
AD-A152 954 HFIT GKS - R GKS IMPLEMENTATION
IN THE ADA PROGRAMMING

1/2,

Lli LRNGURGE(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON
RFB

OH SCHOOL OF ENGINEERING R S RUEGG DEC 84EhE hESMREEI/2
EEEllEllElllEI
IlllEEEElllllI

EEIIIIEEEEEI

U0.111111. '22

La

IIIJiIL25

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

RFPRODJCFD AT GOVERNMEN"!XPENSFE

Lfl

In

S:..':

..

I

AFITGKS -- A GKS INPLEMENTATIO'N IN-

THE ADA PROGRAMING LANGUAGE

THESIS

Raymond Scott Ruegg, B.S. -

Second Lieutenant, USAF

AFIT/GCS/MATH/84D-5

QTI
This domnent has bren ap'roved
f,-r p'lhlir 1o''-iv arid sae; itsit

DEPARTMENT OF THE AIR FORCE I 3i
4. AIR UNIVERSITY

" AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

• . ., = '= -. . . - -, - S...- - , - - - - -, . -5 '--": - - ' """ : . ° -

.. AFIT/GCS/MATR/84D-5

,,eCa,,

AFITGKS -- A GKS DMPLE11ENTATION IN

-N THE ADA PROGRAMMING IJ.NGUAGE

THESIS

Raymond Scott Ruegg, B.S.

Second Lieutenant, USAF

AFIT/GCS/MATH/84D-5

A

Approved for public release; distribution unlimited

AFIT /GCS /MAi 84D-5

AFITGKS -- A GKS IMPLE ENTATION IN

THE ADA PROGRAMMING LANGUAGE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Raymond Scott Ruegg, B.S.

Second Lieutenant, USAF

December 1984

Approved for public release; distribution unlimited

Acknowledgments

I would like to thank all the people that helped make this thesis

a success. First, I would like to thank my thesis advisor Professor

Charles Richard for all his helpful suggestions that kept this thesis

on track. Second, I would like to thank my reader Captain Patricia

Lawlis for giving me fresh prospectives on this project. Third, my

thanks go out to the Support Systems Branch of the Wright Aeronautical

Laboratory, for sponsoring this project. Fourth, I must thank the

Harris Corporation who sent me their draft binding of GKS to the Ada

programming language. This project would have been extremely difficult

if not impossible without this document.

Thanks also goes to Laura and Yoshi Suzuki. I thank Laura for

listening to all the problems I had, and offering solutions. While I

thank Yoshi for editing and correcting the comment headers which went

into the code.

My deepest gratitude goes to Captain Al Deese and the rest of the

workers at the Aeronautical Systems Division (ASD) Computer Center.

Captain Deese gave many hours throughout this thesis making sure that I

had everything I needed to complete my work. To the entire staff of the

ASD Computer Center, thanks. I will always remember you.

Raymond Scott Ruegg

ii

6"

Table of Contents

Page

Acknowledgments..................

List of Figures vi

Abstract. viii

I. Introduction. 1.1

Background 1.1

History of ANS GKS 1.1
History of Ada............

What is AINS GKS? 1.3
Functional Categories of ANS GKS. 1.4
Levels of ANS GKS. 1.5

Problem Definition 1.6
Scope of Thesis. 1.7
Overview of the Project. 1.7
Literature Review of ANS OKS 1.8
What Makes a Good Graphics Package. 1.8

Device Independence....... 1.9
* jCompactness. 1.9

Device Richness 1.10
Portability 1.10
Conclusion 11

Ii. Requirements 2.1

Functional Categories. 2.1
Design Considerations. 2.1.

*Documentation. 2.2
Life Cycle. 2.2
User's Guide 2.2

9Software Engineering Tools 2.3
Information Hiding 2.3
Virtual Device Interface 2.3
Harris Binding 2.4
Conclusions. 2.4

*IIIo Global Design and Implementation 3.1

User Functions 3.3
Packaging. 5
Internal-Control.............7iiControl 3.7
Primitives 3.7

I

Page

Set Primitives................... 3.7
Represent 3.8
Transform 3.8
Segments 3.8
Set-Input 3.8
Input 3.9
Inquiry 3.9
Set Transform 3.9
Emergency 3.9
Error Handling 3.9

Data Structures and Types 3.10
Internal Vars 3.10
OperatingState 3.10
GKSDescriptionTable 3.12
GKS State List 3.14
Workstation State*Lists 3.14
Workstation Description Tables 3.16
Error StateList. 3.17

External Types.... 3.17
Internal Types.................... 3.19
GKSCoordinateSystem 3.20
GKS List Utilities 3.21
GKSConfiguration 3.21

Error Routines 3.21
Order of Checking Error Numbers 3.22
Design Alternatives 3.22
Implementation of Error Functions 3.24
Reporting an Error 3.28

Workstations 3.28
The Original Design 3.29
Implemented Design 3.31
OUTIN Workstations 3.35
Ws x 3.35
Workstation Primitive Functions 3.35
The Segment Routines and Others 3.38
Input Routines 3.39

Int ws x 3.39
Drive x 3.40

WISS 3.40
Global Considerations 3.43

Device Independent / Dependent Code 3.44
Transformations 3.45
Deferral Modes 3.46
Testing 3.47

Conclusions 3.47

IV. Analysis 4.1

Ada 4.1
Positive Comments 4.1
Ada & Graphics 4.2

iv

~T - - VT r rv -wT - I. - -T t

Page

Trouble with Running Ada with the ROLM Compiler . . . 4.3
Specific Errors 4.5
Undesirable Features of Ada on the ROLM Data

General 4.8
Conclusion 4.9

Harris Binding 4.10
Harris Binding Not Accepted by the ROUI Data

General 4.11
Style Changes to the Harris Binding 4.12
Conclusions 4.14
ANS GKS 4.14

ANS GKS Proposal 4.14
Conclusion 4.15

V. Conclusions and Recommendations 5.1

Conclusions 5.1
Results 5.2
Recommendations 5.2
Known Bugs in the Program 5.4
Conclusions 5.4

Appendix A: User Guide to AFITGKS A.1

Table of Contents A.1
Introduction A.2
Cross Index A.2
ExternalTypes A.11
AFIT GKS Functions A.38
AFITGKS Errors A.64
Sample Program A.68
System Dependent Features of AFITGKS A.71

Appendix B: GKS COORDINATES, GKSLISTUTILITIES, and GKS
CONFIGURATION B.1

GKS Coordinate System B.2
GKSList Utilities B.3
GKS-Configuration B.4

Appendix C: Harris Functions Not Implemented C.1

Bibliography BIB.1

VITAVIT.I

v

• " T- * / * - " - r . " .. r N - ' - _ " , " " . ". , _ .. .

List of Figures

Figure Page

1.1 Layer Model of GKS 1.4

3.1 Overall Structure 3.2

3.2 User Functions 3.4

3.3 Data Structures and Types 3.11

3.4 Possible Values of OperatingState 3.13

3.5 GKSDescriptionTable 3.12

3.6 The Workstation StateLists 3.15

3.7 Original Design of Workstations 3.30

3.8 Modified Data Flow Chart of ANS GKS 3.32

3.9 Workstations 3.34

3.10 Polyline Pipeline 3.36

3.11 Polyline Pipeline Superimposed on the OUTIN Side
of the Modified Data Flow Chart of ANS GKS 3.37

3.12 Polyline Attributes Being Bound to Workstation x . 3.41

3.13 WISS Interfacing with the Polyline Pipeline 3.42

4.1 Procedure DOSOMETHING 4.4

4.2 DOSOMETHING Being Debugged 4.4

4.3 Normalization Transformation, and Segment Types . . 4.7

4.4 Illegal Type "X" 4.9

4.5 Variable Strings 4.11

4.6 InputClass and Choice_Input 4.12

4.7 Present EvaluateTransformation Matrix 4.13

4.8 Proposed EvaluateTransformation Matrix 4.13

5.1 Inq_PolylineRepresentation 5.3

vi

Figure Page

A.1 Demo Program A.69

A.2 Output of Demo Program. A.70

vii

Abstract

This project, written in Ada, involved designing and implementing

AFITGKS which is a subset of the Graphical Kernel System (GKS). This

project implemented AFITGKS on a ROLM Data General MV/8000-II validated

Ada compiler, using a proposed Binding of GKS to Ada developed by the

Harris Corporation. After introducing Ada and GKS to the reader, this

project considers several alternative ways of designing AFITGKS.

Selecting what was considered the best design alternative, this project

implements AFITGKS. It concludes with a discussion of how well Ada,

the proposed GKS binding to Ada, and GKS, worked in AFITGKS. This

thesis found minor problems with the validated ROL! Ada compiler, the

proposed GKS binding to Ada, and GKS, but overall they were each excel-

S lent products. By using AFITGKS as proof, this project concludes that

Ada can support large programs, and Ada can support computer graphics.

viii

AFITGKS - A GKS IMPLEMENTATION IN

THE ADA PROGRAMMING LANGUAGE

I. Introduction

This thesis involves the design and implementation of a subset of

the American National Standard Graphical Kernel System (ANS GKS) graphics

package in the Ada programming language. This project initiates a first

step at the Air Force Institute of Technology (AFIT) to provide a

graphics package for the Department of Defense (DoD) standard language

Ada. Improving portability of software, this subset of the ANS GKS

graphics package developed at AFIT (AFIT GKS) will provide a group of

functions in which all future graphics applications can be based. This

project's major thrust involves the design and implementation of AFIT GKS

so as to take full advantage of the power of the Ada programming

language. The requirements of an ANS GKS graphics package are presently

undergoing final approval, therefore AFITGKS will use the Technical

Committee X3H3/83-25r3 report as its definition of the ANS GKS graphics

package(1:i).

Background

This section gives a brief historical accounting of the development

of the ANS GKS graphics package and the Ada programming language.

History of ANS GKS. The design of ANS GKS was based on work done by

many groups. The early design of GKS and performed by the International

Organization for Standardization (ISO) in the Workshop on Graphics

Standards Methodology held in May 1976 in Seillac, France(1:i). The ISO

1.1

- M7 - X- T- P. 77

version of GKS (ISO GKS) was first developed by the West German

Standardization Institute, DIN, in 1978, and then refined during the

period 1980-1982 by Working Group 2 of the Subcommittee on Programming

Languages of the Technical Committee on Information Processing of the ISO

(ISO TC97/SC5/WG2)(1:i;5:vii).

In parallel with the development of ISO GKS was the work of the

Graphic Standards Planning Committee of the Special Interest Group on

Computer Graphics of the Association for Computing Machinery (ACM

SIGGRAPH GSPC)(I:i). This work, known as the Core System Proposal, was

published and widely distributed in 1977 and again (in a revised version)

in 1979.

Pooling the ideas of ISO GKS and the Core System Proposal, ANSI

developed ANS GKS(I:ii). In February 1984, ANS GKS was published for a

four-month period of public review and comment(1). After the initial

public review the ANSI Committee voted to accept ANS GKS as a standard.

History of Ada. The other aspect of this project is to explore the

Ada programming language. Ada came out of a 1970 DoD study into the

software problems facing the DoD. These problems included a diversity of

programming languages, many programs using ill suited languages, modern

programming practices being ignored, and lack of software support

environments(2:12). After developing the requirements for a new language

which would support parallel processing, real-time control, exception

handling, and unique I/O features, in August 1977 the DoD accepted the

design of 4 contractors which were each tasked with coming up with this

new language(2:17). In February 1978, the developers came back with 4

different designs two of which were accepted for further development

(2:18). After this a final decision was made on the language and in May

1.2

• " " - " . .. " -A. ' ' " ". . ."- " - . " "- "' '

III. Design and Implementation

This chapter explores the design and implementation details of AFIT_

GKS. The overall design of AFITGKS shown in Figure 3.1 consists of four

major parts -- the User Functions, the Data Structures and Types, the

Error Functions, and the Workstations. As shown in Figure 3.1, the

'Application' program accesses AFITGKS by calling the User Functions

(See Appendix A). It also uses the package ExternalTypes (See Appendix

A) which contains those types found in the parameters of the User Func-

tions. In turn, the User Functions of AFITGKS call upon the Error

Functions to test any errors in the calling of AFITGKS. As shown in

Figure 3.1, after testing for errors, the User Functions either call upon

the Workstations to output some graphical information, or they access the

Data Structures and Types. The Data Structures and Types shown in Figure

3.1 are a collection of types and variables which User Functions, Error

Functions and Workstations can use and modify. Although it is not shown

in Figure 3.1, the package External_Types is a part of the Data

Structures and Types.

This chapter explains how each part of this overall structure was

developed and implemented. First, it starts by explaining how the User

Functions are separated into different categories (Sectioning the User

Functions). Second, the chapter explains the design and implementation

considerations that went into the Data Structures and Types. Third, the

chapter considers various possible designs of the Error Functions. Then

it shows how the accepted design was implemented. Fourth, this chapter

covers the design and implementation details of the Workstations.

Finally, the chapter concludes with some topics which are involved in the

3.1

device functions, but still not overload the devices with too much de-

vice dependent code. The workstations in AFITGKS are designed in a way

that provides a "template" or standard way to handle various device

features so that it is easy to add new workstations to AFITGKS.

Harris Binding

As specified in the ANS GKS requirements, if a binding of ANS GKS to

a particular language has been Geveloped, then any implementation of ANS

GKS must use that binding(1:3). The Harris Corporation has developed a

proposed binding of ANS GKS to the Ada programming language(10). There-

fore, AFITGKS will use this binding.

Conclusions

In this section we covered the various requirements of this project,

and the reasons for these requirements. In the next chapter, some of the

* design decisions are given, and the rationale of why they were chosen

over other possible decisions.

2.4

i~~~ -2- -- 7 ° • t • ° ° . ° -7 =• , . ° ., o , b - ' -

of what errors may occur when the user calls a function of AFITGKS.

Also included in this user's guide is a small example program which uses

AFITGKS.

Software Engineering Tools

Software engineering tools are developed so as to improve the

quality of software. There are many software tools designed so as to be

effective under different and varying problem environments. AFITGKS is

a diverse set of functions with different requirements. Therefore, dif-

ferent procedures will best be suited to different software engineering

tools. Some techniques, like SADT's, suit those functions that have a

flow of control(10:63). Other methods like Jackson's method is better

suited to functions which modify data structures like the Set Attribute

functions(10:153). Therefore, in this project the software engineering

tools will be modeled towards the function of AFITGKS being designed.

Information Hiding

Information hiding enables a program to hide its data structures

from any outside modifications. Be defining data structures inside of

procedures and package bodies, the data structure becomes inaccessible to

the rest of the program. Therefore, a change to this data structure en-

tails changing only a small core of functions, not the entire program.

This concept must be included in the design of AFITGKS.

Virtual Device Interface

Another requirement that must be addressed is where to establish the

virtual device interface. This is where the device independent AFITGKS

functions must interact with the device dependent AFITGKS functions.

This decision should allow each graphical device to implement all its

2.3

2. How to group the functions.

3. How to break the functions down so as to maintain a high degree

of device independence.

4. How to break the functions down so as to allow advanced hardware

to use all its extra capabilities.

5. How to design the GKS package so as to make it expandable.

Documentation

In-line documentation of code enhances the readability, clarity, and

maintainability of software, and shall be included in AFITGKS. This

documentation enables the maintainer of the program to better comprehend

what the code is doing, and how it is doing it.

For AFITGKS this documentation must be a combination of commented

in-line code, and standard headers for the different functions

implemented. Since AFIT has a standard header for its software, this

header will be used in AFITGKS.

Life Cycle

AFITGKS attempts to minimize the overall life cycle cost. Clarity

and simplicity traditionally minimize the most costly part of the life

cycle, the maintenance phase. With this in mind, this implementation of

AFITGKS shall strive for simple and clear constructs which will improve

the maintainability of this project.

User's Guide

Any large program requires a users guide in order to help the user

understand how to use the program effectively. The users guide for

AFITGKS is Appendix A. It shows the user of AFITGKS what functions are

available, the data types required by the functions, and a detailed list

2.2

.

II. Requirements

This chapter explores the requirements of this project's effort to

write an ANS GKS graphical package. Next this chapter justifies the

requirements with reasons as to why the different requirements are

necessary for this project.

AFITGKS will incorporate the following guidelines:

Functional Categories

AFIT_GKS entails designing and implementing a graphical package

which is highly dependent on the functional categories specified in ANS

GKS. Therefore, AFITGKS shall separate the functions into their re-

spective functional categories. These functional categories are Control

functions, Output functions, Output Attributes, Transformation functions,

Segment functions, InpL. "unctions, Metafile functions, Inquiry

functions, Set Transformation functions, and Error Handling functions.

Together, these categories allow the user of AFITGKS to use any set of

functional categories that an application program needs (See Appendix A).

Design Considerations

To insure easy expandability, the design of AFITGKS will consist of

the entire ANS GKS package. This allows a partial implementation of ANS

GKS which, by design, can expand to a complete ANS GKS package.

Many ideas must go into a good design of AFITGKS. The steps con-

sidered in this design are as follows:

1. How to implement the various functions which are defined in ANS

GKS.

2.1

bundle table is a workstation dependent table associated with a par-

ticular output primitive(1:9). Entries in this table specify all the

workstation dependent aspects of a primitive(1:9). For example, an entry

in a polyline bundle table (a polyline function draws connected line seg-

ments) contains a list of possible values for the attributes of the poly-

line. The attributes of a polyline are line type (e.g. solid, dotted, or

dashed), line width, and line color. The polyline bundle table helps

portability because each display device has its own polyline table which

contains attribute values tailored to the particular device(15:73).

Using the polyline bundle tables a programmer can draw a fat red dotted

polyline on one display surface, and a thin blue solid polyline on

another display surface(14:14-15). This allows ANS GKS to interface con-

currently to several different display devices using the different capa-

bilities of the display devices(14:14-15).I0.
Conclusion. Graphical Kernel System CANS GKS) was accepted as a

standard graphical package. Previously adopted by the European graphical

community, ANS GKS has been accepted in the US because of its device in-

dependence, compactness, device richness, and portability. Having been

accepted as a standard, then all future graphics projects should use the

ANS GKS graphics system. Therefore, an ANS GKS package should be started

now in order to have a working ANS GKS package at AFIT.

• .- ' - - .. - .'. *-.-.- - - -. . .- °.. - - - ..-. -. . - . , ." - -, ' - - -. - - . " . . - . . , - '. -

full input (level c)(1:64). To give some idea of the range of these

levels, level m, minimal level, has 31 functions and 17 Inquiry func-

tions (like what line style is presently being used), where level 2-c

(the highest level) has 110 functions and 75 Inquiry functions(12:184).

This range of levels enables the implementor of ANS GKS to choose a con-

sistent subset of ANS GKS that will be standard across many different

implementations of ANS GKS(11:II-29,30).

Device Richness. ANS GKS's device richness allows the user to

take advantage of hardware graphics features of individual machines

(8:1). Two examples of this device richness are stroke precision text,

and the generalized drawing primitive(1:29;90-91). The stroke precision

text asks the device to draw the text in the correct orientation (up,

down, or diagonally) but if the machine does not have this capability,

then ANS GKS prints the text in the best way possible(7:32-33). A draw-

back to this method is that sometimes stroke precision text should appear

on the viewscreen, but because the graphics device cannot orient the text

correctly, the incorrectly oriented text ends up out of the viewing area

(4:102). The device richness of the generalized drawing primitive allows

the user to input a set of points and a function name which the hardware

interprets and executes(9:114). This allows the user to use any of the

- hardware dependent graphics procedures, such as a circle or arc(1:90-91;

9:114).

Portability. Another ANS GKS goal was portability between

different installations(8:1). This portability comes from being a

standard graphical package, and also from some of its portable features

(14:11). Bundle tables improve the portability of ANS GKS(14:14). The

1.10

S°

facilities on a large spectrum of graphical devices(1:2;14:10). "Com-

'V.. pactness" insures that the graphics package contains only those functions

necessary for the application program(1:1;14:10). "Device Richness"

allows the physical graphical devices to implement any special hardware

capabilities like filling a polygon(1:1;14:10;12:184-185). "Portability"

enables different applications to go from one machine to another(1:1;

11:24;14:10;12:187). These criteria will be applied to AFITGKS.

Device Independence. One of ANS GKS's main objectives was to

design ANS GKS uniformly for a whole range of graphic devices, including

vector and raster devices, microfilm recorders, storage tube displays,

refresh displays and color displays(l:1). This device independence at

the workstation level allows the different machines to use their full

capabilities(1:2;12:184-185). This device independence appears in the

input and output functions of the ANS GKS package. Here, both the input

and the output streams break up into a device fndependent (not related to

a specific device) and a device dependent (related to the hardware capa-

bilities of a specific device) set of code (1:2;14:11). This allows the

different devices to use the same device independent code in cooperation

with their own device dependent code.

Compactness. ANS GKS was designed with many input/output im-

plementation levels, which define different subsets of the ANS GKS

package. This feature of allowing a wide range of subsets of ANS GKS is

commonly referred to as compactness(1:64). The output levels (m,0,1,2)

range from minimal output (level m) to full workstation independent seg-

ment storage (several graphics devices, all using one common storage

area)(1:64). The input levels (a,b,c) go from no input (level a) up to

1.9

. .

parameters of the different modules were specified so as to take advan-

tage of the encapsulating features of the Ada programming language.

The second step in this project was the detailed design phase.

Here, the design was broken down so as to allow the graphics package to

use the powerful constructs of the Ada programming language. Moreover,

the design allowed each of the different devices to use some of its own

machine dependent functions like the locators.

The third step in this project was the implementation of AFITGKS.

The focus of the implementation was of using those Ada structures which

implemented the design quickly, reliably, and clearly.

Literature Review of ANS GKS

In February 1984, the ANSI technical committee X3H3 computer

graphics submitted the final draft proposal of ANS GKS to the public for

review(1:i). The graphics community had until I July 1984 to write in

any objectives to the proposed standard(1:i). After final review the

proposed ANS GKS was adopted as a standard. This review covers the

emerging ANS GKS system in order to justify its implementation on the

ROLM computer at the Aeronautical Systems Division (ASD) Computer Center.

The review centers on the use of ANS GKS as a "good" standard gra-

phical package. Because of the enormous size of the ANS GKS package,

this literature review does not give the details of ANS GKS's overall

design and functions.

What Makes a Good Graphics Package? Over time, different criteria

evolved to establish what makes a "good" standard graphics package.

These criteria vary but some of the more common ones are as follows.

"Device independence" provides any application program with equivalent

1.8

The second problem involved the capabilities of Ada using a pre-

sently validated Ada compiler. These questions were as follows:

1. Can Ada support a large project?

2. How easy is Ada to use in a large project?

3. Can Ada support computer graphics?

The third problem was reviewing and commenting on the Draft GKS

Binding to ANSI Ada (Harris binding)(6). The Harris binding is a pro-

posed list of all the functions of ANS GKS and how they are accessed by

any application programmer who uses an Ada implementation of ANS GKS.

Scope of Thesis

In order to review and comment on ANS GKS, and to answer some of the

questions about the Ada programming language, this thesis designed, and

implemented AFIT GKS which is a subset of ANS GKS. AFIT GKS was imple-

mented in Ada using the ROLM Data General compiler at the ASD Computer

Center Wright-Patterson AFB, Dayton, Ohio. AFITGKS defined its external

interface using the Harris binding(6).

AFITGKS contains three workstations - the Tektronix 4014, the

Tektronix 4027, and Workstation Independent Segment Storage (WISS). The

design of AFITGKS includes segmentation control (output level 2), and

basic input functions (input level b). The implementation will not cover

ANS GKS metafiles (output level 0), event queueing (input level c), and

high level input functions such as event sampling (input level c).

Overview of the Project

The first step in this project was the high level system design

phase. The different modules of the graphics package were sketched out

to get an overall system design. Here the data structures, records and

1.7

0: At this level of output, all primitives and attributes are

supported.

1: This level of output introduces segmentation.

2: This is the highest output level which does all kinds of output

including Workstation Independent Segment Storage (WISS).

On the other hand, the input levels divide the functions according

to how powerful the input devices are in the implementation. These

levels are as follows:

a: At this low level, no input functions are supported.

b: At this level, input is only accepted in response to a specific

REQUEST for input from the application program.

c: This level allows full input including sampling input which will

poll an input device continuously.

Overall, ANS GKS is a diverse set of functions which permit applica-

tion programs to interact with a variety of graphical devices. This

diversity allows the program to satisfy the many different needs of

various users of computer graphics.

Problem Definition

This thesis addresses three related problems. These problems in-

clude the need to review and explore ANS GKS, the Ada programming lan-

guage, and the Harris binding of Ada to ANS GKS.

The first problem involved a review of ANS GKS. In February 1984,

the Association for Computing Machinery (ACM) published a Special GKS

issue of Computer Graphics. This issue contained specifications for the

draft proposal of ANS GKS with a statement asking for public review and

comment(1). Since ANS GKS was proposed as a standard it needed a thor-

ough review.

1.6

4. Transformation functions: These functions allow the application

programmer to scale, rotate, and translate graphical output that is dis-

played on the screen.

5. Segment functions: These functions allow the application

programmer to organize the graphical output into segments which can then

be saved, moved, or deleted.

6. Input functions: These functions allow the user of an applica-

tion program to give inputs to the program via various input devices

(i.e., a locator, the keyboard, or a light pen).

7. Metafile functions: This allows the application program to save

graphical pictures.

8. Inquiry functions: They allow the application program to learn

what the present attributes of the system are.

9. Utility functions: These functions allow the user to create

segment transformation matrices which have a given scale factor, rotation

angle, and translation factor relative to a given fixed point.

10. Error Handling: These functions handle any error conditions

that may arise.

Levels of ANS GKS. In addition to all these function categories,

ANS GKS is also sectioned by both input and output levels. These levels

determine how much of ANS GKS is supported by a particular implementation

of ANS GKS.

The output levels break the functions up according to how detailed

the ANS GKS implementation must display the graphical information. The

levels are as follows:

m: The minimal output level which consists of a small set of

control and primitive output functions.

1.5

application program
application oriented layer

language oriented layer

Graphical Kernel System

operating system

Figure 1.1 Layer Model of GKS (7:7)

workstations layer corresponds to the physical graphical devices and

their graphical abilities. The three other layers, Graphical Kernel

System, operating system, and other resources are self explanatory.

Functional Categories of ANS GKS. The ANS GKS functions are broken

down into categories of related functions. These categories divide the

one hundred eighty five functions of ANS GKS into the following ten more

manageable functional groupings.

1. Control functions: These functions initialize the GKS system

and allow the user to control how and where output is generated onto the

graphical devices.

2. Output functions: These functions draw lines and the other

graphical outputs.

3. Output Attributes: These functions allow the output functions

to take on various characteristics like a thick line width or the color

green.

1.4

1979, with permission, the language was called Ada(2:18). During this

* - whole process the DoD was writing design and language requirements for

Ada so it could keep control of the language. These documents included:

Apr 75 - STRAWMAN - Initial requirements(2:14)

Aug 75 - WOODENMAN - Second draft of requirements based on STRAWNAN

(2:14)

Jan 76 - TINMAN - The complete set of requirements(2:14)

Jan 77 - IRONMAN - A slight revision of TINMAN(2:16)

Jun 78 - STEELMAN - Final language requirements(2:18)

From May 79 through Nov 79, Ada went through a public testing and

review process(2:19). At the same time the DoD began work on a computer

validation facility which would ensure that the Ada compilers conformed

to the specification of the language(2:19). In Aug 80, the Ada Joint

Programming Office (AJPO) was created to manage all Ada related

activities(2:20). In Jan 81, AJPO applied for, and received, Ada as a

trademark of the DoD(2:20). Additionally, the AJPO asked for Ada

standardization by ANSI, which was granted in February 1983(2:21).

