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ABSTRACT

The longitudinal differential equation of
motion has been used to investigate various
aerodvnamic¢ expansion techniques. The total drag
coefficient was expanded using conventional
polvnomials and splines with and without floating
knot locations. This paper discusses the various
techniques and approaches, compares results
obtained from simultaneouslv fitting four
separate flights (time vs distance measurements)
and outlines the potential advantages and/or
disadvantages of the various aerodvnamic
expansion techniques, It is believed that this
is the firit time splines have been used in the
aerodvnamic coefficient estimation process and
that these results and techniques are germane to
other applications.

NOMENCLATURE
A Reference area
a fhefficient in Fquation 3

Slopes of spline segments
fsee Fquations &, S, and &)

Tatal drag coefficient

- n
Cﬂﬁ 7ero angle of attack drag coefficient
g Cna Second order drag term
._!‘ f:ee Fquations 2 and 1
p
y “n Fourth order drag term (see Equation 1)
" . . L .
| . F Irag variation due to velocitv change
s
r B4 “eponential

n Mnrdel mass

“ imher of straight line segments
fepe Fquation 4)
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COMPARISON OF VARIOUS DRAG COEFPICIENT
EXPANSIONS USING POLYNOMIALS AND SPLINES
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CHAPMAN *

Availability Codes
‘]‘Avail ahd/or
Dist Special
A-
S; Switches for spline segments
(see Equations 4, 5, and &)
v Velocity along the X axis
Vi Instantanecus velocity
Veef Reference velocitv
X Downrange axis
e Instantaneous pitch angle
5 Instantaneous vaw angle
i Total instantaneous angle of attack
% Knot locations in Fquations 4, 5, and 4
b Air densitv
Superscripts
. Time derivative

INTRODUCTION

Prior to 1959, the prevalent method of
analvzing ballistic spark range data was hased on
the linear approximation method known as "linear
theorv' developed by Murphv!~? and others -s.
Stated briefly, the method uses a closed-form
solution to the differential equations of
motion. This approximate solution results from
assuming a linearized aerodvnamic model where t"*
aerodynamic force and moment derivatives are
constant with angle of attack (hence the name
"linear theorv"). Murphv nxtended this techniiu®
to include a quasi-nonlinear analvsis® where
the linear aerodynamic force and moment
derivatives are reduced in such a manner that
certain nonlinearities could be ohtained. Th4
quasi-nonlinear analvsis requires an assumed
functional form of the nonlinearitv (normallv ?
quadratic or cubic polvnomial)d.

: In 1969 Chapman and Xirk, in analvzing free”
‘flight data’, documented the application of 4
technique thev called parametric differentiat
which permitted the free flight differential
equation of motion to be used directlv in the
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Jata correlation process. This technique
¢1iuin3ted the requlregent for cl?sed-form
go1ucions to th?'equatxons of motion, However,
it is still rquxred to assume a form 9{ the
non\inearities in the equations of motion.
cenerally Fhese fnrm§ have also been assuyed ‘o
he polvnomlal gxpapsnons'nf the aerodvnamic fgrce
and moment derivatives with angle of acttack8-9.
puring the past several vears, data analysts
wave discussed the possibilitv of using
Qathematical splines (two or more mathematical
exnressions attached end to end) for the
coefficient exuansions.. These s?lines permit the
slopes of the aerodvnamic expansions to be
iiscontinuous and would offer the analvst a more
seneral aerodvnamic mode!, therebv relieving some
of the requirements of assuming the form of the
aonlinearities. This paper discusses various
coefficient expansion techniques and compares
results obtained using the various expansions.

METHOD OF APPROACH

In order to evaluate the various expansion
tachniques (continuous function vs splines), we
will restrict our attention to a simple single
1pgree of freedom svstem rather than the full
six-degree of freedom svstem described in various
references.®”

Longitudinal Momentum Equation

This paper will examine the determination of
the total drag coefficient (Cp) as a function
of instantaneous angle of attack and velocity
from the longitudinal momentum equation and the
associated experimental measurements of distance
traveled vs time. The differential equation
governing the longitudina! momentum is

where [ is the air densitv, A is the body
reference area, m is the projectile mass, X is
the longitudinal down range distance, and (*)

and (+*) indicate the first and second
derivatives with respect to time. The total drag
coefficient, Cp (*,V), depends on the j n-
taneous total angle of attack, ’-Jsin- <+ sin=f,
and velocitv, V = X. Fquation 1) assumes that
the angle between the velocity vector and the X
axis is small,

fxpansions for the Total Drag Coefficient

Several expansion techniques for Cp La.pe
Investigated, The first two involved continuous
funceions, beginning with the classical quadratic
derendence on angle of attack, or

A (2)

