
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1. Locate the terminal co-located with the HP7220v Ploting Table.
2. Login as usual and move into the directory in which the plot data is located.
lo 3. On the terminal_ enter the foliowing:
a setterm=h19 (this connects terminal to UIX/VAX system)
b. hit SETUP key.
¢. hit B xey and set baud rate 10 2400; verify similar setiing on rear
o | of HP7220v device.
4. hit SETUP key t0 lock value in.
4. Turn plotter on and set paper & pens up; place plotter on STBY
ho 5. On the erminal, enter the following (note: % and < are computer prompts)
a%s (response will be <)
b.<hp7220v (this identifies ploting device)
¢. » 2 matrix(read("data filename ") nrowexx byrow=T)
vhere filename = filename used in generating data
nrow=range x scalez + 1
(see S-Packege refernce for additional options)

Vv L R I
AR l“J'..' R R
AR RIS RI W

4. _zmin(z)
e. 2 2/max(z)
f. persp(z) (see S-Packsge reference for additional options)

Note: 54 and Se dimension the data to the maximum value of z contained in data set.

Relative megnitudes can be expressed dy inserting the maximum value of Aa
obtainable in step 34 above. The resuiting perspective will give the relative

magnitudes of the a values wrt 0 this maximum.

Caution: The underscore _ following the term z in the instruction above is an
important function of the plotting routine and must not be neglected.




Brogros Listing

PROGAAN ZDATA

c
comment: This progras generates the plotdata for input into the
c S-Package routine. The data is used in progras persp(z).
c sodified for pa vs theta {pa is horizontal)

c surface generation routine (2 variable; 3-dim)

c Double precision is not required for perspectives.

c

integer i,j,npl,np2,scalex

integer difl,dif2,i1,i2,f1,f2,decl,iter 1
integer dec3,dect, icase :
real da{0:100,0:100),dax(0:100,0:100),scalez,datot, coeff ﬁ
real a,ix,in,tp,sac,conv,pi .
real theta,eta,etax,chi,chix,pa N
real bi,b2,b3,b4,b5,b6,b7,b8,d1,d2,d3
real dal,do2,da3,da4,daS,dab

doto sac/.00000465/

RRRBRRT BB

comment: open up tapes file for output. Plot data contains the
c all the necesarry dato to generate the perspectives.

No cosments are allosed in this data set. Plotinfo con-
tains all pertinent information to plotdata.

open{unit=11,file="'plotdata’,access='sequential’,
$ status='nes')
open{unit=12,file='plotinfo',access='sequential’,
$ status='nes’)
resind{unit=11)
resind{unit=12)

C.

c
cosment: This is the USER INTERACTIVE portion. It generates on c
screen proapts for required input data.




-l
10  print¥, ‘Enter a,i,eto,chi {canonical & degrees) (real)’ !
read®,a, ix,etax,chix '
print®, 'CAUTION: Do not exceed o 100 ¥ 100 array!’
print*, 'Enter SCALEX (e.g., 5 pt*deg = 5) (integer)’
read*®, scalex
20 print®, 'Enter INITIAL & FINAL points for THETA (integer)’
read*,il,fl
print®, 'Enter IHITIAL & FINAL points for PA {integer)’
read*,i2,f2
print*,'Enter SCALEZ (desired height for DA) (real)’
print¥, ‘note: scalez = 10000. (das right! 10 K) works'
read®,scalez

print®, ‘Are you sure, Solar Sailor? 1=YES; 0=NO'
read®, decl .
if(decl.ne.1) go to 10 7
C .
comaent: Compute some important parameters. a
[
pi = 4.%atan(1.)
tp = 2.%pi*sgrt{a*a*a)
conv = pi/180.
in = ix*conv
chi = chix*conv
eta = etax*conv
c
comment: echo input back to screen.
c

print®,‘period tp (tu) =',tp
print*,‘'inclination (deg) =',ix
print®, 'eta {deg) =',etox
print®, ‘chi (deg) =',chix
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comment: Determine the intervals for plot. Intervals sust be 1
c equal ly spaced. !-
c -

difl = jabs(fl - i)
dif2 = jabs{f2 - i2)
npl = difl/scalex
np2 = dif2/scalex

c K]
print®,'difl = ',difl," dif2 = *,dif2 :
print®,‘'npl = ',npl,’ np2 = ',np2 .
iter = 0 s

c :::
erite(12,190)aq, ix,etax,chix,il,fl,i2, f2,scalex,scalez ]

c =
erite(12,180) i
erite(*,180) g

180 format(//30x,'PA’,/) b

C 4

CESEREERLRRRREERAREREL328% ) Q0P $SS5SSEERERRLLLELXRRLEEREL ii

npl is the ® of points in Theta parameter.

np2 is the ® of points in PA parameter.

scalex is the & of divisions desired.

scalez is the factor required to raise the Da value to some
value that can be worked with.

0 0 0 0 0 0 0

do 100 i = 0,np!
theta = (il + i®*scalex)®*conv
c prints,’ theta = ',theta
do 110 j = 0,np2
pa= (i2 - j*scalex)*conv
c print®,’ pa = ', pa

n'."r ‘-‘:I‘nl-‘,-!‘-:':‘r’p'/:'l

c-5
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comment: Compute the various parameters in the Da equation.

i
c .
bl = sin{theta)®cos(chi)
b2 = sin{theta)®*sin{chi)*cos(eta)
b3 = sin{theta)*sin{chi)*cos(eta) ;
b4 = sin(theta)*sin{chi) i
bS = sin{theta)*cos(eta) -
b6 = cos{theta)*cos{chi)*sin(eta)
b? = sin{theta)®*sin{eta)
b8 = cos(theta)*cos(eta)
dl = sin{theta)®*cos(chi)*cos{in)
c
d2 = sin{theta)*sin{chi)%cos(eta)*cos(in)
$ + sin(theta)*sin{eta)*sin(in) ‘
c g
d3 = cos(theta)®*sin(chi)*sin(eta)*cos(in) :
$ - cos(theta)®*cos(eta)®*sin(in) E
c of
dol = .25%d1%%2,%((b2+3.%b4)*cos(pa)-(3.%b1+b5)*sin(pa)) :
da2 = -.50%d1%d2%{(b2-b4)*sin(pa)+{b5-b1)*cos(pa)) ;
c
da3 = 2.00%d1*d3*(b6*cos{pa)-b3*sin{pa))
c
dat = 2.00*d2%d3*(b3*cos(pa)+b6*sin{pa))
c
daS = ,25%d2%*2.%((3.*b2+bt)*cos(pa)-(b1+3.%b5)*sin(pa))
c
dab = d3**2,%((b2+b4)*cos(pa)-(bi+b5)*sin(pa))
VE\ datot = dal+do2+da3+dat+daS+dab
F coeff = a%*{, 5%sac*tp

dax(i,j) = coeff*datot
da(i,j) = scalez*dax(i,j)
. iter = jter + |

110 continue
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write(11,200)(da(i,j),j=0,np2)

write(12,200)(da(i, ), j=0,np2)

write(®,200)(da(i,j), j=0,np2)
100 continue

c
c FORNATS
170 format(/Sx,'tp =',f6.3,2x,'in =',f6.3,2x,'eta =',f6.3, 'chi
$ =', §6.3)
c