What is ANS GKS?

ANS GKS is a set of basic functions for computer graphics

programmers usable by many graphics producing applications(1:i). The

layer model depicted in Figure 1.1 shows the role of ANS GKS as a

graphical system(5:7). The application program and the application

oriented layer correspond to any program that calls ANS GKS. The

language oriented layer is the binding of GKS to the programming

language. For AFITGKS this is the Draft GKS binding to ANS Ada supplied

by the Harris Corporation (Harris Binding)(2). The graphical resources

1.3

,'; .-. '. -... • .* * .* " , - * . - . . *- * = .. * . . .

__ppliction

AFIT GKS

User Functions External Types

Data Structures
and Types

0. -
o,*E

rror Function

Device Independent Code

Device Dependent Code

Workstations

* ,Devices

" calls procedures in
-4- uses the data and types irn

0 Figure 3.1. Overall Structure

3.2

0,-

- -L. , , --

design of AFIT GKS but do not fall into any one of the different parts of

the overall structure depicted in Figure 3.1.

User Functions

How should the AFITGKS User Functions (see Figure 3.1) be sectioned

so that the entire AFIT_GKS project is readable, clear, and easily main-

tained? AFIT_GKS User Functions might be partitioned in several ways.

The first way is by implementation levels(1:64). This means that

certain functions go together because they are related by how powerful

they are. For example, level ma consists of the minimal related func-

tions that can support GKS where as level mc supports the minimal output

but allows for a wide variety of input devices. If the functions were

sectioned by levels then several unrelated functions would be grouped

together simply because they are considered to be of the same level of

fj@ difficulty to implement. This would force procedures like emergency

close gks, and settext_path to be grouped together because they are both

required at level Oa. This would create packages of unrelated procedures

which defeats much of the intent of Ada packages(2:184).

The second way to separate the functions is by functional cate-

gories as shown in Figure 3.2. These categories are Control functions,

Output functions, Output attributes, Transformation functions, Segment

functions, Input functions, Metafile functions, Inquiry functions,

Utility functions (in AFIT_GKS they are called Set Transformation func-

tions), and Error Handling(1:i,v;6:i). By splitting them up in this

fashion, each set of functions have a common idea and purpose. This

allows the maintainer of the program to work on one specific area of AFIT

GKS without needing to worry about how it might affect other areas. In

3.3

I

Represent Primitives Segments Transform Input

Setq eontnot

rig Lib nt Ws

FiFurn3.2iUse F c Ion _triu

InSoto nersn

3.4

p.

essence, the various functional areas of AFITGKS can be separated and

hidden from each other making for many small functional units which are

easier to maintain. Also, this allows the user to pick and choose the

part of the AFITGKS package that is needed for the program. For

example, if the user of AFITGKS doesn't need any segments then that area

of AFIT_GKS can be ignored as a single unit. Overall, the best plan

might be a combination of separating the package into functional units in

which the lowest level functions are implemented first.

Packaging. If AFITGKS is split up into functional units, then how

should these units be implemented in Ada? Ada allows for four different

types of structures or compilation units -- subprograms, task units,

generic units, and packages(3:10-1). First, subprograms are like pro-

cedures and as such the user can access any subprogram. This means that

no variables or lower level functions can be hidden from the user of AFIT

GKS.

Task units are designed to allow for parallel processing. The

problem with parallel processing in AFITGKS is it must be carefully con-

trolled or else unpredictable actions may occur. For example, if "acti-

vate workstation" and "polyline" procedures were allowed to execute con-

currently then the line may or may not be drawn on the newly activated

workstation. Task units may be useful in providing AFITGKS with

parallel processing for multiple active workstations. This idea of task

units may be able to speed up the processing time of AFITGKS but, due to

time constraints it will not be explored in this thesis effort.

Generic units define an algorithm on an unspecified data object

which can then be instantiated for whatever data type is needed. For

example, a generic program could be written to switch two objects.

3.5

- •- -............-....... -..-

generic
type ITEM TYPE is private;
procedure SWAP(First, Second : in out ITEMTYPE);

procedure SWAP(First, Second : in out ITEMTYPE) is
temp_item : ITEMTYPE;

begin
tempitem := First;
First := Second;
Second := temp_item;

end SWAP;

The problem with a generic unit is that it must be totally within at

most two files (the generic specification and the generic body). This

may be helpful for some low level modules but it certainly is not suited

for the entire ANS GKS system as required by the Harris binding because

then the entire AFITGKS source code would have to reside in 1 file (the

generic body), which would be impossible to edit.

Finally, Ada allows packaging (which can be used with generics)

which involves specifying all the procedures and global types that you

- want the user to see in a package specification. The rest of the program

goes into the package body which is inaccessible to the user of the pack-

age. Therefore, by using packages the internal implementation of the

AFITGKS program will be invisible to the end user of AFITGKS. There-

fore, this thesis will center on packaging the AFIT_GKS program so that

the user does not have access to the internal procedures that implement

AFITGKS.

Using the packages of Ada and the sectioning of the user callable

functions by functional categories, the structure of User Functions is

shown in Figure 3.2.

The User Functions consist of all the different functions that the

3.6

0 ' ., - . ' . . " .. " .. ' .. . -. . " • ' " .- - . ' _ ' ' , "7 - ", '

user of AFIT GKS can call. The User Functions also contain internal

functions to handle the functions of AFIT GKS that are not involved with

a particular workstation (like creating a segment transformation matrix).

These functions shown in Figure 3.2 will be briefly described in the

order that they were presented in ANS GKS(I:v). The order of presenta-

tion is InternalControl, Control, Primitives, SetPrimitives, Repre-

sent, Transform, Segments, Set_Input, Input, Inquiry, SetTransform,

Emergency, and Error Handling.

InternalControl. The package InternalControl, shown in Figure

3.2, handles the initialization of the various state and description

tables. This package contains various routines which hold the descrip-

tions of the workstations. This includes what line types the worksta-

tion can perform, what character heights, and widths. Anything that de-

scribes that workstation is found in this package.

Control. The package Control uses the InternalControl package to

initialize the various state and description tables. It also sets the

deferral states and does updates on the various workstations.

Primitives. The package Primitives draw' the actual primitives

(polyline, polymarker, text, and fill-area). It is also involved with

the deferral modes. A deferral mode is a variable that can be set on a

workstation which tells the workstation when it must have its picture

correct. If a segment is open and it is not the highest priority segment

then calling any primitive causes the redrawing of the screen (which can

S be deferred).

SetPrimitives. The package SetPrimitives allows the user of AFIT_

GKS to set the various attributes of the primitives. For example, the

user can set the line type or line width that is needed.

3.7

k> ' " ' - .- " ; -. , "i '_ " " - • --- " "

Represent. The package Represent sets up the various bundle tables

which the user can use. Also, this package can set up patterns, and

colors on the workstations that support these features.

Transform. The package Transform sets the various windows, and view-

ports. It also sets the clipping indicator, and the transformation

number. The only interesting function in this package is setviewport

input_priority. This function sets one transformation to a priority

which is higher or lower than another transformation. To accomplish this

the function setviewport_input_priority checks to see if the two trans-

formations are in the correct order with respect to their priorities. If

they are not in the correct order then the priorities of the transforma-

tions are exchanged.

Segments. The package Segments works on segments. It sets all the

segment attributes like segment visibility, highlighting, priority, and

detectability. This package also handles the three WISS functions

associate_segmentwith_ws, copysegment to ws, and insertsegment. The

only function that is interesting is the setsegment_priority function.

This function sets the priority of the given segment and then sorts all

the segments from highest priority to lowest priority. This is done so

that any redrawing of the screen will draw all the segments in order from

lowest priority to highest priority.

SetInput. The package Set-Input initializes all the input func-

tions. These functions are used to determine which input device will be

used when an input function is called. These functions also set the

various input modes (request, get, and sample), but at this time only

request mode is implemented.

3.8

0

Input. This package performs the six input functions:

requestlocator: requests a locator input on the given workstation

request_stroke: requests a stroke input on the given workstation

requestvaluator: requests a floating point number from the given

workstation

requestchoice: requests an integer choice value from the given

workstation

request_pick: requests a pick input which returns the highest

priority segment that the user picked on the given workstation

request-string: requests text string from the given workstation

Inquiry. The four Inquiry packages shown in Figure 3.2 inquire the

values of the various values on all the state and description tables.

SetTransform. The SetTransform functions shown in Figure 3.2,

allow the user of AFITGKS to create segment transformation matrices

given the rotation, scaling, and translation parameters.

Emergency. The Emergency package contains the routine 'emergency

close_gks' which closes AFITGKS no matter what state AFITGKS is in at

the time of calling this function.

Error-Handling. This package contains the single function error

logging which logs any errors that is found in AFITGKS.

In conclusion, there are many functions that the user of AFIT GKS

can call. Therefore, AFIT GKS is split up into many different packages

(specified in Appendix A) which the user can choose to include or not

include in any application program that uses AFIT GKS User Functions (see

Figure 3.1).

3.9

Data Structures and Types

The Data Structures and Types shown in Figure 3.1 are a series of

seven related packages shown in Figure 3.3 that contain the types and

variables used by AFITGKS. The first two packages shown in Figure 3.3,

InternalVars and InternalTypes, are used exclusively by the internal

functions of AFITGKS; the user of AFITGKS should never access these

packages directly. The third package shown in Figure 3.3 is External

Types (see Appendix A) which contains the types needed to interface AFIT

GKS with an application (see Figure 3.1). This package along with GKS_

ListUtilities, GKSCoordinates, and GKSConfiguration (see Appendix B)

were supplied as part of the Harris binding of ANS GKS to Ada. The last

package shown in Figure 3.3 is Text io which is a standard package avail-

able on all Ada compilers(2:421).

This section will cover InternalVars, InternalTypes, External_

Types, GKSListUtilities, GKSCoordinates, and GKSConfiguration as

shown in Figure 3.3. This section will not explain the design considera-

tions of Text io.

InternalVars. As shown in Figure 3.3, the six GKS data structures

are all contained in one package called InternalVars. InternalVars is

a package of variables which should only be accessed by the internal

functions of AFITGKS. It contains the Operating_State, GKSDescription_

Table, GKSState_List, WorkstationStateLists, WorkstationDescription_

Tables, and the ErrorStateList. The three "state" lists hold the

current values of their respective types. The "description" tables hold

the static values of AFITGKS, or of their workstations.

Operating State. The first structure shown in InternalVars

(see Figure 3.3) is the Operating_State(1:197). This single variable

3.10

. I

InternalVars

OperatingState

GKSDescriptionTable

GKSStateList

Workstation

StateLists

Workstation

DescriptionTables

ErrorStateList

InternalTypes Text io

~External-Types

GKSList GKS- GKS_
Utilities Coordinate_ ConfigurationI

System

Figure 3.3. Data Structures and Types

3.11

° .- - -o-..-. o

holds the operating state of AFITGKS. The possible values of the

Operating_State as shown in Figure 3.4 are GKCL (GKS is closed), GKOP

(GKS is open), WSOP (at least one workstation is open), WSAC (at least

one workstation is active), and SGOP (a segment is open). As shown in

Figure 3.4, various functions of AFITGKS change the Operating_State of

AFITGKS. By using the OperatingState value, AFITGKS can determine if

a function can or cannot be called in the present state of AFITGKS.

GKSDescription Table. The second structure of InternalVars

shown in Figure 3.3 is the GKSDescriptionTable(1:198). This data

structure holds the constant values associated with AFITGKS. It con-

tains the maximum range of abilities of the AFITGKS implementation. As

such, it can be either a permanent constant in AFITGKS or it can be

created when necessary by reading the information off of a file. My sug-

gestion is to have it be a permanent part of the AFITGKS code as shown

in Figure 3.5 since it is needed every time AFITGKS is used.

As shown in Figure 3.5 the GKSDescriptionTable contains the level

of gks implemented, the list of available workstation types, the maximum

CURRENT LEVEL : constant GKS LEVEL := ma;
CURRENT-LIST WS TYPES : WSTYPES.LISTOF;
CURRENTMAX OPEN WS : constant POSITIVE := 2;
CURRENT MAX ACTIVE WS : constant POSITIVE :: 2;
CURRENT MAX SEGMENT WS : constant POSITIVE 2;
CURRENT MAX TRANSFORMATION NUM : constant POSITIVE

MAXTRANSFORMATIONNUMBER;

Figure 3.5. GKSDescriptionTable

number of open and active workstations, the maximum number of worksta-

tions that can be associated with a certain segment, and the maximum

3.12

-" -[• - _ i - -- " - : - "" "-L , "- - w -- Mmmm-- ' 4
.

GKS is
closed
(GKCL)

open r close
GKS GKS

GKS is
open

(GKOP)

open first close last
workstation workstation

open w.st. At least one attribute setting
close w.st. workstation input

is open segment manipulation
(WSOP)

activate first deactivate last
) workstation workstation

activate w.st. At least one primitive generation
deactivate w.st. workstation attribute setting

open w.st. active input
close w.st. (WSAC) segment manipulation

open close
segment segment

open w.st. Segment primitive generation
close w.st. open attribute setting

input

Figure 3.4. Possible Values of OperatingState (1:70)

3.13

number of transformations allowed. Overall, the GKSDescriptionTable

holds the maximum values of various parts of the GKSStateList.

GKS State List. The third structure in InternalVars as shown

in Figure 3.3 is the GKS StateList(1:199-200). This structure holds the

variable values associated with AFITGKS. It is implemented as a list of

variables similar to the GKSDescriptionTable except that the GKSState_

List variables are declared as variables which in many cases have a

maximum value which is specified in the GKSDescriptionTable (see Figure

3.5). These variables like the GKSDescriptionTable are all prefixed by

the word 'current' so that the maintainer of AFITGKS can tell where the

variables came from.

The GKSStateList contains the current open and active worksta-

tions. It also contains all the current attributes of any polyline,

polymarker, text, or fill area that the user invokes. In addition the

GKSStateList contains all the normalization transformation that convert

points from world coordinates to normalized device coordinates. Also,

the GKSState List holds all the information concerning segments, like if

they are visible, detectable, or highlighted.

WorkstationState Lists. The fourth data structure of Internal_

Vars shown in Figure 3.6, each workstation has its own WorkstationState_

List node. The WorkstationStateLists are complex structures because

they must be accessed given a workstationid, or a type of ws. A

workstation id is the name that the user associates with a workstation

when it is opened. A type of ws is a permanent name that the implementor

of AFITGKS associates with a workstation that can be used in AFITGKS.

As shown in Figure 3.6, the information associated with the Workstation

StateLists are contained in the WorkstationStateList nodes which are

3.14

The Workstation
State Nodes

for the
Workstation_ Tektronix Workstation
StateList 4014 StateList
indexed by indexed by

workstation id type of
(uwss) workstation

(wss)

type of
workstation_ workstation

id = 1

wfor the
workstation_ Tektronix type of_

id = 2 4027 lworkstationid ==

2

workstation_
id = 3 type of

workstation

__ __ _I_
= 3

wISS

Figure 3.6. The WorkstationStateLists

3.15

workstations. After explaining why the first design was rejected, this

section explains in detail the implemented design.

The Original Design. The original design of the Workstations was

centered around making the primitive functions as fast as po~sirle.

Whenever a primitive call was made to AFIT_GKS the workstation would

transform, clip, and output the primitive to the display surface. The

primitive function would not need to be concerned with its attributes

since the workstation would take care of the attributes whenever an attri-

bute was changed by the user using a SetAttribute function. This is a

nice concept, but it is not as simple as it looks.

First, if the primitive function does not check if its attributes

are set properly on the workstation, then whenever a new attribute is

set, the attribute function will have to notify each of the active work-

stations of the change. Second, the workstation must store the current

U attribute values of the different primitive functions. This is because a

polyline might have a color of red while at the same time a fill-area

primitive might have a color of blue. Therefore, if a polyline function

is called then the workstation must make sure that the line segments are

red, and if a fill-area function is called the workstation must make sure

that the fill-area is blue. The GKS Data Structures hold the values of

the attributes. So, the GKS Data Structures can hold the attribute

values of the primitive to be output, and an internal structure will hold

the values which tell the workstation which primitives attributes are

currently set on the workstation.

The design to this point is shown in Figure 3.7. The workstation

3.29

Then the procedure ERROROUTPUTINDEXWS will check error 61 with a

polyline index of 2, error 63 with a linetype of 22, and error 87 with a

color of 7. It will return in 'error-number' the first error found or a

zero if no errors occurred.

Overall, these four types of error routines handle all the errors of

AFITGKS.

Reporting an Error. Finally, how should a procedure in AFITGKS

report the error? As specified in ANS GKS, a procedure, other than an

inquiry procedure, reports an error by calling the procedure error

handling with the error number, and the name of procedure which had the

error(1:73). An inquiry procedure simply returns the error in its output

parameter 'ei' (error indicator). In addition, the procedure which

called errorhandling should raise the appropriate user exception and

allow the user to handle the error. This permits a procedure to abruptly

stop processing and allow the user to handle his/her error.

Now that the Error functions have been explained, Workstations will

be discussed next.

Workstations

The Workstations shown in Figure 3.1 are a major part of AFITGKS.

The Workstations are where all the graphical information is output to the

graphical devices. In AFITGKS, there are two types of workstations

(OUTIN, and WISS). The OUTIN workstations are the set of device

dependent code that performs the AFITGKS functions on the graphical

devices. The WISS workstation works exclusively on segments.

First, this section explains the original design of the AFITGKS

3.28

tributes but only a few different types of parameters all of which can be

converted to type integer. Therefore, an example error routine would be:

procedure ERROR OUTPUTINDEXWS (error-numbers: in error-indicators.
listof; rangenumbers: in errorindicators.list of; error-number: out
error-indicator; id: wsid);

errors checked:
61 A representation for the specified polyline index has not been

defined on this workstation
63 Specified linetype is not supported on this workstation
65 A representation for the specified polymarker index has not been

defined on this workstation
67 Specified marker type is not supported on this workstation
69 A representation for the specified text index has not been

defined on this workstation
76 A representation for the specified fill area index has not been

defined on this workstation

80 Specified hatch style is not supported on this workstation
82 A representation for the specified pattern index has not been

defined on this workstation
83 Interior style PATTERN is not supported on this workstation
87 A representation for the specified colour index has not been

defined on this workstation.

An example of how to call ERROROUTPUTINDEX WS is as follows.

Given that the following errors are to be checked:

error 61 with a polyline index of 2.
error 63 with a linetype of 22.
error 87 with a colour of 7.

The two lists, error-numbers and range numbers, must be defined as:

error numbers: range numbers:

61_ 2

63 22

87 7

3.27

. ° - _

3. The third type of error routine checks a series of error numbers

for some highly related errors. For example,

procedure ERROR_ WS IS (errornumbers: in errorindicators.list of;
error-number: out error indicator; id: in wsid);

errors checked:
24 Specified workstation is open
25 Specified workstation is not open
29 Specified workstation is active
30 Specified workstation is not active
31 Specified workstation is of category MO
32 Specified workstation is not of category MO
33 Specified workstation is of category MI
34 Specified workstation is not of category MI

35 Specified workstation is of category INPUT
36 Specified workstation is Workstation Independent Segment Storage
37 Specified workstation is not of category OUTIN
38 Specified workstation is neither of category INPUT nor of

category OUTIN
39 Specified workstation is neither of category OUTPUT nor of

category OUTIN
40 Specified workstation has no pixel store readback capability

ERRORWSID accepts a list of error numbers (of length 1 to 14),

which are to be checked. It returns the lowest numbered error (in error

number) which is true, otherwise, the error-number returned is set to 0.

For example, if error-numbers was the list

24 30 35

then ERRORWSID would consecutively check errors 24, 30, and 35.

4. The fourth type of error procedure in AFITGKS concerns those

error routines that need to check an input parameter whose type can be

converted to 'integer'. Some of the parameters are polyline indexes

while others are polymarker indexes. Here there are many different at-

3.26

function ERRORATLEAST_1_PT (pt: points.arrayof) return boolean;

errors checked:
100 Number of points is invalid

ERRORATLEAST_1_PT checks to see if there is at least one point in the

input parameter. This function returns a true value if there are no

points in 'pt' and a false value otherwise. This particular error

routine is called by the output primitive polymarker to check if at least

one marker is defined.

2. The second kind of error routine checks the error which corres-

ponds to an input error number. For example,

function ERRORSTATES (state : in error-number) return boolean;

errors checked:
1 GKS not in proper state: GKS shall be in state GKCL
2 GKS not in proper state: GKS shall be in state GKOP
3 GKS not in proper state: GKS shall be in state WSAC
4 GKS not in proper state: GKS shall be in state SGOP
5 GKS not in proper state: GKS shall be in either state WSAC or in

state SGOP
6 GKS not in proper state: GKS shall be in either state WSOP or in

state WSAC
7 GKS not in proper state: GKS shall be in one of the states WSOP,

WSAC or SGOP

8 GKS not in proper state: GKS shall be in one of the states GKOP,
WSOP, WSAC or SGOP

Any call to error states checks any one of the eight error codes.

That is acceptable for this function because no user routine needs to

check two of these errors. This function will return a true if the GKS

state is in error, otherwise it will return a false. This particular

function is called from all of the AFITGKS functions except inq_

operatingstatevalue.

3.25

JII " r:q

to the highest error number, these error functions could easily be pro-

grammed without needing to know what procedure called them. This idea

would help in error handling but still the implementor of AFITGKS would

need to make a series of error calls, one for each set of errors that

he/she had.

AFITGKS uses an error package (shown in Figure 3.1) which contains

a combination of the last three different ways of checking errors. These

three methods are as follows:

1. For some of the errors, AFIT_GKS writes a single function that

tests one particular error.

2. AFIT_GKS has some error functions that test the error which

corresponds to an input error number.

3. The last type of AFITGKS error function, tests a series, or

list of errors and returns the first error found (or a 0 if no error was

* I~ found).

Overall, this combination of different types of error functions

seems like the best solution since it solves the problem of interfacing

to the error routines and yet it at least reduces the number of calls to

the error routines. Valid input data is checked by calling error

routines which specifically check the given input data. These routines

are rarely called because the Harris binding restricted all of the input

parameters to valid input ranges.

Implementation of Error Functions. Using the three types of error

routines described above AFITGKS implemented its error routines using

one of the following four methods.

1. The first way to check errors is to write a function that checks

one specific error. For example,

3.24

parameters for various procedures. This would cause a nightmare of over-

loading of a procedure so that all of the different procedures could be

supported by this one error function name. If this solution was taken

then every AFIT_GKS function would call say check-errors several times

using all different parameter lists so that all its errors could be

checked. If this was done then the maintainer of AFIT_GKS would have a

difficult time trying to figure out which of the fifty or so check errors

procedures was called in any function of AFITGKS.

Another way of handling the errors is to pass a single error

procedure the name of the procedure that called it and let it handle the

error checking. This still involves the problems of how to pass the

input parameters so that they can be checked.

Another method is to have a separate procedure for each individual

*error-. Each procedure would check for one of the specified errors of

AFIT_GKS and return a true or false depending on whether or not an error

occurred. This would allow for each error procedure to have a proper

interface so that it can check the input values. The only problem with

this method is that each procedure will have to call several different

error procedures before it can determine if it has any errors.

* Expanding on the method of using one procedure for each error con-

dition, some of the error procedures could be combined, like those with

* identical parameters and similar algorithms. This would cut down on the

* number of error procedures but would not reduce the number of calls to

error functions that each procedure must do.

Next suppose that some of these error functions could check a series

* _ of error conditions. Since all errors are checked from the lowest error

number (for a list of all the error numbers in AFIT_GKS see Appendix A)

3.23

I

shows how the accepted method of implementing errors was realized in AFIT_

GKS. Finally the section explores how errors are reported in AFITGKS.

Order of Checking Error Numbers. Another design consideration is

how to order all the errors that occur in the calling of AFITGKS pro-

cedures by the user. According to the ANS GKS standard all GKS

procedures check on entry (in the following order):

1. That GKS is in the correct state;

2. That the values of input parameters are valid.

At least the first error detected is reported(l:73). To accomplish this

goal, AFIT GKS will check errors from the lowest numbered error (see

Appendix A for a list of the error numbers) to the highest numbered

error. By the design of ANS GKS this will entail checking the GKS states

first, then the workstation states, and finally all the input parameters.

This solves the problem of how to order these error functions in'a simple

concise manner.

Design Alternatives. But the problem still remains as how to design

the checking of the different errors.

One way is to have each procedure check all of its errors, directly

calling on the inquiry functions whenever it needed information from the

data structure in order to determine if there was an error. This would

be a bad solution because of the redundent code that each procedure would

have to do in order to check its errors.

Another possibility is to have several error procedures all with a

single common name (called "overloading" in Ada) which together check the

errors of all the different procedures. The problem with this approach

is that the error checking must check all the input parameters. There-

fore, this error checker would need a different amount and type of

3.22

6

.' - .- • ..

GKSListUtilities. The second generic package shown in Figure 3.3

is GKSListUtilities which allows for arrays, and matrices (both fixed

length and variable length) to be defined. GKSListUtilities (whose

specification can be found in Appendix B) is used extensively to provide

lists of various objects, like the list of active workstations in AFIT

GKS.

This package does have a problem on the ROLM Data General Ada

compiler that this project is using. The problem is that the generic

parameter must be of a fixed length. Therefore, it would not accept a

generic parameter of a variable length string.

This package also has functions which add an item to a list, delete

an item from a list, and test if an item is in a list.

GKSConfiguration. GKSConfiguration shown in Figure 3.3 defines

all the various maximums of type declarations found in AFITGKS. For

example, in GKSConfiguration (the specification of GKSConfiguration can

be found in Appendix B), the constant max raster units defines the

highest raster unit found on any workstation in AFITGKS.

Error Routines

The Error routines shown in Figure 3.1, contain procedures and func-

tions that test all of the various errors that can occur when an AFITGKS

User Function is called. A complete listing of all the AFIT GKS errors

can be found in Appendix A.

First, this section will explore the order in which the various

errors need to be checked. Second, this section will discuss the many

different ways that the error routines could be implemented. Third, it

3.21

.o

and therefore should be classified as belonging to the package External_

Types. For example, large_ndc types are exactly like the ExternalTypes

ndc except that the range of permissible values is larger than that of

type ndc. Prefixing the types with "e " allows the maintainer of AFIT_

GKS to quickly recognize whether the type should be found in External

Types or in InternalTypes. Finally, many of these types, like the

record which defined a polymarker bundle table entry, must be made into a

list (for the polymarker bundle table) by using the generic package GKS

ListUtilities. Their names are always the name of the generic parameter

plus an "s". For example:

package iseg_names is new GKSLISTUTILITIES (i_seg_name);

package einput_q_entrys is new GKSLISTUTILITIES (e_input_q_
entry);

0@ Note, that it is not necessarily the plural of the generic parameter.

GKSCoordinate_System. The GKSCoordinates_System shown in Figure

3.3 allows the program to define points, vectors, sizes and rectangles of

any floating type variable. This generic package (whose specifications

can be found in Appendix B) is used to create the World Coordinates (we),

Normalized Device Coordinates (ndc), Large Normalized Device Coordinates

(large_ndc), and the Device Coordinates (de). It uses a generic

parameter which allows various instantiations of GKSCoordinateSystem

using the different coordinate types.