:q“lli?n (2) represents the classical expression
dor vhich Murphvl+2 developed a methodology of
*termining Cp  and Cp, bv plotting the
¢ffective measured drag coefficients vs the mean

of ¢2, A straight line through this data
yields the intercept, Cp , and the slope,

CDZ' The second continuous function is much
more versatile and is valid for a wider ranee o

angle of attack deoendence and a linear wve.actitey
dependence, that is

('9"~ Yy - )

Note this expansion has five unknowrn
coefficients, CD,- a, Cp,s CDA , an'
Cp, as do all the remaining expansinn
techniques considered within this paper. The
@3- rerm is somewhat unconventiona! bur allows
a nonzero slope at zero angle of attacv. The
Cp,, coefficient is normally small but far
high drag configurations which experience large
velocity decavs during the flight or when
time-distance data obtained from severa! flights
(slightly different launch velocities) are
simultaneouslv anglvzed this term can he impar-
tanc, This Cp term accounts for variations
in drag coefficients with Mach number anA
Revnolds numher. The two effects cannot be sim-
ply separated because thev both depend linearlv
on velocitv. This term appears in all ~¢ the
expansions discussed except for the :laccical
quadratic dependence shown in Equation ‘2),

Several expansions using spline functions
were also evaluated. The first of these usecs
multiple straight line segments (see Figure 1)
and the general expansion is

[ - ! i
> CD _
o o
+ Cj‘ je17 S AT
: e
where i is the index for the segment. ;'e are
the knot locations, C;'s are the slooe~ o eac’
segment, and S;'s are the switches {S; = " or

1 depending on whether or not the instantaneous
value of is within the range of the

segment), For the investigation discussed, the
evaluations of the various expansion techniques
were restricted to four unknown coefficients plus
the Cp_term. Hence onlv two cases utilizing
straight line segments were considered. The first
case is three segments (n=3) with the knots fixed
at :1, and :p. These knot locations were

chosen by dividing the ' range into three equa!
parts, 1= max/3. 2%2 max/3+ 3= max:

The five unknown coefficients then become

Cp,+ C1s C2+ C3, and Cp . Here it

should be noted that other methods of dividing
the & space into segments and selecting the knot
locations were considered. Initiallv, it was
felt that the segments should be chosen such that
those associated with the higher angles of attack
would be small compared to the segments associ-
ated with the smaller angles of attack. The
reasoning for this was that it was assumed that
the rate of change of the drag coefficient with
respect to ’ was much higher at large angles of
attack thereby requiring smaller segments.
Although this assumption is certainly true for
most free flight range data, the nature of a well
behsved dynamicallv stable configuration in free
flight is that the larger initial angles of
sttack rapidly decrease (damps) during the
flight, Hence onlv a relstivelv few data noints
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representing the initial “igh angles of attack
are normally obtained compared with the number of
data points associated with the smaller angles of
attack (for example, see Figure 2). Considering
this, if a small segment was chosen for the
higher angles of attack, only a very few data
points would fall within this segment thereby
invalidating the resultant slope parameter.

After this anomalv was recognized it was felt
that perhaps the knot locations should be
selacted such that each segment contained an
equal number of data points. However it
immedistely became obvious that due to the nature
of the data, a very small segment resulted at the
smaller angles of attack, where it wasn't needed,
and a large segment resulted at the large angles
of attack where a small segment was desired (see
Figure 3). With these considerations is mind,
dividing the ° range into equal parts appeared to
be a reasonable compromise. However, if this
technique is applied to other free flight data
f{.e., dvnamicallv unstable configurations) or to
another application altogether, the logic
1ssociated with selecting the knot locations
shouid »e revisited.
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The second case utilizing straight line
segments splined together possessed only two
segments, n=s2 in Equation (4), but the knot
(!]) was allowed to be a free variable and
determined by the data reduction procedure.
Hence the five unknown coefficients become
CDO,CI,Cz,cl and Cp,, (see Figure 4),

Another set of splines used in the present
investigation involves quadratic segments
similar to Equation (2). Here, the knot
locations are free variables and are determined
bv the data reduction routine (see Figures Sa
and 5b). This expansion can be defined such
that not only is the Cp function continucus at
the knot, but also the derivative can be made
continuous at the knot. Both of these
approaches are discussed. First, consider the
approack where only Cp is continuous at the
floating knot location., This expansion is
written as

o= C, 4+ 5.C, % + f‘-ii\'x:.‘

Here Cp , Cj, C2, ‘l» and Cp_  are

the five free variables and the function has a
discontinuous slope at {;. S| and S, are

the determining switches for the polvnomials and
are set similarly to those in Equation (4)
(i.e., if 32 < 512 then Sy = 1 and Sy =

0 or if 2 >512, then Sy = 0 and S, =

1Y. This approach requires the 2valuation of
onlv one set of partial derivatives with respect
to Cy or Cy depending on the magnitude of 12,

