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Abstract

This study 'addresses the maximization of the circular orbit radius of an earth-orbiting
solar sail under free coning motion. The objective is to find the optimal sail settings

producing the most change in the semi-major axis per orbit. Angular orientations vith

respect to sai nutation. precession. mean motion, and its angular momentum control
the magnitude of the solar thrust along the sailcrafts velocity direction. A numerical
search scheme uses a modified Nevton-Rapson iteration method to identify sets of
control parameters meeting certain optimAaity conditions that produce a stationary
value in a selected performance index. Such;scheme displays its vulnerability to a lack
of a good initial guess. Three dimensional perspectives of the small perturbation
equation describing the behavior of the change in semi-major axis facilitates the
understanding of its cyclic nature and provides an excellent tool for identifying the
various locations of possible maxima (and minima) as veil as slope-critical area. The
perspectives improves the initial guess for implementing maxima search schemes. A
test case demonstrates the location of particular points of interest with few search

iterations. 1 .-
' .. )

• 'I
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I. Introduction

1.1 s..afin&

TIheConcet. Solar Sailing is a method of propelling an object through space
by the use of solar radiation pressure. Isac Newton formulated the equations that
makes this method realizable and most feasible. Pressure acting on an area equates to
some resultant force (force - pressure i area) vhich. if not acted against. vould
produce some type of motion in the direction of that force (force - mass x acceleration).
One can think of solar sailing as "sailing with the sun". Studies accomplished in the
past have shown it to be a most economical method of interplanetary travel. The key to
this economy is in the nature of its propulsion system.

The Propulsion S .The basic propulsion element in a solar sail system is
a highly specularly reflective mirror-like surface that creates the thrust by reflection

of sunlight. The physics of converting photon energy to spacecraft motion is simply
this: the solar radiation pressure results from changes in the momentum of incident

photons on the sails reflective surface. The higher the reflectivity (i.e.. lover
absorbtivity) of the sail, the greater would be this momentum transfer. The pressure
on the exposed sail surface area constitutes the "thrust" on the vehicle vhich produces
the motion (see Fig. 1.1). This force acts to increase or decrease the sail total energy.
This change in energy allows the use of solar sailing as a means of space travel.
Controlling the angle of incidence of the incoming solar raditsion (photons) amounts

to controlling the direction of this resultant force.

" 1
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..... i........ :i t~fit
liftorc e

photons
from sun .....

...................... ) .. ... .. ... . .. ... Irag-1i

__ _ _ _ _ sail ...--- ,-,., "

Fig 1.1: Force Vector Diagram

The Cnirs Systm The only control parameter in a solar sail propulsion
system (vith constant sail surface area) is the "setting angle" of the sail i.e., the angle
between a unit vector normal to the shady side of the sail and a unit vector in the
direction of the sun as shovn in Fig. 1.1. The effect of a change in this setting angle is
a change in the direction and magnitude of the resultant solar thrust (force). Since
the sail changes its orientation with respect to an inertial frame from vhich the
orbital parameters are referenced, this control or setting angle is usually described by
a set of orientation parameters.

1.2 Maxiizig £k hiiMir_&

IolaI nerm hnnoAc. In order to increase the semi-mjOr Alis a. the total
energy (kinetic plus potential) of the sailcraft must be increased from the energy of
the original orbit to some higher energy level. The rate of energy increase is equal to
the rate that work is done on the sailcraft by the thrust produced by its propulsion
system (solar sails themselves). It may seem advantageous and optimal to direct the
thrust such that the rat of work done on the sslcraft is always at or near ma imum.

2



This is not necessarily true. For circular orbits, m g the semi-major axis is
essentially maximizing the orbital radius. For small perturbations, this assumption is

valid. Maximizing the rate of energy increase is realized for this sailcraft vhen the

thrust component in the velocity vector is maximized. Analyses have shown that the
* orientation of the sailcraft's orbit with respect to the earth-sun line determines the

maximum posible rate of this enrgy increase. ( Ref: 41 All strategies to increase the
semi-major axis are indeed energy increase strategies.

1.3 Problem Statment

A Solar sail being in a photon rich enviroment inevitably experience a perturbational
force which affect the orbital characteristics. These effectss are indeed dependent

upon the sails orientation vith respect to the solar radiation source. To effectively use
the resulting thrust created by this radiation pressure to provide changes in the orbital
parmeters, the orientation must be knovn. Random orientation will result in random
orbital parameter changes. For space travel, interest lies in the maximum changes in

orbital parameter the semi-major axis. Certain combination of solar sail setting angles

can provide the best change for a given cost parameter .... be it travel time or the
number of revolutions to acquire a desired change.

1.4 Obinive ad Scoe.

4. The objective of this study is to determine what set of control angles would provide the
optimal change in the semi-major ais of in eart-orbiting solar saflcraft. The scope

of this effort is to investigate the nature the perturbation of the semi-major axis and
determine, if any, the set of control parameters that produce the maximum change in
this orbital parameter in 2M revolution.

I4
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-.5. Solution ]4ethodolosy.

Ucaim. This effort incorporates the deserption of semi-major axis
perturbation function and the determination of conditions that maximize it. The

0 technique of dynamical systems optimization is employed a presented by Bryson and

Ho [Ref: 241

122b. This approach requires the identification of the perturbation function

and its corresponding surface foiloved by the construction of a computer program to

evaluate the sensitivity of the orbital parameters to smail perturbational forces and to

search for a set of control angles satisfying a given performance index. This index is

established as the "maximum change in semi-major axis per orbit.

1.6 Summarv o Reprt.

Section II provides some background information into the previous studies on
* 1solar sailing and related topics. Their results are summarized. A description of the solar

sail model used in the study along vith the basic and simplifying assumptions that led

to development of the solar sail coning phenomenon follovs. A short rationale for the

neglect of any shadoving effects is presented. The general perturbation equation

* derived by an earlier researcher is examined for a special resonance ce and is

evaluated for three distinct sailcraft motions: spinning, coning, and tumbling.

Section III discusses the use of surface representations of the perturbation

function As as a method to identify the regions of maxims and minims. The dynamic

system optimization that follows it bases its region-of-search on these surface

representations. The approach to the solution via the gradient method Is presented.

Section IV provides an insight into the nature of the perturbation equation

by graphicaly portraying the surface of the perturbation function. These surfaces

represent the function's behavior from a three-dimensional perspective at critical

setting angles and provides the best initial guess for the search scheme.

4



* SectionV presents the conclusions dawn from the entire effort. It includes
the lessons learned and suggestions fr further study.

*The Appendices provide a detailed look at the eclipsing (shadoving)
phenomenon(Appendix A) along vith a rationale for employing the numerical
technique in lieu of the analytical (Appendix B). The Fortran Programs used to
generate the numerous surfaces and to determine the optimum control settings are
included in Appendix C and D, respectively. Appendix E provides a sample output of a
tasu cas to show the search mechanism using the Stirling approximation technique.
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2.1 Previous Efforts

There have been several studies in the past that have placed interest in the solar
sailing concepts and in the solar radiation induced orbital perturbaion of space
structures. Studies in the solar sailing concept tend to deal vith space travel and the
determination of control lavs to provide optimum changes in orbital parameters such
as semi-major axis and inclination to attain escape from a planets gravitational field.
Studies in the orbital perturbation due to solar radiation have generally employed
numerical and expansions techniques to determine orbital motion due to the
"formidability" of multi-first order, nonlinear coupled differential equations.

Tader. [Ref: 181. is considered the "father" of solar sailing. His serious
investigations of the solar sail problem for spaceflight demonstrated, in principle, the
feasibility of making interplanetary flights vith the aid of solar pressure.

solar sail (furled)

O earth-3on ln

solar sail \ earth
sun orbit!:-\.

solar sail (unfurled)

Fig 2A: Furling/UnfurLing Method
Ilef: 5I"

6
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(direction of motion)

p.%

Sun sailcraft "-I

(with sail set for approaching sun)

Fig. 2.1B: Optimum Angle Orientation

[Ref: 51

Garvin [Ref: 51. whose work in establishing the concept of solar sailing as&

practical means for space vehicle propulsion, considers the "furling and unfurling

technique to increase the altitude of a sailcraft and escape the earth's gravitational

field. Figure 2.IA shows this method. The objective is to maxmize change in

semi-major axis as the sailcraft travels away from the sun and to minimize the change

as it approaches the sun is the apparent rationale for this approach. This study states

that an optimum tilt angle is S x35" for maximizing the semi-major Axis. From figure

2.1B this angle viii result in the largest thrust along the velocity vector (i.e.. along the

direction of motion).

Ejani. (Ref: 41. analyzes the use of solar sails for an earth escape trajectory

from a circular orbit using the maximum time rating energy increase approach.

Trajectory analyses for two different orbit geometries (see Figure 22) reveals that

orbits parallel to the solar radiation (Orbit A) results in a radical orbit eccentricity

change. Orbits normal to the solar radiation (Orbit B) result in a slowly changing orbit

eccentricity or quesi-circular trajectories. Hence. Orbit B enhances the change in

orbit semi-major axis; launching into this orbit is. however, a difficulty

to 7
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Fig 22: Orbit A Geometry
0 [Ref. 41

sunlight
______T +-edge view

of circular orbit
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line 1 Earth--*'

Ir lar sil

Fig 2 25: Orbit B Geometry
Met: 41
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• ak. [Ref: 151 studied the similar use of solar sails for escaping the
gravitational infuluence of a given planet employing the total energy change

approach. Results shov that placing the sajlcraft in an initialy circular orbit

spinning at a rat W - 1/2 period constitutes an inefficent escape maneuver. An

alternative suggested vas an elptical orbit vith energy level as the original staring

orbit.

Cotter. [Ref: 271, introduces a very important number called the "lightness" of
the sail. This lightness is the ratio of the maimum solar radiation pressure force to the
solar gravity force on a given sailcraft. Since these two forces are functions of the

inverse square lav in vhich its value varies inversely as the square of the distance
from the sun. this ratio independent of this ,Ustance from the sun. This makes this
ratio uniquely a directly proportional measure of the inertia of the sailcraft (i.e.. the
larger the ratio, the greater the acceleration of the ailcraft).

This study discusses the feasibility of solar sailing and demonKrat it application for
interplanetary travel. Travel limitations are in time and temperature. The
temperature limitation (operating temperature envelope of the sailcraft) dictates a

4 prudent use of near-sun trajectories: the time limitations restrict planetary travel to
the nearer portions of the solar system. The advantage of having unlimited "fuel"

supply makes this solar sailing concept most promising.

I-
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London. [Ref: 121. provides some insight into the motion of a solar sailcraft
with constant sail settings. The study employs the logarithmic spiral trajectories as a
solution and concludes that it (solution) is not optimum. It encourages the use of other

trajectories for more efficient sail utilization.

T. [Ref: 191. evaluates the neccessity and importance of low mass to are&

ratios for solar sail design along vith the travel time and optimization of the sa tilt

0 angle 0 for interplanetary trips with minimum time as a constraint. The optimum sail

setting for such application is found to be dependent upon the acceleration C( of the

sailcraft (due to radiation pressure acting on the sail area) and the sun's gavitational

acceleration at earth's orbit.

The time of travel between radii r. and rf is

t (1/3 I(r. 3/2 _ rf 3/21 * j(aC/ - cos 30) 1/21 (21a)

ro r0 0/2 J sing cos2 0

where ro - initial orbit radius.

rf - final orbit radius.

* Oso - sun's gravitational acceleration.

C( - sailcraft acceleration due to solar pressure.
0 - angle of incidence.

For shortest time,

d { (/C - cos 3e),J - (2.1.b)
d9 sing Co929

from which the optimum tilt angle 0 opt can be found. Tsu plots this out and finds that

for a0- 0. the optimum tilt angle 0 is approximately 350 . This is the same result found

by Garvin IRef: 51.

10
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VanM lh M di. IRef: 21A have done the most extensive analytical studies
of orbital perturbation caused by solar radiation. This study considers a more realistic

solar radiation model (than the model presented in section 22) and analyze three special
orientation cases with a) fixed angle vith respect (vrt) to the solar radiation source. b)

fixed angle vrt an i&gn.UL&= and c) a general fixed orientation vrt the earth.

sailcrat:
liearth-sun orbit

switch on ( ".

'earthl

• ,/switch off

Fig. 2.3: Switching Points Configuration
[Ref: 21A]

In another study [Ref: 21C). these same authors employed on/off switching strategies to
increas the semi-major axis. Such strategies involve instantaneous switching controls
which in effect turns the solar pressure force off during certain parts of the orbit. The
strategy calls for "switch-on" when the sallcraLft is (roughly) near the earth-sun line

(point 1) and "switch-offr at (point 2) as shown in Figure 2.3 (circular orbit shown).

Although instantaneous on/off switching may be technically impractical. it is

theoretically effective in the sense that the rate of change of the total energy is always
positive during the on-phase since the component of the perturbing force along the

instantaneous velocity vector is positive.

11



Inak~ia. [Ref: 101. is the only individual to date vho has explored the behavior of

the coning solar sail. The coning motion of a given sailcraft greatly affects the

magnitude and direction of solar radiation pressure force. His study generated the

perturbation algorithms that determines the changes in orbital parameters (a, e, i, Q) as

a function of specified sail setting angles vhich relate the sailcraft orientaition vith

respect to an inertial frame.

A
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2.2 ConingAd

Solar Sadl Model. In general. a solar sailcraft must meet one critical
criterion before it can literally "sail anywhere. The mass-to-area ratio is this critical
parameter that must be established. It is the ratio of the total solar sail area to the total
mass of the sailcraft (sail + structure + electronics + payload). Studies have shovn that
the mass/area must be very low. This is quite apparent from the equation for
acceleration due to solar measure. The solar acceleration due to solar pressure is
expressd as

(X solar pressure -P 0 A/M (2.2)

vhere p0 - solar radiation pressure at earth's orbit radius.

A -Area of Solar sad and M -total mass of solar sailcraft.

aX=body spin rate
4 L W = angular velocity

Fip.4lolaSalMoe

[Ref: 101

13



Typical values for p. is about .9 x 10- 4 dyne/cm 2 . For any appreciable amount of

acceleration for space travel. A/M must be high (or its reciprocal M/A be very low).

This essentially requires that sail area A be much larger with respect to the sailcraft

mass. [Ref: 191

The solar sail model used in this effort is modeled as a perfectly, specularly reflective

(both sides) thin, flat rigid plate as shown above in Figure 2.4. Recall. a highly

specular surface means that all incident photons are reflected. Hence, the solar sail is

assumed to have a reflectivity of 1.0 which implies that all incident radiation is

converted to thrust. Having both sides with the same sail characteristics means that all

surfaces exposed to direct solar radiation will be contributing to the overall thrust of

the vehicle. The A/M ratio for this model is assumed large enough to make its design

feasible for solar sailing.

Basic Assumptions. The basic assumptions made in the course of this effort anu

in the development of the perturbation solution which follows are enumerated below

categorically:

A. For satellite motion it is assumed that,....

I. the solar sailcraft is initially injected into a high altitude circular

orbit;

2a. the gravitational field is central;

3a. perturbations to the central force gravity field due to oblateness and

the gravitational effect of other celestial bodies (e.g.. moon, sun)

are neglected; also neglected are any magnetic distorbances.

4a. the solar sail motion is torque-free; therefore, the angular

momentum H is conserved.

5a. the angular velocity vector is not necessarily colinear with the

14
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angular momentum vector R:

6a. for any orientation. d6/dt 0-. nutation angle 0 - constant:

7a. for any orientation. dV/dt - 0- precession rate V - constant
Ba. orbit plane is considered inertial;

9a. perturbaional changes are small. and

l0a. the body spin rate C is large enou~h for spin stabilization.

B. For the solar sail it is assumed that....

lb. the spinning solar sail is in axi-symmetric rigid body vhose
sail surface does not deform under loads;

2b. the solar sail surface characteristic are essentially homogenous
and time invariant;

* 3b. the solar sail is perfectly specular reflective on both sides and
4b. the mass/ares ratio (( 1.0.

C. For solar radiation, it is assumed that....

Ic. reflection of earth surface is neglected: the sun is the only source
of radiation; and

2c. no shdoying or eclipsing of sailcraft occurs. This is due to the
high altitude and the inclination of the orbit in case.