In addition to defining the different types, this package also de-

fines a vectorlength operation. This is a function that, given a

vector, returns the length of the vector.

3.20

these extra functions which could access the private types were not

written and the input data structures were not made private. Although

the private structures are not presently in AFITGKS they may be a nice

addition to AFITGKS because then the maintainer of AFITGKS can change

some private data structures implementation without having to worry about

what part of AFIT GKS accessed it.

Internal-Types. As shown in Figure 3.3, InternalTypes is mainly

used to define the types needed in Internal Vars. This package contains

the types for binding attributes, segment storage, transformations, input

queue entries, WorkstationStateLists, WorkstationDescriptionTable,

and the error indicators. In addition, AFITGKS defined a new type in

the package InternalTypes called largendctype. This type allows the

ndc points in segment storage to lie outside of the range 0.0..1.0. This

is useful when later applying segment transformation, or the WISS

function insert segment(1:44).

One problem with InternalTypes is that the Ada compiler used for

this project would not allow variant records to be used in pointer lists,

or in arrays. Also, a field name in the variant part could not have the

same name as in another case of the same variant part. Therefore, this

package does not use variant records but simply shows where they should

be put if the compiler would accept them.

In the InternalTypes package, type names had to be created. There-

fore, this implementation used the prefix "e_" (enumeration of) before

any type declared in InternalTypes. The only exceptions to this rule is

variablestring, large_ndc types (discussed above), and package dc

points, which can be found in Internal_Types. The reason for these ex-

ceptions is that they all closely mimic the types found in ExternalTypes

3.19

-- r r-- -- . -r J °. r _ • • ..
,

-- - * . - • .-

Types given by the Harris binding. There are three differences.

1. The Harris binding specifies that

subtype positive_scale factor is scalefactor range scale
factor'safesmall..scalefacator'safelarge; (2:46)

The ROLM Data General will not compile this statement. Therefore, it was

changed to "range 0.00001..1.0E50;" which is the value requested.

2. The second change is that the Harris binding requires that AFIT

GKS be a generic package. This is so the user can specify the format of

choicevalue, inputvalue, pick_ids, segmentnames, world coordinate

types, and workstation ids. This is a nice concept but it is unrealistic

to have the entire AFIT GKS project in one generic package, because the

ROLM Data General would require that the generic package be contained in

one text file which would be impossible to edit. The reason the entire

code would have to be in the one generic package is that if External

Types was a generic package then the only piece of code that could use

its variables would have to be a part of the actual generic package

ExternalTypes (11:10.2.1). This implementation solved the problem by

only allowing the user the default types for Harris's generic parameters.

3. The Harris Binding defined the six input data records as pri-

vate. An input data record holds any values needed to inquire an input

device. For example, the valuator input device which gets a floating

point number which is inside a given r has its input data structure

contain the range that the floating point number can take on. If the

input data records are private, then a series of functions must be

written to access those private data types. Due to time limitations

3.18

0

of what the workstation is capable of doing. This includes what kind of

-. workstation is it, how big is the display surface, and is it a raster or

vector display. Moreover, the structure stores the line types, line

widths, and the colors that the workstation can display. The table holds

the marker types, text fonts, character heights, character widths,

interior styles, and hatch styles. In addition to handling all the

capabilities of the workstation, the GKSDescriptionTable nodes also

hold the default values for the Workstation State Lists. This includes

all the default bundle tables and information about the input functions.

Finally, the WorkstationDescriptionTable nodes contain a list of

variables which state whether the workptation can perform a certain

action with or without a redrawing of the display surface. These actions

include changing the various bundle tables, deleting segments, or

changing colors on the workstation.

Error State List. The sixth data structure in Internal Vars as

shown in Figure 3.3 is the ErrorStateList (1:209). This structure

holds the information concerned with an error. This structure contains

the error state, and the error file. The error file causes the Internal

Vars package to use the package Textio, this is because the error file

is implemented as as filetype which is not a type defined in Ada; it is

a private type defined in the package Text io (2:421-42). In order to

highlight these variables in AFIT GKS they are all prefixed with the word

"error ." For example, the error file is named "error GKS."

External Types. This package shown in Figure 3.3 holds all the

types that the user needs to interface with AFITGKS. This package shown

in Appendix A was specified in the Harris Binding.

AFITGKS does not completely adhere to the specification of External

3.17

6

: , ,_ _ : - . , - -. . . . - • .:' , - - , ,. :-

pointed to by the two different Workstation State Lists. Therefore, the

Workstation State Lists are implemented as two arrays indexed on the

range of the workstation ids and workstation types. As shown in Figure

3.6 the array indexed by the workstation id is the variable "u wss,"

while the array indexed by the workstation type is the variable "wss."

Note in Figure 3.6 that the "u wss" can be defined with any of the

workstation ids pointing at any of the three different workstation types,

but the pointers from "wss" can not be changed. The Tektronix 4014 is

always of type 'I' (type of workstation = 1), the Tektronix 4027 is

always of type '2' (type of workstation = 2), and Workstation Independent

Segment Storage (WISS) is always of type '3' (type of workstation = 3).

The WorkstationStateList nodes contain the variables that are

needed to deal with a workstation. This structure contains the deferral

mode and whether the screen needs to be redrawn. It also contains all

the bundle tables for the various output primitives. The Workstation

State List nodes contain the workstation window and viewport which

perform the normalized device coordinates to device coordinates

transformations. Finally, this structure contains all the current

information needed for the input functions.

Workstation-Description Tables. The fifth data structure is the

WorkstationDescriptionTables (1:204-207). This is where the constant

values associated with a workstation are stored. The Workstation

DescriptionTables are implemented just like the WorkstationStateLists

shown in Figure 3.6. For the WorkstationDescriptionTables the two

arrays shown in fugure 3.6 are "u wsd," and the "wsd" which point to the

WorkstationDescriptionTable nodes.

The WorkstationDescriptionTable nodes are simply a structured list

3.16

GKS Data Structures
hold the attributes

of the current Set Attributes
primitive

,, Workstations

40 Internal variables
0 to tell which Code to perform

primitive is cur- the extra
rently correctly set functions
on the workstation

Figure 3.7. Original Design of Workstations

must communicate with the SetAttribute functions, it must access its

internal variables and the GKS Data Structures, and it must have some

* additional code to perform all the setting of attributes.

Finally, segments were considered using this design. Segments

contain a series of primitives and their attributes. Segments are stored

0 on the workstations, and are used to modify displayed images. As such

they can be redrawn at any time. This being the case how can this design

handle segments? The segment attributes can not be used with the GKS

3.30

-- ..

V --a -

Data Structures, because that would destroy the current values of the

attributes. So another internal structure is needed to handle the at-

tributes of segments. At this stage, this design was determined to be

"bad" because of all the extra variables and code needed to implement it.

Therefore, the original design was discarded and the design that was

eventually implemented is discussed next.

Implemented Design. The implemented design of AFITGKS used a

slightly modified data flow chart of ANS GKS as shown in Figure 3.8.

First, the primitive functions perform the transformation from world

coordinates (wc) to normalized device coordinates (ndc). Second, the

active workstation is called, where the clipping rectangle is stored with

L the primitive. The clipping rectangle is the current viewport. When

clipping is applied, any graphical information that is not contained in

the clipping rectangle will be clipped (discarded). Third, the current

attributes of the primitive are bound to the primitive. For example, a

polyline primitive is no longer considered as a list of vertices; it is

now a dotted, thick, red list of line segments which have a clipping

rectangle equal to the current viewport.

Fourth, following Figure 3.8 down the path of the OUTIN worksta-

tions, the workstation tests if a segment is open. If a segment is not

open then the primitive goes on to the seventh step bind attributes, but

assuming a segment is open, the fifth step is to store the primitive in

Workstation Dependent Segment Storage. Workstation Dependent: Segment

Storage is a storage area for segments. Sixth, the primitive is trans-

formed by the segment transformation.

Seventh, the attributes of the primitive are "bound" to the display

- surface. This means that the attributes of the primitive are set on the

3.31

6

Wo r kNsrmaalizaoion

ilure3.8. odife Daa lw hctfanSG(1:47

OUTIN tored t3.32r

Wokttos0S

Find~~ .trbt!7- tiue

display. For example, the polyline primitive described in the third step

* :would set, if necessary, the color on the workstation to red, the line

type to dotted, and the line width to "thick". The attributes set are

those that were bound to the primitive during bind attributes. Eighth,

the primitive is clipped against the appropriate clipping rectangle. The

appropriate clipping rectangle is the intersection of the clipping rec-

tangle stored in step two, and the window used in the workstation trans-

formation. Ninth, the primitive is transformed from normalized device

coordinates (ndc) to device coordinates (de). Tenth, the Workstation

Driver is called to output the primitive to the device.

The right side of Figure 3.8 shows WISS. As shown in Figure 3.8,

WISS works essentially like the OUTIN workstations except that it doesn't

affect a graphical device. Instead, WISS provides three functions,

insert, associate, and copy, which can transfer information stored in

WISS to any of the OUTIN workstations.

Using the ideas of Figure 3.8 AFITGKS designed the workstations

shown in Figure 3.9. This design was considered the most critical part

of AFIT GKS. If this works well then the implementation has a good

chance of working. If this is done poorly, then AFITGKS cannot possibly

work.

The OUTIN workstations are split up into three packages called Ws x,

Int wsx, and Drive_x, where x is the type of workstation (x = 1 for the

Tektronix 4014, x 2 for the Tektronix 4027). Ws x handles those

functions that the device independent part of AFITGKS calls, like draw

polyline, or clear the screen. Int ws x handles the internal functions

of Ws x like doing transformations, binding attributes, doing segment

4 storage, and clipping line segments. Drive x puts out the actual ASCII

3.33

I

Core1 Numericns--io

0

Figure 3.9. Workstations

S1

3.34

1A. *

characters which make the given OUTIN workstation perform.' It draws line

segments, puts out text and gets input from the graphics device. It is

only called from Wsx and Int ws-x.

The WISS workstation only works on segments. Whenever it is active

it stores any segments being created. In addition, WISS has three

functions, associate, copy, and insert. In AFITGKS, these functions

move segments from WISS to a given OUTIN workstation.

OUTIN Workstations

Ws x. The package Ws x shown in Figure 3.9, performs three

kinds of functions. It processes the workstation primitive functions,

handles the various segment functions (like displaying a segment), and

performs all the major input functions. Overall, this package is the

primary way for the AFITGKS package to access the workstation.

Workstation Primitive Functions. The workstation

9- p mprimitive functions perform the OUTIN side of the data flow chart shown

in Figure 3.8. Each primitive function has its own set of code, which

performs the operations shown in Figure 3.8. As an example, this section

will show how a polyline primitive is implemented in AFITGKS. The other

primitive functions are implemented the same way.

As shown in Figure 3.10, the polyline function is split into five

procedures. These procedures, polyline, wspolylinex, wspolyline_b_x,

d ws polylinex, and drivex, line up in what is known as a pipeline

where each procedure listed performs its function and then calls the next

procedure in the pipeline. To better understand the relationships of the

polyline function (Figure 3.10) and the data flow chart of ANS GKS

(Figure 3.8), those two figures are superimposed to create Figure 3.11.

3.35

%-

Polyline

Ws-x:
ws Splyline x

Ws-x:

40 wspolyline_b_x

Ws-x:
d_ws polyline x

Drive-x:
dd ws line x

* _ Figure 3.10. The Polyline Pipeline

3.36

Application)

Polyline
Normalization
transformation

Clipping
rectangle
stored

Ws_x:
wspolyline-x

FBind attributesj

no segMen tC' segment

is open - is open

Work stat Ion

Dependent
Segment Ws x:
Storage wspolyine_b_x

segment segment
visible not visible

[Segment

Itransfo rmationi

SAttributes
Sare bound

Ws x:
Clipping d_ws polyline x

transformation
Dr ive x:

~dd ws line-x
Workstation

Driver
'process terminated

Figure 3.11. Polyline Pipeline Superimposed on
6 the OUTIN side of the Modified Data Flow Chart of ANS GKS

3.37

---..0? " "" - ii - .

"i o." " - •.--i- "

The middle three procedures of the pipeline shown in Figure 3.10 are

the workstation primitive functions. As shown in Figure 3.11 wspolyline_

x, gets the clipping rectangle for the polyline primitive and then binds

the present attributes to the polyline. Ws_polyline b_1 handles seg-

ments. If a segment is open then this function stores the segment, and

then it transforms the segment by the segment transformation and calls

the next part of the pipeline d-ws-polyline-x if the segment is visible.

If a segment is not open then ws_polyline_b x calls dwspolyline x.

Also shown in Figure 3.11, d_ws_polylinex prepares the polyline for

output to the screen. This routine does a series of actions to prepare

the polyline for the device.

1. It binds the attributes to the output display.

2. It gets the proper clipping rectangle, which is the intersection

of the clipping rectangle associated with this primitive and the work-

station window.

3. The function then splits the polyline into separate line seg-

ments. As shown in Figure 3.11, for each of the separate line segments

d ws polylinex does the following.

A. It clips the line segment to the given clipping rectangle.

B. It transforms the line segment to device coordinates.

C. It calls the device dependent code in Drive x to output the line

segment.

The Segment Routines and Others. This workstation also

allows for displaying of segments, and deleting of segments. The dis-

playing of segments works by taking the primitives out of segment storage

and modifying them so that they can be put back into the output pipeline.

Segments being redrawn enter the pipeline at d ws <primitive name> x just

3.38

- -°-. .

after segment storage.

The other routines simply initialize the workstation and clear the

display.

Input Routines. The input routines request various inputs

from the terminal. In essence all of the input routines ask the device

for the input along with a boolean variable which tells whether the value

from the terminal was valid or not.

Int wsx. The package Int ws x shown in Figure 3.9 performs

the internal functions of Ws x. As such, Int ws x does transformations,

stores primitives into the open segment, binds attributes to the work-

station, and performs line clipping. This package is internal to package

Ws x. Therefore, all of the routines are used only by Ws x. The only

exception is the transform wc to ndc of the package Int ws_1 which is

needed in the packages Ws_1, Primitives, and SetTransform. Each of

these packages needs to transform some points from world coordinates to

normalized device coordinates.

The routines are simple in this package. The transform function

performs a 2D transform on the given points. The functions that store

primitives in segments create a segment node containing the primitive and

then they store the node in the segment storage associated with the work-

station. The routines that do the line clipping clip line segments.

The binding of attributes is a little more difficult. Here the bind

attribute routines check each of the aspect source flags (asf) for any

primitive. An asf, in essense, is a boolean variable which tells whether

the attribute to be bound should be the one originally bound to the primi-

tive, or the workstation dependent value found in the Workstation Bundle

Tables. If the asf specified, then the value originally bound to the

3.39

primitive is used on the workstation. If the asf = bundled, then the

value given in the Bundle Table associated with the current bundle index

(found in the GKSStateList) is used on the workstation. As shown in

Figure 3.12 the polyline function bind-attributes finds out what values

to use on the workstation and then it calls routines which take the input

value and set the workstation to that state, if necessary and possible.

For example, as shown in Figure 3.12, suppose the polyline function bind

attributes calls setcolourx with an input of blue. If the workstation

is capable of color, then setcolourx will check if the present color is

blue, if it is not blue then it will call upon the device dependent

routine d set colour x which will set the color on the device to blue.

Drive x. The package Drive x shown in Figure 3.9 is the driver

for the given OUTIN workstation. Here the actual device code for the

different primitives are output to the "standard output" device. The

actual devices interpret the "standard output" as specific commands and

display the various graphical primitive objects. The input functions on

Drivex are not supported on all the workstations. Therefore, some of

the input functions (like valuator) must be simulated by asking input

from the keyboard rather than a given valuator device. A valuator de-

vice is commonly a potentiometer whose value is read by the graphics

device and converted to a floating point number. In AFITGKS, a valuator

is simulated by asking the user to input from the keyboard a floating

point number.

WISS. WISS works exclusively on segments. It is defined pic-

torially in Figure 3.8. As shown in Figure 3.8, WISS must interface with

the OUTIN workstations. Therefore the OUTIN primitives had to be

designed so that the WISS functions could interface with them. Figure

3.40

bind-attributes

set linetype x set linewidth x set colour-x

Drive x: Drive x: Drive x:
d-set-linetype x: d set linewidth x d set colour xi

Figure 3.12. Polyline Attributes being Bound to Workstation x

3.13 shows how WISS interfaces with the polyline pipeline of an OUTIN

workstation.

This interfacing with the OUTIN workstations is the only important

part of WISS. If WISS could not interface with the OUTIN workstations,

it would be useless. Therefore, the next three paragraphs will discuss

the polyline pipeline shown in Figure 3.13, and how it interacts with

WISS.

First, the routine ws_polyline x in Figure 3.13 had to be written so

that each of the primitives would get bound to its attributes when it was

called by the primitive routines (those found in package Primitives).

3.41

The Polyline Pipeline
for Workstation x

TPolyline

Ws x:
ws_polyline-x

The WISS functions

associate
insert

Ws x:
wspolyline b x

copy

Ws x:
d_wspolyline_x

Drive x:
dd ws line-x

Figure 3.13. WISS interfacing with the Polyline Pipeline

3.42

Notice that WISS does not call ws_polylinex because this would rebind

the current attributes with the segment. ANS GKS states that once the

attributes are bound to a primitive they are never changed(1:20).

Second, in Figure 3.13 ws_polyline b x handles segments for the

primitive, and allows WISS to perform the associate and insert functions.

The associate function copies the given segment to the appropriate OUTIN

workstation in the same way as if the workstation were active when the

segment was created(1:54). As shown in Figure 3.8, the insert function

allows previously stored primitives to be transformed and again placed

into the stream of output primitives(1:54). The procedure

wspolyline b x is needed because both the associate and insert routines

need to access the segment storage capabilities of the workstation

without rebinding the attributes of the workstation to a previously

stored and bound segment.

Third, the d ws_polylinex routine creates the interface for the

copy function. As shown in Figure 3.8, the copy function copies segments

stored on WISS to the specified workstation(1:54). This is because copy

needs to output a segment on a workstation but it does not allow segment

storage or rebinding of attributes on the workstation.

Overall, WISS drove the design of the OUTIN workstations. The work-

station had to do its operations in the order and with the separate

functions described above. Otherwise WISS could not call on the work-

station to do its three functions.

Global Considerations

The following four topics, device independent / dependent code,

transformations, deferral states, and testing, do not fit into any of the

3.43

+ +: i + + + . - ---: . : : i~ + • +- + . ..---- . + , . , . i-. .- +: . . .-

shown in Figure 4.4, is illegal in Ada. But, if the second "b integer"

type x(id character) is
record
a : float;
case id is
when 'a' =>
b : integer;
c : integer;

when 'b' =>
b : integer;

end case;
end record;

Figure 4.4. Illegal Type "X"

were "d : integer" then there would be no problem. If the above

structure was legal then the WorkstationStateLists and the Workstation

DescriptionTables could be defined given the wscategory. For example,

a workstation of type WISS needs a Workstation State List that contains

the names of the segments associated with the workstation, but a work-

station of type OUTIN needs the names of the segments, the 'deferral in-

formation, the bundle tables, the workstation transformations, and the

input tables. Now if the variant record shown in Figure 4.4 was

allowable then each WorkstationStateList would contain only those field

names that the type of workstation needed, and the field names for the

same information could be the same.

Conclusion. Overall, I want to comment that I like Ada. I think it

is a good language which has to be implemented with more consideration

given to the programmer debugging programs. Implementations of this

language must be explored and tested with users so that the Ada compilers

and support environments develop into a friendlier environment for the

programmer.

4.9

Then I instantiated both types as variable length lists as follows:

package e norm-transformations is new GKSLISTUTILITIES (e norm
transformation);

package eseg_names is new GKSLISTUTILITIES (e_seg_name);

Then I defined the two variables, currenttrans and currentsegstate_

list, in the Internal vars package as follows:

current trans: e norm transformations.list of;
current~segstate-list: esegnames.list_of;

When I went to compile and run a program that used the Internal vars

package, the program bombed. Then I tried deleting the variable current_

trans, and the program worked fine. Also, if I put the variable current

trans back in the package Internal vars and removed the variable current_

seg state list, then the program worked fine.

In the end I changed the maximum length to 50 and both variables

worked fine in the Internal vars package. I assume that the problem was

that the compiler ran out of room when it tried to compile the two

variables.

Undesirable Features of Ada on the ROLM Data General. Some

things which were legal but I didn't like about using Ada on the ROLM

Data General were as follows.

1. The long compile times of about 10 minutes per package slowed

the project down a great deal.

2. Ada allows variant records but the elements in each part of the

variant record must be unique. For example, the following structure

4.8

A. The first problem was that the compiler would accept variable

length variables for the generic parameter, but again any program that

used the generic instantiation that had a variable length parameter would

cause the program to bomb. As suggested by another student, to solve

this problem, I used pointers to the variable length objects, this worked

fine.

B. The second problem with GKSListUtilities was one of maximum

length. I made the package have a maximum length of 1000. Then I

defined the two records shown in Figure 4.3.

type e norm transformation is
record
priority : transformation number := 0;
transformation : transformation-number 1;
window : wc.rectangle :=

(x => (min => 0.0, max => 1.0),
y => (min => 0.0, max => 1.0));

viewport : ndc.rectangle :=
(x => (min => 0.0, max => 1.0),
y => (min => 0.0, max => 1.0));

a : float := 0.0; -- used in the (wc -> ndc)
b : float := 0.0; -- transformation
scalex : float := 1.0;
scaley : float := 1.0;
-- ndc x_point scalex * (wcx_point) + a;

ndc_y_point scaley * (wcy_point) + b;
end record;

type e segname is
record
segment : segment-name;
ws : pws ids; - a pointer to the list of workstations

-- associated with this segment
transformation : transformation matrix

(1 => (1 => 1.0, 2 => 0.0),
2 => (1 => 0.0, 2 => 1.0),
3 => (1 => 0.0, 2 => 0.0));

visibility : segment visibility := visible;
highlighting : segment highlighting := normal;
priority : segment_priority := 0.0;
detectability : segment detectability := undetectable;
end record;

Figure 4.3. Normalization Transformation, and Segment Types

4.7

I tried to instantiate the package with the package DC shown below.

type DC TYPE is digits 5;
package DC is new GKSCOORDINATESYSTEM (DCTYPE);

Again the compiler accepted the package instantiation but any

program using a part of the instantiation DC would cause the program to

raise an exception before executing the first line of code. This is

because GKSCoordinateSystem requires a generic parameter which is a

range of values (that is what the symbol "<0" means), and DCType is not

a range of values it is a restriction on the precision of floating point

numbers. To solve this problem I changed DCType to

type DCType is new float;

This new declaration of DCType worked on the ROLM ompiler.

This brings up an interesting point, "type DCType is digits 5" is

simply a floating point number with at least 5 digits of accuracy, and

"type DCType is new float" is a floating point number without any given

degree of accuracy. GKSCoordinate System, which does not concern itself

with the accuracy of the generic parameter, should treat the two types

identically, but it doesn't. Therefore, I believe that there is a bug in

the ROLM compiler, because it would not accept "type DCType is digits 5"

as a generic input parameter.

3. The next problem I had was with a generic package, GKSList

Utilities (for a complete specification of the package see Appendix B),

which creates variable length lists of the given private parameter.

4.6

",'; " " • ~ - - - .--. - - - - - - -

Now, when procedure DOSOMETHING shown in Figure 4.2 is run it will

print 'abcdc' followed by 'unhandled exception in...'. This error

message allows the programmer to determine what line of code caused the

program to bomb. This may seem excessive for this small procedure but

when all the programmer knows is that an exception was raised somewhere

in 20,000 lines of code, then there is a need for a systematic way to

find where the exception was raised.

Specific Errors. Specific errors which the compiler "missed"

are as follows:

1. The compiler allowed the following statement:

"x: constant := 6;"

This is a legal Ada statement, but when I tried to run any program that

n used this statement I got "unhandled exception..." occurring before the

first line of code was executed (note this error was corrected in the

newest release of the Ada compiler by the ROLM Corporation).

2. The second compiler glitch occurred when I instantiated a

generic package with an illegal type. The generic package GKSCoordi-

nateSystem (see Appendix B for the complete specification) called for a

generic parameter of type COORDINATE which was digits >.

generic
type COORDINATE is digits <>;

package GKS COORDINATE SYSTEM is

end GKSCOORDINATESYSTEM;

4.5

.S". _ ,.i

determine where this error occurred in the program. To do this I

resorted to using the alphabet scheme of debugging shown in Figure 4.1,

and Figure 4.2. Figure 4.1 shows the program to be debugged by the

alphabet scheme.

procedure DO SOMETHING is

number : positive;

begin
number := 2;
while number >= 0 loop
number := number - 1;

end loop;
end DOSOMETHING;

Figure 4.1. Procedure DOSOMETHING

To use this technique one needs to include a standard output package

(text io will do) in the program that is to be debugged. Then, as shown

* j in Figure 4.2, between each statement of code one outputs a different

character of the alphabet.

with textio; use textio;

procedure DO SOMETHING is

number : positive;

begin
put('a');
number := 2;
put('b');
while number >= 0 loop
put('c');
number := number - 1;
put('d');
end loop;
put('e');

end DOSOMETHING;

Figure 4.2. DOSOMETHING being Debugged

4.4

-0 .. . '' ' . . ., - " . . - •_ , , . : -

performs these functions. Using these functions and some of the attri-

bute functions defined in Ada, AFITGKS was able to handle all the code

needed to drive the graphical devices, without resorting to assembly

language statements.

Trouble with Ru.nning Ada with the ROLM Compiler. The first problem

with running Ada with the ROLM compiler is the run time error messages

(or lack thereof). When an exception is encountered in the program and

it is not handled by an exception handler, then one of the following two

messages appears on the screen.

"unhandled exception reaches main program" or

"unhandled exception in library unit, prog"

40
Nothing else is given. No line number! No error message! No package

name! The error encountered could be anything!

I feel this is a major problem with this implementation of Ada.

Trying to debug a program can quickly turn into a nightmare. A simple

bug takes about 1 hour to find. An average bug takes about 3 to 4 hours.

A difficult bug can take up to 12 hours to find. For example, I spent 4

hours trying to determine why a package specification (which contained

some variables) would not allow any program to 'with' or 'use' it. I

found out that the error was that one of the variables was initialized to

0.0, but it was of a type constrained to be greater than zero. A

friendly compiler and/or informative run time message should say

something like 'constraint error in initialization of variable x in

package 'my_name'', instead of 'unhandled exception...'1.

Exceptions are also raised by the compiler whenever a type conflict

occurs in the execution of a program. Again, the only error message

given is 'unhandled exception...' Therefore, the programmer must

4.3

I.

inquiry function then the routine raises a predefined exception.

-. . This compiler is very good at explaining what syntax errors it

found. It gives the line numbers as well as a two to ten line

description of the problem encountered. These problems range from type

constraints violated to undefined variables. It also allows for initiali-

zation of variables when they are defined. This saved initializing many

* of the variables at the beginning of the procedures.

Another feature of Ada is its portability. This version of AFITGKS

should run on any validated Ada compiler.