Equation (5) can be modified by adding an
additional term such that the slope of the Cp
vs curve is also continuous at the floating knot
location to yield

The unknown coefficients for this expressinn are
the same as for Equation (5}, and the switches
are set similarly,
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There are manv other spline expansions that time and distance data with the numerical

could be considered usigg five free unknown solution of Equation (1). This fitting process
coefficientsi however, it is believed the ones is a least squares technique and the angle of
defined herein are sufficient to illustrate the attack history is provided as an input. The
applicabilitv and usefulness of these method used is the one described bv Chapman an’
rechniques. Kirk7. This method will be described hricé;

to illustrate the technique when spline funcrions

[y are employed for expansion of the total drap

coefficient., The steps utilized in applviny the
technique are as fo!iows:

1. 1Identifv/formulate the associate!
equation of motion. For the applicatior
discussed this has been accomplished ani is
Equation (1).

2. Select an appropriate expansion of the
aerodynamic coefficients. This step is the
subject of this paper: the investigation of
several expansion techniques as defined in
Equations (2) through (6).

-
—
~
=3
o
x

& 3. Partiallv differentiating :he equatinn
of motion, Equation (1), with respect to each of
Pive 40 Twe straipght line segments with the free unknown coefficients, form a se: onf
fleatine knot location parametric differential equations. This i«
illustrated below bv using the expansion shown in
Equation (5). Let

Applying this to Equations (1) and (2) the
following set of parametric differential
equations are derived.

gﬁv s wmomodw

— N pomeoee
b

= S ;
? Kxs {25 0 &) - os )

i3

.y,

vy
L

P

BT
.
.
»

where K is ¢ A/2m and ( ), implies the quantity
was evaluated with given coefficients (either
initial guesses or corrected values) at the start
of each iteration cycle.

;DO

lo

o e o
[ ] R

;

5T

4. Numerically integrate the equation of
motion, Equation (1), utilizing initial guesses
for the unknown serodynamic coefficieats and
estimated initial conditions (X, and X,).

The numerical integration technique used is a
Gauss-Newton iterative method.

5

v

b. Cp vs §

B ??T"—rv'
- . .

Fig. 5 Two quadratic segments with floating

r knet location S. Integrate parametric equations,

g Equations (8), numerically such that the partial
;v P . derivatives with respect to each of the free

' drameter Identification unknown coefficients are evaluated.

Tve unknown free coefficients in the various 6. The method of differential corrections
:XPlns}on. Equations (2) through (6) are is then used to obtain corrections to the initial
etermined by fitting the experimentally measured guesses of the unknown serodynamic coefficients
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and estimated initial conditions (X, and

X.). This method consists of expanding the
calculated value of position X; .1 about a

given set of coefficients in a Taylor series. Or

¢ ) (%)

Note the subscript o again indicates calculated
values using the given set of coefficients and
the summation, ignoring the higher order terms,
provides the contribution to X; .51 associated
with small changes in the coefficients

(C;'s). The sum of the squares of the
residuals, RSQ, (difference between measured and
calculated downrange distance traveled) is given
as

" (10)

The subscript i denotes the i-th measurement and
{ the total number of measurements, Equation
(10) can accommodate the reduction/analvsis of
several simultaneous data sets: however, for
simplicitv the notation will indicate only one
set of time and distance measurements (see
Reference 2 for details on simultaneous fitting
Af mnlrisie fata sets).

“ow suhstituting Equation /9 intn Fquation
(10), taking the derivative of RSO with respect
to each n® the unknown coefficients (Cy) and
setting »nual to zern, after some manipulation
ane can arrive at the following matrix equation,

T ATl By (1
where

P TR 1

and

Here, € is the matrix of corrections to be added
to each of the unknown cnefficients to he
tetermine ! including the initial conditions X,
ind X,. ‘nce the experimenral! data is compared
£ty the nmerically integrated position profile in
1 least <quares sense, the corrections to the
anknown cneffisients and (~itial conditinns can
“e dertermiaed nsing Equation ),

7. Steps 1 through A are then repeated,
tire the newlv adinsted creffizients and initial
sonditions, and the process continuaes until
'eiired ~onvoargence is ohrali-ced,

RESULTS AND 1TI7UeQIAN

The srimated total! draw coefficient (Cp)
sart et s oneained using the various expansion
techniques, Yquations (2) through (A), are shown
c Tioares & rharaugh R, Tach ~° these Cp

338

expansions were evaluated by simultaneocusly
ficting four sets of experimentally measured time
and distance dsta obtained from four separate
flights of a 25am spin stabilized projectile
tested in the Aeroballistics Research
Facilitylo. This set of data was used to
evaluate the Cp expansions because of the
relatively high angles of attack experienced
during some of the flights and the apparent
highly nonlinear characteristics of Cp with
total angle of attack. The initial velocitv
(muzzle) varied from 3168 to 3245 ft/sec for the
four flights and the average mid-range velocity
(VRgp) of all four flights being 3098 ft/sec.