15



Inznne-Fr MoUlaa d thl QoniA 2hAmna. This section considers the

torque motion of the solar model which is axis-symmetric and has a principal Moment

of Inertia [A A' Cl vith A' along the symmetric body axes and C along the b3 axis

o perpendicular to the plane of the sal. The general equation of torque-free motion is

X MEr = dH/dt = 0 (2.3)

since (by definition) Torque-Free moment U equals zero. A must be constant in both

direction and magnitude; i.e..

H - Ho  (2.4)

• where Hois the initial angular momentum of the sailcraft about its center of mass

(which is assumed to coincide with its geometric center). The direction of A is fixed in

inertial space and can. therefore. can be arbitrarily referenced to an inertial frame.
* Figures 2.5A & 2.5B depict this solar sailcraft vith respect to three different reference

frames: [Ref: 21

a) BodyFixedFrame: (bI b2 b3)

b) Orbital (inertial) Frame: i j k)

c) Body-Centric (inertial) Frame: (T j R)

16
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Y=precession rate K. k
CK pnrate -

Sanl

/da

/ Orbit Plane

Sun'

Fig. 2.5A: Reference Frames

* ~~~~Orbit Plane ________

Fig. 2.3B: Coning Angle (8) Orientaton

Using the same angle notations as found in [Ref: 101 H 0can be expressed in terms of

Euler angles as follovs:

A = HO sin8 sinxt b * HO sinS cosxt b2 Ho cosB b3  (2.5a)

17 -



However. for principal axis. this s* quawe (by definition) to the foiloving expression:

aO Aw 1j b1  A' b2  w b3  (Ref: 91 (Z.3b)

where A'A' Cl ane the Principal Momntsof Inertia. In matrix notation, this can be

expremad readilys follows:

H0 sinO sinct b A ibI 1 (2.6a)

H0  HO Hsin cosat 1 b21  A'b2 1 b21 (.b

H oteB b3  C b3 j b3  (2-60

Equating term per term and solving for the angular velocity about, each body axis.

-, Hosin~sinxft -d 1Hsing slnat (2.7a)
A' dt A' l

- H2 sinG sinxt -1 -jb d 1 0 sinO osxtl (2.7b)
A* dt A' I

H,33 !os2O db3  I f!!os~lI0 (2.7c)
C, dt LCI

The Euler equations for dynamical motion (as applied to this sailcrafL) awe given as

follows: [Ref: Ill:

XMb1 A'()b (A'-C j 62 a 6  (2.9a)A

EM b2 A' LbZ - (C - A') Wjb3jb 1 0 (.b

EM b3 -Cb 0 0 (2.3c)

18
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Applying the respective values for the time derivatives of the angular velocities, the

remits are as follows.

A' d H. sing sinat , (C" - A) Ho2 sing cos0 sin(t 0 0 (2.9s)

dt A' A'C'

A' d H singcosOt+ (A-C') Ho2 singcossinat (2.9b)
dt A' A'C*

A' dH o Cog .0 (2
dt C

From Equation (2.9). the derived conclusion is that Ho(Cos8)/C'- Constant hence.

6 = 6o  = constant (Z.1)

since Ho and C'are established as constants. Hence the nutation angle or the coning
angle remains fixed.

0
Using this fact in Equation (2.9b) and carrying out the differentiation, the result is as
follows: The magnitude of the angular velocity is .....

- (A -C) Ho cos o  (.1)
A'C

from vhich is knovn that (recall. the Moment of Inertia term and Ha are constant)...

a = the body angular velocity - constant. (2.12)

The precession is found from the components of the angular velocity about body axis
b3. This happens to be (as reference from Figure 2.5A)

W = + Yn s9 = HoO8/C (2.13)

19



Solving for V (vith 0 as expresed above), the result is

SH/ A' -conslat (2.14)

Fig. 2.6: Velocity Vectors

Solving for the total angular velocity ( is the vector sum of and i (see Figure 2.6).

0

and would be at a set angle C from the R direction. Vith ( (precession rate) fixed

along R direction and F (body spin) fixed along body b3 direction, this phenomenon

displays the vector 6 as "sweeping out" a cone. The resultant motion of this

axis-symmetric rigid body in vhich the angular velocity vector @ is not colinear with

the angular momentum vector H is known as "coning". This behavior is shown in

Figure 2.7.

20



Fig. 2.7: Coning Motion

• [Ref: 2.101

The coning angle (as referred to in this text) is 8. It. too. displays the "sweeping" cone i
phenomenon. This is easily seen with a projection of the body b;3 axis on the IJ plane.

axis at a rate V. the prcession rate.

21
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sail-

Dprojection 4

Fig. 2.3: Precesio
M~et 2.91
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The Orientation Ages (8 n .6* The coning eagle 8 (as discussed

previously) is the angle between the angular momentem vector Hand the Solar Sadl

o body b3 axis [Ref: Fig. 2.5B]. The Angular momentum vector R is referenced to the

orbital plane via angles 11 and as shown in Figure 2.9A below:

ijk Orbital Inertial
1,11 Body-centric Inertial

Orbit
Plane----

Sai

Fig. 2.9A: Ti and Orientation

[Ref: 101

The I JK Frame is defined to be sail body-centered with the T axis in a plane
perpendicular to the orbital plane. This study refers heavily on the difference

between two phase angles,. and 4.This difference, suitably clled PA. equals 04

PA .- ,(2.16)

23



1. AaUk references the solar thrust components in the OWdirections (U a

o raial. V a tangential, and V a normal) to the Orbital Gij k) Frame. Angie * then fixes

the initial position of the sailcraft in its orbit. At 0 0 the sailcraft vill be initially

between the earth and the sun for ectiptic motion or in a plane perpendicular to orbit
plane and laying in the earth-sun line.

2. Angle & denotes the phase of the Body (blb2b3) Frame's precession about

the angular momentum vector R to the Body-Centric (IJK) Frame. These are shown

below in their respective coordinates orientation Figures 2.9B and 2.9C.

*Phase Angle
n Mean Motion

k t reference time
* OVW Acceleration Comp

ijk Orbital Inertial

Orbit---

Sun tot

Fig. 2.9B: Angle * Orientation
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4'Phase Angle
- 0 Coning Angleb3  v Precession Rate

9 ijr Body-centric Inertial
to reference time

Sail ......
..( . .... . ........

.. ..... ...
to ..... ..... .. ..... .

Fi. .: nl....rienat.o

nYt-t) t al 1

to

w ~Fig. .9: Angle (*4)Orientaion

45Wih,8 1 ',te 10*)anleca e es senfo udrsanin 25i

done n Fiure .9D elov



. o

2.3 Sha iQrE~1insiaLE[!td.

Eclipsing or shadoving of the solar sail was not considered in the formulation of the

perturbation solutions. Investigation of this shadov phenomenon lead to the conclusion

that for a given orbit inclination and altitude. shadov effects can be ignored. From a
general geometrical perspective. one can safely conclude that shadowing will occur if

the orbit lies in the ecliptic (earth-sun) plane. This is theortically true. The interesting

question is this: At vhat orbit inclination and altitude is shadoving a problem? Stoddard

(Ref: 25) evalutes this phenomenon and arrives at a set of equations that determine the...

a) minimum inclination before shadoving effects can be considered dominant

and b) the altitudes a satellite must be at to avoid shadowing.

Fixler (Ref: 6) circumvents this entire issue by studying solar sailing at orbits
perpendicular to the ecliptic plane. This approach surely removes any uncertainties of

shadow effects completely. Solar sails, as dependent as they are to the amount of

incident radiation for propulsion, can be so placed in an orientation that minimizes this

eclipsing phenomenon.

Figure 2.10 below shows the shadow and no-shadov situations. From this. one can state

that there does exist some physical limit to the shadowing. Stoddard explains and

develops a method to analyze this situation. He presents his arguments using the

cylindrical shadow theory and concludes that the critical inclination for a given orbit

radius is...

C , cos I [ Re/Rsj (2.17)

Stoddard claims that for

Rs < Re csc i = an eclipse will take place. (2.18a)

Rs > Re csc i = an eclipse will not take place. (2.18b)
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His arguments on this issue, along vith a determination for the duration of shadowing (if
any). are provided in Appendix A. The results are interesting. They shov the

comparison of a system vith and vithout shadov effects accounted for. The bottom line is
this: For lov-earth orbit solar sails vithin the shadov limits, shadoving effects are
dominant and must be considered. By increasing the orbit inclination and the altitude, a

satellite can circumvent this shadoving. This shadoving phenomenon and its effects
* are circumvented in this study by employing non-ecliptic planes and orbit altitudes

beyond the shado regime. With this understood, the tasks of analyzing solar sal
behavior in a photon rich environment is pursued here.

Ssun

(Ref: 261
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24 42.4 GerlPerturbation EauM/3on.

otnujiu Lork. This study continues the work initiated by Jenkins (Ref: 10)
on the study of the "Orbital Motion of Coning Solar Sails" in which he succeeded in

developing a set of algorithms for determining the perturbations in certain orbital

parameters (a, e i.0 ) as a function of the solar sail settings. These solar settings are

just the ore. Uo angles (8, 1, C, -*) of the solar sail with respect to the solar

vector S Since them setting angles control the behavior of the solar sailcraft. it was of

particular interest to determine what angle (s) is/are dominant in producing the

greatest changes in the orbital parameter(s) selected. This set of algorithms was

derived from the Lagrangian Planetary Equations and are presented below in a more

modular fashion than found in [Ref: 101.

Perturbation Eouations.

Aa J (da/dt) dt (2.19 a)

Ae = (de/dt) dl (2.19b)

10
Ai = (di/dt) dt (2.19c)

A J= (dQ/dt) dt (2.19d)

For circular orbits (e - 0). the Langrangian Planetary Equations reduce to the

following:

28



gda /dt LD (b 9 (2.20a)

*de/dt D (64 og)2(b6.Ae) sin f + 2 D R3 E0V)Cos fi (220b)

na

di/dt, D 3o (2.200

na

d~t=D (b3  2 w Sin f (2.20d)

na si

with D =Sail constant - 3k Ag/rn
f -true anomaly

93- body vector E3 expressed in orbital reference frame

.adot product

-solar vector (direction of sun)

(UVW) -(Radial. Tangential. Normal) components of thrust per unit mass.

QnTotln~ Resnac PerturaLin,. In the context of this study. the
one-to-one resonance occurs vhen the mean motion of the satellite about its planet

29



equals its precession rate about it angular momenim vector H. If the integration in
Equation 2.19 is taken over one orbital period with the orbital motion (n) equal to its

precession rate (V). the foloving expressions result:

1) Aa = a 'SDTP/iD [da1 + da2 + da3 + da4 + da,+da6j (2.21)

vhere

r da 1 = D,2 ([2+3P4) cos(*-*) - (311+P5) sin(*-*') I (2.22a)

da2 = '4 D1 D2 [([2-P4) sin(O-,) + (P5-P I) cos(- y) I (2.22b)

da3 M 2 D1 D3  P p6 cos(*-*) + P3 sin(+-*4) 1 (222)

da4 = 2 D D3  P p3 cos(*-*) + P6 sin(*-*) I (2.22d)

da5 - '4 D2 D2 I (3P2+P4) cos(-4') - (P I +3P5)sin(*-) I (2.22e)
• da6 = D3 2 (02 +P4) cos(*-w) - (P 1 + P5) sin(*-*p) ] (2.22f)

( 2) Ae = a D TP/8Si [de+ de 2 +de 3  de4 +deI (2.23)

where

de = D 2 [ -P3 sin(2(*-*)) P [6 (6 + cos(2(*-*))) I (2.24a)

de 2 = 2 D, D2  P P3 cos(2(*-*)) + p6 sin(2(*-4s)) I (2.24b)
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de3  2 D1 D3 [(p2+4) cos(2( -))-(p 1 +P5) sin(2(*-*)) 6 P4)1 ] (224c

do4 - 2 D2 D 11[2+4) sn(2(#-+))+(pjl+P5) cos(2(4+-4r))-605 I (224d) 2
do5 - 12 D3 2 6 224.)

3) Ai- ,'IDTP/2gi Idi, . di2 J (225)

vhere

di, - 2P8 D3 ID, cos(*-*,) + D2 sin(*-*0) I (226a)

di2 = 07 D (D, 2+75 (D2)2+ D3 2) sin(*-*) +.5 D D. cos(4-) ( (226b)

4) = a'4 DTP 1(21i sin i) Idgn da 2j (2.27)

vhore

d, =P 71(.25 D12 +.75 D22+ D3
21 os(4 -.)5 D D sin(* - )1 (22Ma)

dO2 - 2P8 D3 [D, sin (4 - D2 cos(* *); (22Sb)

The other parameters we a follovs:

DI - sin 8 co s cosi (229a)

D2 sin8 sinh coscosi + sin8 siniq sini (22b)
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D3 - coso8 sine sin 7cosi cos8 cos1 sini (22c)

and

p1- sin6 cosC (2.30a)

P2 - sine sinC cosil (2.30b)
P3 - cosO sine sial (2.30c)

P4 - sine sinC (2.30d)

P5 - sine cOSTy (2.30.)

06 - cosO cosC sinq (2.30f)

07 - sinS sinqj (2.30g)

P8 - Cos6 cos1 (2.30h)

It is quite evident from the above equations hov the coning angie 8, along with the

orientation angles (11 , , - can control the changes in each orbital parameter

z.ei. and 0. Judicious choice or these angles can lead to maximum changes in orbital

sat parameters.
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Spcia f&e. Jenkins [Ref1010 derives certain conclusions with a solar sal

system vhich is in one-to-one resonance and vhose motion is in the ecliptic plane.

That analysis shovs that there exist unique certain sail setting providing maximum

* changes in the semi-major axis in each of the three cases belov:

a) spinning

b) tumbling

c) coning

By singularly varying the sail setting angles in the perturbation equations (221 -

2.30) the condition for maximum change in semi-major axis can be graphically shown.

This fact is later shown from a three dimensional perspective.

Soinning Case. The solar sail assumes a strictly spinning orientation

vhen the coning angle 8 equals 90 degrees. There is no "coning" behavior. This

configuration is shown in Figure 2.11. For motion in the ecliptic plane (i -0) vith the

* angular momentum vector R aligned perpendicular to the orbital plane (I- ¢- 0).

this "spinning" orientation affords the most semi-major axis change. As vill be shovn

later, this is also true for a certain range of orbital inclinations (0" 1 i _ 45). At

inclinations greater than 45, the spinning orientation actually results in a decrease

in semi-major axis.

i K J1 0*

Earth sail

Motion in the Ecliptic Plane

Fig. 2.11: Spinning Case
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Tui fi a. This is the case where the angular momentum vector H

is parallel to i or j orbital plane reference components. With R parallel to the i orbital

axis, the solar sail experiences no change in any of the orbital parameters. This is the
case vhen the solar sail is parallel to the solar radiation and hence no resultant thrust

component is produced. With A parallel to the direction vector, the changes are in the

radial and normal direction. This results in changes in the semi-major axis and in the

inclination angles which are coupled via the * -W phase angle. The strong

implication is that conditions favoring a change in a vill also result is an

accompanying change in inclination (which can be unvanted).

Cning as. Coning occurs, when the sailcraft's axis of symmetry b3

is not colinear with the angular momentum vector R. Jenkins investigated this coning

motion with 8 - 45" and discovered the importance of the (* - 4) parameter in

controlling the magnitude of Aa. and that there exist trade off possibility between A&

and Zi. the resultant change is inclination. The nature of this coning action is further

investigated in this study.
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* III. DiScussion

3.1 Dynamic System Optimization.

Inala-ge. System- Bryson and Ho (Ref: 24) describe the single-stage

transition from some initial state x(0) to a now state x(l) via some choice of control

vector u(O) and a given Operating Function F" mathematically as .....

x(1) = FO [ x(O), u(O)J (3.1)

and schematically as ....
C

u(O)

0 (O) *M

Fig. 3.2: Flov Chart for a Single-Stage System

* [Ref: 241

vith a performance index of the form

J= I (1 L' X(O), u(O)] (3.2)

wher