Another observation I found with the language was its strong con-

formity to the in, out, in out, specification of parameters. If a pro-

* cedure has a parameter of type 'in' then that parameter variable can not

be set in the procedure, if the parameter is of type 'out' then that

parameter can not have its value tested in the procedure. This insures

* that the programmer does not accidently misuse the parameters.

One last observation is the strong relationship between a module

* specification header and a module body. If anything is different, even

the name of a parameter, then the compiler will not accept the package

body of the module. This insures that anyone using the module specifica-

tion has the correct module specifications for the procedure in the

* module body.

Ada & Graphics. To effectively do graphics in the Ada programming

* language one must have input and output (I/O) routines which output

characters without putting out a carriage return or a line feed. Also,

the I/O package must be able to output control characters since many

pieces of graphical equipment need control charadters to draw graphical

0 pictures. AFIT GKS has accezs to a package called 'tty io' which

4.2

IV. Analysis

As stated in the problem definition (chapter 1), this thesis shall

examine three related topics, the Ada programming language, the Harris

draft binding of Ada to ANS GKS, and the specification of ANS GKS. This

chapter will comment on the good and bad points of each of these topics.

Ada

This project was written in the Ada programming language. The

language is new and powerful, but some of the "bugs" haven't been worked

out of the validated ROLM Ada compiler that was used in compiling AFIT_

GKS. This section will cover the good and bad points of running Ada on

Le the ROLM Data General.

Positive Comments. The Ada programming language allows problems to

be broken down into several differet compilation units each containing a

separate "package" which allows for modularity. The package concept

allows for a specified interface between the module specifications and

the code in the packages.

Another feature of Ada is typing. Ada allows a wide variety of

different types which the compiler checks to see if the variable value

stays within its type throughout the program.

Another feature is the generic function. This project used this

feature to develop variable length lists.

The error handling f -'ures of Ada allow errors to be captured and

handled so as to avoid abnormal termination. This feature allows the

user of AFITGKS to handle any errors in calling AFITGKS. Anytime an

error is recognized in the calling of AFITGKS, the error message is

logged in the error file (GKS Error), and if the routine is not an

4.1

Error functions, and the Workstations. After the design consideration of

each area was developed, the implementation of each area in AFITGKS was

explained. Finally, this chapter concluded with a discussion of those

overall features of AFITGKS that do not fall into any one major area of

AFITGKS.

S

3.48

-6.

..- . i-- - ' " " - . . .j:

The other way that a user of AFIT GKS can defer the redrawing of all

the segments is by setting the implicit regeneration mode. The mode can

be set as follows:

1. SUPPRESSED: implicit regeneration of the picture is suppressed,

until it is explicitly requested.

2. ALLOWED: implicit regeneration of the picture is allowed(1:41).

,y using the deferral mode in conjunction with the regeneration mode

the user of AFITGKS can specify exactly when a redrawing of the display

surface will take place. It is suggested that the user of AFITGKS not

use the combined deferral and regeneration mode of ASAP and ALLOWED.

This is because AFITGKS will redraw the screen whenever the display

surface may not be perfectly correct (which is very frequently). The

user of AFITGKS may change the deferral and regeneration mode by

invoking the procedure set deferral state (see Appendix A).

Testing. Whenever a large project like AFITGKS is implemented, a

thorough test plan must be accomplished. The testing of AFIT GKS was

found to be much more difficult than originally planned because of the

poor run time error messages found on the ROLM Data General. AFITGKS

has been only minimally tested. This minimal testing consisted of

executing each AFITGKS procedure with one valid set of input. It is

pr recommended that anyone continuing development of AFITGKS should develop

and run a thorough test plan in accordance with an emerging ANS GKS

certification/validation program(5:485).

Conclusions

This chapter has explored the many design considerations that went

into AFITGKS. Mainly, this chapter explored the design of the four

major parts of AFITGKS, the User Functions, the Data Structures, the

3.476'

Deferral Modes. There are four deferral modes available in

AFITGKS. They are ASAP, BNIG, BNIL, and ASTI, and they are described as

follows:

1. ASAP: The visual effect of each function will be achieved As

Soon As Possible (ASAP).

2. BNIG: The visual effect of each function will be achieved on

the workstation Before the Next Interaction Globally (BNIG), i.e. before

the next interaction with any input device happening on any workstation.

3. BNIL: The visual effect of each function will be achieved on

the workstation Before the Next Interaction Locally (BNIL), i.e. before

the next interaction with an input device happening on this particular

workstation.

4. ASTI: The visual effect of each function will be achieved on

the workstation At Some Time (ASTI)(1:40-41).

These states permit the user of AFIT GKS to defer the redrawing of

all segments on the display surface. The control function redraw-all_

segments on ws will perform the redrawing of the display surface. Re-

draw-all_segments on ws is invoked by AFITGKS whenever an AFITGKS

function is called which can only be correctly realized by redrawing all

of the segments on the workstation. For example, if the user of AFITGKS

calls the procedure deletesegment for a segment that is being displayed

on workstation I (the Tektronix 4014), then if the deferral state

requires a redraw, the workstation display surface will be cleared and re-

drawn without the deleted segment. This is because the Tektronix 4014

does not have the ability to erase a segment without clearing the entire

screen.

3.46

variables are part of the workstation but they are not workstation

dependent since they are the same for any type of workstation. This

being the case there is no reason to bar the device independent code from

inquiring, and setting their values since this will cut down on the

device dependent code but not restrict any powerful output functions of

the device (see Figure 3.1).

Transformations. There are five transformations that take place in

AFITGKS. They are as follows:

1. World coordinates to normalized device coordinates (wc -> ndc).

2. Normalized device coordinates to world coordinates (ndc -> we).

3. Normalized device coordinates to device coordinates (ndc -> dc).

0 4. Device coordinates to normalize device coordinates (dc -> ndc).

5. Segment transformation (ndc -> ndc).

The first two transformations are the device independent transforma-

tions. They get the transformation values from the GKSStateLists and

therefore, they are independent of the workstations. The next two trans-

formations ((ndc -> dc), and (dc -> ndc)) transform normalized device co-

ordinates (ndc) to and from device coordinates (do) of a particular work-

station. Therefore, these two functions must be a part of the

workstation that they perform the transformation on. The transformation

values are found in their respective WorkstationStateLists. The

segment transformation, using an input segmenttransformationmatrix,

transforms points from (ndc -> ndc). Both the device independent trans-

formations, and the segment transformations can be workstation

independent modules, and it is suggested that these functions may be put

into a separate package. Presently, they' can be found with the worksta-

tion dependent transformations located in Int ws1.

3.45

LN19T - 7777 - -

K boxes shown on Figure 3.1. Instead, these topics are involved with AFIT

GKS as a whole unit.

Device Independent / Dependent Code. One of the major

considerations of any graphical package is where to put the interface

between the code that doesn't need to know what device it is running on,

and the device dependent code that actually invokes the graphical device

in a totally machine dependent manner.

The problem is that if the device independent code is too large and

does too many things then a device with extra capabilities will not be

able to perform all its special capabilities because the package has

already broken down that capability into smaller steps. On the other

* hand, if the device independent code is too small then each new

workstation added to AFITGKS will cause the maintainer of AFITGKS to

duplicate a large section of device dependent code.

WE The solution offered by Simon's article on minimal GKS is very

practical(6:185). He suggests that the interface be made at the point

where GKS calls the individual workstations. The advantages to this are

*that each workstation is a different type and most likely will work dif-

ferently. Therefore, each individual workstation can then execute its

own device dependent code that performs the requested function. Next,

since each workstation does not perform any function until it is called

by its name, there is no since in having device dependent code being

written for sections of AFITGKS that haven't called upon the worksta-
I

tion. Therefore, as shown in Figure 3.1 AFITGKS defines the device

independent / dependent code line directly above the workstations.

The only functions left to decide about are those that access the
_

WorkstationDescriptionTables, and the Workstation State Lists. These

3.44

I

Harris Binding

The Harris binding is a -riposed set of standardized module headers

and types which allow all the different Ada implementations of ANS GKS to

have the same external interface. This way any application program that

uses AFITGKS can use the same interface on any other ANS GKS implementa-

tion that uses the Harris binding.

The Harris binding used in AFITGKS has not been accepted by the

ANSI standards committee. It is being reviewed by the public in order to

Uwork out its minor problems. I was one of the first to receive the

draft.

Overall, I feel that the Harris Corporation did a great job of pre-

0 paring a binding to ANS GKS. This was a large project that was greatly

needed. However, because it was a first draft, it still had some minor

errors. Overall, I found 60 syntax errors, 10 logic errors, 8 cases

where the ROLM4 compiler would not accept the standard proposed Ada types,

and L! cases of what I thought was poor Ada style.

The first two kinds of errors, syntax and logic, were simple. They

0 were errors that were obvious to me and Harris and they were changed

without discussion. They included spelling errors, mislabeled numbers,

and error itatements in the wrong place.

The cases where my compiler would not accept the Harris binding were

more serious. Harris later tried to implement the types that I had

problems with on their ROLM Data General. When the type statement was

rejected, they had to change the standard for everyone using the Harris

binding. After a telephone conversation with the Harris Corporation, I

found out that Harris did not compile their own specification on a

validated Ada compiler. Instead, they used the Ada programming manual

4.10

(3), and a non-validated IBM-PC Telesoft Compiler, to test out their

specifications of the binding.

Harris Binding Not Accepted by the ROLM Data General. The following

are statements that the Harris Corporation proposed as part of the ANS

GKS binding, but they were not accepted by the ROLM Data General

compiler.

1. Harris proposed a package instantiation of the generic package,

GKSList Utilities (See Appendix B), using a variant length type,

VariableString(6:354). This package instantiation which is shown in

Figure 4.5 was rejected by the ROLM Data General Compiler.

max-length : constant integer := 50;

subtype VARIABLESTRINGLENGTH is integer range O..maxlength;

type VARIABLESTRING (LENGTH : VARIABLESTRINGLENGTH 0) is
record
CONTENTS : STRING(l..LENGTH);

end record;

package VARIABLE STRINGS is new GKSLISTUTILITIES

(VARIABLE STRING);

Figure 4.5. Variable Strings

The ROLM Data General would not accept the package instantiation because

e VARIABLE STRING is not of a fixed length. I do not know whether this is

a problem with the ROLM Data General or whether this is not a supported

feature of Ada.

0
2. At the beginning of this thesis effort the ROLM Data General was

having trouble with the statement:

S
"x : constant := 6;"

4.11

S-

which was part of the Harris binding. Whenever I tried to use this

constant statement in a type declaration, an unhandled exception would be

raised before any code executed. I changed the constant to

"x : constant integer 6;"

and I had no more problems. (Note: This bug has been fixed on the new

version of Ada released by the ROLM Corporation).

3. The two types, inputclass, and choiceinput, shown in Figure

4.6, were not allowed together on the ROLM Data General.

type INPUTCLASS is (locatorinput,

stroke input,
valuator_input,
choice-input,
pickinput,
stringinput,

type CHOICEINPUT ...

Figure 4.6. InputClass and ChoiceInput

This is because choice input cannot be defined as an element in an

enumeration type, and a declared type. The Harris Corporation agreed

that this was a problem with the Harris binding and was changed in the

binding.

Style Changes to the Harris Binding. Another input I made to the

* Harris binding was pointing out that one of their data types causes the

access to a variable field to be "x.style.style". The two "style"'s

involved mean different things. Harris agreed and it has been changed to

i "x.style.hatch_style".

4.12

0/

I also proposed a change in the style of the Utility Functions

(called Set Transform in AFIT GKS). As described previously in the User

Functions section of chapter 3, these functions create transformation

matrices for use in segment transformations. Presently, the Utility

Functions listed in Appendix A (under the package SetTransform) do not

have any default values. If these functions had default values, then the

user of AFIT GKS could call these functions with only those values which

were not the standard default values. For example, the procedure

EvaluateTransformationMatrix shown in Figure 4.7, could be specified

using the default values shown in Figure 4.8.

0 procedure EVALUATE TRANSFORMATION MATRIX
(FIXED POINT-: in wc.point;
SHIFT VECTOR : in wc.vector;
ROTATION ANGLE : in radians;
SCALE FACTORS : in transformation-factor;

D. TRANSFORMATION : out transformation_matrix);

Figure 4.7. Present Evaluate Transformation Matrix

procedure EVALUATE TRANSFORMATIONMATRIX
(FIXED POINT : in wc.point := (x => 0.0, y => 0.0);
SHIFT VECTOR : in wc.vector := (x => 0.0, y => 0.0);
ROTATION ANGLE : in radians := 0.0;
SCALEFACTORS : in transformation-factor :=

(x => 1.0, y => 1.0);
TRANSFORMATION : transformation matrix);

Figure 4.8. Proposed EvaluateTransformationMatrix

By using the proposed Evaluate TransformationMatrix the user of

AFITGKS would only have to specify the rotation-angle if the user wanted

a transformation matrix which would rotate a picture 90 degrees around

the origin. The user would not have to specify the fixed-point, shift_

4.13

vector, or the scale factor.

Conclusions. The Harris Corporation created a draft binding of GKS

to ANSI Ada. This section covered the minor problems that occurred when

AFITGKS used the Harris binding. It concludes with some suggestions as

to how certain small parts of the binding might be improved. Overall, I

found that the Harris binding was a great help to this project, because

it eliminated designing the entire external interface of AFIT GKS.

ANS GKS

ANS GKS is the graphics system which was implemented. Overall, I

found this graphical package was well designed. It allows for various

devices and different levels of graphical devices. I especially like how

it allows the program to use all of the facilities of the graphics

terminals with relative ease.

ANS GKS Proposal. I did however find two errors in the ANS GKS

proposal as given in the Special GKS issue of Computer Graphics February

1984 (1).

The first error found in the ANS GKS proposal was on page 121. On

this page error 144, is duplicated(1:121). The second error 144 should

be:

"error 145 echo area is outside display space"

Second, I believe that a variable "readback" should be added to the Work-

stationDescriptionTable(1:204). The reason is that

Error #40 Specified workstation has no pixel store readback

capability"

4.14

.. should be able to check the WorkstationDescriptionTable to inquire as

to whether or not the workstation has this capability.

Conclusion

In this chapter I have discussed the three major areas which this

thesis explored. Overall, the Ada programming language, the Harris

binding, and the ANS GKS specifications were well designed. They each

had some errors which were discovered as AFITGKS was developed.

0
o

4.15

S-," "-".' "-'" - " . .. " "

V. Conclusions and Recommendations

Conclusions

In conclusion, as stated in the problem definition, there are

several questions that this project wanted to explore.

1. Can Ada support a large project?

Except for some problems with the maximum size of variables, the

- .ROLM Ada compiler permits large projects to be developed.

2. How easy is Ada to use in a large project?

The ROLM compiler used was excellent at catching and explaining

syntax errors. The run time error messages were terrible. They need to

include at a minimum:

A. The exception that was raised but not handled.

B. The line and package name where the exception was raised.

Without this information the programmer has no idea what went wrong

with the program and on the average it took about 1 hour to find a bug.

The minimum time was about 15 minutes, and the maximum time was about 24

hours.

3. Can Ada handle computer graphics?

Yes, it has the two capabilities which are essential for computer

* graphics. First, Ada can send out control characters. Second, Ada can

convert ascii characters to their numeric equivalents and vice versa.

For anyone using Ada to do computer graphics, an I/O package must be

* developed which outputs ascii characters without putting out a <cr> or a

<lf> control character. On the ROLM Data General this package was

* already present. Another I/O package that might be necessary is one that

* _ outputs 8-bit binary bytes since some graphical devices (like the Raster

5.1

Technologies Model One) require this kind of information in order to dis-

play graphical information.

Results

AFITGKS implemented 169 functions of ANS GKS using the Harris

binding (see Appendix A for a complete list of these functions).

However, AFITGKS did not implement the other 45 functions of ANS GKS as

defined by the Harris binding. In addition, AFITGKS did not implement

an additional 38 functions which were defined to work on the private data

structures. A complete listing of all the functions that are specified

by the Harris binding and are not implemented by AFITGKS can be found in

Appendix C.

AFITGKS implemented and did a cursory testing of all the User

functions defined in AFITGKS (See Appendix A). All of the AFITGKS

functions were tested given one set of valid input data. Complete

rigorous testing was not done.

Recommendations

This thesis was a first attempt at creating ANS GKS in Ada. The

following are suggestions to further and improve AFITGKS.

1. The number and type of workstations could be expanded.

2. The transformation and segment priority list could be rede-

signed to use a generic sorting function.

3. The number of input devices may be expanded. For example,

another locator device could be added to the Tektronix 4027 that would

draw lines as the cross hairs moved (using the ink command)(15:8-11).

4. The rest of the ANS GKS functions (listed in Appendix C) should

be coded.

5.2

-0. : - . - ' "

5. The inquiry functions that have an input parameter of 'returned

valued' should be recoded so that when 'returnedvalues' is "realized",

the function returns values as they are actually realized on the given

workstation.

For example, the function "Inq_Polyline_Representation" shown in

Figure 5.1 should return the "line" type, the line "width" scale factor,

the polyline "colour" index for the bundle specified by the polyline

"index" on workstation "ws".

procedure INQPOLYLINEREPRESENTATION
(ws : in ws id;
index : in polyline index;
returnedvalues : in return value type;
ei : out error indicator;
line: out line type;
width : out linewidth;
colour : out colour index);

Figure 5.1. Inq_PolylineRepresentation

The "returned-values" parameter indicates whether the returned values

should be as set by the program, or as they were actually realized

(10:244). Presently, the "returned-values" parameter is ignored.

6. AFITGKS should be thoroughly tested using a certification/

validation program(14:485).

7. Stroke precision text should be added to AFITGKS. By defini-

tion, stroke precision text is displayed in the requested text font, at

the text position by applying all text attributes(1:29).

8. The world coordinate to normalized device coordinate transforma-

tion for the primitive functions shown in Figure 3.8, should be moved

down to the workstation. This will separate the Primitive package, from

5.3

0

the Int-ws_1 package which contains the transformation function.

- " 9. The binding of attributes shown in Figure 3.8, should be moved

after clipping so that totally clipped primitives do not bind their

attributes to the workstation.

Known Bugs in AFIT GKS

AFIT GKS is a first attempt at writing an ANS GKS graphics package.

Therefore, there are some known errors in this program.

1. If the user sets up a fillarea bundle table entry that has an

interior style of hollow, or solid, and the patternindex or hatchindex

is inquired from this bundle-table entry, then program will bomb. :,,1

GKS states that the bundletables should always contain a 'style' index

and therefore, this should never cause an error.

2. The number of segments supported on AFITGKS is less than 32,000

because the ROLM Data General compiler will not allow a segment list to

be this long. So far AFITGKS can only support 50 segments before the

compiler refuses to allow the variables to be created.

3. If the program terminates before closing the error file then any

information put into the file is lost.

Conclusions

AFIT GKS is a subset of ANS GKS written in the Ada programming

language. First, this thesis introduced the reader to ANS GKS and the

Ada programming language. Second, the thesis covered the requirements of

AFITGKS. Third, the thesis covered the design and implementation of

AFIT GKS. Included in the chapter on design was a section on how AFIT

GKS was tested. Fourth, the thesis analyzed the strengths and weaknesses

5.4

of the three major areas explored by the thesis, the Ada programming

language, the Harris binding, and ANS GKS. Finally, the thesis concluded

with a discussion about what was learned from this project and how AFIT_

GKS might be extended and improved.

5.5

?i - . -- - ' - -' . - . i i' . - -. • - . ." - . - . -i ." " "".

Appendix A

Users Guide to AFIT_GKS

This appendix contains the information necessary to write an ap-

plication program that uses AFITGKS. AFIT_GKS took its external

interface from the Harris Corporationrs draft binding of Ada to ANS GKS.

Therefore, this entire appendix is practically a direct quote of the

Harris binding(6).

Table of Contents

Page

Introduction A.2

Gross Index............................A.2

ExternalTypes...........................A.11

AFILT_GKS Functions. A.38

AFITGKS Errors..........................A.64

Sample P-ogram. A.68

System Dependent Features of AFIT GKS..............A.71

A. 1

Introduction

This appendix is intended to be a users guide to AFITGKS. As

such it includes a cross index, a list of all the types needed to ac-

cess AFIT_GKS (externaltypes), and a list of all the functional

specifications of the AFIT_GKS functions (AFITGKS Functions). Next,

this appendix contains a list of all the errors that can occur in AFIT

GKS along with their error numbers (AFITGKS Errors). It concludes

with a sample program running on AFIT0GKS, and a section describing some

of the implementation dependent features of AFIT GKS.

Cross Index

The cross index lists in alphabetical order all the functions of

ANS GKS as specified in the proposed Harris binding of GKS to ANSI Ada.

The AFITGKS functions are those listed in the cross index that have a

"Y" under the column "Implemented". Also included in the cross index

is the name of the package that contains the function (or should con-

tain the function if the function is not implemented), and the possible

errors that can occur in calling any ANS GKS function. Finally, the

cross index lists the level of ANS GKS that the function is a part of

and the page that the procedure's specification can be found in this

appendix.

A.2

F t Implemented Errors Checked Page
Function Name Package Level

Accumulate Y Set transform 8 la A.62
transformation-matrix

Activate ws Y Control 6,25,29,33,35 ma A.38
Associatesegment_ Y Segments 6,25,27,33,35, 2a A.44
with ws 124
Await-event N Input 7,147,505 mc

Cell array N Primitives 5 Ca
Clear ws Y Control 6,25,33,35 ma A.38
Closegks Y Control 2 ma A.38
Closesegment Y Segments 4 la A.44
Close ws Y Control 7,25,29,147 ma A.38
Copy_segment to ws Y Segments 6,25,27,33,35, 2a A.45

36,124
Createsegment Y Segments 8,121 la A.44

Deactivate ws Y Control 3,30,33,35 ma A.38
Deletesegment Y Segments 7,122,125 la A.44

Delete-segment_from_ Y Segments 7,25,33,35,123, la A.44

ws 125

Emergency_close_gks Y Emergency None Oa A.62
Errorlogging Y ErrorHandling None Oa A.63
Escape N Control 8,501 ma
Evaluate_ Y Set-transform 8 la A.61
transformation-matrix

Fill area Y Primitives 5,100 ma A.39
Flush device-events N Input 7,25,38,140,147 mc

Gdp N Primitives 5,104 Oa
Get choice N Input 7,150 mc
Getitemtype_from_ N Metafile 7,25,34,162 Oa
gksm

Get locator N Input 7,150 mc
Get pick N Input 7,150 lc
Getstring N Input 7,150 mc
Get-stroke N Input 7,150 mc
Get-valuator N Input 7,150 mc

Initialisechoice Y Setinput 7,25,38,51,1 ., mb A.46
123,140,141,i4,
145

Initialiselocator Y Setinput 7,25,38,51,140, mb A.46
141,144,3.45

Initialise_pick Y 2,et input 7,25,37,51,140, lb A.47
141,144,145

A.3

AD-A152 954 AFIT GKS--R AGK5 IMPLEMENTATION IN THE ADA PROGRAMMING 2/2,.
LRNGURGE(U) AIR FORCE INST OF TECH WRIGHT-PRTTERSON RFB
OH SCHOOL OF ENGINEERING R S RUEGG DEC 84

UNCLRSSIFIED AFIT/GCSiMRTH/84D-5 F/G 9/2 NL

EOEEmmEEEEmhEmhmnhEEEI
ElllEnllEEEEEE
ElEEllElllEEI
EIIIIIEIIIEIIE
I.'.lllll

*,J

'.
1.8

11111!25 4 1 6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

TI -A 'I . - wI,- 9 W~

Implemented Errors Checked Page
Function Name Package Level

Initialise_s tring Y Set-input 7,25,38,51,140, mb A.47
141,144,145

Initialisestroke Y Set-input 7,25,38,51,65, mb A.46
140,141,144,145

Initialisevaluator Y Set-input 7,25,38,51,140, mb A.46
Inqcharexpansion_ 141,144,145
factor Y Inq_attributes 8 ma A.52

. Inq char height Y Inq_attributes 8 ma A.50
In4Cchar-spacing Y Inq attributes 8 ma A.52
Inq_char__up_vector Y Inq attributes 8 ma A.50
Inq_choicedevice_ N Inqjinput 7,25,38,140 mb
state
Inq__clipping Y Inqcattributes 8 ma A.53
Inq_colour__facilities Y Inqfacilities 8,39 ma A.60
Inq_colour_ Y Inq_represent 7,25,33,35,36, ma A.56
representation 87

Inq_current_ Y Inqattributes 8 ma A.52
_* normalization

transformation number
Inq_defaultchoice_ N Inqcinput 8,38,140 mb
device data
Inq_default_deferral_ Y Inq._represent 3,39 la A.57
state values
Inq_defaultlocator_ N Inq_input 8,38,140 mb
device data
Inqdefaultpick_ N Inqinput 8,37,140 lb
device data
Inq_defaultstring_ N Inqinput 8,38,140 mb
devicedata

Inq_default_stroke_ N Inq_input 8,38,140 mb
device data
Inq_default_valuator_ N Inqjinput 8,38,140 mb
device data
Inq display_space_ Y Inq_represent 8,31,33,36 Oa A.57
size
Inqdynamic_ Y Inqfacilities 8,39 la A.61
modification of
segmentattributes
Inq_dynamic_ Y Inq_represent 8,39 la A.57
modification-of ws_

*attributes
Inq_fillareacolour_ Y Inqattributes 8 ma A.52
index
Inq_fillarea_ Y Inqfacilities 8,39 ma A.59
facilities
Inq_fillareaindex Y Inq_attributes 8 ma A.51
Inqcfillarea Y Inq__sttributes 8 ma A.52
interior_style

A.4

Implemented Errors Checked Page
Function Name Package Level

Inqfill-area_ Y Enq represent 7,25,33,35,36, la A.55
representation 76
Inq~f ill area style_ Y Inc~attributes 8 ma A.52
index
Inqgdp Y Inqjfacilities 8,39,41.- Oa A.60
Inqinput _queue_ N Inqinput 7,148,149 mc
overflow

Inc~level ofjgks Y Inc~attributes 8 ma A.49
Inq~jine~type Y Inq_attributes 8 ma A.51
Inq_linewidth scale Y Inqattributes 8 ma A.51
factor

Inqjlist of asf Y Inc~attributes 8 ma A.52
Inqjlist7-of_ Y Inq facilities 8,39 Oa A.60
availab le, gdp

Inc~list -of_- Y Inqattributes 8 Ga A.50
available,.ws-types
Inqlist -of -colour_ Y Inqyrepresent 7,25,33,35,36 ma A.56

0 indices
Inqjlist of fill_ Y Inq re~resent 7,25,33,35,36 la A.55
area indices
Inqjlist of_ Y Inq_attributes 8 Ga A.53
normalization
transformation_

W4 e numbers
Inq~list -ofypattern_ Y Inqrepresent 7,25,33,35,36 la A.55
indices

Inc~list ofjpolyline_ Y Inq_represent 7,25,33,35,36 la A.54
indices

Inqjlist of_ Y Inqrepresent 7,25,33,35,36 la A.54
polymarker -indices

Inqjlist of text_ Y Inqyrepresent 7,25,33,35,36 la A.55
indices

Inqjlocator-device_ N Inq_input 7,25,38,140 mb
state

*Inq max_length -of ws_- Y Inc~segment 8,39 ma A.60
state-tables

Inq max_ Y InqLattributes 8 Ga A.50
normalization-

* * transformation number
Inq more_- Y Inqattributes 7 mc A.53

* simultaneous-events
Inq name~of _open- Y Inq_attributes 4 la A.53
segment
Inq normalizition_ Y Inci~attributes 8,50 ma A.53

