AFIT GKS--A GKS IMPLEMENTATION IN THE ADA PROGRAMMING
LANGUARGE(U) AIR FDRCE INST OF TECH WRIGHT-PATTERSON AFB
OH SCHOOL OF ENGINEERING R S RUEGG DEC 84
AFIT/GCS/MATH/84D-5 F/G 9/2

ot
o

HEEE

O Of of ~ a1
E EEFEFEETRY

2l =l

18
L6

lm) 2.2
I
l

14

125

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

S ey, W E T T

oo
. R R ST S AT
et ke a el e itk antandie o

’-
7-‘ o
DS
« .=

AD-A152 954

F - AFIT GKS —- A GKS IMPLEMENTATION IN
o THE ADA PROGRAMMING LANGUAGE
o

- THESIS

Raymond Scott Ruegg, B.S.
Second Lieutenant, USAF

'-'“-'“‘l OEcass Aa aac i aeu o Me i ans el am e - 40 -2a A e Bie il ik S e i R T e Y LA bR o s o & Bl e AU A SAr i St -’
Sk ., [
"

REPRODUCED AT GOVERNMENTPE XPEISE

AFIT/GCS/MATH/84D-5
{'a e e e e e e e —
Q.
S
;This document has been aprroved
Ll =1 public releqa-e and scle; it
:_.J abribhoetion 1s ualtinit.d s
[T
DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

UTe

Wright-Patterson Air Force Base, Ohio

AIR FORCE INSTITUTE OF TECHNOLOGY

e — —_—————————————]

. oy AN
~ ")
89 4 Lo v
R AR S AR RS ST IS T
o ot Y, ‘-’. P et et ' _A'I‘.'-i.“'.: A £t j; *

a7,
Ll 4

il o an x 2t e g
. - AN
,

‘b ’
s

P .
e n 'y P

KN
T

SRt ot
¢ 7

e
[

)

8
I'.l‘l‘ ”

ol

-

AFIT/GCS/MATH/84D-5

AFIT GKS -- A GKS IMPLEMENTATION IN
THE ADA PROGRAMMING LANGUAGE

THESIS

Raymond Scott Ruegg, B.S.
Second Lieutenant, USAF

AFIT/GCS/MATH/84D~5

Approved for public release; distribution unlimited

......

AFIT/GCS/MA/84D-5

AFIT GKS -- A GKS IMPLEMENTATION IN

THE ADA PROGRAMMING LANGUAGE

T ——

THESIS

6; , Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Systems

- Raymond Scott Ruegg, B.S.

Second Lieutenant, USAF

December 1984

- Approved for public release; distribution unlimited

Acknowledgments

I would like to thank all the people that helped make this thesis
a success. First, I would like to thank my thesis advisor Professor
Charles Richard for all his helpful suggestions that kept this thesis
on track. Second, I would like to thank my reader Captain Patricia
Lawlis for giving me fresh prospectives on this project. Third, my
thanks go out to the Support Systems Branch of the Wright Aeronautical
Laboratory, for sponsoring this project. Fourth, I must thank the
Harris Corporation who sent me their draft binding of GKS to the Ada
programming language. This project would have been extremely difficult

if not impossible without this document.

Thanks also goes to lLaura and Yoshi Suzuki. I thank Laura for
listening'to all the problems I had, and offering solutions. While I
thank Yoshi for editing and correcting the comment headers which went
into the code.

My deepest gratitude goes to Captain Al Deese and the rest of the
workers at the Aeronautical Systems Division (ASD) Computer Center.
Captain Deese gave many hours throughout this thesis making sure that I
had everything I needed to complete my work. To the entire staff of the

ASD Computer Center, thanks, I will always remember you.

Raymond Scott Ruegg

it

Ll o AN gk - Al e~ W e ey

b

.

Y LA NSRRI R et

Table

.....

of Contents

Acknowledgments « « « + « « 4 & . .

List of Figures « ¢« « + . .

Abstract

s ¢ e & 2 & e 6 e 2 ¢ v

I. Introduction

Background . . ¢ o e s s
History of ANS GKS . . .
History of Ada

What is ANS GKS?
Functional Categories of
Levels of ANS GKS . . .

Problem Definition

Scope of Thesis

Overview of the Project .

Literature Review of ANS GKS « v ¢ ¢ « « &
What Makes a Good Graphics Package . + « « « ¢ « « &

Device Independence .
Compactness
Device Richness . . .
Portability
Conclusion ,

II. Requirements

III. Global Design and Implementation « ¢ ¢« ¢ « ¢ « « &

Functional Categories . .
Design Considerations . .
Documentation
Life Cycle
User's Guide

Software Engineering Tools
Information Hiding
Virtual Device Interface .
Harris Binding
Conclusions

User Functions
Packaging
Internal Control
Control ,
Primitives

e e e . e e e e T
P DL G L LS P S W SL IR, WO WAL WS WAL S AP

® & o s s e e e+ e e e e 6 & o viii

.
.
.
.
-
.
=

HOOWWWWNNOWULE WK

ANS GKS . v v v v v v o v+ « 1.

RPHRBERBER R

e o & o s e s e & o e o o 1.1
e« e o ® o s e e e o e 1.1
.. C e e e s o« oo 1.1

.
.

.

.

.

.
N

.

[aad

. e o o
FELWWLONNN -

.

.

.

.

.

.

.

.

-

.
RO NDN

w
[

. e e e 3.3

e e e e e e . e e+ 3.5
e e e e e e e e e e . 3.7
. e . . o e e e 3.7
. e e e e e e e e . . 3.7

iii

R W T O TR T N N B T T N N T T P VTV I Wy T TwW Iy v r-ﬁ

o
k
o

S Set Primitives « v v v v v v v o o o v e e e e e e

3.

Represent + + « . & o« o e e s v e e e e s 3.
Transform . . ¢ v ¢ ¢ ¢ ¢ 4 ¢ 0 s e e e e 4 e e e e 3.
Segments . . . ¢ 4 s 4 o . . @ . . e e s e e e 3.
Set_ Input . . & ¢ v v v s st e e s e e e e e e e .. 3
INPUL . & & 4 ¢ 4 ¢ o o o o o o s o s s s s 8 o o o 3.
InqUIEY & 4o & ¢« v ¢ o o o e 4 6 o s e s e e e e e 3.

i Set Transform S
Emergency « « . . e e e e e s s s e e s e 3.
Error_Handling . e e e s o s e o s 6 s s s . 3.

Data Structures and Types e e s e e e e e .

Internal Vars . . . « ¢« & ¢ ¢« . .

Operating State . . . « ¢ ¢ ¢ ¢ o ¢ o o ¢« o ¢ o 0 o .
I GKS_Description Table ¢« . ¢« ¢ ¢ ¢ o o ¢ &
' GKS State List . . « ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ o o o o o
wOrkstation State Lists . . . « ¢« v ¢« v o 0 0 e .. .
Workstation | Description Tables + ¢« ¢« o ¢ « 4 o o o o =« .

Error_State List
nxternaL;Types T

i Internal Types
GKS_¢ Coordinate _System .

. o

GKS_] List Utilities . . ¢ ¢« ¢ ¢ o 4 ¢ v ¢ o o o o & . .

GKS Configuration e e e e e e e s e e e e e e e e s .

Error Routines v & 4 ¢« ¢ o o ¢ ¢ o o o o o o o o » .

S Order of Checking Error Numbers« . . e .
'W Design Alternatives ¢ ¢ ¢ o o ¢ ¢ « o« « o « « « 3.

Implementation of Error Functions . .

Reporting an EXror . . ¢« « « o ¢ o o o o o o o o o »

Workstations + . « . 4. 4 . & . . .

The Original Design + + v ¢ ¢ o ¢ ¢ o o o o o &

. Implemented Design
ﬂ OUTIN Workstations . . .

Ws x . .. ¢ ¢ ..)

¢« . . o « & s o e+ e ¢ . .

Workstation Primitlve Functions
The Segment Routines and Others
Input Routines . . . +. « ¢ ¢« v ¢ ¢ o« o o o« & . o .
Int We_X . ¢ & v v ¢« v 0 0 b vt s e e e e e e e .

% Drive x . & ¢ o ¢ o v i e e e e e e e e e e e e
WISS & v v v v e 4 e s v e e e e e e e e e e e
Global Considerations . . . ¢ ¢ ¢ ¢« v ¢ & o ¢ o o o o
Device Independent / Dependent Code . . & ¢ « « & & « &
Transformations . . . ¢« &« ¢ ¢« ¢ ¢ o o o o o & o o o o «
) Deferral Modes . « + o « ¢ « o &+ o o o o o o o s 8 o »
: Testing . ¢ o & ¢ ¢ ¢ v o s o ¢ 0 0 s e s e 46 6 e s s

Conclusions . . ¢« ¢ ¢ ¢ ¢ 4 ¢ ¢ o o o o o e 0 o 0 s o o s

NNOUMPROLOOVOVODUVUUVEWVWOOOFNNFEMFEEFOWOUNNARSENOOOWWW WO 'WOOOOOO

LWWLWWLWWLWWWLWLWWWLWWLWWWLWWLWWLWLWWLWLLLLWWLWWLWLLWWLWWLWWLWWLWWWLWWWLL
o o « o o . « .
S PLPDPFELPWLLWWLWWWRNRNNNODNNODNODNDDN PP S s e

&
[

IV, Analysis . & & & v ¢ o v o e 4 s e e e e e s e e e e

' Ad a L] L] L] . L Ll L) . . L] L] L] » L] L] L] . . L] . . *
Positive Comments . . ¢ ¢ ¢ v ¢ o o o o o o o o o s o o
e Ada & Graphics . . & + v v 4 v 4 4 b s s e e e e e e e

)
L] . .
N

..........................
..

o Trouble with Running Ada with the ROLM Compiler
Ve Specific ErTors . « ¢ « v o o o o o o o o o .
Undesirable Features of Ada on the ROLM Data
General . . . v v ¢ 4 ¢ 4 e s e e s e e
Conclusion . v + & ¢« o ¢« o o o o ¢ o o o o o o
Harris Binding e o s s e s s s e
Harris Binding Not Accepted by the ROLM Data
General . . + . + & & « & e o e 0 e s e v e
Style Changes to the Harris Binding e e e e e e
Conclusions . . . & ¢« ¢ ¢« & 4 o ¢ o o o o o &
ANS GKS & & & 4 4 4 o o o o o o o s o s o o o s
ANS GKS Proposal . . ¢ ¢« ¢ ¢« & ¢ o o o o o &
Conclusion . 4+ ¢ ¢ ¢« ¢ ¢ ¢ o o o o o o 0 a4 4 o

V. Conclusions and Recommendations « « & .+ .

Conclusions . . v ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o ¢« s o o o o
RESULLS . & & ¢ 4 4 ¢ o o o o o s o o o o o o o o
Recommendations . . « o « o« « o o o ¢ o o o o o &
Known Bugs in the Program + ¢« « « « + &
Conclusions . « ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o o ¢ o o o o o«

Appendix A: User Guide to AFIT GKS « « « . .

) Table of Contents . « . + « & ¢ v o« ¢ o o o & o« &«
Q’ ® Introduction . . ¢ ¢ & ¢ 4 ¢ 4 4 0 s e e e e .
- Cross IndeX ¢« v ¢ o v ¢ o ¢ o o o o o o s o o o
External Types . . ¢« + ¢« ¢ ¢« ¢ ¢« ¢ v ¢ o o ¢ o &
AFIT GKS Functions . . ¢« . ¢ &« ¢ ¢ ¢« o o ¢ o o &
AFIT GKS EXrors « o« v o o o ¢ o o o o o o o o o

Sample Program . . « « o o o o « o o o o o

System Dependent Features of AFIT GKS

Appendix B: GKS_COORDINATES, GKS_LIST UTILITIES, and GKS_

CONFIGURATION . & & v « o o o o o o o o o =
GKS_Coordinate System . « « « « & o o « & o o « o
GKS_] - List Utilities . . ¢ v ¢ o ¢ o 0o o s 00 0
GKS_Qonfiguration e e e e e v e e e e e e s
Appendix C: Harris Functions Not Implemented

Bibliography . . « « & ¢ ¢ o o ¢ o o o o o ¢ ¢ o s s o o

VITA . . .« e o *® ® & e o o s o » e e o * s o e o s e .

N A

AR e P e - R L P soe
EAP AT PRI PR REPLIIPS QPP S ol R Tk S St L S AR O VA W S PP PR P

.
VLU L
L]] -

SN

.
[ol

[
o NN

AR
NORWEe

. . B.Z
. B.3
- - B‘Q

. « VIT.1

natadiog St dd St

AR

Aiade b

R List of Figures

Figure Page
1.1 Layer Model of GKS + v ¢ v ¢ v ¢ 4 v o« ¢ o o « o o« = 1.4
3.1 Overall Structure . . o . + & o « « « o o o o o o o 3.2
3.2 User Functions . « ¢ ¢ ¢« o v ¢ ¢ o o o o o o o o+ « 3.4
3.3 Data Structures and TYPES . « « o « & & « » « « « o 3.11
3.4 Possible Values of Operating State 3.13
3.5 GKS_Description Table 3.12
3.6 The Workstation State Lists 3.15
3.7 Original Design of Workstations 3.30
3.8 Modified Data Flow Chart of ANS GKS 3.32
3.9 Workstations . « « ¢ ¢ ¢« 4 v o ¢ o o o o o o o . . . 3.3
. 3.10 Polyline Pipeline 3.36
q’ 3.11 Polyline Pipeline Superimposed on the OUTIN Side
of the Modified Data Flow Chart of ANS GKS 3.37
3.12 Polyline Attributes Being Bound to Workstation x . . 3.41
3.13 WISS Interfacing with the Polyline Pipeline 3.42
4.1 Procedure DO SOMETHING ., . . . + & « &« « o & o + o« » 4.4
4,2 DO _SOMETHING Being Debugged . . . « « « « . « « « . 4.4
4.3 Normalization Transformation, and Segment Types . . 4.7
A Illegal Type "X" & & ¢ ¢ v ¢« v e o 4 o o o o o 0 o o 4.9
4,5 Variable Strings v v ¢ ¢ ¢ ¢« o o o s o+ o 4.1l
4.6 Input Class and Choice Imput « « . + . . . 4,12
4.7 Present Evaluate Transformation Matrix 4.13
4.8 Proposed Evaluate Transformation Matrix 4.13
5.1 Inq_Polyline Representation 3.3
vi

R - »‘.“i\. . S e . . LT e S . St e e - Lo T . PN .j
STl T PUER e e LW e R T . s et e A T e Co . S
PR WL WA VTR TN, 4 ok & P P P WIS AL AP VUL W . I S A S W . S0 e W, G G W0 TP P

Figure

A.l

A.2

Demo Program « . . « « ¢ o o ¢ o o & @

Output of Demo Program R

.
R
vii
. - . e e e e e e e e e e e e e e .. s e e e - 4
<« Fial . DA B e o N T U A A RS e et TN . e N ey J
- - hd - - i PRI - * et A, . L e L T » "t e " a . - . . - 3 - . R . e - -
S APELPE AP POPE AL I e a_.:‘Lh-..-_L\l-'--.-*--~ PSP L P AP WAL S T P O R 0 U Tl Gl SO |

e T W T W W T N L T . 4,‘w:1

T Abstract

This project, written in Ada, involved designing and implementing
AFIT_GKS which is a subset of the Graphical Kernel System (GKS). This
project implemented AFIT GKS on a ROLM Data General MV/8000-II validated
Ada compiler, using a proposed Binding of GKS to Ada developed by the
Harris Corporation. After introducing Ada and GKS to the reader, this
project considers several alternative ways of designing AFIT GKS,
Selecting what was considered the best design alternative, this project
implements AFIT GKS. It concludes with a discussion of how well Ada,
the proposed GKS binding to Ada, and GKS, worked in AFIT GKS. This
thesis found minor problems with the validated ROLM Ada compiler, the
proposed GKS binding to Ada, and GKS, but overall they were each excel-

L’u lent products. By using AFIT GKS as proof, this project concludes that

Ada can support large programs, and Ada can support computer graphics.

viii

et - . . . - - T et LT T
S S St A T IR . e LN L

. - - - . .
- . - Te e S
AR) ST - Pl . .t L A S . S e e e, . '-X.\N'-'-' L
e . - h - VTR, L) = W . - o e - * S ol T N, TNV T T N DR TR WS DU P I DO W W e & o~ Ly

AFIT GKS -- A GKS IMPLEMENTATION IN

THE ADA PROGRAMMING LANGUAGE

I. Introduction

This thesis involves the design and implementation of a subset of
the American National Standard Graphical Kernel System (ANS GKS) graphics
package in the Ada programming language. This project initiates a first
step at the Air Force Institute of Technology (AFIT) to provide a
graphics package for the Department of Defense (DoD) standard language
Ada. Improving portability of software, this subset of the ANS GKS
graphics package developed at AFIT (AFIT_GKS) will provide a group of
functions in which all future graphics applications can be based. This
project's major thrust involves the design and implementation of AFIT GKS
so as to take full advantage of the power of the Ada programming
language. The requirements of an ANS GKS graphics package are presently
undergoing final approval, therefore AFIT GKS will use the Technical
Committee X3H3/83=25r3 report as its definition of the ANS GKS graphics

package(1:1i),

Background

This section gives a brief historical accounting of the development
of the ANS GKS graphics package and the Ada programming language.

History of ANS GKS. The design of ANS GKS was based on work done by

many groups., The early design of GKS and performed by the International

Organization for Standardization (ISO) in the Workshop on Graphics

Standards Methodology held in May 1976 in Seillac, France(1:1i). The ISO

sl i

e

R LSS ST, |

version of GKS (ISO GKS) was first developed by the West German
Standardization Institute, DIN, in 1978, and then refined during the
period 1980-1982 by Working Group 2 of the Subcommittee on Programming
Languages of the Technical Committee on Information Processing of the ISO
(ISO TC97/SC5/WG2)(1:i;5:vii),

In parallel with the development of ISO GKS was the work of the
Graphic Standards Planning Committee of the Special Interest Group on
Computer Graphics of the Association for Computing Machinery (ACM
SIGGRAPH GSPC)(1:i). This work, known as the Core System Proposal, was
published and widely distributed in 1977 and again (in a revised version)
in 1979,

Pooling the ideas of ISO GKS and the Core System Proposal, ANSI
developed ANS GKS(1:ii). 1In February 1984, ANS GKS was published for a
four-month period of public review and comment(1). After the initial
public review the ANSI Committee voted to accept ANS GKS as a standard.

.

History of Ada. The other aspect of this project is to explore the

Ada programming language. Ada came out of a 1970 DoD study into the
software problems facing the DoD. These problems included a diversity of
programming languages, many programs using ill suited languages, modern
programming practices being ignored, and lack of software support
environments(2:12). After developing the requirements for a new language
which would support parallel processing, real-time control, exception
handling, and unique 1/0 features, in August 1977 the DoD accepted the
design of 4 contractors which were each tasked with coming up with this
new language(2:17). In February 1978, the developers came back with U
different designs two of which were accepted for further development

(2:18). After this a final decision was made on the language and in May

1.2

L e e d vt wng oah GnS SR L S i Bl At At A B G - S0 20 e on b -ua B b Aok -2 K 20 Sad g b ivedh il Sl Al ABRR iR etk et el i astE Rl N A A 2

III. Design and Implementation

This chapter explores the design and implementation details of AFIT _

GKS. The overall design of AFIT_GKS shown in Figure 3.1 consists of four

.
s

major parts -- the User Functions, the Data Structures and Types, the

Error Functions, and the Workstations. As shown in Figure 3.1, the
'Application' program accesses AFIT GKS by calling the User Functions
(See Appendix A). It also uses the package External Types (See Appendix

A) which contains those types found in the parameters of the User Func-

TR, 1

tions. 1In turn, the User Functions of AFIT GKS call upon the Error
Functions to test any errors in the calling of AFIT _GKS. As shown in

Figure 3.1, after testing for errors, the User Functions either call upon

SURBT. THUINN

the Workstations to output some graphical information, or they access the
Data Structures and Types. The Data Structures and Types shown in Figure
3.1 are a collection of types and variables which User Functions, Error
Functions and Workstations can use and modify. Although it is not shown
in Figure 3.1, the package External Types is a part of the Data
Structures and Types.

This chapter explains how each part of this overall structure was
developed and implemented. First, it starts by explaining how the User
Functions are separated into different categories (Sectioning the User
Functions). Second, the chapter explains the design and implementation
considerations that went into the Data Structures and Types. Third, the

chapter considers various possible designs of the Error Functions. Then

BN DD, JRPILRIGE . | RAASIIURY T

it shows how the accepted design was implemented. Fourth, this chapter
covers the design and implementation details of the Workstations,

Finally, the chapter concludes with some topics which are involved in the

-

3.1

device functions, but still not overload the devices with too much de-

vice dependent code. The workstations in AFIT GKS are designed in a way
that provides a "template" or standard way to handle various device

features so that it is easy to add new workstations to AFIT_GKS.

Harris Binding

As specified in the ANS GKS requirements, if a binding of ANS GKS to
a particular language has been aeveloped, then any implementation of ANS
GKS must use that binding(1:3). The Harris Corporation has developed a
proposed binding of ANS GKS to the Ada programming language(10). There-

fore, AFIT GKS will use this binding.

Conclusions

In this section we covered the various requirements of this project,
and the reasons for these requirements. In the next chapter, some of the
design decisions are given, and the rationale of why they were chosen

over other possible decisions.

2.4

of what errors may occur when the user calls a function of AFIT_GKS.

Also included in this user's guide is a small example program which uses

AFIT_GKS.

Software Engineering Tools

Software engineering tools are developed so as to improve the
quality of software. There are many software tools designed so as to be
effective under different and varying problem environments. AFIT GKS is
a diverse set of functions with different requirements. Therefore, dif-
ferent procedures will best be suited to different software engineering
tools. Some techniques, like SADT's, suit those functions that have a
flow of control(10:63). Other methods like Jackson's method is better
suited to functions which modify data structures like the Set Attribute
functions(10:153). Therefore, in this project the software engineering

tools will be modeled towards the function of AFIT_GKS being designed.

Information Hiding

Information hiding enables a program to hide its data structures
from any outside modifications. Be defining data structures inside of
procedures and package bodies, the data structure becomes inaccessible to
the rest of the program. Therefore, a change to this data structure en-
tails changing only a small core of functions, not the entire program.

This concept must be included in the design of AFIT_GKS.

Virtual Device Interface

Another requirement that must be addressed is where to establish the
virtual device interface. This is where the device independent AFIT_GKS
functions must interact with the device dependent AFIT_GKS functions.

This decision should allow each graphical device to implement all its

2.3

2. How to group the functions.

3. How to break the functions down so as to maintain a high degree
of device independence.

4, How to break the functions down so as to allow advanced hardware
to use all its extra capabilities.

5. How to design the GKS package so as to make it expandable,

Documentation

In-line documentation of code enhances the readability, clarity, and
maintainability of software, and shall be included in AFIT_GKS. This
documentation enables the maintainer of the program to better comprehend
what the code is doing, and how it is doing it.

For AFIT_GKS this documentation must be a combination of commented
in-line code, and standard headers for the different functions
implemented. Since AFIT has a standard header for its software, this

header will be used in AFIT_GKS.

Life Cycle
AFIT_GKS attempts to minimize the overall life cycle cost, Clarity

and simplicity traditionally minimize the most costly part of the life
cycle, the maintenance phase, With this in mind, this implementation of
AFIT GKS shall strive for simple and clear constructs which will improve

the maintainability of this project.

User's Guide

Any large program requires a users guide in order to help the user
understand how to use the program effectively. The users guide for
AFIT GKS is Appendix A. It shows the user of AFIT GKS what functions are

available, the data types required by the functions, and a detailed list

2.2

P TY AR ELAA N At M) Aokt G bl i gl e B el et giedh au-i e = grealy Sy UL GEPEAPMEE. Sadl i T Ml Bnil Ml Sl S St

f e A e e

II. Requirements

This chapter explores the requirements of this project's effort to
write an ANS GKS graphical package. Next this chapter justifies the
requirements with reasons as to why the different requirements are
necessary for this project.

AFIT_GKS will incorporate the following guidelines:

Functional Categories

AFIT_GKS entails designing and implementing a graphical package
which is highly dependent on the functional categories specifiéd in ANS
GKS. Therefore, AFIT GKS shall separate the functions into their re-
spective functional categories. These functional categories are Control
functions, Output functions, Output Attributes, Transformation functions,
Segment functions, Inpi' functions, Metafile functions, Inquiry
functions, Set Transformation functions, and Error Handling functions.
Together, these categories allow the user of AFIT _GKS to use any set of

functional categories that an application program needs (See Appendix A).

Design Considerations

To insure easy expandability, the design of AFIT GKS will consist of
the entire ANS GKS package. This allows a partial implementation of ANS
GKS which, by design, can expand to a complete ANS GKS package.

Many ideas must go into a good design of AFIT _GKS. The steps con=-
sidered in this design are as follows:

1. How to implement the various functions which are defined in ANS

GKS‘

2.1

L s P

......
B . N L R A R . - o e - S ST e
PR WL PP IR ML PR VR POV PP TR AP Y. VI L PP . PR P LI, UV E. DU, HNLIPL P VUL VI N -V, DECIW 'l PR Te N e Ve vt

bundle table is a workstation dependent table associated with a par-

ticular output primitive(1:9). Entries in this table specify all the
workstation dependent aspects of a primitive(1:9). For example, an entry
in a polyline bundle table (a polyline function draws connected line seg-
ments) contains a list of possible values for the attributes of the poly-
line. The attributes of a polyline are line type (e.g. solid, dotted, or
dashed), line width, and line color. The polyline bundle table helps
portability because each display device has its own polyline table which
contains attribute values tailored to the particular device(15:73).

Using the polyline bundle tables a programmer can draw a fat red dotted
polyline on one display surface, and a thin blue solid polyline on
another display surface(14:14-15), This allows ANS GKS to interface con-
currently to several different display devices using the different capa-
bilities of the display devices(14:14=15).

Conclusion. Graphical Kernel System (ANS GKS) was accepted as a
standard graphical package. Previously adopted by the European graphical
community, ANS GKS has been accepted in the US because of its device in-
dependence, compactness, device richness, and portability. Having been
accepted as a standard, then all future graphics projects should use the
ANS GKS graphics system. Therefore, an ANS GKS package should be started

now in order to have a working ANS GKS package at AFIT,

1.11

...

e TR TATR TN TRTER LT S WS —,rT

Eis
v
full input (level ¢)(1:64), To give some idea of the range of these
levels, level m, minimal level, has 31 functions and 17 Inquiry func-
:ll) tions (like what line style is presently being used), where level 2-c
(the highest level) has 110 functions and 75 Inquiry functions(12:184).
This range of levels enables the implementor of ANS GKS to choose a con-
sistent subset of ANS GKS that will be standard across many different

implementations of ANS GKS(11:II-29,30).

Device Richness, ANS GKS's device richness allows the user to

take advantage of hardware graphics features of individual machines
(8:1). Two examples of this device richness are stroke precision text,
and the generalized drawing primitive(1:29;90-91)., The stroke precision
text asks the device to draw the text in the correct orientation (up,
down, or diagonally) but if the machine does not have this capability,
then ANS GKS prints the text in the best way possible(7:32-33). A draw-
back to this method is that sometimes stroke precision text should appear
on the viewscreen, but because the graphics device cannot orient the text
correctly, the incorrectly oriented text ends up out of the viewing area

(4:102)., The device richness of the generalized drawing primitive allows

the user to input a set of points and a function name which the hardware

interprets and executes(9:114), This allows the user to use any of the

e hardware dependent graphics procedures, such as a circle or arc(1:90-91;
| 9:114),

. Portability. Another ANS GKS goal was portability between

‘fﬁ different installations(8:1). This portability comes from being a

Eé; standard graphical package, and also from some of its portable features

;1- (14:11). Bundle tables improve the portability of ANS GKS(14:14). The

1.10

;z.

s el . . . RN . - .
RS ARSAS B . .o . : R Sl

- ..'A . ‘-"~7,.‘,"' - .. - v - o A .
PRSP i PRSP, PN SR LI, NI s W T O L L U W S W T ansheatemesaleaiaiit et

R M e e e A s st geh AR S-S UAE I Sat -al Ml S SRR CRAC S ANCA Ak A ML S A AT AE A A SO

facilities on a large spectrum of graphical devices(1:2;14:10), "Com-
‘;ff? pactness" insures that the graphics package contains only those functions

necessary for the application program(1:1;14:10). "Device Richness"

RO - TAAAAAAR IR

allows the physical graphical devices to implement any special hardware
;f capabilities like filling a polygon(1:1;14:10;12:184-185). "Portability"
- enables different applications to go from one machine to another(1:1;

. 11:24514:10312:187). These criteria will be applied to AFIT GKS.

Device Independence. One of ANS GKS's main objectives was to

. design ANS GKS uniformly for a whole range of graphic devices, including
. vector and raster devices, microfilm recorders, storage tube displays,
refresh displays and color displays(1:1). This device independence at
E? the workstation level allows the different machines to use their full
o capabilities(1:2;12:184=185). This device independence appears in the
:;n . input and output functions of the ANS GKS package. Here, both the input
:. G. and the output streams break up into a device {ndependent (not related to
Lu; a specific device) and a device dependent (related to the hardware capa-
Oy bilities of a specific device) set of code (1:2;14:11). This allows the

different devices to use the same device independent code in cooperation

with their own device dependent code.

X
1

Compactness. ANS GKS was designed with many input/output im-

{
’

:’ plementation levels, which define different subsets of the ANS GKS

;;Z package., This feature of allowing a wide range of subsets of ANS GKS is
F; commonly referred to as compactness(1:64)., The output levels (m,0,1,2)
:L range from minimal output (level m) to full workstation independent seg-
E; ment storage (several graphics devices, all using one common storage

:; area)(1:64), The input levels (a,b,c) go from no input (level a) up to

1.9

T rew
2 s

i

Lonm of
s

parameters of the different modules were specified so as to take advan-
tage of the encapsulating features of the Ada programming language.

The second step in this project was the detailed design phase,
Here, the design was broken down so as to allow the graphics package to
use the powerful constructs of the Ada programming language. Moreover,
the design allowed each of the different devices to use some of its own
machine dependent functions like the locators.

The third step in this project was the implementation of AFIT_GKS.
The focus of the implementation was of using those Ada structures which

implemented the design quickly, reliably, and clearly.

Literature Review of ANS GKS

In February 1984, the ANSI technical committee X3H3 computer
graphics submitted the final draft proposal of ANS GKS to the public for
review(1:1). The graphics community had until 1 July 1984 to write in
any objectives to the proposed standard(1:i). After final review the
proposed ANS GKS was adopted as a standard. This review covers the
emerging ANS GKS system in order to justify its implementation on the
ROLM computer at the Aeronautical Systems Division (ASD) Computer Center.

The review centers on the use of ANS GKS as a "good" standard gra-
phical package. Because of the enormous size of the ANS GKS package,
this literature review does not give the details of ANS GKS's overall
design and functions,

What Makes a Good Graphics Package? Over time, different criteria

evolved to establish what makes a "good" standard graphics package.
These criteria vary but some of the more common ones are as follows.

"Device independence" provides any application program with equivalent

1.8

The second problem involved the capabilities of Ada using a pre-

sently validated Ada compiler. These questions were as follows:

1. Can Ada support a large project?

2. How easy is Ada to use in a large project?

3. Can Ada support computer graphics?

The third problem was reviewing and commenting on the Draft GKS
Binding to ANSI Ada (Harris binding)(6). The Harris binding is a pro-
posed list of all the functions of ANS GKS and how they are accessed by

any application programmer who uses an Ada implementation of ANS GKS.