x(O) - knovn state at initial time to. (n-dimensional)

u(O) - control vector (8, T, (, - 4) (m-dimensional)

z(l) - State at some future time t

L' (1- Lagrangian of the initial state
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The objective of an optimization problem leads to the maximization of this performance

index 3 . Bryson and Ho present an adjoined performance index J by adding (F6ii(O),

u(O)I - 1() 0 0)) to Equaton (3.2).

= I a(1 + V IX(O). u(O)] \TK(l) (F*Ix(),u(O)1 - x1i)) (3.3)

vith constant Langrangian multiplier AT(lI)

Introducing H"- L611(0). u(0)I + #T(I)F* 1 (0), u(O)J (3.4)

into equation (3.3) results in..

* 3 XO + *I ~HOIX(O), u(),()J -ATxMl (3.5)

The total derivative of j is expressed as

di = (a*_ \T(l)) dx10) +~ alH dz(0) .~all du(0) (3.6)

altl) aX(O) auto)

With the judicious choice of \T (1) WW3*e~(I). Equation (3.6) simplifies to the

foiloving:

aH air(3.7)
dJ - ~ dX(0) + - du(0)

altO) autO)
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where

H/AIx(O) u gradient of Ivrt x(O). holding u(O) constant and satisfying Equation (3.1):

and
0

aH'/au(O) . gradient of ivrt u(O). holding x(O) constant and satisfying Equation (3.1)

0 Optimization leads to finding a stationary value of J (i.e.. d'J -O) for a given initial state

x(0) and dx(0) - 0. Therefore, the stationary value of jis found if

d = aH/au(O) -0 (3.8)

* Once the conditions satisfying Equation (3.8) are met. Jcan then be obtained. Equation
(3.8) is called the Optimality Condition. Applying this condition to Equation (3.4) this

condition states that

all"-1(0), u(O) I + a kTF•xiOiUe0I - o (39)

u(O) au au

Multinle-St/ System. Progression from a single-stage system to a multiple

stage system can be easily done by re-expressing Equation (3.1) as

x(i + 1) Fi x(i), u(i) 1 (3.10)

vhere the initial state x(O) is given and i -0. 1. N-I vith N nth stage. Here.

Equation (3.10) describes a sequential set of equality constraints with x(i) as a
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sequence of n-vectors to be determined by another sequence u(i) of rn-vectors
Schematically. this is expressed as a cascade system.

u(O) U( 1) u(N-l1)

Fig. 3.3: Flov Chart for Multiple-Stage System

[Ref: 241
The corresponding adjoined performance index J is

J=* Ix(n)I ] i[~) ~) . Ti.1)FI~)ui Ai ) .(.1

Using similar operation as for the single-stage case, the eptimudity condition is
expressed as

aH' /au(i) =0 (3.12)

vhere Hi Li I (i),uM) I +A'(i 1) [Fi I z(i),uM) I - l10+ 1)) (3.13)

for i -O.1....N-1

4 Hence, to find a control vector sequence u(i) that produces a stationary value of the

performance index J.effort must be placed in solving the folloving difference

equations:

V~i +1) = ' (i),u(i) I (3-14a)

and

AMi = I~i/az()I Ai +1) + K~i/az(i~j (3.14b)
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u(l) is that control sequence that makes Histationary. (From Equation 3.12) That is

aH'i/ au(i) Ki /Lau(i) + AT(i +1) ~f' 'au(i) =0 (.3

(REF: 241

Application to Problem. The single-stage optimization can easily be applied to
0the present objective of maximizing the final semi-major axis. The problem parameters

vere established as follovs:

let u(O) - (0,TI,C,PA) (3.16a)

x(O) =initial state (3.16b) -

x( 1) =final state (3.160)

F [I = 1x0+ AllI (3.16d)

= ~ ~(3.16e)

L' 0 (3. 16f)

Applying equation (3.16) to the single-stage system optimality condition, the condition
to be met is found to be

"aaH/au(O) \ T(l) aFa/au(l) =0 (3.17)
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For maximizing the semi-major axis, the Langrange multiplier vector becomes

Since F* constitutes the changes in the state vector. we can express it formally as..

% + Aa- Fa

F 0 e

ie +Ai

Ps + FQ-(3.19)

Similarly, the control vector u(0) is expressed as

u( 1)1 0'60

uM1 l ull. U2 
2 . U3 

1 U4
11

*UM1 (U11) for i - 1.2.3.4 (3.20)

By definition, the expression aF*/aU Ibecomes (with PA

aMa M /aTl aFl/aC VF/aA
aF0ae aeaI ae aFe/aP

wMiae 3ff/ai aF1/aC aFe/aPA
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Since AT(,) is not identically zero in equation (3.17). the following must hold true.

Cffa/au 1  = ICI [oi0. (3.22A)

The scope of the problem is trmendously reduced by setting the performance index to I
be the optimum change is ta per orbit. Interest then lies only in the function Fa

which constitues the initial semi-major alis and its change. Furthermore, equation

(3.21 reduces the complication one more degree by taking the partial derivatives. Since

ao is the initial state and is constant, its presence in the differentiation can be ignored.

The remainder is plain Aa. The scope of the problem in hence greatly reduced by an

order of magnitude.

Th.s means that equation (3.21A) can be reduced in size to the following.
* '

Fa/au(l) " [ aFa/ae, Fa/aTI, Fa/a, aFa/aPA] (321B)

* tusing the notation expressed in equation (3.20) this can be rewritten as

Fa/au(l) I bFa/U 1 , aF/aU2, ayFa/ u3 aFa/h U31  (3.21C)

or

F /au(l) - [ aFu/o1I for i - 1.2.3.4 (3.21D)

The control vector u(1) that satisfied this Optimality Condition Equation (3.22) will

determine the stationary value of the performance index J. where J is stated above as

the maximum final orbit: J - i(N). For this single-stage. I - a(t) - the semi-major

axis after 1 orbit. The search for this control vector is the quest of this effort. The

solution approach follows.
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3.2 Solution Anorog&h.

Solution Formulation. F is given as a function of the control parameter (ui).

Specifically. looking at F& only.

FS = F&(uI, u2, u3, u4 ) = Fz(u i ) for i - 1.2.3.4 (3.23)

where (u, u2 , u3, u4 ) - (8 , Ti, , 8-k) (3.24)

- Fa is essentially a single function of four variables. The interest is in finding values

of (Ui ) at which Fa is a maximum. Under certain conditions, at such "places" in the

space of variables (ui).

[C] - [aFa/aUil - 10] for i - 12.3.4 (3.25)

One method of searching for this special (ui ) is as follows:

a. assume an initial guess U" and that [aFa/aui° exist.

b. assume that Fa(u i ) -0 can be expanded as

Fa(U,Uz,U 3,U4) = Fa(U I,u 2 ,u3 ,u4 )

+ZI aFa/aUj (u1",u2",u3 ,u4 ") (us- u1')

ji , aa/(a u , , U (u1- u1' (u,- u,'1... (

and aFa/aUi (U,u 2 ,U3 ,U4 ) = aFa/aui (u!IU2",u °,u4 °)

- 2Fa/(auiau) F al(Ouj u. ) (Ul',U2",u 3 &,u4 ) (uj- uj) (3.27)
j=1
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* Letting

[ PCI] a2Fa/(auuj) (Uk) = aC/(auiu1 ) (Uk) (329)

in Equation (3.27) and using Equation (3.25). gives

U.u - , iIC (un' e.u *u . (3.29)

Defining su = (u,- u 1 )  (3.30)

Equation (329) can be expressed as

Su = - [PC] ij- [C] (u). (3.31)

Understanding that the summation must be taken, a simplified expression can be stated

as

8u - -[C/aui- [C] (u). (3.32)

In Equation (3.32). [C] (u " denotes the Optimality Vector evaluated at the initial guess

control vector U for i - 1.2.3.4.

8U denotes the required change in control vector u that would satisfy the condition

for a stationary performance index J. Iterations of an "initial guess" is necessary until

this SU z 0. A reduction of the iteration frequency can be achieved by providing a

"good" initial guess. A graphical method of determining this guess is presented in

Section IV under Surface Representation.
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Analytical VS Numerical. Solution to Equation (3.32) requires the evaluation of

the partial derivatives of four state parameter functions (Fa, Fe, Fi, FQ) with respect

to four control variables (, , ,PA). This involves the determination of a [,x4]

matrix and its derivative. Recall, the objective is to find the control parameters

leading to a maximum change in the semi-major. From the C Equation (3.21). it is

apparent that interest lies in the 1st row elements. This row constitutes the optimality

vector. This reduces the main effort considerably. This simplification provides the

following:

[CJ = [aAa/a 8 Ma/ ala/ Ma/aPAI (3.33)

Disguised in At are horrendous amounts of differentiation that can easily lead to any

amount of errors. The choice made here was to circumvent the series of

differentiations and use numerical techniques to determine the elements in Equation

(3.26). To appreciate this approach. one must initiate the series of differentiation.

Appendix B provides the reader this insight. The reason for the numerical method

choice and why the analytical approach is avoided is apparent.
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3.3 Nmeica ForlaWtionM~L

The Numerical Models. As a first approximation to the partial derivative of the

multi-variable function FWuD, the numerical differentiation techniques called
Newton's Forward and Backward were used. These are expressed as...

FRuj e ui) - Fuj)

F~u) = ______________(Forward) (3.34)

Sui

FKuj) -u Fuiu)

and Flu1) z _________(Backward) (3.35)

Sui

For a simple two-variable case, these can be interpreted as the slopes of the two lines

shown in Figure 3.8.

rwardAL- _,backward]

01

Fig. 3.8: Derivative Approximation Models
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Initial Resits. Initial Results were not encouraging. Initial intuitive

expectation were filled with optimism for a semi-vel behaved derivative of the

0 function F(ui). This vas not the case. These formalas displayed a "wandering" type

behavior with the approximated derivatives for each iteration. The Forward Formula

can be re-expresssed as

,. AU (F(u)new - F(U)old)/Su -F(u)/F(u) (3.46)

Using this formulation, the expectation was for some kind of rough convergence.

Instead. the Au i were fluctuating after each updated estimate F(ui)new.

Sources of Errors. A study of test cases suggested that approximate

0 derivatives obtained from from such polynomial F(u i ) be viewed with skepticism unless

very accurate data are available. Even with accurate data (or initial guess as it is

commonly called), the accuracy diminishes with increasing order of the derivatives.

This is the problem dealt with the second order derivatives. The dominant error

source is in the input errors. These proved very critical. Even when the initial guess

was close to the theoretical value, the input was still very critical because the

approximating (along with the perturbation) algorithms magnify them enormously.

The crucial factor seemed to be the magnitude of Su. The magnification of input error

behaved inversely to this value whereas the inevitable truncation error was directly

affected.

lmroved Model. The models intially used were abandoned after

countless futile attempts to contain the "wandering" derivatives. From Figure 3.8 it was

evident that a more accurate approximation would be achieved by using the slope of a

line connecting points A and B. This approach is commonly called the Stirling Method.
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It is basically the Newton method modified. This vell-known formula also knovn as
central differencing is expressed as

SF'(u) N(F(u 8u) - F(u - 8u)) /(28u) (Stirling) (3.47)

Numerical Formulation. This formula was employed in determining the
required derivative expressed in Equations (3.44) of the previous section. Appendix B
shows how it was coupled to accomodate a function of four variables.

Results. The use of Stirlings Method provided better results. The
wandering" phenomenon experienced with the previous Newton's methods was

greatly diminished by in order of magnitude.

40 From the perspectives peak points were selected as test cases. Known maxima is

inputed. With the appropriate coordinates for the maxima (from perspectives as input.

convergence to within. .1 degree was achieved. This related the fact that a maimum
did indeed exist within the area of search. This gave additional credence to the

perspectives. The various identifiable coordinates were checked with similar results.

Convergence was achieved in two iterations. The bottom line was that the required

calculated change in control parameters was within .1 degree a change so small that

virtually a maximum was discovered. This was satisfaction but not with surprise since

approximate -oordinates of the maxima were inputted. The real test follows.
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a~/uiul The Stirling Method is used to approximate

the a2F/(aujauj) matrix. For simplicity. the following definition is made:

BLet (PC~j I = 2F/ aujau1  = c aC/ (3-36A)

where C - F/ aui (3 .36B)

The subscripts i and j indicate a particular control vector from the set (ul. u2,.03, u4)

(8. TI, , PA). Recall. that for an initial guess control vector, F is defined as

F u I*u, U2', U3,' U4  (3.37)

* where the superscript C) denotes the initial guess. Note that for if any iteration is

desired, the ui1 term would be the updated 'value which would become the new initial

guess.

Hence, (U1 . u2'- u3% u4 ) -8 (9* C%.t~ PAI a initial guess.

With this notation. equation (3.36) can easily be expanded using Stirlings Method.

Examnle. To show hov the matrix is constructed, the PC1. component is

selected as an example.

PC 1 2 -___ (3.38)
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0aFa (u 1 8Sul.u2 *u3 '%u4 ) - Fa (uf* -u2*u,u 3 *.u4 *1

28u 1 (3.39)

Expanding the aF./ au2 terms via the same method. this equation becomes

Fa(ulft8ui~u2 %+u2 u3 u4.)- Fa(u1%.8ulu 2 -Su2 .u3 u4')

PCI. 2 - 1/28ul 2Su 2

F~ul-Sulu2.8u2 ,u3 ,u4*) -F(ul -8u1.u2 -8u2.u3 ,u.(

(3.40)

Gathering term and simplifing. Equation (3.40) can be expressed as

uu~2*8u2,u3 ,u4*) - F(uf +8ul.u2*- 8u2 .u3 ,u4.)
* - F(ul - 8ul,u2 * 8u2 u3 ,u4*) - F(ul*- 8ul,u2 *- 8u2,u 3 u4*)j

PC1 2
48ulSu2

(3.41)

For the diagonal elements (i - j), the cane (i - 1, j 1) is shovn belov:

PC11 - a2Fa/(aulaul) -a
2F./(au,) 2  (3.42)

Fa(ut' +8u1 .u2 ,u 5',u4*) - aFa(U1 -U2.U3.-U4*) tF,(u* -Su*u 3 ,u(*)
PC11 -

4 Sul 2

fa (3.43)
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By following the same procedure for the other elements, IPCijJ matrix can be
constructed as follows:

a2FaI~aU,)2  I2 aa ,aU2) 2Fa/(au Iau3) aF /(aulu 4)

aFa/(aU2aU 1) aFa/(aU 2  aFa/(~aUO~3  aFa/(au2aU4)

9Pij - a2u 1  a2Fa/(au~ 2  a2F (au3)2  a2Fa(ua 4

a2Fa/(aU4aU 1) a2Fa/(aU4aU2) a2Fa/(au4aU5) aF/a4)

(3.44)

This iatrix is used in computing the change in control parameters necessary to

* determine the stationary value of the performance index J. From Equation (3.)

ANi -Unev -uold -- (C*) [C I for i - 1.2.3.4 (3.45A)

~~ where WC) denotes the aFaui evaluated at the initial control values and [C) denotes

the a2Fa/(auiaui) - [PCii]. The C notation is laur used in the algorithm developed to

compute the Au1. Hence.

AU1 -Unew uold -(C)/ (PCij I (3.45B)

Note that WCi is a four-element row vector and IPCii is a 10x41 matrix. Performing the
appropriate operation, the required change in the control vector sought here is
plainly.

AN1  une - uold . PC1 ] -I (C) (3.45C0
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A stationary value is achievable if there exist a control variable set ui such that the

Au i is approximately zero. That is.

-~ui - Unev - Uold - [PCijI -I (C) - (0) (3.45D)

This would indicate that there ae no changes necessary in the previous control

variables set to arrive at the optimum A. Such is the particular I set of controls that