* transformation
Inqjiumber of_ N Inq_input 8,38 mb

* available -logical-
* * *input dev ices

A. 5

Implemented Errors Checked Pae
Function Name Package Level

Inq-number of_ Y Inq-segment 8,39 la A.60
segmentprorties_
supported
Inqyoperating_sptate_ Y Int-attributes None Oa A.49
value
Inq pattern_- Y Inqjfacilities 8,39 Oa A.59
facilities

Inq pattern height_ N Inc attributes 8 ma
vector
Inq-pattern. -size Y Enc-attributes 8 ma A.51
InqUpattern_- Y Inq_attributes 8 ma A.51
ref erence-point

Inqcpattern_ Y Inc~represent 7,25,33,35,36, la A.56
representat-ion 83

Inq~pattern width- N Inc~attributes 8 ma
vector
Inqypick device-state N Inqjinput 7,25,140 mb
InqjpickC-id Y Inc-attributes 8 lb A.51
Inqypixel N Inq-pixels 7,25,39,40 Oa
Inq~pixel array N Inqypixels 7,25,39,40 Oa
Inqjpixel~array_ N Inqjpixels 7,25,39 Oa
dimensions
Inq-polyline-colour_ Y Inq-attributes 8 ma A.51

10 fuiindex
Inq-polyline_ Y Inqjfacilities 8,39 ma A.57
facilities
Inqpolyline -index Y Inq-attributes 8 ma A.50
Incipolyline _ Y Inqrepresent 7,25,33,35,36, la A.54
representation 61

*Inq-polymarker -Y Inq-represent 7,25,33,35,36, la A.54
representation 65

Inq-polymarker -Y Inq-attributes 8 ma A.52
colour index
Inqjpolymarker -index Y Lnqattributes 8 ma A.50
Inq-polymarker Y Inqjfacilities 8,39 ma A.58
facilities

Inqypolymarker-size_ Y Inqkattributes 8 ma A.52
scale factor
Inq-polymarker-type Y Inqattributes 8 ma A.51

*.Inc~predefined- Y Inqjfacilities 8,39,86 Oa A.60
colour-representation
Inq-predefined -fill_- Y Inq~facilities 8,39,75 Oa A.59
area-representation
Inq-predefined-pattern_ Y Inqjfacilities 8,39,79,83 Oa A.59
representation
Inqypredefined- Y Inqfacilities 8,39,60 Oa A.58

*polyline_-
representation

A.6

Implemented Errors Checked Page
Function Name Package Level

Inqpredefined__ Y Inq_facilities 8,39,64 Oa A.58
polymarker_
representation

Inq_predefined. Y Inq_facilities 8,39,68 Oa A.59
text representation

Inqsegment__ Y Inqsegment 7,122 la A.61
attributes

Inqset__of_ activews Y Inq_attributes 8 la A.50
Inqset_o f_ Y Inqsegment 7,122 la A.61
associated ws
Inq_set_of_openws Y Inq attributes 8 Oa A.50
Inq_set_of_segment_ Y Inqattributes 7 la A.53
names inuse
Inq setofsegment_ Y Inqrepresent 7,25,33,35 la A.56
on ws
Inqstring_device_ N Inq_input 7,25,38,140 mb
state
Inq_strokedevice_ N Inq_input 7,25,38,140 mb
state

Inq textalignment Y Inq_attributes 8 ma A.51
Inq_textcolourindex Y Inq attributes 8 ma A.52
Inqtext extent N Inq represent 7,25,33,35,36,69 ma
Inq.text facilities Y Inq facilities 8,39 ma A.58
Inq_textfontand_ Y Inq_attributes 8 ma A.52
precision
Inqtextindex Y Inqattributes 8 ma A.50
Inqtext_path Y Inq_attributes 8 ma A.51
Inqtext Y Inqrepresent 7,25,33,35,36,69 la A.55
representation
Inqvaluatordevice_ N Inq_input 7,25,38,140 nb
state

Inq wscategory Y Inqrepresent 8 Oa A.56
Inqws__class Y Inq_represent 8,39 Ga A. 57
Inqwsconnection_ Y Inqattributes 7,25 ma A.53
and_type
Inqwd_deferraland_ Y Inq_attributes 7,25,33,35,36 Ga A.54
updatestates
Inqws_max_numbers Y Inq attributes 8 la A.50

Inqcwsstate Y Inq_attributes 7,25 Ga A.53

Inqws_transformation Y Inq_represent 7,25,33,36 ma A.56

Insertsegment Y Segments 5,27,124,125 2a A.45

Interpretitem N Metafile 7 Ga

Message N Control 7,25,36 la

Open_gks Y Control 1,500 ma A.38

- Open ws Y Control 8,21,24,26,28 ma A.38

A.7

IA

Implemented Errors Checked Page
Function Name Package Level

Polyline Y Primitives 5,100 ma A.39

Polymarker Y Primitives 5,100 ma A.39

.' Read itemfrom_gksm N Metafile 7,25,34,162 Oa

Redrawall__Segments_ Y Control 7,25,33,35,36 la A.38
on ws

Rename_segment Y Segments 7,121,122 la A.44
Requestchoice Y Input 7,25,38,140, mb A.49

141,504
Requestlocator Y Input 7,25,38,140, mb A.48

141,504
Request-pick Y Input 7,25,37,140, lb A.49

141,504
Requeststring Y Input 7,25,38,140, mb A.49

141,504
Request stroke Y Input 7,25,38,140, mb A.48

141,504
Request-valuator Y Input 7,25,38,140, mb A.49

141,504

Samplechoice N Input 7,25,38,140,142 mc
Sample__locator N Input 7,25,38,140,142 mc
Sampleypick N Input 7,25,37,140,142 lc
Sample-string N Input 7925,38,140,142 mc
Sample stroke N Input 7,25,38,140,142 mc
Sample valuator N Input 7,25,38,140,142 mc
Select normalization Y Transform 8 ma A.44

1 "transformation
Set asf Y Setyprimitives 8 Ga A.41
Setdetectability Y Segments 7,122 lb A.45
Set deferral state Y Control 7,25,33,35,36 la A.39
Set-char expansion Y Set~yrimitives 8 Ga A.40
factor

Set charheight Y Set-primitives 8 ma A.40
Set-_charspacing Y Set-primitives 8 Oa A.40
Set-char-up-vector Y Setprimitives 8,74 ma A.40
Set-choice mode Y Setinput 7,25,38,140,143 mb A.48
Set clipping_indicator Y Transform 8 ma A.44

Set colour_ Y Represent 7,25,33,35,36 ma A.43
representation

Set fill area colour_ Y Setprimitives 8 ma A.41
index

Set fill area index Y Set-primitives 8 Oa A.41
Set-fill-area-- N Set-Primitives 8 ma
interior style

Set fill area Y Represent 7,25,33,35,36, la A.42
S representation 77,80

A.8

I.,.- -,.,'-., '. c'-...,.-"-...... '

Implemented Errors Checked Page
Function Name Package Level

Setfillareastyle_ Y Setprimitives 8 Oa A.41
index
Sethighlighting Y Segments 7,122 la A.45
Set line type Y Set_primitives 8 ma A.39
Set linewidthscale_ Y Set_primitives 8 Oa A.40
factor

Set locator mode Y Set input 7,25,38,140,143 mb A.47
Set-marker size scale Y Set_primitives 8 Oa A.40

factor
Setmarker type Y Setprimitives 8 ma A.40
Set-pattern_ Y Set-Primitives 8 Oa A.41
reference_point
Set_pattern Y Represent 7,25,33,35,36,83 la A.43
representation

Set_pattern__size Y Setprimitives 8 Oa A.41
Set_pickid Y Set_primitives 8 lb A.41
Set__pickmode Y Setinput 7,25,37,140,143 lb A.48
Set__polyline-colour_ Y Set_primitives 8 ma A.40
index
Setpolyline index Y Set_primitives 8 Oa A.39
Set_polyline_ Y Represent 7,25,33,35,36,63 la A.41
representation
Set_polymarker_ Y Set_primitives 8 ma A.40

3 * colour index
Set_polymarkerindex Y Setprimitives 8 Oa A.40
Set_polymarker_ Y Represent 7,25,33,35,36,67 la A.42
representation
Setsegment_priority Y Segments 7,122 la A.45
Set _segment transforma- Y Segments 7,122 la A.45
tion

Setstring__mode Y Setinput 7,25,38,140,143 mb A.48
Set stroke mode Y Setinput 7,25,38,140,143 mb -A.47
Set-text_alignment Y Set primitives 8 ma A.41
Set-textcolour index Y Set_primitives 8 ma A.40
Set-text font and Y Setprimitives 8 Oa A.40
precision - -

Set text index Y Set_primitives 8 Oa A.40
Set-textyath Y Set_primitives 8 Oa A.41
Set text Y Represent 7,25,33,35 la A.42
representation

Set valuator mode Y Setinput 7,25,38,140,143 mb A.48

Set viewport- Y Transform 8,51 ma A.43
Set_viewport_input_ Y Transform 8 0b A.43

priority
Setvisibility Y Segments 7,122 la A.45
Set window Y Transform 8,51 ma A.43
Set--ws viewport Y Transform 7,25,33,36,51,54 ma A.44

_ Set ws window Y Transform 7,25,33,36,51 ma A.44

A.9
p

Implemented Errors Checked Page

Function Name Package Level

Text Y Primitives 5 ma A.39

Update ws Y Control 7,25,33,35,36 ma A.38

Write-item togksm N Metafile 5,30,32 Oa

A.10

:: : :" -.: :: i "- " " -i " . - ,. . " . . , . .. •- .' .-.. ' ,..." .- ',._' .-_.-_-_-.___-_... " -'"_'---___""'_.2. . ,,

ExternalTypes (6:25-58)

This section contains an alphabetical listing of all of the data type
definitions used to define the Ada binding to GKS.

package EXTERNALTYPES is

type ASF is (BUNDLED, INDIVIDUAL);

-- Level Oa

-- This type defines an aspect source flag whose value indicates whether
-- individual attributes are to be used, or attributes as specified in a
-- bundle table.

type AZF LIST is
record
LINE TYPE : ASF := INDIVIDUAL;
LINEWIDTH : ASF := INDIVIDUAL;
LINE COLOUR : ASF :: INDIVIDUAL;
MARKER TYPE : ASF := INDIVIDUAL;
MARKER SIZE : ASF := INDIVIDUAL;
MARKERCOLOUR : ASF := INDIVIDUAL;
TEXT FONT PRECISION : ASF := INDIVIDUAL;
CHAREXPANSION : ASF := INDIVIDUAL;
CHAR SPACING : ASF := INDIVIDUAL;
TEXT COLOUR : ASF := INDIVIDUAL;
INTERIOR STYLE : ASF := INDIVIDUAL;
STYLEINDEX : ASF := INDIVIDUAL;
FILL AREA COLOUR : ASF := INDIVIDUAL;

end record;

-- level Oa

-- A list containing all of the aspect source flags, with components in-
-- dicating the specific flag. The flags are all initialized as individ-
-- ual.

type ATTRIBUTESFLAG is (CURRENT, SPECIFIED);

-- Level Oa

-- Indicates whether output attributes used are to be as currently set,
- or as explicitly specified.

A.ll

package ATTRIBUTESUSED is new GKSLISTUTILITIES(ATTRIBUTESUSEDTYPE);

-- Level Oa

-- Provides for a list of the attributes used.

type ATTRIBUTESUSEDTYPE is (POLYLINEATTRIBUTES,
POLYMARKERATTRIBUTES,
TEXTATTRIBUTES,
FILLAREAATTRIBUTES);

-- Level Oa

-- The types of attributes which may be used in generating output.

subtype CHAREXPANSION is POSITIVESCALEFACTOR;

-- Level ma

-- Defines a character expansion factor. Factors are unitless, and must
- be greater than zero.

p--

type CHARHEIGHT is new WC.MAGNITUDE;

-- Level ma

-- Defines character height, which must be a positive World Coordinates
-- value.

subtype CHARSPACING is SCALEFACTOR;

-- Level ma

-- Defines a character spacing factor. The factors are unitless. A pos-
- itive value indicates the amount of space between characters in a text
-- string, and a negative value indicates the amount of overlap between
- characters in a text string.

- This type was changed so as to avoid implementing the extra functions
-- which are needed to work on the private types.
-- type CHOICEDATARECORD is private;

A.12

type CHOICEDATARECORD is
record
prompt echo : choice_prompt echotype;
choices : integer;
the_prompts : prompts.listof;
strings : promptstrings.listof;
segment : segmentname;
pick : pickids.listof;

end record;

- Level mb

-- Defines a choice data input record.

type CHOICEINPUTTYPE (STATUS : CHOICESTATUS := NOCHOICE) is
record
case STATUS is
when OK => VALUE : CHOICEVALUE;
when NOCHOICE => null;

end case;
end record;

-- Level mb

- Defines a choice input type. If STATUS is OK, then the choice input
-- value is indicated.

type CHOICEPROMPTECHOTYPE is range

I..MAXCHOICEPROMPTECHOTYPE;

-- Level mb

-- Defines the choice prompt and echo types supported by the implementa-
-- tion.

package CHOICE PROMPT ECHO TYPES is new GKS LIST UTILITIES
(CHOICEPROMPT-ECHO-TYPE);

-- Level mb

- Provides for lists of choice prompt and echo types.

type CHOICESTATUS is (OK, NOCHOICE);

-- Level mb

A.13

indicates if a choice was made by the operator.

-- This is not done as a generic type because then all of the GKS program
-- would have to be in 1 file!

type CHOICEVALUE is (>);

type CHOICEVALUE is range 0..20;

-- Level mb

-- This generic formal parameter specifies the range of values for a
-- choice input. The full range of values indicated may be only partial-
-- ly supported.

type CLIPPINGINDICATOR is (CLIP, NOCLIP);

-- Level ma

-- Indicates whether or not clipping is to be performed.

type COLOUR AVAILABLE is (COLOUR, MONOCHROME);

-- Level ma

-- Indicates whether color output is available on a workstation.

subtype COLOUR INDEX is PIXEL COLOUR range O..Max colour index;

-- Level ma

-- Indices into color tables are of this type.

package COLOUR INDICES is new GKS LIST UTILITIES(COLOUR INDEX);

-- Level ma

-- Provides for a list of color indices which are available on a partic-
-- ular workstation, and matrices containing color indices corresponding
-- to a cell array or pattern array.

A.14

F.. C rJ' . • - - j - , - . -' V • ' '% -I- -N N

type COLOURREPRESENTATION is
record
RED : INTENSITY;
GREEN : INTENSITY;
BLUE INTENSITY;

end record;

-- Level ma

-- Defines the representation of a color as a combination of intensities
-- in a RGB color system.

subtype CONNECTIONID is STRING;

-- Level ma

-- Defines the type for a connection identifier. The string must corre-
-- spond to an external device or file as defined by the GKS implementa-
-- tion.

type CONTROLFLAG is (CONDITIONALLY, ALWAYS);

-- Level ma

* -- The control flag is used to indicate the conditions under which the
-- display surface should be cleared.

package DC is new GKS COORDINATESYSTEM (DCTYPE);

-- Level ma

Defines the Device Coordinate System.

-- ROLM Data General would not allow the package DC to use the following
-- statement as a formal generic parameter.
-- type DCTYPE is digits MAXDEVICEPRECISION;

type DC TYPE is new float;

-- Level ma

-- The type of a coordinate in the Device Coordinate System.

A.15

%"t w

type RELATIVEPRIORITY is (HIGHER, LOWER);

-- Level ma

-- Indicates the relative priority between two normalization transfor-
-- mations.

type RETURNVALUETYPE is (SET, REALIZED);

-- Level ma

-- Indicates whether the returned values should be as they were set by
-- the program or as they were actually realized.

type SCALEFACTOR is digits PRECISION;

-- Level ma

-- The type used for unitless scaling factors.

type SECONDS is digits PRECISION;

-- Level mb

-- This type is used for referencing timeout times for input events.

type SEGMENTDETECTABILITY is (UNDETECTABLE, DETECTABLE);

-- Level lb

-- Indicates whether a segment is detectable or not.

type SEGMENTHIGHLIGHTING is (NORMAL, HIGHLIGHTED);

-- Level la

-- Indicates whether a segment is highlighted or not.

A.29

subtype PROMPTSTRING is STRING(1..MAXPROMPTSTRINGLENGTH);

-- Level mb

-- A string which may be displayed as a choice prompt type.

package PROMPT STRINGS is new GKSLISTUTILITIES (PROMPTSTRING);

-- Level mb

-- Defines a list of strings displayed as a choice device prompt type.

type RADIANS is digits PRECISION;

-- Level la

-- Values used in performing segment transformations (rotation angle).
-- Positive indicates an anticlockwise direction.

type RASTERUNITS is range I..MAXRASTERUNITS;

-- Level ma

-- Defines the legal range of raster unit references.

type RASTERUNITSIZE is
record
X : RASTER UNITS;
Y : RASTERUNITS;

end record;

-- Level ma

-- Defines the size of an object in raster units on a raster device.

type REGENERATION MODE is (SUPPRESSED, ALLOWED);

-- Level Oa

-- Indicates whether implicit regeneration of the display is suppressed
-- or allowed.

A.28

package POLYLINEINDICES is new GKSLISTUTILITIES (POLYLINEINDEX);

-- Level Oa

Provides for the declaration of a list of polyline indices.

type POLYMARKERINDEX is range 1..MAXPOLYMARKERINDEX;

-- Level Oa

Defines the maximum range for polymarker bundle table indices.

package POLYMARKERINDICES is new GKSLISTUTILITIES (POLYMARKERINDEX);

-- Level Oa

-- Provides for the declaration of a list of polymarker indices.

-- The ROLM Data General compiler cannot implement "safe-small", or
-- "safe-large".
-- subtype POSITIVE SCALE FACTOR is SCALE FACTOR range
-- SCALEFACTORSAFE_SMAL..SCALEFACTORTSAFELARGE;

subtype POSITIVESCALEFACTOR is SCALEFACTOR range 0.00001..I.0E50;

-- Level ma

-- Define the positive range of scale factors.

type PROMPT is (OFF, ON);

-- Level mb

-- Indicates for a choice prompt and echo type whether a specified prompt
-- is to be displayed or not.

package PROMPTS is new GKSLISTUTILITIES (PROMPT);

-- Level mb

-- Provides for a list of prompts.