Scope of Thesis

In order to review and comment on ANS GKS, and to answer some of the
questions about the Ada programming language, this thesis designed, and
implemented AFIT GKS which is a subset of ANS GKS., AFIT GKS was imple-
mented in Ada using the ROLM Data General compiler at the ASD Computer
Center Wright-Patterson AFB, Dayton, Ohio. AFIT GKS defined its external
interface using the Harris binding(6).

AFIT_GKS contains three workstations —- the Tektronix 4014, the
Tektronix 4027, and Workstation Independent Segment Storage (WISS). The
design of AFIT_GKS includes segmentation control (output level 2), and
basic input functions (input level b)., The implementation will not cover
ANS GKS metafiles (output level 0), event queueing (input level c¢), and

high level input functions such as event sampling (input level c).

Overview of the Project

The first step in this project was the high level system design
phase., The different modules of the graphics package were sketched out

to get an overall system design. Here the data structures, records and

1.7

b Sl A S AL P e s
AL IR
. RN

" S
N

A e o AL e ot |
e

O: At this level of output, all primitives and attributes are
supported.

1: This level of output introduces segmentation.

2: This is the highest output level which does all kinds of output
including Workstation Independent Segment Storage (WISS).

On the other hand, the input levels divide the functions according
to how powerful the input devices are in the implementation. These
levels are as follows:

a: At this low level, no input functions are supported,

b: At this level, input is only accepted in response to a specific

REQUEST for input from the application program.

¢t This level allows full input including sampling input which will

poll an input device continuously.

Overall, ANS GKS is a diverse set of functicns which permit applica-

tion programs to interact with a variety of graphical devices. This
diversity allows the program to satisfy the many different needs of

various users of computer graphics,

Problem Definition

This thesis addresses three related problems. These problems in-
clude the need to review and explore ANS GKS, the Ada programming lan-
guage, and the Harris binding of Ada to ANS GKS,

The first problem involved a review of ANS GKS. In February 1984,
the Association for Computing Machinery (ACM) published a Special GKS
issue of Computer Graphics. This issue contained specifications for the
draft proposal of ANS GKS with a statement asking for public review and
comment(1). Since ANS GKS was proposed as a standard it needed a thor-

ough review,

L Sl el atat tl S Sl Sl MR e St S SAAF A 0 A

A

P

D e S o - o Aot Attt

4,

a v &
¢

Transformation functions: These functions allow the application
programmer to scale, rotate, and translate graphical output that is dis-
played on the screen.,

PE>

5. Segment functions: These functions allow the application

programmer to organize the graphical output into segments which can then

be saved, moved, or deleted,
6. Input functions: These functions allow the user of an applica-

tion program to give inputs to the program via various input devices

(i.e., a locator, the keyboard, or a light pen).
= 7. Metafile functions:

This allows the application program to save
graphical pictures.

8. Inquiry functions:

They allow the application program to learn

what the present attributes of the system are.

9. Utility functions: These functions allow the user to create
Qe

segment transformation matrices which have a given scale factor, rotation

angle, and translation factor relative to a given fixed point.

10. Error Handling:

These functions handle any error conditions
that may arise.

Levels of ANS GKS,

In addition to all these function categories,

ANS GKS is also sectioned by both input and output levels., These levels

determine how much of ANS GKS is supported by a particular implementation
of ANS GKS.

The output levels break the functions up according to how detailed

the ANS GKS implementation must display the graphical information. The
levels are as follows:

d m: The minimal output level which consists of a small set of

control and primitive output functions.

N 1.5
[

f.
5.

W W oy —w
P
S I
P e
R

o " A
‘ - . '.l‘, A

o

v
’

v

aoplication program

application oriented layer

language oriented layer

Graphical Kernel System

operating system

other resources graphical resources
workstations

Figure 1.1 Layer Model of GKS (7:7)

workstations layer corresponds to the physical graphical devices and
their graphical abilities, The three other layers, Graphical Kernel
System, operating system, and other resources are self explanatory.

Functional Categories of ANS GKS. The ANS GKS functions are broken

down into categories of related functions. These categories divide the
one hundred eighty five functions of ANS GKS into the following ten more
manageable functional groupings.

1. Control functions: These functions initialize the GKS system
and allow the user to control how and where output is generated onto the
graphical devices,

2. Output functions: These functions draw lines and the other

graphical outputs.

3. Output Attributes: These functions allow the output functions

to take on various characteristics like a thick line width or the color

green.,

1.4

P

" __.—_11-7:-_-_-.—_-1

~.- . - . »c - - L L . - - - _-- - . P L. PR L - et e
. . L I ARSI USRI TN GO TR TR

. " -7 a7 - . - . . - -
PR, POV SN U I SR WA Y YU 3 P W LAY B T TP YT W WO WO SR U0 TR SR WU S W LY

1979, with permission, the language was called Ada(2:18). During this
whole process the DoD was writing design and language requirements for
Ada so it could keep control of the language. These documents included:

Apr 75 - STRAWMAN - Initial requirements(2:14)

Aug 75 - WOODENMAN - Second draft of requirements based on STRAWMAN
(2:14)

Jan 76 = TINMAN - The complete set of requirements(2:14)

Jan 77 - IRONMAN - A slight revision of TINMAN(2:16)

Jun 78 - STEELMAN - Final language réquirements(2:18)

From May 79 through Nov 79, Ada went through a public testing and
review process(2:19). At the same time the DoD began work on a computer
validation facility which would ensure that the Ada compilers conformed
to the specification of the language(2:19). In Aug 80, the Ada Joint
Programming Office (AJPO) was created to manage all Ada related
activities(Z:ZO). In Jan 81, AJPO applied for, and received, Ada as a
trademark of the DoD(2:20), Additionally, the AJPO asked for Ada

standardization by ANSI, which was granted in February 1983(2:21).

What is ANS GKS?

ANS GKS is a set of basic functions for computer graphics
programmers usable by many graphics producing applications(1:i). The
layer model depicted in Figure 1.1 shows the role of ANS GKS as a
graphical system(5:7). The application program and the application
oriented layer correspond to any program that calls ANS GKS. The
language oriented layer is the binding of GKS to the programming
language. For AFIT GKS this is the Draft GKS binding to ANS Ada supplied

by the Harris Corporation (Harris Binding)(2). The graphical resources

1.3

= LT . - . ‘_._ _._._.. ...,_..-.-'.. .

- - o - u TS, e . e
. . . .- . e -
VR AT AL SR N T [N RPN, W I Y T e Sy ‘..__:_ Sl g ‘;.')-LS-L\... ULV SNV

IV TW I I oMY e T - e &

< AFIT_GKS

User Functions External_Types

- = e e]

Data Structures
v and Types

Error Functiond

Device Independent Code

Device Dependent Code

Workstations

(Devices‘i>
-~ calls procedures in

- — —~ -+ uses the data and types in

Figure 3.1, Overall Structure

3.2

Qj design of AFIT _GKS but do not fall into any one of the different parts of

Q:-;- the overall structure depicted in Figure 3.1.

User Functions

How should the AFIT GKS User Functions (see Figure 3.1) be sectioned

'so that the entire AFIT GKS project is readable, clear, and easily main-
- tained? AFIT GKS User Functions might be partitioned in several ways.
» The first way is by implementation levels(1:64). This means that
ﬁl certain functions go together because they are related by how powerful
: they are. For example, level ma consists of the minimal related func-

tions that can support GKS where as level mc supports the minimal output

but allows for a wide variety of input devices., If the functions were

sectioned by levels then several unrelated functions would be grouped

together simply because they are considered to be of the same level of
Q'O difficulty to implement. This would force. procedures like emergency

close_gks, and set_text_path to be grouped together because they are both

required at level 0a, This would create packages of unrelated procedures

which defeats much of the intent of Ada packages(2:184).

The second way to separate the functions is by functional cate-
gories as shown in Figure 3.2. These categories are Control functions,
Output functions, Output attributes, Transformation functions, Segment
functions, Input functions, Metafile functions, Inquiry functions,

Utility functions (in AFIT_GKS they are called Set Transformation func-

’ tions), and Error Handling(1:i,v;6:1i). By splitting them up in this
fashion, each set of functions have a common idea and purpose. This

;_ allows the maintainer of the program to work on one specific area of AFIT_

q

GKS without needing to worry about how it might affect other areas. In

3.3

TPy

Emergency

Represent

Primitives

Segments

Set__
Transform

Trig_Lib
Core_
Functions

Text_io

Transform

Input

Control

nt_ws_1

Int_Control

Int_Ws_2

calls Ws_1, Ws_2, and Ws_3

Ing_Attributes
Ing_Represent
Ing_Facilities
Inq_Segment

Set_Prim

Figure 3.2.

User Functions

L s Tet T TR T e e e W e TR T

essence, the various functional areas of AFIT_GKS can be separated and
hidden from each other making for many small functional units which are
easier to maintain., Also, this allows the user to pick and choose the
part of the AFIT_GKS package that is needed for the program. For
example, if the user of AFIT GKS doesn't need any segments then that area
of AFIT_GKS can be ignored as a single unit. Overall, the best plan |
might be a combination of separating the package into functional units in
which the lowest level functions are implemented first.

Packaging. If AFIT _GKS is split up into functional units, then how
should these units be implemented in Ada? Ada allows for four different
types of structures or compilation units == subprograms, task units,
generic units, and packages(3:10-1). First, subprograms are like pro-
cedures and as such the user can access any subprogram. This means that
no variables or lower level functions can be hidden from the user of AFIT_
GKS.

Task units are designed to allow for parallel processing. The

problem with parallel processing in AFIT_GK3S is it must be carefully con-
trolled or else unpredictable actions may occur. For example, if "acti-
vate workstation™ and "polyline" procedures were allowed to execute con-
currently then the line may or may not be drawn on the newly activated
workstation. Task units may be useful in providing AFIT_GKS with
parallel processing for multiple active worxstations. This idea of task
units may be able to speed up the processing time of AFIT_GKS but, due to
time constraints it will not be explored in this thesis effort.

Generic units define an algorithm on an unspecified data object
which can then be instantiated for whatever data type is needed. For

example, a generic program could be written to switch two objects,

3.5

SRR generic
‘e type ITEM_TYPE is private;
ad procedure SWAP(First, Second : in out ITEM_TYPE);

procedure SWAP(First, Second : in out ITEM_TYPE) is

temp_item : ITEM_TYPE;
g begin
) temp_item := First;
- First := Second;

Second := temp_item;

end SWAP;
. The problem with a generic unit is that it must be totally within at
most two files (the generic Specification and the generic body). This
may be helpful for some low level modules but it certainly is not suited
for the entire ANS GKS system as required by the Harris binding because
then the entire AFIT_GKS source code would have to reside in 1 file (the
generic body), which would be impossible to edit.

Finally, Ada allows packaging (which can be used with generics)

which involves specifying all the procedures and global types that you

want the user to see in a package specification. The rest of the program

goes into the package body which is inaccessible to the user of the pack-

age. Therefore, by using packages the internal implementation of the
AFIT_GKS program will be invisible to the end user of AFIT_GKS. There-
‘ fore, this thesis will center on packaging the AFIT GKS program so that
- the user does not have access to the internal procedures that implement
. AFIT_GKS.
“ Using the packages of Ada and the sectioning of the user callable
functions by functional categories, the structure of User Functions is
shown in Figure 3.2,
. . The User Functions consist of all the different functions that the
3.6
L

user of AFIT_GKS can call. The User Functions also contain internal
R functions to handle the functions of AFIT_GKS that are not involved with
¢ N a particular workstation (like creating a segment transformation matrix).
These functions shown in Figure 3.2 will be briefly described in the
order that they were presented in ANS GKS(1:v). The order of presenta-
. tion is Internal_Control, Control, Primitives, Set Primitives, Repre-
sent, Transform, Segments, Set_Input, Input, Inquiry, Set_Transform,
Emergency, and Error Handling.

; Internal_Control. The package Internal_Control, shown in Figure

3.2, handles the initialization of the various state and description

tables., This package contains various routines which hold the descrip-

'ﬁ'ﬂ"i"'

tions of the workstations. This includes what line types the worksta-
tion can perform, what character heights, and widths., Anything that de-
scribes that workstation is found in this package.

' “' Control. The package Control uses the Internal Control package to
initialize the various state and description tables. It also sets the
deferral states and does updates on the various workstations,

i) Primitives. The package Primitives draws the actual primitives
(polyline, polymarker, text, and fill area). It is also involved with
the deferral modes., A deferral mode is a variable that can be set on a
= workstation which tells the workstation when it must have its picture
correct. If a segment is open and it is not the highest priority segment
then calling any primitive causes the redrawing of the screen (which can
be deferred).

Set_Primitives. The package Set_Primitives allows the user of AFIT

'3_ GKS to set the various attributes of the primitives. For example, the

user can set the line type or line width that is needed,

.- 3.7

Represent. The package Represent sets up the various bundle tables

which the user can use., Also, this package can set up patterns, and
colors on the workstations that support these features,

Transform. The package Transform sets the various windows, and view-
ports. It also sets ﬂhe clipping indicator, and the transformation
number. The only 1nteresting>function in this package is set_viewport
input_priority. This function sets one transformation to a priority
which is higher or lower than another transformation. To accomplizh this
the function set_viewport_input priority checks to see if the two trans-
formations are in the correct order with respect to their priorities. If
they are not in the correct order then the priorities of the transforma-
tions are exchanged.

Segments. The package Segments works on segments. It sets all the
segment attributes like segment visibility, highlighting, priority, and
detectability. This package also handles the three WISS functions
associate_segment with ws, copy segment_to ws, and insert_segment. The
only function that is interesting is the set_segment priority function.
This function sets the priority of the given segment and then sorts all
the segments from highest priority to lowest priority. This is done so
that any redrawing of the screen will draw all the segments in order from
lowest priority to highest priority.

Set_Input. The package Set Input initializes all the input func-
tions. These functions are used to determine which input device will be
used when an input function is called. These functions also set the
various input modes (request, get, and sample), but at this time only

request mode is implemented.

3.8

s W

A

Input. This package performs the six input functions:

request_locator: requests a locator input on the given workstation

request stroke: requests a stroke input on the given workstation

request valuator: requests a floating point number from the given
workstation

request_choice: requests an integer choice value from the given
workstation

request pick: requests a pick input which returns the highest
priority segment that the user picked on the given workstation

request_string: requests text string from the given workstation

Inquiry. The four Inquiry packages shown in Figure 3.2 inquire the
values of the various values on all the state and description tables.

Set_Transform. The Set_Transform functions shown in Figure 3.2,

allow the user of AFIT GKS to create segment transformation matrices
given the rotation, scaliﬁg, and translation parameters.

Emergency. The Emergency package contains the routine 'emergency
close_gks' which closes AFIT_GKS no matter what state AFIT GKS is in at
the time of calling this function. -

Error_Handling. This package contains the single function error

logging which logs any errors that is found in AFIT_GKS. d
In conclusion, there are many functions that the user of AFIT GKS
can call., Therefore, AFIT GKS is split up into many different packages

(specified in Appendix A) which the user can choose to include or not

.-L.J‘ toty et

include in any application program that uses AFIT_GKS User Functions (see

4 4 a

’
4

Figure 3.1).

.

et
W

Data Structures and Types

The Data Structures and Types shown in Figure 3.1 are a series of
seven related packages shown in Figure 3.3 that contain the types and
variables used by AFIT GKS. The first two packages shown in Figure 3.3,
Internal_Vars and Internal_Types, are used exclusively by the internal
functions of AFIT GKS; the user of AFIT GKS should never access these
packages directly. The third package shown in Figure 3.3 is External
Types (see Appendix A) which contains the types needed to interface AFIT_
GKS with an application (see Figure 3.1). This package along with GKS_
List Utilities, GKS_Coordinates, and GKS Configuration (see Appendix B)
were supplied as part of the Harris binding of ANS GKS to Ada. The last
package shown in Figure 3.3 is Text_io which is a standard package avail-
able on all Ada compilers(2:421).

This section will cover Internal Vars, Internal Types, External
Types, GKS_List_Utilities, GKS_Coordinates, and GKS Configuration as
shown in Figure 3.3. This section will not explain the design considera-
tions of Text_io.

Internal Vars. As shown in Figure 3.3, the six GKS data structures

are all contained in one package called Internal Vars. Internal Vars is
a package of variables which should only be accessed by the internal
functions of AFIT GKS. It contains the Operating_State, GKS Description_
Table, GKS_State_List, Workstation State_Lists, Workstation Description_
Tables, and the Error_State List. The three "state" lists hold the
current values of their respective types. The "description" tables hold
the static values of AFIT_GKS, or of their workstations.

Operating State. The first structure shown in Internal Vars

(see Figure 3.3) is the Operating_State(1:197). This single variable

3.10

T T R P T P PP T PP o o

Internal_Vars

Operating_State

GKS_Description_Table

GKS_State_List

Workstation_
State_Lists

Workstation_
Description_Tables

Error_State_List

Internal_Types Text_io

A4

cxternal Types

GKS_List__ GKS_ GKS_
Utilities Coordinate_ Configuration
System

- - ~
(PP, PO UL U, |

Figure 3.3. Data Structures and Types

3.11

AT

- I S S G . I WY S AT WP W S WY Y SO ST

y

d

. Mv‘.w_'.-.'i'?" Loutalih JUn It Ml Bias

holds the operating state of AFIT GKS. The possible values of the
Operating State as shown in Figure 3.4 are GKCL (GKS is closed), GKOP
(GKS is open), WSOP (at least one workstation is open), WSAC (at least
one workstation is active), and SGOP (a segment is open). As shown in
Figure 3.4, various functions of AFIT GKS change the Operating State of
AFIT_GKS. By using the Operating State value, AFIT GKS can determine if
a function can or cannot be called in the present state of AFIT_GKS.

GKS_Description Table. The second structure of Internal Vars

shown in Figure 3.3 is the GKS Description_Table(1:198). This data
structure holds the constant values associated with AFIT GKS. It con-
tains the maximum range of abilities of the AFIT GKS implementation. As
such, it can be either a permanent constant in AFIT GKS or it can be
created when necessary by reading the information off of a file. My sug-
gestion is to have it be a permanent part of the AFIT_GKS code as shown
in Figure 3.5 since it is needed every time AFIT GKS is used.

As shown in Figure 3.5 the GKS_Description_Table contains the level

of gks implemented, the list of available workstation types, the maximum

CURRENT_LEVEL : constant GKS_LEVEL := ma;
CURRENT_LIST_WS_TYPES : WS_TYPES.LIST OF;
CURRENT_MAX_OPEN_WS : constant POSITIVE := 2;
CURRENT _MAX_ACTIVE_WS : constant POSITIVE := 2;
CURRENT_MAX_SEGMENT WS : constant POSITIVE :=z 2
CURRENT_MAX_TRANSFORMATION NUM : constant POSIT
MAX_TRANSFORMATION_NUMBER;

H
IVE :=

Figure 3.5. GKS_Description_Table

number of open and active workstations, the maximum number of worksta-

tions that can be associated with a certain segment, and the maximum

3.12

GKS is
closed
(GKCL)
open close
GKS GKS
GKS is
open
(GKOP)
open first close last
workstation workstation
open w‘./st.\ At least one attribute setting
close w.st. workstation input
is open segment manipulation
(WSOP) ‘\5_—///
activate first deactivate last
workstation workstation
activate wf:;:j\\\ At least one primitive generation
deactivate w.st. workstation attribute setting
open w.st, active input
close Y;ji;;/// (WSAC) segment manipulation
open close
segment segment
open w.st. Segment primitive generation
close w.st. open attribute setting

RSP, ST JUE. W PG

Figure 3.4.

RS . " S
LRGN -

L w e
) .. PR
e alt O O R S

3.13

Possible Values of Operating_State (1:70)

. [
LI G TP IS SO0, ST JEPRLEL NPT TP W WA Wt U M S SO _l._k‘_.‘

number of transformations allowed. Overall, the GKS Description Table
holds the maximum values of various parts of the GKS_State_List,

GKS_State_List. The third structure in Internal Vars as shown

in Figure 3.3 is the GKS_State_List(1:199-200). This structure holds the
variable values associated with AFIT GKS. It is implemented as a list of
variables similar to the GKS_pescription_Iable except that the GKS_State _
List variables are declared as variables which in many cases have a
maximum value which is specified in the GKS Description Table (see Figure
3.5). These variables like the GKS Description_Table are all prefixed by
the word 'current' so that the maintainer of AFIT_GKS can tell where the
variables came from,

The GKS_State_List contains the current open and active worksta-
tions. It also contains all the current attributes of any polyline,
polymarker, text, or fill area that the user invokes, 1In addition the
GKS_State_List contains all the normalization transformation that convert
points from world coordinates to normalized device coordinates. Also,
the GKS_State List holds all the information concerning segments, like if
they are visible, detectable, or highlighted.

Workstation_State Lists. The fourth data structure of Internal

Vars shown in Figure 3.6, each workstation has its own Workstation State__
List node. The Workstation State Lists are complex structures because
they must be accessed given a workstation_id, or a type of ws. A
workstation_id is the name that the user associates with a workstation
when it is opened. A type of ws is a permanent name that the implementor
of AFIT GKS associates with a workstation that can be used in AFIT GKS.
As shown in Figure 3.6, the information associated with the Workstation_

State _Lists are contained in the Workstation_State_List nodes which are

3.14

. .
WL NI 0. WA VP S S . W Wi W AP VA ol A - AP) PR PP PSP AP U LA W S e PP DRV WA . ¥ - C RSN WO U _1

The Workstation
State Nodes

for the

Tektronix
4014

Workstation_
State_List
indexed by

workstation_id
(u_wss)

workstation_
id = 1

for the
Tektronix
4027

workstation_
id = 2

workstation_
id = 3

Workstation_

State_List
indexed by
type_of__
workstation
(wss)

type_of
workstation

type_of
workstation
=2

type_of
workstation
=3

TSN TR R

Figure 3.6. The Workstation_State_Lists

3.15

P W W

A e Tk TN WA

A A& NN 4 B S % & . &

workstations., After explaining why the first design was rejected, this

section explains in detail the implemented design.

The Original Design. The original design of the Vorkstations was

centered around making the primitive functions as fast as possirle,
Whenever a primitive call was made to AFIT_GKS the workstation would
tranéform, clip, and output the primitive to the display surface. The
primitive function would not need to be concerned with its attributes
since the workstation would take care of the attributes whenever an attri-
bute was changed by the user using a Set_ Attribute function. This is a
nice concept, but it is not as simple as it looks.

First, if the primitive function does not check if its attributes
are set properly on the workstation, then whenever a new attribute is
set, the attribute function will have to notify each of the active work-
stations of the change. Second, the workstation must store the current
attribute values of the different primitive functions. This is because a
polyline might have a color of red while at the same time a fill area
primitive might have a color of blue, Therefore, if a polyline function
is called then the workstation must make sure that the line segments are
red, and if a fill_area function is called the workstation must make sure
that the fill area is blue. The GKS Data Structures hold the values of
the attributes. So, the GKS Data Structures can hold the attribute
values of the primitive to be output, and an internal structure will hold
the values which tell the workstation which primitives attributes are
currently set on the workstation,

The design to this point is shown in Figure 3.7. The workstation

3.29

Then the procedure ERROR_OUTPUT_INDEX WS will check error 61 with a
polyline index of 2, error 63 with a linetype of 22, and error 87 with a
color of 7. It will return in 'error_nhumber' the first error found or a
zero if no errors occurred,

Overall, these four types of error routines handle all the errors of
AFIT _GKS.

Reporting an Error. Finally, how should a procedure in AFIT_GKS

report the error? As specified in ANS GKS, a procedure, other than an
inquiry procedure, reports an error by calling the procedure error
handling with the error number, and the name of procedure which had the
error(1:73). An inquiry procedure simply returns the error in its output
parameter 'ei' (error_indicator), In addition, the procedure which
called error_handling should raise the appropriate user exception and
allow the user to handle the error. This permits a procedure to abruptly
Stop processing and allow the user to handle his/her error.

Now that the Error functions have been explained, Workstations will

be discussed next,

Workstations

The Workstations shown in Figure 3.1 are a major part of AFIT_GKS.
The Workstations are where all the graphical information is output to the
graphical devices. In AFIT GKS, there are two types of workstations
(OUTIN, and WISS). The OQUTIN workstations are the set of device
dependent code that performs the AFIT _GKS functions on the graphical
devices. The WISS workstation works exclusively on segments.

First, this section explains the original design of the AFIT_GKS

3.28

R N T T I T T o rw "

tributes but only a few different types of parameters all of which can be

converted to type integer. Therefore, an example error routine would be:

procedure ERROR_OUTPUT_INDEX WS (error_numbers: in error_indicators.
list_of; range_| numbers: in error_ indicators.list _of; error number: out
error_indicator; id: ws_id);

errors checked:

61 A representation for the specified polyline index has not been
defined on this workstation

63 Specified linetype is not supported on this workstation

55 A representation for the specified polymarker index has not been
defined on this workstation

67 Specified marker type is not supported on this workstation

69 A representation for the specified text index has not been
defined on this workstation

76 A representation for the specified fill area index has not been
defined on this workstation

80 Specified hatch style is not supported on this workstation

82 A representation for the specified pattern index has not been
defined on this workstation

83 Interior style PATTERN is not supported on this workstation

87 A representation for the specified colour index has not been
defined on this workstation,

An example of how to call ERROR_OUTPUT_INDEX WS is as follows.

Given that the following errors are to be checked:

error 51 with a polyline index of 2.
error 63 with a linetype of 22.
error 87 with a colour of 7.

The two lists, error_numbers and range numbers, must be defined as:

error numbers: range numbers:
61 2
63 22
87 - 7
3.27

T EEVENTVTY T A TS TET LN VIR YL VIR

3.

The third type of error routine checks a series of error numbers

for some highly related errors.,

For example,

procedure ERROR WS _IS (error_numbers: in error_indicators.list_of;
error_number: out error_indicator; id: in ws_id);

errors checked:

24
25
29
30
31
32
33
34
35
36
37
38

39

40

Specified
Specified
Specified
Specified
Specified
Specified
Specified
Specified
Specified
Specified
Specified
Specified

workstation
workstation
workstation
workstation
workstation
workstation
workstation
workstation
workstation
workstation
workstation
workstation

category OUTIN

Specified

workstation

category OUTIN

Specified

workstation

is
is
is
is
is
is
is
is
is
is
is
is

is

ha

open

not open

active

not active

of category MO

not of category MO

of category MI

not of category MI

of category INPUT

Workstation Independent Segment Storage
not of category OQUTIN

neither of category INPUT nor of

neither of category OUTPUT nor of

s no pixel store readback capability

ERROR_WS_ID accepts a list of error numbers (of length 1 to 14),

which are to be checked.

It returns the lowest numbered error (in error

number) which is true, otherwise, the error_number returned is set to 0.

For example, if error_numbers was the list

24

30

35

then ERROR_WS_ID would consecutively check errors 24, 30, and 35.

u.

The fourth type of error procedure in AFIT _GKS concerns those

error routines that need to check an input parameter whose type can be

converted to 'integer’'.

while others are polymarker indexes.

Some of the parameters are polyline indexes

Here there are many different at-

3.26

function ERROR_AT LEAST 1_PT (pt: points.array_of) return boolean;

errors checked:
100 Number of points is invalid

ERROR_AT _LEAST_1_PT checks to see if there is at least one point in the
input parameter. This function returns a true value if there are no
points in 'pt' and a false value otherwise, This particular error
routine is called by the output primitive polymarker to check if at least
one marker is defined.

2. The second kind of error routine checks the error which corres-

ponds to an input error number, For example,

function ERROR_STATES (state : in error_number) return boolean;

errors checked:

GKS not in proper state: GKS shall be in state GKCL

GKS not in proper state: GKS shall be in state GKOP

GKS not in proper state: GKS shall be in state WSAC

GKS not in proper state: GKS shall be in state SGOP

GKS not in proper state: GKS shall be in either state WSAC or in

state SGOP

6 GKS not in proper state: GKS shall be in either state WSOP or in
state VISAC

7 GKS not in proper state: GKS shall be in one of the states WSOP,
WSAC or SGOP

8 GKS not in proper state: GKS shall be in one of the states GKOP,
WSOP, WSAC or SGOP

U EWN =

Any call to error_states checks any one of the eight error codes.
That is acceptable for this function because no user routine needs to
check two of these errors. This function will return a true if the GKS
state is in error, otherwise it will return a false., This particular
function is called from all of the AFIT_GKS functions except inq_

operating state_value.

3.25

3

/]

4 .

to the highest error number, these error functions could easily be pro-
grammed without needing to know what procedure called them. This idea
would help in error handling but still the implementor of AFIT GKS would
need to make a series of error calls, one for each set of errors that
he/she had.

AFIT GKS uses an error package (shown in Figure 3.1) which contains
a combination of the last three different ways of checking errors., These
three methods are as follows:

1. For some of the errors, AFIT_GKS writes a single function that
tests one particular error.

2. AFIT GKS has some error functions that test the error which
corresponds to an input error number.

3. The last type of AFIT GKS error function, tests a series, or
list of errors and returns the first error found (or a 0 if no error was
found).

Overall, this combination of different types of error functions
seems like the best solution since it solves the problem of interfacing
to the error routines and yet it at least reduces the number of calls to
the error routines., Valid input data is checked by calling error
routines which specifically check the given input data. These routines
are rarely called because the Harris binding restricted all of the input
parameters to valid input ranges.

Implementation of Error Functions., Using the three types of error

routines described above AFIT_GKS implemented its error routines using
one of the following four methods.
1. The first way to check errors is to write a function that checks

one specific error. For example,

3.24

parameters for various procedures. This would cause a nightmare of over-

loading of a procedure so that all of the different procedures could be
supported by this one error function name., If this solution was taken
then every AFIT_GKS function would call say check_errors several times
using all different parameter lists so that all its errors could be
checked. If this was done then the maintainer of AFIT_GKS would have a
difficult time trying to figure out which of the fifty or so check_errors
procedures was called in any function of‘AFII_GKS.

Another way of handling the errors is to pass a single error
procedure the name of the procedure that called it and let it handie the
error checking. This still involves the problems of how to pass the
input parameters so that they can be checked.

Another method is to have a separate procedure for each individual
error. Each procedure would check for one of the specified errors of
AFIT_GKS and return a true or false depending on whether or not an error
occurred. This would allow for each error procedure to have a proper
interface so that it can check the input values. The only problem with
this method is that each procedure will have to call several different
error procedures before it can determine if it has any errors.

Expanding on the method of using one procedure for each error con-
dition, some of the error procedures could be combined, like those with
identical parameters and similar algorithms, This would cut down on the
number of error procedures but would not reduce the number of calls to
error functions that each procedure must do.

Next suppose that some of these error functions could check a series
of error conditions. Since all errors are checked from the lowest error

number (for a list of all the error numbers in AFIT_GKS see Appendix A)

3.23

shows how the accepted method of implementing errors was realized in AFIT_
GKS. Finally the section explores how errors are reported in AFIT_GKS.

