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AN INEQUALITY AND ITS APPLICATION TO THE
TRUNCATED DISTRIBUTIONS

by

RavindraKhattree and Y. Q. Yin

ABSTRACT

An inequality is proved and its interpretation is given. Using

the inequality, it is shown, under some mild conditions, that for the

univariate truncated distributions, the variance of the truncated dis-

tribution increases with the value of the truncation point.
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1. INTRODUCTION

The properties of the truncated distributions for the various

families of probability densities have been well discussed in the

literature. Also, well known are the expressions for mean, variance

and higher order moments of truncated distributions, corresponding to
r

certain families. Johnson and Kotz [1] present an excellent account

of these properties almost in every chapter of their four-volume

reference work on statistical distributions. In this report, we fir&6-

derive-.a probability inequality, and then using this inequality, obtain

a property of the variance of the subpopulation, obtained by truncating

the superpopulation between two points for a certain family of density

function bearing some mild conditions. , 1- c',-
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2. AN INEQUALITY

We start with the notations. Let X be a random variable with the

probability density function f(.) > 0 and let F(.) be the cumulative

distribution function of X. We further assume that X admits the first

and second moments m and v respectively.

Let 0 < a < b be any two points. The probability density of X in

the truncated region a < x < b would be given by

g(x) = f(x) ; 0 < a < x < b (2.1a)
F(b) - F(a)

and therefore, the mean and variance are readily seen to be

Ib
m = x g(x)dx (2.lb)

fa
v = b g(x)dx - m (2.1c)

Before we prove the main inequality, we will state and prove the

following lemma:

Lemma 1. Let f(x) > 0 be a continuous integrable density function.

Also, let f(x) be monotinically decreasing function of x for x > 0.

Then, rc
T y f(y+c+a) < 0 for all c > 0, a > 0. (2.2)

Proof. Consider,

y f(y+c+a)dy

-c

= y f(y+c+a)dy + y f(y+c+a)dy
-c f

f y f(-y+c+a)dy + c y f(y+c+a)dy

fO 0

= yff(y+c+a) - f(-y+c+a)}dy

< 0, as f(y+c+a) < f(-y+c+a) V a > 0, and V 0 < y < c.

...................... .-.........-.-...
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We are now in a position where we can prove our inequality which

we state in the following lemma:

Lemma 2. Let 0 < a < b, such that F(b) - F(a) - a is fixed, and let

f(.) be as defined as in Lemma 1. Then

a+b b x f(x)dx (2.3)
2 fa

a+bProof. We define y = x ---. Then, the right hand side can be

written as

1y 2 a+b a+b

a+b a+b ( ~ a+b.y f(y + -f-)dy +- f(y+--- ) dy.2

The first integral in the above expression is nonpositive using

b-a
Lemma 1 with c = - - ,while the second integral is easily seen to be

equal to a (by writing it again in terms of original variable x.)

Hence, (2.3) is established.

Remarks. 1. We will first interpret the inequality (2.3). We notice

that the right hand side of (2.3) is mean of the truncated random

variable X, 0 < a < x < b. (See (2.1b)). Hence the inequality states

that the mean of the truncated distribution is never more than average

of the truncation points, under the assumptions already stated.

2. In case X was originally distributed as standard normal,

then (2.3) reduces to another interesting inequality

a+b . (a). 0 < a < b (2.4)
2 M- (b) - (a) (24

where (.) and D(.) are respectively ordinate and c.d.f. of standard

normal distribution.

f-2
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(2.4) has another interesting interpretation: if we consider as

a function of , then by mean value theorem, there exists a y;

(P(a) < y < D(b) such that

(a) - 4(b) = __ (y) = d, say.

(D(b) - D (a) Y ( )

(2.4) states that such a d, corresponding to y of mean value

theorem, will always be less than or equal to midpoint of a and b.

A different proof of (2.4) has been suggested by

Dr. Nitish Mukhopadhyaya of Oklahoma State University in a personal

communication.