A.27


~~~~~~~~ ~ ~ ~ ~~~~~~~~~ • -: . .. , . o -J q - . . -L -. 7 -2 77- -. 7 -T 7° W> • .q

- plementation.

package PICK PROMPT ECHO TYPES is new GKSLISTUTILITIES
(PICKPROMPT ECHOTYPE)-;

-- Level mb

Provides for lists of pick prompt and echo types.

type PICKSTATUS is (OK, NOPICK);

-- Level lb

Defines the status of a pick input operation.

type PIXELCOLOUR is range -l..MAXCOLOURINDEX;

level Oa

-- This special data type is created for inquiries of pixel colors, since
-- an invalid color index is a legal value.

package PIXELCOLOURS is new GKSLISTUTILITIES (PIXELCOLOUR);

-- Level Oa

-- Provides for variable sized matrices of pixel colors.

package POINTS is new GKSLISTUTILITIES (WC.POINT);

-- Level ma

-- Provides for the declaration of arrays and lists of points.

type POLYLINEINDEX is range l..MAXPOLYLINEINDEX;

-- Level Oa

-- Defines the maximum range of polyline indices.

A.26



- Provides for the declaration of a list of pattern table indices.

-- This type was changed so as to avoid implementing extra functions
-- which are needed to work on the private types.
-- type PICKDATARECORD is private;

type PICK DATARECORD is
record
prompt echo : pick_promptechotype;

end record;
-- Level lb

-- Defines a pick input data record.

-- This is not done as a generic type because then all of the GKS program
-- would have to be in 1 file!
-- type PICKID is (<>);

type PICKID is new defaultpickid;

-- Level lb

-- Defines a pick identifier. Pick identifiers are specified as a ge-
-- neric formal parameter.

type PICK INPUTTYPE (STATUS : PICK STATUS := NOPICK) is
record
case STATUS is
when OK => SEGMENT : SEGMENTNAME;

PICK : PICKID;
when NOPICK => null;

end case;
end record;

-- Level lb

- Defines the type for pick. If STATUS is OK, then the segment name and
- pick identifier are indicated.

type PICK PROMPT ECHOTYPE is range l..MAXPICKPROMPTECHOTYPE;

- Level mb

-- Defines the string prompt and echo types that are supported by the im-

A.25



-~~~~~~~~~0 K -,, * I -. % - -*, r. ~ w

-- Defines the Normalized Device Coordinate System.

---------------------------------------

type NDCTYPE is digits PRECISION range 0.0..1.0;

-- Level ma

- Defines the type of a coordinate in the Normalized Device Coordinate
-- System.

type NEW FRAME NECESSARY is (NO, YES);

- Level Oa

-- Indicates whether a new frame action is necessary at update.

type OPERATINGMODE is (REQUESTMODE, SAMPLEMODE, EVENTMODE);

-- Level mb

-- Defines the operating modes of an input device.

type OPERATINGSTATE is (GKCL, GKOP, WSOP, WSAC, SGOP);

-- Level Oa

-- At run time, GKS may be in one of the five predefined operating
-- states. GKCL indicates GKS is closed, GKOP indicates GKS is open,
-- WSOP indicates at least one workstation is open, WSAC indicates at
-- least one workstation is active, and SGOP indicates a segment is cur-
-- rently open.

type PATTERNINDEX is range I..MAXPATTERNINDEX;

- Level Oa

-- Defines the maximum range of pattern table indices.

package PATTERNINDICES is new GKSLISTUTILITIES(PATTERNINDEX);

-- Level Oa

A.24

• . ° .' . • ". . , • -= m' . . • - ." .



-- A record containing information needed to specify the appearance of a
-- marker.

subtype MARKERSIZE is POSITIVESCALEFACTOR;

-- Level ma

-- The size of a marker is indicated by a scale factor larger than zero.

type MARKER-TYPE is range I..MAXMARKER TYPE;

-- Level ma

-- Defines the types of markers provided by the implementation. Marker
-- types one through five are predefined as DOTMARKER, PLUSMARKER, AS-
-- TERISK MARKER, CIRCLE MARKER, and DIAGONAL CROSS MARKER.

package MARKERTYPES is new GKSLISTUTILITIES (MARKERTYPE);

-- Level ma

* * -- Provides for lists of marker types.

type MEMORYUNITS is range O..MAXMEMORYUNITS;

-- Level ma

-- Defines the type of the units of memory that may be allocated for GKS.
-- An implementation must indicate the type of the memory units being
-- used, such as bytes or fixed size blocks. Some standardization is
- needed here.

type MOREEVENTS is (NOMORE, MORE);

-- Level mc

-- Indicates whether more events are contained in the input event queue.

package NDC is new GKS COORDINATE SYSTEM (NDC TYPE);

-- Level ma

A.23



- which are needed to work on the private types.
-- type LOCATORDATARECORD is private;

type LOCATORDATARECORD is
record
promptecho : locator_promptechotype;
control : attributes_usedtype;
line : line data;
fill : fill~areadata;

end record;

-- Level mb

- Defines a locator data input record.

type LOCATORPROMPTECHOTYPE is range 1.. MAXLOCATORPROMPTECHOTYPE;

-- Level mb

-- Defir-s the locator prompt and echo types supported by the implemen-
-- tation.

package LOCATORPROMPTECHOTYPES is new GKSLISTUTILITIES

(LOCATOR_PROMPT_ECHOTYPE);

-- Level mb

- Provides for lists of locator prompt and echo types.

type MARKERDATA (ATTRIBUTES : ATTRIBUTES FLAG :: CURRENT) is
record
case ATTRIBUTES is
when SPECIFIED =>
MARKER ASF : ASF;
SIZE ASF : ASF;
COLOUR ASF : ASF;
INDEX : POLYMARKERINDEX;
MARKER : MARKERTYPE;
SIZE : MARKER SIZE;

* COLOUR : COLOURINDEX;
when CURRENT =>
null;

end case;
end record;

-- Level mb

A.22



type LINEDATA (ATTRIBUTES : ATTRIBUTES FLAG :: CURRENT) is
record
case ATTRIBUTES is
when SPECIFIED =>
LINEASF : ASF;
WIDTH ASF : ASF;
COLOURASF : ASF;
INDEX : POLYLINEINDEX;
LINE : LINE TYPE;
WIDTH : POSITIVE SCALEFACTOR;
COLOUR : COLOURINDEX;

when CURRENT =>
null;

end case;
end record;

-- Level mb

-- A record containing information needed to specify the appearance of a
line.

type LINETYPE is range 1..MAXLINETYPE;

I " - level ma

Defines the types of line styles provided by the implementation. Line
-- types one through four are predefined as SOLIDLINE, DASHEDLINE, DOT-
-- TEDLINE and DASHEDDOTTEDLINE. Additional line types are implemen-
-- tation defined.

package LINETYPES is new GKSLISTUTILITIES (LINETYPE);

- Level ma

-- Provides for list of line types.

subtype LINEWIDTH is POSITIVESCALEFACTOR;

- Level ma

The width of a line is indicated by a scale factor greater than zero.

- -- ---------------------- -------------------------

This type was changed so as to avoid implementing extra functions

A.21

• . ° " -•.- . ., * ".".. . . .. .



-Defines the maximum length of a variable length string supported by
-the implementation. This affects both string input values as well as
-strings used as prompts for choice input.

-This is not done as a generic type because then all of the GKS program
-- would have to be in 1 file!
-type INPUTVALUE is digits 0>;

type INPUTVALUE is new float;

-- level mb

-This is not done as a generic because then all of the GKS program
-would have to be in 1 file! An input value from a valuator device is
-specified as a generic formal parameter. Not all input devices may
-be able to support the full range of input values indicated.

* type INTENSITY is digits PRECISION range O.O.-1.0;

-Level ma

-Defines the range of possible intensities of a color.

--- ------- ------------------------------ ----------

type INTERIORSTYLE is (HOLLOW, SOLID, PATTERN, HATCH);

-- Level ma

-Defines the predefined types of interior styles for fill areas

package INTERIORSTYLES is new GKS LISTUTILITIES (INTERIORSTYLE);

-- Level ma

-Defines the predefined types of interior styles for fill area.

0 type INVALIDVALUESINDICATOR is (ABSENT, PRESENT);

-- Level Oa

-Indicates whether invalid values are contained in a pixel array or ma-

* -- trix.

A.20



type HATCH STYLE TYPE is range 1..MAX HATCH STYLE;

- Level Oa

- Defines the hatch styles supported by the implementation. There must
- be at least three hatch styles supported by the implementation.

package HATCHSTYLES is new GKSLISTUTILITIES (HATCHSTYLETYPE);

-- Level Oa

Provides for a list of hatch styles.

type HORIZONTAL ALIGNMENT is (NORMAL, LEFT, CENTER, RIGHT);

-- Level ma

-- The alignment of the text extent rectangle with respect to the ver-
-- tical positioning of the text.

type INPUT_CLASS is (LOCATOR_INPUT, STROKE_INPUT, VALUATOR_INPUT,

CHOICEINPUT, PICKINPUT, STRINGINPUT);

-- Level mb

-- Defines the input device classifications for workstations of category
-- INPUT or OUTIN.

type INPUT STRING (LENGTH : INPUT STRING LENGTH :0 0) is
record
CONTENTS : STRING(C..LENGTH);

end record;

-- Level mb

-- Provides a variable length string. Objects of this type should be de-
-- clared unconstrained to allow for dynamic modification of the length.

subtype INPUTSTRINGLENGTH is INTEGER range O..MAXINPUTSTRINGLENGTH;

-- Level mb

A.19

.6 ' - - * - o , o . ° - " o " " " o * " - - - -" " ' " " -" -= . . -.° - - , . - . ° v ,



- Defines the maximum range of fill area bundle table indices.

package FILLAREAINDICES is new GKSLISTUTILITIES (FILLAREAINDEX);

-- Level Oa

- Provides for the declaration of a list of fill area bundle table in-
-- dices.

type FONTTYPE is range 1..MAXFONTTYPE;

-- Level ma

- Defines the types of fonts provided by the implementation. The imple-
-- mentation must provide at least one font capable of generating the
- standard ASCII character set. This font is font number one.

type GDPID is range 1..MAXGDPID;

-- Level Oa

- Defines a range of values for selecting a Generalized Drawing Primi-
- tive.

package GDPIDS is new GKSLISTUTILITIES (GDPID);

-- Level Oa

-- Provides for lists of GDP ID's

type GKSLEVEL is (Lma, Lmb, Lmc,
LOa, LOb, LOc,
Lia, Lib, Lic,
L2a, L2b, L2c);

-- Level ma

-- The valid Levels of GKS. M, 0, 1, 2 indicate the level of output sup-
-- ported by the implementation, and a, b, and c indicate the level of
-- input supported by the implementation. Certa'.n other capabilities and
- capacities are also indicated by the level.

A.18



type ECHOSWITCH is (ECHO, NOECHO);

-- Level mb

Indicates whether or not ^nhoing of the prompt is performed.

subtype ERRORFILETYPE is STRING;

-- Level ma

-- Defines the type for error file specification. The name used must
-- conform to an external file name as defined for the host system imple-

mentation.

type ERRORINDICATOR is range 0..999;

- Level ma

- Defines the range of error indicator values.

• type FILLAREADATA (ATTRIBUTES : ATTRIBUTESFLAG := CURRENT) is
record
case ATTRIBUTES is
when SPECIFIED =>
STYLE ASF : ASF;
STYLEINDEX ASF : ASF;
COLOUR ASF : ASF;
INDEX : FILL AREAINDEX;
STYLE : STYLE INDEX;
COLOUR : COLOUR INDEX;

when CURRENT =>
null;

end case;
end record;

-- Level mb

-- A record containing information needed to specify the appearance of a
-- filled area.

type FILLAREAINDEX is range 1.. MAXFILLAREAINDEX;

- Level Oa

A.17

*.;. ;,- -. . :; . : i _" i;. .. ;.- - , - . s -.- -. ... : . - ,. - *' - - , , _ " . ,



type DCUNITS is (METRES, OTHER);

-- Level ma

-- Device coordinate units for a particular workstation may be in meters,
-- or some other units (such as inches).

type DEFERRALMODE is (ASAP, BNIG, BNIL, ASTI);

-- Level Oa

-- Indicates how long output to a workstation is delayed. ASAP indicates
-- as soon as possible, BNIG indicates before the next interaction glo-
-- bally, BNIL indicates before the next interaction locally, and ASTI
-- indicates at some time.

type DEVICENUMBER is range 1..MAXDEVICENUMBER;

-- Level mb

-- Logical devices are referenced as device numbers. The maximum number
- of input devices may not be supported on all workstations.

type DISPLAYCLASS is (VECTORDISPLAY, RASTERDISPLAY,

OTHERDISPLAY);

-- Level Oa

-- The classification of a workstation of category OUTPUT or OUTIN.

type DISPLAYSURFACEEMPTY is (EMPTY, NOTEMPTY);

-- Level Oa

-- Indicates whether the display surface is empty.

O type DYNAMICMODIFICATION is (IRG, IMM);

" Level la

-- Indidates whether an update to the state list is performed immediately
-- (IMM) or is implicitly regenerated (IRG).

A.16

6



-- This is not done as a generic type because then all of the GKS program
-- would have to be in 1 file!
-- type SEGMENT-NAME is (<>);

type SEGMENTNAME is new defaultsegmentname;

-- Level la

- Segment names are specified as a generic formal parameter.

package SEGMENT NAMES is new GKS LIST UTILITIES (SEGMENT NAME);

-- Level la

-- Provides for a list of segment names.

type SEGMENTPRIORITY is digits PRECISION range 0.0..1.0;

"4 -- Level la

-- Defines the priority of a segment.

type SEGMENTVISIbILITY is (VISIBLE, INVISIBLE);

-- Level la

-- Indicates whether a segment is visible or not.

-- This type was changed so as to avoid implementing extra functions
-- which are needed to work on the private types.
- type STRING DATARECORD is private;

type STRING DATA RECORD is
record
prompt_echo : string_prompt_echotype;
buffer : integer;
cursor_position : integer;

end record;

-- Level mb

-- Defines a string data input record.

A.30



type STRING PROMPT ECHO TYPE is range 1..MAX STRING PROMPT ECHO TYPE;

-- Level mb

-- Defines the string prompt and echo types supported by the implementa-
-- tion.

package STRING PROMPT ECHO TYPES is new GKS LIST UTILITIES

(STRINGPROMPTECHOTYPE)-;

-- Level mb

Provides for lists of string prompt and echo types.

This type was changed so as to avoid implementing extra functions
-- which are needed to work on the private types.

type STROKEDATARECORD is private;

type STROKEDATARECORD is
record
buffer : integer;
edit position : integer;
interval : wc.point;
time : seconds;
promptecho : stroke_promptechotype;
marker : marker-data;
line : linedata;

end record;

Level mb

-- Defines a string data input record.

type STROKEPROMPTECHOTYPE is range 1..MAXSTROKEPROMPTECHOTYPE;

-- Level mb

-- Defines the stroke prompt and echo types supported by the implementa-
-- tion.

package STROKE PROMPT ECHO TYPES is new
GKS LIST UTILITIES (§TROKE PROMPT ECHO TYPE);

-- Level mb

A.31

6 . . . . .. , . . . . .. ., . .. ., . . . .. ..



- Provides for lists of stroke prompt and echo types.

type STYLEINDEX (INTERIOR: INTERIORSTYLE := HOLLOW) is
record
case INTERIOR is
when HOLLOW 1 SOLID => null;
when PATTERN => INDEX : PATTERNINDEX;
when HATCH => HATCHSTYLE : HATCHSTYLETYPE;
end case;

end record;

-- Level Oa

-- Defines a fill area style index. Such an index is null for interior
-- styles hollow and solid. For interior style pattern, the style index
-- is an index into the pattern tables. For interior style hatch, the
-- style index indicates which hatch style is to be used. An attempt to
-- index the pattern tables using a hatch style will result in an excep-
-- tion, as will attempting to reference a hatch style using a pattern
- table index.

subtype SUBPROGRAMNAME is STRING;

0-- Level ma

-- Defines the name of a GKS function detecting an error.

type TEXTALIGNMENT is
record
HORIZONTAL : HORIZONTALALIGNMENT;
VERTICAL : VERTICALALIGNMENT;

end record;

-- Level ma

-- The type of the attribute controlling the positioning of the text ex-
-- tent rectangle in relation to the text position, having horizontal and
-- vertical components as defined above.

type TEXT EXTENTRECTANGLE is
record
LOWER LEFT : WC.POINT;
LOWER RIGHT : WC.POINT;

_ -UPPERLEFT : WC.POINT;
UPPERRIGHT : WC.POINT;

A.32

62



end record;

- Level ma

- Defines the corner points of the text extent rectangle with respect
-- to the vertical positioning of the text.

type TEXT FONTPRECISION is
record
FONT : FONTTYPE;
PRECISION : TEXTPRECISION;

end record;

-- Level ma

-- This type defines a record describing the text font and precision as-
-- pect.

package TEXT FONT PRECISIONS is new

GKS LIST UTILITIES (TEXT FONT PRECISION);

-- Level ma

- Provides for lists of text font and precision pairs.

type TEXT INDEX is range 1..MAX TEXT INDEX;

-- Level Oa

-- Defines the maximum range of text bundle table indices.

package TEXTINDICES is new GKSLISTUTILITIES (TEXTINDEX);

-- Level Oa

-- Provides for a list of text indices.

type TEXT PATH is (RIGHT, LEFT, UP, DOWN);

-- Level ma

- The direction taken by a text string.

A.33



- - - - - ---. -w -% - -- - -. -s - - - - - -~ - -r -

" * type TEXT PRECISION is (STRING PRECISION, CHAR PRECISION,
STROKEPRECISION);

-- Level ma

-- The precision with which individual text units may be regarded.

type TRANSFORMATIONFACTOR is
record

X : SCALEFACTOR;
Y : SCALEFACTOR;

end record;

-- Level la

-- Scale factors used in building transformation matrices for performing
-- segment transformations.

type TRANSFORMATIONMATRIX is array (1..3,1..2) of SCALEFACTOR;

-- Level la

-- A segment transformation matrix for mapping NDC to NDC. The elements
-- for the array are all scale factors for convenience. Elements M11,
-- M12, M21, M22 comprise the scaling and rotation portion of the matrix,
-- and are unitless. The remaining elements (M13 and M23) comprise the

translation portion. The latter are of type NDC.

type TRANSFORMATIONNUMBER is range O..MAXTRANSFORMATIONNUMBER;

-- Level ma

-- A normalization transformation number.

package TRANSFORMATION NUMBERS is new

GKSLISTUTILITIES (TRANSFORMATIONNUMBER);

Level Oa

-- Provides for a list of normalization transformation number. All im-
-- plementations must supply the predefined UNITY TRANSFORMATION from
-- World Coordinate space [0,1) x [0,1) to Normalized Device Coordinate
-- space [0,1] x [0,1].

A.34

- - , - * ** *****.. : x- "* ". *. - - "* K. " | ?" a



type UPDATE REGENERATION FLAG is (PERFORM, POSTPONE);

Level Oa

-- Flag indicating regeneration action on display.

type UPDATESTATE is (NOTPENDING, PENDING);

-- Level ma

-- Indicates whether or not a workstation transformation change has been
- requested and not yet provided.

-- This type was changed so as to avoid implementing extra functions
- which are needed to work on the private types.
-- type VALUATORDATARECORD is private;

type VALUATOR DATARECORD is
record
prompt echo : valuator_prompt-echo_type;

0 low value : inputvalue;
highvalue : input_value;

end record;

-- Level mb

-- Defines a valuator data input record.

type VALUATOR PROMPT ECHO TYPE is range

1..HAX VALUATOR_PROMPT__ECHOTYPE;

Level mb

-- Defines the possible range of valuator prompt and echo types.

package VALUATORPROMPTECHOTYPES is new
GKSLISTUTILITIES (VALUATORPROMPTECHOTYPE);

-- Level mb

-- Provides for lists of valuator prompt and echo types.

A.35



)C

-* c --------------- - . ** --- -- - -- - - -- - - -- - - -- - - -- - - -

type VERTICALALIGNMENT is (NORMAL, TOP, CAP, HALF, BASE, BOTTOM);

-- Level ma

The alignment of the text extent rectangle with respect to the verti-
-- cal positioning of the text.

package WC is new GKSCOORDINATESYSTEM (WCTYPE);

-- Level ma

-- Defines the World Coordinate System.

-- This is not done as a generic type because then all of the GKS program
-- would have to be in 1 file!
-- type WCTYPE is digits 0;

type WCTYPE is new float;

-- Level ma

-- Defines the type of a coordinate in the World Coordinate System.
-- World coordinate type is specified as a generic formal parameter.
-- The type given as an actual parameter must at least include the range
-- 0.0 to 1.0.

type WSCATEGORY is (OUTPUT, INPUT, OUTIN, WISS, MO, MI);

-- Level Oa

- All workstation types fall into one of these six predefined worksta-
-- tion categories.

-- This is not done as a generic type because then all of the GKS program

-- would have to be in 1 file!
-- type WSID is (<>);

type WSID is new default wsid;

-- Level ma

-- Workstation identifiers are of this type. Workstation identifier
-- type is specified as a generic formal parameter.

A.36

.I: - . . - . . . ,.. .... .



package WSIDS is new GKSLISTUTILITIES (WSID);

-- Level ma

-- Provides for lists of workstation identifiers.

type WS STATE is (ACTIVE, INACTIVE);

Level Oa

-- The state of a workstation.

type WSTYPE is range 1..MAXWSTYPE;

-- Level ma

-- Range of values corresponding to valid workstation types. Constants
- specifying names for the various types of workstations should be pro-
-- vided by an implementation, such as GKSMOUTPUT, FLATBEDPLOTTER.

E -- -- ---------------------------------------------------

package WSTYPES is new GKSLISTUTILITIES (WSTYPE);

-- Level Oa

-- provides for variable length lists of workstation types.

end EXTERNALTYPES;

A.37

0.



AFITGKS Functions (6:67-345)

The following is all the functions implemented in AFITGKS. They are
divided into their respective packages.

package CONTROL is

procedure OPENGKS
(error file : in errorfiletype "- "".
amount of memory : in memory_units :: maxmemory_units);

This function initializes GKS. It must be invoked before any other GKS
function.

procedure CLOSE GKS;
This function closes GKS.

procedure OPENWS
(ws : in wsid;
connection : in connectionid;
typeof ws : in ws_tye2);

This function adds "ws" to the list of open workstations.

procedure CLOSE WS
(ws : in ws id);

This function releases the connection between workstation "ws" and GKS.
No further references to workstation "ws" are allowed.

procedure ACTIVATE WS
(ws : in ws id);

This function activates the specified workstation "ws".

procedure DEACTIVATE WS
(ws : in ws id);

No further output primitives and/or segments will be sent to workstation
"1ws".

procedure CLEAR WS
(ws : in ws_id;
flag : in control_flag);

CLEAR WS causes the display surface on "ws" to be cleared. All segments
stored on the workstation are deleted.

procedure REDRAW ALL SEGMENTSONWS
(ws : in wsid-);

This function causes all of the segments stored for workstation "ws" to
be redrawn on that workstation. The display surface is cleared first.

procedure UPDATE WS
(ws : in ws_id;
regeneration : in updateregenerationflag);

UPDATEWS causes all of the deferral actions for "ws" to be performed

A.38



without any intermediate clearing of the display. If the "regeneration"
flag is set to "perform", then the display surface is cleared, if neces-
sary. The workstation transformation is updated if it is pending. The
segments stored on the workstations are redrawn. None of the additional
functions are executed if the "regeneration" flag is set to "postpone".

procedure SET DEFERRALSTATE
(ws : in ws id;
deferral : in deferralmode;
regeneration : in regenerationmode);

This function sets the "deferral" and implicit "regeneration" modes on
workstation "ws".

end CONTROL;

package PRIMITIVES is

procedure POLYLINE
(line_points : in points.array_of);

POLYLINE draws a line connecting the specified "linepoints". There must
be at least two points in "line_points".

procedure POLYMARKER
(marker_points : in points.array_of);

POLYMARKER draws a sequence of markers at the specified "marker_points".
There must be at least one point in "marker_points".

procedure TEXT
(position : in wc.point;
textstring : in string);

The character string "text_string" is drawn starting at the "position"
which is given in world coordinates.

procedure FILL AREA
(fillarea_points : in points.array_of);

This function fills a polygon defined by "fill_area_points". There must
be at least three points in "fillareapoints".

end PRIMITIVES;

package SETPRIMITIVES is

procedure SET POLYLINE INDEX
(index : in polylineindex);

The current polyline index is set to "index". This value will be used
for all subsequent polyline primitives.

procedure SET LINE TYPE
(line : in linetype);

A. 39



The current linetype is set to "line".

procedure SET LINE WIDTH SCALE FACTOR
(width : in line-width);

The current line width scale factor becomes "width".

procedure SET POLYLINE COLOUR INDEX
(colour : in colour index);

The current polyline colour index becomes "colour".

procedure SET POLYMARKERINDEX
(index : in polymarkerindex);

The current polymarker index is set to the value specified by "index".

procedure SET MARKER TYPE
(marker : in marker_type);

The current marker type becomes "marker".

procedure SET MARKER SIZE SCALEFACTOR
(size : in markerSize);

The current marker size scale factor is set to the value of "size".

procedure SET POLYMARKER COLOUR INDEX
(colour : in colour index);

The current polymaker colour index becomes "colour".

procedure SET TEXT INDEX
(index : in text index);

The current text index is set to the value specified by "index".

procedure SETTEXTFONTPRECISION
(font_precision : in text_font_precision);

The current text font and precision is set to the value "font_precision".

procedure SET CHAR EXPANSION FACTOR
(expansion : in charexpansion);

The current character expansion factor is set to the value "expansion".

procedure SET CHAR SPACING
(spacing in charspacing);

The current character spacing is set to "spacing".

procedure SET TEXT COLOUR INDEX
(colour : in colour-index);

The current text colour index is set to the value "colour".

procedure SET CHAR HEIGHT
(height : in char_height);

The current character height is set to the value "height".

procedure SET CHAR UP VECTOR
(char_up_vector : in wc.vector);

The current character up vector is set to the value "charup_vector".

A.40

• .- .. " + . .,. .+ , ., ., , . -- ... , . ,- .



The character up vector sets the rotation of the text path from the ori-
gin.

procedure SETTEXTPATH
(path : in text_path);

The current text path is set to "path". The text path determines the di-
rection that the characters are displayed.

procedure SET TEXT ALIGNMENT
(alignment : in Eextalignment);

The current text alignment is set to "alignment".

procedure SET FILL AREA INDEX
(index : in fill-area-index);

The current fill area index is set to "index".

procedure SET FILL AREA STYLE INDEX
(index : in styleindex);

The current fill area style index becomes "index".

procedure SET FILL AREA COLOUR INDEX
(colour : in colour_index); -

The current fill area colour index becomes "colour".

procedure SET PATTERN SIZE
(size : in wc.size);

The current pattern size is set to the value "size".

procedure SET PATTERN REFERENCEPOINT

(point : in wc.point);
The current pattern reference point becomes "point". When the currently
selected fill area interior style is PATTERN, this value is used, where
possible, in conjunction with the current pattern size for displaying the
fill area output primitives.

procedure SET ASF
(asf : in asf list);

The aspect source flags are assigned the values contained in ASF.

procedure SET PICK ID
(pick : in pick Id);

The current pick identifier is set to the value specified by the parame-
ter "pick".

end SETPRIMITIVES;

package REPRESENT is

procedure SET POLYLINEREPRESENTATION
(ws : in wsid;
index : in polylineindex;

A.41



- ~ ~ ~ ~ ~ C C1 4- -W. . . - - - .

line : in linetype;
width in linewidth;
colour . in colour index);

This function is used to define (or redefine) the contents of the poly-
line bundle table for workstation WS according to the contents of the
parameters "index", "line", "width", and "colour" where:
"index" specifies the entry in the bundle table to be defined.
"line" is the line type value.
"width" is the line width scale factor.
"colour" is the line colour.

procedure SET POLYMARKERREPRESENTATION
(ws : in ws-id;
index : in polymarkerindex;
marker : in marker_type;
size : in markersize;
colour : in colour index);

This function is used to define (or redefine) the contents of the poly-
marker bundle for workstation "ws" according to the parameters "index",
"marker", "size", "colour" where
"index" specifies the entry in the bundle table to be defined.
"marker" specifies the marker type value.
"size" is the scale factor to be applied to the nominal marker size.
"colour" is the value for the marker colour.

procedure SET TEXT REPRESENTATION
(ws : in ws id;
index : in textindex;
fontprecision : in textfontprecision;
expansion : in char_expansion;
spacing : in charspacing;
colour : in colour index);

This function is used to define (or redefine) the contents of a text bun-
dle for workstation "ws" according to the parameters "index", "fontpre-
cision", "expansion", "spacing" and "colour", where:
"index" specifies the entry in the bundle table to be defined.
"fontprecision" is used to select a particular font on this worksta-
tion.
"expansion" specifies the deviation of the width to height ratio indi-
cated by the font designer.
"spacing" specifies how much additional space is to be inserted betwee.
two adjacent character bodies.

"colour" is the text colour.

procedure SET FILL AREAREPRESENTATION
(ws : in ws id;-
index : in fill areaindex;
style : in style index;
colour : in colour index);

This function is used to define (or redefine) the contents of a fill area
bundle for workstation "ws" according to the parameters "index", "style",
and "colour" where:
"index" specifies the entry in the bundle table to be defined.

A.42

- .. -t - Zaaa a ~& a. -.



"style" determines which PATTERN or HATCH style is selected. It is ig-
nored for interior styles HOLLOW and SOLID.
"colour" is the fill area colour.

procedure SET PATTERNREPRESENTATION
(ws : in wsid;
index : in patternindex;
pattern : in colour indices.matrix of);

This function is used to define (or redefine) the contents of a pattern
bundle for workstation "ws" according to the parametes "index" and "pat-
tern", where:

"index" specifies the entry in the bundle table to be defined.
"pattern" specifies the interior style for fill areas.

procedure SET COLOURREPRESENTATION
(ws : in wsid;
index in colour_index;
colour : in colourrepresentation);

This function is used to define (or redefine) the contents of a colour
bundle for workstation "ws" according to the parameters "index" and "col-
our" where:
"index" specifies the entry in the bundle table to be defined.
"colour" index refers to an entry in the colour table when output prim-
itives are displayed.

end REPRESENT;

package TRANSFORM is

procedure SET WINDOW
(transformation : in transformation number;
window limits : in wc.rectangle);

The window limits for the specified normalization "transformation" is set
to the value specified in world coordinate points by "window limits".

procedure SET VIEWPORT
(transformation : in transformation-number;
viewportlimits : in ndc.rectangle);

The viewport limits for the specified normalization "transformati)-1" is
set to the value specified by the normalized device coordinates in "view-
port limits".

procedure SET VIEWPORT INPUT PRIORITY
(transformation : in-transformation number;
referencetransformation : in transformation number;
priority : in relative_priority);

The ordering of the normalization transformation with regard to input
priority is changed such that "transformation" will be ordered according
to "priority" as either having a "higher" or "lower" priority than the
"reference-transformation".

A.43



category : out ws_category);
This function returns the "category" of the "type of ws".

procedure INQWSCLASS
(type of ws : in ws type;
ei : out error indicator;
class : out display_class);

This function returns the display "class" of the "type of ws".

procedure INQDISPLAYSPACESIZE
(type of ws : in ws_type;
ei : out error indicator;
units : out dc-units;
max dc size : out dc.size;
max-raster unit size : out raster unit size);

This function returns the Device Coordinate "units", the maximum display
surface size in Device Coordinate units "max dc size", and the maximum
display surface size in raster units "max raster unit size" for the
"type of ws".

procedure INQ DYNAMICMODIFICATIONOFWSATTRIBUTES
(type of ws : in wstype;
ei : out errorindicator;
polyline_representation : out dynamic-modification;
polymarker representation : out dynamic-modification;
textrepresentation : out dynamicmodification;