190 format(//,'a =',§6.3,2x,'in =',16.3,2x,'eta =',f6.3,2x, 'chi
$=',16.3, 2x, 'theta from:',i4,' to',i4,2x, 'pa froa:
$ ',i4,' to',i4,/,'scalex =',f3.1,2x, 'scalez =',10.2)
c
200 format(100(f7.3))

[

print*,‘'Do you want to try another case???? 1=YES; 0=HO'

read®, icase

if(icase.ne.0) then

print%¥,‘a =',a

print*,'i =',ix

print®*, ‘eta =',etax

print*,‘chi =',chix

print®, ‘iny change in a,i,eta,chi? 1=YES; 0=NO'
read®, dec3

if(dec3.ne.0) go to 10

print*,'theto starts at',il,’' and ends at',fl
print®, ‘'pa starts at',i2,' oand ends at’,f2
print®,‘'Any change in theta and pa? 1=YES; 0=NO'
read®, dec4
i f(dec4.ne.0) go to 20

endi f

(3]
[ "—I.L'—:"" st

endfile{unit=11)
endfile(unit=12) )
stop
end
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Appendix D

Ootimization P

Cogtents. The software constructed to determine the set of control vectors that
would make the performance index ] stationary consisted of the following.

1. Main Program: ZERO F
2. Subroutine: ECHO

3. Subroutine: UPART
4. Subroutine: DELTA
S. Subroutine: INV4X4

Description. Here is & short synopsis of the function of each program used in
this search scheme. The entire listing is documented further in each section of the
msin where additional information would facilitate its understanding. The programs
are as follows:

Program ZEROF. This is the main driving program that employs the
sbove subroutines to develop the necessary first and second partials and to determine
the zero of the optimality condition. It is s user friendly program written to work
intersctively. It queries the user for necessary input dsta, an iteration limit, and s
convergence limit.

Subroutine ECHO. The input dats along with genersted preliminary
information (e.g. orbital period) are echaed back to the user for verification.
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Subroutine UPART. The partials of the state function Fa with respect to

the control varisbles (.M. {. $-\) are computed via the Stirling (a.k.a modified
Nevton-Rhapson or central differencing) iteration method. This program is
summoned four times to coastruct the optimality control vector and supporting

partials (PC]. Outputis 3%Fy/(2u;u;’ in the form [PUA] and [PUB. 9

Subroutine DELTA. This uses the perturbation equations to determine the

changes in the orbital parameters a. Output is Aa.

{ Subsroutine INV4X4. This is used to invert the X4 [PC) matrix so that the

8u required can be determined. It outputs the determinant and inverse of [PC] = [PCI].

t Program Listing Attached is the entire program listing of the main program X
H ) ZEROF. All supporting subroutines required to compile and execute the main program j
) are included here; it isa stand-alone program. :
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The following are the computer codes wsritten to search for the
stationary value of the Performance Index J. The Stirling Nethod
is used to iterate and find the zero of the function that would
allow this stationary value to exist. Equations found in Section 3
under DISCUSSION are the basis for this progras.

PROGRAN Z2ERO
Last modified on 25 MHNov 84 0600 hrs
This progroa drives the partial routines to determine the zero

of the optimality condition:
Laada (Transpose)*Upartials = [0]

(3 BN o B o B o BN o B o BN or |

INTEGER DECO,DEC1,DEC3,DECS,DEC6,DEC?, DECLAS
INTEGER DECS,DEC10,DEC13,DEC14,DECS0,DATE
INTEGER iterx,ii,jj,m,n,part,k,iter,case

DOUBLE PRECISION PU(4,4),PC(4,4),PCi(4,4),DIFF(4,4)
DOUBLE PRECISION del(4),deldeg(4),C(4),PUA(4,4),PUB(4,4)
DOUBLE PRECISION a, i,ax, ix,cv,det,tp,sac,nu,dap,dan,da
DOUBLE PRECISION theta,eta,chi,pa,thetax,etax,chix,pax
DOUBLE PRECISION conv,dconv,tconv,pi,tpi

DOUBLE PRECISION dthe,deta,dchi,dpa,delu,du,dux

DATA ax, ix/2.d+00,30.d+00/

DATA thetax,etax,chix,pax/90.d+00,0.d+00,0.d+00,-90,d+00/
DATA SAC, iter/4.65d-06,0/

DATA DCONY/7.9053682d+00/

DATA TCONU/6806.681118742d+00/

DATR mu,cv/1.d+00,.001d+00/

DATA dap,dan/0.d+00,0.d+00/

DATA dthe,deta/0.d+00,0.d+00/

DATA dchi,dpa/0.d+00,0.d+00/

DATA delu,dux/.01d4+00, .05d+00/
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C

CONNENT:

c

C

Open up a tapes for print files to be stored in.
unit 19 contains the dei(ii) results with sys description.
open{unit=19,file='output19’',access='sequential’,
status='nes"')
rewind{unit=19)

CONMENT:

c

204

This starts the interactive mode for data input purposes.

print*, ‘Enter DATE and CASE NO (e.g. 180984,5):'
read*,date,case
print*, 'fAny changes in ORBITAL PARANETERS? 1=¥; O=N'
read*, DECO
i f(DECO.ne.0) then
print*,’'Seai-major fAxis a =',ox , 'finy Change? 1=Y; 0=N'
read*,DEC1
i f(DEC1.ne.0) then
print®, 'ENTER a (DU) (double precision)’
read*®, ax
endif
print*,‘Inclination i =',ix , 'Any Change? 1=Y; 0=N'
read*,DEC3
i f(DEC3.ne.0) then
print*,'ENTER i  (deg) (double precision)’
read®, ix
endif
endif

208

cont i nue

print¥, 'Current theta =',thetox,’ ANY CHANGE? 1=Y; 0=N'
read*, DECS
i f(DEC5.ne.0) then

print*, 'Enter theta (deg) (double precision)'

read*®, thetax
endif
print*, 'Current eta =',etax,’
read®*, DEC6

ANY CHANGE? 1=¥;0=N’