would render the performance index J stationary.

So[MM Development. Equation (3.45D) is the basis of the software that is

developed to find the stationary value of the Performance Index J. The process

involves the coding of the perturbation solution equations presented by Jenkins

[Ref:10I. The A& equation is the only equation generating the required vectors and

matrices in Equation (3.4) since the objective solely called for maximizing this

function. The incorporation of the other state functions, as expressed in Equation

(3.19). can readily be employed with little transitional difficulty. The mechanism of

the search process included several iterations to construct the elements of (C) vector

and [PC] matrix. Once this [PC] matrix was found, a specially formatted program is used

to compute its inverse PCI. Equation (3.45D) is then incorporated to determine the

neccesary changes in the control vector u. The process continues until a specified

convergence criterion is established. The interactive program outputs all the

computed (intermediate and final) vectors and matrices along with the required /Aui

values.
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3.4 The Nature OfThe As Function.

The change in the semi-major axis is the main objective of this study. It almost seems

as a trivial task until the function itself is confronted. Aa is a function of four

variables. A& = Aa(B,TI,C, *-j). The main difficulty in maximizing this

function analytically is with the complexity of the derivative of the function (as was
explained in section 3.1 and Appendix B). The vise choice of employing numerical

* techniques to determine the maxima of 7a gill presents another difficulty-the initial

guess. This initial quess becomes the starting point in the search of the set of control

vector which maximizes Aa. Due to the search pattern of the modified

Nevton-Rhapson (or Stirling Method). this initial guess becomes critical and must
serve as a *good" starting point. This is where the difficulty begins: What is a "good
initial guess"? Hov can a region of "good guesses be established?" The answers can

be provided by a surface representation of the function A&. The next section

explains an In-House capability available through UNIX/VAX system that provides

this surface representation.

3.5 Surface R n tain.

A canned plotting package called "S-Package" residing in the UNIX/VAX system is

used to provide three-dimensional perspectives of the ,A function. This program

provides an quasi-isometric three-dimensional perspective of an output function
with respect to two input variables with the output function as the third dimension.

Analyzing Aa is accomplished by holding the angular momentum orientation angles

(1 and C) stationary while allowing variations in the coning angle (8) and the phase

angle (PA - 4-*). The resulting perspectives show the behavior of the tA& function

as these selected parameters are varied. These are presented in more detail in the

Results section. Such surface representations describing the behavior of the change

in semi-major axis with respect to a coning Solar Sail have never been seen before!
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These perspectives, provide very valuable information on the nature of the As

function as certain orientations are approached. Mre jmpjtanjy, the

perspectives serve as a source of information on the region of search from which

one can determine a "good initial guess". The maxima and mimgina ar apparent.

Additionally. problem areas that might cause a gradient search scheme to wander

excessively and perhaps fail can be avoided simply by identifying critical areas from

the perspectives.

No matter what scheme is used to present a function of more than two, there still

remains the question of the behavior of all the variables. Man. limited to working

with three dimensions, representing a function of more than three variables is quite

a task. In this study, Aa is a function of four variables; therefore, a five-dimensional

perspective is ideal to explicitly show its true behavior with respect to all the

variables. Accepting this limitation and expressing the function with respect to

three-dimensions is the best anyone can presently do. Despite the limitation, the

benefits of having at least a five-dimensional representation is overwhelming.
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IV. le.ults

4.1 Surface P etive

The nature of the Aa function is analyzed for the occurrence of maxima as the various

control parameters (8. I. C. PA) are varied. Being a multi-variable function, it

becomes practically impossible to look at the overall nature of this Aa function as all

the parameters are allowed to vary. It is instructive to hold any two less dynamic

variables and perspectively look at the function vith the two more dynamic variables

allowed to go free. This would constitute a three-dimensional representation of the Aa-

function. Abundant information can be read off such perspectives since all the

variations and and resultant behavior of the function can be readily seen in a given

perspective. Anomalies are conspicous by their presence (if any are present). The

extrema (maxima and minims) can easily be spotted and located for the conditions

given. It is also very helpful in identifying areas of "stagnation" or "stability" in

which the function can very well remain stationary even with small perturbations.
This very fact that one has a three-dimensional interactive look at the behavior of the
function makes a valuable preliminary tool in the optimization process where

atltining a "good initial guess" is so paramount. Such information is available with

perspectives. Such dynamic information is found absent in tabular formatted data.

The information contained in the perspectives found in this study contributes to the

search scheme developed to find the optimal control setting angles to achieve an

optimum change in the semi-major axis per orbit. The "initial guess" barrier has just

been broken.

Variatioa il Inclination. Interest exists in the behavior of the change in the

semi-major axis As due to changes in the sailcraft's orbit inclination. Figure 4.1 shows

the relative As magnitude of three select inclination with changing coning angles.
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.1

angles.

02.5 j 5

2.0

Aa 1.5.

0.5/ \. *// ,

0 20 40 60 80 100 120 140 160 130

Fig. 4.1: Coning Angle (0")

Note the decreasing As magnitude as the inclination increases and then its subsequent

increase to form two maxima as the inclination is greater than 45". This behavior was

graphically evaluated more closely as inclination varied from 0 to 90 degrees. Figures

42A through 42G (presented in the following pages) show the peculiar behavior of

this As function as the inclination is increased. Each figure depicts a different case

with with its corresponding As magnitude. Although these relative Aa magnitude

differences are not shown in these figures. the maximum As experienced per case is

indicated. The important information is in the overall behavior of this change in

semi-major axis. The intersesting aspects of this As behavior are summed as follows:

As the inclination is increased from 0 to 90.

55
0.g



a. the magnitude of Aa decreases as the inclination approaches 45

degrees.

S0 b. the magnitude of Aa increases as the inclination becomes greater

than 45 degrees but does not attain its original maximum value.

c. the local maximum shifts location avay from 8 - 90 (at i - 0) to

form two maxima at 81-35' and 82 - 145" (at i90);

d. maxima occur at PA - -90" and remains stationary at this value, i.e..

it does not vary with changes in inclination;

The three select cases are further examined in the following pages to show why such

particular control angles work to maximize na. The three cases looked at are as follows:

Case 1: 0 inclination

Case 2: 45 inclination

Case 3: 90" inclination
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earee Inclination. Motion in the ecliptic plane vith the coning

angle set at 90" and the phase angle at -90" has produced the largest change in the

semi-major axis at 2.337x10- 4 DU. Figures 4.1 compares the behavior in this inclination

vith other inclined orbits; Figure 4.2A perspectively portrays the behavior of the A&

function as any of the other control parameters (0 and PA) are varied. For a coning

angle of 90% the solar sail is (at certain intervals in the orbit) perpendicular to the

solar radiation; in such an orientation, there is maximum thrust produced in the

direction avay from the sun. However. maximum thrust does not alvays equate to

maximum a. It could very veil work against maximizing A; such a case is vhen the

thrust vector has a component vorking against the orbital velocity vector. Correct

phasing angle PA allows the optimum use of maximum thrust conditions leading

towards maximizing A.

direction of Sail

not.io:n"Inliato

Sun

Fig. 4.3: 0' Inclination

This PA parameter relates the initial point of the sailcraft in the orbit and its initial

orientation vrt the Body-centric Inertial IJK Frame. For 9 - 90". the latter information
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* (proper phase angle) is inconsequential since the sail is in a pure spin motion.
Howver, for any other non-pure spin aittitude. this information is of critical
importance. Hence, angle PA only relates where the sailcraft is in the orbit for this
pure spin configuration. At PA- -90% the sailcraft is configured as shown above in

- C'Figure 4.3; Note vhere the sailcraft is alloyed to start its journey from: 90'

counter-clockwise from the i axis. This orbit configuration produces the most Asa Ma,
-2.337 XI(14 Du) the torque-free solar sail can muster optimally at improving its radial

distance from the planet earth.

~1DegM~ Iciation. As seen earlier. Figure 4.1 provided an

indication of what would happen to Aa when the orbit inclination is increased. The

t shift of the single maximum at (8. PA) - (90,-90) to form a pair of maxima can be very

clearly seen in the perspective. Figure 4.2D. No longer does 8 at 90 degrees monopolize

the maximum point at this inclination: the two maxima occur at (5' -901) and (125%
-90*). This is important to understand: the pure spin configuration, though it may
present the most exposed surface, does not present the optimum condition.

b3
Orbit

4~% -

Plane_____- - Z . _

sail-74

start

HSUN

-q

(proper~ ~ ~ Fi.44A 4has In)i icneu n clinteio si pr pnmoin
Howeer.forsay the no-pur spn zttitdethi infrm-ionis o crtic/ !

imotac. ece asePAolyrlaswhr hesilr~ti i heobi o6t5s.,



*Figure 4.4A above shovs the various positions in the orbit relation to the attitude of the7
solar sail vrt the sun. Only the 55' coning angle case is depicted here. The 125*

coning case contributes the same effect. This is studied next.

* The relationship between the two coning options are investigated to determine the

resulting components of thrust along the velocity vector. Both diagrams shovn here c-

in Figure 4.4B relate to the position of the sailcraft at its starting position. Since the

sailcraft's precession rate is equated to its orbital mean motion, the coning motion will

be cyclic and in phase with the orbital period.

Diagram A (O =550) DiagraB (0125)

\350 550 b3  T 5

X su T5.. sun

T \sail si

Fig. 4.4B: Coning Angle Comparison

From Diagram A: TV - Tcos 35 - .9 19 T

From Diagram B: TV -TSin3 55 .819T 1  T(5) v(l )

Since the two components are identically equal, their corresponding A& effects will

also be equal. For the configurations of higher inclinations, this offers an option in

the choice of coning angle.
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0 aree & ijn.. This special inclination is depicted in Figure

(4.5) below. Fimple [Ref: 51 stune that this orientation affords the sailcraft continuous

energy increase throughout the orbit. However. the magnitude of A& is smaller than

for that seen in the 0' inclination case because of the small thrust component in the

direction of the orbital velocity vector.

S =0 °

Earth-Su E E EEU

OrbitPlane-+ bI5

T

OigA45:900 Inclination

Figure 4.5 shows three control setting configurations with the angular mementum

vector parallel to the orbit plane normal. Thl then requires R to stay fixed towards

the sun. Configuration A shows a coning angle of 0 and no thrust component in the

orbital velocity vector direction; therefore, A& equals zero. The corresponding

perspective for this 90' inclination (Figure Z.4G) clearly shows this fact: As the coning

angle is increased, a maximum As is achieved at 8 - 35 and at 8 - 145. The angle of

35 coincides with the results of a study done earlier by Garvin [Ref: 51 in which he

finds that a tilt angle of z 35 degrees provides the largest thrust component along the
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velocity vector (see Section II. Previous Efforts). Given the similar orientation Garwin

refers to. this tilt angle is just the coning angle 8 of this study. Tsu [Ref: 191 also

arrives at this optimum titl angle of 35 degrees. Configuration B depicts this control

setting. For comparison with the same setting but at a different phase angle (PA -

-270"). the thrust component is no longer vorking to maximize Aa. but working to

minimize Aa. In fact, the minimum As is experienced with this control setting.

0M
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Variation in PA. If the variation in 8 is restricted 0 < 0 360 a maximum A

occurs at PA equal -90'. Such occurence at this value can be seen analytically by
studying Equations (2.21) and (222) shown below:

6

Aa = a '- D TP/jI Ida, + da2 + da3 + da4 + da5 + da6I (2.21)

da 1 =4, D1 2 [(P2+3P4) cos(0-4') - (301+P5) sin(*-*) 1 (2.22a)

da2 = V D1 D2 [(P2-P4) sm(*-*) + (P5-01 ) cos(,O-') I (222b)

da3 - 2 D, D3 1 P6 cos(*-*l) + P3 sin(*-*,) 1 (2.22c)

da4 = 2D D3 I [3 cos(-4)- + P6 sin(*-4') I (2.22d)

da5 =14 D2 D2 I (3P2+P4) cos(*-*) - (P I +3P5)sin(W-4-) I (2.22e)

da6 = D3 2 [ (02 +§4) cos(*-w) - (P 1 + P5) sin(O-*) I (2.22f)

* From Equation (2.22). one can say that maximizing the summation of the da terms

equates to maximizing £~a. A plot (see Figure 4.6) of these da terms above for variations

in the PA (recall. PA - *-4,) component explicitly shows that the summation is indeed

maximum at PA equal to -90 degrees.
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- Max at PA =-902• i 30 °0/ - .

r '*-' -2.0

10 1.5 Aa
-4

xI4 DU
_1.0

, . -0.5

-140 -120 -100 -80 -60 -40 -20 0 20
Phase Angle PA (deg)

Fig. 4.6: Variation of Angle PA

Interestingly. the minimum occurs when PA - 90 degrees. In all the cases studied in

vhich the IJK frame is congruent to the orbital frame, the following applies:

Aa m-uimaoccuratPA = *- - -90"

Aaminims occuratPA - +- - .90'

U

This is not the case when two inertial frames are not congruent As vil be seen later,

for T and not equal to zero, the maximum location shifts relative to angle PA.
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Variai o n l Angular Momentum Vector OrientaLion. The angles T1 and vhich

describe the angular orientation of the angular momentum vector A with respect to