fill area-representation : out dynamic-modification;

* patternrepresentation out dynamic-modification;
colour representation : out dynamic modification;
transformation : out dynamicmodification);

This function returns the polyline, polymarker, text, fillarea, pattern,
and colour representation changeable. These tell whether a redrawing of
the screen is needed if the representation is changed. "transformation"
does the same thing for setting the transformations.

procedure INQDEFAULTDEFERRALSTATEVALUES
(type of ws : in wstype;
ei : out errorindicator;
deferral : out deferral mode;
regeneration : out regeneration mode);

This function returns the default value for "deferral" mode and the de-
fault value for "regeneration" mode for workstation type "type of ws".

end INQREPRESENT;

package INQFACILITIES is

procedure INQPOLYLINE FACILITIES
(type of ws : in ws_type;
ei : out errorindicator;
list of types out line_types.list of;

A.57



index : in patternindex;
returned-values : in return valuetype;
ei : out errorindicator;
indices : out patternindices.listof);

This function returns the "pattern" array of colour indices.

procedure INQPATTERNREPRESENTATION
(ws : in ws id;
index : in patternindex;
returnedvalues : in returnvaluetype;
ei : out errorindicator;
pattern out colour indices.matrix of);

This function returns "pattern" array of colour indices.

procedure INQLIST OF COLOURINDICES
(ws in wsid;

ei out errorindicator;
indices : in colour indices.list of);

This function returns a list of color "indices" for workstation "ws".

procedure INQ COLOURREPRESENTATION
(ws : in wsid;
index : in colourindex;
returnedvalues : in returnvaluetype;
ei : out errorindicator;
colour : out colour_representation);

This function returns the "colour" for the specified color "index" being
inquired of on workstation "ws". The "returnedvalues" parameter indi-
cates whether the returned values should be as they were set by the pro-
gram, or as they were actually realized.

procedure INQ WSTRANSFORMATION
(ws in wsid;
ei out errorindicator;
update : out update_state;
requestedwindow : out ndc.rectangle;
current-window : out ndc.rectangle;
requested_viewport : out dc.rectangle;
current_viewport : out dc.rectangle);

This procedure returns the workstation transformation "update" state, the
"requestedwindow", "currentwindow", "requested-window", and "current-
viewport".

procedure INQ SET OF SEGMENTNAMESONWS
(ws : in wsid;
ei : out errorindicator;
segments : out segmentnames.listof);

This function returns a set of stored segment names "segments" for work-
station "ws".

procedure INQ WS CATEGORY
(type of ws : in ws_type;
ei out error-indicator;

A.56



returnedvalues in returnvaluetype;
ei : out error indicator;
marker : out marker_type;
size : out markersize;
colour : out colour index);

This function returns the 'marker" type, the marker "size" scale factor,
and the polymarker "colour" index. The "returned values" parameter indi-
cates whether the returned values should be as set by the program, or as
they were actually realized.

procedure INQLIST OF TEXTINDICES
(ws in ws id;
ei out error indicator;
indices : out text indices.list of);

This function returns the list of text "indices" for workstation "ws".

procedure INQ TEXT REPRESENTATION
(ws : in ws id;
index : in textindex;
returnedvalues : in returnvalue type;
ei : out error indicator;
font_precision-: out text_font_precision;
expansion : out charexpansion;
spacing out char_spacing;
colour out colour index);

This function returns the text "font_precision", the character "expan-
sion" factor, the character "spacing", and the text "colour" index. The
"returnedvalues" parameter indicates whether the returned values should
be as set by the program, or as they were actually realized.

procedure INQLISTOFFILLAREAINDICES
(ws in wsid;
ei out error indicator;
indices : out fill area indices.list of);

This function returns a lTst of defined fill area "indices" for worksta-
tion "ws".

procedure INQ FILL AREA-REPRESENTATION
(ws : in wsid;
index : in fill area index;
returnedvalues : in returnvalue type;
ei : out error indicator;
style : out style_index;
colour out colour index);

This function returns the fill area "style" index and the fill area "col-
our" index. The fill area interior style is a discriminant component of
the style index. The "return values" parameter indicates whether the re-
turned values should be as they were set by the program, or as they were
actually realized. The "index" is the fill area index being inquired of
on workstation "ws".

procedure INQLISTOFPATTERNINDICES
(ws in wsid;

A.55



ei : out errorindicator;
-.state : out ws state);

The "state" workstation "ws" is returned. The "state" is either "active"
or "inactive".

procedure INQ WS DEFERRALANDUPDATESTATES
(ws : in ws id;
ei out errorindicator;
deferral : out deferral mode;
regeneration : out regenerationmode;
display : out display_surface_empty;
frame action : out new frame necessary);

This function returns the "deferral" mode, the "regeneration" mode, the
"display" mode, and the new "frame-action" necessary for update for the
workstation "ws".

end INQATTRIBUTES;

package INQ_REPRESENT is

procedure INQ LIST OF POLYLINEINDICES
(ws : in ws id;
ei : out errorindicator;
indices : out polyline indices.list of);

This function returns the list of defined polyline "indices" for the
0- workstation "ws".

procedure INQPOLYLINEREPRESENTATION
(ws : in ws-id;
index : in polylineindex;
returnedvalues : in returnvaluetype;
ei : out error indicator;
line : out linetype;
width : out line_width;
colour out colour index);

The function returns The "line" type, the line "width" scale factor, and
the polyline "colour" index for the bundle specified by the polyline "in-
dex" on workstation "ws". The "returned values" parameter indicates
"returned values" parameter indicates whether the returned
whether the returned values should be as set by the program, or as they
were actually realized.

procedure INQLIST OF POLYMARKERINDICES
(ws : in ws id;
ei out error indicator;
indices : out polymarkerindices.listof);

This function retruns the list of defined polymarker "indices" for "ws".

procedure INQ POLYMARKERREPRESENTATION
(ws : in ws id;
index : in polymarkerindex;

A.54



(ei : out error indicator;
transformation : out transformation number);

The current normalization "transformation" number is returned.

procedure INQ LIST OF NORMALIZATIONTRANSFORMATIONNUMBERS
(ei out errorindicators;
list : out transformation numbers.list of);

This function returns a "list" of tranformation numbers.

procedure INQNORMALIZATIONTRANSFORMATION
(transfromation : in transformationnumber;
ei : out error indicator;
window limits : out wc.rectangle;
viewpo7rt_limits : out ndc.rectangle);

This function returns the "window limits" in world coordinates and the
"viewport limits" in normalized device coordinates for the specified nor-
malization "transformation".

procedure INQ CLIPPING
(ei : out errorindicator;
clipping : out clipping_indicator;
clipping_rectangle : out ndc.rectangle);

This function returns the "clipping" indicator and the "clipping rectan-
gle."

procedure INQ NAME OF OPEN SEGMENT
(ei : out errorindicator;
segment : out segment name);

This function returns the name of the current open "segment".

procedure INQSETOFSEGMENTNAMESINUSE
(ei : out error_indicator;
segments : out segmentsnames.list of);

The function returns the set "segments" of segment names in use. It in-
cludes the number of segment names in use.

procedure INQMORESIMULTANEOUS-EVENTS
(ei : out errorindicator;
events : out more events);

A value of "more" or "nomore" will be returned for "events" to indicate
whether there are other input reports in the same group of simultaneous
events as the last removed report.

procedure INQ WS CONNECTIONANDTYPE
(ws : in wsid;
ei : out errorindicator;
connection : out connectionid;
type of ws : out wstype);

This function returns the connection "identifier" and the "type of ws"
for the workstation "ws".

procedure INQWSSTATE
r (ws : in wsid;

A.53

• .. -" "- " -" '. . • - . " -' . ' . " -. . " . " '.. ." , . . . , ,. - , .-* ;



procedure INQPOLYMARKER SIZE SCALE-FACTOR
(ei : out error_indicator;
size : out scale factor);

This function returns the current marker "size".

procedure INQPOLYMARKER COLOUR INDEX
(ei : out error_indica7tor;
colour : out colour index);

This function returns the current polymarker "colour" index.

procedure INQTEXTFONT ANDPRECISION
(ei : out error_indicator;
font_precision : out text_fontprecision);

This function returns the current text font and precision (fontpreci-
sion).

procedure INQCHAREXPANSIONFACTOR
(ei : out error_indicator;
expansion : out char expansion);

This function returns the current character "expansion" factor.

procedure INQ CHAR SPACING
(ei : out error_indicator;
spacing : out char_spacing);

This function returns the current character "spacing".

p . procedure INQ TEXT COLOUR INDEX
(ei : out error_fndicator;
colour : out colour index);

This function returns the current text "colour".

procedure INQFILL AREA INTERIORSTYLE
(ei : out error_indicator;
style : out interiorstyle);

This function returns the current fill area interior "style"

procedure INQ_.FILLAREA STYLE INDEX
(ei : out errorindicator;
index : out styleindex);

This function returns the current fill area "style" index.

procedure INQ FILL AREA COLOUR INDEX
(ei : out error_ indicator;
colour : out colourindex);

This function returns the current fill area "colour" index.

procedure INQLIST OF ASF
(ei : out error_indicator;
list out asf list);

This function returns the list of aspect source flags.

procedure INQCURRENTNORMALIZATIONTRANSFORMATIONNUMBER

A.52

• " .- . ." " " " - -' .• " -°' - • . - " . . . - - ' .i . - • ." "

. ., .



(ei : out error indicator;
vector : out wc.vector);

-. .*. This function returns the current character up "vector".

procedure INQTEXTPATH
(ei : out error indicator;
path : out textpath);

This function returns the current text "path".

procedure INQTEXT_.ALIGNMENT
(ei : out error_indicator;
alignment : out textalignment);

This function returns the current text "alignment".

procedure INQFILLAREAINDEX
(ei : out error indicator;
index : out fill area index);

This function returns the current fill area "index".

procedure INQPATTERNSIZE
(ei out error_indicator;
size : out wc.size);

This function returns the current pattern "size".

procedure INQPATTERNREFERENCEPOINT
(ei : out errorindicator;
reference_point : out wc.point);

* B This function returns the current pattern "reference_point".

procedure INQPICKID
(ei : out error-indicator;
pick : out pick.id);

This function returns the current "pick" identifier.

procedure INQLINETYPE

(ei : out errorindicator;
line : out linetype);

This function returns the current "line" type.

procedure INQLINEWIDTHSCALEFACTOR
(ei : out error_indicator;
width : out line width);

This function returns the current line "width" scale factor.

procedure INQPOLYLINECOLOURINDEX
(ei : out errorindicator;
colour : out colourindex);

This function returns the current polyline "colour" index.

procedure INQPOLYMARKERTYPE
(ei : out errorindicator;
marker : out marker-type);

This function returns the current "marker" type

A.51



procedure INQLIST OF AVAILABLE WS TYPES
(ei : out errorindicator;
types : out wstypes.list of);

This function returns a list of workstation types.

procedure INQWSMAXNUMBERS
(ei : out error indicator;
maxopenws : out positive;
max active ws : out positive;
max-segmentws : out positive);

This function returns the maximum number of simultaneously open worksta-
tions (maxopenws), the maximum number of active workstations (max ac-
tive ws), and the maximum number of workstations associated with segment
(max-segmentws).

procedure INQMAXNORMALIZATIONTRANSFORMATION_NUMBER
(ei : out errorindicator;
transformation : out transformation-number);

This function returns the maximum normalization "transformation" number
allowed by this implementation of GKS.

procedure INQ SET OF OPEN WS
(ei : out error indicator;
ws : out ws ids.list of);

A list of open workstations is returned.

0 procedure INQSETOFACTIVEWS
(ei out error indicator;
ws : out ws ids.list of);

A list of active workstations is returned.

procedure INQPOLYLINEINDEX
(ei : out error indicator;
index : out polylineindex);

This function returns the current polyline "index".

procedure INQPOLYMARKERINDEX
(ei : out error indicator;
index : out polymarkerindex);

This function returns the current polymarker "index".

procedure INQTEXTINDEX
(ei : out errorindicator;
index : out text index);

This function returns the current text "index".

procedure INQCHARHEIGHT
(ei : out error_indicator;
height : out char height);

This function returns the current character "height".

procedure INQCHARUPVECTOR

A.50

6

*". . .* *.* . *



GKS performs a request on the specified stroke "device" on the specified

"ws". The current measure of the stroke device consistes of a sequence
of "stroke_points" in world coordinates and the normalization "transfor-
mation" number which was used in the conversion to World Coordinates.

procedure REQUESTVALUATOR
(ws : in wsid;
device : in device number;
value : out inputvalue);

GKS performs a request on the specified valuator "device" number on work-
station "ws". The "value" returned is the current measure of the valua-
tor device.

procedure REQUESTCHOICE
(ws : in wsid;
device : in devicenumber;
choice : out choiceinputtype);

GKS performs a request on the specified choice "device" on workstation
"ws". The "choice" returned is the current measure of the "choice" de-
vice.

procedure REQUESTPICK
(ws : in wsid;
device : in devicenumber;
pick : out pickinputtype);

GKS performs a request on thi' specified pick "device" on workstation
"ws". If the measure of the pick device indicates no pick, "status" is
returned "nopick"; otherwise, "ok" is returned together with a "segment"
name and "pick" identifier which are set according to the current measure
of the pick device.

procedure REQUESTSTRING
(ws : in wsid;
device : in devicenumber;
charstring : out input_string);

GKS performs a request on the specified string "device" on workstation
"ws". The "charstring" returned is the current measure of the string
device.

end INPUT;

package INQATTRIBUTES is

procedure INQOPERATINGSTATEVALUE
(value : out operating_state);

This function returns the "value" of the GKS operating state.

procedure INQ LEVEL OF GKS
(ei : out error_indicator;

*level : out gkslevel);
The level of this GKS implementation is returned.

A.49



procedure SET VALUATORMODE
(ws : in wsaid;
device: in devicenumber;
mode : in operating_mode;
switch : in echo switch);

Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

procedure SETCHOICEMODE
(ws : in ws id;
device : in devicenumber;
mode : in operating_mode;
switch : in echo switch);

Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

procedure SETPICKMODE
(ws : in ws id;
device : in devicenumber;
mode : in operating_mode;
switch : in echo switch);

Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

procedure SET STRINGMODE
L- (ws : in ws id;

device : in devicenumber;

-- - mode : in operating_mode;
switch : in echo switch);

Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

end SETINPUT;

package INPUT is

procedure REQUESTLOCATOR
(ws : in ws id;
device : in devicenumber;
transformation : out transformation-number;
position : out wc.point);

GKS performs a request on the specified locator device number "device"
on the specified "ws". The locator "position" in World Coordinates and
the normalization "transformation" number, which was used in the conver-
sion to World Coordinates, are the current measure of the locator device.

procedure REQUESTSTROKE
(ws : in wsid;
device : in devicenumber;

U transformation : out transformation number;
strokepoints : out points.listof);

A.48

.. . - . .. . . .. - . ... . . ..- • . - . - . . . .. .' - , - . .- . . ..- - - - . . .. . " ..' . " . j .



0/

echo-area in dc.rectangle;
datarecord : in choice datarecord);

The input device with device number "device for the workstation "ws" is
initialized. This function provides the following information to the de-
vice:

The "initial choice" number.
The "echo area" rectangle in device coordinates.
the choice "data-record".

procedure INITIALISEPICK
(ws : in wsid;
device : in devicenumber;
initial_pick : in pick-inputtype;
echo area : in dc.rectangle;
datarecord : in pickdatarecord);

The input device with device number "device" for the workstation "ws" is
initialized. This function provides the following information to the de-
vice:
The "initial status" of "pick" or "no_pick".
The name of the "initialsegment".
The "initialpick" identifier.
The "echo area" rectangle in device coordinates.
The pick "data record".

procedure INITIALISESTRING
(ws : in wsid;
device : in device number;
initialstring : in input_string;
echo area : in dc.rectangle;
data record : in stringdatarecord);

The input device with device number "device" for the workstation "ws" is
initialized. This function provides the following information to the de-
vice:

The "initial string" which contains the initial input string.
The "echo-area" recatangle in device coordinates.

The string "data-record".

procedure SET LOCATOR MODE
(ws : in ws id;
device : in device number;
mode : in operating_mode;
switch : in echo switch);

Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

procedure SETSTROKEMODE
(ws : in ws id;
device : in device number;
mode : in operating_mode;
switch : in echo switch);

Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

A.47



package SETINPUT is

procedure INITIALISELOCATOR
(ws : in ws id;
device : in device number;
initial transformation : in transformation number;
initial_position : in wc.point;
echo area : in dc.rectangle;
data-record : in locator data record);

The input device with device number "device" for the workstation "ws" is
initialized. The function provides the following information to the de-
vice:
The "initial-position" of the locator in world coordinates.
The "initial transformation" which provides the initial normalization
transformation number.

The "echo-area" rectangle in device coordinates.
The locator "data-record".

procedure INITIALISESTROKE
(ws : in wsid;
device : in devicenumber;
initial tranformation : in transformation-number;
initialstroke : in points.arrayof;
echo area : in dc.rectangle;
data-record : in stroke data record);

The input device with device number "device" for the workstation "ws" is
initialized. The function provides the following information to the de-
vice:

"initial-stroke" which contains the number of points in the initial
stroke and the points in the stroke.

"initial transformation" which provides the initial normalization
transformation number.

The "echo area" rectangle in device coordinates
"data record" which provides the stroke data record.

procedure INITIALISEVALUATOR
(ws : in wsid;
device : in devicenumber;
initialvalue : in inputvalue;
echo area : in dc.rectangle;
data record : in valuator data record);

The input device with device number "device" for the workstation "ws" is
initialized. The function provides the following information to the de-
vice:

"initial value" which contains the initial value.
The "echo-area" rectangle in device coordinates.
The valuator "data-record".

procedure INITIALISECHOICE

(ws : in wsid;
device: in device number;
initialchoice : in choice input type;

A.46

V4 ,



segment : in segmentname);
The "segment" is sent to the workstation "ws" in the same way as if the
workstation were active when the segment was created. Clipping rectan-
gles are copied unchanged.

procedure COPY SEGMENTTOWS
(ws : in ws id;
segment : in segmentname);

The primitives in the segment pointed to by "segment" are sent to the
specified "ws".

procedure INSERT SEGMENT
(segment : in segmentname;
transformation : in transformation matrix);

INSERTSEGMENT allows previously stored primitives to be transformed, ac-
cording to the transformed coordinates specified by "transformation", and
again placed into the stream of output primitives.

procedure SET SEGMENT TRANSFORMATION
(segment : in segmentname;
transformation : in transformation-matrix);

This function transforms the "segment" as specified by the "transforma-
tion" matrix.

procedure SET VISIBILITY
(segment : in segment_name;
visibility : in segment visibility);

The visibility of the specified "segment" is set to the value of "visi-
'- bility".

procedure SETHIGHLIGHTING

(segment : in segmentname;
highlighting : in segmenthighlighting);

The highlighting of the specified "segment" is set to the value of "high-
lighting".

procedure SET SEGMENT PRIORITY
(segment : in segment_name;
priority : in segment_priority);

The segment priority of the named "segment" is set to the value specified
by "priority". Segment priority affects the display of segments and pick
input if segments overlap, in which case GKS gives precedence to segments
of higher priority.

procedure SET DETECTABILITY
(segment : in segment name;
detectability : in segmentdetectability);

The detectability of the specified "segment" is set to the value of "de-
tectability".

end SEGMENTS;

A.45

0-. . - . i i i / :i i• ;; ; i . i : : . . :. _ - . • - . . . .= . : -



procedure SELECT NORMALIZATION TRANSFORMATION
(transformation : in transformation number);

The specified normalization TRANSFORMATION becomes the current normaliza-
tion transform to be used for subsequent output primitives.

procedure SET CLIPPINGINDICATOR
(clipping : in clipping_indicator);

The clipping indicator is set to specify whether there is clipping or not
by the parameter "clipping".

procedure SET WS WINDOW
(ws : in ws id;
ws window limits : in ndc.rectangle);

The requested workstation window on workstation "ws" is set to the rec-
tangle specified by the normalized device coordinates "ws window limits".

procedure SET WS VIEWPORT
(ws : in ws id;
wsviewportlimits : in dc.rectangle);

The requested workstation viewport on workstation "ws" is set to the rec-
tangle specified by the device coordinates "ws_viewport-limits".

end TRANSFORM;

package SEGMENTS is

procedure CREATE SEGMENT is
(segment : in segmentname);

This function creates a new segment. The segment is stored on all work-
stations active at the time the segment is created.

procedure CLOSESEGMENT;
The current open segment is closed.

procedure RENAME SEGMENT
(old name : in segmentname;
new name : in segmentname);

*0 The name attribute of the segment is changed from "old-name" to "new-
name".

procedure DELETE SEGMENT
(segment : in segmentname);

The segment specified by "segment" is deleted on all workstations.

procedure DELETESEGMENTFROMWS

(ws : in ws id;
segment : in segment name);

The specified "segment" is deleted form the workstation "ws".

* procedure ASSOCIATE SEGMENTWITHWS
(ws in ws id;

A.44

6 i " • . . " . - . ' "i .i . " .-- i - -" . " , ". " '- . -' - . " - -. l - . >



number of widths : out linetypes.listof;
nominal width : out dc.magnitude;
range of widths : out dc.limits;
number of-indices : out natural);

This function returns a list of available linetypes (list of types), the
number of available linewidths (number of widths), the "nominal width",
the range of linewidths (range_ofwidths), and the number of predefined
polyline indices (number of indices) for workstation type (type of ws).

procedure INQ_PREDEFINED POLYLINEREPRESENTATION
(type of ws : in wstype;
index : in polyline index;
ei : out errorindicator;
line : out line_type;
width : out linewidth;
colour: out colour index);

This function returns the linetype (line), the linewidth scale factor
(width), and the polyline "colour" index. The "index" is the polyline
index being inquired on the "type of ws".

procedure INQ POLYMARKER FACILITIES
(type of ws-: in ws type;
ei : out error indicator;
list of types : out markertypes.listof;
number of sizes : out natural;
nominal size : out dc.magnitude;
rangeofsizes : out dc.limits;
number of indices : out natural);

This function returns the list of available marker types (list of types),
the number of available marker sizes (number of sizes), the "nominal
size" of the marker, the range of marker sizes (range of sizes), and the
number of predefined poly :rker indices (number of indices) for the
"type of ws".

procedure INQPREDEFINEDPOLYMARKERREPRESENTATION
(type of-ws : in wstype;
index : in polymarker_index;
ei : out errorindicator;
marker : out markertype;
size : out marker size;
colour : out colour index);

This function returns the "marker", the marker "size" scale factor, and
the polymarker "colour" index for the polymarker "index" being inquired
on this "type of ws".

procedure INQTEXTFACILITIES
(type of ws : in wstype;
ei : out error indicator;
list of fontprecisionpairs

out textfont_precisions.listof;
number of heights : out natural;
range of heights : out dc.limits;
numberofexpansions : out natural;

A.58



rangeofexpansions : out dc.limits;
number of indices : out natural);

This function returns a "list of font_precisionpairs" available, the
number of available character heights (number of heights), the minimum
and maximum character heights (range_of_heights), the number of available
character expansion factors (numberofexpansions), the minumum and max-
imum character expansion factors (range of expansions), and the number
of predefined text indices (numberof_indices) for the "type_ofws".

procedure INQPREDEFINEDTEXTREPRESENTATION
(type_of_ws : in wstype;
index : in textindex;
ei : out error indicator;
font_precision-: out text_font_precision;
expansion : out charexpansion;
spacing : out charspacing;
colour out colour index);

This function returns the text font and precision (fontprecision), the
character "expansion" factor, the character "spacing", and the text "col-
out" index for the predefined text "index" on this "typeofws".

procedure INQFILL AREA FACILITIES
(type of ws : in-ws_type;
ei : out error-indicator;
list of interiorstyles : out interiorstyles.list_of;
list of-hatchstyles : out hatch styles.listof;
number of indices : out natural);

This function returns the "listofinteriorstyle" available, the "list-
of hatchstyles" available, and the number of predefined fill area in-
dices (number of indices) for the "type of ws".

procedure INQ_PREDEFINEDFILLAREA REPRESENTATION
(typeof ws : wstype;
index : in fill areaindex;
ei : out error indicator;
style : out styleindex;
colour : out colour index);

This function returns the fill area "style" index and the fill area "co-
lour" index for the fill area "index" being inquired on this "type of
WS".

procedure INQ PATTERN-FACILITIES
(type of ws : in ws type;ei : out errorindicator;

number of indices : out natural);
This function returns the number of predefined pattern indices (number_
of indices) for this "typeofws".

procedure INQPREDEFINEDPATTERNREPRESENTATION
(type of ws : in wstype;
index : in patternindex;
ei : out error indicator;
pattern : out colour indices.variable matrix of);

A.59

6. • . - i . .7 .> " -"- . . i - " . - - ' " " " " " . . " " " > ' " ' ' i 1



This function returns the "pattern" array of colour indices for the pat-
tern "index" being inquired on this "typeof-ws".

procedure INQ_COLOUR_FACILITIES
(typeofws : in ws type;
ei : out error indicator;
number of colours : out positive);

This function returns the "number of colours" supported on this "typeof
Ws".

procedure INQPREDEFINEDCOLOURREPRESENTATION
(type of ws : in wstype;
index : in colour index;
ei : out error indicator;
colour : out colour representation);

This function returns the "colour" for the color "index" being inquired
on this "type of ws".

procedure INQ LIST OF AVAILABLE-GDP
(typeof ws : in wstype;
ei : out error indicator;
list of.gdp : out gdpids.list of);

This function returns the "list_of_gdp" identifiers for the "type of ws".

procedure INQGDP
(type of ws : in wstype;
gdp : in gdpid;

1) ei : out error indicator;
list of attributes used : out attributes used.list of);

This function returns the list of sets of attributes used (list of attri-
butes used) for the "gdp" identifier on the "type of ws".

end INQFACILITIES;

package INQSEGMENT is

procedure INQ MAX LENGTH OF WS STATETABLES
(type of ws : in wstype;
ei : out error indicator;
max_polyline_entries : out natural;
max polymarkerentries : out natural;
max text entries : out natural;
max-fill-area entries : out natural;

* maxpattern_indices : out natural;
max colour indices : out natural);

This function returns the maximum number of polyline, polymarker, text,
and fill area table entries. It also returns the maximum number of pat-
tern and colour indices on this "type of ws".

6 procedure INQNUMBEROFSEGMENTPRIORITIESSUPPORTED
(typeof ws : in wstype;

A.60



ei : out error-indicator;
numberofpriorities : out natural);

S-.-- This function returns the number of segment priorities (numberofprior-
ities) supported on this "typeof-ws".

procedure INQDYNAMICMODIFICATIONOFSEGMENTATTRIBUTES
(typeofws : in wstype;
ei : out errorindicator;
transformation : out dynamicmodification;
visible to invisible : out dynamicmodification;
invisible to visible : out dynamic-modification;
highlighting : out dynamicmodification;
priority : out dynamicmodification;
addingprimitives : out dynamicmodification;
deletion visible : out dynamicmodification);

This function returns the segment "transformation" changeable, the vis-
ibility changeable from "visible to invisible", the visibility changeable
from "invisible to visible", the segment "priority" changeable, "adding
primitives" to open segment, and the segment "deletion visible" for this
"deletionvisible" for this "typeof-ws".

procedure INQSETOFASSOCIATEDWS
(segment : in segmentname;
ei : out errorindicator;
list of ws : out ws ids.list of);

This function returns the set of workstations, (list of ws), associated
with "segment".

procedure INQSEGMENTATTRIBUTES
(segment : in segment_name;
ei : out error indicator;
transformation : out transformation-matrix;
visibility : out segment_visibility;
highlighting : out segmenthighlighting;
priority : out segmentpriority;
detectability : out segment detectability);

This function returns the segment "transformation" matrix, the segment
"visibility", the segment "highlighting", the segment "priority", and the
segment "detectability" for the given "segment".

end INQSEGMENT;

package SETTRANSFORM is

procedure EVALUATE TRANSFORMATIONMATRIX
(fixed_point : in wc.point;
shift vector : in wc.vector;
rotation_angle : in radians;
scale-factors : in transformation-factor;
transformation : out transformation matrix);

The transformation specified by "fixed point", "shiftvector", "rotation-

A.61

U



angle", and "scalefactors", is evaluated and the result is put in
"transformation".

procedure EVALUATE TRANSFORMATIONMATRIX
(fixed_point : in ndc.point;
shift-vector : in ndc.vector;
rotationangle : in radians;
scalefactors : in transformationfactor;
transformation : out transformation matrix);

The transformation specified by "fixed_point", "shiftvector", "rotation-