Order of Checking Error Numbers. Another design consideration is

how to order all the errors that occur in the calling of AFIT GKS pro-
cedures by the user, According to the ANS GKS standard all GKS
procedures check on entry (in the following order):

1. That GKS is in the correct state;

2. That the values of input parameters are valid.
At least the first error detected is reported(1:73). To accomplish this
goal, AFIT GKS will check errors from the lowest numbered error (see
Appendix A for a list of the error numbers) to the highest numbered
error, By the design of ANS GKS this will entail checking the GKS states
first, then the workstation states, and finally all the input parameters.
This solves the problem of how to order these error functions in’'a simple
concise manner,

Design Alternatives. But the problem still remains as how to design

the checking of the different errors.

One way is to have each ﬁrocedure check all of its errors, directly
calling on the inquiry functions whenever it needed information from the
data structure in order to determine if there was an error. This would

be a bad solution because of the redundent code that each procedure would

have to do in order to check its errors.

Another possibility is to have several error procedures all with a

single common name (called "overloading™ in Ada) which together check the
errors of all the different procedures, The problem with this approach
e is that the error checking must check all the input parameters., There-

fore, this error checker would need a different amount and type of

3.22

la=_tat 8.4 ol S ucholc s Bat e 20e Tk Wk T A AR

GKS_List Utilities. The second generic package shown in Figure 3.3

is GKS_List_Utilities which allows for arrays, and matrices (both fixed
length and variable length) to be defined. GKS List Utilities (whose
specification can be found in Appendix B) is used extensively to provide
lists of various objects, like the list of active workstations in AFIT__
GKS.,

This package does have a problem on the ROLM Data General Ada
compiler that this project is using., The problem is that the generic
parameter ﬁust be of a fixed length. Therefore, it would not accept a
generic parameter of a variable length string.

This package also has functions which add an item to a list, delete
an item from a list, and test if an item is in a list.

GKS Configuration. GKS_Configuration shown in Figure 3.3 defines

all the various maximums of type declarations found in AFIT_GKS. For
example, in GKS Configuration (the specification of GKS_Configuration can
be found in Appendix B), the constant max_raster_units defines the

highest raster unit found on any workstation in AFIT GKS.

Error Routines

The Error routines shown in Figure 3.1, contain procedures and func-
tions that test all of the various errors that can occur when an AFIT_GKS
User Function is called. A complete listing of all the AFIT_GKS errors
can be found in Appendix A.

First, this section will explore the order in which the various
errors need to be checked. Second, this section will discuss the many

different ways that the error routines could be implemented. Third, it

3.21

™

i dinie eSS Shac 2l R S Shdh S-S0 S i S g Sy e '.'\'-‘.‘.T

gy and therefore should be classified as belonging to the package External
Types. For example, large ndc types are exactly like the External Types
ndc except that the range of permissible values is larger than that of
type ndc. Prefixing the types with "e_" allows the maintainer of AFIT_
GKS to quickly recognize whether the type should be found in External _
Types or in Internal Types. Finally, many of these types, like the
record which defined a polymarker bundle table entry, must be made into a
list (for the polymarker bundle table) by using the generic package GKS _
List _Utilities. Their names are always the name of the generic parameter

plus an "s", For example:

package i _seg names is new GKS_LIST UTILITIES (i_seg_name);
package e_input_q_entrys is new GKS_LIST UTILITIES (e_input_q__
entry);
ﬁ-‘ Note, that it is not necessarily the plural of the generic parameter.

GKS_Coordinate System. The GKS Coordinates System shown in Figure

3.3 allows the program to define points, vectors, sizes and rectangles of
any floating type variable. This generic package (whose specifications
can be found in Appendix B) is used to create the World Coordinates (we),
Normalized Device Coordinates (ndc), Large Normalized Device Coordinates
(large_ndc), and the Device Coordinates (dc). It uses a generic
parameter which allows various instantiations of GKS_Coordinate_System
using the different coordinate types.

In addition to defining the different types, this package also de-
fines a vector_length operation. This is a function that, given a

vector, returns the length of the vector,

3.20

- . - - . . - - - . -~ -~ - e . . .
- . - . - -~ - - - > . . N . Pl T o W - Pl - P - " - . i > = - = . . - w . - . -~ . o " ~ -
e AR ST U RN Y T R UL SIS AT, S, I N ST o V. S R AR S S S PO RS Y S S L A S PUARRATE, Y RS

these extra functions which could access the private types were not

written and the input data structures were not made private. Although
the private structures are not presently in AFIT GKS they may be a nice
addition to AFIT_GKS because then the maintainer of AFIT GKS can change
some private data structures implementation without having to worry about
what part of AFIT GKS accessed it.

Internal_Types. As shown in Figure 3.3, Internal Types is mainly

used to define the types needed in Internal Vars. This package contains
the types for binding attributes, segment storage, transformations, input
queue entries, Workstation_State_Lists, Workstation_Description_Table,
and the error indicators. In addition, AFIT_GKS defined a new type in
the package Internal Types called large_ndc_type. This type allows the
nde points in segment storage to lie outside of the range 0.0..1.0. This
is useful when later applying segment transformation, or the WISS
function insert segment(1:4i),

One problem with Internal Types is that the Ada compiler used for
this project would not allow variant records to be used in pointer lists,
or in arrays. Also, a field name in the variant part could not have the
same name as in another case of the same variant part. Therefore, this
package does not use variant records but simply shows where they should
be put if the compiler would accept them.

In the Internal_ Types package, type names had to be created. There-
fore, this implementation used the prefix "e_ " (enumeration of) before
any type declared in Internal Types. The only exceptions to this rule is
variable string, large ndc types (discussed above), and package dc
points, which can be found in Internal_Types. The reason for these ex-

ceptions is that they all closely mimic the types found in External_Types

3.19

> -+ SIS
[R

Types given by the Harris binding. There are three differences.

1. The Harris binding specifies that

subtype positive_scale_factor is scale_factor range scale
factor'safe_small..scale_facator'safe_large; (2:46)

The ROLM Data General will not compile this statement. Therefore, it was
changed to "range 0.00001..1.0E50;" which is the value requested.

2. The second change is that the Harris binding requires that AFIT
GKS be a generic package. This is so the user can specify the format of
choice_value, input_ value, pick_ids, segment names, world coordinate
types, and workstation ids. This is a nice concept but it is unrealistic
to have the entire AFIT_GKS project in one generic package, because the
ROLM Data General would require that the generic package be contained in
one text file which would be impossible to edit. The reason the entire
code would have to be in the one generic package is that if External_
Types was a generic package then the only piece of code that could use
its variables would have to be a part of the actual generic package
External Types (11:10.2.1). This implementation solved the problem by
only allowing the user the default types for Harris's generic parameters.

3. The Harris Binding defined the six input data records as pri-
vate, An input data record holds any values needed to inquire an input
device, For example, the valuator input device which gets a floating
point number which is inside a given ruug<, has its input data structure
contain the range that the floating point number can take on. If the
input data records are private, then a series of functions must be

written to access those private data types. Due to time limitations

3.18

A S e At " . J J WP W e - -w v Pty - SR A A e N

of what the workstation is capable of doing. This includes what kind of
workstation is it, how big is the display surface, and is it a raster or
vector display. Moreover, the structure stores the line types, line
widths, and the colors that the workstation can display. The table holds
?i- the marker types,.text fonts, character heights, character widths,
interior styles, and hatch styles, In addition to handling all the
capabilities of the workstation, the GKS Description_Table nodes also
hold the default values for the Workstation State Lists. This includes
all the default bundle tables and information about the input functions.
Finally, the Workstation Description_Table nodes contain a list of
variables which state whether the workstation can perform a certain
action with or without a redrawing of the display surface., These actions
include changing the various bundle tables, deleting segments, or
changing colors on the workstation.

- Error_State_List. The sixth data structure in Internal Vars as

shown in Figure 3.3 is the Error_State List (1:209). This structure
holds the information concerned with an error. This structure contains
. the error state, and the error file., The error file causes the Internal

Vars package to use the package Text_io, this is because the error file

is implemented as as file_type which is not a type defined in Ada; it is

o

- a private type defined in the package Text_io (2:421-42). 1In order to

Ei_ highlight these variables in AFIT GKS they are all prefixed with the word

~‘ "error_." For example, the error file is named "error_GKS."

g External Types. This package shown in Figure 3.3 holds all the
types that the user needs to interface with AFIT GKS. This package shown

- in Appendix A was specified in the Harris Binding.

AFIT GKS does not completely adhere to the specification of Externa{_

3.17

pointed to by the two different Workstation State Lists. Therefore, the
Workstation State_Lists are implemented as two arrays indexed on the
range of the workstation ids and workstation types. As shown in Figure
3.6 the array indexed by the workstation id is the variable "u_wss,"
while the array indexed by the workstation type is the variable "wss."

Note in Figure 3.6 that the "u wss" can be defined with any of the
workstation ids pointing at any of the three different workstation types,
but the pointers from "wss" can not be changed. The Tektronix 4014 is
always of type '1' (type of workstation = 1), the Tektronix 4027 is
always of type '2' (type of workstation = 2), and Workstation Independent
Segment Storage (WISS) is always of type '3' (type of workstation = 3).

The Workstation_State_List nodes contain the variables that are
needed to deal with a workstation. This structure contains the deferral
mode and whether the screen needs to be redrawn., It also contains all
the bundle tables for the various output primitives. The WOrkstation_
State_List nodes contain the workstation window and viewport which
perform the normalized device coordinates to device coordinates
transformations. Finally, this structure contains all the current
information needed for the input functions.

Workstation Description_Tables. The fifth data structure is the

Workstation_Description_Tables (1:204-207). This is where the constant
values associated with a workstation are stored., The YWorkstation _
Description_Tables are implemented just like the Workstation_State_Lists
shown in Figure 3.6. For the Workstation_Description_Tables the two
arrays shown in fugure 3.6 are "u_wsd," and the "wsd" which point to the
Workstation_Description_Table nodes,

The Workstation Description Table nodes are simply a structured list

3.16

FR - s . - e

. - . « 0 . ~
A - L Ca) . .Y . .. B I R PRI R . LT B
. AP MR N N U W I U W 1 WA W . WP UL WO UL WOR I WA VAU SPUIL. NPUU, WUl WP Vot Sy TR Wy v WS . LI

e S AR A S S0 T e iie e S S S At A it St St B (F G i A SN A IR A pA

. L GKS Data Structures

A hold the attributes

m of the current Set_Attributes
}1 primitive

v

N

\ \

o Workstations

a

p Internal variables

L!: to tell which Code to perform
. primitive is cur- the extra
o rently correctly set functions
[on the workstation

P

Figure 3.7. Original Design of Workstations

must communicate with the Set_ Attribute functions, it must access its

L ate g

internal variables and the GKS Data Structures, and it must have some
additional code to perform all the setting of attributes.
Finally, segments were considered using this design. Segments

contain a series of primitives and their attributes. Segments are stored

on the workstations, and are used to modify displayed images. As such
they can be redrawn at any time. This being the case how can this design

handle segments? The segment attributes can not be used with the GKS

3.30

LI . . e - .- . . - - .
B et : . et . N e - L - . P N R

D P R T T R A S SO ST, 1AL A PRI - GNP SRS

LA
.
1 -

.

Data Structures, because that would destroy the current values of the
attributes. So another internal structure is needed to iiandle the at-
tributes of segments. At this stage, this design was determined to be
"bad" because of all the extra variables and code needed to implement it.
Therefore, the original design was discarded and the design that was
eventually implemented is discussed next.

Implemented Design. The implemented design of AFIT _GKS used a

slightly modified data flow chart of ANS GKS as shown in Figure 3.8.
First, the primitive functions perform the transformation from world
coordinates (wec) to normalized device coordinates (ndec). Second, the
active workstation is called, where the clipping rectangle is stored with
the primitive, The clipping rectangle is the current viewport. When
clipping is applied, any graphical information that is not contained in
the clipping rectangle will be clipped (discarded). Third, the current
attributes of the primitive are bound to the primitive. For example, a
polyline primitive is no longer considered’as a list of vertices; it is
now a dotted, thick, red list of line segments which have a c¢clipping
rectangle equal to the current viewport,

Fourth, following Figure 3.8 down the path of the OUTIN worksta=
tions, the workstation tests if a segment is open. If a segment is not
open then the primitive goes on to the seventh step bind attributes, but
assuming a segment is open, the fifth step is to store the primitive in
Workstation Dependent Segment Storage. Workstation Dependent Segment
Storage is a storage area for segments., Sixth, the primitive is trans-
formed by the segment transformation.

Seventh, the attributes of the primitive are "bound" to the display

surface., This means that the attributes of the primitive are set on the

3.31

(:Epplicatioi>

Normalization
transformnation

Active

Workstations

Clipping
rectangle
stored

OUTILIN
Workstations

Bindattribute§1

insert

Clippingz
rectangle
stored

WISS
[Bind attributesg]

no segcment
is open

segment
is open

Workstation

T¥

]
1

“orkstction

L Clipping]

Vorkstation
transforration

Y
Workstation
Driver

Dependent independent
Segment Segment
Storage Storage
segment
visible not visible
Segment Segment
transformation transiormation
cCOouy
Attributes Insert
are bound transformation

Clipping
rectangle
stored

rrocess terninatad

Figure 3.8.

Modified Data Flow Chzzt of

GhS (1:47)

oo
Hn::

3.32

L Y N N W

a b
[

yry
P
PN

L

L i s b e i B B SN arest A e s e e e

display. For example, the polyline primitive described in the third step
would set, if necessary, the color on the workstation to red, the line
type to dotted, and the line width to "thick"™, The attributes set are
those that were bound to the primitive during bind_attributes. Eighth,
the primitive is clipped against the appropriate clipping rectangle. The
appropriate clipping rectangle is the intersection of the clipping rec-
tangle stored in step two, and the window used in the workstation trans-
formation. Ninth, the primitive is transformed from normalized device
coordinates (nde) to device coordinates (dec). Tenth, the Workstation
Driver is called to output the primitive to the device.

The right side of Figure 3.8 shows WISS., As shown in Figure 3.8,
WISS works essentially like the OUTIN workstations except that it doesn't
affect a graphical device. Instead, WISS provides three functions,
insert, associate, and copy, which can transfer information stored in
WISS to any of the OUTIN workstations.

Using the ideas of Figure 3.8 AFIT_GKS designed the workstations
shown in Figure 3.9. This design was considered the most critical part
of AFIT_GKS. If this works well then the implementation has a good
chance of working. If this is done poorly, then AFIT_GKS cannot possibly
work.

The OUTIN workstations are split up into three packages called Ws_x,
Int_ws_x, and Drive_x, where x is the type of workstation (x = 1 for the
Tektronix 4014, x = 2 for the Tektronix 4027). Ws_x handles those
functions that the device independent part of AFIT GKS calls, like draw
polyline, or clear the screen. Int _ws_x handles the internal functions
of Ws_x like doing transformations, binding attributes, doing segment

storage, and clipping line segments. Drive x puts out the actual ASCII

A

e TR

\/

Core Functions

L Int_ws_1 l Int_ws_2

2

Drive_l1 Drive_2

Tty _io Numeric_io

Figure 3.9, Workstations

3.34

¥

: JT‘.‘-'.—T oY
PR . oot

L

PP —

characters which make the given OUTIN workstation perform, It draws line
segments, puts out text and gets input from the graphics device., It is
only called from Ws_x and Int_ws_x.

The WISS workstation only works on segments, Whenever it is active
it stores any segments being created. In addition, WISS has three
functions, associate, copy, and insert. In AFIT_GKS, these functions
move segments from WISS to a given OUTIN workstation.

OUTIN Workstations

Ws_x. The package Ws_x shown in Figure 3.9, performs three

kinds of functions. It processes the workstation primitive functions,
handles the various segment functions (like displaying a segment), and
performs all the major input functions. Overall, this package is the
primary way for the AFIT_GKS package to access the workstation.

Workstation Primitive Functions., The workstation

primitive functions perform the OUTIN side of the data flow chart shown
in Figure 3.8. Each primitive function has its own set of code, which
performs the operations shown in Figure 3.8. As an example, this section
will show how a polyline primitive is implemented in AFIT_GKS. The other
primitive functions are implemented the same way.

As shown in Figure 3.10, the polyline function is split into five
procedures. These procedures, polyline, ws _polyline_x, ws_polyline b x,
d_ws_polyline x, and drive x, line up in what is known as a pipeline
where each procedure listed performs its function and then calls the next
procedure in the pipeline, To better understand the relationships of the
polyline function (Figure 3.10) and the data flow chart of ANS GKS

(Figure 3.8), those two figures are superimposed to create Figure 3.11,

E
;

R

e)
. [T

Ws_x:
ws_polyline_x

Ws_x:
ws_polyline_b_x

Ws_x:
d_ws_polyline_x

Drive_x:
dd_ws_line_x

Figure 3.10, The Polyline Pipeline

3.36

S (Topticarion) N
B . Polyline
Normalization
\\‘7 transformation .
|

i {

Clipping
rectangle
stored
Ws_x:
T ws_polyline_x
‘ {Bind attributes|
no segment segment
is open is open

e

Workstation
Dependent

Segment Ws_x:
Storage ws_polyline_b_x

segment segment
visible not visible
Segment #®
transformation
)
; \
Kttributes
are bound

, '
i] | Clipping

Ws_x:
| d_ws_polyline_x

)
o Workstation
transformation

Drive_x:

o —— dd_ws_line_x

' Workstation
Driver #*

process terminated

Figure 3.11. Polyline Pipeline Superimposed on

* the OUTIN side of the Modified Data Flow Chart of ANS GKS
s

= 3.37

%

LR S At~ o S Ak Rt S Y Sid - T T T T T T T Ty v e oI

The middle three procedures of the pipeline shown in Figure 3.10 are
the workstation primitive functions. As shown in Figure 3.11 ws_polyline

X, gets the clipping rectangle for the polyline primitive and then binds

N F.".-‘n'-.'a'-'l'.

the present attributes to the polyline. Ws_polyline b_1 handles seg-

ments. If a segment is open then this function stores the segment, and

.then it transforms the segment by the segment transformation and calls

-

the next part of the pipeline d_ws_polyline_x if the segment is visible.

L
TS 2 I

- If a segment is not open then ws_polyline b x calls d_ws_polyline x.

. Also shown in Figure 3.11, d_ws_polyline x prepares the polyline for
output to the screen., This routine does a series of actions to prepare
the polyline for the device,

® 1. It binds the attributes to the output display.

2. It gets the proper clipping rectangle, which is the intersection
of the clipping rectangle associated with this primitive and the work-

I .) ! station window. .

3. The function then splits the polyline into separate line seg-

ments. As shown in Figure 3.11, for each of the separate line segments

\ K

d_ws_polyline_x does the following.
A, It clips the line segment to the given clipping rectangle,

B. It transforms the line segment to device coordinates.

2 C. It calls the device dependent code in Drive_x to output the line

3 segment.

' The Segment Routines and Others. This workstation also

g allows for displaying of segments, and deleting of segments. The dis-

' playing of segments works by taking the primitives out of segment storage
and modifying them so that they can be put back into the output pipeline,

e

Segments being redrawn enter the pipeline at d_ws <primitive name> x just

3.38

after segment storage.

The other routines simply initialize the workstation and clear the
display.

Input Routines. The input routines request various inputs

from the terminal. In essence all of the input routines ask the device
for the input along with a boolean variable which tells whether the value
from the terminal was valid or not.

Int_ws_x. The package Int_ws_x shown in Figure 3.9 performs
the internal functions of Ws_x. As such, Int_ws x does transformations,
stores primitives into the open segment, binds attributes to the work-
station, and performs line clipping. This package is internal to package
Ws_x. Therefore, all of the routines are used only by Ws_x. The only
exception is the transform we_to_ndc of the package Int_ws_1 which is
needed in the packages Ws_1, Primitives, and Set Transform. Each of
these packages needs to transform some points from world coordinates to
normalized device coordinates,

The routines are simple in this package. The transform function
performs a 2D transform on the given points, The functions that store
primitives in segments create a segment node containing the primitive and
then they store the node in the segment storage associated with the work-
station, The routines that do the line clipping clip line segments,

The binding of attributes is a little more difficult. Here the bind
attribute routines check each of the aspect source flags (asf) for any
primitive. An asf, in essense, is a boolean variable which tells whether
the attribute to be bound should be the one originally bound to the primi-
tive, or the workstation dependent value found in the Workstation Bundle

Tables., If the asf = specified, then the value originally bound to the

3.39

primitive is used on the workstation. If the asf = bundled, then the

value given in the Bundle Table associated with the current bundle index
(found in the GKS_State List) is used on the workstation. As shown in
Figure 3.12 the polyline function bind_attributes finds out what values
to use on the workstation and then it calls routines which take the input
value and set the workstation to that state, if necessary and possible.
For example, as shown in Figure 3.12, suppose the polyline function bind
attributes calls set colour_x with an input of blue. If the workstation
is capable of color, then set colour_x will check if the present color is
blue, if it is not blue then it will call upon the device dependent
routine d_set_colour_x which will set the color on the device to blue.

Drive_x. The package Drive_x shown in Figure 3.9 is the driver
for the given OUTIN workstation. Here the actual device code for the
different primitives are output to the "standard output" device. The
actual devices interpret the "standard output" as specific commands and
display the various graphical primitivé objects., The input functions on
Drive x are not supported on all the workstations. Therefore, some of
the input functions (like valuator) must be simulated by asking input
from the keyboard rather than a given valuator device. A valuator de-
vice is commonly a potentiometer whose value is read by the graphics
device and converted to a floating point number. In AFIT GKS, a valuator
is simulated by asking the user to input from the keyboard a floating
point number.

WISS. WISS works exclusively on segments. It is defined pic-
torially in Figure 3.8. As shown in Figure 3.8, WISS must interface with
the OUTIN workstations. Therefore the OUTIN primitives had to be

designed so that the WISS functions could interface with them. Figure

3.40

PN N R S o N S - o N N

bind_attributes

/\

'

set_linetype x f set_linewidth x l set_colour_x
_ | . v 1
Drive_x: ‘ Drive x: Drive_x: |
d_set_linetype_x; d_set linewidth x d_set_colour_x!
|
| ¥

Figure 3.12. Polyline Attributes being Bound to Workstation x

3.13 shows how WISS interfaces with the polyline pipeline of an OUTIN
workstation,

This interfacing with the OUTIN workstations is the only important
part of WISS. If WISS could not interface with the OUTIN workstations,
it would be useless., Therefore, the next three paragraphs will discuss
the polyline pipeline shown in Figure 3.13, and how it interacts with
WISS.

First, the routine ws_prlyline x in Figure 3.13 had to be written so
that each of the primitives would get bound to its attributes when it was

called by the primitive routines (those found in package Primitives).

3.41

.........

The Polyline Pipeline
for Workstation x

{ Polyline)

Ws_x:
ws_polyline_x

The

WISS functions

Y |

associate
insert

Ws_x:
ws_polyline_b_x

L/

Ws_x:
d_ws_polyline_x

Drive_x:
dd_ws_line_x

copy

Figure 3.13.

WISS interfacing with the Polyline Pipeline

3.42

e et e e -

Notice that WISS does not call ws_polyline_ x because this would rebind

the current attributes with the segment. ANS GKS states that once the
attributes are bound to a primitive they are never changed(1:20).

Second, in Figure 3.13 ws_polyline_b_x handles segments for the
primitive, and allows WISS to perform the associate and insert functions,
The associate function copies the given segment to the appropriate OUTIN
workstation in the same way as if the workstation were active when the
segment was created(1:54), As shown in Figure 3.8, the insert function
allows previously stored primitives to be transformed and again placed
into the stream of output primitives(1:54). The procedure
ws_polyline b x is needed because both the associate and insert routines
reed to access the segment storage capabilities of the workstation
without rebinding the attributes of the workstation to a previously
stored and bound segment.

Third, the d_ws_polyline_x routine creates the interface for the
copy function. As shown in Figure 3.8, the copy functioé copies segments
stored on WISS to the specified workstation(1:54). This is because copy
needs to output a segment on a workstation but it does not allow segment
storage or rebinding of attributes on the workstation,

Overall, WISS drove the design of the OUTIN workstations, The work-
station had to do its operations in the order and with the separate
functions described above. Otherwise WISS could not call on the work-

station to do its three functions.

Global Considerations

The following four topics, device independent / dependent code,

transformations, deferral states, and testing, do not fit into any of the

3.43

shown in Figure 4.4, is illegal in Ada. But, if the second "b : integer"

type x(id : character) is i
record :
a : float;
case id is
when 'a' =>
b : integer;
¢ : integer;

when 'b' =>
b : integer;
end case;

end record;

Figure 4.4, Illegal Type "X"

were "d : integer" then there would be no problem. If the above

structure was legal then the Workstation_State_Lists and the Workstation_

Description_Tables could be defined given the ws_category. For example,
a workstation of type WISS needs a Workstation_State_List that contains
the names of the segments associated with the workstation, but a work-
station of type QUTIN needs the némes of the segments, the deferral in=-
formation, the bundle tables, the workstation transformations, and the
input tables, Now if the variant record shown in Figure 4.4 was
allowable then each Workstation_State_List would contain only those field
names that the type of workstation needed, and the field names for the
same information could be the same.

Conclusion. Overall, I want to comment that I like Ada. I think it
is a good language which has to be implemented with more consideration
given to the programmer debugging programs. Implementations of this
language must be explored and tested with users so that the Ada compilers
and support environments develop into a friendlier environment for the

programmer,

4.9

. - PR . “ N . R
e I S S P N U LI S I ST LS DA YU W G Iy i PG Y, W e S “

P e B B PP P P R TIAD W Pl W) PP, W D S Wy O U W T WAl U Wy T Sl

Py

T~ - Ak e i re: B Ji it Mt Jsate M SO Co e A= S UM vt Sl St SN A B ottt s et e il Rt el

Then I instantiated both types as variable length lists as follows:

package e_norm transformations is new GKS_LIST UTILITIES (e_norm_
transformation);
package e_seg_names is new GKS_LIST UTILITIES (e_seg_name);

Then I defined the two variables, current_trans and current_seg state_

list, in the Internal_vars package as follows:

current_trans: e _norm transformations.list of;
current seg_state _list: e _seg names.list_of;

When I went to compile and run a program that used the Internal vars

package, the program bombed. Then I tried deleting the variable current_
trans, and the program worked fine, Also, if I put the variable current_

trans back in the package Internal vars and removed the variable current I

seg_state_list, then the program worked fine.

In the end I changed the maximum length to 50 and both variables
worked fine in the Internal vars package. I assume that the problem was
that the compiler ran out of room when it tried to compile the two
variables.

Undesirable Features of Ada on the ROLM Data General. Some

things which were legal but I didn't like about using Ada on the ROLM
Data General were as follows.

1. The long compile times of about 10 minutes per package slowed
the project down a great deal.

2. Ada allows variant records but the elements in each part of the

variant record must be unique., For example, the following structure

. -

R R N RV .
P IS 1% WIS NP N W A

R L

S

A. The first problem was that the compiler would accept variable
length variables for the generic parameter, but again any program that
used the generic instantiation that had a variable length parameter would
cause the program to bomb. As suggested by another student, to solve
this problem, I used_pointers to the variable length objects, this worked
fine.

B. The second problem with GKS_List Utilities was one of maximum
length, I made the package have a maximum length of 1000. Then I

defined the two records shown in Figure 4.3,

type e_norm transformation is
record
priority : transformation_number := 0;
transformation : transformation_number
window : wc.rectangle :=
{(x 2> (min => 0,0, max => 1.0),
y => (min => 0,0, max => 1.0));
viewport : ndc.rectangle :=
(x => (min => 0.0, max => 1.0),
y => (min => 0,0, max => 1.0));
a : float := 0.0; ~=- used in the (wec => ndc)
b : float := 0.0; == transformation
scalex : float := 1.0;
scaley : float 1.03
-- ndc_x_point scalex * (wec_x_point) + a;
-~ ndc_y_point scaley * (wc_y point) + b;
end record;

.e
n
-

-e

type e_seg name is
record
segment : segment name;
WS : p_ws_ids; -- a pointer to the list of workstations
-- associated with this segment

transformation : transformation matrix :=
(1 => (1 =>1,0, 2 = 0,0),
2 => (1 =>0.0, 2= 1,0),

3 =>(1=>0.0, 2 =>0,0));
visibility : segment_visibility := visible;
highlighting : segment_highlighting := normal;
priority : segment priority := 0.0;
detectability : segment_detectability := undetectable;
end record;

Figure 4.3, Normalization Transformation, and Segment Types

4.7

LS asm b e Aol S Rt oo s AL PR S A Sell i Al Sl gl Sl G SCA L D R A A

I tried to instantiate the package with the package DC shown below.

type DC_TYPE is digits 5;
package DC is new GKS_COORDINATE SYSTEM (DC_TYPE);

Again the compiler accepted the package instantiation but any
program using a part of the instantiation DC would cause the program to
raise an exception before executing the first line of code. This is
because GKS_Coordinate System requires a generic parameter which is a
range of values (that is what the symbol "<>" means), and DC_Type is not
a range of values it is a restriction on the precision of floating point

numbers. To solve this problem I changed DC_Type to
type DC_Type is new float;

This new declaration of DC_Type worked on the ROLM vompiler,

This brings up an interesting point, "type DC Type is digits 5" is
simply a floating point number with at least 5 digits of aeccuracy, and
"type DC_Type is new float" is a floating point number without any given
degree of accuracy. GKS_Coordinate_System, which does not concern itself
with the accuracy of the generic parameter, should treat the two types
identically, but it doesn't. Therefore, I believe that there is a bug in
the ROLM compiler, because it would not accept "type DC_Type is digits 5"
as a generic input parameter.

3. The next problem I had was with a generic package, GKS List_
Utilities (for a complete specification of the package see Appendix B),

which creates variable length lists of the given private parameter.

4.6

Blin At o |

/N

Now, when procedure DO_SOMETHING shown in Figure 4.2 is run it will

print 'abede' followed by 'unhandled exception in...'. This error
message allows the programmer to determine what line of code caused the
program to bomb, This may seem excessive for this small procedure but
when all the programmer knows is that an exception was raised somewhere
in 20,000 lines of code, then there is a need for a systematic way to
find where the exception was raised.

Specific Errors. Specific errors which the compiler "missed"

are as follows:

1. The compiler allowed the following statement:

"y: constant := 63"

This is a legal Ada statement, but when I tried to run any program that
used this statement I got "unhandled exception..." occurring before the
first line of code was executed (note this error was corrected in the
newest release of the Ada compiler by the ROLM Corporation),

2. The second compiler glitch occurred when I instantiated a
generic package with an illegal type. The generic package GKS_Coordi-
nate_System (see Appendix B for the complete specification) called for a

generic parameter of type COORDINATE which was digits <>,

generic
type COORDINATE is digits <>;
package GKS COORDINATE SYSTEM is

end GKS_COORDINATE SYSTEM;

4.5

T T T ————— oy L am ames SAn g St Matitdnatt Shats ot iadh Shafs ~ Al A fhalis Al S lind B/l Yok b - C A T B T
A e T TTT— Ty ——————— Pl oS alain g . Bolinf lalt .

3

L

determine where this error occurred in the program. To do this I
resorted to using the alphabet scheme of debugging shown in Figure 4.1,
and Figure 4,2, Figure 4,1 shows the program to be debugged by the

alphabet scheme,

procedure DO_SOMETHING is
number : positive;

begin

number := 2;

while number >= 0 loop
number := number - 1;

end loop;

end DO_SOMETHING;

Figure 4.1. Procedure DO_SOMETHING

To use this technique one needs to include a standard output package
(text_io will do) in the program that is to be debugged. Then, as shown
in Figure 4,2, between each statement of code one outputs a different

character of the alphabet,

with text_io; use text_io;
procedure DO_SOMETHING is

number : positive;

begin

put('a');

number := 2;

put('b');

while number >= 0 loop
put('e');
number := number - 1;
put('d');

end loop;

put('e');

end DO_SOMETHING;

Figure 4.,2. DO_SOMETHING being Debugged

4.4

performs these functions, Using these functions and some of the attri-

bute functions defined in Ada, AFIT_GKS was able to handle all the code
needed to drive the graphical devices, without resorting to assembly
language statements.