the orbital reference frame (ijk) has been superficially neglected. In this study, they

have taken on common values of 0' or 90'. Earlier. these angles were termed the

"lesser dynamic"" parameters and, therefore, were not varied in the previous

perspectives. On the contrary, variations is 11 and C have sufficient control on the

behavior of As or else they would not have been included. Their major is the shifting

the location of the maxima. Here are sample variations:

Fixed MI. Figures 4.7A.B.C show just such behavior as 11 was held fixed at

zero and was allow to vary from 30" to 90" for motion in the 30" inclination plane. As

is increased, the maxima no longer becomes stationary at PA - -90 but seems to

propagate or shift tovards PA - 35".

Find L. A similar but out of phase situation occurs when is fixed at

zero with T1 allowed to vary. At T1 - 30". the As function assumes the same shape as in

the (TI, C) - (60.0). This cae is depicted by Figures 4.SA.B and C. The (TI, () - (90.0) is

essentially the tumbling cam Jenkins [Ref: 101 investigated earlier.
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42 Optimizatin

The search of the optimum set of controls to achieve a maximu change in a per orbit

required the use of the perspectioves as a guide in establishing a good intial guess to

start up the search algorithm. After noting the location of the maxima from the
particular perspective of interest, convergence is almost expected at that graphical

coordinates.

Q ,rtionj. In employing the Stirling Method in search of the required set of

optimal control vector, a fey peculiar observations yere made.. The Stirling Method

uses a step size Su to increment through the local area of interest in search for the

zero of the function.

a. The search scheme is very sensitive to the step size Su. When the

coordinates of the maxima (from perspectives) are inputted. the value of the (C)
vector components become very small often in the neighborhood of 1 1 10 - . Since

(C) is the initial aFa/Lu i evaluted at the initial input control values, using

near-maxima control values would make the incremental step size too small to

differentiate a change that can be discernable by the search scheme. This is vhere

larger step sizes can be used vithout losing any appreciable accuracy.

b. If the conditions generating the perspectives are used as initial guess inputs,

the maxima depicted can be reaccomplished to a higher degree of accuracy. Test cases
shov this accuracy to be good to the seventh order.

c. The degree of accuracy beyond the seventh order seems to be hampered by

round-off or truncation error despite the fact that all computations are accomplished

in double-precision mode.

TM Qas. Several test cases were made primarily with the use of the data
extracted from Figures 2.4A through 2.4G. Since the intent of the preliminary searches
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is to use these figures as the primary feedback for the behavior of the Sa function and

the verification of the output of the search algorithm, deviations from the initial

conditions generating the figures were not made. The results on these preliminary

evaluations can be summed up as follovs:

1. Searches using coordinates of maxims from the perspectives yielded similar
Su required essentially equal to (0.0. 0.0. 0.0. 0.0). This implied that the point of
interest is a maxima to begin with and that no changes in the control parameters ae

required. Convergence is achieved in a single iteration. Further forced iterations

resulted in the same; i.e. when search was continued until an iteration limit was

reached, the required Su remained at zero. This displayed stability. Larger step sizes

did not affect the convergence.

2. Deviations in any single control parameter (holding the other three at initial

maxima condition values) resulted in more than one but less than three iterations to

converge to a local maxima. From the perspectives, deviations of less than ten degrees
seem to be veil behaved and predictable in that there are no other local maxima within

a 10' radius of any given maxima. Convergence limits of .001 degree and better are

realizable.

3. The search algorithm does not provide a check for a global maximum. This

handicap and the convergence criterion are responsible for the search converging at

a minima adjacent to a maxim. This was a subject of interest in this study.

Results on a test case are presented in Appendix E. The test case selected is for motion
in an orbit inclined at 45 degrees. This was of particular interest because of the two

adjacent maxima separated by a minimum. This search scheme only searches for the

condition in which the first derivative is equal to zero. It is interesting to note that the
figure 42D (test case. i-45"), displays 17 different areas at which convergence can be

achieved. At any of these areas, the slopes are indeed zero and the search scheme

79

*q



0I

would these out. Achieving convergence does not signify a maximum As. It is

apparent from the perspective that there are only four areas in which A is maximum.

Without reference to the perspective, it would be most difficult to relate convergence

values to maxima, minims or inflection points. This makes it so imperative that the --

sech be accomplished hand-in-hand with the corresponding perspective. Only then

can the control parameter changes bemeaningful.
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V. Conclusion

Working in a region of unknowns and searching for an entity yet to be

described is just what was initially pursued in this effort. Given a multi-variable

function describing the change in the semi-major axis (na) with an established

objective of finding the maximum change experienced by that function began as a

formidable task of high interest and expectation. The pursuit of a solution using
known search methods e.g., Stirling Method. to evaluate extrems provided much hope

for convergence. Futile preliminary attempts to identify convergence conditions was

due to poor initial guesses. This led to question the nature of the *%a function at hand.

Understanding what the function does is quite different from knowing what it looks

like. The big question is this: What does the Aa function represent graphically? As a

resort to a good guess, the four-variable As function was graphed perspectively in

three-dimensions with two variables held fixed and two varied against the value of the

function. The resulting perspectives represent the surface of the function for the

given set of "control" conditions. These perspectives give a good overall picture of the

behavior of the Aa function. Information that was earlier a guess can now be

verified. Regions of diminishing returns and high yield can be identified and search

patterns can be concentrated on specific areas. Nov a bound exist. Now the initial

guess can be nailed down. Search schemes which are sensitive to "good initial guesses"

have improved reliability for convergence. The Stirling Method is by no means -

excluded here. The input of good starting points (u') to initiate the search for the

optimum control setting that yields the maximum ta is of critical importance.

Convergence in two or three iterations shows the power of the search method used.

Moreover, it shows the goodness of the starting search point. Convergence to 0

coordinates that are known apriori is only possible from reference to the applicable

perspectives provided that the starting point is not far from the shown perspective.

Deviations far from the local maximum will allow the search mechanism to deviate

away from the intended area and converge on another unexpected maximum. This is -
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normal behavior of such search scheme and there is not need for alarm. The
converged control settings can be graphically e-raluated by the use of the perspectives
defined by the converged control values. As noted earlier, convergence can be
achieved at any area satisfying "zero slope" conditions (e.g., maxima, minima, or

6 inflection points). Only by looking at the function's perspectives or by computing its
second derivative can the actual maxima desired be identified. The cross-relation
between the search scheme results and the perspectives are most necessary for a
meaningful output.

Comment on the Equations of Motion

Jenkins [Ref: 101 provided perturbation equations for the one-to-one resonance
case. These equations have been thoroughly verified in more than one ways.

1. The equations of motions were integrated for the resonant case (i.e., when
the orbital mean motion is equal to the sai precession rate) and found to be
correct.

2. When the equations of motion were used to generate the applicable perspec-

tives at a 90 inclination, it was discovered that at a coning angle 8- 35" a

maximum occurs. This is in direct agreement vith previous results arrived
at by Tsu [Ref: 211 and Gavin [Ref: 51 in which they found that a tilt angle
of 35 with respect to the sun provides optimum change in the semi-major
axis. The constant coning angle is the tilt angle of the sai with respect to

the sun.

These indicate that the perturbation equations arrived at by Jenkins do indeed describe
the appropriate motion of a freely coning solar sail.
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,@Lessons Leaned

It is fitting that whatever was learned from this academic effort be shared with

anyone interested in pursuing a similar quest. The work done here is without its

troubles and periods of despair. The biggest difficulty was searching for the maximum

of a multi-variable function without any apriori knowledge of its behavior under

given conditions. The suggestion here is this: represent the surface (or function) in

some kind of perspective (two-dimensional or three-dimensional) and observe its

•behavior as certain variables are changed while holding others fixed. This would

provide valuable insight into what can be expected of the function. Look at it first so

that they are no surprises later. This is the biggest lesson learned from this academic

effort.

Recommendations

The behavior of this solar sail is just partially known by the exploitation of the

As function. More can be learned by numerically looking at the behavior of changes

in the other state functions eccentricity, inclination and longitude of ascending node.

Although, a particular aspect of the inclination is addressed here, it deserves its own

segment. The numerical evaluation for a selected performance index can very well be

supplemented by producing the three-dimensional perspectives associated with the

case of interest.

Another pursuit would be to extend the single-stage dynamic system to a

multi-stage dynamic system. This would be the case in finding the optimum series

controls which would generate the maximum change in semi-major axis in n

*revolutions. This would entail applying the single-stage system r-I consecutive times

as shown previously in Figure 3.3. Such a multi-stage system can have practical

applications.
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Appedix A

Eclipsing Effects

The eclipsing or shadowing of any solar radiation dependent spacecraft is an important

phenomenon that must be understood and compensated for in the design stage and/or

by some control mechanism of such spacecraft. For this solar sail. the only propulsion

source is solar radiation. This makes shadowing a more critical phenomenon for a solar

sailcraft than for a spacecraft with a variable-mass propulsion system. To achieve the

objective in maximizing select orbital parameters (which are dependent upon the

amount of solar radiation incident on the surface). the aspects of shadowing. e.g..

a when does shadowing occur, and

b. duration of shadowing.

become particularly interesting to the mission designer In determining the optimum

steering controls necessary. The dependence of the changes of the orbital parameters

on the shadov time for this particular coning solar sail can be readily seen in the

period TP term in Eqn (221). Note thatTP is the orbital period and is also the time spent

in the solar radiation environment during one orbit. Shadowing would result in

reducing this TP value and. hence, in adjustments to the amount of perturbational
* changes the sail's orbit experiences. Just how does one determine a and b above?

Stoddard (Ref: 19) simplifies the aspects of shadowing and presents a means of
ft,

determining vhether or not an artificial otel ite in a circular orbit is shadowed and. if
it is. what its duration in the shadow. The "circular cylindrical shadow" model is

employed instead of a "conical shadow" model which considers the umbra and

penumbra shadow components (as presented by FiLler in Ref: 6) to arrive at the

following relationships which are referenced in Figures Al and A2:

At-
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COSO: 8 = (lie 1) 1- (RE/Rs)2I (A-la)

- _ (secSUm } II -(RE/Rs)21 (A-lb)

BE -20 80' - 8) ;(A-2)

two (8E/360") TP; (A-3)

vhere

BE * geocentric angle of travel of the satellite during eclipse.

iSUN a geocentric angle between the sun and the satelites orbit plane.

Note: From Figure Al. this is equivalent to the orbit inclination i.

S * geocentric angle measured in the orbit plane between the satellite and the
conjunction point P (Figure A2).

e. r eccentricity of the elliptical projection of the earth's shadov on the
satellite's orbit plane.

late: This can be geometrically shown to be equivalent to cos iSUN. This
is accomplished in [Ref: 191

RE a earth radius -1 DU.

RS a satellite orbit radius.

TP m orbital period.

t9I a time the solar sail is in the earth's shadow - duration of shadow.

The limiting case between eclipse or no eclipse is obtained from Equation (A-l) when 9

-180 degrees. Therefore.-
is

A-3



RS -R CC SIUN RE Rcsc L (A-4)

Equation (A-4) is valid for the geometry and the definition of the inclination of the
* orbit as described in text. That is, if the inclination is deraned as the inclination of the

orbit plane vrt the ecliptic plane, then this Equation (A-4) will be Valid. For any

application, reference to the Stoddard aticle is highly recommended.

* From Equation (A-4). eclipsing criteria can be established as follows:

if RS < RESU a ashadow ili take place; else (A-5)

Wr if >s R~E csUN6 a shadov viu not take place. (A-6)

60.00
[M shov aea

50.00 Fn hdwae

40.00

RS MDU) 30.00

10 20.00

10.00

1 2 3 4 5 6 7 6 9 10 11 12 1314 15
Inclination (deg)

Fig. A3: Solar Sail Shadow Limits

From Equation (A-9). one can determtine that any artificial satelite in the ecliptic

plane Gi - 01 vill experience shadowing. Shadow limits for various inclination i and

orbit radius RS can be seen from the plot of Equation (A-5) in Figure A3 above. The

area to the right of the "Limit Line" indicates the region of 'NO SHADOW'.
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Table Al shows the behavior of the various parameters in this relationship as the orbit

radius RS is varied from 2 DU to 10 DU.

Table Al: Shadow Parameters

cos ~B e " T"U~() tM('rU) t (M) ()"