1
b
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@
i f{DEC6.ne.0) then
® print®,'Enter eta (deg) (double precision)’
read¥®,etax
endi f S
print*, ‘Current chi =',chix,’ ANY CHANGE? 1=Y;0=N" s
read*, DEC? o)
o i f(DEC7.ne.0) then -4
print*, ‘Enter chi (deg) (double precision)’ 3
read*, chix ]
endif : ]
® print¥*, 'Current pa =',pax,’ ANY CHANGE? 1=Y;0=N'" ‘:i
read®, DECB o)
i f(DEC8.ne.0) then T
print®, 'Enter pa (deg) (doubie precision)’ -]
° read*®, pax Lo
endi f 9
print*, 'Current delu =',delu,’ ANY CHANGE? 1=Y ;0=N' ;ﬁ
read®,dec!0 ]
if(dec10.ne.0) then e
® Print®, ‘Enter delu (double precision)’ 'j
read®,delu ?ﬁ
endif -;'Tw
print®*, 'Current du =',dux,’ ANY CHANGE? 1=Y; O=H' NS
® read®*,dec!3 oy
if(dec13.ne.0) then R
print*, 'Enter du (double precision)’ L
read*, dux ;i
endi f >
o print¥, 'Do you want to iterate? 1=¥; O0=N' [
read*,decl4 1
if(dec14.ne.0) then
print®, 'Enter No. of Iteration (integer foraat)'
@ read®, iterx
print*, ‘'Convergence Limit =',cvu,' ANY CHANGE? 1=Y;,0=N'
read®,decS50
i f(dec50.ne.0) then
print®, 'Enter Convergence Linit v (double precision)’
o read*, cv
D-5
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endif

endif
print*,"'"’
print®, 'ARE YOU SURE OF ALL CHANGES? 1=¥; 0=N'
print®,"'’
read*, DECLAS
i f(DECLAS.EQ.0) GO TO 204

(I
COMNENT: Initialize the systes state parameter:
a = ox
c
CONNENT: CALCULATE PI IN A UNIQUE uAY.
c
Pl = 4.d+00*DATAN(1.d+00)
TPl = 2.d+00*PI
CONV = P1/180.d+00
i = ix*conv
c

COMNENT: Calc the period of the initial system w/o perturbation.
C

TP = TPIsDSQRT(A**3.d+00/NU**2.)
C

209 cont inue
c
comment: |f iteration is desired, 209 will bring in the Unes values
that were computed froa UPART. The control parameters are
updated so that they are stepped through the function
until convergence is met or until an iteration limit
is reached. Recall,

Deita u = Unew - Uold

Unew = Uold + Delat u

D 0O 0 0 O 0O O

CONMMENT: PRINT HERDER FOR OUTPUT:
C

i £(1.EQ.0.d+00) then

.......
-------
.........



erite(*,100) date,case,iter
erite(18,100) date,case,iter
write(19,100) date,case,iter
else
srite(*,101) date,case,iter
erite(16,101) date,case,iter
write(19,101) date,case,iter
endif
¢

COMNENT: Echo back the initial systes:

C

CALL ECHO(Ax, !x,TP,etax,chix,thetax,pax)

C
CONMENT: COMNUERT ALL DEGREES TO RADIANS:
c
theta = thetax*conv
eta = etax*conv
chi = chix*conv
pa = pax*conv
C
COMMENT: This ist call to UPART calculates the C Hatrix.
C sx23*N0 INCREMENTAL CHANGES ARE INTRODUCED HERE****
C
part=1
c

CALL UPART{a, i,theta,eta,chi,pa,tp,tpi,conv,c,
$ delu,dthe,deta,dchi,dpa,du, pu,au,det ,sac,n,n,part)

write(19,545) delu
erite(16,545) delu
write(18,914) C(1),C(2),C(3),C(4)
erite(19,914) C(1),C(2),c(3),C(4)

D-7
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CONMENT: The required matrix is [partial F/partial ul.

°® c This matrix is constructed a roe at o time.
c finy subsequent call to UPART is to build the Hatrix PC
c elements by rows. This is very INPORTANT. UPART is
) c called twice more to fill this required PC satrix.
- c
¢ c part = 2 denotes the 2nd partials are being computed.
‘ c
; comment: Set up the initial PU satrix and populate it with zeros.
. c This satrix is used later but filled in by rows at o time.
® c This population of zeros is required to prevent
v c segeentation errors. recall: [PU] = [4x4].
c
do 90 ii = 1,4
‘ do 92 jj = 1,4
| & pu(ii,jj) = 0.d+00 |
92 cont inue -
90 cont inue o
c '
® comment: This next section contains the necessary do loops to build P
c the PUR abnd PUB matrices. THe loop continues in the E?
‘ c next few pages. ]
: c -':
)
. -
°
L
D-8
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h comment: the k loop is responsible for computing PUR and PUB. R
. .
, c .
g part = 2 ;?
€ c 3
! do 1000 k = 1,2,1 o
[ if(k.gt.2) go to 1000 E
[ if(k.eq.1) du = dux o
o if(k.eq.2) du = -dux ]
c o
comment: the m loop is responsible for generating the elements. ’ﬂ
I‘ 4 "...
:’ do 2000 @ = 1,4 3
if(m.eq.1) then ~
! theta = thetax®*conv + du ;
E eta = etax*conv ]

chi = chix®conv .
pa = pax®conv ji
elseif(n.eq.2) then
theta = thetax*conv
eta = etax®*conv + du
© chi = chix*conv
s pa = pax*conv
elseif(m.eq.3) then
theta = thetax*conv
o eta = etax®*conv
chi = chix*conv + du
pa = pax*conv
elseif(n.eq.4) then
theta = thetax*conv
. eta = etax®conv
chi = chix*conv
pa = pax*conv + du
endif

YT Yy

. D9

. -
L} . -
* S e e et e e e e ~ .o

AT B INTANER IR Pty Oy PURUR RN
LY FIIVER CAAE N N T IO SR P T Y PR TSI, S SIS TR W S, VTS SIR Rt 4. 00 v O T SRR SRS




| 2 S Ran-Sia JuAS A Sal i Jas Antl A gl A £ SLar S N SFA SIS SRE M St gl SBA nak sha bl ih Sl REF et San Sni den s 2hgs T~ Sancil i b S A At 8 dn D an -BaS S Ba s ey 4ty Wi

e e Sagh S Pa A S h -4

¢
F
¥
@ C
CONNENT: This next call to UPART in the LOOP generates the
elesents.
C if k=1 then PUR is being filled.
“, c if k =2 then PUB is being filled.
.
i call UPART(a,i,theta,eta,chi,pa,tp,tpi,conv,c,
, delu,dthe,deta,dchi,dpa,du,pu,nu,det , sac,n,ngpart )
g [od
® c
2000 continue
c
E ¢
P if(k.eq.1) then
write(18,562) k
erite(19,562) k
do 40 ii = 1,4
do 42 jj = 1,4
o pualii,jj) = pulii,jj)
42 cont inue
40 cont inue
orite(18,910)((pualii,jj),jj=1,4),ii=1,4)
P write(19,910)((pualii,jj),jj=1,4),ii=1,4)
c
elseif(k.eq.2) then
: srite(18,564) k
erite(19,564) k
¢ do 44 ii = 1,4
‘ do 46 jj = 1,4
pub(ii,jj) = pu(ii,jj)
46 cont inue
. 44 cont inue
orite(16,910)((pub(ii,jj),jj=1,4),ii=1,4)
: orite{19,910)((pub(ii,jj),jj=1,4),ii=1,4)
| endif
1000 continue

v r}'l",',ﬂ e LI'.
PRI P ) g W)

Lol oo




P T T X Y T T—m——wrTTw CRad B i S aan ke ul B e Sk Shiker & 2 Suiea Shdas Adverithieten Shul Al SeARdnciel Tl Sag B A Rut Jhan A ep Sgv EaiCall AU ach SRR S S
.'.’