Trouble with Running Ada with the ROLM Compiler. The first problem

with running Ada with the ROLM compiler is the run time error messages
(or lack thereof). When an exception is encountered in the program and
it is not handled by an exception handler, then one of the following two
messages appears on the screen,

"unhandled exception reaches main program" or

"unhandled exception in library unit, prog"
Nothing else is given. No line number! No error message! No package
name! The error encountered could be anything!

I feel this is a major problem with this implementation of Ada.
Trying to debug a program can quickly turn into a nightmare. A simple
bug takes about 1 hour to find. An average bug takes about 3 to 4 hours,
A difficult bug can take up to 12 hours to find. For example, I spent 4
hours trying to determine why a package specification (which contained
some variables) would not allow any program to 'with! or 'use' it., I
found out that the error was that one of the variables was initialized to
0.0, but it was of a type constrained to be greater than zero. A
friendly compiler and/or informative run time message should say
something like 'constraint error in initialization of variable x in
package 'my_name'', instead of 'unhandled exception...'.

Exceptions are also raised by the compiler whenever a type conflict
occurs in the execution of a program. Again, the only error message

given is 'unhandled exception...'. Therefore, the programmer must

4.3

. - - N - e - - - . . . - A - - Tt '
P . E T UL AL B N e T T B .
PN N N PP N S SR Y " PURRP. . W, R N Sl VL. NP . Y. SN, W T T T .

indh v, B it fare g tol

inquiry function then the routine raises a predefined exception.

This compiler is very good at explaining what syntax errors it
found. It gives the line numbers as well as a two to ten line
description of the problem encountered. These problems range from type
constraints violated to undefined variables. It also allows for initiali-
zation of variables when they are defined., This saved initializing many
of the variables at the beginning of the procedures,

Another feature of Ada is its portability. This version of AFIT GKS
should run on any validated Ada compiler,

Another observation I found with the language was its strong con-
formity to the in, out, in out, specification of parameters, If a pro-
cedure has a parameter of type 'in' then that parameter variable can not
be set in the procedure, if the parameter is of type 'out' then that
parameter can not have its value tested in the procedure. This insures
that the programmer does not accidently misuse the parameters.

One last observation is the strong relationship between a module
specification header and a module body. If anything is different, even
the name of a parameter, then the compiler will not accept the package
body of the module. This insures that anyone using the module specifica-
tion has the correct module specifications for the procedure in the
module body.

Ada & Graphics. To effectively do graphies in the Ada programming

language one must have input and output (I/0) routines which output
characters without putting out a carriage return or a line feed. Also,
the I/0 package must be able to output control characters since many
pieces of graphical equipment need control characters to draw graphical

pictures. AFIT_GKS has acce3s to a package called 'tty io' which

4.2

- e e e T Te

DA e "Rlie SRR Rl il Ul il il e SE N b B i o B 4 g . SN S TR

IV. Analysis

As stated in the problem definition (chapter 1), this thesis shall
examine three related topics, the Ada programming language, the Harris
draft binding of Ada to ANS GKS, and the specification of ANS GKS. This

chapter will comment on the good and bad points of each of these topics.

Ada

This project was written in the Ada programming language. The
language is new and powerful, but some of the "bugs" haven't been worked
out of the validated ROLM Ada compiler that was used in compiling AFIT_
GKS. This section will cover the good and bad points of running Ada on
the ROLM Data General.

Positive Comments, The Ada programming language allows problems to

be broken down into several differer compilation units each containing a
separate "package" which allows for modularity. The package concept
allows for a specified interface between the module specifications and
the code in the packages.

Another feature of Ada is typing. Ada allows a wide variety of
different types which the compiler checks to see if the variable value
stays within its type throughout the program.

Another feature is the generic function. This project used this
feature to develop variable length lists,

The error handling fe-~tures of Ada allow errors to be captured and
handled so as to avoid abnormal termination. This feature allows the
user of AFIT_GKS to handle any errors in calling AFIT GKS. Anytime an
error is recognized in the calling of AFIT GKS, the error message is

logged in the error file (GKS Error), and if the routine is not an

4.1

W T Y T

Ty T .oy

Error functions, and the Workstations. After the design consideration of
each area was developed, the implementation of each area in AFIT GKS was
explained. Finally, this chapter concluded with a discussion of those

overall features of AFIT_GKS that do not fall into any one major area of

AFIT_GKS.

3.48

IR O I S W T N e e RPN a3 PRI ;~'_\.‘5_'-‘g\‘-_'\~"J

- .
p o

.

o
e
h

gt onte i Sl it S e N S S A AR PR SO SR S S S NS EMC

The other way that a user of AFIT_GKS can defer the redrawing of all
the segments is by setting the implicit regeneration mode. The mode can
be set as follows:

1. SUPPRESSED: 1implicit regeneration of the picture is suppressed,
until it is explicitly requested.

2. ALLOWED: implicit regeneration of the picture is allowed(1:41).

-y using the deferral mode in conjunction with the regeneration mode
the user of AFIT GKS can specify exactly when a redrawing of the display
surface will take place. It is suggested that the user of AFIT GKS not
use the combined deferral and regeneration mode of ASAP and ALLOWED.

This is because AFIT GKS will redraw the screen whenever the display
surface may not be perfectly correct (which is very frequently). The
user of AFIT_GKS may change the deferral and regeneration mode by
invoking the procedure set_deferral state (see Appendix A).

Testing. Whenever a large project like AFIT GKS is implemented, a
thorough test plan must be accomplished. The testing of AFIT_GKS was
found to be much more difficult than originally planned because of the
poor run time error messages found on the ROLM Data General. AFIT_GKS
has been only minimally tested. This minimal testing consisted of
executing each AFIT_GKS procedure with one valid set of input. It is
recommended that anyone continuing development of AFIT_GKS should develop
and run a thorough test plan in accordance with an emerging ANS GKS

certification/validation program(5:485).

Conclusions
This chapter has explored the many design considerations that went
into AFIT_GKS. Mainly, this chapter explored the design of the four

major parts of AFIT_GKS, the User Functions, the Data Structures, the

3.47

AU Sl S

ik Sdend el cifend

TR Ty L—————1 Pudiaihan. AR At Enid Antt dlarh San 2t Bt e ettt B ol Slas et Skt Mk h T A% SRS S A A Sl S Sahe S A R S S e e |

Deferral Modes, There are four deferral modes available in

AFIT GKS. They are ASAP, BNIG, BNIL, and ASTI, and they are described as
follows:
1. ASAP: The visual effect of each function will be achieved As

Soon As Possible (ASAP).

2. BNIG: The visual effect of each function will be achieved on
the workstation Before the Next Interaction Globally (BNIG), i.e. before
the next interaction with any input device happening on any workstation.
3. BNIL: The visual effect of each function will be achieved on
the workstation Before the Next Interaction Locally (BNIL), i.e. before
the next interaction with an input device happening on this particular
workstation,
4, ASTI: The visual effect of each function will be achieved on
the workstation At Some Time (ASTI)(1:40-41). '
These states permit the user of AFIT GKS to defer the redrawing of |
all segments on the display surface. The control function redraw_all
segments_on_ws will perform the redrawing of the display surface. Re-
draw_all segments on_ws is invoked by AFIT GKS whenever an AFIT_GKS
function is called which can only be correctly realized by redrawing all
of the segments on the workstation. For example, if the user of AFIT GKS
calls the procedure delete_segment for a segment that is being displayed
on workstation 1 (the Tektronix 4014), then if the deferral state
requires a redraw, the workstation display surface will be cleared and re-
drawn without the deleted segment, This is because the Tektronix 4014
does not have the ability to erase a segment without clearing the entire

screen,

3.46

PR VY N S S MY o AL a3 A . RV

variables are part of the workstation but they are not workstation

dependent since they are the same for any type of workstation. This
being the case there is no reason to bar the device independent code from
inquiring, and setting their values since this will cut down on the
device dependent code but not restrict any powerful output functions of
the device (see Figure 3.1).

Transformations. There are five transformations that take place in

AFIT GKS. They are as follows:

1. World coordinates to normalized device coordinates (we => ndec).

2. Normalized device coordinates to world coordinates (ndec => we).

3. Normalized device coordinates to device coordinates (ndc => dec).

4, Device coordinates to normalize device coordinates (dc => nde).

5. Segment transformation (nde -> nde).

The first two transformations are the device independent transforma-
tions. They get the transformation values from the GKS_State Lists and
therefore, they are independent of the workstations. The next two trans-
formations ((nde => de¢), and (de => nde)) transform normalized device co-
ordinates (ndec) to and from device coordinates (de) of a particular work-
station, Therefore, these two functions must be a part of the
workstation that they perform the transformation on. The transformation
values are found in their respective Workstation State Lists. The
segment transformation, using an input segment transformation matrix,
transforms points from (ndc -> nde). Both the device independent trans-
formations, and the segment transformations can be workstation
independent modules, and it is suggested that these functions may be put
into a separate package. Presently, they'can be found with the worksta-

tion dependent transformations located in Int_ws_1.

3.45

—y,

boxes shown on Figure 3.1, Instead, these topics are involved with AFIT_

GKS as a whole unit,

Device Independent / Dependent Code., One of the major

considerations of any graphical package is where to put the interface
between the code that doesn't need to know what device it is running on,
and the device dependent code that actually invokes the graphical device
in a totally machine dependent manner.

The problem is that if the device independent code is too large and
does too many things then a device with extra capabilities will not be
able to perform all its special capabilities because the package has
already broken down that capability into smaller steps. On the other
hand, if the device independent code is too small then each new
workstation added to AFIT_GKS will cause the maintainer of AFIT GKS to
duplicate a large section of device dependent code.

The solution offered by Simon's article on minimal GKS is very
practical(6:185). He suggests that the interface be made at the point
where GKS calls the individual workstations. The advantages to this are
that each workstation is a different type and most likely will work dif-
ferently. Therefore, each individual workstation can then execute its
own device dependent code that performs the requested function. Next,
since each workstation does not perform any function until it is called
by its name, there is no since in having device dependent code being
written for sections of AFIT_GKS that haven't called upon the worksta-
tion. Therefore, as shown in Figure 3.1 AFIT GKS defines the device
independent / dependent code line directly above the workstations.

The only functions left to decide about are those that access the

Workstation_Description_Tables, and the Workstation State_Lists. These

3.44

. -
* ': 8 I. » l Aada -. 8 -& -

I N
-

-~

-

Mnndaniandhandiindia

LW

- Harris Binding

;i; »i:{ The Harris binding is a rruposed set of standardized module headers

Eij and types which allow all the different Ada implementations of ANS GKS to

. have the same external interface. This way any application program that
uses AFIT GKS can use the same interface on any other ANS GKS implementa-

tion that uses the Harris binding.

The Harris binding used in AFIT GKS has not been accepted by the
ANSI standards committee. It is being reviewed by the public in order to
work out its minor problems. I was one of the first to receive the
draft.

Overall, I feel that the Harris Corporation did a great job of pre-
paring a binding to ANS GKS. This was a large project that was greatly
needed. However, because it was a first draft, it still had some minor
errors. Overall, I found 60 syntax errors, 10 logic errors, 8 cases
where the ROLM compiler would not accept the standard proposed Ada types,
and ! cases of what I thought was poor Ada style,

The first two kinds of errors, syntax and logic, were simple, They
were errors that were obvious to me and Harris and they were changed
without discussion., They included spelling errors, mislabeled numbers,
and error statements in the wrong place.

The cases where my compiler would not accept the Harris binding were
more serious, Harris later tried to implement the types that I had
problems with on their ROLM Data General. When the type statement was
rejected, they had to change the standard for everyone using the Harris
binding. After a telephone conversation with the Harris Corporation, I
found out that Harris did not compile their own specification on a

validated Ada compiler, Instead, they used the Ada programming manual

4.10

R Y T T e Ty Yy e s e -y w =

(3), and a non-validated IBM-PC Telesoft Compiler, to test out their
specifications of the binding.

Harris Binding Not Accepted by the ROLM Data General. The following

are statements that the Harris Corporation proposed as part of the ANS
GKS binding, but they were not accepted by the ROLM Data General
compiler,

1. Harris proposed a package instantiation of the generic package,
GKS_List_Utilities (See Appendix B), using a variant length type,
Variable_String(6:354). This package instantiation which is shown in

Figure 4.5 was rejected by the ROLM Data General Compiler.

max_length : constant integer := 50;
subtype VARIABLE STRING LENGTH is integer range 0..max_length;

type VARIABLE STRING (LENGTH : VARIABLE STRING_LENGTH := 0) is
record

CONTENTS : STRING(1..LENGTH);
end record;

package VARIABLE_STRINGS is new GKS_LIST UTILITIES
(VARIABLE_STRING);

Figure 4.5. Variable Strings

The ROLM Data General would not accept the package instantiation because
VARIABLE _STRING is not of a fixed length. I do not know whether this is
a problem with the ROLM Data General or whether this is not a supported
feature of Ada.

2. At the beginning of this thesis effort the ROLM Data General was

having trouble with the statement:

"x : constant := 63"

4,11

A e A e A A

. . - N
. .- . . -t . T S .
. . - ~ e e . R . . .
RSP0 TN TTTRE Y W O, = Sttt dmatimtuenenaiondiinsdod

1

AR G T i i s B Sl PR Sl A A A B AP S NSl s ac st RS syl ittt Rtk b At e e il A

which was part of the Harris binding. Whenever I tried to use this
constant statement in a type declaration, an unhandled exception would be

raised before any code executed, I changed the constant to

"x : constant integer := 63"

and I had no more problems. (Note: This bug has been fixed on the new
version of Ada released by the ROLM Corporation).
3. The two types, input_class, and choice_input, shown in Figure

4.6, were not allowed together on the ROLM Data General.

type INPUT_CLASS is (locator_input,
stroke input,
valuator_input,
choice_input,
pick_input,
string _input,

type CHOICE INPUT ...

Figure 4.6. Input_Class and Choice_Input

This is because choice_input cannot be defined as an element in an
enumeration type, and a declared type, The Harris Corporation agreed
that this was a problem with the Harris binding and was changed in the
binding.

Style Changes to the Harris Binding. Another input I made to the

Harris binding was pointing out that one of their data types causes the
access to a variable field to be "x.style.style". The two "style"'s

involved mean different things. Harris agreed and it has been changed to

"x.style.hatch_style".

4,12

S e, MO Gt O PR . P U WY P

Cai .‘”.v'_w

L

OF

Ll

Dl AN

1 also proposed a change in the style of the Utility Functions

(called Set_Transform in

AFIT_GKS). As described previously in the User

Functions section of chapter 3, these functions create transformation

matrices for use in segment transformations. Presently, the Utility

Functions listed in Appendix A (under the package Set Transform) do not

have any default values.

If these functions had default values, then the

user of AFIT_GKS could call these functions with only those values which

were not the standard default values. For example, the procedure

Evaluate_Transformation_Matrix shown in Figure 4.7, could be specified

using the default values

shown in Figure 4,8,

procedure EVALUATE TRANSFORMATION MATRIX

(FIXED_POINT
SHIFT VECTOR

ROTATION_ANGLE : in radians;

SCALE_FACTORS

TRANSFORMATION : out transformation_matrix);

: in we.point;
¢ in wec,vector;

: in transformation_factor;

Figure 4.7.

Present Evaluate Transformation Matrix

procedure EVALUATE TRANSFORMATION MATRIX

(FIXED _POINT
SHIFT_VECTOR

ROTATION ANGLE : in radians :z 0.0;

SCALE_FACTORS
(x => 1
TRANSFORMATIO

: in we.point := (x => 0.0, vy => 0,0);
¢ in we.vector := (x => 0.0, y => 0.0);

¢ in transformation_factor :=
.0, v =>1.0);
N : transformation_matrix);

Figure 4.8,

Proposed Evaluate Transformation Matrix

By using the proposed Evaluate Transformation_Matrix the user of

AFIT_GKS would only have

to specify the rotation_angle if the user wanted

a transformation matrix which would rotate a picture 90 degrees around

the origin. The user would not have to specify the fixed_point, shift_

4,13

Piiie e s b e 2y 1y e e e e o aer

Cat v man o A S S MU s SAAt G e it S AEii Ad anicherd ARG End st et 7

'
;—'-

vector, or the scale_factor,

Conclusions, The Harris Corporation created a draft binding of GKS
to ANSI Ada., This section covered the minor problems that occurred when
AFIT GKS used the Harris binding. It concludes with some suggestions as
to how certain small parts of the binding might be improved. Overall, I

found that the Harris binding was a great help to this project, because

it eliminated designing the entire external interface of AFIT_GKS.

I ANS GK3
9
ANS GKS is the graphics system which was implemented. Overall, I

found this graphical package was well designed. It allows for various

¢ devices and different levels of graphical devices. I especially like how
-
g it allows the program to use all of the facilities of the graphics
terminals with relative ease, 1
‘ @ ANS GKS Proposal. I did however find two errors in the ANS GKS é
8 proposal as given in the Special GKS issue of Computer Graphics February
g 1984 (1),
The first error found in the ANS GKS proposal was on page 121, On i
this page error 144, is duplicated(1:121). The second error 144 should 2
be: ;
3
|
g
"error 145 echo area is outside display space" 1
)

' Second, I believe that a variable "readback" should be added to the Work-

station_Description_Table(1:204). The reason is that

Error #40 Specified workstation has no pixel store readback

capability"”

should be able to check the Workstation Description_ Table to inquire as

to whether or not the workstation has this capability.

Conclusion

In this chapter I have discussed the three major areas which this
thesis explored. Overall, the Ada programming language, the Harris
binding, and the ANS GKS specifications were well designed. They each

had some errors which were discovered as AFIT_GKS was developed.

4.15

LASR AT A Pt &0 S S 1 T I i R e o i e

v

Al Ael i fiats et s |

V.

Conclusions and Recommendations

Conclusions

In conclusion, as stated in the problem definition, there are
several questions that this project wanted to explore.

1. Can Ada:support a large project?

Except for some problems with the maximum size of variables, the
ROLM Ada compiler permits large projects to be developed.

2. How easy is Ada to use in a large project?

The ROLM compiler used was excellent at catching and explaining
syntax errors. The run time error messages were terrible. They need to
include at a minimum:

A. The exception that was raised but not handled.

B. The line and package name where the exception was raised.

Without this information the programmer has no idea what went wrong
with the program and on the average it took about 1 hour to find a bug.
The minimum time was about 15 minutes, and the maximum time was about 24
hours.

3. Can Ada handle computer graphics?

Yes, it has the two capabilities which are essential for computer
graphics., First, Ada can send out control characters. Second, Ada can
convert ascii characters to their numeric equivalents and vice versa.

For anyone using Ada to do computer graphics, an I/0 package must be
developed which outputs ascii characters without putting out a <er> or a
<1f> control character. On the ROLM Data General this package was

already present, Another I/0 package that might be necessary is one that

outputs 8-bit binary bytes since some graphical devices (like the Raster

5.1

R T W W T LIRSl B S th ik Jenit ol ol thi ol t ol Suth SRR Raf

ffi ' Technologies Model One) require this kind of information in order to dis-

;?: R play graphical information.

Results

AFIT _GKS implemented 169 functions of ANS GKS using the Harris
binding (see Appendix A for a complete list of these functions).
However, AFIT GKS did not implement the other 45 functions of ANS GKS as
defined by the Harris binding. In addition, AFIT GKS did not implement

an additional 38 functions which were defined to work on the private data

structures. A complete listing of all the functions that are specified
by the Harris binding and are not implemented by AFIT GKS can be found in
: Appendix C.

jo

AFIT _GKS implemented and did a cursory testing of all the User

—

functions defined in AFIT_GKS (See Appendix A). All of the AFIT GKS

@; functions were tested given one set of valid input data, Complete

rigorous testing was not done.

Recommendations

This thesis was a first attempt at creating ANS GKS in Ada. The
following are suggestions to further and improve AFIT_GKS.

1. The number and type of workstations could be expanded.

2. The transformation and segment priority list could be rede-
signed to use a generic sorting function,

3. The number of input devices may be expanded. For example,

another locator device could be added to the Tektronix 4027 that would
draw lines as the cross hairs moved (using the ink command)(15:8-11).
4, The rest of the ANS GKS functions (listed in Appendix C) should

be coded.

5.2

IR P . L W . S S . T b

5. The inquiry functions that have an input parameter of 'returned_

valued' should be recoded so that when 'returned_values' is "realized",
the function returns values as they are actually realized on the given
workstation.

For example, the function "Inq_Polyline Representation" shown in
Figure 5.1 should return the "line" type, the line "width" scale factor,
the polyline "colour" index for the bundle specified by the polyline

"index" on workstation "ws",

procedure INQ POLYLINE REPRESENTATION
(ws : in ws_id;
index : in polyline_index;
returned_values : in return_value_type;
el : out error_indicator;
line : out line_type;
width : out line_width;
colour : out colour_index);

Figure 5.1. 1Inq_Polyline_Representation

The "returned_values" parameter indicates whether the geturned values
should be as set by the program, or as they were actually realized
(10:244), Presently, the "returned_values" parameter is ignored.

6. AFIT_GKS should be thoroughly tested using a certification/
validation program(14:485),

T. Stroke precision text should be added to AFIT GKS. By defini-
tion, stroke precision text is displayed in the requested text font, at
the text position by applying ali text attributes(1:29).

8. The world coordinate to normalized device coordinate transforma-
tion for the primitive functions shown in Figure 3.8, should be moved

down to the workstation., This will separate the Primitive package, from

5.3

LA A

&

the Int_ws_1 package which contains the transformation function,

9. The binding of attributes shown in Figure 3.8, should be moved
after clipping so that totally clipped primitives do not bind their

attributes to the workstation,

Known Bugs in AFIT_GKS

AFIT GKS is a first attempt at writing an ANS GKS graphics package.
Therefore, there are some known errors in this program.

1. If the user sets up a fill area bundle_table entry that has an
interior style of hollow, or solid, and the pattern_index or hatch_index
is inquired from this bundle_table entry, then program will bomb. 4ud
GKS states that the bundle_tables should always contain a 'style' index
and therefore, this should never cause an error.

2. The number of segments supported on AFIT GKS is less than 32,000
because the ROLM Data General compiler will not allow a segment list to
be this long. So far AFIT GKS can only support 50 segments before the
compiler refuses to allow the variables to be created,

3. If the program terminates before closing the error file then any

information put into the file is lost.

Conclusions

AFIT_GKS is a subset of ANS GKS written in the Ada programming
language. First, this thesis introduced the reader to ANS GKS and the
Ada programming language. Second, the thesis covered the requirements of
AF1T_GKS. Third, the thesis covered the design and implementation of

AFIT GKS. 1Included in the chapter on design was a section on how AFIT_

e E
RIURRAN| Jres

GKS was tested. Fourth, the thesis analyzed the strengths and weaknesses

LA SR ar i B A e e m e

of the three major areas explored by the thesis, the Ada programming
language, the Harris binding, and ANS GKS. Finally, the thesis concluded
with a discussion about what was learned from this project and how AFIT

GKS might be extended and improved,

5.5

X

Appendix A

Users Guide to AFIT GKS

This appendix contains the information necessary to write an ap-

plication program that uses AFIT GKS.

AFIT GKS took its external

interface from the Harris Corporation's draft binding of Ada to ANS CGKS.

Therefore, this entire appendix is practically a direct quote of the

Harris binding(6).

Introduction
Cross Index
External Types . . .
AFIT_GKS Functions .
AFIT GKS Errors . .

Sample Program ., . .

System Dependent Features of

N .
[P YL W U AP, S

SRS .
PRV WY W

Table

of Contents

. s

AFIT GKS

R S O W W O W

Al

PR
-

e e e A1l
e e e e e A.38
e e e e e A.64
e e e e e A.68

e e e e e A71

Introduction

This appendix is intended to be a users guide to AFIT GKS. As
such it includes a cross index, a list of all the types needed to ac-
cess AFIT_GKS (external types), and a list of all the functional
specifications of the AFIT GKS functions (AFIT_GKS Functions). Next,
this appendix contains a list of all the errors that can occur in AFIT
GKS along with their error numbers (AFIT GKS Errors). It concludes
with a sample program running on AFIT GKS, and a section describing some

of the implementation dependent features of AFIT GKS.

Cross Index

The cross index lists in alphabetical order all the functions of
ANS GKS as specified in the proposed Harris binding of GKS to ANSI Ada.
The AFIT GKS functions are those listed in the cross index that have a
"Y" under the column "Implemented'. Also included in the cross index
is the name of the package that contains the function (or should con-
tain the function if the function is not implemented), and the possible
errors that can occur in calling any ANS GKS function. Finally, the
cross index lists the level of ANS GKS that the function is a part of

and the page that the procedure's specification can be found in this

appendix.

Implemented Errors Checked Page
Function Name Package Level
Accunulate Y Set transform 8 la A.62

transforﬁZtion_matrix

Activate ws Y Control 6,25,29,33,35 ma A.38
Associate segment_ Y Segments 6,25,27,33,35, 2a A.44
with ws 124
Await event N Input 7,147,505 mc
Cell array N Primitives 5 Oa
Clear ws Y Control 6,25,33,35 ma A.38
Close gks Y Control 2 ma A.38
Close segment Y Segments 4 la A.44
Close ws Y Control 7,25,29,147 ma A.38
Copy segment to ws Y Segments 6,25,27,33,35, 2a A.45
36,124
Create segment Y Segments 8,121 la A.44
Deactivate ws Y Control 3,30,33,35 ma A.38
Delete segment Y Segments 7,122,125 la A.44
Delete segment_from _ Y Segments 7,25,33,35,123, la A.44
ws 125
Emergency close gks Y Emergency None 0a A.62
| o Error logging Y Error_Handling None Qa A.63
Escape N Control 8,501 ma
Evaluate Y Set transform 8 la A.61
transformation matrix
Fill area Y Primitives 5,100 ma A.39
Flush_device_events N Input 7,25,38,140,147 me
Gdp N Primitives 5,104 Oa
Get choice N Input 7,150 me
Get _item type from N Metafile 7,25,34,162 Oa
gksm
Get locator N Input 7,150 me
Get pick N Input 7,150 lc
Get_string N Input 7,150 mc
Get_stroke N Input 7,150 jute
Get valuator N Input 7,150 mc
Initialise choice Y Set input 7,25,38,51,1" ., mb A.46
123,140,141,14,
145
Initialise locator Y Set input 7,25,38,51,140, mb A.L6
- - 141,144,145
Initialise pick Y Set input 7,25,37,51,140, 1b A.47

141,144,145

A3

fAD-A152 954 AFIT GKS--A GKS IMPLEMENTATION_IN THE ADR PROGRAMMING 2/2 .
LANGUARGE(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB ’
i OH SCHOOL OF ENGINEERING R S RUEGG DEC 84
UNCLASSIFIED AFIT/GCS/MATH/84D-3 F/G 972 NL

= 28 flzs |
=ik |
T |

I et

22 flis s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

QA

|
|

LIRS YRt Aot ki et dh a4 ™ LY WL Na TRy -

R N N TR T MTET W R SI R TY W NN YN YN I s TS F'J'Ww.“m‘ﬂ

Inplemented Errors Checked Page
Function Name Package Level
Initialise string Y Set_input 7,25,38,51,140, mb A.47
141,144,145
Initialise stroke Y Set_input 7,25,38,51,65, mb A.46
140,141,144 ,145

Initialise valuator Y Set_input 7,25,38,51,140, wmb A.46
Inq_char expansion 141,144,145

factor Y Inq_attributes 8 ma A.52
Inq_char_height Y Inq_attributes 8 ma A.50
Inq_char_spacing Y Inq_attributes 8 ma A.52
Inq_char_up_vector Y Inq_attributes 8 ma A.50
Ing_choice device _ N Ing_input 7,25,38,140 mb

state

Inq_clipping Y Inq_attributes 8 ma A.53
Inq_colour_facilities Y Inq_facilities 8,39 ma A.60
Inq_colour_ Y Inqg_represent 7,25,33,35,36, ma A,.56
representation 87
Inq_current_ Y Inq_attributes 8 ma A.52
normalization

transformation number
Inq_default choice N Inq_input 8,38,140 mb
device_data
Inq_default_deferral Y Inq_represent 3,39 la A.57
state_values
Inq_default_locator_ N Inq_input 8,38,140 mb

device data
Inq_default pick _ N Inq_input 8,37,140 1b

device data
Inq_default string_ N Inq_input 8,38,140 mb
device_data
Inq_default stroke N Inq_input 8,38,140 mb
device_data
Inq_default_valuator_ N Inq_input 8,38,140 mb

device data
Inq_display_space Y Inq_represent 8,31,33,36 0a A.57
size
Inq_dynamic_ Y Inq_facilities 8,39 la A.61
modification of _

segment attributes
Inq_dynamic__ Y Inq_represent 8,39 la A.57
modification of ws_

attributes
Inq_fill area colour_ Y Inq_attributes 8 ma A.52
index
Inq_fill area_ Y Inq_facilities 8,39 ma A.59
facilities
Inq_fill area_index Y Inq_attributes 8 ma A,51
Inq_fill area_ Y Inq_sttributes 8 ma A.52
interior_style

A4

.........

SR LT
A SaParoral

RO

)

Implemented

Function Name

Inq_fill area
representation
Inq_fill area style
index
Inq_gdp
Inq_input queue_
overflow
Inq_level of gks
Inq_line type
Inq_linewidth scale_
factor
Inq_list of asf
Inq_list of _
available gdp
Inq_list of _
available ws_types
Inq_list of colour_
indices
Inq_list of fill
area_indices
Inq_list of _
normalization
transformation
numbers
Inq_list of pattern
indices

Inq_list of polyline

indices
Inq_list of
polymarker indices
Inq_list of text
indices
Inq_locator_device_
state

Inq_max length of ws__

state_tables
Inq max
normalization

transformation number

Inq _more_
simultaneous_events
Inq_name of_ open_
segment
Inq_normalization_
transformation
Inq_number of
available logical
input_devices

Errors Checked

Package

Inq_;epresent
Ing_attributes

Ing_facilities
Inq_input

Inq_attributes
Inq_attributes
Inq_attributes

Inq_attributes
Inq_facilities

Ing_attributes
Ing_represent
Ing_represent

Ing_attributes

Inq_represent
Inq_represent
Inq_represent
Inq_represent
Inq_input
Inq_segment

Inq_attributes

Inq_attributes
Inq_attributes
Inq_attributes

Inq_input

7,25,33,35,36,
76
8

8,39,41.
7,148,149

0o 0o

7,25,33,35,36
7,25,33,35,36

8

7,25,33,35,36
7,25,33,35,36
7,25,33,35,36
7,25,33,35,36
7,25,38,140
8,39

8

8,50

8,38

la

Oa

la
la
la

1a

Oa

mc

la

mb

A.55
A.54
A.54

A.55

A.60

A.50

A.53
A.53

A.53

Implemented

Function Name

Inq_number of
segment_priorities
supported

Inq _operating state
value

Inq_pattern_
facilities

Inq_pattern_height
vector

Inq_pattern size

Inq_pattern_
reference_ point

Inq_pattern_
representation

Inq_pattern width_
vector

Inq_pick device state

Inq_pick id

Inq_pixel

Inq_pixel array

Inq_pixel array _
dimensions

Inq_polyline colour_
index

Inq_polyline
facilities

Inq_polyline_index

Inq_polyline
representation

Inq_polymarker_
representation

Inq_polymarker_
colour_index

Inq_polymarker_ index

Inq_polymarker_
facilities

Inq_polymarker_ size _
scale_factor

Inq_polymarker_type

Inq_predefined_
colour_representation

Inq_predefined fill
area_representation

Inq_predefined pattern_
representation

Inq_predefined_
polyline_
representation

.