2.0 .866 150.00 60.00 17.77 2.96 39.82 11.65
3.0 .943 160.56 38.88 32.64 3.53 47.47 10.81
4.0 .968 165.47 29.06 50.26 4.04 54.36 8.04
5.0 .950 165.52 22.96 70.25 4.30 60.55 6.41
6.0 .986 170.40 19.19 92.34 4.92 66.19 5.32
7.0 .990 171.79 16.43 116.37 5.31 71.40 4.56
8.0 .992 172.82 14.36 142.17 5.67 76.27 3.99
9.0 .994 173.60 12.76 169.64 6.01 80.84 3.54

10.0 .995 174.26 11.48 198.69 6.34 85.19 3.18

For the case in point, the solar sad (at RS - 2 DU) would have to have an inclination i

greater than or equal to 30" to escape any shadowing effects. For solar soil notion in

the ecliptic plane, the duration of the shadow tSH is approximately 40 minutes long.

This Is determined as follows:

TP = 2 Rs- = 21 (2 )1-3 = 17.77 TU.

6 - cos - I[(sec0)[(l/2)211'= 150.00.

= 2(180"-150)=60"
(E

tSH= (60"/360") 17.77 TU = 2.96 TU = 39.82 min.

These 40 minutes spent in the shadow of the earth equates to 40 minutes less of direct
solar radiation exposure. This directly affects the magnitude of the perturbational

A-5



* changes. From Table Al. one might be alarmed at the increasing magnitude of the

shadow time tSH for increasing orbit radius RS and its resultant decrease in these

perturbational changes. The shadov Limes do indeed increase; but, the percentage

increase of shadow time over the period TP decreases as the orbit radius increases.

This indicates the relative impact tst has for high orbiting solar sails. The further out

the sailcraft is, the lesser the chances of shadoving become. For the solar sailcraft

initiating its maneuver at low-earth-orbit altitudes, this phenomenon is an important

@ issue.

The question is "how much shadowing is tolerable vithout considering its affects?"

The eclipse factor has generally been used to answer this question. The eclipsector

is defined as the ratio of time spent in the sahdov to the orbital period of the satellite.

From Eqn (A-3). this can be expressed as

4 Eclipse Factor - tsn/TP = BE/ 3 6 0 " (Ref: 17) (A-&)

If this ratio is small, then shadoving can be neglected. Some type of decision criterion

must be formulated to determine an answer to this question. Such criterion vill

definitely include this eclipse factor and other satellite/mission dependent parameters

such thermal constraints, etc.

To get a general conceptual feel for this shadowing effect on a solar sailcraft in the

ecliptic plane, a "simply spinning" cae with shadowing and another without

shadowing were evaluated and contrasted. The data in Figure A4 indicate the decrease

in total change in Aa when shadowing effects are considered. There seems to be

appreciable relative differences between these computed sets of values, thus indicating

* the importance of the shadov phenomenon.

Cases dealing in the ecliptic plane are very much affected by this phenomenon.

Moving out in altitude and to inclinations greater than zero reduces this effect. This

* study avoids this phenomenon by having the initial state at a high orbit altitude and a

A-6
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non-ecliptic inclination such that condition (A6) is satisfied.

Escobal and Johnson [Ref: 31 obtain compact, closed-form expressions for the

maximum and minimum eclipse durations of a circular orbit with knovn semi-major
axis and inclination via simple geometric constructions. The method outline provides
the designer with the tool to evaluate the envelope of eclipse durations a spacecraft

would experience throughout its lifetime.

Polyakhova [Ref: 141 provides a more extensive and thorough coverage of the

shadowing phenomenon. This study develops the solar constant equation from the

basic quantum theory of ight. It further investigates the shadov effects in the case of

the radiation-pressure influence on the secular acceleration of the satellit, i.e., on the

quantity ATP/TP (the variation of the satellite period during one orbit). It addresses

orbits of arbitrary eccentricity and develops a shadow equation and provides solution

for certain simplifying conditions. The author develops the equation using

non-standard reference frames. For this reason, the development is not pursued here.

Strong recommendations is made to it for those pursuing a more rigorous approach to

this shadow phenomenon.

1 16
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Anmoadix B

1 Formin, th SeAitt Idtix 1

This following exercise is presented to bring avareness to the extend of labor one must

suffer in determining the partials of the change in the semi-major axis As to

incremental changes in the control parameters (8, TI, C, PA). Recall. PA a
This exercise is as folovs:

I)] = a Aa/a a Aa/ aT ad a/aC ad a/bPA ] (B-)

vhere (from Equation (221).

0 A== a - .D TP/ I 1da, 1 da2 .da 3 +da 4
+ da5

+ da6J (B-2)

Using the chain rule for differentiation and looking at the first element in Equation

a Aa '-D TP][ada1  bd&2  ada3  ada4  6da 5  ada6]
-I __+ + __ + +_ + 33

Working solely with the first term dal on the rhs of Equation (B-3).

daI = 4(dl)2  (13 2  4 1)osPA - (3+1 P 5 )sinPA) . (B-4)

B-I
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a dai/8 a(dj) 2 /ae ((3P 2  P4 )CosPA - (3P,+P 5 )sinPA)

+ (d1)2 (3p 2/ae + ap4/b cos PA

o - (dj)2 (3apl/le + ap5,e) sin PA (B-5)

Expanding the d I and aps terms above, where...

d sin 9 cos cos i, (B-6)
and

= sin 8 cos C, (B-7a)

P2 = sin 8 sin cos 'n, (B-Tb)

4 = sin 8 sinC. (B-7c)

P5 - sin 9 coo 11, (B-7d)

one arrives at the following results:

adan/as - 1/8 [2se c2 c2 i ((3sesc ssC)CPA - (3seci - secfl)sPA)

+ (1 - c29) ((3cesc + c9s)cPA - (3cWcC + cecil)sPA) 1 (B-8)

where C a cos and 9 a sin.

Note that Equation (B-9) takes care of the first term in Equation (B-3). There are
several more terms that require simil expansions and differentiations vrt the control

parameter 9. Specifically.

ada /e 7 ada3/ 9 =

B-2
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Extending this to the partials of the remaining control parameters (TI, C.and PA). one
can easily imagine the amount of labor required and the countless room for error(s).

Ma/ - Ma A) ? a aPA -?

This study circumvents this potentliUy troublesome area and approaches the
determination of the Sensitivity Matrix C by employing numerical techniques. This
approach is discussed in the text.

B- 3



n& So m ft ggM. The Fortran Program constructed to generate the variowt
3-dimensional perspectis of Aa a included her in its entirety It is designed to be

user frlendly; it ill lead any prospectie wer to easily generate sinml perlpectives

provided that there is some besic understanding of the mechanics of the UNIX/VAX

systems and the operation of the HP722v Plotting Table.

S Equations (221). (222). (2.29) and (2.30) were
progmmed in a user-interactive program called ZDATA to generie the changes in

the semi-major eaxis parameter. Desired inputs queried include the following:

a the initial semi-major ais
(GO b. the orbit incinwa

c. the angular momentum orientation angles (7 and)

d. the range in the angle (6), and

e. the range in the phase diIerence angle (PA -

Additional inputs in scale factor we reqired to arrive at a da value thet can be erily

uwterprted. Scale increments the ranges of the ange 0 and PA to allow a

mac-o-penrpecti or a micro-perspectiw of the a function. Scalerais the daa to

a value betvaen -10.0 and 10.0 for emsy nterpretation of relative magnitudes of As.

The actual Aa is presrd in the parameter called Z.

The information gdneratd is plaed into a dat file (called plotdt compatible to the

plotting routine. The Progra Listing is atched.

The Plotting Routine. This is baincally the set of instructions for getting the
daa plotted on an HP7 v Potting Table. Additional Wmation can be obtained from

the S-Pwce routine. The instructions re as follovs:
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1. Locae the terminal co-locatd vith the HPW Ploting Table.
2. Login as wmu and mm into the directory in vhich te plot da i located.
3. On the terminal, enter the Moving:

a set wermhl9 (this conncts terminal to UI/VAI system)

b. hit SWlIP key.
c. hit e and et bn rmel 2400; vnrity timler setting on rew

o f HP72Ov device.
d. hit SUP key to lock value in.

4. Turn plotter on and set paper & pent u; place plotter on SMB
5. On te terminal. enter the following (note: S and ' me cmpur prompts)

a. ' ,S (rsponse il1 be)
b. ' hp7220v (this identifies plating device)
c. > fzari(red(deftiene).rovz.byrov-)

Vtere fleneme - fleneme xmd in generating 4a
nrov- range x mal + 1

(see S-fPa refernce for additional options)
d. z.z-min(z)
e. z..z/ma(z)
f. pers(z) (sae S-Pwaa reference for additional options)

Note: 5d and 5e dimtension fth dam to the smxmum value of z contained in dat wt.

Relative magnitudes can be expresed by inserting the maimum value of A a
obtainable in step 5d above. The resulting perspective vill give the reluive

magnitudes of the a values vrt to this marimum.

Caution: The rcre oing fthe um z in the iit etion above is an
important tmction of the plotting routine and met not be neglected.
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* frogea L 13tIlon

0 C

0 comment: This program generates the piotdata f or input into the
c S-Package routine. The data is used In program persp(z).
c modified for pa us theta (pa is horizontal)
c surface generation routine (2 variable; 3-dim)

*c Double precision is not required for perspectives.
C

integer i,j,npl,np2,3CaleX
integer dif1,dif2,1 j2,fl,f2,decl,iter
integer dec3, deci, icase
real da(O:100,O:100),dax(O:100O0:100),scalez,datot,coeff
real a1 ix, in,tp,sac,conu,pi
real theta,eta~etax,chi,chix,pa
real bl,b2,b3,bl,b5,b6,b7,bO,dl,d2,d3

* real dal,da2,da3,dai,da5,da6
c

data sa/. 00000465/

comment: open up tapes file for output. Plot data contains the
c all the necesarry data to generate the perspect ivers.
c No comments are allowed in this data set. Plotinfo con-
c tains all pertinent information to plotdata.
C
c open(unit-11,filem'plotdata',aCCess-'equential',

$ tatus'newu)
open(unit-12,f Ile-'plotinfo',aCCessms3equential I,

$ statusi'neu')
rem ind(unit-11)
re i nd( un it -12)

c
comment: This Is the USER INTERACTIUE portion. I t generatesn on c

screen prompts for required Input data.
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10 prints,'Enter a,i,eta,chi (canonical 3.degrees) (real)'
read*,a, ix,etax,chix

pr int *, 'CBOTIUON: Do not exceed a 100 X1106 array!'
print*'Enter SCAILER (e.g., 5 ptdeg *5) (integer)'

read*, sCaI ex
20 print*,'Enter INITIAL L. FINAIL points for THETA (integer)'

read*, ilf 1
printt 1 'Enter INITIAL L FINAL points for PA (integer)'

* read*,i2,f2
printt,'Enter SCALEZ (desired height for OR) (real)'
print*,'note: scaleZ - 10000. (das right! 10 K) works'

readt, scalez
print*,1Are you sure, Solar Sailor? 1-YES; 0-HO'

read*, dccl
if(decl.ne.1) go to 10

comment: Compute some important parameters.
* C

pi - itataon(1.)
tp - 2.*pitsqrt(oaat)
cony - pi/100.
in - xtconv
chi -chix

tconv
eta -etaxtconv

c
comment: echo input back to screen.
c

printt,'period tp '(tu) -',tp
printt,'inclination (deg) -',ix
print*,'eta (deg) -',etax
printt , chi (deg) -',chix
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* comment: Determine the intervals for plot. Intervals must be
c equall 1u paced.
C

difi - iabs(fl - il)
dif2 - iabs(f2 - M2

* np1 - difi/scaleX
np2 - dIf2/sCaleX

print*,'difl - ',difl,* dif2 - ',dif2
*print*,'npl - ',npl,' np2 - ',np2

iter - 0
C

urite(12,190)a, ix,etax,chlx, il,fl, 12, f2,scalex,scalez

write(12,100)
write(*,100)4

too format(//30x,'A/

* C,,, **,*,,,~0D LOOP
c
c npl is the' 2Of points in Theta parameter.
c np2 is the 0 of points In PR parameter.
c scalex is the 8of divisions desired.
c scalez is the factor required to raise the Da value to some
c value that can be worked with.
C

do 100 I - O,npl
theta a(i1 + i'scalex)*conv

c print*,' theta - ,stheta
do 110 j -O,np2
pa- 0i2 -j*sCaleX)*COnV

c print*,' pa - p

C-5
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* comment: Compute the various parameters in the Do equation.
C

bl - 3!n(theta)*co3(chi)
b2 - sin(theta)*sin(chi)*COs(eta)
b3 - sir(theta)*sin(chi)*COs(eta)

0~h M - in(theta)*sin(chi)
b5 - sin(theta)*cos(eta)
b6 -cos(theta)*cos(chi)*sin(eta)
b? - sin(theta)*sin(eta)
hO - cos(theta)*Cos(etO)

dl - 3in(theta)*co3(chi)*COs(in)
c

d2 31sn(theta)s3in(chi )*CO3(Cta)*CO3( in)
$~ 3 in(theta)*sln(eta)*sin(in)

03 cos(theta)*sin(chi )*sin(eta)*cos( in)
$ -cos(theta)*COs(OtO)*sin~in)

dal - .25*dl**2.*((b2+3.*bi)*co3(pa)-(3.*b1~b5)*sin(pa))

da2 - -. 50*dl*d2*((b2-b4)*sin(po)+(b5-b1 )*COs(Pa))

da3 - 2.00*dl*d3*(b6*cos(pa)-b3*3in(pa))
C

dal 2.00*d2*d3*(b3*co(p).b6*3in(pa))

da5 - .25*d2**2.*((3.*b24bi)*COs(pa)-(bl.3.*b5)*sin(pa))

do6 d3**2.*((b24)*COs(pa)-(h1+b5)*3in(pa))

datot - dal~do2+da3+da+da5ido6
coeff - a**1.5*sac*tp
dax~ld) - coeff~datot
do~lj) -sCalez*dox(i,j)

iter a iter + 1
t110 continue
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* .write(11.200)(da(i,j),j',np2)
write(12,200)(do0i,j),j'0,np2)
urite(*,200)(da(I,j ),j0,jnp2)

100 cont inue
c

170 format(/5x,'tp -',f6.3,2x,lin -',f6.3,2x,'eta -',f6.3,'chi
$ -',f6.3)

*190 format(//)'a -',f6.3,2x,'in -',f6.3,2x,'eta -',f6.3,2x,'chi
$S-',f6.3, 2x,'theto from:'ji,' to',ii,2x,'pa from:

J4,i,' to',iI,/,'scalex -',f3.1)2x,'scalez -*,flO.2)

200 format(100(f7.3))

print*,'Do gou want to trg another case???? 1-YES; 0-H0'
read*, case

if~icase.ne.0) then
*pr int*, 'a -', a

print*,'i -n',ix
print*,'eta -n,etax
print*,'chi -',chix

0 ~print*,'Rnq change in a,i~etachi? I-YES; 0-HO'
read*,dec3

if(dec3.ne.O) go to 10
c

print*,'theta starts at',il,' and ends at',fl
print*,*pa starts at',i2,' and ends at',f2
print*,'Rny change in theta and pa? 1-YES; 0-HO'
read*,dec4
if(dec4.ne.0) go to 20

end if
c

endfilIe(unit-11)
endfi Ie(unit-12)
stop

* end
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Apendix 12

Contenta. The software constructed to determine the set of control vectors that

would make the performance index .j stationary consisted of the folloving.

* 1. Main Program: ZERO F
2. Subroutine: ECHO
3. Subroutine: UPART
4. Subroutine: DELTA
5. Subroutine: INV414

Derinpiia Here is a short synopsis of the function of each program used in

this search scheme. The entire listing is documented further in each section of the

* mainwhere additional information would facilitate its understanding. The program

awe as follows:

Progria ZQI. This is the main driving program that employs the

* above subroutines to develop the necessary frsrt and second partials and to determine

the zero of the optimality condition. It is a user friendly program written to work

interactively. It queries the user for necessary input data, an iteration lUmit. and a

convergence limit.

Subouneaa ELQ. The input data along with generated preliminary
information (e g. orbital period) wre echoed back to the user for verification.
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Subroutine UART. The partials of the state function Fa vith respect to

the control variables (Ofl. i. -4) are computed via the Stirling (a.k.a modified
Nevton-Rhapson or central differencing) iteration method. This program is
summoned four times to construct the optimality control vector and supporting

partials (PCI. Output is a2F(uu ) in the form (PUAI and (PUB].