-
7L

o

| G :%

@ COMIENT: Noe, get the difference [PUR - PUB); divide by 2 x du. :i
c I
erite(19,566) k o
c
° do 21 ii = 1,4 e
do 22 jj = 1,4 -9
diff(ii,jj) = pualii,jj) - pub(ii,jj) \
22 cont inue N
21 cont inue -
L c i
write(19,910)((diff(ii,jj),jj=1,4),ii=1,4) B
c
c Asseable the PC matrix.
> ¢ r
erite(19,568) k :i
c .'..:.
do 25 ii = 1,4 : ]
do 26 jj = 1,4 -
® pelii,jj) = diff(ii,jj)/(2.d+00%du)
26 cont inue
25 cont inue
c
P write(19,910){((pc(ii,jj),jj=1,4),ii=1,4)
c
c Calculate the INVERSE of matrix PC
C.
call INV4x4(pc,pci,det)
L c
c
worite(19,912) det
c
° comment: Terminate Job if matrix PC is singulor.
c
i f(det .eq.0.0d+00) go to 999 i
srite(19,580) Jﬁ‘
d orite(19,910)((pci(ii,jj),jj=1,1),ii=1,4) -€
= D-11 “a
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erite(19,545) delu
erite(19,910) C(1),C(2),C(3),C(4)

¢ :

CONMENT: Determine the deita u requried and check for convergence. 1

® C If no convergence, repeat search for a zero by altering a B
. C selected control parameter. b
) c -]
srite(*,590) 1

write(19,590) ]
° c o
COMNENT: Intialize the DEL motrix to zero: [4x4] = [0] f&

c .

do 800 ii = 1,4
def{ii) = 0.0d+00
600 cont inue

c
CONMNENT: Compute delta(u): delta u = U{nes) - U(old) }
- c deita u = del(i) = - C(1x4)*PCI{4x4] 4
L4 [ Unew = Uold + delta u I
(W -
COMNENT: If deltau is not approx 0.0, then try it again with a g
c a slightly different choice of orientation angle. -
o c Add the appropriate delita u to strat the iteration. ;ﬁ
c T
do 801 ii ~ 1,4 >
do 802 jj = 1,4 R
- del(ii) = -(C(jj)*pci(jj,ii) + del(ii)) ;;
A deldeg(ii) = del(ii)/conv (|
c -
802 cont inue TS

801 cont inue

comment: Print out the required change in u in degrees and radians.

---------
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c
write(*,590)
erite(19,590)
erite(*,910) del(1),dei(2),del(3),dei(4)
write(19,910) del(1),dei(2),dei(3),dei(4)
write(*,592)
erite(19,592)
srite(*,910) deldeg(1),deldeg(2),deldeg(3),deldeg(4)
orite(19,910) deldeg(1),deldeg(2),delideg(3),deldeg(4)
C.
cossent: Determine if convergence is met.
c
c if(del(1).It.cv.and.del{2).1t.cv.and.del{3).It.cv.
$ and.del(4).1t.cv) then
c
srite(*,990)
erite(19,990)
endif
N
COMNENT: Set up the iteration block:
C
if(iter.eq.iterx) then
theta = theta + del(1)
eta = eta + del(2)
chi =chi + del(3)
pa = pa + del(4)
c
thetax = thetax + deldeg(1)
etax = etax + deldeg(2)
chix = chix + deldeg(3)
pax = pax + deldeg(4)
c
call echo(ax, ix,tp,etax,chix,thetax,pax)
call delta(a,i,nu,theta,eta,chi,pa,tpi,sac,tp,da)
c

erite(19,915) da
srite(*,915) da
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';ll c
' go to 999
elseif(deci4.ne.0) then
' iter = iter ¢+ | .
'o c -
comment: echo the results of the run. |
c
call echo(ax, ix,tp,etax,chix, thetax,pax)
. c
j @ go to 209 *
endi f g
999  continue ‘
c .
i endfile(unit=19) i
c
C FORNMATS

100 FORMAT(1H1,/5K%, 'NOTION IN THE ECLIPTIC PLANE',SX,
L4 $'DATE:',i8,3x,'CASE:*,i3,3x,'ITER:*,i3,/)
101 FORMAT(1H1,/5X, 'NOTION IN THE NON-ECLIPTIC PLANE',SX,
$'DATE:',i6,3x,'CASE:",i3,3x, ' ITER:'i3,/)
545 foraat (/39x, ‘Uector C [1x4]')

o 562 format(/30x,'For k = *,il1,', Mfatrix PUR [4x4] ',/)
564 format (/30x, ‘For k = *,il,', Hatrix PUB [4x4] ',/) ]
566 format (/39x, 'Natrix DIFF [4x4] *',20x,'k = *,i4,/) i;
568 format (/39x, 'Natrix PC [4x4] ',20x,'k = ',i4,/) X
580 foraat (/39x, 'Natrix PCI [4x4]‘,20x,'k = *,i4,/) B
¢ 590 format(/, 'Vector DEL (rads) [1x4] ',/) L
592  format(/,'Vector DEL (degs) [1x4] ',/) ®
910 format(4(d20.10))
912  format{/Sx,'Determinant = ', 50.40) -
N 914 format (/Sx, §20.10, f20.10, £20.10, f20.10) i‘
915 format (/Sx,'Da = *,£20.10) 3
990 format(//5x,'By jove, | think you got it, Selar Sailor') ‘?
(i T
- STOP ]
. END
'Y D-14

................................
...................
................................

........