angle", and "scalefactors", is evaluated and the result is put in
"transformation".

procedure ACCUMULATE TRANSFORMATION MATRIX
(source transformation : in transformationmatrix;
fixed_point : in wc.point;
shift-vector : in wc.vector;
rotationangle : in radians;
scalefactors : in transformationfactor;
result transformation : in transformation-matrix);

The transformation defined by "fixedpoint", "shiftvector", "rotation_
angle", and "scale factors", is premultiplied by the "source transforma-
tion" and the result is returned in "result-transformation".

procedure ACCUMULATE TRANSFORMATION MATRIX
(source transformation : in transformationmatrix;
fixed_point : in ndc.point;

0 shift vector : in ndc.vector;
rotation angle : in radians;
scalefactors : in transformationfactor;
result transformation : in transformation-matrix);

The transformation defined by "fixedpoint", "shift vector", "rotation
angle", and "scalefactors", is premultiplied by the "sourcetransforma-
tion" and the result is returned in "result transformation".

end SETTRANSFORM;

package EMERGENCY is

procedure EMERGENCYCLOSEGKS;
This function is used to close GKS in case of a nonrecoverable error.
Any open segment is closed. All workstations are updated. All active
workstations are deactivated. All open workstations are closed. GKS is
closed.

end EMERGENCY;

package ERRORHANDLING is

A.62



stateerror, wserror, transformation-error : exception;
outputattributeerror, outputprimitiveerror : exception;
segmenterror, inputerror, languagebinding_error : exception;

procedure ERRORLOGGING
(ei : in error indicator;
name : in subprogramname);

This function writes the error "number" and the GKS function "name" de-
tecting the error to the error file specified in "opengks".

end ERRORHANDLING;

Si

0

A. 63



AFIT_GKS Errors (6:59-64)

This binding requires the use of Ada exceptions to notify the application
program of error conditions detected by AFITGKS functions, except the
inquiry functions. The exceptions correspond to the classes of errors
described in Appendix B of the ANS GKS specification. The Ada concept
of allowing the application program to provide exception handlers re-
places the ANS GKS requirement of a global user-supplied Error Handling
procedure. When an exception is raised, the application program may read
the error file to get the error number, the name of the subprogram de-
tecting the error, and any implementation-defined messages.

The AFITGKS inquiry functions do not raise exceptions. Instead, they
return an error indicator parameter containing the number of the "error"
which was detected. This is consistent with the ANS GKS philosophy that
no errors occur during inquiries. The error numbers correspond to the
error numbers from Appendix B of the ANS GKS specification, plus addi-
tional errors defined in this binding. Note that certain known error
conditions may be detected outside the control of AFITGKS due to the na-
ture of the Ada language, and may result in an exception being raised on
an inquiry.

Error Code Definition

This section provides the mapping of the ANS GKS error numbers to Ada ex-
ceptions. The names of the exceptions correspond to the classes of er-
rors defined in Appendix B of the ANS GKS specification. For each of
these error "classes", the number of the errors covered by this exception
are specified. These numbers are also the same numbers used as error in-
indicator return values on inquiries. Certain of the known ANS GKS er-
rors will never be detected by AFITGKS due to features of the Ada lan-
guage, such as strong data typing. These errors are not included in this
section.

STATE ERROR

The State Error exception is raised when a AFIT GKS function is called
from an incorrect state. The following ANS GKS error conditions corre-
spond to this exception:

1 GKS not in proper state: GKS shall be in state GKCL
2 GKS not in proper state: GKS shall be in state GKOP
3 GKS not in proper state: GKS shall be in state WSAC
4 GKS not in proper state: GKS shall be in state SGOP
5 GKS not in proper state: GKS shall be in either state WSAC or in state

SGOP
6 GKS not in proper state: GKS shall be in either state WSOP or in state

SGOP
7 GKS not in proper state: GKS shall be in one of the states WSOP, WSAC

or SGOP
8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP,

- WSAC or SGOP

A.64



V -6 V-- I. ._ 1 'L''- 1& K N % 7T -- V V77

WSERROR

The exception WS ERROR is raised when an error occurs during manipula-
tion of a workstation. The following error numbers correspond to this
exception:

21 Specified connection identifier is invalid
22 Specified workstation type is invalid
24 Specified workstation is open
25 Specified workstation is not open
26 Specified workstation cannot be opened
27 Workstation Independent Segment Storage is not open
28 Workstation Independent Segment Storage is already open
29 Specified workstation is active
30 Specified workstaticm is not active
31 Specified workstation is of category MO
32 Specified workstation is not of category MO
33 Specified workstation is of category MI
34 Specified workstation is not of category MI
35 Specified workstation is of category INPUT
36 Specified workstation is Workstation Independent Segment Storage
37 Specified workstation is not of category OUTIN
38 Specified workstation is neither of category INPUT nor of category

OUTIN
39 Specified workstation is neither of category OUTPUT nor of category

OUTIN
40 Specified workstation has no pixel store readback capability
41 Specified workstation type is not able to generate the specified gen-

eralized drawing primitive

TRANSFORMATIONERROR

The TRANSFORMATIONERROR exception is raised when an error occurs during
a transformation manipulation. The following error numbers correspond
to this exception:

51 Rectangle definition is invalid
54 Workstation viewport is not within the display space

OUTPUTATTRIBUTEERROR

The OUTPUT ATTRIBUTE ERROR exception is raised when an error occurs dur-
ing manipulation of an output attribute. The following ANS GKS error
numbers correspond to this exception:

61 A representation for the specified polyline index has not been de-
fined on this workstation

63 Specified linetype is not supported on this workstation
65 A representation for the specified polymarker index has not been de-

fined on this workstation
67 Specified marker type is not supported on this workstation
69 A representation for the specified text index has not been defined

on this workstation

A.65

6 . " < . . . .. " " " • . - ' . - -- --.' - . . . .i , > '' ' - - . ' -"



71 Requested text font is not supported for the specified precision on
this workstation

74 Length of character up vector is zero
76 A representation for the specified fill area index has not been de-

fined on this workstation
77 Specified-fill area interior style is not supported on this worksta-

tion.
80 Specified hatch style is not supported on this workstation
82 A representation for the specified pattern index has not been defined

on this workstation
83 Interior style PATTERN is not supported on this workstation
87 A representation for the specified colour index has not been defined

on this workstation

OUTPUTPRIMITIVEERROR

The exception OUTPUTPRIMITIVEERROR is raised when an error occurs dur-
ing manipulation of an output primitive. The following ANS GKS error
numbers correspond to this exception:

100 Number of points is invalid
103 Content of generalized drawing primitive data record is invalid
104 At least one active workstation is not able to generate the speci-

fied generalized drawing primitive

SEGMENTERROR

* The exception SEGMENTERROR is raised if an error is detected during ma-
nipulation of a segment. The following ANS GKS error numbers correspond
to this exception:

121 Specified segment name is already in use
122 Specified segment does not exist
123 Specified segment does not exist on specified workstation
124 Specified segment does not exist on Workstation Independent Segment

Storage
125 Specified segment is open

INPUTERROR

The exception INPUTERROR is raised when an error is detected during an
AFIT_-GKS input operation. The following ANS GKS error numbers correspond
to th~is exception:

140 Specified input device is not present on workstation
141 Input device is not in REQUEST mode
142 Input device is not in SAMPLE mode
143 EVENT and SAMPLE input mode are not availiable at this level of GKS
144 Specified prompt and echo type is not supported on this workstation
145 Echo area is outside display space
147 Input queue has overflowed
150 No input value of the correct class is in the current event report

A. 66



LANGUAGEBINDINGERROR

* "LANGUAGEBINDING ERROR is raised when an error is detected that is spe-
cific to this binding of ANS GKS to Ada. Error numbers 500 to 600 are
reserved for language binding dependent errors. The following error num-
bers are defined by this binding for the specific identification of lan-
of language binding errors:

500 Error file identification is invalid
503 Invalid use of input data record
504 Operator break on input
505 Timeout occured before input received

Error Codes Precluded by Function but included in the Inquiry Procedures.

50 Transformation number is invalid
60 Polyline index is invalid
64 Polymarker index is invalid
68 Text index is invalid
75 Fill area index is invalid
79 Specified pattern index is invalid
86 Colour index is invalid

A.67



Sample Program

This section of Appendix A shows a small sample program that uses

AFITGKS. This sample program, shown in Figure A.1, draws the house

shown in Figure A.2. Note that the procedure demo in Figure A.1 only

included those AFIT GKS packages that it needed. If the user of AFIT

GKS needed a function from some other package of AFIT GKS then he/she

would have to include those additional packages.

A.68



with external_types, control, primitives, transform;
p rocedure DEiMO is
use external_types, control, primitives, transform;
wind :wc.rectangle :

(x => (min => 0.0, max => 50.0),
y => (min => 0.0, max => 50.0));

procedure HOUSE is
roof :points.arrayof(1..3)
(1 => (x => 10.0, y => 30.0),
2 => (x => 20.0, y => 40.0),
3 => (x => 30.0, y => 30.0));

wall :points.arrayof(1..4) :
(I => (x => 10.0, y => 10.0),
2 => (x => 10.0, y => 30.0),
3 => (x => 30.0, y => 30.0),
4 => (x => 30.0, y => 10.0));

door :points.arrayof(1..4) :
(1 => (x => 15.0, y => 10.0),
2 => (x => 15.0, y => 25.0),
3 => (x => 20.0, y => 25.0),
4 => (x => 20.0, y => 10.0));

handle :points.arrayof(1..1)
(1 => (x => 19.0, y => 17.5));

textpt :wc.point :
(x => 35.0, y => 10.0);

40 begin

p olyline(roof); -- draw the roof
fill ar~a(wall); -- draw the wall
polyline(door); -- draw the door
polymarker(handle); -- draw the door handle
text(textpt, "house"); -- label the house

end HOUSE;

begin -- DEMO
o pen gks;
open-ws(ws => 2,

connection => "tek_-4014",
type of_ws => 1);

activate-ws(2);
set-window(transformation => 1,

window limits => wind);
select -normalization transformation(1);
HOUSE;
deactivate ws(2);
close-ws(2);
close~gk s

end DEMO4;

Figure A.1. DEMO Program

A.69



7 I

I t

Figure A.2. Output of Demo Program

A.70



System Dependent Features of AFIT GKS

The user of AFIT-GKS needs to know a few things before trying to

use AFITGKS.

First, the packages of AFITGKS are located in the site libraries

of the ROLM Data General computer located at the ASD Computer Center.

Therefore, if the users account has access to the site libraries then

to use AFITGKS the user simply "with"s the AFITGKS packages into his/

her program just like the library package "textio".

Second, in order to use the "openws" command of gks correctly

the user must call:

open ws(ws => <any workstation id>,

connection => "tek-4014",
type-of ws => 1);

to open the Tektronix 4014 workstation. The user must call:

openws(ws => <any workstation id>,
connection => "tek-4027",

type-of ws => 2);

to open the Tektronix 4027 workstation. Finally, the user must call:

openws(ws => <any workstation id>,
connection => "wiss",
type-of ws => 3):

to open the Workstation Independent Segment Storage (WISS) workstation.

A.71



Gentrurn Amsterdam Netherlands, Department Computer Science, April
1981 (AD-8059606).

15. ."Graphics Standards -- Where are We?,"~ Eurographics '81,
71-73 (September 1981).

BIB .2



Bibliography

1. ACM SIGGRAPH. "Special GKS Issue," Computer Graphics, (February
1984).

2. Booch, Grady. Software Engineering with Ada. Menlo Park, Cali-
fornia: Benjamin/Cummings, 1983.

3. Department of Defense. Military Standard Ada Programming Language.
ANSI/1MIL-STD-1815A. Washington: Ada Joint Programming Office,
(February 1983).

4. Ducrot and others. "A GKS Implementation for Meterological Appli-
cations," Eurographics '81, 101-102 (September 1981).

5. Enderle, G. and others. Computer Graphics Programming GKS -- The
Graphics Standard. Berlin: Springer-Verlag, 1984.

6. Harris Corporation. Draft GKS Binding to ANSI Ada. GKS/Ada
Binding. Government Information Systems Software Operation, 407
John Rodes Blvd., Melbourne, Florida 32901, 20 July 1984 (Contract

F49642-83-C0083).

7. Hopgood, F.R.A. and others. Introduction to the Graphical Kernel
System GKS. London: Academic Press, 1983.

8. Ica, R. EZDRAW -- An Interactive Computer Graphics Program to De-
sign Bar, Line, or Pie Graphs. HS thesis. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982 (AD-A124694).

9. Lindener, R. and J. Rix. "A GKS Interface to a Real Time Oriented
Raster Workstation for CAD Applications," Eurographics '81, 114
(September 1981).

10. Peters, Lawrence J. Software Design: Methods & Techniques. New
York: Yourdon Press, 1981.

11. Rose, K.W. Development of an Interactive Computer Graphics System
Library and Graphics Tool. MS thesis. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982 (AD-A124694).

12. Simons, Randall W. "Minimal GKS," Computer Graphics, 17 number 3:
183-189 (July 1983).

13. Tektronix. 4027A Color Graphics Terminal. Programmer's Reference
Manual. Tektronix, USA, 1981 (Part No. 070-4173-00).

14. ten Hagen, Paul J.W. The GKS Reviewing Process. Mathematisch

BIB.1



set_pickdatarecord;
function promptechotype;
set _string_datarecord;
function promptecho-type;
function inputbuffersize;
function initialcursor_position;

end EXTERNALTYPES;

AFITGKS adhered to the Harris binding whenever possible. However,

AFITGKS differs from the Harris binding in that it does not define the

following variables as private.

locator data record;
strokedata_record;
valuator data record;
choice data__record;
pick datarecord;
string_datarecord;

This is because AFITGKS did not implement the functions manipulating

these data records.

Overall, the functions not implemented in AFITGKS mostly deal

with the high level input functions and the metafile functions. Mainly,

these functions were not implemented because of time constraints en-

countered in this thesis.

C.4



type ERRORINFORMATION is
record
number : errorindicator;
name : subprogram-name;

end record;

function geterror;
function getnext error;
function end of file;

The next set of functions not implemented cover the interfaces

that would need to be designed if the input data records were private.

Therefore, if the following functions are added to AFIT GKS then they

should be placed where the private data structures are placed, namely

package 'externaltypes'.

package EXTERNALTYPES is
set locator datarecord; (3 overloaded procedures with

this name)
function attributeflag;
function attributes used;
function lineattributes;
function fill area attributes;
function promptecho type;
set stroke data-record; (3 overloaded procedures with

this name)
function buffer_size;
function position;
function interval;
function time;
function lineattributes;
function markerattributes;
function prompt_echotypes;
set valuator datarecord;
function highvalue;
function low-value;
function promptechotype;
set choice data_record; (4 overloaded procedures with

this name)
function prompt_echo__type;
function arrayof_prompts;
function arrayof-strings;
function segment;

C.3



package METAFILE is
write_item__togksm:
get_item_type__from__gksm;
read__item__fromgksm;
interpret__item;

end METAFILE;

package INQ_ATTRIBUTES is
inclpattern height__vector;
inq_pattern_widthvector;
inq__charnominal_width;
inqchar__base__vector;
inqtext extent;

end INQ__ATTRIBUTES;

package INQINPUT is
inq_locator device state;
inqstroke _device__state;
inqvaluator device state;
inqchoice device_s tate;
inq__pick device_state;
inq stringdevicestate;

inq_number of availablelogicalinput-devices;
inq_default__locator device_data;
inq_defaultstroke devicedata;
inq_defaultvaluator devicedata;
inq_default_choice__device__data;
inq_default_pick __device__data;
inq_default string_devicedata;
inqinput _queue _overflow;

end INQ__INPUT;-

procedure INQ__PIXELS is
inq_pixel _arraydimensions;
inqi_pxelarray;
inq_pixel;

end INQ_PIXELS;

In addition, the Harris binding defines additional functions, and

an additional type not specified in ANS GKS. None of these functions

were implemented in AFITGKS. The first set of additional functions

are used to handle the error file.

C.2



Appendix C

Harris Functions Not Implemented

AFIT GKS is a subset of an ANS GKS graphical package. Below is a

list of those functions that are part of the Harris Binding of ANS GKS

to Ada, but are not implemented in AFIT GKS. They are listed by the

package that the functions should be in if they were implemented. This

appendix is designed for a maintainer of AFITGKS, and as such this

appendix is not intended for the average user of AFIT GKS, or the

average reader of this thesis.

package CONTROL is
message;
escape;

-iB end CONTROL;

package PRIMITIVES is
cellarray;
gdp;

end PRIMITIVES;

package SET PRIM is
set fill area interiorstyle;

end SETPRIM;

package INPUT is
sample locator; getlocator;
sample-stroke: get stroke;
samplevaluator; getvaluator;
sample choice; getchoice;
sample pick; getpick;
samplestring; get_string;
await event;
flush device-events;

end INPUT;

C.1



type DEFAULTWS ID is range 1..3;
-- AFIT GKS has three workstations, the Tektronix 4014, the Tektronix
-- 4027, and Workstation Independent Segment Storage (WISS).

Level ma

type DEFAULTPICKID is range 1..1000;
-- This is an arbitrary number of pick_ids allowed in AFITGKS.
-- Level Ib;

type DEFAULTSEGMENTNAME is range 1..32000;
-- This is an arbitrary number of segments allowed in AFITGKS, but
-- ANS GKS states at least 32,000 segments must be supported. Due to
-- space limitations AFITGKS only supports 50 segments.
-- Level la

end GKSCONFIGURATION;

B.7

.---.-



MAX STRING PROMPT ECHO TYPE : constant integer := 1;
-- At this time, AFITGKS allows only 1 input device per device type.
-- Level mb

MAX WS TYPE : constant integer := 3;
-- AFITGKS has 3 workstations Tektronix 4014, Tektronix 4027, and WISS.
-- Level ma

MAX LINE TYPE : constant integer := 24;
-- The Tektronix 4027 has the 4 ANS GKS defined linetypes 1..4, and the
-- Tektronix 4027 has 4 additional linetypes 21..24.
-- Level ma

MAXMARKERTYPE : constant integer := 5;
-- AFITGKS only uses the 5 markers defined by ANSGKS.
-- Level ma

MAXFONTTYPE : constant integer := 1;
-- None of the devices support more then 1 font
-- Level ma

MAX HATCH STYLE : constant integer := 2;
Y-- The Tektronix 4027 has been programmed to reserve pat 118..pat 119

-- for the hatch styles. This gives 2 hatches.
-- Level Oa

PRECISION : constant integer := 5;
-- This is the standard precision of AFITGKS.
-- Level ma

MAX GKSM STRING LENGTH : constant integer 72;
-- AFITGKS allows 72 characters per line.
-- Level mb

MAXINPUTSTRINGLENGTH : constant integer := 72;
-- AFIT GKS allows 72 characters per line.
-- Level mb

MAX PROMPT STRING LENGTH : constant integer := 72;
-- AFIT GKS allows 72 characters per line.

Level mb

MAXERRORFILESTRINGLENGTH : constant integer := 72;
-- AFITGKS allows 72 characters per line.
-- Level mb

MAX DEVICE PRECISION : constant integer := 5;
-- This is the standard precision of AFIT GKS.
-- Level ma

type DEFAULTWCTYPE is digits 5;
-- This is the standard precision of AFITGKS.
. Level ma

B.6



MAX GDP ID : constant integer 0;
-- No GDP's implemented yet.
-- Level Oa

MAX PATTERN INDEX : constant integer 119;
-- Tektronix 4027 supports 120 patterns from pattern 0 .. 119.
-- Level Oa

MAX POLYLINE INDEX : constant integer := 20;
-- It is an arbitrary maximum number of entries in the bundle table.
-- Level Oa

MAX POLYMARKER INDEX : constant integer := 20;
-- It is an arbitrary maximum number of entries in the bundle table.
-- Level Oa

MAX TEXT INDEX : constant integer := 20;
-- It is an arbitrary maximum number of entries in the bundle table.
-- Level Oa

MAX FILL AREA INDEX : constant integer := 20;
-- It is-an arbitrary maximum number of entries in the bundle table.
-- Level Oa

MAX TRANSFORMATION NUMBER : constant integer := 20;
-- It is an arbitrary maximum number of transformations allowed from

World Coordinates to Normalized Device Coordinates.
-- Level ma

MAX DEVICE NUMBER : constant integer := 1;
-- At this-time, AFITGKS allows only 1 input device per device type.

-- Level mb

MAX LOCATOR PROMPT ECHO TYPE : constant integer := 1;
-- At this time, AFITGKS allows only 1 input device per device type.
-- Level mb

MAX STROKE PROMPT ECHO TYPE : constant integer := 1;
At this-time, AFIT GKS allows only 1 input device per device type.

-- Level mb

MAX VALUATOR PROMPT ECHO TYPE : constant integer := 1;
-- At this time, AFYTGKS allows only 1 input device per device type.
-- Level mb

MAX CHOICE PROMPT ECHO TYPE : constant integer := 1;
-- At this-time, AFIT GKS al.oows only 1 input device per device type.
-- Level mb

MAX PICK PROMPT ECHO TYPE : constant integer := 1;
-- At thi-s time-, AFIT GKS allows only 1 input device per device type.
-- Level mb

B.5

I- o. = • - ...



function IS IN (ITEM : ITEM TYPE; THE LIST • LISTOF)
return BOOLEAN;
-- This function returns the value TRUE if the ITEM is found in THE
-- LIST

procedure ADDITEM (ITEM : ITEMTYPE;
TOLIST : in out LISTOF);

-- This procedure adds the ITEM to the specified list

procedure DELETEITEM (ITEM : ITEMTYPE;
FROM LIST : in out LIST OF);

-- This procedure deletes the specified item from the list

type MATRIX OF is array (INDEX range <>, INDEX range >) of
ITEMTYPE;
-- Defines a two-dimensional array of the item.

type VARIABLE MATRIX OF (DX : INDEX := 1, DY : INDEX := 1) is
record
MATRIX : MATRIXOF (1 .. DX, I .. DY);

end tecord;
-- Defines a matrix whose dimensions may vary dynamically as both an
-- input and output parameter. Warning : when declaring objects of
-- this type, be sure to let the discriminant components default (to
-- 1), or else the size of the matrix will always be constrained.

end GKSLISTUTILITIES;

GKS Configuration (6:356-358)

Package GKS CONFIGURATION is a package of AFITGKS which contains
implementation-defined constants.

package GKS CONFIGURATION is

MAX RASTER UNITS : constant integer 1023;
I It is the largest raster units on any possible workstation. In AFIT

-- GKS that is the Tektronix 4014 with a maximum x raster unit size of
-- 1023.
-- Level ma

MAX MEMORY UNITS : constant integer := 2;
-- It is not used at all to determine size of gks.
-- Level ma

MAXCOLOURINDEX constant integer := 7;
-- Tektronix 4027 allows for 8 colours ranging from colour 0 to 7.

*- -- Level ma

B.4

. . .



MIN : COORDINATE;
MAX : COORDINATE;
end record;
-- Defines a range of values along an axis in the coordinate system.
-- MIN should always be less than MAX.

type RECTANGLE is
record
X : LIMITS;
Y : LIMITS;

end record;
Defines the extent of a rectangle in the coordinate system parallel

-- to the X and Y axes.

end GKSCOORDINATESYSTEM;

GKS List Utility (6:354-355)

This section contains the specification of the generic package GKS
LISTUTILITIES, instantiated by the AFIT GKS binding for the declaration
of arrays, lists (variable-sized arrays), matrices, and variable-sized
matrices of many of the AFIT GKS data types. This package also contains
a few examples of optional utilities for manipulating some of the data

0@ types. This generic package is required at level ma.

generic

type ITEM TYPE is private;

package GKSLISTUTILITIES is

MAX INDEX : constant := 50;
-- This value defines the maximum dimensions of any of the following
-- data types.

type INDEX is range 0 .. MAXINDEX;
-- Defines the valid range of indices of the following data types.

type ARRAYOF is array (INDEX range >) of ITEMTYPE;
-- Defines an unconstrained array of the item.

type LIST OF (LENGTH : INDEX := 0) is
record
LIST : ARRAY OF (1 .. LENGTH);

end record;
-- Defines a list whose length may vary dynamically. Warning : when
-- declaring objects of this type, be sure to let the discriminant
-- component (LENGTH) default (to 0) to initialize a null list, or
-- else the length of the object will be constrained always.

B.3
0



GKS Coordinate System (6:352-353)

This section contains the specification for the coordinate systems
template, and Ada generic package defining a Cartesian coordinate system
for use by AFITGKS.

generic
type COORDINATE is digits <>;

-- Coordinates in the system are floating point values. Valr'es on
-- both axes are of the same type.

package GKSCOORDINATESYSTEM is

-- Due to compiler problems on the ROLM Data General the type MAGNI-
-- TUDE could not be implemented as:

-- MAGNITUDE PRECISION : CONSTANT := 6;

-- type MAGNITUDEBASETYPE is digits MAGNITUDEPRECISION;

-- subtype MAGNITUDE is MAGNITUDE PRECISION range
-- MAGNITUDE BASE TYPE (COORDINATE'safe small)..
-- MAGNITUDEBASETYPE (ABS (COORDINATE'last - COORDINATE'first));

-- Instead it was implemented as:

subtype MAGNITUDE is COORDINATE range
COORDINATE'small .. abs (COORDINATE'last - COORDINATE'first);
-- Defines the length of an object in the coordinate system. In GKS,
-- all such values must be greater than zero.

type POINT is
record
X : COORDINATE;
Y : COORDINATE;

end record;
Defines a point in the coordinate system.

type VECTOR is new POINT;
-- Defines a vector in the coordinate system.

function VECTOR LENGTH (V : VECTOR) return MAGNITUDE;
-- This is an optional function which returns the length of the speci-
-- fied vector.

type SIZE is
record
X : MAGNITUDE;
Y : MAGNITUDE;
end record;
-- Defines the size of an object in the coordinate system as length
-- along the X and Y axes.

type LIMITS is
record

B.2



-V ,- - r' .Jo -, . r wrr r- rw rr- w r r- p7 -'- --. '* -. ' . -- . .- - -" - -' . '- - - "

Appendix B

GKS Coordinate System,

GKS List Utilities, and GKS Configuration

This appendix contains the specifications of the three packages,

GKSCoordinateSystem, GKSList Utilities, and GKSConfiguration, used

in the Harris draft binding of ANS GKS to Ada.

Table of Contents

Page

GKSCoordinateSystem ........ ..................... ... B.2

GKS5ListUtilities ......... ....................... B.3

GKSConfiguration ......... ......................... B.4

0

0

B.].

6



[s[ P Third, the Error file of AFITGKS is "ErrorGKS", this is the

name of the error file no matter what input is given (if any) for the

opengks parameter "errorfile".

Fourth, the type-of ws of AFITGKS are defined as follows:

The Tektronix 4014 is type of ws equal to 1.
The Tektronix 4027 is type of ws equal to 2.
WISS is type of ws equal to 3.

Overall, these are the only system dependent features of AFITGKS

that should concern the user. If any other problems are found in run-

ning AFITGKS, they should be reported to

Professor Charles Richard
Math Department
Air Force Institute of Technology
School of Engineering
Wright-Patterson AFB
Dayton, Ohio

A

A.72

. ." . . •...



VITA

Raymond Scott Ruegg was born on 4 February 1961 in Syracuse, New

York. He graduated fourth from Holliston High School in Holliston,

Massachusetts in 1979, and attended the University of Massachusetts

5 (Amherst campus), from which he graduated cum laude, receiving two

Bachelor of Science degrees, one in Mathematics, the other in Computer

Science. Upon graduation, he received a commission in the United States

Air Force through the ROTC program, and immedi~ately entered into the

School of Engineering, Air Force Institute of Technology in June 1983.

He is a member of Phi Beta Kappa.

Permanent address: 19 High Rock Road

Holliston, Massachusetts 01746

VIT.1



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

S RUREPORT DOCUMENTATION PAGE
L S REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS| UNCLASSIFIED

2e. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILiTY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRAOING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT!/G CS/MATH/84D-5

60. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
I f applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Bo. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

System Avionics Division AFWAL/AAAF

8c. ADDRESS City. Stlate and ZIP Code) 10. SOURCE OF FUNDING NOS.

Avionics Laboratory PROGRAM PROJECT TASK WORK UNIT

Wright-Patterson AFB, Ohio 45433 ELEMENTNO. NO. NO. NO.

11. TITLE lInciude Security Claaaification,

See Box 19
12. PERSONAL AUTHOR(S)

Raymond Scott Ruegg, B.S., 2d Lt, USAF
131. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

MS Thesis FROM TO 1984 December 180
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS Continue on reverse Lf necessary and identify by block number)

FIELD GROUP SUB.GR. Computer Graphics, Graphics, GKS,

09 1 02I Programming Languages, High Level Languages, Ada
19. ABSTRACT (Continue on reverse itf necessary and identify by block number)

Title: AFITGKS -- A GKS IMPLEMENTATION IN THE ADA PROGRAMMING LANGUAGE

Thesis Advisor: Charles W. Richard Jr.
Associate Professor of Mathematics

* ot , e~ lea=''.W IUo . , 0-17.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

,JNCLASSIFIED/UNLIMITEO M SAME AS RPT -- OTIC USERS UNCLASSIFIED
22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Include Arera Code,
Charles W. Richard ,Jr. 53253q FT",513-255-309S A AF IT/ENC.....

DO FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASS FIED
6 •SECURITY CLASSIFICATION OF THIS PAGE



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

This, project., written in Ada, involved designing and
implementing AFIT' GKS which is a subset of the Graphical Kernel
System (GKS). This project implemented AFITGKS on a ROLM Data
General MV/8000-II validated Ada compiler, using a proposed
Binding of GKS to Ada developed by the Harris Corporation. After
introducing Ada and GKS to the reader, this project considers
several alternative ways of designing AFITGKS. Selecting what
was considered the best design alternative, this project imple-
ments AFIT GKS. It concludes with a discussion of how weLl Ada,
the proposed GKS binding to Ada, and GKS, worked in AFITGKS.
This thesis found minor problems with the validated ROLM Ada
Compiler, the proposed GKS binding to Ada, the GKS, but overall
they were each excellent products. Bv using AFITGKS as proof,

this project concludes that Ada can support large programs, and
Ada can support computer graphics.

0 I(CLASS I FIED

SECURITV CLASSIFIC NTION OF THIS PAGE



FILMED

5-85

• DTIC