Subroutine DELTA. This uses the perturbation equations to determine the

changes in the orbital parameters a. Output is &a. M

Subroutine INV414. This is used to invert the 414 [PC) matrix so that the

Bu required can be determined. It outputs the determinant and inverse of [PC] - [PCII.

Erwa Ligiu. Attached is the entire program listing of the main program
* ZERO.F. All supporting subroutines required to compile and execute the main program

are included here; it is a stand-alone program.
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-tanf ELrm Mi~g
The following are the computer codes written to search for the
stationary value of the Performance Index J. The Stirling flethad
is used to iterate and find the zero of the function that would
allow this stationary value to exist. Equations found in Section 3

6 under DISCUSSION are the basis for this program.

P80688N ZERO
* C

C Last modified on 25 Nov 84 0600 hrs
C
C This program drives the partial routines to determine the zero
C of the optimality condition;
C Landa (Transpose)*Uportials - [0]
C

INTEGER DECO, DECi ,DEC3, DEC5, DEC6, DEC?, DECLAS
INTEGER DEC8JDEC1ODEC13,DEC1I,DEC5O,DATE

* INTEGER iterx,ii,jj,m,n,part,k,iter,case
C

DOUBLE PRECISION PU(4,4),PC(4,1),PCI (4,4),DIFF(4,4)
DOUBLE PRECISION del (4),deldeg(4),C(4),PUA(4,4),PUB(4,i)
DOUBLE PRECISION a, i,ax,ix~cv,det,tp,sac,mu,dap,dam,da
DOUBLE PRECISION theta,eta,chi~pathetax~etax,chix,pax
DOUBLE PRECISION convdconv,tconvpi,tpi
DOUBLE PRECISION dthedeta~dchi,dpa,delu,du,dux

4k DATA ax, ix/2.d+OO,30.d+OO/
DATA thetax,etax, ch ix,pax/90. d+0,O . d+OO,0. d+0, -90 .d+00/
DATA SAC, iter/4.65d-06,0/
DATA DCONU/ .9053682d+0O/
DATA TCOHU/006.81118742d.OO/
DATA mu,cv/1 .d+0O, .O0ld.OO/
DATA dap, dam/O. d+OO, 0. d.OO/
DATA dthe,deta/O .d.OO,O.d'-OO/
DATA dch i, dpo/O. d.O, 0. d+00/
ORDTA delu,dux/.Old*OO,.05dOO0/
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C
COflfENT: Open up a tapes for print files to be stored in.
C unit 19 contains the del(ii) result3s ith sYs description.

open(unitul9,fi1e'outputl9' acc-'ess'tia',
$ status-'nes')
reuind(unit-19)

*C
COflIENT: This starts the interactive mode for data input purposes.
C

print*,'Enter DATE and CASE NO (e.g. 180984,5):'
* read*,date,case

204 print*,'Any changes in ORDITRI PRAIIETERS? I-Y; 0-''

read*, DECO
if(DECO.ne.O) then
print*,'Semi-major Axis a -',ax 'Any Change? I-Y; OWnN
read', DECI
if(OEC1 .ne.O) then
print*,'ENTER a (DUJ) (double precision)'
read', ax

* end if
print',' Inclination i -',ix ,'Rny Change? I-Y; 0-Wi
read', DEC3
if(DEC3.ne.0) then
print*,'EHTER i (deg) (double precision)'
read*, ix

end if
endi f

208 continue
C______________

print*,'Current theta -",thetax,' ANY CHANGE? I-Y; 0-ti'
read*, DEC5
if(DEC5.ne.0) then

U print*,'Enter theta (deg) (double precision)'
reads, thetax

end if
print', 'Current eta -',etax,' ANY CHANGE? 1-Y;ONH'

* read', DEC6
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f(DEC6.ne.0) then
*printt,'Enter eta (deg) (double precision)'

readt, etax
end if
printt1 'Current chi in',chix,' ANY CHANGE? 1-Y;OSN'
read*, DEC?
if(DEC7.ne.0) then
printt,'Enter chi (deg) (double precision)'
readt,chix

end if
*printt,'Current pa -*,pax,' RHY CHANGE? 1..Y;OinM'

read*, DECO
if(ECO.ne.O) then
printt,'Enter pa (deg) (double precision)'
readt, pax

endif
printt,'Current delu -',delu,' ANY CHANGE? I-Y ;0NH'
readt, dec10
if(declO.ne.0) then

*Printt,'Enter delu (double precision)'
readtdelu

end if
printt,'Current du -',dux,' ANY CHANGE? I-Y; 0-N'
readt, dec13
if(decl3.ne.0) then
printt,'Enter du (double precision)'
readt, dux

endi f
C.printt,'Do you want to iterate? 1-Y; 0-N'

readt, dec14
if(decli.ne.0) then
printt,'Enter No. of Iteration (integer format)'
read*, iterx
print*,'Convergence Limit -',cv,' ANY CHANGE? linY;,OaN'

readt, dec50
f(dec50.ne.0) thenI

printt,'Enter Convergence Limit --v (double precision)'
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end! if
end i f
print*,
print*, 'ARE YOU SURE OF ALL CHANGES? 1 Y; OinN'
print*,"'
read*, DECLAS

if(DECLAS.EQ.O) 60 TO 204

CONNENT: Initialize the system state parameter:
a - ax

* C
COnIIENT: CALCULATE PI IN A UNIQUE URY.
C

P1 - 4.d+OO*DATAN(1.d+OO)
TPI - 2.d.005PI
CONU - PI/180.d+00

i- ix~conv
C
CONIlENT: Caic the period of the initial system w/o perturbation.

* C
TP - TPI*DSQRT(R**3.d.O0/lU**2.)

C.
209 continue

0 comment: If iteration is desired, 209 will bring in the line. Values
c that were computed from UPART. The control parameters are
c updated so that they are stepped through the function
c until convergence is met or until an iteration limit
c is reached. Recall,
c Delta u - Une. - liold
c Un.. - liold + Delat u

COflNENT: PAINT HEADER FOR OUTPUT:

if(l.EQ.O.d+OO) then
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write(*,1O0) date,Case, iter
* urite(18,100) date~case,iter

write(19, 100) date,Cas3C iter
else
write(*,101) datecase, iter
write(18,1O1) date~case, iter

write(1g,1O1) date~case, iter
end if

COMMENT: Echo back the initial agate.:

CALL ECHO(Ax, lx,TP,etax,chixthetax,pax)

COMMENT: CONVERT ALL DEGREES TO RADIANS:
C

C theta - thetax*conu
eta - etax*conu
chi - chix*conu
pa - pax*conu

* C
COnMENT: This 13t call to UPART calculates the C Mlatrix.
C ****NO INCREHENTRL CHANGES ARE INTRODUCED HERE****
C

0 part-I
c

CALL UPAAT(a, i,theta,eta,chi~pa,tptpi,conv,c,
$ delu,dthe,deta,dchi ,dpa,du,pu,.u,det.0sac.Omn,part)

*rlte(19,545) delu
write(1O,515) delu
orite(18,914) C(1),C(2),C(3),C(4)
write(19,914) C(1),C(2),C(3),C(4)
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COMENT: The required matrix is [partial F/partial u].
C This matrix is constructed a row at a time.

C Any subsequent call to UPRRT is to build the Matrix PC
C elements by rows. This is verg InPORTRHT. UPRRT is

C called twice more to fill this required PC matrix.
C
C part - 2 denotes the 2nd partials are being computed.
c
comment: Set up the initial PU matrix and populate it with zeros.
c This matrix is used later but filled in bg rows at a time.

c This population of zeros is required to prevent
c segmentation errors. recall: [PU] - [4x4].
c

do 90 ii - 1,4
do 92 jj - 1,4
pu(iijj) - O.d+O0

92 continue
90 continue
c
comment: This next section contains the necessary do loops to build
c the PUR abnd PUB matrices. THe loop continues in the
c next few pages.

cA

0
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comment: the k loop is responsible for computing PUN and PUB.

c

do 1000 It* 1,2,1
lf(k.gt.2) go to 1000
if(k.eq.1) du - dux
if(k.eq.2) du - -dux

comment: the m loop is responsible for generating the elements.
c

do 2000 m -1,4
c

if(m.eq.1) then
theta - thetax~conv du
eta a etax*conu
chi - chix~conv
pa m paxsconv

elseif(e.eq.2) then
theta - thetax~conu
eta - etxcn + du

o chi - chix*conu
pa - pax*conv

elseif(m.eq.3) then
theta - htxcn
eta - etax*conv
chi - chix*conu + du
pa - pax*conv

elseif(m.eq.i) then
theta a thetax*conu

*eta -etax*conv
chi - hxcn
pa - Pax*conv + du

end if
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COHflNT: This3 next call to a 1PIT i n t he LOOP generats3 t he
elements *
C if k - I then PUN i3 being filled.
C if k - 2 then PUB is being filled.

call *IPIIT(a,i1,thetaeta, chi) Pa.tps tPi .conv, c,
$ deludthe,deta,dchi ,dpa,du,pu,.u,detsa0c,m,norpart)

2000 cont inue

if(k.eq.1) then
orite(18,562) It
write(19,562) k
do 40 ii - 1,4

do 42 jj 1,4
* Pua(H'jj) - pu(ii,jj)

42 continue
40 continue

write(18,910)((pua(i i,jj),jju'1,4),iil-i,4)
* *rite(19,910)((pua( ii,jj),jj-1 ,4), i i1,4)

c
elseif(k.eq.2) then

write(18,561) k
write(19,564) k
do 44 ii - 1,4

do 46 jj 1,4
pub(ii,jj) - pu(ii,jj)

46 continue
44 continue

write(1O,910)((pub(i i,jj),jjinl,4), i i1,4)
urite(19,910)((pub( ii ,jj ),jjil14), ii-1,4)

end if
1000 continue
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* CONNENTz how, get the difference EPUA PUB]; divide bg 2 x du.
C

write(19,566) k
C

do 21 ii - 1,4
do22 jj -1,4
diff(li,jj) *pua(ii,jj) -pub(ii,jj)

22 continue
21 continue

write(19,910)((dlff(I I,jj),JJml,4), 11-1,41
c
c ___________ semble the PC matrix.__________

vrite(19,560) k
c

do 25 lI - 1,4
do 26 jj - 1,4

* pc(ii~jj) - diff(ii,jj)/(2.di0O*du)
26 continue
25 continue

c

* *rite(19,910)((pc(ii,jj),Jjjl,4),ii-1,4)
C

c Calculate the INVPERSE of matrix PC

call IHU~xI(pc,pci,det)

c

write(19,912) dot
C

*comment: Terminate Job if matrix PC is singular.
C

if(det.eq.0.Od+00) go to 999
C

wit t (19,580)
* urite(19,910)((pci(ii,jj),jj-1,4),ii-1.1)
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* .rite(19,545) delu
write(19,910) C(1),C(2),C(3),C(4)

CONNENT: Determine the delta u requr led and check for convergence.
C If no convergence, repeat search for a zero by altering a
C selected control parameter.
C%

wr t e (*,590)
wiIt e(19,590)

* C
CONIT: Intialize the DEL matrix to zero: [ix4] [0]
C

do 800 ii - 1,4
del(ii) - G.Od+00

000 cont inue
C
COnflEIT: Compute delta(u): delta u - U(neu) -U(old)

C delta u - del(i) *- C(lxi)*PCI[ixi]
*C tine. - tiold + delta u

C
COfiNENT: If deltau is not approx 0.0, then try it again with a
C a slightly different choice of orientation angle.
C Add the appropriate delta u to strat the iteration.
C

do 801 ii - 1,4
do 002 jj - 1,4
WOOii - -(C(jj)*pci(jj,ii) *del(ii))

deldeg(ii) del(ii)/conv
c
002 continue
001 continue

C

comment: Print out the required change in u in degrees and radians.
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wr1 te(*1,590)
orite(1,90) dl1,e()e()dl1

* *write(1,910) del(1),del(2),del(3),del(4) L
wit e (*, 592)
wri te (19, 592)

write(1,910) deldeg(1),deldeg(2),deldeg(3),deldeg(1)

comment: Determine if convergence i3 met.
C

c if(del(1).lt.cv.and.del(2).lt.cv.and.del(3).lt.cu.
* $ ond.del(1).lt.cu) then

C

wri t e(8,990)
write( 19,990)

end if

CONNEHT: Set up the iteration block:
C

if(iter.eq.iterx) then
* theta - theta + del(l)

eta - eta + del(2)
chi - chi + del(3)
Pa P pa + del(i)

c
thetax - thetax + deldeg(1)
etax a etax + deldeg(2)
chix - chix + deldeg(3)
pax -pox + deldeg(4

* c
call echo(ax,ix,tpetox~chix,thetax,pax)
call delto(a,i,mu,theta,etachi,pa,tpi,saCtp,da)

c
write(19,915) do
write(*,915) do
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* C

go to 999
elseif(decli.ne.0) then

iter - iter + I
C

comment: echo the results Of the run.
c

call echo(ax, ix,tp,etax,chix,thetax,pax)
C

* go to 209
endi f

999 continue
c

endfile(unitu'19)

___ ___ ___ ___ ___ ___ __ FORnATS _ _ _ _ _ _ _ _ _ _ _ _ _

100 FORMRT(1Hl,/5X,'nOTIOH IN THE ECLIPTIC PLAHE',5X,
* $'DTE:',18,3x,'CASE:',i3,3x,'iTER:',13,/)

101 FORNART(1H1,/5X,'nOTIOH IN THE MON-ECLIPTIC PLANE',5X,
SOARTE: , 16,3x, 'CRSE:', 13,3x, 'ITER: 'i3,/)

545 format(/39x,'Uector C [lxi]'
562 fornat(/30x,'For kt - M,1', fatrix PUR [(xlx] ,1

564 format(/30x, 'Far It - M,1', fatrix PUB [4x4i1)
566 format(/39x,'Ilatrix 01FF Clx4i ',20x,'k ',i4,/)
560 format(/39x,'flatrix PC [ix41 ',20x,'k -',i4,/)
580 format(/39x,'flatrix PCI (lxl',20x,'k -',i4,/)
590 format(/,'Uector DEL (rads) [lxi]1)
592 format(/,'Uector DEL (degs) [lxi]1)
910 format(l4d20.10))
912 format(/5x,'Oeterainant - 'Jf50.40)
914 formt(/5x,f20.lO,f20.10,f20.lO,f20.l0)
915 format(/5x,'Da -'Jf20.10)
990 format(//5x,'Dg Jove, I think gou got it, Solar Sailor')
C

STOP
END
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* SUBROUTINE UPRIT(a, i, theta, eta, chi, pa, tps tpi ,con, c..
$del u, dthedeta, dch i ,dpa,du, pu, mu, dt,30s.mn, part)

c This subroutine calculates fatrix PU. It uses the DELTA
c routine to calculate the changes in the orbital
c parameters.
C

integer m,n,part
double precision a11,sac,tp,tpi,mu,conu,dif

*double pecision theta,eta,chi,pa,dthe,deta,dchi,dpa
double precision thetap,etap,chip,pap,delu,du
double precision thetam,eta.,chim,pam
double precision det,dap,dam
double precision PU(1,4),C(4)

comment: Initialize the do value to zero.

dap -O.d+OO
* dam - O.d.OO

c
comment: Get the orbital parameter perturbations for the given set
c of orbital parameters and orientation angles. Use these for

*c the basi3.
c
comment: This first CallI to DELTA computes the F(old) values.
c Me want to determine the perturbations without small
c changes dthe,detaetc. i.e., dthe-deta-dchiidpaO0.O
c
comment: The next page contains the 00 LOOP for the construction of
c components Of the PIER and PUB matrices. This constitutes
c the n loop of the (m,n) LOOP started in the flAIN program.
c
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0 00__ _ __ _ _D LOOP_ _ _ _ _ _ _ _ _

comment: Determine the part jals. Start a do ioop for t4he mth and
c nth components of the matrix. Thk i3 done by rows.
c

6' if(part.eq.1) m I
do 400 n - 1,4

C

if(n.eq.1) then
dthe - delu

* deta - O.d+00
dchi - 0.d+00
dpa - 0.d'00

eiseif(n.eq.2) then
dthe - 0.d+00
deta - delu
dchi - 0.d+00
dpa - 0.d.00

elseif(n.eq.3) then
* dthe -O.d'0O

deta - .d'00
dchi -delu

dpa - .d.00
* elseif(n.eq.4) then

dthe - 0.d.00
deta - O.d+00
dchi - 0.d+00
dpa -delu

end if
C
COMfENT; The fol losing updates the angles in DELTR for PU matrix
c determination. The suffix "p" (plus) means that the deiu

6c is added when applicable.
c

thetap - theta + dthe
etap - eta + deta ]
chip - chi + dchi
pap a-pa +*dpo
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b 4

w comment: This 1st to DELTA calculates the F(plus) values.

call DELTH(a,i,muthetap,etap,chippap,tpi,sacitpdap) j
c
comment: This following section sets up the minus delu's.
c It updates the angles in DELTA for PU determination.

c The suffix a means that the delu is subtracted when
c applicable. NOTE: The dthe,deta,... are negative now.

* C
thetam - theta - dthe
etam - eta - deta
chim - chi - dchi

pam - pa - dpa

comment: This 2nd call to DELTA calculates the F(minus) values.
r

call DELTA(a,i,muthetam,etam,chim,pam,tpi,sac,tp,dam)

c
comment: The following sets up the approximations of each partial.
c Print out these (dap - dam) values:

o c The following sets up Matrix PU [ix4]. Note the
c denominator.This is 2 x delu because of the method of
c approximation.
c

dif - dap - dam
if(part.eq.1) C(n) - dif/(2.d+00*delu)
if(parteq.2) pu(m,n) - dif/(2.d+00*delu)

c
comment: start forming the elements of the PU matrices.
c if k - 1, then PUR is being formed.
c if k - 2, then PUB is being formed.
c
400 continue

return

end
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SUBROUTINE DELTR(a,i) mu, theta, eta, ch i~pa, tpi) 30c)tp da)

comment: This subroutine calculates the orbital parameter
c perturbation due to changes in orientation angles
c (thetoaeto,chi,pa) and changes in orbital parameters.
C

DOUBLE PRECISION D1)D2,D3,01,02jB3,04,05,D6,07,08
DOUBLE PRECISION theta,eta,chi,pa~tptpi,a,i3.u,saC

* DOUBLE PRECISION da~da1,da2,da3,da1,da5,da6

01 - dsin(theta)*dcos(chi)
02 - dsin(theta)*dsin(chi)*dcos(eta)
03 - dcos(theta)*dsin(chi)*dsin(eta)
04 - dsin(theta)*dsin(chi)
B5 - dsin(theta)*dcos(eta)
06 - dcos(theta)*dcos(chi)*dsin(eta)
B7 dsin(theta)*dsin(eta)
B 8 - dcos(theta)*dcos(eta)

01 - dsin(theta)*dcos(chi)*dcos(i)
02 - dsin(theta)*din(chi )*dco3(eta)*dcos( i)

*$ + dsin(theta)*dsin(eta)*dsinMi
03 -dCos(theta)*dsin(chi )*dsin(eta)*dcos( i)

$ -dcos(theta)*dcos(eta)*dsin(i)

comment: Calculate the following factors that enter into the Da
c equation.

dal - D1**2.dIOO/4.d+OO*((B2 + 3.de.OO*8i)*dcO3(pG)
$ -(3.0+00*01 +. B5)*dsin(pa))