- e

o 0 0 0 0

[

SUBROUT INE UPART(a,i,theta,eta,chi,pa,tp,tpi,conv,c.
$ delu,dthe,deta,dchi,dpa,du,pu,au,det,sac,n,n,part)

This subroutine calculates Natrix PU. It uses the DELTA
routine to calculate the changes in the orbital
parameters.

integer a,n,part

double precision a,i,sac,tp,tpi,msu,conv,dif

double precision theta,eta,chi,pa,dthe,deta,dchi,dpa
double precision thetap,etap,chip,pap,delu,du

double precision thetam,etam,chin,pas

double precision det,dap,das

double precision PU(4,4),C(4)

comsent: Initialize the da value to zero.

c

C

dap = 0.d+00
daa = 0.d+00

comment: Get the orbital parameter perturbations for the given set

c
c
c

of orbital parameters and orientation angles. Use these for
the basis.

comment: This first call to DELTRA comsputes the F{old) values.

c
c

c
cosmsent: The next page contains the D0 LOOP for the construction of
coaponents of the PUA and PUB matrices. This constitutes
the n loop of the (m,n) LOOP started in the HAIN prograa.

C
Cc
c

- T “ e e
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He want to deteraine the perturbations without seall
changes dthe,deta,etc. i.e., dthe=deta=dchi=dpa=0.0
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....................................

c DO LOOP

compent: Determine the partials. Start a do ioop for the ath and
c nth components of the matrix. This is done by roes.

c

if(part.eq.1) m = 1
do 400 n = {,4

if(n.eq.1) then
dthe = delu
deta = 0.d+00
dchi = 0.d+00
dpa = 0.d+00
elseif{n.eq.2) then
dthe = 0.d+00
deta = delu
dchi = 0.d+00
dpa = 0.d+00
elseif(n.eq.3) then
dthe = 0.d4+00
deta = 0.d+00
dchi = delu
dpa = 0.d+00
elseif(n.eq.4) then
dthe = 0.d4+00
deta = 0.d+00
dchi = 0.d4+00
dpa = delu
endif
c
CONNENT: The following updates the angles in DELTA for PU matrix
c determination. The suffix "p" {plus) means that the delu
c is added when applicable.
c

thetap = theta + dthe
etap = eta + deta )
chip = chi + dchi 1
pap = pa + dpa j_

________________________
................
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: This Ist to DELTA calculates the F(plus) values.

C.

cal! DELTRA(a,i,mu,thetap,etap,chip,pap,tpi,sac,tp,dap)

c
cosment: This following section sets up the minus delu's.
c it updotes the angles in DELTRA for PU determination.
c The suffix » means that the delu is subtracted shen
c applicable. NOTE: The dthe,deta,... are negative now.
c
thetam = theta - dthe
etam = eta - deta
chia = chi - dchi
pas = pg - dpa
C.
cosment: This 2nd call to DELTA calculates the F(minus) values.
C.
call DELTA(a, i ,au,thetam,etam,chin,pon,tpi,sac,tp,dan)
C.
c
cosment: The following sets up the approxisations of each partial.
c Print out these (dap - dam) values:
c The following sets up Natrix PU [4x4]. HNote the
c denominator.This is 2 x delu because of the method of
c approximation.
c
dif = dap - dam
if(part.eq.1) C(n) = dif/(2.d+00%delu)
if(part.eq.2) pu(m,n) = dif/(2.d+00%dely)
c
comment: start forming the eiements of the PU matrices.
c if k=1, then PUA is being foramed.
c if k=2, then PUB is being foramed.
c
400 continue
return
end
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SUBROUTIME DELTA{a,i,mu,theta,eta,chi,pa,tpi,sac,tp,da)

c
conment: This subroutine calculates the orbital paraseter
c perturbation due to changes in orientation angles %
c (theta,eta,chi,pa) and changes in orbital parameters. '#
c
DOUBLE PRECISION Dt,D2,03,B1,B82,83,84,B5,86,67,88 X
DOUBLE PRECISION theta,eta,chi,pa,tp,tpi,a,i,su,sac -
DOUBLE PRECISION da,dal,da2,da3,dat,da5,dab -

Bt = dsin(theta)*dcos(chi)
B2 = dsin{theta)*dsin(chi)*dcos{eta)
B3 = dcos(theta)*dsin{chi)*dsin(eta)
B4 = dsin(theta)*dsin{chi)
BS = dsin(theta)*dcos{eta)
B6 = dcos{theta)*dcos{chi)*dsin{eta)
B? = dsin(theta)*dsin{eta)
B8 = dcos(theta)*dcos(eta)

01 = dsin(theta)*dcos(chi)*dcos(i)

D2 = dsin(theta)*dsin(chi)*dcos{eta)*dcos(i)
$ + dsin{theta)*dsin({eta)*dsin{i)

D3 = dcos(theta)*dsin{chi)*dsin{eta)*dcos(i)
dcos(theta)*dcos(eta)*dsin(i)

M~ i aDaragae e ge - - a s

$

C.
comment: Calculate the following factors that enter into the Oa
r c equation.

B N gt

L dal = D1**2,d+00/4.d+00*((B2 + 3.d+00*B4)*dcos(pa)

g $ - (3.0+00*B1 + BS)*dsin(pa))

. da2 = -D1*02/2.0+00*((B2-B4)*dsin(pa) + (BS - B1)*dcos(pa))
dad = D1*D3*2.d+00*(B6*dcos{pa) - BI*dsin(pa))
da4 = D2*D3%2,d+00*(B3*dcos{pa) + B6*dsin(pa))
da5 = 02**2.d+00/4.d+00*((3.d+00*B2 + B4)*dcos(pa)

. $ - (B1+3.d+00%*85)*dsin{pa))

: da6 = D3**2,d+00*((B2+B4)*dcos(pa) - (Bl + BS)*dsin(pa))
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C.

comaent: Calculte the change in Semi-major axis.

da = a**1.5d+00%sac*tp/wu*{dal +da2+da3+dat+da5+dab)

erite(18,561) da
561 format(/5x,"Da = *, £20.10)

c
return
end
N
SUBROUT INE ECHO(ax, ix,tp,etax,chix,thetax,pax)
c
(K THIS SUBROUTINE ECHOES (HPUT TO SCREEM FOR UERIFICATION.
c
DOUBLE PRECISION ax, ix,tp,etax,chix,thetax,pax
c srite(*,500) :
erite(19,500)
write(*,501)ax, ix,tp
erite{19,501)ax, ix,tp
erite(*,502)etax,chix, thetax,pax
erite(19,502)etax,chix, thetax, pax
C
c FORNATS
C
500 FORNMAT(10X, 'YOUR SYSTEM 1S AS FOLLOWS:')
c

501 FORMAT(20¥, 'ORBITAL PARANETERS: a (DU) =',D17.10,
$/20%, " i (DEG) =',D17.10,
$/20%, ' TP (TU) =',D17.10)

502 FORMAT(20X,'H ORIENTATION: eta (DEG) =',D17.10,
$/20%," chi (DEG) =~',D17.10,
$/20%,' CONING ANGLE: theta (DEG) =',D17.10,
$/20%,' PHASE AMGLE pa (DEG) =',D17.10)

c
RETURN
END
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SUBROUTINE I1MU4X4(PC,PCI,det) ]

c
COMMENT: This subroutine calculates the inverse of the [4x4] PC
c matrix using CRANER'S RULE. Primitive, but it works!