Errors Checked

Package

Inq_segment

Inq_attributes
Inq_facilities
Inq_attributes

Inq_attributes
Inq_attributes

Inq_represent
Inq_attributes
Inq_input
Inq_attributes
Inq_pixels
Inq_pixels
Inq_pixels
Inq_attributes
Inq_facilities

Inq_attributes
Inq_represent

Inq_represent
Inq_attributes

Inq_attributes
Inq_facilities

Ing_attributes

Inq_attributes
Inq_facilities

Inq_facilities
Inq_facilities

Inq_facilities

A.6

..

8,39

None
8,39
8

8
8

7,25,33,35,36,

7,25,33,35,36,
61
7,25,33,35,36,
65

8,39,86
8,39,75
8,39,79,83

8,39,60

........
...........

Page
Level
la A.60
O0a A.49
Oa A.59
ma
ma A.51
ma A.51
la A.56
ma
mb
1b A.51
Oa
Oa
Oa
ma A.51
ma A.57
ma A.50
la A.54
la A.54
ma A.52
ma A.50
ma A.,58
ma A.52
ma A.51
0a A.60
0a A.59
Oa A.59
Oa A.58

Implemented Errors Checked Page
Function Name Package Level
Inq_predefined Inq_facilities 8,39,64 0a A.58
polymarker
representation
Inq_predefined Inq_facilities 8,39,68 0a A.59
text representation
Inq_segment _ Inq_segment 7,122 la A.61
attributes
Inq_set of active ws Inq_attributes 8 la A.50
Inq_set of Inq_segment 7,122 la A.61
associated ws
Inq_set_of open_ws Inq_attributes 8 0a A.50
Inq_set_of_segment Inq_attributes 7 la A.53
names_in use
Inq_set_of segment Inq_represent 7,25,33,35 la A.56
on_ws
Ind:étring_ﬁevicg_ Inq_input 7,25,38,140 mb
state
Inq_stroke device_ N Inq_input 7,25,38,140 mb
state
Inq_text alignment Y Inq_attributes 8 ma A.5l
Inq_text colour_index Y Inq_attributes 8 ma A.52
Inq_text_extent N Inq_represent 7,25,33,35,36,69 ma
Inq_text facilities Y Inq_facilities 8,39 ma A.58
Inq_text font_and_ Y Inq_attributes 8 ma A.52
precision
Inq_text index Y Inq_attributes 8 na A.50
Inq_text path Y Inq_attributes 8 ma A5l
Inq_text_ Y Inq_represent 7,25,33,35,36,69 1la A.55
representation
Inq_valuator_device Inq_input 7,25,38,140 mb
state
Inq_ws_category Y Inq_represent 8 0a A.56
Inq_ws_class Y Inq_represent 8,39 0a A.57
Inq_ws_connection Y Inq_attributes 7,25 ma A.53
and_type
- Inq_wd_deferral and_ Y Inq_attributes 7,25,33,35,36 0a A.54
N update_states
- Inq_ws_max_numbers Y Inq_attributes 8 la A.50
N Inq_ws_state Y Inq_attributes 7,25 . 0a A.53
- Inq_ws_transformation Y Inq_represent 7,25,33,36 ma A.56
'@ Insert_segment Y Segments 5,27,124,125 2a A.45
b? Interpret_item N Metafile 7 0a
E} Message N Control 7,25,36 la
e
b Open gks Y Control 1,500 ma A.38
;.) Opeﬂ:ﬁs Y Control 8,21,24,26,28 ma A.38
; A7
L

................... -
JUE . LR P s T e, AR h - Y

N LT e T . . s I LY S AT SN L TR T PR oy

(DRI PP P SO LIS W U W WAL PR PN, WA AL ST VR, o Uk WP APT.Y S AP U A S, APEDE S S O PSP, AP I, "y e YN "Iy INOr SN ISR R SV B IS SR N

wrTeTeT T

Implemented

Function Name

Polyline
Polymarker

Read_item from gksm
Redraw all . Segments__
on_ws
Rename_segment
Request choice

Request_locator
Request pick
Request_string
Request_stroke
Request_valuator
Sample choice
Sample_locator
Sample pick
Sample string

Sample_stroke
Sample_valuator

Select normalization_

transformation
Set_asf
Set_detectability
Set_deferral state
Set_char_expansion_
factor
Set_char_height
Set_char spacing
Set char _up_vector
Set “choice _mode

Set clipping indicator

Set_colour_
representation

Set_fill area colour_

index

Set_fill area_index
Set_ 111 _area_
interior_gtyle
Set_fill area
representation

< = <

[l

Ko gl g <o 222222

<

AL i wn it kot Yais S S wbdh Sl S U i A i d 6 S ML AC A B S ot A4

Errors Checked

Package

Primitives
Primitives

Metafile
Control

Segments
Input

Input
Input
Input
Input

Input

Input
Input
Input
Input
Input
Input
Transform

Set_primitives
Segments
Control
Set_primitives

Set_primitives
Set_primitives
Set_primitives
Set_input
Transform
Represent

Set_primitives

Set primitives
Set_primitives

Represent

A.8

5,100
5,100

7,25,34,162
7,25,33,35,36

7,121,122
7,25,38,140,
141,504
7,25,38,140,
141,504
7,25,37,140,
141,504
7,25,38,140,
141,504
7,25,38,140,
141,504
7,25,38,140,
141,504

25,38,140,142
25,38,140,142
25,37,140,142
25,38,140,142
25,38,140,142
25,38,140,142

,38,140,143

~3 00 ~1 00 00 OO
- e

,25,33,35,36

(o]

@®»

7,25,33,35,36,
77,80

Ne R TN gw Ty Ty Y Yy

Oa
la

1la
mb

mb
1b
mb

mb

me
mc
lc
me
ne
me
ma

1b
la
Oa

Oa
ma
mb

ma

Oa
ma

. - R R i S e .
R P R Y T T o T S T S

A.38

A.44
A.49

A.48
A.49
A.49
A.48

A.49

ey

e

-

e
Wt

e R

i

-

<t -
USSP W AP WS AL DL

Implemented

Function Name

Set_fill area style
index
Set_highlighting

Set line type

Set_line width_scale

factor
Set_locator_mode

Set marker size _scale
factor

Set_marker_ type

Set_pattern_
reference point

Set pattern_
representation

Set pattern size
Set_pick id
Set_pick 1 mode

Set_polyline colour
index
Set_polyline_index

Set_polyline__
representation

Set polymarker
colour_index

Set_polymarker_index

Set polymarker_
representation

Set_segment_priority

Set_segment_transforma-

tion
Set_string mode
Set stroke mode
Set text alignment
Set _text_colour_index
Set text font and
precision
Set text index
Set text_path
Set text
representation
Set_valuator_mode
Set - viewport
Set viewport_ input
priority
Set visibility
Set_window
Set_ws_viewport
Set ws_window

<G g

<

<o <

<

< <o K g

K

Errors Checked

........

Package
Set_primitives 8
Segments 7,122
Set_primitives 8
Set_primitives 8
Set_input 7,25,38,140,143
Set primitives 8
Set_primitives 8
Set_primitives 8
- Represent 7,25,33,35,36,83
Set_primitives 8
Set_primitives 8
Set_input 7,25,37,140,143
Set_primitives 8
Set_primitives 8
Represent 7,25,33,35,36,63
Set_primitives 8
Set_primitives 8
Represent 7,25,33,35,36,67
Segments 7,122
Segments 7,122
Set_input 7,25,33,140,143
Set_input 7,25,38,140,143
Set_primitives 8
Set primitives 8
Set_primitives 8
Set primitives 8
Set primitives 8
Represent 7,25,33,35
Set_input 7,25,38,140,143
Trangform 8,51
Transform 8
Segments 7,122
Transform 8,51
Transform 7,25,33,36,51,54
Transform 7,25,33,36,51
A.9

Oa

1la
ma
Oa

mb
O0a

ma
Oa

la
Oa
1b

1b
ma

Oa
la

ma

Oa
la

la
la

mb

mb —

ma
ma
Oa
Oa
Oa
la
mb
0b
la

ma

b Mk 2 Ak A Lh il h i i 2t aon Ben e Aa Sl MG A0 SAAS S LSl aAGANE A el el a A SACE A A gy 2NN SrA SU AL Sht nth e ool il i ung s at-sil-de - Aae g e Sae e g j
.

A.41

A.45
A.39
A. 40

A.47
A.40

A.40
A.41

A.43

A.41
A.41
A.48
A.40

A.39
A.41

O O~ ~ 0o

> > > >3

S
M EHO

> P2
e
w W

PN a e el aaii Ak S b S ATt el - ghall Wk dadie Went i Bl theul e SRARAML M aa kAl Al Tl “Mhd Btk Maet Bt it ait-iadidey 'J'_r;'r.v'".v.--'-"("i"v.“l""'._'.‘:‘w

Errors Checked Page
Package Level

Implemented

Function Name

Text Y Primitives 5 ma A.39
Update ws Y Control 7,25,33,35,36 ma A.38

Write item to gksm N Metafile 5,30,32 Oa

-
A.10
. - -~ - - . - - M - P - - N e P - o - - - - . ~T W “ . - N . » [o - -
"o e ’ ST : - : e e e N T T L e R A ae e
P i e L A T N ot
Le o - LI s WP SANE Sy SISO T A SRA AR AT T/, Wl S VG SOOI S W PR A W U VDY S SR, &

External_Types (6:25-58)

This section contains an alphabetical listing of all of the data type
definitions used to define the Ada binding to GKS.

package EXTERNAL_TYPES is

type ASF is (BUNDLED, INDIVIDUAL);

-= Level Qa

This type defines an aspect source flag whose value indicates whether
individual attributes are to be used, or attributes as specified in a
bundle table.

type AZF _LIST is

record .
LINE TYPE ¢+ ASF := INDIVIDUAL;
LINE WIDTH ¢ ASF := INDIVIDUAL;
LINE_COLOUR : ASF := INDIVIDUAL;
MARKER_TYPE :+ ASF := INDIVIDUAL;
MARKER_SIZE ¢ ASF := INDIVIDUAL;
MARKER COLOUR ¢ ASF := INDIVIDUAL;
TEXT_FONT_PRECISION : ASF := INDIVIDUAL;
CHAR_EXPANSION : ASF := INDIVIDUAL;
CHAR_SPACING ¢ ASF := INDIVIDUAL;
TEXT_COLOUR : ASF := INDIVIDUAL;
INTERIOR_STYLE : ASF := INDIVIDUAL;
STYLE_INDEX ¢ ASF := INDIVIDUAL;
FILL AREA COLOUR ¢+ ASF := INDIVIDUAL;

end rghord?
—-— level Oa
-= A list containing all of the aspect source flags, with components in-

--— dicating the specific flag. The flags are all initialized as individ-
-- ual.

type ATTRIBUTES FLAG is (CURRENT, SPECIFIED);
-= Level 0Oa

-- Indicates whether output attributes used are to be as currently set,
-— or as explicitly specified.

A.1l

S package ATTRIBUTES_USED is new GKS_LIST UTILITIES(ATTRIBUTES_USED TYPE);
-= Level 0a

-~ Provides for a list of the attributes used.

type ATTRIBUTES_USED_TYPE is (POLYLINE ATTRIBUTES,
POLYMARKER_ATTRIBUTES,
TEXT_ATTRIBUTES,
FILL_AREA_ATTRIBUTES);
-= Level Oa

-- The types of attributes which may be used in generating output.

subtype CHAR_EXPANSION is POSITIVE SCALE FACTOR;
-= Level ma

-- Defines a character expansion factor, Factors are unitless, and must
-- be greater than zero.

“ - _

type CHAR _HEIGHT is new WC.MAGNITUDE;

-= Level ma

-- Defines character height, which must be a positive World Coordinates
-= value.

subtype CHAR_SPACING is SCALE_FACTOR;
-= Level ma

-- Defines a character spacing factor. The factors are unitless. A pos-
-=- itive value indicates the amount of space between characters in a text
-- string, and a negative value indicates the amount of overlap between
-= characters in a text string.

-- This type was changed so as to avoid implementing the extra functions
-=- which are needed to work on the private types.
~- type CHOICE_DATA_RECORD is private;

A.12

R Sl . B S

type CHOICE_DATA RECORD is
record

prompt_echo : choice_prompt_echo_type;
choices : integer;

the_prompts : prompts.list of;

strings : prompt_strings.list of;
segment : segment name;

pick : pick_ids.list_of;

end record;

-= Level mb

-~ Defines a choice data input record,

type CHOICE_INPUT_TYPE (STATUS : CHOICE_STATUS := NOCHOICE) is
record

case STATUS is

when OK => VALUE : CHOICE_VALUE;

when NOCHOICE => null;

end case;
end record;

-- Level mb

-— Defines a choice input type. If STATUS is OK, then the choice input
-- value is indicated.

type CHOICE_ PROMPT_ECHO_TYPE is range
1..MAX_CHOICE_PROMPT_ECHO_TYPE;

Level mb

-- Defines the choice prompt and echo types supported by the implementa-
-= tion,

package CHOICE_PROMPT ECHO_TYPES is new GKS_LIST UTILITIES
(CHOICE_PROMPT_ECHO TYPE);

-= Level mb

— Provides for lists of choice prompt and echo types.

type CHOICE STATUS is (OK, NOCHOICE);

-= Level mb

A.13

-= indicates if a choice was made by the operator,

-- This is not done as a generic type because then all of the GKS program

-= would have to be in 1 file!
-- type CHOICE_VALUE is (<>);

type CHOICE_VALUE is range 0..20;

-= Level mb

-- This generic formal parameter specifies the range of values for a
choice input. The full range of values indicated may be only partial-

ly supported.

type CLIPPING_INDICATOR is (CLIP, NOCLIP);
-- Level ma

-- Indicates whether or not clipping is to be performed.

type COLOUR_AVAILABLE is (COLOUR, MONOCHROME) ;
-=- Level ma

-- Indicates whether color output is available on a workstation.

subtype COLOUR_INDEX is PIXEL COLOUR range O..Max_colour_index;
-- Level ma

-- Indices into color tables are of this type,

package COLOUR_INDICES is new GKS_LIST UTILITIES(COLOUR_INDEX);

-= Level ma

-- Provides for a list of color indices which are available on a partic-
-= ular workstation, and matrices containing color indices corresponding

-- to a cell array or pattern array,.

A.l4

R et BN - . PRI L RIS -
o, . PR WA T . WP UL W X PSP 1PN WPy GG AP UE DA TP S VUl S i Y . Do

At N X # W WR N

er awTa e M 2 & . # A 4 3 3 MEEER AT

RN

adiiien it it i oy~ Jlamdagee duas Jitabh aintis Miune net Jiabe Bt it Jhad Jhal Jate b - Ael Al Tl Bl Ykt Ml M B S A N R D A R L I L ‘.".T

type COLOUR_REPRESENTATION is
record

RED : INTENSITY;

GREEN : INTENSITY;

BLUE : INTENSITY;

end record;

~= Level ma

—- Defines the representation of a color as a combination of intensities
-- in a RGB color system.

subtype CONNECTION_ID is STRING;
-- Level ma
—- Defines the type for a connection identifier, The string must corre-

-- spond to an external device or file as defined by the GKS implementa-
-- tion,

type CONTROL_FLAG is (CONDITIONALLY, ALWAYS);
-= Level ma

-- The control flag is used to indicate the conditions under which the
-- display surface should be cleared.

package DC is new GKS_COORDINATE_ SYSTEM (DC_TYPE);
-= Level ma

— Defines the Device Coordinate System.

-- ROLM Data General would not allow the package DC to use the following
-- statement as a formal generic parameter,

-~ type DC_TYPE is digits MAX DEVICE_ PRECISION;

type DC_TYPE is new float;

-= Level ma

-- The type of a coordinate in the Device Coordinate System.

A.15

DN BN S “et - : | = T Tl
SR PULATSUTEIIE I VUAL ST ST SN G SN WOUL. MR Wb V- A W ML N/ SOUCIND. W, VAL SR W, SO IRIres SO St ="

P

type RELATIVE_PRIORITY is (HIGHER, LOWER);

-=- Level ma

Indicates the relative priority between two normalization transfor-
mations.

type RETURN_VALUE TYPE is (SET, REALIZED);
-- Level ma

-- Indicates whether the returned values should be as they were set by
-- the program or as they were actually realized.

type SCALE FACTOR is digits PRECISION;
-=- Level ma

-~ The type used for unitless scaling factors.

type SECONDS is digits PRECISION;
—— Level mb

~- This type is used for referencing timeout times for input events,

type SEGMENT DETECTABILITY is (UNDETECTABLE, DETECTABLE);
-=- Level 1b

~- Indicates whether a segment is detectable or not.

type SEGMENT HIGHLIGHTING is (NORMAL, HIGHLIGHTED);
-= Level 1la

-- Indicates whether a segment is highlighted or not,

i M BrmsectorBvmsms o, oot dBctnsmcoresonss o Moortio Wovmbos Socmifnactnsim Dvsasevah L SN . S PR T PRS- S, WO S SLA W L. SR SR S R

R S
L G T W

~'.q:3..

AL

Py

e T N

. -"’A’.

A v Anlh cads Sngh M e i sadl e BC indh Nl il AR A S S Sl S Sl A SR s S aC i i AU AN Do SRt gk e N e

subtype PROMPT_STRING is STRING(1..MAX PROMPT_STRING_LENGTH);
-~ Level mb

-= A string which may be displayed as a choice prompt type.

package PROMPT_STRINGS is new GKS_LIST UTILITIES (PROMPT_STRING);
-- Level mb

-~ Defines a list of strings displayed as a choice device prompt type.

type RADIANS is digits PRECISION;
-- Level 1a

-- Values used in performing segment transformations (rotation angle),
-- Positive indicates an anticlockwise direction.

type RASTER_UNITS is range 1..MAX_RASTER_UNITS;
-= Level ma

-- Defines the legal range of raster unit references,

type RASTER_UNIT_SIZE is
record

X : RASTER_UNITS;

Y : RASTER_UNITS;

end record;

-= Level ma

-- Defines the size of an object in raster units on a raster device,

type REGENERATION_MODE is (SUPPRESSED, ALLOWED);

~-- Level Oa

-- Indicates whether implicit regeneration of the display is suppressed

-=- Oor allowed.

A.28

- ' b -, - ., - e
ol 0 x o . T3 PRI SV 3 - ala . - - N L M . N o B o B F N

i

T bbb i DR A

it Bctatrs

PrISTEN O AS SO S T TR R

NI Ry R . W)

package POLYLINE INDICES is new GKS_LIST UTILITIES (POLYLINE_INDEX);

-= Level Qa

-- Provides for the declaration of a list of polyline indices,

type POLYMARKER INDEX is range 1..MAX_ POLYMARKER_INDEX;
-= Level Oa

-- Defines the maximum range for polymarker bundle table indices.

package POLYMARKER_INDICES is new GKS_LIST UTILITIES (POLYMARKER_INDEX);
-=- Level Qa

== Provides for the declaration of a list of polymarker indices.

-- The ROLM Data General compiler cannot implement "safe_small", or
-- "safe_large",

~- subtype POSITIVE_SCALE_FACTOR is SCALE_FACTOR range

== SCALE_FACTOR'SAFE_SMALL..SCALE FACTOR'SAFE_LARGE;

subtype POSITIVE SCALE FACTOR is SCALE_FACTOR range 0.00001..1.0E50;

-- Level ma

-— Define the positive range of scale factors,

type PROMPT is (OFF, ON);

-=- Level mb

Indicates for a choice prompt and echo type whether a specified prompt
-= is to be displayed or not,

package PROMPTS is new GKS_LIST UTILITIES (PROMPT);
-- Level mb

-— Provides for a list of prompts.

A.27

P . - R
P b P L S Y

I N N |

-- plementation,

package PICK_PROMPT_ECHO_TYPES is new GKS_LIST UTILITIES
(PICK_PROMPT ECHO TYPE);

-=- Level mb

-- Provides for lists of pick prompt and echo types.

type PICK STATUS is (0K, NOPICK);
-= Level 1b

-- Defines the status of a pick input operation,

type PIXEL COLOUR is range -1..MAX COLOUR_INDEX;

--= level Oa

This special data type is created for inquiries of pixel colors, since
an invalid color index is a legal value.

package PIXEL COLOURS is new GKS_LIST UTILITIES (PIXEL_COLOUR);
-- Level Oa

-~ Provides for variable sized matrices of pixel colors.

package POINTS is new GKS_LIST UTILITIES (WC.POINT);
-= Level ma

-= Provides for the declaration of arrays and lists of points.

type POLYLINE INDEX is range 1..MAX_POLYLINE INDEX;
-= Level Qa

-- Defines the maximum range of polyline indices,

A.26

. .- - - . tT, At et B e e e e e e e s e e ¥
- e L. PO P PR T T NG L PO O NS SR L) LSO Sy Y el M ats aaa L

-= Provides for the declaration of a list of pattern table indices.

-- This type was changed so as to avoid implementing extra functions
-- which are needed to work on the private types,
type PICK _DATA_RECORD is private;

type PICK DATA_RECORD is
record
prompt_echo : pick prompt_echo_type;
end record;
Level 1b

Defines a pick input data record.

-- This is not done as a generic type because then all of the GKS program
would have to be in 1 file!
type PICK ID is (<>);

type PICK_ID is new default pick id;

Level 1b

-- Defines a pick identifier. Pick identifiers are specified as a ge-
neric formal parameter.

type PICK_INPUT_TYPE (STATUS : PICK_STATUS := NOPICK) is
record

case STATUS is

when OK => SEGMENT : SEGMENT_NAME;

PICK : PICK_ID;

when NOPICK => null;

end case;
end record;

-- Level 1b

-- Defines the type for pick. If STATUS is OK, then the segment name and
-= pick identifier are indicated.

type PICK_PROMPT_ECHO_TYPE is range 1..MAX_PICK_PROMPT_ECHO_TYPE;
-= Level mb

-- Defines the string prompt and echo types that are supported by the im-

A.25

.......................................

-- Defines the Normalized Device Coordinate System,

type NDC_TYPE is digits PRECISION range 0.0..1.0;
-= Level ma

-- Defines the type of a coordinate in the Normalized Device Coordinate
System. <

type NEW_FRAME NECESSARY is (NO, YES);
I -- Level Oa

-~ Indicates whether a new frame action is necessary at update,

type OPERATING _MODE is (REQUEST_MODE, SAMPLE_MODE, EVENT_MODE);
-~ Level mb

-- Defines the operating modes of an input device.

type OPERATING_STATE is (GKCL, GKOP, WSOP, WSAC, SGOP);
-= Level QOa

-- At run time, GKS may be in one of the five predefined operating

-- states, GKCL indicates GKS is closed, GKOP indicates GKS is open,

-~ WSOP indicates at least one workstation is open, WSAC indicates at

-- least one workstation is active, and SGOP indicates a segment is cur-
rently open.

type PATTERN_INDEX is range 1..MAX_PATTERN_INDEX;
-— Level 0a

—- Defines the maximum range of pattern table indices,

package PATTERN_INDICES is new GKS_LIST UTILITIES(PATTERN_INDEX);

-= Level 0a

A.24

- - - - L. . .
LRy - R) et te T, . . R S e, . M SN T
St R S) R, SR L T N R P, i RSP DL, W TR, W T P ORI P EDO. B PP St i PO PR A P WP

Ll oA Bttt il R AR ARl 20D LRSS S R AnhAeti A St p Sl Sl A ol Uall A @ @ ar o ot A ROR o - nAl st aulh - ol - gt il N R i i v e bttt Bl i ol Al e |

o- -- A record containing information needed to specify the appearance of a
-= marker.

subtype MARKER_SIZE is POSITIVE_SCALE_FACTOR;
-- Level ma

== The size of a marker is indicated by a scale factor larger than zero.

- -

type MARKER_TYPE is range 1..MAX_MARKER_TYPE;

i -= Level ma
-- Defines the types of markers provided by the implementation. Marker
-- types one through five are predefined as DOT_MARKER, PLUS_MARKER, AS-
-- TERISK MARKER, CIRCLE_MARKER, and DIAGONAL_CROSS_ MARKER.

ii -

: package MARKER_TYPES is new GKS_LIST UTILITIES (MARKER_TYPE);
-= Level ma

'. QO == Provides for lists of marker types,

. type MEMORY UNITS is range O..MAX_MEMORY UNITS;

b -- Level ma
-- Defines the type of the units of memory that may be allocated for GKS.
-= An implementation must indicate the type of the memory units being

_ -- used, such as bytes or fixed size blocks. Some standardization is

= -- needed here.

L2

. type MORE_EVENTS is (NOMORE, MORE);

. -- Level mec

®

. -- Indicates whether more events are contained in the input event queue.

- package NDC is new GKS_COORDINATE_SYSTEM (NDC_TYPE);

@

-= Level ma

A.23

i i VA et linh Al Bokt Sl Bl ad ok Nalh Ao B r B S

== which are needed to work on the private types.
-- type LOCATOR_DATA RECORD is private;

type LOCATOR_DATA_RECORD is
record
prompt_echo : locator_prompt_echo_type;
control : attributes_used_type;
line : line_data;
fill : fill area_data;
end record;

-= Level mb

== Defines a locator data input record.

type LOCATOR_PROMPT_ECHO_TYPE is range 1.. MAX_LOCATOR_PROMPT_ECHO_TYPE;
-= Level mb

Defin~s the locator prompt and echo types supported by the implemen-
tation,

package LOCATOR_PROMPT_ECHO_TYPES is new GKS_LIST UTILITIES
(LOCATOR_PROMPT_ECHO_TYPE);

== Level mb

-- Provides for lists of locator prompt and echo types.

type MARKER_DATA (ATTRIBUTES : ATTRIBUTES FLAG := CURRENT) is
record
case ATTRIBUTES is
when SPECIFIED =>
MARKER_ASF : ASF;
SIZE_ASF : ASF;
COLOUR_ASF : ASF;
INDEX : POLYMARKER_INDEX;
MARKER : MARKER_TYPE;
SIZE : MARKER_SIZE; ;
COLOUR : COLOUR_INDEX; ‘
when CURRENT =>
null;
end case;
end record;
|

-=- [Level mb

A.22

IR LT I Y . DS RIS . Lt . et PR - R
e LS. e) - L N SR W P A amieo a0 P, W A LAY . UL WY S A WA TPT e I 0 ST W ‘.L'A"‘AL_"_AJ

)

type LINE DATA (ATTRIBUTES : ATTRIBUTES_FLAG := CURRENT) is
record
case ATTRIBUTES is
when SPECIFIED =>
LINE ASF : ASF;
WIDTH_ASF : ASF;
COLOUR_ASF : ASF;
INDEX : POLYLINE_INDEX;
LINE : LINE_TYPE;
WIDTH : POSITIVE_SCALE_FACTOR;
COLOUR : COLOUR_INDEX;
when CURRENT =>
null;
end case;
end record;

-= Level mb

-= A record containing information needed to specify the appearance of a
- line.

type LINE_TYPE is range 1..MAX LINE_TYPE;

~= level ma

— Defines the types of line styles provided by the implementation. Line
-~ types one through four are predefined as SOLID LINE, DASHED LINE, DOT-
TED_LINE and DASHED_DOTTED_LINE. Additional line types are implemen-
tation defined,

package LINE_TYPES is new GKS_LIST UTILITIES (LINE_TYPE);
-=- Level ma

== Provides for list of line types.

subtype LINE WIDTH is POSITIVE_SCALE_FACTOR;
-= Level ma

-- The width of a line is indicated by a scale factor greater than zero.

-- This type was changed so as to avoid implementing extra functions

A.21

N e W € WA WL,V VN e e T T T 4T TR e e R R v--T

-= Defines the maximum length of a variable length string supported by
-= the implementation., This affects both string input values as well as
-- strings used as prompts for choice input.

-- This is not done as a generic type because then all of the GKS program
== would have to be in 1 file!
-- type INPUT VALUE is digits <>;

type INPUT_VALUE is new float;

-= level mb

-~ This is not done as a generic because then all of the GKS program

-- would have to be in 1 file! An input value from a valuator device is

-~ specified as a generic formal parameter. Not all input devices may
-- be able to support the full range of input values indicated.

type INTENSITY is digits PRECISION range 0.0..1.0;

-- Level ma

-=- Defines the range of possible intensities of a color.
Qe -

type INTERIOR_STYLE is (HOLLOW, SOLID, PATTERN, HATCH);

-- Level ma

-- Defines the predefined types of interior styles for fill areas

package INTERIOR_STYLES is new GKS_LIST UTILITIES (INTERIOR_STYLE);

-= Level ma

-- Defines the predefined types of interior styles for fill area.

type INVALID VALUES_INDICATOR is (ABSENT, PRESENT);
~-=- Level QOa

-« Indicates whether invalid values are contained in a pixel array or ma-
- trix.

A.20

¢l
o

Ry -'q‘

e
P

e

. e
o

type HATCH_STYLE TYPE is range 1..MAX HATCH_STYLE;
-— Level Oa

— Defines the hatch styles supported by the implementation. There must
-=- be at least three hatch styles supported by the implementation.

package HATCH_STYLES is new GKS_LIST UTILITIES (HATCH_STYLE_TYPE);
-- Level 0Qa

-- Provides for a list of hatch styles.

type HORIZONTAL_ ALIGNMENT is (NORMAL, LEFT, CENTER, RIGHT);
-=- Level ma

-- The alignment of the text extent rectangle with respect to the ver-
-- tical positioning of the text.

type INPUT_CLASS is (LOCATOR_INPUT, STROKE INPUT, VALUATOR_INPUT,
CHOICE_INPUT, PICK INPUT, STRING_INPUT);

-~ Level mb

Defines the input device classifications for workstations of category
INPUT or OUTIN.

type INPUT STRING (LENGTH : INPUT_STRING_LENGTH := 0) is
record
CONTENTS : STRING(1..LENGTH);
end record;

-- Level mb

-= Provides a variable length string. Objects of this type should be de-
-- clared unconstrained to allow for dynamic modification of the length,

subtype INPUT_STRING_LENGTH is INTEGER range 0..MAX INPUT_STRING_LENGTH;

-= Level mb

A.19

L 2

-= Defines the maximum range of fill area bundle table indices.

package FILL AREA_INDICES is new GKS_LIST UTILITIES (FILL_AREA_INDEX):
-~ Level 0Qa

-= Provides for the declaration of a list of fill area bundle table in-
-- dices.

type FONT_TYPE is range 1..MAX_FONT_TYPE;
-- Level ma
-~ Defines the types of fonts provided by the implementation. The imple-

mentation must provide at least one font capable of generating the
-- standard ASCII character set. This font is font number one,

type GDP_ID is range 1..MAX_GDP_ID;
-= Level Qa

- Defines a range of values for selecting a Generalized Drawing Primi-

package GDP_IDS is new GKS_LIST UTILITIES (GDP_ID);
-- Level Oa

== Provides for lists of GDP 1ID's

type GKS_LEVEL is (Lma, Lmb, Lme,
LOa, LOb, LOc,
L1a, L1b, Liec,
L2a, L2b, L2¢);

-« Level ma

-- The valid Levels of GKS., M, 0, 1, 2 indicate the level of output sup-
-- ported by the implementation, and a, b, and ¢ indicate the level of

-= input supported by the implementation. Certa‘n other capabilities and
-- capacities are also indicated by the level.