da2 - -D1*D2/2.D+OO*((02-B4)*dsin(pa) + (05 - Bl)*dcos(pa))
da3 - Bi*03*2.d+OO*(B6*dcos(pQ) - B3*dsin(pa))
dal - 02*03*2. deOO*(03*dco3(pa) + 86*d i n(pa))
da5 - 02**2.d+OO/4.d+OO*((3.d.00*B2 + B4)*dco3(pa)

$ - (Bl+3.d+OO*85)*dsin(pa))
da6 - 03**2.d+OO*((B2+B4)*dcos(pa) -(01 + B5)*dsin(pa))
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comment: Calculte the change in Semi-major axis.
c

do - a**1 .5d+OO*soc*tp/mu*(dot +da2+da3+do4+da5+da6)

e urite(18,561) do
581 format(/5x,"Da *,f2O.10)

c

return
* end

C

SUBROUTINE ECHO(ax, ix,tp,etax,chix,thetaxpax)
C

CC THIS SUBROUTINE ECHOES INPUT TO SCREEN FOR VERIFICATION.
C

DOUBLE PRECISION ax, ix,tp,etax,chix,thetox,pax
C write(*,500)

write(19,500)
*p write(*,501)ox, ix,tp

wr ite( 19, 501 )ax, ix, tp
write(*,502)etox,chix,thetax~pax
write( 19, 502)etox, chix, thetax, pox

e C
CFOF~nRTS______________

C
500 FORIIAT(OX,'YOUR SYSTEMI IS AS FOLLOUS:')
C
501 FORI1RT(20X,'ORBITRL PRANETERS: a(DU) -',017.10,

$/20X,' i (BEG) sD,17.10)
$/20X, TP (TU) -',017.10)

502 FORMAT(2OX,'H ORIENTATION: eta (DEG) -',D17.10,
$/20X,' chi (DEG) 0',17.10,
S/20X,' CONING ANGLE: theta (BEG) -',017.10,
$/20X,' PHASE ANGLE pa (DEG) -'sD17.10)

C
RETURN
END
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SUBROUTINE1 -IVA(CCdt

C

CONET: This subroutine calculates the inverse of the (4x41 PC
C matrix using CRHER'S RULE. Primitive, but it works!
C

double precision pc(4,4),pci(4,4),det
double precision dpll,dpl2,dpl3,dpl4,dp2l,dp22,dp23,dp24
double precision dp3l,dp32,dp33,dp34,dpil,dp42,dp43,dp44

*double precision d1122,dI123,dII24,dl221,dl223,dl224
double precision d1321,d1322,d1324,d1421,d1422,d1423
double precision d2112,d2l13,d2l14,d2211,d2213,d2214
double precision d231 1,d2312,d2314,d241 1,d2412,d2i13
double precision d3l12,d3l13,d3114,d3211,d3213,d3214
double precision d331 1,d3312,d3314,d341 1,d3412,d3413
double precision d4112,d4113,dilli,d4211,d4213,d4214
double precisi'3n d4311,d4312,d4314,d44ll,d4412,d44l3

SC~fnHENT: Determine the elements of each row of the determinant
C and cofactor matrix. Data entered bg column.

COflNEHT: 1st row elements:
0C

d1122 - pc(3,3)*pc(4,4) - pc(4,3)*pc(3,4)
d1123 - pc(3,2)*pc(4,i) - pc(4,2)*pc(3,4)
d1124 - pc(3,2)*pc(4,3) - pc(4,2)*pc(3,3)
dp11 -pc(2,2)*d1122 - pc(2,3)*d1123 + pc(2,4)*d1124

d1221 -d1122

d1223 - pc(3,1)*pc(4,4) - pc(4,1)*pc(3,i)
d1224 - pc(3,1)*pc(4,3) - pc(4,1)*pc(3,3)
dpl2 -pc(2,1)*d1221 -pc(2,3)*d1223 + pc(2,i)*d1224

C

d1321 0 l123
d1322 -d1223
d1324 -pc(3,1)*pc(i,2) -pc(4,1)*pc(3,2)

dpl3 -pc(2,1)*d1321 -pc(2,2)*d1322 + pc(2,i)*d1324
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* C
d1421 - d1124
d1422 - d1224
d11423 -d1324
dpI9 pc(2,1)*d1121 -pc(2,2)*dli22 pc(2,3)*d1423

C
COMMfENT: 2nd row elements: -

d21 c3)pC1)-p~,)p(4
* d2112 = pc(3,3)*pc(4,4) - pc(4,3)*pc(3,4)

d2113 - pc(3,2)*pc(4,3) - pc(4,2)*pc(3,3)

dp2l -pc(1,2)*d2112 - pc(1,3)*d2113 + pc(1,4)*d2111

fa d2211 -d2112

d2213 -pc(3,1)*pc(4,4) - pc(4,1)*pc(3,4)
d2214 -pc(3,1)*pc(4,3) - pc(1,1)*pc(3,3)
dp22 -pc(1,1)*d2211 - pc(1,3)*d2213 + pc(1,4)*d2214

C
* d2311 -d2113

d2312 -d2213
d2314 pc(3,1)*pc(4,2) - pc(4,1)*pc(3,2)
dp23- pc(1,1)*d2311 pc(1,2)*d2312 + pc(1,4)*d2314

4' p
d2411 - d2114
d2412 - d2214
d2413 - d2314
dp24 pc(l,1)*d2411 pc(1,2)*d2412 .pc(1,3)*d2413

C

d3112 -pc(2,3)*pc(4,4) -pc(4,3)*pc(2,4)

d3113 - pc(2,2)*pc(4,I) - pc(4,2)*pc(2,4)
d3114 - pc(2,2)*pc(4,3) - pc(4,2)*pc(2,3)
dp31 pc(1,2)*d3112 -pc(1,3)*d3113 + pc(1,4)*d3111
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* p
d3211 - 03112
d3213 - pc(2,1)*pc(i,i) - pc(4,1)*pc(2,i)
d3214 -pc(2,1)*pc(4,3) - pc(i,1)*pc(2,3)
dp32 UPC(1,i)*d321 - pc(i,3)*d32i3 + pc(i,4)*d3214

d3311 0 d113
d3312 - d3213 I
d3314 - pc(2,i)*pc(4,2) - pc(4,1)*pc(2,2)

* dp33 - pc(i..i)*d3311 - pc(1,2)*d3312 +pc(1,4)*d3314
PA

d3411 - 031 1
d3412 - d3214
d3413 -d3314
dp3i pc(1,i)*d3411 -pc(1,2)*d34124 pc(1,3)*d3413

COMflEHTS: 4th raw elements:

* d0112 - pc(2,3)*pc(3,4) - pc(3,3)*pc(2,i)
d0113 - pc(2,2)*pc(3,i) - pc(3,2)*pc(2,i)
d0114 - pc(2,2)*pc(3,3) - pc(3,2)*pc(2,3)
dpl pc(1,2)*d4ll2 -pc(t,3)*dl3 *pc(1,i)*d4l19

d42ll - 04112
d4213 - pc(2,i)*pc(3,4) - pc(3,1)*pc(2,4)
d4214 - pc(2,1)*pc(3,3) - pc(3,1)*pc(2,3)
dp42 -pc(1,1)*d4211 - pc(1,3)*d4213 + pcO1,4)*d4214

d4311 0 d113
d4312 - d4213
d4314 - pc(2,1)*pc(3,2) - pc(3,1)pc(2,2)

*dp43 -pc(1,1)* Ii311 -pc(i,2)*d4312 + pc(i,4)*d4314

d4411 01d14i
d4412 - d4214
d4413 - d4314
dp44 pc(i,i)*d44ii pc(i,2)*d44i2 *pc(i,3)*d4413
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10COHflItIT: Caic the determinant of [PC].

det -pc(1,1)*dpll - pc(1,2)*dp12 +pc(1,3)*dp13-
$ PC(1,i)*dpli

C
CONNENT: Flog the case when a singular matrix eXist.,i.e., det- 0.0
C '

f(det .eq.0.d+00) then
* print*,'DAHGERI DANGER! Oct [PC] 0.0'

print*, Program is stopped in Subroutine IHUiXI:no output'
go to 208

end if

CONNENT: Calculate the Inverse (Pci] of [Pc].

pci(l,l) - dplI/det
pci(1,2) - -dp2l/det

0 pci(1,3) - dp3l/det
pci(1,4) - -dpil/det
pci(2,I) - -dp12/det
pci(2,2) - dp22/det

opci(2,3) - -dp32/det

pci(3,1) - dpl3/det7
pci(3,2) - -dp13/det
pci(3,2) - dp23/det
pci(3,3) - -dp33/det

pci(4,l) - -dpli/det
pci(i,2) - dp2t/det
pci(1,3) - -dp3i/det
pci(1,1) - dpii/det

C
200 cont inue

return
end
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Aond UJ_

A test case was run to determine the required changes in an initial set of control

parameter necessary to reach an stationary value for the Performance Index J. The

specific input data vith the resulting output are given below. For purpose of

demonstration, two iterations are shown here. An option does exist for n iterations or

until a certain predetermined convergence value is reached. Convergence Is set at .001

radians or .057 degrees and is reached in two iterations.

ie Teste. The case (depicted by Figure Z.4D) is chosen as the test for the
search scheme performance emostration. The following are the input data:

a - 2.0 du
i - 45.0

0 - 50

TI - 0.0'

- Or

PA - go,

From the Figure 2.4C. the local maximum appears to be about 55". This is vhat is

expected from the search scheme. As is shown later in the next few pages. the
perspective provided a very good estimate of where the actual maximum is located with

the initial conditions given to vithin .3 degrees. This is not always the case since

pinpointing the maximum from the figures is limited to the amount of divisions in the

two variables 8 and PA. However, increments of 5 degrees is sufficient to make a good

initial guess with. This is strongly exemplified by the test case which follows:

B-I
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*NOTION IN THE NON-ECLIPTIC PLANE TEST CASE

SYSTEM IS AS FOLLOUS:
ORBITAL PRRflETERS: a (DU) - .2OOOO00Ol~

1 (DEG) - .4500000000e+02
tp (TU) a .1777153175e+02

ORIENTATION: eta (DEG) - .000000e00
chi (DEG) - .0000000000e+00

*CONING ANGLE: theta (DEG) - .500000000e+02
PHASE ANGLE: pa (DEG) --.9000000000e+02

uector C (lxi]
.0000180033 .0000000000 .0000000000 .0000000000

For k -1, Mlatrix PUN [lxi]
.65971 25567e-05 .000000O00O0e+00 . 0000000000e+OO . 0000000000e+0O
.1836358803e-04 .271 9543322e-05 -.21 56440749e-05 - .3691114i090e-05

0. 1795098)15Oe-O4 -.21 40999134e-05 -,30111 05779e-05 .6321 304922e-05
179808043e-04 -.3697125027e-05 .6322957922e-05 -.6323023559e-O5

For k -2, flatrix PUB (lxi]
o .3007931771 e-Oi . 0000000000e+00 .0000000000~e+00 .000000000e+00

1836358803e-04 - .271 9543322e-05 .21 56446749e-05 .36911141090e-05
1795096101e~-04 .21410999434e-05 .30111 05779e-05 - .6321 384922e-05
179084043e-04 . 36971 25027e-O5 - .6322957922e-05 .6323023559e-05

flatrix 01FF [lxi]
- .242021921 le-04 .0000000000w+00 .00000000O0e+00 .000000000e+00
.0000000000e+00 . 543906644e-05 - .431 2897499e-O5 -.7302220101 e-05
0000000000e+00 - .4201 998867e-05 - .7622211 556e-05 .1I264276984e-04

.0000000000e+00 -.7394250055e-O5 . 1264591564e-04 -. 1264604712e-04

Mlatrix PC [4xi]
21202192141e-03 .000O0000000e+00 . 000000000e+00 .0000O000000e+00

.0000000000e+00 - .5439006644e-04 .431 2697499e-04 .7302228101 e-01
.0O00000000e+00 .4201 990067e-04 .7622211 556e-04 -.1 264276904e-03
00OOOOO000e+O0 .7394250055e-04 -.1264591 584e-03 .126460471 2e-03
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0 Determinant *- .0000000000000002680581996524702033557175

Ilatrix PCI CxI]
41180244325e+04 .0000000000~e+00 .0000000000e+00 .0000000000~e+00

.0000000000e+00 .5734031325e+04 .1335738514e+05 .1000663821e+05

.0000000000e+00 .133337241 3e+05 . 111421911 4e+05 .335563861 6e+04

.0000000000~e+00 .9980849403e+04 .3331900100~e+04 .541224761 6e+04

Uector C Clxi]
.1800333992e-04 .0000000000e+00 .0000D000000e+00 .0000000000e+00

Uector DEL (rads) Clxi]
.741421 5246e-01 .0000000000e+00 .0000000000~e+00 .0000000000e+00

IUector DEL (degs) [lxi]
4248032420e+D1 .0000000000~e+00 .00000000e+00 .0000000000~e+00

This is the end of the INITIAL LOOP.
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* ITERATION -I

SYSTEMl IS AS FOLLOUS:
ORBITAL PARAIIETERS: a (DU) =.2000000000e+O1

I (DEG) - .4500000000~e+02
TP (TU) - .1777153175e+02

ORIENTATION: eta (DEG) - .0000000000e+00
chi (DEG) -. 0000000000e+00

CONING ANGLE: theta (DEG) - .5424803242e+02
*PHASE ANGLE PA (DEG) --.90000000e+02

Uector C [lxi]
.0000016595 .0000000000 .0000000000 .0000000000

For kt - 1, Mlatrix PUN [4x4]
- .731 7446303e-05 .00000000O00e+00 .00O0000000e+00 .000O00O0O0e+00

.203751 3774e-05 .381 6550277e-05 - .2443709575e-06 -. 3230390802e-05

.161655571 6e-05 - .227391110Oie-06 - .395155321 Be-05 .635639371 4e-05
* .1 65745667?e-05 - .32361 46472e-O5 . 6350264047e-05 -. 6358342092e-05

For k -2, Mlatr'ix PUB [lxi]
* 123027291 le-Oi .0000000000e+00 .0000000000e+00 .000000000e+00

o.2037513774e-05 -.3816550277e-05 .2443709575e-06 .3230390882e-05
.161655571 6e-05 .2273911104ie-06 .395155321 Be-OS -.635639371 ie-OS
1657456677e-05 .32361 46472e-O5 -. 6358264047e-05 . 6358342092e-05

Mlatrix 09FF [ixil
-.1962017S41 e-04 .00000000O00e+00 .0000000000~e+00 .000000000eO00
.0000000000e+00 .76331 00554e-05 - .46874191 50e-06 - .6460781 764.-OS
00000000~e+00 - .4547822207e-06 - .79031 06436e-05 . 1271 278743e-04
000000000e+00 - .6472292943e-05i . 1271 652609e-04 -. 127166841 Se-Di

Mlatrix PC [4x4]
.1962017S41 e-03 .0000000000~e+00 .0000000OO0e+00 .000000000e+00

.0000000000e+00 -. 76331 00554e-04 . 48874191 50e-OS . 6460781 764e-04

.0000000000e+00 .4547822207.-OS .79031 06436e-04 -.1271 278743e-03

.0000000000e+00 .6472292943e-04 -. 1271 652609e-03 . 127166841 8e-03

* E-4



-- N . T -

* Determinant = .0000000000000000109809814800276459134665

Matrix PCI [4x4]
.5096794392e+04 .00OOOOOOOe+00 .0000000000e+00 .0000000000e+00
.OOOOOOOOOOe+00 -.1092792724e+06 -.1579012964e+06 -.1023329720e+06
.O000000000e+00 -.1573479?2?e+06 -.2481494526e+06 -.1661319044e+06
.OOOOOOOOOe+00 -.1017211824e+06 -.1677806467e+06 -.1081826908e+06

Vector C [lx4]
.1659530858e-05 .O0000000e+00 .0000000000e+00 .0000000000e+00

Vector DEL (rads) [lx4]
.8458287572e-02 .OOO000OOOOe+00 .00000000O0e+00 .000000000Oe 00

Vector DEL (degs) [lx4]

.4846241798e+00 .0000000000e+00 .0000000000e+00 .0000000000e+00

This is the end of the FIRST ITERRTIO.
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* ITERRTISH 2

SYSTEM I S AS FOLLOUS:
ORBITAL PRRflETERS: a (DV) =.2000000000e+O1

i (DEG) -. 4500000000~e+02
TP (TV) - .1777153175e+02

ORIENTATION: eta (DEG) - .0000000000e+00
chi (DEG) - .0000000000e+00

CONING ANGLE: theta (DEG) - .5473265660e+02
*PHASE ANGLE PA (DEG) - -.9000000000e+02

Uector C [1x4]
.0000000211 .0000000000 .0000000000 .0000000000

For kt - 1, Mlatrix PUA [4xi]
-.8066102 4950e-05 .0000000000e+00 .0000000000~e+00 .0000000000e' 00

4001 748609e-06 .39444971 62e-05 -.17180988786e-07 - .3173732001 c-OS
- .208767809e-07 - .3057831379e-i10 - .3965040001 .-O5 .635670691 7e-05

* .21 05726398e-O7 -.3179454671 e-05 .6358611 424e-05 -. 6358690694e-05

For k -2, Mlatrix PUB [4x4]
103899351 Be-Ol .0000000000e+00 .0OO00000000e+00 .0000000000~e+00

* .4001 748609e-06 - .39444971 62e-OS . 17180988786e-07 .3173732801 e-05
- .2087678209e-07 .3857831 379e-1 0 .3965040001 e-05 - .635670691 7e-05
.21 05726398e-07 .3179454671e-OS -.6350611 424e-05 . 6358690894e-05

Mlatrix 01FF [4x4J
-. 1905476013e-04 .0000000000e+00 .0000000000e+00 .0000000000e+00

O0000000000e+00 .7008994325e-OS - .3437977571 e-07 - .6347465762e-O5
.0000000000~e+00 -.7715662758e-I0 - .7931680002e-O5 . 1271341 363e-04
.0000000000e+00 - .6358909343e-OS . 1271 722285e-04 -. 1271730179e-04

flatrix PC B(44
1905476013e-03 .0000000000e+00 .000000e+00 .0000000000e+00

.0O000000000e+00 -. 7888994325e-04 . 3437977571 e-06 . 6347465762e-04
.0000000000e+00 .771 5662756e-09 .7931 680002e-04 -. 1271341 383e-03
O0000000000e+00 . 6358909343e-04 -.1271 722285e-03 .12717301 79e-03

Determinant -. 0000000000000000298761559623690959863751



* flatrix PCI [4x4]
.524032476e+04 .0000000000~e+00 .0000000000e+00 .00000000e+00

.0000000000~e+00 - .3878353975e+05 - .51762753171e+05 - .3238906549e+05

.0000000000~e+00 - .515618931e+05 - .89131 09370e+05 - .63967661 62e+05

.0000000000~e+00 - .3216881 292e+05 - .6384770652e+05 - .3990851931 e+05

Uector C [xI]
.2106361300e-07 .000000000e+00 .000000000e+00 .0000000000e+00

* Ijector DEL (rods) [lxi]
.11 06474857e-03 .0000000000~e+00 .0000000000~e+00 .0000000000~e+00

Uector DEL (degs) ClIA]
.6339633946e-02 .0000000000e+00 .0000000000e+00 .0000000000e+00

Byj jove, I think you got it, Solar Sailor!!!!

* IF I HAIL SYSTEMI I S AS FOLLOUS:
ORBITAL PARRRfETEFIS: a (DU) -. 20000000e+O1

i (DEG) - .4500000000e+02
tp MT) - .1777153175e+02

ORIENTATION: eta (DEG) - .0000000000e+00
chi (DEG) - .000000000eO00

CONING ANGLE: theta (DEG) - .5i73899623e+02
PHASE ANGLE pa (DEG) = -.9000000000e+02

Thi3 is the end of the SECOND ITERFITION.
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RENAORKS: This test case showed that when the search point

was initiated at theta = 50*, the search algorithm converged at a

local maximum at theta = 54.73*. From Figure 4.2C, this can be

* visually verified. The close agreement between the perspectives and

the computed maximum gives strong credence in the method of search

and the utility of the perspectives in providing a good initial

guess. This last control vector set was inputted into the DELTA R
function to verify the finding within the theta equal 54.7*. The
results are tabulated below for a fix inclination at 45*:

THETA DELTA A (x 10-4 D)

t 54.0 1.272 129

54.1 1.272 170
54.2 1.272 205
54.3 1.272 233

54.4 1.272 256
54.5 1.272 2?3

54.6 1.272 284

--. 54.7 1.272 209+--
54.8 1.272 200

54.9 1.272 201

55.0 1.272 269

The search scheme is more accurate in pin-pointing the exact maximum

b coordinate. The coordinate is essentially the control vector set
that would optimize the change in semi-major axis. Note, however, A
that other maxima do exist and can easily be located with the aid of

the corresponding perspective and /or with the search algorithm.

Care must be excercised when doing so; the perspectives give the

angular momentum orientation angles as zero degrees. The search
algorithm will find maxima without holding these angles fixed. All

variables are Incremented. Plotting the perspective for a

particular output will provide an extra dimension in locateing and

verifying the computed maxima.
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