-

.. 1

double precision pc{4,4),pci(4,4),det -

! double precision dpl1,dpl2,dpi3,dpl4,dp21,dp22,dp23,dp24 -

! double precision dp31,dp32,dp33,dp34,dp41,dp42,dp43,dp44 "3
o double precision d1122,d1123,d1124,d1221,d1223,d1224
double precision d1321,d1322,d1324,d1421,d1422,d1423
t double precision d2112,d2113,d2114,d2211,d2213,d2214
double precision d2311,d2312,d2314,d2411,d2412,d2413
double precision d3112,d3113,d3114,d3211,d3213,d3214

d1321 = d1123
d1322 = d1223
d1324 = pc(3,1)%pc(4,2) - pc{4,1)*pc(3,2)

. dp13 = pc(2,1)%d1321 - pe(2,2)%d1322 + pc(2,4)*d1324

<
double precision d3311,d3312,d3314,d3411,d3412,d3413
double precision d4112,d4113,d4114,d4211,d4213,d4214
double precision d4311,d4312,d4314,d4411,d4412,d4413
c
® COMNENT: Deteraine the elements of each row of the determinant
¢ and cofactor matrix. Data entered by colusn.
c
CONMENT: 1st row elements:
P C
d1122 = pc(3,3)%pc(4,4) - pc(4,3)*pc(3,4)
d1123 = pc(3,2)*pc(4,4) - pc(4,2)*pc(3,4)
d1124 = pc(3,2)*pc(4,3) - pc{4,2)*pc(3,3)
. dpl1 = pc(2,2)*d1122 - pc(2,3)*d1123 + pc(2,4)*d1124
¢
' di221 = d1122 R
d1223 = pc(3,1)*pc(4,4) - pel4,1)%pc(3,4) g
: d1224 = pc(3,1)*pc(4,3) - pc(4,1)*pc(3,3) X
. dpi2 = pc(2,1)*d1221 - pc(2,3)*d1223 + pc(2,4)*d1224 Ei
C =3
:
2




® C_
di421 = di124
d1422 = d1224
i d1423 = di1324
e dpl14 = pc(2,1)*d1421 - pc(2,2)*d1422 + pc(2,3)*d1423
c
COMNENT: 2nd row elements:
c

, d2112 = pc(3,3)%pc(4,4) - pc(4,3)*pc(3,4)
L d2113 = pc(3,2)%pc(4,4) - pc(4,2)*pc(3,4)
d2114 = pc(3,2)*pc(4,3) - pc{4,2)*pc(3,3)
dp21 = pc(1,2)*d2112 - pc(1,3)*d2113 + pc(1,4)*d2114

£
< d2211 = d2112
d2213 = pc(3,1)%pc(4,4) - pc(4,1)%pc(3,4)
d2214 = pc(3,1)*pc(4,3) - pc(4,1)%pc(3,3)
dp22 = pc(1,1)*d2211 - pc(1,3)*d2213 + pc(1,4)%d2214
. e
L4 d2311 = d2113
- d2312 = d2213
d2314 = pc(3,1)*pc(4,2) - pc(4,1)%pc(3,2)
: dp23= pc(1,1)%d2311 - pc(1,2)*d2312 + pc(1,4)*d2314
P C
d2411 = d2114
d2412 = d2214
d2413 = d2314
dp24 = pc(1,1)*d2411 - pc(1,2)*d2412 + pc(1,3)*d2413
. c
CONMENT: 3rd row eclements:
C

d3112 = pc(2,3)*pc(4,4) - pc(4,3)*pc(2,4)
. d3113 = pc(2,2)*pc(4,4) - pc(4,2)*pc(2,4)
d3114 = pc(2,2)*pc(4,3) - pc(4,2)*pc(2,3)
dp31 = pc(1,2)*d3112 - pc(1,3)*d3113 + pc(1,4)*d3114

'''''''''''''''
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d3211 = d3112
d3213 = pc(2,1)%pc(4,4) - pc(4,1)*pc(2,4)
d3214 = pc(2,1)*pc(4,3) - pc(4,1)%pc(2,3)
G dp32 = pc(1,1)*d3211 - pc(1,3)*d3213 + pc(1,4)*d3214
L
d33t1 = 43113
d3312 = d3213
. d3314 = pc(2,1)%pc(4,2) - pc(4,1)%pc(2,2)
o dp33 = pc(1,1)*d3311 - pc(1,2)*d3312 + pc(1,4)*d3314
¢
di4il = d3114
d3412 = d3214
d3413 = d3314

dp34 = pc(1,1)*d3411 - pc(1,2)*d3412+ pc(1,3)*d3413
C
COMNENTS: 4th roe elements:
C
| d4112 = pc{2,3)*pc(3,4) -~ pc(3,3)%pc(2,4)
d4113 = pc(2,2)*pc(3,4) ~ pc(3,2)*pc(2,4)
d4114 = pc(2,2)*pc(3,3) ~ pc(3,2)%pc(2,3)
dp4! = pc(1,2)*d4112 - pe(1,3)*d4113 + pc(1,4)*d4114

© L
d4211 = d4112
d4213 = pc(2,1)*pc(3,4) - pc(3,1)*pc(2,4)
d4214 = pc(2,1)*pc(3,3) - pc(3,1)%pc(2,3)
dp42 = pc{1,1)*d4211 - pc(1,3)*d4213 + pc(1,4)*d4214
6 c
d4311 = d4113
d4312 = d4213
d4314 = pc(2,1)%*pc(3,2) - pc(3,1)%pc(2,2)
. dp43 = pc(1,1)*d4311 - pc(1,2)*d4312 + pc(1,4)*d4314
C
d4411 = d4114
d4412 = d4214
d4413 = d4314
.. dp44 = pc(1,1)*d4411 - pc(1,2)*d4412 + pc(1,3)*d4413

.....................
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COMMENT :
C

Calc the determinant of [PC].

$

c

COMHENT: Flag the case when o singular matrix exist.,i.e., det= 0.0

c

C

det = pc(1,1)*dpl1 - pc(1,2)*dp12 + pc(1,3)*dpi3 -
PC{1,4)*dpl4

if(det.eq.0.d+00) then
print*, 'DANGER! DANGER! Det [PC] = 0.0°

print®, ‘Program is stopped in Subroutine 1HU4K4:no output'’

go to 208

endif
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CONMENT:
C

Calculate the Inverse [Pci] of [Pc].

208

.......
.........