A.18

¥’

type ECHO_SWITCH is (ECHO, NOECHO);
-= Level mb

--— Indicates whether or not ~choing of the prompt is performed.

subtype ERROR_FILE TYPE is STRING;

."‘L-'_.l_" R X e

-= Level ma

-- Defines the type for error file specification., The name used must
. -= conform to an external file name as defined for the host system imple-
. -— mentation.

type ERROR_INDICATOR is range 0..999;
-= Level ma

— Defines the range of error indicator values,

|
' -i'l L, "mlll Suieas, ;;..k_-',; A

; type FILL_AREA_DATA (ATTRIBUTES : ATTRIBUTES_FLAG := CURRENT) is
1 record -
' case ATTRIBUTES is 5
when SPECIFIED =>
STYLE_ASF : ASF;
STYLE INDEX ASF : ASF;
COLOUR_ASF : ASF;
INDEX : FILL_AREA_INDEX;
STYLE : STYLE_INDEX;
COLOUR : COLOUR_INDEX;
. when CURRENT =>
| null;
- end casej;
:’ end record;

)

-= Level mb

A record containing information needed to specify the appearance of a
== filled area.

LRSS | Ay

type FILL_AREA_INDEX is range 1.. MAX_FILL_AREA_INDEX;

-= Level Qa

A.17

ISR A IR TR I . Seca

" . . - > . .- . - Pd > -~- . N
WP A S R TR S R e AN

. - BRI A A Mt au it - ahi ald vk an i~ Adiand it A AR

type DC_UNITS is (METRES, OTHER);
-= Level ma

-- Device coordinate units for a particular workstation may be in meters,
-= or some other units (such as inches).

type DEFERRAL_MODE is (ASAP, BNIG, BNIL, ASTI);

Level 0Oa

Indicates how long output to a workstation is delayed. ASAP indicates
-= as soon as possible, BNIG indicates before the next interaction glo-
-- bally, BNIL indicates before the next interaction locally, and ASTI
indicates at some time,

type DEVICE_NUMBER is range 1..MAX_DEVICE NUMBER;

-= Level mb

Logical devices are referenced as device numbers. The maximum number
— of input devices may not be supported on all workstations.

type DISPLAY CLASS is (VECTOR_DISPLAY, RASTER _DISPLAY,
OTHER_DISPLAY);

-=- Level Oa

-- The classification of a workstation of category OUTPUT or OUTIN.

type DISPLAY SURFACE_EMPTY is (EMPTY, NOTEMPTY);
-= Level 0Oa

-- Indicates whether the display surface is empty.

type DYNAMIC MODIFICATION is (IRG, IMM) ;
-= Level 1a

-~ Indic¢ates whether an update to the state list is performed immediately
== (IMM) or is implicitly regenerated (IRG).

A.16

R T U TR AU P TR AN, FAEII NP W U T S S T

R R

e Yy R IRy ———~; B A

-- This is not done as a generic type because then all of the GKS progranm
-= would have to be in 1 file!

-- type SEGMENT_NAME is (<>);

type SEGMENT_NAME is new default_segment_name;

-= Level 1a

-- Segment names are specified as a generic formal parameter.

package SEGMENT_NAMES is new GKS_LIST UTILITIES (SEGMENT_NAME);
-= Level 1a

—- Provides for a list of segment names.

type SEGMENT_PRIORITY is digits PRECISION range 0.0..1.0;
-=- Level 1a

-~ Defines the priority of a segment.

type SEGMENT_VISIBILITY is (VISIBLE, INVISIBLE);
-= Level 1a

-- Indicates whether a segment is visible or not.

-- This type was changed so as to avoid implementing extra functions
== which are needed to work on the private types.
-- type STRING_DATA_ RECORD is private;

type STRING_DATA_RECORD is

record
prompt_echo : string_prompt_echo_type;
buffer : integer;
cursor_position : integer;

end record;

-=- Level mb

-- Defines a string data input record.

A.30

. - . o P - . - B . . P S -~ DR
PR SR - WY '4_;_‘.‘ AP S P N . - " . Ny “ha) e Nt Y o e AT, S, S L N)

AP e B LA AR i 2 S A i A Stk A A AR M e T Mt it A et St et it ot S iials s ks Aoy St it Sl Zha den e odfian i o diase it e S g ox e |

[

al.

type STRING_PROMPT ECHO TYPE is range 1..MAX_STRING_PROMPT ECHO TYPE;

-= Level mb

]
-
e
[
)Lt
Ve
P. .

[
.' ./ g

-- Defines the string prompt and echo types supported by the implementa-

package STRING_PROMPT_ECHO_TYPES is new GKS_LIST UTILITIES
(STRING_| PROMPT ECHO TYPE),

-~ Level mb

-= Provides for lists of string prompt and echo types.

-- This type was changed so as to avoid implementing extra functions
-~ which are needed to work on the private types,
-- type STROKE_DATA_RECORD is private;

type STROKE_DATA_RECORD is
record
buffer : integer;
edit _position : integer;
interval : we.point;
time : seconds;
prompt_echo : stroke_prompt_echo_type;
marker : marker_data;
line : line_data;
end record;

-= Level mb

-- Defines a string data input record.

type STROKE_PROMPT_ECHO_TYPE is range 1..MAX STROKE_PROMPT_ECHO_TYPE;
-= Level mb

-- Defines the stroke prompt and echo types supported by the implementa-
-= tion,

. package STROKE_PROMPT ECHO TYPES is new
= GKS_LIST UTILITIES (STROKE_PROMPT ECHO_TYPE);

‘Q -= Level mb

A.31

'rA
0 Y

B
»
.

\3_6

-- Provides for lists of stroke prompt and echo types.

type STYLE_INDEX (INTERIOR: INTERIOR_STYLE := HOLLOW) is
record

case INTERIOR is

when HOLLOW | SOLID => null;

when PATTERN => INDEX : PATTERN_INDEX;

when HATCH => HATCH_STYLE : HATCH_STYLE TYPE;

end case;
end record;

-= Level 0Oa

-- Defines a fill area style index. Such an index is null for interior
-~ styles hollow and solid. For interior style pattern, the style index
-- is an index into the pattern tables. For interior style hatch, the
-~ style index indicates which hatch style is to be used. An attempt to
-~ index the pattern tables using a hatch style will result in an excep-
-- tion, as will attempting to reference a hatch style using a pattern
-- table index.

subtype SUBPROGRAM_NAME is STRING;
-= Level ma

-- Defines the name of a GKS function detecting an error.

type TEXT_ALIGNMENT is

record
HORIZONTAL : HORIZONTAL_ALIGNMENT;
VERTICAL : VERTICAL_ALIGNMENT;

end record;

~=- Level ma

The type of the attribute controlling the positioning of the text ex-
-- tent rectangle in relation to the text position, having horizontal and
vertical components as defined above.

type TEXT_EXTENT_RECTANGLE is
record
LOWER_LEFT : WC.POINT;
LOWER_RIGHT : WC.POINT;
UPPER_LEFT : WC.POINT;
UPPER_RIGHT : WC.POINT;

A.32

- TYOULNRT W HTETRTRCORTRT T ey w

-

SO0

‘-

end record;
-— Level ma

-- Defines the corner points of the text extent rectangle with respect
-= to the vertical positioning of the text.

type TEXT FONT_PRECISION is
record
FONT : FONT_TYPE;
PRECISION : TEXT_PRECISION;
end record;

-=- Level ma

This type defines a record describing the text font and precision as-
-=- pect.

package TEXT_FONT_PRECISIONS is new
GKS_LIST UTILITIES (TEXT_FONT_PRECISION);

-=- Level ma

-—— Provides for lists of text font and precision pairs.

type TEXT_INDEX is range 1..MAX TEXT_INDEX;
-— Level 0Oa

-- Defines the maximum range of text bundle table indices.

package TEXT_INDICES is new GKS_LIST UTILITIES (TEXT_INDEX);
-=- Level Qa

-- Provides for a list of text indices.

type TEXT_PATH is (RIGHT, LEFT, UP, DOWN);
-= Level ma

-- The direction taken by a text string.

A.33

PO I P

APCANICE o o i st Bt
CAE)
.

PP ——

P p——
.

T T T T . T T T . UTHTRTET T L AR ITRTLTATRTRTR TR T TR R TR 2 s a2 2 ® 7

type TEXT_PRECISION is (STRING_PRECISION, CHAR_PRECISION,
STROKE_PRECISION);

-= Level ma

== The precision with which individual text units may be regarded.

type TRANSFORMATION FACTOR is
record

X : SCALE_FACTOR;

Y : SCALE_FACTOR;

end record;

-= Level 1a

Scale factors used in building transformation matrices for performing
segment transformations,.

type TRANSFORMATION MATRIX is array (1..3,1..2) of SCALE_FACTOR;
-= Level 1a

-= A segment transformation matrix for mapping NDC to NDC. The elements
-- for the array are all scale factors for convenience. Elements M11,

-— M12, M21, M22 comprise the scaling and rotation portion of the matrix,
-- and are unitless, The remaining elements (M13 and M23) comprise the
-= translation portion. The latter are of type NDC,.

type TRANSFORMATION NUMBER is range 0..MAX_TRANSFORMATION_NUMBER;
-= Level ma

-- A normalization transformation number.

package TRANSFORMATION_NUMBERS is new
GKS_LIST UTILITIES (TRANSFORMATION_NUMBER);

-=- Level Qa

Provides for a list of normalization transformation number, All im-
plementations must supply the predefined UNITY_TRANSFORMATION from
World Coordinate space [0,1] x [0,1] to Normalized Device Coordinate
space [0,1] x [0,11].

A.34

. W T S - - 0 i ol Pl v i it i e il e Sl Tl Yk Yl ‘el ‘Sl “Lodh BBk TS S YA a0 Ba A S e T T S e Y ‘I A = '.‘T

type UPDATE_REGENERATION_FLAG is (PERFORM, POSTPONE);
-=- Level Oa

-- Flag indicating regeneration action on display.

type UPDATE STATE is (NOTPENDING, PENDING);
-=- Level ma

-- Indicates whether or not a workstation transformation change has been
-- requested and not yet provided.

-- This type was changed so as to avoid implementing extra functions
-— which are needed to work on the private types.
-- type VALUATOR_DATA RECORD is private;

type VALUATOR_DATA_RECORD is

record
prompt_echo : valuator_prompt_echo_type;
low_value : input_value;
high value : input_value;

end record;

-- Level mb

-- Defines a valuator data input record.

type VALUATOR_PROMPT_ECHO_TYPE is range
1..MAX_VALUATOR_PROMPT_ECHO_TYPE;

-= Level mb

—- Defines the possible range of valuator prompt and echo types.

package VALUATOR_PROMPT_ECHO_TYPES is new
GKS_LIST UTILITIES (VALUATOR_PROMPT_ECHO_TYPE);

-- Level mb

-~ Provides for lists of valuator prompt and echo types.

type VERTICAL_ALIGNMENT is (NORMAL, TOP, CAP, HALF, BASE, BOTTOM);
-= Level ma

-- The alignment of the text extent rectangle with respect to the verti-
cal positioning of the text.

package WC is new GKS_COORDINATE_SYSTEM (WC_TYPE);
-= Level ma

~=- Defines the World Coordinate System.

-- This is not done as a generic type because then all of the GKS program
-- would have to be in 1 file!
~- type WC_TYPE is digits <>;

type WC_TYPE is new float;

~= Level ma

-- Defines the type of a coordinate in the World Coordinate System.
~— World coordinate type is specified as a generic formal parameter,

The type given as an actual parameter must at least include the range
-= 0.0 to 1.0.

type WS_CATEGORY is (OUTPUT, INPUT, OUTIN, WISS, MO, MI);

Level Qa

~= All workstation types fall into one of these six predefined worksta-
~= tion categories.

-= This is not done as a generic type because then all of the GKS program
-- would have to be in 1 filel!
type WS_ID is (<);

type WS_ID is new default ws_id;
-~ Level ma

-- Workstation identifiers are of this type. Workstation identifier
-- type is specified as a generic formal parameter,

A.36

A R

., e
e,
.

AN "

package WS_IDS is new GKS_LIST UTILITIES (WS_ID);
-=- Level ma

-= Provides for lists of workstation identifiers.

type WS_STATE is (ACTIVE, INACTIVE);
-= Level Qa

-- The state of a workstation,

type WS_TYPE is range 1..MAX WS_TYPE;
-~ Level ma
-~ Range of values corresponding to valid workstation types., Constants

-= specifying names for the various types of workstations should be pro-
-- vided by an implementation, such as GKSM_OUTPUT, FLAT_BED_PLOTTER.

package WS_TYPES is new GKS_LIST UTILITIES (WS_TYPE);
-= Level Oa

-- provides for variable length lists of workstation types.

end EXTERNAL_TYPES;

A.37

I S S P i PN PO

AFIT_GKS Functions (6:67-345)

The following is all the functions implemented in AFIT GKS. They are
divided into their respective packages.

package CONTROL is

procedure OPEN_GKS

(error_file : in error_file type := "";

amount_of memory : in memory units := max_memory_pnits);
This function initializes GKS. It must be invoked before any other GKS
function,

procedure CLOSE_GKS;
This function closes GKS.

procedure OPEN_WS
(ws 3 in ws_id;
connection : in connection_id;
type of ws : in ws_typ2);
This function adds "ws" to the list of open workstations.

procedure CLOSE WS

(ws : in ws_id);
This function releases the connection between workstation "ws" and GKS.
No further references to workstation "ws" are allowed.

procedure ACTIVATE WS
(ws : in ws_id);
This function activates the specified workstation "ws".

procedure DEACTIVATE WS

(ws : in ws_id);
No further output primitives and/or segments will be sent to workstation
"ws",

procedure CLEAR WS

(ws : in ws_id;

flag : in control flag);
CLEAR_WS causes the display surface on "ws" to be cleared. All segments
stored on the workstation are deleted.

procedure REDRAW_ALL SEGMENTS ON_WS

(ws : in ws_id);
This function causes all of the segments stored for workstation "ws" to
be redrawn on that workstation. The display surface is cleared first.

procedure UPDATE_WS
(ws : in ws_id;

regeneration : in update_regeneration_flag);
UPDATE_WS causes all of the deferral actions for "ws" to be performed

A.38

. IR Y
.....

Bt e & un B ane Son o g8 oh Jal B ar

without any intermediate clearing of the display. If the "regeneration"
flag is set to "perform", then the display surface is cleared, if neces-
sary. The workstation transformation is updated if it is pending. The
segments stored on the workstations are redrawn. None of the additional
functions are executed if the "regeneration" flag is set to "postpone",

procedure SET _DEFERRAL_STATE

(ws : in ws_id;

deferral : in deferral mode;

regeneration : in regeneration_mode);
This function sets the "deferral" and implicit "regeneration" modes on
workstation "ws".

end CONTROL;

package PRIMITIVES is

procedure POLYLINE

(line_points : in points.array_of);
POLYLINE draws a line connecting the specified "line points". There must
be at least two points in "line_points",

procedure POLYMARKER

(marker_points : in points.array of);
POLYMARKER draws a sequence of markers at the specified "marker_ points".
There must be at least one point in "marker_ points".

procedure TEXT

(position : in we.point;

text_string : in string);
The character string "text_string" is drawn starting at the "position"
which is given in world coordinates.

procedure FILL AREA

(fill_area_points : in points.array of);
This function fills a polygon defined by "fill area points". There must
be at least three points in "fill_area points",.

end PRIMITIVES;

package SET_PRIMITIVES is

procedure SET_POLYLINE_INDEX

(index : in polyline_index);
The current polyline index is set to "index". This value will be used
for all subsequent polyline primitives,

procedure SET_LINE TYPE
(line : in line_type);

A.39

T S S L S S R S I S SR S S Sy S RPN 2) - - PP Sy e | Y

Gt 2 S et T Tk PO A A -y W e r_r_._?';'('v‘,v_f’

A A Sod. a2 .a.m

J

J

R T e T

The current linetype is set to "line".

procedure SET_LINE WIDTH_SCALE FACTOR
(width : in line width),
The current line width scale factor becomes "width".

procedure SET_POLYLINE COLOUR_INDEX
(colour : in colour index).
The current polyline colour index becomes "colour",

procedure SET_POLYMARKER_INDEX
(index : in polymarker_index);
The current polymarker index is set to the value specified by "index".

procedure SET_MARKER_TYPE
(marker : in marker _type);
The current marker type becomes "marker",

procedure SET_MARKER SIZE SCALE FACTOR
(size : in marker size),
The current marker size scale factor is set to the value of "size",

procedure SET_POLYMARKER_COLOUR_INDEX
(colour : in colour_index);
The current polymaker colour index becomes "colour",

. procedure SET_TEXT_INDEX
Qe (index : in text_index);
The current text index is set to the value specified by "index".

procedure SET_TEXT_FONT_PRECISION
(font_precision : in text_font_precision);

B Sl A

The current text font and precision is set to the value "font_precision".

procedure SET_CHAR_EXPANSION_FACTOR
(expansion : in char_expansion);
The current character expansion factor is set to the value "expansion",

procedure SET_CHAR_SPACING
(spacing : in char _spacing);
The current character spacing is set to "spacing".

procedure SET TEXT_COLOUR_INDEX
(colour : in colour index).
The current text colour index is set to the value "colour".

procedure SET_CHAR_HEIGHT
(height : in char_height);
The current character height is set to the value "height",

procedure SET_CHAR_UP_VECTOR
. (char_up vector : in we.vector);
The current character up vector is set to the value "char_up vector",

A.40

* - . e, . .
PROC SR A A L I (P SRS S e & I SO, T

- -

T .

. * >\‘..1

St et et .. - . e .
. U . .
NOPRVITUANE VTP P U U G U S W T WS S W |

Qe

A It i i e i Sl aS Dl iR NN R R L L e e S D e R R T Rl B

The character up vector sets the rotation of the text path from the ori-
gin,

procedure SET TEXT_PATH

(path : in text_path);
The current text path is set to "path". The text path determines the di-
rection that the characters are displayed.

procedure SET_TEXT_ALIGNMENT
(alignment : in text_alignment);
The current text alignment is set to "alignment".

procedure SET_FILL AREA_INDEX
(index : in fill_area_index);
The current fill area index is set to "index".

procedure SET_FILL AREA_STYLE_ INDEX
(index : in style index);
The current fill area style index becomes "index".

procedure SET_FILL_AREA_COLOUR_INDEX
(colour : in colour_index);
The current fill area colour index becomes "colour".

procedure SET_PATTERN_SIZE
(size : in we.size);
The current pattern size is set to the value "size",

procedure SET_PATTERN_REFERENCE_POINT

(point : in wec.point);
The current pattern reference point becomes "point". When the currently
selected fill area interior style is PATTERN, this value is used, where
possible, in conjunction with the current pattern size for displaying the
fill area output primitives.

procedure SET ASF
(asf : in asf_list);
The aspect source flags are assigned the values contained in ASF.

procedure SET_PICK_ID
(pick : in pick_id);
The current pick identifier is set to the value specified by the parame-

ter "pick".
end SET_PRIMITIVES;

package REPRESENT is
procedure SET POLYLINE REPRESENTATION

(ws : in ws_id;
index : in polyline_index;

A4

- .

e N T o

P > R S Y S e tdeiand FORE WAL SUUPE WU AL SLANLAY TN SN, WA TN, UL W, VI, UoNI WS TP UMD S SN W WL W S 1'j

jeo

LS 4 "l Nl ‘v'\'-.:j"‘vv(Al Sl] . C A AF S 2P 2*) "R o I DrAC S aArhalin * ANl ¢ diat R R et 2 A At Radl Sir i} IS

line : in line_type;

width : in line_width;

colour : in colour_index);
This function is used to define (or redefine) the contents of the poly-
line bundle table for workstation WS according to the contents of the
parameters "index", "line", "width", and "colour" where:

"index" specifies the entry in the bundle table to be defined.

"line" is the line type value,

"width" is the line width scale factor.

"colour" is the line colour.

procedure SET_POLYMARKER_REPRESENTATION
(ws : in ws_id;
index : in polymarker_index;
marker : in marker_type;
size : in marker_size;
colour : in colour_index);
This function is used to define (or redefine) the contents of the poly-
marker bundle for workstation "ws" according to the parameters "index",
"marker"”, "size", "colour™ where
"index" specifies the entry in the bundle table to be defined.
"marker" specifies the marker type value.
"size" is the scale factor to be applied to the nominal marker size.
"colour" is the value for the marker colour,

procedure SET_TEXT_ REPRESENTATION
(ws : in ws_id;
index : in text_index;
font_precision : in text_font_precision;
expansion : in char_expansion;
spacing : in char_spacing;
colour : in colour_index);
This function is used to define (or redefine) the contents of a text bun-
dle for workstation "ws" according to the parameters "index", "font pre-
cision", "expansion", "spacing" and "colour", where:
"index" specifies the entry in the bundle table to be defined,
"font_precision" is used to select a particular font on this worksta-
tion.
"expansion" specifies the deviation of the width to height ratio indi-
cated by the font designer,
"spacing" specifies how much additional space is to be inserted between
two adjacent character bodies.
"colour" is the text colour.

procedure SET _FILL AREA REPRESENTATION

(ws : in ws_id;

index : in fill area_ index;

style : in style_ index;

colour : in colour_index);
This function is used to define (or redefine) the contents of a fill area
bundle for workstation "ws" according to the parameters "index", "style",
and "colour" where:

"index" specifies the entry in the bundle table to be defined.

A.42

PIRP R G SRR UL SUUIUC AU PR SO VUL SR SR PR, SO, T, * Sttn. s o b o o B e B B e s B

O

A A

YUY S Y

"style" determines which PATTERN or HATCI style is selected, It is ig-
nored for interior styles HOLLOW and SOLID.
"colour" is the fill area colour.

procedure SET PATTERN_REPRESENTATION
(ws : in ws_id;
index : in pattern_index;
pattern : in colour_indices.matrix_of);
This function is used to define (or redefine) the contents of a pattern
bundle for workstation "ws" according to the parametes "index" and "pat-
tern", where:
"index" specifies the entry in the bundle table to be defined.
"pattern" specifies the interior style for fill areas.

procedure SET_COLOUR_REPRESENTATION
(ws : in ws_id;
index : in colour_index;
colour : in colour_representation);
This function is used to define (or redefine) the contents of a colour
bundle for workstation "ws" according to the parameters "index" and "col-
our" where:
"index" specifies the entry in the bundle table to be defined,
"colour" index refers to an entry in the colour table when output prim-
itives are displayed.

end REPRESENT;

package TRANSFORM is

procedure SET_WINDOW

(transformation : in transformation number;

window limits : in wc.rectangle);
The window limits for the specified normalization "transformation" is set
to the value specified in world coordinate points by "window limits",

procedure SET VIEWPORT

(transformation : in transformation_number;

viewport_limits : in ndec.rectangle);
The viewport limits for the specified normalization "transformatis-" is
set to the value specified by the normalized device coordinates in "view-
port_limits".

procedure SET_VIEWPORT INPUT_PRIORITY

(transformation : in transformation_number;

reference_transformation : in transformation number;

priority : in relative priority);
The ordering of the normalization transformation with regard to input
priority is changed such that “transformation" will be ordered according
to "priority" as either having a "higher" or "lower" priority than the

"reference_transformation".

A.43

. . - e ae T -, . e 3 - s .
® oah sl i) ki a R L Al el s ala .4 PRy . L) LW, A - LN W)

AR ST | RS

-

g e - .
’ N N
P PPN

PRI
R)

~

S
B TR oy T, W

category : out ws_category);
This function returns the "category" of the "type of ws".

procedure INQ WS _CLASS
(type_of ws : in ws_type;
ei : out error_indicator;
class : out display_class);
This function returns the display "class" of the "type_of ws",

procedure INQ_DISPLAY SPACE SIZE

(type_of ws : in ws_type'

ei : out error_indicator;

units : out dc_units;

max_dec_size ! out de.size;

max_ “raster _unit_size : out raster_unit_size);
This function returns the Device Coordinate "units", the maximum display
surface size in Device Coordinate units "max_dec_size", and the maximum
display surface size in raster units "max raster unit_size" for the
"type of ws".

procedure INQ _DYNAMIC_MODIFICATION OF] ws _ATTRIBUTES

(type_of ws : in ws type'

ei : out error_lndlcator'

polyline representation : out dynamic_modification;

polymarker representation : out dynamic _modification;

text representation : out dynamic_modification;

fill area_representation : out dynamic_modification;

pattern_representation : out dynamic_modification;

colour _representation : out dynamic_modification;

transformation : out dynamic_modification);
This function returns the polyline, polymarker, text, fill area, pattern,
and colour representation changeable., These tell whether a redrawing of
the screen is needed if the representation is changed., "transformation"
does the same thing for setting the transformations.

procedure INQ DEFAULT DEFERRAL_STATE_VALUES

(type_of ws : in ws_type;

ei : out error_indicator;

deferral : out deferral mode;

regeneration : out regeneratlon mode) ;
This function returns the default value for "deferral" mode and the de-
fault value for "regeneration" mode for workstation type "type of ws",

end INQ_REPRESENT;

package INQ FACILITIES is

procedure INQ POLYLINE FACILITIES
(type_of ws : in ws_type;
el : out error_indicator;
list_of types : out line_types.list_of;

A.57

bt Bl B

index : in pattern_index;
returned values : in return_value type;
ei : out error_indicator;
indices : out pattern_indices.list_of);
This function returns the "pattern" array of colour indices.

procedure INQ_PATTERN REPRESENTATION
(ws : in ws_id;
index : in pattern_index;
returned_values : in return_value_type;
ei : out error_indicator;
pattern : out colour_indices.matrix_of);
This function returns "pattern" array of colour indices.

procedure INQ LIST OF COLOUR_INDICES
(ws : in ws_id;
ei : out error_indicator;
indices : in colour_indices,list_of);
This function returns a list of color "indices" for workstation "ws".

procedure INQ COLOUR_REPRESENTATICN

(ws ¢ in ws_id;

index : in colour_index;

returned _values : in return_value_type;

ei : out error_indicator;

colour : out colour_representation);
This function returns the "colour" for the specified color "index" being
inquired of on workstation "ws". The "returned values" parameter indi-
cates whether the returned values should be as they were set by the pro-
gram, or as they were actually realized.

procedure INQ WS TRANSFORMATION

(ws : in ws_id;

el : out error_indicator;

update : out update state;

requested_window : out ndc.rectangle;

current_window : out ndc.rectangle;

requested_viewport : out dc.rectangle;

current_viewport : out dc.rectangle);
This procedure returns the workstation transformation "update" state, the
"requested_window", "current_window", "requested window", and "current_
viewport",

procedure INQ SET_OF_SEGMENT_NAMES_ON_WS

(ws : in ws_id;

el : out error_indicator;

segments : out segment_names.,list_of);
This function returns a set of stored segment names "segments" for work-
station "ws",

procedure INQ WS_CATEGORY
(type of ws : in ws_type;
ei : out error_indicator;

A.56

P G N PR WY WIRE

And Bl g i Mot e cod dd unl U ol ¢t dedh Aad ang e Sed Bad Sad enf Sadl g it Sl Al Al A A el Rl Sael Sode A Jied Ml Sedt S Sed S d aull S Sef sl Sl el Suf Jauih Shdi stnt

prTaTe-

el

e B el i,

PR)

.

i bt e ol OF 7 W ST)

o

- - -

returned_values : in return_value_type;

ei : out error_indicator;

marker : out marker_ type;

size : out marker_size;

colour : out colour_index);
This function returns the 'marker" type, the marker "size" scale factor,
and the polymarker "colour" index. The "returned values" parameter indi-
cates whether the returned values should be as set by the program, or as
they were actually realized.

procedure INQ LIST OF TEXT_INDICES
(ws : in ws_id;
ei : out error_indicator;
indices : out text_indices.list_of);
This function returns the list of text "indices" for workstation "ws".

procedure INQ_TEXT_ REPRESENTATION

(ws : in ws_id;

index : in text index;

returned_values : in return_value_type;

el : out error_indicator;

font_precision : out text_font_precision;

expansion : out char_expansion;

spacing : out char_spacing;

colour : out colour_index);
This function returns the text "font_precision", the character "expan-
sion" factor, the character "spacing", and the text "colour" index. The
"returned_values" parameter indicates whether the returned values should
be as set by the program, or as they were actually realized,

procedure INQ LIST OF FILL AREA_INDICES

(ws : in ws_id;

el : out error_indicator;

indices : out fill area_indices.list_of);
This function returns a list of defined fill area "indices" for worksta-
tion "ws".

procedure INQ FILL AREA REPRESENTATION

(ws : in ws_id;

index : in fill area_index;

returned_values : in return_value_type;

el : out error_indicator;

style : out style index;

colour : out colour_index);
This function returns the fill area "style" index and the fill area "col-
our" index. The fill area interior style is a discriminant component of
the style index. The "return_values" parameter indicates whether the re-
turned values should be as they were set by the program, or as they were
actually realized. The "index" is the fill area index being inquired of
on workstation "ws",

procedure INQ LIST OF PATTERN_INDICES
(ws : in ws_id;

A.55

Pt - St O
i W B B] s s e . -

i el A0t dhafe Mt Jafl s RN SRl el St Jhadh Sb ol Nadh Sl > e Sadlh Sl odh Sl Bl

Dadh W I A Y A A

el : out error_indicator;

state : out ws_state);
The "state" workstation "ws" is returned. The "state" is either "active"
or "inactive™,

procedure INQ_WS_DEFERRAL_AND UPDATE_ STATES

(ws : in ws_id;

ei : out error_indicator;

deferral : out deferral mode;

regeneration : out regeneration mode;

display : out display surface_empty;

frame_action : out new_frame_necessary);
This function returns the "deferral™ mode, the "regeneration" mode, the
"display" mode, and the new "frame_action" necessary for update for the
workstation "ws".

end INQ_ATTRIBUTES;

package INQ REPRESENT is

procedure INQ LIST OF_POLYLINE INDICES

(ws : in ws_id;

ei : out error_indicator;

indices : out polyline_indices.list_of);
This function returns the list of defined polyline "indices" for the
Wworkstation "ws",

procedure INQ POLYLINE REPRESENTATION

(ws : in ws_id;

index : in polyline_index;

returned_values : in return_value_type;

ei : out error_indicator;

line : out line_ type;

width : out line width;

colour : out colour_index);
The function returns the "line" type, the line "width" scale factor, and
the polyline "colour" index for the bundle specified by the polyline "in-
dex" on workstation "ws", The "returned_values" parameter indicates
"returned_values" parameter indicates whether the returned
whether the returned values should be as set by the program, or as they
were actually realized.

procedure INQ LIST OF POLYMARKER_INDICES
(ws : in ws_id;
el : out error_indicator;
indices : out polymarker_indices.list_of);
This function retruns the list of defined polymarker "indices" for "ws".

procedure INQ_POLYMARKER REPRESENTATION

(ws : in ws_id;
index : in polymarker_index;

A.54

BNPR R R Sy Sy S PRI, S & L R S I A N U S S AL TS

a

. . L . - P) ;
. . 3 . . PP . . e e
EEVAIE WINE SIDURNTLI KO SN Syl 20 VO, S L UL St S W ST S TP Y IS g SRR SV Sy PP a

e
.