3. In case f(.) was monotinically increasing, the direction

of inequalities in (2.2), (2.3) and (2.4) will be reversed. Similar

proof will go through with trivial changes.

I . -, • . - ° . •,
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3. THE VARIANCE OF THE TRUNCATED DISTRIBUTIONS

Our next result is about the effect of different truncations,

but of the same proportion, on the variances of the subpopulation

obtained after truncation. The result shows that if a fixed proportion

of the original population is truncated by points a and b, 0 < a < b,

such that F(b) - F(a) = ct, a constants then the truncated subpopulation

becomes more and more diverse as we move away from the origin, under

some mild conditions. We formally state this result in the following

theorem:

Theorem. Let X, f(.) F(.), a, b and abe asin Lemma 2, then v, the

variances of X in the truncated population, as a function of a (and

hence of b as well) is a monotonically increasing function for a > 0.

Proof. To prove the theorem, it would be enough to show that the

derivative of the variance of the truncated population with respect to

a is nonnegative.

Note that a f(x)dx = 

(3.1)

which implies that

3b f(a)
;a f(b)

now using (2.1b) and (2.1c), the variance as a function of a is

v (a) = I Ib x2 f(x)dx - ( x )2= - --J a f x f W dxj (3.3)

therefore, using (3.2), we have

" • - - ' . " " - * - - " - , "- . . . .,.. .. ): 2 .. -
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3v (a) 1 2 f (a) 2

3a) = a ( f(x)ctx)(b f(b) - - a f(a)ra b f (b(a)b

2 ( [b x f(x)dx)(bf(b) f(a) af(a))
2 Ja f(b)

1 f(a)(b-a) {(a+b) b f(x)dx}.
a a Ja

Note as b > a; quantity outside parentheses is positive, while that

within parentheses is, using Lemma 2, nonnegative. Hence,

3v (a)
X > 0,
a

which proves our theorem.

Remarks. 1. Theorem can easily be stated for monotonically increasing

f(.) with trivial changes.

2. As a corollary, it can be seen that for any probability

density symmetric about zero; variance of any a-truncation is an

increasing function of jai.
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4. SOME APPLICATIONS

1. Usually in the problem of genetic selection, selection is made to

maximize the average of the unobserved or unobservable criterian

variable, but it is made on the basis of observed values of predictors.

If we denote the criterian variable by y and the regression of

criterian on all the predictors by n, then it is well known that the

best strategy is to select all those for which

> k (4.1)

where k is chosen in such a way that proportion of the selected

population is a, a predecided value between 0 and 1.

If we assume that all the predictors and criterian are in the

original population, distributed jointly as multivariate normal with

zero mean, then n will also be normally distributed with zero mean.

Writing a and a for variances of y and n respectively in the
y n

original population, and W for a truncated region on n axis, we have

V(yln e W) = V(E(yJn)n c W) + E(V(yJn)!n E W)

or
2 2

V(yjn 6 W) = V(nin E W) + a - a ) (4.2)y n

(4.2) shows that V(yln E W) and V(nln c W) differ only by a

constant for any region W on n-axis. Now if our policy for selection

was as in (4.1), it would lead to a a-proportion subpopulation, even

though it maximizes the mean of criterian variable, it is also the most

diverse for it. If too much variability is to be avoided and if one

seeks a region W, for which V(nln c W) < e, a prespecified quantity,

then the region W, maximizing mean subject to the above constraint,
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would be:

W*: k < n < k2  ( 4 .3a)

so that

V W(n) = e (4.3b)w'.

and that

P(k1 < < k) = . (4.3c)

Of course, to control the variability, one has to sacrifice some

of the individual units with high values of criterian variable.

2. There may be a situation where, for further experiments, the whole

population is to be divided into several groups equal in size on the

basis of means of the criterian variable. The theorem says that these

groups will differ not only in their mean values but also in the

amount of variability and one should possibly take this fact into

account while planning for further experiments.
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