<<<<<<<

pci{1,1) =
pci(1,2) =
pci(1,3) =
pCi(|:1) =
pci(2,1) =
pci(2,2) =
pci(2,3) =
pci(2,1) -
pci{3,1) =
pci(3,2) =
pci(3,3) =
pci(3,4) =
pci{4,1) =
pci(‘lz) -
pci(4,3) =
pci(4,4) =

cont inue
return
end

dpli/det
-dp21/det
dp31/det
-dp41/det
-dp12/det
dp22/det
~-dp32/det
dp42/det
dp13/det
-dp23/det
dp33/det
-dp43/det
-dp14/det
dp24/det
-dp34/det
dp44/det

---------

-----
-----
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Appendix E
°® Optimization Teat Case Output.
A test case was run to determine the required changes in an initial set of control
parameter necessary to reach an stationary value for the Performance Index J. The
® specific input deta with the resulting output are given below. For purpose of

e

demonstration, two iterations are shown here. An option does exist for n iterations or
until & certain predetermined convergence value is reached. Convergence is set at 001
radians or 037 degrees and is reached in two iterations.

ek

Case Tested. The case (depicted by Figure 2.4D) is chosen ss the test for the
search scheme performance demostration. The following are the input data:

e

® 'Y - 20 du
i - 450
8 - 50
n - 00
¢
¢ - 00
PA - -9
. From the Figure 2.4C, the local maximum sppears to be about 53°. This is what is
expected from the search scheme. As is shown later in the next few pages, the
perspective provided a very good estimate of where the sctual maximum is located with
the initial conditions given to within .3 degrees. This is not always the case since
° pinpointing the maximum from the figures is limited to the amount of divisions in the
two variables 8 and PA. However, increments of 5 degrees is sufficient to make s good
initial guess with. This is strongly exemplified by the test case which follows:
[
o
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@ NOTION 1IN THE NON-ECLIPTIC PLAME TEST CASE
f SYSTEN IS AS FOLLOWS:
ie ORBITAL PARANETERS: a (DU) = .2000000000e+01
i (DEG) = .4500000000e+02
tp (TU) = .1777153175e+02
J ORIENTATION: eta (DEG) = .0000000000e+00
s chi (DEG) = .0000000000e+00
.. CONING ANGLE: theta (DEG) = .5000000000e+02
L PHASE ANGLE: pa (DEG) = -.9000000000e+02 f%
43 ‘4
3 J
: Uector C [1x4] ]
.‘_ 0000180033 .0000000000 .0000000000 .0000000000 éi
r For k = 1, MNatrix PUR [4x4]
- .6597125567e-05 .0000000000e+00 .0000000000e+00 .0000000000e+00
.1836356003e-04 .2719543322e-05 -.2156446749e-05 -.3691114090e-05

@ . 1795098150e-04 -.2140999434e-05 -.3811105779¢-05 .6321384922e-05
.1798084043e-04 -.3697125027e-05 .6322957922e-05 -.6323023559e-05

K ' e e e e
., Lt Tt
PO ."'A.‘ N DRSNS

For k = 2, MNatrix PUB [4x4] ]

Py .3007931771e-04 .0000000000e+00 .0000000000e+00 .0000000000e+00
.1836358803e-04 -.2719543322e-05 .2156446749e-05 .3691114090e-05

.1795096150e-04 .2140999434e-05 .3811105779e-05 -.6321384922e-05

. 1798004043e-04 .3697125027e-05 -.6322957922e-05 .6323023559e-05

RIS [
Ao . L

| ¢ Matrix DIFF [4x4]

-.2426219214e-04 .0000000000e+00 .0000000000e+00 .0000000000e+00

1 .0000000000e+00 .5439006644e-05 -.4312897499%e-05 -.7382226181e-05 N
.0000000000e+00 -.4281998867e-05 -.7622211558e-05 .1264276964e-04 N

IS .0000000000e+00 -.7394250055e-0S .12645915684e-04 -.1264604712e-04 -

AR " A
e "‘L'J L‘ T ¢

Matrix PC [4x4]
.24268219214e-03 .0000000000e+00 .0000000000e+00 .0000000000e+00
.0000000000e+00 -.5439086644e-04 .4312097499e-04 .70382226181e-04
.0000000000e+00 .4201996867e-04 .7622211556e-04 -.1264276904e-03
.0000000000e+00 .7394250055¢-04 -.12645915684e-03 .1264604712e-03




Deterainant = -.0000000000000002688581996524702033557475

Natrix PCI [4x4]
.4118244325¢+04 .0000000000e+00 .0000000000e+00 .0000000000e+00
.0000000000e+00 .5734031325e+04 .1335738514e+05 .1000663821e+05
,0000000000e+00 .1333372413e+05 .1114219114e+05 .3355638616e+04
.0000000000e+00 .9960849403e+04 .3331900100e+04 .5412247616e+04

Uector C [1x4]
.1800333992¢-04 .0000000000e+00 .0000000000e+00 .0000000000e+00

Uector DEL {rads) [1x4]
. 7414215246e-01 .0000000000e+00 .0000000000e+00 .0000000000e+00

Uector DEL (degs) [1x4]
.4248032420e+01 .0000000000e+00 .0000000000e+00 .0000000000e+00

This is the end of the INITIAL LOOP.
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Ne ITERATION = 1
g SYSTEN IS AS FOLLOWS:
( ORBITAL PARAMETERS: o (DU) = .2000000000e+01
' i (DEG) = .4500000000e+02
TP (TU) = .1777153175e+02
ORIENTATION:  eto (DEG) = .0000000000e+00
chi  (DEG) = .0000000000e+00
CONING ANGLE:  theta (DEG) = .5424803242e+02
PHASE ANGLE PA  (DEG) = -.9000000000e+02
Uector C [1x4]
0000016595 0000000000 0000000000 .0000000000

For k = 1, HMatrix PUR [4x4]

-.17317446303e-05 .0000000000e+00 .0000000000e+00 .0000000000e+00
.2037513774e-05 .3816550277e-05 -.2443709575e-06 -.3230390882e-05
.1616555716e-05 -.2273911104e-06 -.3951553218e-05 .6356393714e-05
. 1657456677e-05 -.3236146472e-05 .6358264047e-05 -.6358342092e-05

For k = 2, HNatrix PUB [4x4]
.1230272911e-04 .0000000000e+00 .0000000000e+00 .0000000000e+00
.2037513774e-05 -.3816550277e-05 .2443709575e-06 .3230390862e-05
.1616555716e-05 .2273911104e-06 .3951553218e-05 -.6356393714e-05
.1657456877e-05 .3236146472e-05 -.6358264047e-05 .6358342092e-05

Matrix DIFF [4x4]