(ei : out error_indicator;
transformation : out transformation_number);
The current normalization "transformation" number is returned.

procedure INQ_LIST_OF NORMALIZATION_TRANSFORMATION_NUMBERS
(ei : out error_indicators;
list : out transformation numbers.list of);

This function returns a "1ist" of tranformation numbers.

procedure INQ NORMALIZATION_TRANSFORMATION

(transfromation : in transformatlon_number;

el : out error_indicator;

window_limits : out we.rectangle;

viewport_limits : out ndc.rectangle);
This function returns the "window_limits" in world coordinates and the
"viewport limits"™ in normalized device coordinates for the specified nor-
malization "transformation".

procedure INQ CLIPPING

(ei : out error_indicator;

clipping : out clipping_indicator;

clipping_rectangle : out ndc.rectangle);
This function returns the "clipping" indicator and the "clipping rectan-
gle,"

procedure INQ NAME OF OPEN_SEGMENT
(ei : out error_ indicator;
segment : out segment_name);
This function returns the name of the current open "segment".

procedure INQ_SET OF_SEGMENT_ NAMES_IN USE

(ei : out error_ “indicator;

segments : out segments_names.list_pf);
The function returns the set "segments" of segment names in use., It in-
cludes the number of segment names in use.

procedure INQ MORE_SIMULTANEOUS_EVENTS

(ei : out error_ indicator;

events : out more_events);
A value of "more" or "nomore" will be returned for "events" to indicate
whether there are other input reports in the same group of simultaneous
events as the last removed report,

procedure INQ WS_CONNECTION_AND TYPE

(ws : in ws id,

el : out error_indicator;

connection : out connection_id;

type_of _ws : out ws_type);
This function returns the connection "identifier" and the "type_of ws"
for the workstation "ws",

procedure INQ WS _STATE

B (ws : in ws_ id'

A.53

procedure INQ POLYMARKER_SIZE SCALE_FACTOR
(ei : out error_indicator;
size : out scale_factor);
This function returns the current marker "size".

procedure INQ_ POLYMARKER_COLOUR_INDEX
(ei : out error_ indicator-
colour : out colour_index);
This function returns the current polymarker "colour" index.

procedure INQ TEXT FONT_AND_ PRECISION

(ei : out error_ indicator;

font _precision : out text_font precision);
This function returns the current text font and precision (font_preci-
sion).

procedure INQ CHAR_EXPANSION FACTOR
(ei : out error_ indicator;
expansion : out char_gxpansion);
This function returns the current character "expansion" factor.

procedure INQ_CHAR_SPACING
(ei : out error_indicator;
spacing : out char_spacing);
This function returns the current character "spacing”.

procedure INQ TEXT_COLOUR_INDEX
{ei : out error_ ind1cator'
colour : out colour_index);
This function returns the current text "colour",

procedure INQ FILL AREA_INTERIOR_STYLE
(ei : out error_indicator;
style : out interior_style);
This function returns the current fill area interior "style"

procedure INQ FILL AREA_STYLE INDEX
(ei : out error_ indxcator'
index : out style_lndex),
This function returns the current fill area "style" index.

procedure INQ_FILL AREA_ COLOUR_INDEX
(ei : out error_ indicator;
colour : out colour_index).
This function returns the current fill area "colour" index.

procedure INQ LIST OF ASF
(ei : out error_ indicator;
list : out asf _list);
This function returns the list of aspect source flags.

procedure INQ CURRENT_NORMALIZATION TRANSFORMATION_NUMBER

A.52

e ata . PRI . S et A . - " LR S C - et et IR
alar W PO VAT O VL YAy YO/ AL 0. L. o Y SRS, S PP Yl WA AN URY TP ISP . UL T G T

wwymvTYow

v

il
-
i
-

‘?.\

P G i S S S ab e e

(ei : out error_indicator;
vector : out wec.vector);
This function returns the current character up "vector".

procedure INQ_TEXT_PATH
(ei : out error_indicator;
path : out text_path);
This function returns the current text "path",

procedure INQ_TEXT_ALIGNMENT
(el : out error_ 1ndicator~
alignment : out text_alignment);
This function returns the current text "alignment".

procedure INQ FILL AREA_INDEX
(ei : out error_ indicator;
index : out fill_area_lndex);
This function returns the current fill area "index".

procedure INQ PATTERN_SIZE
(ei : out error_indicator;
size : out we.size);
This function returns the current pattern "size".

procedure INQ_PATTERN_REFERENCE_POINT
(ei : out error_indicator;
reference_point : out wc.point);
This function returns the current pattern "reference_point".

procedure INQ PICK ID
(ei : out error_indicator;
pick : out pick_id);
This function returns the current "pick" identifier,

procedure INQ LINE TYPE
(el : out error_indicator;
line : out line_type);
This function returns the current "line" type.

procedure INQ LINEWIDTH SCALE_FACTOR
(ei : out error_ indicator‘
width : out line_width);
This function returns the current line "width" scale factor,

procedure INQ_POLYLINE COLOUR_INDEX
(ei : out error_indicator;
colour : out colour_index);
This function returns the current polyline "colour" index.

procedure INQ_ POLYMARKER_TYPE
(ei : out error_indicator;
marker : out marker type);
This function returns the current "marker" type

A,51

Dl R T T PP I T Oy N R T N W T R Y N Ty T T T T R T A T N Wy W W wow

procedure INQ LIST OF AVAILABLE_WS_TYPES
(ei : out error indicator'
types : out ws_types list_of);
This function returns a list of workstation types.

procedure INQ_WS_MAX NUMBERS

(ei : out error indicator,

max_open_ws 3 out positive;

max_active_ws : out positive;

max_segment_ws : out positive);
This function returns the maximum number of simultaneously open worksta-
tions (max_open_ws), the maximum number of active workstations (max_ac-
tive_ws), and the maximum number of workstations associated with segment
(max_segment_ws).

procedure INQ MAX NORMALIZATION_TRANSFORMATION NUMBER

(ei : out error_ 1ndicator°

transformation : out transformation_number);
This function returns the maximum normalization "transformation™ number
allowed by this implementation of GKS,

procedure INQ SET_OF OPEN WS
(ei : out error_ “indicator;
WS : out ws_ids.list_of);
A list of open workstations is returned,

procedure INQ_SET_OF_ACTIVE WS
(ei : out error_ “indicator;
WS : out ws_ ids,list _of);
A list of active workstations is returned.

procedure INQ_POLYLINE INDEX
(ei : out error_indicator;
index : out polyline_index);
This function returns the current polyline "index".

procedure INQ POLYMARKER_INDEX
(ei : out error_indicator;
index : out polymarker_index);
This function returns the current polymarker "index",

procedure INQ_TEXT_INDEX
(ei : out error_indicator;
index : out text index);
This function returns the current text "index".

procedure INQ_CHAR_HEIGHT
(ei : out error_indicator;

height : out char_height);
This function returns the current character "height",

procedure INQ CHAR_UP_VECTOR

A.50

. te PR - - PR . . . '4. ."-. . - ‘.‘.....'-'.
B T I R S LY S N . T T N L. L Y O I L Y I O I Y I Y ¥ W N ey

T .y

»

vy vy vy

Ty
N .
R

R
e

GKS performs a request on the specified stroke "device" on the specified
"ws", The current measure of the stroke device consistes of a sequence
of "stroke_points" in world coordinates and the normalization "transfor-
mation" number which was used in the conversion to World Coordinates.
procedure REQUEST_VALUATOR

(ws ¢ in ws_id;

device : in device_ number;

value : out input_value);
GKS performs a request on the specified valuator "device" number on work-
station "ws", The "value" returned is the current measure of the valua-
tor device,

procedure REQUEST CHOICE

(ws : in ws_id;

device : in device_number;

choice : out choice_input_type);
GKS performs a request on the specified choice "device" on workstation
"ws", The "choice" returned is the current measure of the "choice" de-
vice,

procedure REQUEST_PICK

(ws : in ws_id;

device : in device number;

pick : out pick_input_type);
GKS performs a request on the specified pick "device" on workstation
"ws", If the measure of the pick device indicates no pick, "status" is
returned "nopick"; otherwise, "ok" is returned together with a "segment"
name and "pick" identifier which are set according to the current measure
of the pick device,

procedure REQUEST_STRING

(ws : in ws_id;

device : in device_number;

char_string : out input_string);
GKS performs a request on the specified string "device" on workstation
"ws". The "char_string" returned is the current measure of the string
device,

end INPUT;

package INQ ATTRIBUTES is

procedure INQ_OPERATING_STATE_VALUE
(value : out operating state);
This function returns the "value" of the GKS operating state.

procedure INQ_LEVEL_OF_GKS
(ei : out error_indicator;
level : out gks level);
The level of this GKS implementation is returned.

A.49

B A T R o i

b i ind dell AdIDILACA S AN A AN SR ANAC RES M b At AN AR A i oA it A A Sl IRt E S ARL & A Sk ANt G T i LT el Al Salh A i Wl e B A P ot A0 I B SPe aen |

procedure SET_VALUATOR_MODE

(ws : in ws_id;

device : in device_number;

mode : in operating mode;

switch : in echo_switch);
Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch®,

procedure SET_CHOICE_MODE

(ws : in ws_id;

device : in device number;

mode : in operating mode;

switch : in echo_switch);
Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

procedure SET_PICK MODE

(ws : in ws_id;

device : in device_number;

mode : in operating mode;

switch : in echo_switch);
Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch",

procedure SET_STRING MODE

(ws : in ws_id;

device : in device number;

mode : in operating mode;

switch : in echo_switch);
Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

end SET_INPUT;

package INPUT is

procedure REQUEST_LOCATOR

(ws : in ws_id;

device : in device_number;

transformation : out transformation_ number;

position : out wc.point);
GKS performs a request on the specified locator device number "device"
on the specified "ws", The locator "position" in World Coordinates and
the normalization "transformation" number, which was used in the conver-
sion to World Coordinates, are the current measure of the locator device.

procedure REQUEST_STROKE
(ws : in ws_id;
device : in device_number;
transformation : out transformation_number;
stroke_points : out points.list_of);

A.48

e Lt .
S . . LT
R . TR

-

LB 3 20 4 B AL BB S Sy

echo_area : in dec.rectangle;

data_record : in choice_data_record);
The input device with device number "device for the workstation "ws" is
initialized. This function provides the following information to the de-
vice:

The "initial_choice™ number.

The "echo_area" rectangle in device coordinates.

the choice "data record".

procedure INITIALISE PICK

(ws ¢ in ws_id;

device : in device_number;

initial _pick : in pick_input_type;

echo_area : in dc.rectangle;

data_record : in pick_data_record);
The input device with device number "device" for the workstation "ws" is
initialized. This function provides the following information to the de-
vices

The "initial status" of "pick" or "no_pick".

The name of the "initial segment".

The "initial pick" identifier.

The "echo_area" rectangle in device coordinates.

The pick "data_record".

procedure INITIALISE STRING

(ws : in ws_id;

device : in device_number;

initial_string : in input_string;

echo_area : in dc.rectangle;

data_record : in string_data_record);
The input device with device number "device" for the workstation "ws" is
initialized. This function provides the following information to the de-
vice:

The "initial string" which contains the initial input string.

The "echo_area" recatangle in device coordinates,

The string "data_record".

procedure SET_LOCATOR_MODE

(ws : in ws_id;

device : in device number;

mode : in operating_mode;

switch : in echo_switch);
Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switch".

procedure SET_STROKE_MODE

(ws : in ws_id;

device : in device number;

mode : in operating_mode;

switch : in echo_switch); '
Input device number device on workstation "ws" is set to the specified
"mode", and the echoing is set to "switech",

A.47

L Sud Ml el sl Al sl el Al Wi e h v P e el JE At bR s e Su v o ~ae o e

package SET_INPUT is

procedure INITIALISE LOCATOR
(ws : in ws_id;
device : in device_number;
initial_transformation : in transformation_number;
initial position : in wec.point;
echo_area : in dc.rectangle;
data_record : in locator_data record);
The input device with device number "device" for the workstation "ws" is
initialized, The function provides the following information to the de-
vice:
The "initial position" of the locator in world coordinates. g
The "initial transformation" which provides the initial normalization :
transformation number. .
4

The "echo_area" rectangle in device coordinates.
The locator "data_record".

procedure INITIALISE STROKE o
(ws : in ws_id; :
device : in device_number;
initial_tranformation : in transformation_number; *
initial_stroke : in points.array_of; 5
echo_area : in dec.rectangle; ’
data record : in stroke_ﬁata_record);

The input device with device number "device™ for the workstation "ws" is .

initialized. The function provides the following information to the de=- >

vice:
"initial_stroke" which contains the number of points in the initial
stroke and the points in the stroke.
"initial_transformation" which provides the initial normalization
transformation number, .
The "echo_area" rectangle in device coordinates
"data_record" which provides the stroke data record.

procedure INITIALISE VALUATOR

(ws : in ws_id;

device : in device_number;

initial_value : in input_value;

echo_area : in dc.rectangle;

data_record : in valuator_data_record);
The input device with device number "device" for the workstation "ws" is
initialized. The function provides the following information to the de-~
vice:

"initial_value" which contains the initial value,

The "echo_area" rectangle in device coordinates.

The valuator "data_record”,

procedure INITIALISE CHOICE
(ws ¢ in ws_id;
device : in device number;
initial choice : in choice_input_type; 4

W ELILIRIAIRE | N S)

A.46

segment : in segment_name);
The "segment™ is sent to the workstation "ws" in the same way as if the
workstation were active when the segment was created. Clipping rectan-
gles are copied unchanged.

procedure COPY_SEGMENT_TO_WS

(ws : in ws_id;

segment : in segment name);
The primitives in the segment pointed to by "segment" are sent to the
specified "ws",

procedure INSERT SEGMENT

(segment : in segment_name;

transformation : in transformation matrix);
INSERT_SEGMENT allows previously stored primitives to be transformed, ac-
cording to the transformed coordinates specified by "transformation", and
again placed into the stream of output primitives.

procedure SET_SEGMENT_TRANSFORMATION

(segment : in segment_name;

transformation : in transformation matrix);
This function transforms the "segment" as specified by the "transforma-
tion" matrix.

procedure SET VISIBILITY

(segment : in segment name;

visibility : in segment_visibility);
The visibility of the specified "segment" is set to the value of "visi-
bility".

procedure SET_HIGHLIGHTING

(segment : in segment name;

highlighting : in segment_highlighting);
The highlighting of the specified "segment" is set to the value of "high-
lighting".

procedure SET_SEGMENT_PRIORITY

(segment : in segment name;

priority : in segment_priority);
The segment priority of the named "segment" is set to the value specified
by "priority"., Segment priority affects the display of segments and pick
input if segments overlap, in which case GKS gives precedence to segments
of higher priority.

procedure SET_DETECTABILITY

(segment : in segment_name;

detectability : in segment_detectability);
The detectability of the specified "segment" is set to the value of "de=~
tectability".

end SEGMENTS;

A.45

L aa ot ek Bah et Jius Biet Sy Jadt Mok gt Jhese Sttt e Mot Bt Mhes Sl St Jhen hede Tt Siat Sl St Jnote Rut S JiaeratenarIhdu st St Sadn S-S St Jadec-Sied

- PO S, Pl L e D S e

procedure SELECT NORMALIZATION_ _TRANSFORMATION

(transformation : in transformation_number);
The specified normalization TRANSFORMATION becomes the current normaliza-
tion transform to be used for subsequent output primitives.

procedure SET CLIPPING_INDICATOR

(clipping : in c11pp1ng indicator);
The clipping indicator is set to specify whether there is clipping or not
by the parameter "clipping".

procedure SET_WS_WINDOW

(ws : in ws_ id;

WS_window_ limits : in ndc. rectangle);
The requested workstation window on workstation "ws" is set to the rec-
tangle specified by the normalized device coordinates "ws_window_limits",

‘procedure SET WS _VIEWPORT

(ws : in ws_ Tid;

WS v1ewport limits : in dc.rectangle);
The requested workstation viewport on workstation "ws" is set to the rec-
tangle specified by the device coordinates "ws_viewport_ limits",

end TRANSFORM;

package SEGMENTS is

procedure CREATE_SEGMENT is

(segment : in segment _name);
This function creates a new segment. The segment is stored on all work-
stations active at the time the segment is created,

procedure CLOSE_SEGMENT;
The current open segment is closed,

procedure RENAME SEGMENT

(old_name : in segment_name;

new_name : in segment_name);
The name attribute of the segment is changed from "old_name" to "new_
name".

procedure DELETE_SEGMENT
(segment : in segment_pame);
The segment specified by "segment" is deleted on all workstations.

procedure DELETE_SEGMENT_FROM_WS
(ws : in ws_id;
segment : in segment name);
The specified "segment" is deleted form the workstation "ws",

procedure ASSOCIATE SEGMENT WITH_WS
(ws : in ws_id;

A.44

- g s

. e T) L e .- P - T «t . S te e CURPR N .
Adadle o @b gl e g IR VR, L Y S I WS W N V. S W V. SO UL St S WS, WK YOS Y SRR R

T Ty y——

it
£
a4’ a

v

]
 ——ra

»
| 4
=
an .
a number_of widths : out line_types.list_of; .
\: . nominal _width : out dc.magnitude; :

™

range_of_widths : out dc.limits;

number_of_indices : out natural);
This function returns a list of available linetypes (list_of types), the
number of available linewidths (number_of widths), the "nom1na1 width",
the range of linewidths (range_of widths), and the number of predefined
polyline indices (number_oﬁ_lndices) for workstation type (type of ws).

cm CuEEER e~

- .

| At g A 4 3 PR
.o N '
R B R

procedure INQ PREDEFINED POLYLINE REPRESENTATION

(type_of ws : in ws_type;

index : in polyline_index;
) ei : out error_indicator;
- line : out line type;
- width : out line_width;
' colour : out colour_index);
This function returns the linetype (line), the linewidth scale factor
(width), and the polyline "colour" index. The "index" is the polyline K
index being inquired on the "type of ws". 2

. pEER AL e

PR & . s a3

< procedure INQ_POLYMARKER_FACILITIES
- - (type_of ws : in ws_type; i
ei : out error_indicator;
list_of types : out marker_types.list_ of;
number_of_sizes : out natural;
nominal size : out dec.magnitude;
. range of sizes : out dc.limits;
V) number_of indices : out natural);
This function returns the list of available marker types (list_of types),
the number of available marker sizes (number_of_ sizes), the "nominal_
size" of the marker, the range of marker sizes (range_of sizes), and the
number of predefined poly -irker indices (number_of indices) for the
"type_of ws".

A summme . . .- . .

e s A

procedure INQ PREDEFINED POLYMARKER REPRESENTATION
(type_of ws : in ws_pype°
index : in polymarker_index;
ei : out error_indicator;
marker : out marker_type;
size : out marker_size; [
colour : out colour_index);
This function returns the "marker", the marker "size" scale factor, and
the polymarker "colour" index for the polymarker "index" being inquired
on this "type of ws".

2 e ® "

i

LI e e 4
»

¢ procedure INQ TEXT FACILITIES
: (type_of ws : in ws_type;
ei : out error_ 1ndicator'
list_of font precision pairs : .
out text font _precisions.list_of; :
number_of_heights : out natural; :
4 range_of heights : out dc.limits; i
number_of expansions : out natural;

A.58

LR n A iy U oAt A Gue atub e - Tl N N i et S B S I A iean e Ancan i il S s St it dit Jiet fiiate RNt ol b Rt M A e v Lo dtandt Sl St il Ml Dl

) range_of expansions : out dc.limits;

- . number_of_indices : out natural);

SR This function returns a "list_of font_precision_pairs" available, the

< . number of available character heights (number_of heights), the minimum
Eﬁ and maximum character heights (range_of heights), the number of available

character expansion factors (number of expansions), the minumum and max-
imum character expansion factors (range of expansions), and the number
of predefined text indices (number_of indlces) for the "type_of ws".

procedure INQ PREDEFINEC TEXT_KEPRESENTATION

(type_pf_ys : in ws type,

index : in text_index;

el : out error_indicator;

font _precision : out text_font precision;

expansion : out char expan51on'

spacing : out char_spacing;

colour : out colour_index);
This function returns the text font and precision (font_precision), the
character "expansion" factor, the character "spacing", and the text "col-
out" index for the predefined text "index" on this "type_of ws".

- procedure INQ FILL _AREA FACILITIES

{‘L (type_of ws : in ws_type;

- ei : out error_indicator;

o list_of_interior_styles : out interior_styles.list_of;

g list of hatch_styles : out hatch styles.list of;

a number of indices : out natural);

‘).- This function returns the "list _of interior_style" available, the "list_
of hatch_styles" available, and “the number of predefined fill area in-
dices (number_of_indices) for the "type of ws".

procedure INQ_PREDEFINED_ FILL_AREA REPRESENTATION
(type_of ws : ws_type;
index : in fill area index;
ei : out error_indicator;
style : out style index;
colour : out colour_index);
This function returns the fill area "style" index and the fill area "co=-
] lour" index for the fill area "index" being inquired on this "type_of
o ws",

procedure INQ PATTERN FACILITIES
- (type_of ws : in ws_type;
" el : out error_indicator;
number_of indices : out natural);
® This function returns the number of predefined pattern indices (number_
of indices) for this "type of ws",

procedure INQ_PREDEFINED_PATTERN_REPRESENTATION
(type _of ws : in ws_type;
index : in pattern_index;
@ - ei : out error_indicator;
pattern : out colour_indices.variable matrix_of);

A.59

This function returns the "pattern" array of colour indices for the pat-
tern "index" being inquired on this "type of ws",

procedure INQ_COLOUR_FACILITIES

(type_of ws : in ws_type;

el : out error_indicator;

number_of colours : out positive);
This function returns the "number_of colours" supported on this "type_of_
ws",

procedure INQ PREDEFINED COLOUR_REPRESENTATION

(type_of ws : in ws_type;

index : in colour_index;

el : out error_indicator;

colour : out colour_representation);
This function returns the "colour" for the color "index" being inquired
on this "type of ws".

procedure INQ LIST_OF_ AVAILABLE GDP
(type_of ws : in ws_type;
ei : out error_indicator;
list_of gdp : out gdp_ids.list_of);
This function returns the "list _of_gdp" identifiers for the "type_of_ws".

procedure INQ GDP

(type_of ws : in ws_type;

gdp ¢ in gdp_id;

ei : out error_indicator;

list_of attributes used : out attributes_used.list_of);
This function returns the list of sets of attributes used (list_of attri-
butes_used) for the "gdp" identifier on the "type of ws".

end INQ FACILITIES;

package INQ_SEGMENT is

procedure INQ MAX_LENGTH_OF_WS_STATE_TABLES

(type_of _ws : in ws_type;

el : out error_indicator;

max_polyline_entries : out natural;

max_polymarker_entries : out natural;

max_text_entries : out natural;

max_fill area_entries : out natural;

max_pattern_indices : out natural;

max_colour_indices : out natural);
This function returns the maximum number of polyline, polymarker, text,
and fill area table entries, It also returns the maximum number of pat-
tern and colour indices on this "type_of ws".

procedure INQ_NUMBER_OF_ SEGMENT_PRIORITIES_SUPPORTED
type_of ws : in ws_type;

A.60

M A A el e A IR i S S e M PEA A Aty Sy S St s Bt 2t it M Liaie i bt et

ot i

el : out error_indicator;

number_of priorities : out natural);
This function returns the number of segment priorities (number_of prior-
ities) supported on this "type of ws",

procedure INQ_DYNAMIC_MODIFICATION_OF_SEGMENT_ATTRIBUTES

(type_of ws : in ws_type;

ei : out error_indicator;

transformation : out dynamic_modification;

visible to_invisible : out dynamic_modification;

1nvisib1e to _visible : out dynamic_modification;

hlghllghtlng : out dynamic_! mod1fication°

priority : out dynamic_modification;

adding_primitives : out dynamic modification;

deletion_visible : out dynamic_modification);
This function returns the segment "transformation" changeable, the vis-
ibility changeable from "visible_to_invisible", the visibility changeable
from "invisible to_visible", the segment "priority" changeable, "adding_
primitives” to open segment, and the segment "deletion visible" for this
"deletion_visible"™ for this "type of ws".

procedure INQ_SET_OF ASSOCIATED WS

(segment : in segment name;

ei : out error_indicator;

list_of ws : out ws_ids.list_of);
This function returns the set of workstatlons, (list_of ws), associated
with "segment".

procedure INQ _SEGMENT_ATTRIBUTES

(segment : in segment_name;

el : out error_indicator;

transformation : out transformation matrix;

visibility : out segment_visibility;

highlighting : out segment_highlighting;

priority : out segment priority;

detectability : out segment_detectability);
This function returns the segment "transformation" matrix, the segment
"visibility", the segment "highlighting", the segment "priority", and the
segment "detectability" for the given "segment".

end INQ_SEGMENT;

package SET_TRANSFORM is

procedure EVALUATE TRANSFORMATION MATRIX
(fixed_point : in wc.point;
shift_vector : in wc.vector;
rotation_angle : in radians;
scale_factors : in transformation_factor;
transformation : out transformation _matrix);
The transformation specified by "fixed_point", "shift vector", "rotation_

A.61

angle", and "scale_ factors", is evaluated and the result is put in
"transformation”.

procedure EVALUATE TRANSFORMATION_MATRIX

(fixed point : in ndc.point;

shift_vector : in ndec.vector;

rotation_angle : in radians;

scale_factors : in transformation_factor;

transformation : out transformation_matrix);
The transformation specified by "fixed_point", "shift_vector", "rotation_
angle"”, and "scale factors", is evaluated and the result is put in
"transformation".

procedure ACCUMULATE_TRANSFORMATION_MATRIX

(source_ transformation : in transformation_matrix;

flxed_p01nt t in we.point;

shift_vector : in wec.vector;

rotation_angle : in radians;

scale_factors : in transformation_ factor;

result _transformation : in transformation _matrix);
The transformation defined by "fixed_point", "shift_vector", "rotation_
angle", and "scale_factors", is premultiplied by the "source transforna-
tion" and the result is returned in "result_transformation",

procedure ACCUMULATE_TRANSFORMATION_MATRIX

(source_transformation : in transformation_matrix;

fixed_point : in ndc.point;

shift_vector : in ndec.vector;

rotation_angle : in radians;

scale factors : in transformation_factor;

result _transformation : in transformation - matrix);
The transformation defined by "fixed point", "shift_vector", "rotation_
angle", and "scale factors", is premultiplied by the "source transforma-
tion" and the result is returned in "result transformation".

end SET_TRANSFORM;

package EMERGENCY is

procedure EMERGENCY_ CLOSE_GKS;

This function is used to close GKS in case of a nonrecoverable error.
Any open segment is closed. All workstations are updated. All active
workstations are deactivated. All open workstations are closed. GKS is
closed.

end EMERGENCY;

package ERROR_HANDLING is

A.62

state_error, ws_error, transformation_error : exception;
output_attribute_error, output_primitive_error : exception;
segment_error, input_error, language binding_error : exception;

procedure ERROR_LOGGING

(ei : in error_indicator;

name : in subprogram_name);
This function writes the error "number" and the GKS function "name" de-
tecting the error to the error file specified in "open_gks".

end ERROR_HANDLING;

A.63

TRV RTR, T TR T TN T s Ny . ¥ avdYoYaS .'.'.'-'.'.v.'.'.'-T

AFIT_GKS Errors (6:59-64)

O This binding requires the use of Ada exceptions to notify the application
program of error conditions detected by AFIT_GKS functions, except the
inquiry functions. The exceptions correspond to the classes of errors
described in Appendix B of the ANS GKS specification. The Ada concept

of allowing the application program to provide exception handlers re-
places the ANS GKS requirement of a global user-supplied Error Handling
procedure., When an exception is raised, the application program may read
the error file to get the error number, the name of the subprogram de-~
tecting the error, and any implementation-defined messages,

- The AFIT_GKS inquiry functions do not raise exceptions. Instead, they
:“: return an error indicator parameter containing the number of the "error"
p which was detected. This is consistent with the ANS GKS philosophy that
no errors occur during inquiries. The error numbers correspond to the
error numbers from Appendix B of the ANS GKS specification, plus addi-
tional errors defined in this binding. Note that certain known error
conditions may be detected outside the control of AFIT GKS due to the na-
ture of the Ada language, and may result in an exception being raised on

&‘ an inquiry.
Error Code Definition

This section provides the mapping of the ANS GKS error numbers to Ada ex-
ceptions., The names of the exceptions correspond to the classes of er-
rors defined in Appendix B of the ANS GKS specification. For each of
these error "classes", the number of the errors covered by this exception
are specified. These numbers are also the same numbers used as error in-
indicator return values on inquiries. Certain of the known ANS GKS er-
rors will never be detected by AFIT GKS due to features of the Ada lan-
guage, such as strong data typing. These errors are not included in this
section.

STATE_ERROR

The State_Error exception is raised when a AFIT_GKS function is called
from an incorrect state. The following ANS GKS error conditions corre-
spond to this exception:

1 GKS not in proper state: GKS shall be in state GKCL

2 GKS not in proper state: GKS shall be in state GKOP

3 GKS not in proper state: GKS shall be in state WSAC

4 GKS not in proper state: GKS shall be in state SGOP

5 GKS not in proper state: GKS shall be in either state WSAC or in state
SGOP

6 GKS not in proper state: GKS shall be in either state WSOP or in state
SGOP

7 GKS not in proper state: GKS shall be in one of the states WSOP, WSAC
or SGOP

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP,
WSAC or SGOP

A.64

AR 18

C 1.

WS_ERROR

The exception WS _ERROR is raised when an error occurs during manipula-

tion of a workstation,

exception:
21 Specified
22 Specified
24 Specified
25 Specified
26 Specified
27
28
29 Specified
30 Specified
31 Specified
32 Specified
33 Specified
34 Specified
35 Specified
36 Specified
37 Specified
38 Specified
OUTIN
39 Specified
OUTIN
40 Specified
41 Specified

The following error numbers correspond to this

connection identifier is invalid

workstation type is invalid

workstation is open

workstation is not open

workstation cannot be opened

Workstation Independent Segment Storage is not open
Workstation Independent Segment Storage is already open

workstation
workstatice
workstation
workstation
workstation
workstation
workstation
workstation
workstation
workstation

workstation

workstation
workstation

TRANSFORMATION_ERROR

is
is
is
is
is
is
is
is
is
is

is

active

not active

of category MO

not of category MO

of category MI

not of category MI

of category INPUT

Workstation Independent Segment Storage
not of category OUTIN

neither of category INPUT nor of category

neither of category OQUTPUT nor of category

has no pixel store readback capability
type is not able to generate the specified gen-
eralized drawing primitive

The TRANSFORMATION ERROR exception is raised when an error occurs during

a transformation mshipulation.

to this exception:

51

The following error numbers correspond

Rectangle definition is invalid
54 Workstation viewport is not within the display space

OUTPUT_ATTRIBUTE_ERROR

The OUTPUT_ATTRIBUTE_ERROR exception is raised when an error occurs dur-

ing manipufation of an output attribute.