-.1962017541e-04 .0000000000e+00 .0000000000e+00 .0000000000e+00
.0000000000e+00 .7633100554e-05 -.48687419150e-06 -.6460761764e-05
.0000000000e+00 -.4547822207e-06 -.7903106436e-05 .12712768743e-04
.0000000000e+00 -.6472292943e-05 .1271652809e-04 -.1271666418e-04

Matrix PC [4x4]
.1962017541e-03  .0000000000e+00 .0000000000e+00 .0000000000e+00
.0000000000e+00 -.7633100554e-04 .48087419150e-05 .6460781764e-04
.0000000000e+00 .4547022207e-05 .7903106436e-04 -.1271276743e-03
.0000000000e+00 .6472292943e-04 -.1271652809e-03 .1271668418e-03

E-4 !I
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Deterainant = .0000000000000000109809814800276459134665

Matrix PCI [4x4]
.5096794392e+04 .0000000000e+00 .0000000000e+00

.0000000000e+00

.0000000000e+00 -.1092792724e+06 -.1579012964e+06 -.1023329720e+06
.0000000000e+00 -.1573479727e+06 -.2481494526e+06 -.1681319044e+06
.0000000000e+00 -.1017271824e+06 -.1677608467e+06 -.1081826908e+06

Uector C [1x4]
.1659530858e-05 .0000000000e+00 .0000000000e+00

_ Uector DEL (rads) [1x4]
.8458287572e-02 .0000000000e+00 .0000000000e+00

Uector DEL (degs) [1x4]
.4846241798e+00  .0000000000e+00 .0000000000e+00

.0000000000e+00

.0000000000e+00

.0000000000e+00

This is the end of the FIRST ITERATION.
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° ITERATION = 2
SYSTEM 1S AS FOLLOWS:
ORBITAL PARANETERS: a (DU) = .2000000000e+01 _
. i (DEG) = .4500000000e+02 ]
TP (TU) = .1777153175e+02 '1'
ORIENTAT | ON: eta (DEG) = .0000000000e+00 ]
chi (DEG) = .0000000000e+00 -
CONING ANGLE:  theta (DEG) = .5473265660e+02 B
® PHASE ANGLE PA  (DEG) = -.9000000000e+02 f]g
Uector C [1x4] 3
.0000000211 .0000000000 .0000000000 .0000000000 5
- 3
. For k = 1, Matrix PUR [4x4] S
-.8664624950e-05 .0000000000e+00 .0000000000e+00 .0000000000e+00 )
.4001748609¢-06 .3944497162e-05 -,1718988786e-07 -.3173732681e-05 =
-.2087678209¢-07 -.3857831379¢-10 -.3965840001e-05 .6356706917e-05 ]
.2105726398e-07 -.3179454671e-05 .6358611424e-05 -.6358690894e-05 ?
For k = 2, HNatrix PUB [4x4]
.1038993518e-04 .0000000000e+00 .0000000000e+00 .0000000000e+00
.4001748609e-06 -.3944497162¢-05 .1718988786e-07 .3173732661e-05

-.2087678209e-07 .3857831379e-10 .3965840001e-05 -.6356706917e-05
.2105726398e-07 .3179454671e-05 -.6358611424e-05 .6356690894e-05

Matrix DIFF [4x4]

-.1905476013e-04 .0000000000e+00 .0000000000e+00 .0000000000e+00
.0000000000e+00 .7868994325e-05 -.3437977571e-07 -.6347465762e-05
.0000000000e+00 -.7715662758e-10 -.79316680002e-05 .1271341383e-04
.0000000000e+00 -.6358909343e-05 .1271722285e-04 -.1271738179e-04

Matrix PC [4x4]
.1905476013e-03 .0000000000e+00 .0000000000e+00 .0000000000e+00
.0000000000e+00 -.76868994325¢-04 .3437977571e-06 .6347465762e-04
.0000000000e+00 .7715662758e-09 .7931680002e-04 -.1271341383e-03
.0000000000e+00 .6358909343e-04 -.1271722205¢-03 .1271738179e-03
Determinant = .0000000000000000298761559623690959863751




Hatrix PCI [4x4]

.5248032476e+04 .0000000000e+00 .0000000000e+00
.0000000000e+00 -.3878353975e+05 -.5176275317e+05 -.3238906549e+05
.0000000000e+00 -.5156189341e+05 -.8973109370e+05 -.6396766162e+05
.0000000000e+00 -.32168681292e+05 -.6384770652e+05 -.3990851931e+05

Uector C [1x4]

.2108361300e-07 .0000000000e+00 .0000000000e+00

Uector DEL (rads) [1x4]

.1106474857e-03 .0000000000e+00 .0000000000e+00

Uector DEL (degs) [1x4]

.6339633946e~-02 .0000000000e+00 .0000000000e+00

.0000000000e+00

.0000000000e+00

.0000000000e+00

.0000000000e+00

b2 2222222222322 3233232232232 2232223222222 3222323223322 32 2dtds

t 2213+ 233 3333222223333 3233322323223 323222222233 322 2222222222222 322222t

FINAL SYSTEN IS AS FOLLOWS:
ORBITAL PARAMETERS: a (DU)

i (DEG)

tp (TU)

ORIENTATION: eta (DEG)
chi  (DEG)

CONING ANGLE: theta (DEG)
PHRSE ANGLE pa (DEG)

.2000000000e+01
. 4500000000e+02
AT77153175e+02
.0000000000e+00
.0000000000e+00
.5473899623e+02
-.9000000000e+02

This is the end of the SECOND ITERATION.
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RENARKS: This test case showed that when the search point
was initiated at theta = 50°, the search algoritha converged ot a
local moximus at theta = 54.73°. Froa Figure 4.2C, this can be
visually verified. The close agreement between the perspectives and
the computed maxisum gives strong credence in the method of search
and the utility of the perspectives in providing a good initial
guess. This last control vector set was inputted into the DELTA A
function to verify the finding within the theta equal 54.7°. The
results are tabulated below for a fix inclination at 45°:

THETA DELTA A (x 10~% Du)
54.0 1.272 129
54.1 1.272 170
54,2 1.272 205
54.3 1.272 233
54,4 1.272 256
54.5 1.272 273
54.6 1.272 2064
> 54.7 1.272 269 «--
54.8 1.272 268
54.9 1.272 201
55.0 1.272 269

The search scheme is more accurate in pin-pointing the exact maximum
coordinate. The coordinate is essentially the control wvector set
that would optimize the change in semi-major axis. HNote, however,
that other maxima do exist and can easily be located with the aid of
the corresponding perspective and /or with the search algoritha.
Care must be excercised shen doing so; the perspectives give the
angular momentua orientation angles as zero degrees. The search
algoritha will find maxima without holding these angles fixed. All
variagbles are incresented. Plotting the perspective for a
particular output will provide an extra dimension in locateing and
verifying the cosputed maxima.
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