The following ANS GKS error

numbers correspond to this exception:

61

63
65

67
69

A representation for the specified polyline index has not been de-

fined on this workstation

Specified linetype is not supported on this workstation
A representation for the specified polymarker index has not been de-

fined on this workstation

Specified marker type is not supported on this workstation
A representation for the specified text index has not been defined
on this workstation

A.65

m‘-"'.l"s‘“‘r W WL W T W RN TR TR Ty LAt dlar Jha o diartad el M SRS dr il Biai Sl S 2 T T

71 Requested text font is not supported for the specified precision on
this workstation

74 Length of character up vector is zero

76 A representation for the specified fill area index has not been de-
fined on this workstation

77 Specified-fill area interior style is not supported on this worksta-
tion.

80 Specified hatch style is not supported on this workstation

82 A representation for the specified pattern index has not been defined
on this workstation

83 Interior style PATTERN is not supported on this workstation

87 A representation for the specified colour index has not been defined
on this workstation

OUTPUT_PRIMITIVE_ERROR

The exception OUTPUT_PRIMITIVE ERROR is raised when an error occurs dur-
ing manipulation of an output primitive. The following ANS GKS error
numbers correspond to this exception:

100 Number of points is invalid)

103 Content of generalized drawing primitive data record is invalid

104 At least one active workstation is not able to generate the speci-
fied generalized drawing primitive

SEGMENT_ERROR

The exception SEGMENT_ERROR is raised if an error is detected during ma-
nipulation of a segment. The following ANS GKS error numbers correspond
to this exception:

121 Specified segment name is already in use

122 Specified segment does not exist

123 Specified segment does not exist on specified workstation

124 Specified segment does not exist on Workstation Independent Segment
Storage

125 Specified segment is open

INPUT_ERROR

The exception INPUT_ERROR is raised when an error is detected during an
AFIT _GKS input operation. The following ANS GKS error numbers correspond
to this exception:

140 Specified input device is not present on workstation

141 Input device is not in REQUEST mode

142 Input device is not in SAMPLE mode

143 EVENT and SAMPLE input mode are not availiable at this level of GKS
144 Specified prompt and echo type is not supported on this workstation
145 Echo area is outside display space

147 Input queue has overflowed

150 No input value of the correct class is in the current event report

A,66

At . M EEANE oy et
e s - D) . ot PPN OIS WP IRP e 2 telbaecioniiadin PP WG, WO YR Y AP WO s St T 1

g e e aar e ane e~ agrass s san sas ar g g oarA Br See uE A Sed-nale i o te ke kb i A i S S M N ke S A U R AR AR R i

LANGUAGE_BINDING_ ERROR 4

LANGUAGE_BINDING_ERROR is raised when an error is detected that is spe-
cific to this binding of ANS GKS to Ada. Error numbers 500 to 600 are
reserved for language binding dependent errors. The following error num=-
bers are defined by this binding for the specific identification of lan-
of language binding errors:

500 Error file identification is invalid
503 Invalid use of input data record

504 Operator break on input

505 Timeout occured before input received

Error Codes Precluded by Function but included in the Inquiry Procedures.

50 Transformation number is invalid
60 Polyline index is invalid

64 Polymarker index is invalid

68 Text index is invalid

75 Fill area index is invalid

79 Specified pattern index is invalid
86 Colour index is invalid

A.67

DA R AR S A S AT A e e e te i TR AT b4 |

- Sample Program

This section of Appendix A shows a small sample program that uses
AFIT GKS. This sample program, shown in Figure A.l, draws the house
shown in Figure A.2. Note that the procedure demo in Figure A.l only
included those AFIT GKS packages that it needed. If the user of AFIT_
GKS needed a function from some other package of AFIT GKS then he/she

would have to include those additional packages.

A & tenas 3

. & u.a

A.68)

PR ST Tl Y A PONEIIUNE, Wt DAL I WU ULAY UL U WD WO Wl VOUNE. WO DU, W P e U A AT Tl AP AP P Y M R S - g

Fog e v

Yo

S,

A M Rt i Y T

with external_types, control,
procedure DEMO is

use external_types, control,
wc.rectangle :=

wind

procedure HOUSE is

roof

~~

—
It non
AYAR VAR VAR 1]

£
—

~ 0

FPLWNFHO FPOLONDEFFHWEN
W nn

~ O
s]
e N/ NV VN e

0V Vv Vv

Lt | N TR | I 1]

(1 =>

text_pt

(x =>
begin

polyline(roof);
fill area(wall);
polyline(door);
polymarker(handle);
text(text_pt,
HOUSE;

end

begin

activate_ws(2);
set_window(transformation => 1,

select_

HOUSE;

deactivate_ws(2);
close_ws(2);
close_gks;

end DEMO;

-- DEMO
open_gks;
open_ws(ws => 2,

primitives, transform;

primitives, transform;

(x => (min => 0.0,
y => (min => 0.0,

max => 50.0),
max => 50.0));

points.array_of(1..3)

(x => 10.0, y => 30.0),
(x => 20.0, y => 40.0),
(x => 30.0, y => 30.0));
points.array_of(l..4) :=
(x => 10.0, y => 10.0),
(x => 10.0, => 30.0),
(x => 30.0, y => 30.0),

(x => 30.0, y => 10.0));
points.array_of(1l..4) :=
(x => 15.0, y => 10.0),
(x => 15.0, y => 25.0),
(x => 20.0, y => 25.0),
(x => 20.0, y => 10.0));

: points.array_of(1l..1) :=
(x => 19.0, vy => 17.5));

: wc.point :=
35.0, y => 10.0);

—-- draw the roof
-- draw the wall
-— draw the door
-- draw the door handle

"house"); -- label the house

connection => "tek_4014",
type_of_ws => 1);

window_limits => wind);
normalization_transformation(l);

A SR

Figure A.l1. DEMO Program

A.69

R

L PP AP AP APPSR SR UL USRS S AP JUNE S S

e A PP D L il i At Wl el Sl el i

Lo AR Gl fall Sl Sl o

i A S Sl DM A R

s S ¢

e

n oy 33 2

Figure A.2. Output of Demo Program

A70

Y L. Y

[P

B Wt M Sl Al Al S A A A I !

System Dependent Features of AFIT GKS

The user of AFIT GKS needs to know a few things before trying to
use AFIT GKS.

First, the packages of AFIT GKS are located in the site libraries
of the ROLM Data General computer located at the ASD Computer Center.
Therefore, if the users account has access to the site libraries then
to use AFIT GKS the user simply "with's the AFIT GKS packages into his/
her program just like the library package "text io'.

Second, in order to use the "open ws" command of gks correctly

the user must call:

open_ws(ws => <any workstation id>,
connection => "tek-4014",
type of ws => 1);

to open the Tektronix 4014 workstation. The user must call:

open_ws(ws => <any workstation id>,
connection => "tek-4027",
type of ws => 2);

to open the Tektronix 4027 workstation. Finally, the user must call:

open_ws(ws => <any workstation id>,
connection => 'wiss",
type of ws => 3):

to open the Workstation Independent Segment Storage (WISS) workstation.

A71

‘e . T - . RS,
PRI T S N R S T T T T T S O T R T R L. N Ry |

AR T Nl i Sl e Al gl fal A A sadh AN AL S AL ated St e A

Centrum Amsterdam Netherlands, Department Computer Science, April }
1981 (AD-8059606).

15, ——==- . "Graphics Standards -- Where are We?,'" Eurographics '81,
71-73 (September 1981).

O T N R e IR M L A

PP A

_ammmas r

oA e e e

2 _A & sxmmae -

BIB.2

t
.

L‘l.‘-
s - PR SN

. e e e
S _' ' T o . . . - s

. - - - - . o - N < o o, Lo L~ P . : T
B NP U U S AP NP ST VDU Sy SNy SURpY SHENY T WA Wy R SR e B a e d | NN SR WY L. S . A L S S AL

e

10.

11.

12.

13.

14,

T TTTTTTTT—————— - S BBt Sl S A A S S S S A A et i S SR ML A S SEM AL A

Bibliography

ACM SIGGRAPH. 'Special GKS Issue,'" Computer Graphics, (Februarv
1984) .

Booch, Grady. Software Engineering with Ada. Menlo Park, Cali~
fornia: Benjamin/Cummings, 1983.

Department of Defense. Military Standard Ada Programming Language.
ANSTI/MIL~STD-1815A. Washington: Ada Joint Programming Office,
(February 1983).

Ducrot and others. 'A GKS Implementation for Meterological Appli-
cations," Eurographics '81, 101-102 (September 1981).

Enderle, G. and others. Computer Graphics Programming GKS -- The
Graphics Standard. Berlin: Springer-Verlag, 1934.

Harris Corporation. Draft GKS Binding to ANSI Ada. GKS/Ada
Binding. Government Information Systems Software Operation, 407
John Rodes Blvd., Melbourne, Florida 32901, 20 July 1984 (Contract
F49642-83-C0083) .

Hopgood, F.R.A. and others. Introduction to the Graphical Kernel
System GKS. London: Academic Press, 1983,

Ica, R. EZDRAW -- An Interactive Computer CGraphics Program to De-
sign Bar, Line, or Pie Graphs. MS thesis. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AF3 OH,
December 1982 (AD-A124694).

Lindener, R. and J. Rix. "A GKS Interface to a Real Time Oriented
Raster Workstation for CAD Applications,' Eurographics '81, 114
(September 1981).

Peters, Lawrence J. Software Design: Methods & Techniques. New
York: Yourdon Press, 1981.

Rose, K.W. Development of an Interactive Computer Grarhics Svstem
Library and Graphics Tool. MS thesis. School of Engineering,

Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982 (AD-A124694).

Simons, Randall W. "Minimal GKS," Computer Graphics, 17 number 3:
183-189 (July 1983).

Tektronix. 4027A Color Graphics Terminal. Programmer's Reference
Manual. Tektromix, USA, 1981 (Part No. 070-4173-00).

ten Hagen, Paul J.W. The GKS Reviewing Process. Mathematisch

BIB.1

| 20 s S Y e s P o S ™ e sl ot iy RONR etk sivin Snalh ikl aill Sl auval St et EeREal SRR i AR el S A At tal il Sl Sl S ol Sl Aad ot |

set_pick data record;
function prompt_echo_type;
set_string data record;
function prompt echo type;
function input_buffer size;
function initial cursor_position; .
end EXTERNAL TYPES;

AFIT GKS adhered to the Harris binding whenever possible. However,
AFIT GKS differs from the Harris binding in that it does not define the

following variables as private.

locator_data record;
stroke data_record;
valuator_data record;
choice data_ record;
pick data record;
string data_record;

Ce
This is because AFIT GKS did not implement the functions manipulating
these data records.
Overall, the functions not implemented in AFIT GKS mostly deal
with the high level input functions and the metafile functions. Mainly,
these functions were not implemented because of time constraints en-

countered in this thesis,

C.4

R T TR S

type ERROR INFORMATION is
record
number
name
end record;

: error_indicator;
: subprogram name;

function get_error;
function get next error;
function end of file;

The next set of

that would need to be designed if the input data records were private.
Therefore, if the following functions are added to AFIT GKS then they

should be placed where the private data structures are placed, namely

functions not implemented cover the interfaces

package 'external types'.

package EXTERNAL TYPES is
set_locator_data record; (3 overloaded procedures with

this name)
function
function
function
function
function

attribute flag;
attributes used;

line attributes;

fill area attributes;
prompt_echo_type;

set_stroke_data record; (3 overloaded procedures with

this name)
function
function
function
function
function
function
function

buffer_size;
position;
interval;

time;

line attributes;
marker_attributes;
prompt_echo_types;

set_valuator_data record;

function
function
function

high value;
low_value;
prompt_echo_type;

set_choice_data record; (4 overloaded procedures with

this name)
function
function
function
function

prompt_echo_type;
array _of prompts;
array of strings;
segment;

c.3

S VL ww

Qe

[SE AL SR R UL B S e

In addition, the Harris binding defines

an additional type not specified in ANS GKS.

package METAFILE is
write_item to_gksm;

get item type from gksm;
read_item from gksm;
interpret_item;

end METAFILE;

package INQ ATTRIBUTES is
inq_pattern height vector;
inq_pattern width vector;
ing_char_nominal width
inq_char_base_vector;
ing_text extent;

end INQ ATTRIBUTES;

package INQ INPUT is
inq_locator_device state;
ing_stroke device state-
ing valuator device state;
inq_choice_ dev1ce state;
inq_pick device state,
inq_string device_state;
ing_number of available logical input devices;
inq_default locator device data;
inq_default_stroke_device data;
inq_default - valuator device data;
ing_ default choice device data;
1nq_default_pick_device_data,
inq default string device data;
ing_input_queue_overflow;
end INQ INPUT;

procedure INQ PIXELS is
inq_pixel array dimensions;
inq_pixel array;
inq pixel;

end INQ_PIXELS;

are used to handle the error file.

C.2

. L Lt et [LA . .« T L
S RSN S N Aaln UG/ U W HPWLEPNE N SR 4 I NP Y - Al B S

Co Tt s B s 2 St g SR B S T I T D R YTy T N T YW T W

additional functions, and
None of these functions

were implemented in AFIT GKS. The first set of additional functions

a

e e .-:i
B TS R
L. YT, S T AR, T

e

Appendix C

Harris Functions Not Implemented

AFIT GKS is a subset of an ANS GKS graphical package.

T,

8 S 2 Y U e Mg ?

Below is a

list of those functions that are part of the Harris Binding of ANS GKS

to Ada, but are not implemented in AFIT GKS. They are listed by the

package that the functions should be in if they were implemented.

appendix is designed for a maintainer of AFIT GKS, and as such this

appendix is not intended for the average user of AFIT GKS, or the

average reader of this thesis.

package CONTROL is
message;

escape;

end CONTROL;

package PRIMITIVES is
cell array;
gdp;

end PRIMITIVES;

package SET PRIM is
set_fill area interior_style;
end SET_ PRIM;

package INPUT is

sample locator; get_locator;
sample stroke: get stroke:
sample_valuator; get valuator;
sample choice; get_choice;
sample pick; get pick:
sample_string; get _string;

await event;
flush_device_events;
end INPUT;

c.1

. I . a . - ., . B
P R L O T A IR S .

. . e L
T RN P A S A, S R SRS, S, Sy e

. - YAt -
A
WO . WTA

Y-

This

A D

......

O Y

MRS Sl S LA T I A A B i AR M AR A A A AL S R ACA A Ay S MM e A A vt Al A € R AN 0" R Bl 04 |
LY

s
.
type DEFAULT_WS_ID is range 1..3;
N -- AFIT_GKS has three workstations, the Tektronix 4014, the Tektronix
S~ —- 4027, and Workstation Independent Segment Storage (WISS)
E -- Level ma
type DEFAULT_PICK ID is range 1..1000;
-- This is an arbitrary number of pick_ids allowed in AFIT_GKS.
-=- Level 1b;
i type DEFAULT_SEGMENT NAME is range 1,.32000;
’ -= This is an arbitrary number of segments allowed in AFIT_GKS, but
: -= ANS GKS states at least 32,000 segments must be supported Due to
N -- space limitations AFIT GKS only supports 50 segments.
-- Level 1a
. end GKS_CONFIGURATION;

B.7

R
PR SR

. '.‘l_ \-‘ﬂ ','v‘--.-.7 . ‘;» ..:' - .‘i-- . .."_‘.'_'.‘_ K .._---.-‘ R e --1.‘-‘.-4.._.-.‘..._.‘- .. "-_"-,'.-,'- '_.“. v - B ",,':\':'.W:'. - - A : -~.'\:‘_ ‘ .~ _._:

PR A e P L bl SR S P A R e I S S R P ST PN - -
ﬂ..".-‘:A‘,,"_ PPN SN AT, WO AP AT AP, Y S AP, W, - SL U U APRI AP, N, WAL i S L'A'L’m"&"l;.q.\ PP TN SR S v S STy

MAX_STRING_PROMPT_ECHO_TYPE : constant integer := 1;
== At this time, AFIT_GKS allows only 1 input device per device type.
-— Level mb

MAX WS _TYPE : constant integer := 3;
-= AFIT _GKS has 3 workstations Tektronix 4014, Tektronix 4027, and WISS.
—~- Level ma

MAX_LINE TYPE : constant integer := 24;

-- The Tektronix 4027 has the 4 ANS GKS defined linetypes 1..4, and the
-~ Tektronix 4027 has 4 additional linetypes 21..24,

-=- Level ma

MAX MARKER_TYPE : constant integer :z 5;
- AFIT GKS only uses the 5 markers defined by ANS_GKS.
-- Level ma

MAX_FONT_TYPE : constant integer := 1;
~- None of the devices support more then 1 font
~= Level nma

MAX_HATCH_STYLE : constant integer :=z 2;

-- The Tektronix 4027 has been programmed to reserve pat 118..pat 119
~- for the hatch styles. This gives 2 hatches.

~— Level 0a

PRECISION : constant integer := 5;
~- This is the standard precision of AFIT_GKS.
~-- Level ma

MAX_GKSM_STRING_LENGTH : constant integer := 72;
- AFIT GKS allows 72 characters per line.
-- Level mb

MAX_INPUT_STRING_LENGTH : constant integer := T72;
- AFIT GKS allows 72 characters per line,
- Level mb

MAX_PROMPT_STRING_LENGTH : constant integer := 72;
- AFIT GKS allows 72 characters per line,
— Level mb

MAX_ERROR_FILE_STRING_LENGTH : constant integer := T2;
- AFIT GKS allows 72 characters per line.
-- Level mb

MAX_DEVICE_PRECISION : constant integer := 5;
-~ This is the standard precision of AFIT_GKS.
-- Level ma

type DEFAULT _WC TYPE is digits 5;

-~ This is the standard precision of AFIT_GKS.
-= Level ma

B.6

Co e T St - ST S \."~. _._‘_7 R A »_ﬁ_-\,- \:_.. . . TR v

AT ARSI o et PSRRI UL, . T T AP T W WAL S TR T .'g_m;L‘l-_ o e e T TS S

MAX_GDP_ID : constant integer := 0;
-- No GDP's implemented yet.
-- Level Qa

MAX_PATTERN_INDEX : constant integer := 119;
-- Tektronix 4027 supports 120 patterns from pattern 0 ,. 119,
-~ Level 0Oa

MAX_POLYLINE INDEX : constant integer := 20;
-- It is an arbitrary maximum number of entries in the bundle table,
-- Level Qa

MAX POLYMARKER_INDEX : constant integer := 20;
-= It is an arbitrary maximum number of entries in the bundle table.
-~ Level Qa

MAX_TEXT_INDEX : constant integer := 203
-= It is an arbitrary maximum number of entries in the bundle table,
-- Level Oa

MAX_FILL AREA_INDEX : constant integer := 20;
-= It is an arbitrary maximum number of entries in the bundle table.
-= Level 0Qa

MAX_TRANSFORMATION _NUMBER : constant integer := 20;

—- Tt is an arbitrary maximum number of transformations allowed from
-- World Coordinates to Normalized Device Coordinates,

-= Level ma

MAX_DEVICE_NUMBER : constant integer := 1;
-~ At this time, AFIT _GKS allows only 1 input device per device type.
-=- Level mb

MAX_LOCATOR_PROMPT_ECHO_TYPE : constant integer := 1;
-- At this time AFIT GKS allows only 1 input device per device type.
—— Level mb

MAX_STROKE_PROMPT ECHO_TYPE : constant integer := 1;
- At this time, AFIT GKS allows only 1 input device per device type,
-— Level mb

MAX VALUATOR_PROMPT_ECHO _TYPE : constant integer := 1;
-- At this tlme, AFIT GKS allows only 1 input device per device type.
-= Level mb

MAX_CHOICE_PROMPT_ECHO TYPE : constant integer := 1;
-- At this time, AFIT_GKS al.ows only 1 input device per device type.
-= Level mb

MAX_PICK PROMPT_ECHO TYPE : constant integer := 13 '
-- At this time, AFIT _GKS allows only 1 input dev1ce per device type,
-— Level mb

viii:-t'

" ,.,V-v.--fv
. :
EUR .

. Hv' . 5 .
St oo

UK

function IS_IN (ITEM : ITEM_TYPE; THE_LIST : LIST_OF)

return BOOLEAN;

~- This function returns the value TRUE if the ITEM is found in THE
-= LIST

procedure ADD_ITEM (ITEM : ITEM_TYPE;
TO_LIST : in out LIST OF);
== This procedure adds the ITEM to the specified list

procedure DELETE_ITEM (ITEM : ITEM_TYPE;
FROM_LIST : in out LIST OF);
== This procedure deletes the specified item from the list

type MATRIX OF is array (INDEX range <>, INDEX range <>) of
ITEM_TYPE;
-- Defines a two-dimensional array of the item.

tvpe VARIABLE MATRIX OF (DX : INDEX := 1, DY : INDEX := 1) is
record
MATRIX : MATRIX OF (1 .. DX, 1 .. DY);

end record;

-- Defines a matrix whose dimensions may vary dynamically as both an
input and output parameter., Warning : when declaring objects of
this type, be sure to let the discriminant components default (to
-- 1), or else the size of the matrix will always be constrained.

end GKS LIST UTILITIES;

GKS Configuration (6:356-358)

Package GKS_CONFIGURATION 1s a package of AFIT GKS which contains
1mp1ementat10n-def1ned constants.

package GKS_CONFIGURATION is

MAX_RASTER_UNITS : constant integer := 1023;
-~ It is the largest raster units on any possible workstation. 1In AFIT_
-= GKS that is the Tektronix 4014 with a maximum x raster unit size of
-- 1023,

-= Level ma

MAX_MEMORY UNITS : constant integer := 2;
-— It is not used at all to determine size of gks.
-- Level ma

MAX_COLOUR_INDEX : constant integer := T;
-- Tektronix 4027 allows for 8 colours ranging from colour 0 to 7.
-~ Level ma

B.4

P
g oL
S I .

R Y A

MIN

COORDINATE;
MAX : COORDINATE;
end record;
-- Defines a range of values along an axis in the coordinate system.
-- MIN should always be less than MAX.

type RECTANGLE is
record

X : LIMITS;

Y : LIMITS;

end record;

-- Defines the extent of a rectangle in the coordinate system parallel
-=- to the X and Y axes.

end GKS COORDINATE SYSTEM;

GKS List Utility (6:354-355)

This section contains the specification of the generic package GKS_
LIST_UTILITIES, instantiated by the AFIT GKS binding for the declaration
of arrays, lists (variable-sized arrays), matrices, and variable-sized
matrices of many of the AFIT GKS data types. This package also contains
a few examples of optional utilities for manipulating some of the data
types. This generic package is required at level ma,

generic
type ITEM TYPE is private;

package GKS_LIST UTILITIES is

MAX INDEX : constant := 50;

—— This value defines the maximum dimensions of any of the following
-- data types.

type INDEX is range 0 .. MAX_ INDEX;
-- Defines the valid range of indices of the following data types.

type ARRAY OF is array (INDEX range <>) of ITEM_TYPE;
-- Defines an unconstrained array of the item.

type LIST OF (LENGTH : INDEX := 0) is
record
LIST : ARRAY OF (1 .. LENGTH);

AT RCE Ak T Sl T i B Tk S R A

end

record;

Defines a list whose length may vary dynamically., Warning : when
declaring objects of this type, be sure to let the discriminant
component (LENGTH) default (to 0) to initialize a null list, or
else the length of the object will be constrained always.

B.3

et e T -t W e -
D S L P . N

Achal dan dine Slok lhuv I\ aat Ste liate Sade ghod it e e Jasa tinet et st Bade ust Jun inte S ibebi Bt Shate Jhodt Badi b/ Rl ATl Jiate e -SSRt St

GKS Coordinate System (6:352-353)

This section contains the specification for the coordinate systems
template, and Ada generic package defining a Cartesian coordinate system
for use by AFIT_GKS.

generic
type COORDINATE is digits <>;
-- Coordinates in the system are floating point values. Valuves on
-- both axes are of the same type,

package GKS_COORDINATE_ SYSTEM is

~-- Due to compiler problems on the ROLM Data General the type MAGNI-
== TUDE could not be implemented as:
~- MAGNITUDE PRECISION : CONSTANT := 6;

-~ type MAGNITUDE BASE TYPE is digits MAGNITUDE_PRECISION;

-- subtype MAGNITUDE is MAGNITUDE PRECISION range

- MAGNITUDE_BASE_TYPE (COORDINATE'safe_small)..

- MAGNITUDE_BASE_TYPE (ABS (COORDINATE'last - COORDINATE'first));
- Instead it was implemented as:

subtype MAGNITUDE is COORDINATE range
COORDINATE'small .. abs (COORDINATE'last - COORDINATE'first);
-- Defines the length of an object in the coordinate system. 1In GKS,
== all such values must be greater than zero,.

type POINT is
record
X : COORDINATE;
Y : COORDINATE;
end record;
-- Defines a point in the coordinate system.

type VECTOR is new POINT;
-- Defines a vector in the coordinate system,

function VECTOR_LENGTH (V : VECTOR) return MAGNITUDE;
-- This is an optional function which returns the length of the speci-
-=- fied vector.

type SIZE is
record
X : MAGNITUDE;
Y : MAGNITUDE;
end record;
-~ Defines the size of an object in the coordinate system as length
-~ along the X and Y axes.

type LIMITS is
record

- O AR A S0 AR S e e ey |

PP S S AT T

ARCaRiE At AN ot il avil aeL podl JA g g B s IS I AnR e A A Sall Ao All Sl oalb Nl At Tl MBI PR TN AR ae A S0 SIS A0 A "’

Appendix B

GKS Coordinate_ System,

GKS List Utilities, and GKS Configuration

This appendix contains the specifications of the three nackages,
GKS Coordinate System, GKS List Utilities, and GKS_Configuration, used

in the Harris draft binding of ANS GKS to Ada.

Table of Contents

o
Page
' GKS Coordinate System+ « ¢ & o & o o s o + o o o o o & B.2

Ve OKS List Utilities . o o v o o o 4 o+ o o o o v o s o o o =« B.3 ‘

GKS Configuration + . « & ¢ & v o o ¢« o o P

:
;
E-

Third, the Error file of AFIT_GKS is "Error_GKS", this is the
name of the error file no matter what input is given (if any) for the
open_gks parameter "error_ file'".

Fourth, the type of ws of AFIT GKS are defined as follows:

The Tektronix 4014 is type of ws equal to 1.
The Tektronix 4027 is type of ws equal to 2,
WISS is type_of ws equal to 3.

Overall, these are the only system dependent features of AFIT GKS
that should concern the user. If any other problems are found in run-

ning AFIT GKS, they should be reported to

Professor Charles Richard

Math Department

Air Force Institute of Technology
School of Engineering
Wright-Patterson AFB

Dayton, Ohio

A.72

AL Tiadh e S 9t e 0N FR e T T T W R e, T W T TR W e g

- - . A N
P N SO YO /PSP S S S SRR - W SR YO WS TN SIRGE UL . O 2) [P RTINS0 WELIPAL W S G)

halir- Shabiect S P " i
g 8 & £ ava e areant - arases e a hint et e it et A AT RS ACACEREEEEN
P - p——

N b be T

-~ -

LAER S 4 oleey 2o
oo o

———y

Oh ShaRE

P Tp—T LA AR AL

VITA

Raymond Scott Ruegg was born on 4 February 1961 in Syracuse, New
York. He graduated fourth from Holliston High School in Holliston,
Massachusetts in 1979, and attended the University of Massachusetts
(Amherst campus), from which he graduated cum laude, receiving two
Bachelor of Science degrees, one in Mathematics, the other in Computer
Science, Upon graduation, he received a commission in the United States
Air Force through the ROTC program, and immeciately entered into the
School of Engineering, Air Force Institute of Technology in June 1983.

He is a member of Phi Beta Kappa.

Permanent address: 19 High Rock Road

Holliston, Massachusetts 01746

VIT.1

e e e A _a e (WE OO B R L S S, S . . . -2

L e W I P It

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Ll MY

(VT W WURTN

- I REPORT DOCUMENTATION PAGE

1s. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2¢. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/OOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFCRMING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/MATH/84D-5

5. MONITORING ORGANIZATION REPORT NUMBERI(S)

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL

(1f applicable)

School of Engineering AFIT/ENG

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

7b. ADDRESS (City, State and ZIP Code)

b CUNCLASSIFIED/UNLIMITED (X SAME as RPT. . OTIC USERS (J

UNCLASSIFIED

8a. NAME OF FUNDING/SPONSQRING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION tIf applicable)
System Avionics Division] AFWAL/AAAF
B8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Avionics Laboratory PROGRAM PROJECT TASK WORK UNIT
Wright-Patterson AFB, Ohio 45433 ELEMENT NO. N NO. NO-
11. TITLE /Inciude Security Classification)
See Box 19
12. PERSONAL AUTHOR(S)
w.* Raymond Scott Ruegg, B.S., 2d Lt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT
MS Thesis FROM TO 1984 December 180
16. SUPPLEMENTARY NOTATION
17 COSATI CODES 18. $UBJECT TERMS Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR. ' ., ,
1o 01 Computer Graphics, Graphics, GKS,
hee . I3
! 00 02 Programming Languages, High Level Languages, Ada
19. ABSTRACT (Continue on reverse if necessary and dentify by block number: . %
p
X i
3 Title: AFIT_GKS -- A GKS IMPLEMENTATION IN THE ADA PROGRAMMING LANGUAGE /
r..
] Thesis Advisor: Charles W. Richard Jr.
] . .
Associate Professor of Mathematics
.
. (AW AFR 19017
® (s W
. I AN it ~elopmest
s 1. Lo) . R AT
| (”;.x‘!\' ot
. W, b U
3
L-
} ' 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL

Richard Jr.

22b. TELEPHONE NUMBER
tInciude Area Code:

513-255-3008

22c OFFICE SYMBOL

AFIT/ENC

ﬁ' Charles W.
DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 'S OBSOLETE.

s
UNCLASSIFIED

_—

SECURITY CLASSIFICATION OF THIS PAGE

| S SLA S S AT SR S Sl g LA AReE SRE atad il AiECaS - SRS R B T TN T Pod P g A aaradei o Sab AL SN

@

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

AP A AP S L S SR

"

*This, project, written in Ada, involved designing and
implementing AFIT_GKS which is a subset of the Graphical Kernel
Svstem (GKS). This project implemented AFIT _GKS on a ROLM Data
1 General MV/8000-II validated Ada compiler, using a proposed

Binding of GKS to Ada developed by the Harris Corporation., After
'ii introducing Ada and GKS to the reader, this project considers
: several alternative ways of designing AFIT_GKS. Selecting what
} was considered the best design alternative, this project imple-
q ments AFIT_GKS. It concludes with a discussion of how well Ada,
: the proposed GKS binding to Ada, and GKS, worked in AFIT_GKS.
i This thesis found minor problems with the validated ROLM Ada
Pll Compiler, the proposed GKS binding to Ada, the GKS, but overall
3 they were each excellent products. By using AFIT GKS as proof,
! this project concludes that Ada can support large programs, and
Ada can support computer graphics.

-~

‘-vv‘—Uf"f‘Yﬁﬁf "
. T

LI e o
Ty

® UNCLASSIFIED

SECURITY CLASSIFIC\TION OF THIS PAGE

,", ._’_..- F.m,, I~ e M S S S N a A SPEMAar Sk M g Rgt i i Liamadit il VLA A i A AL el Pai PR T

- END

. FILMED

& " 5—-85

© DTIC

P [[B .
- . . . B <. .o a e e e e e o Vet e e,
.t . . et - Y. I L 2 . -
. AR TN . - . : N L. AR A At At T .
el - el el e amTa Tant tmmlat o S . ket W, et o R R R RO U T P A PR g, W Wi Wiy S W |