Here it should be cautioned that because
some of the expansion techniques fit this
particular set of data better than others, it
doesn't necessarily mean that one expansion
method is superior to another. 1In fact, the
analyst should recognize that when selecting an
expansion (whether it is one of the expansions
discussed herein or another) for a particular
application the inherent nature of the data
itself should be the dominate consideration. For
example, if time and position data obtained from
the flight of a sphere were being analyzed (angle
of attack is of no concern) the expansion would
only include the Cp and Cp terms. Or,
if a highlv nonlinear spring-mass-damper svstem
was being analyzed, the frequency of oscillation
and/or damping may be modeled as a function of
the displacement using multiple straight line
segments with or without floating knots. For
this case, one mav possess information which
identifies where the knot should be located.
Also, a good rule of thumb to remember is to use
the simplest expansion which adequately matches
that particular set of data. With these
considerations in mind, the Cp expansions using
the various techniques previouslv discussed are
presented to show the applicability and
versatility of these methods. Furthermore, they
graphicallv illustrate to anv potential user that
the more conventional continuous functions are
not the onlv choices available.

Figure 6 shows the comparison of the
classical quadratic (Equation 2) with the fourth
order polvnomial including both the €2° and
Cp, terms (Equation 3). As shown in this ]
figure, the fourth order polynomial resulted in 2
significantly better fit to the four separate
flights than the quadratic (note sum of the
residuals squared, RSQ, for both expansions).
However, this should not he unexpected since
the fourth order polvnomia! has three
additional unknown coefficients (a, Cp,.

Cnv), and this added lexi~ilitv would

he expected to vield a l~wer RSO. The rea?
question here is whether ~r not the dramatic rie®
in Cp at the highest angles of attack is

real. The four flights used for these
comparisons had a total of 139 data points of .
which onlv four data points possessed angles OA‘
attack greater than 70 ifegrees. ‘Yence the adde’(
flexibilitv mav be providing erroneocus results 3
the higher angles of atrack. This would be
especially true if one ~f the four data p01nt*-g'
ahove 20 degrees, is in error. Normally, bec?"
of the paucitv of data at the higher angles ©
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atrack, the Cp expansions would only be
prpseﬂted up to ahout 20 degrees.. But for the
purpase of !hfs paper, the expansions are shown
up to the maximum angle of attack.

Tt is also of interest to see the effect of
the various cterms in the fourth order polvnomial,
Fquation (1'. Table 1 presents the results
meaned from runnine five different cases witn
warisns terms Mell at zero in the fourth order
pnlqnnmxnl. Tase 1 shown 1n this table
represents the claseical quadratic as plotted in

Figure 6.
Ve rrpe
..\‘
| ; M
e - .
f ] 0,1 3 (SN 0,3
i
. ' i 20 CEY S 08 T
2 ;
¢, { 0 0 14.68 0 35.18
a l ¥l C.is 2.2
G o " T B S S IO T
3 !
RS, it ! T T (O A s F T U TR

Case S5 represents the complete fourth order
polvnomial expansion, also shown in Figure h.
Cases 2 through 4 represent the results obtained
when the remaining three unknown coefficients,
Cp,+ Cp,« and a, are included in the

reduction routine, When viewing the results
shown in Table 1, it is apparent that the Cp

term is important for this particular set of data
(note RSQ for Case 2 compared with Case 1) and
appears to be consistentlv determined for all
cases. What is remarkable about the results
shown in this table is the dramatic improvement
in the overall quality of fit (lower RSQ) when
all of the unknown coefficients are determined
simultaneously (see Case 5). This indicates that
this particular set of time-position data
requires a relatively complex expansion of Cp
with angle of attack and velocity.

2.5 FOURTH ORDER
Cp = Cpyeds + c0252 + Cpy3 4 * Cp, v
2.0 v
Rsg = 0.016 fr? /7

iR S S - e gt R vad s s ad o v

A At e S i - g e

The comparison of the three segment linear
spline, Equation (4) with n=3, containing fixe'
knot locations to the two segment linear «¢plin.
(also Equation 4 with n=?) containine a ‘loati-
knot location is shown in Figure 7, T
illustrates that the fit containing t'reo
segments (s supericr to the two segments firg.t
with the floating knot (note RSN for o' tat-
This result is not to he unexpected since tho
qualitv of fit should imorave he incees
numher of segments., Whae intere«!
the sum of the residval squared for .
segment case is same as the
polvnomial shown .~ Figure & (RSN =
for bothl)., Tt suspected that this
of the fortuitous knot location
hy dividing the space into three oo
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segments) at 18,3} degrees.
3.0[-
- i A /
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1.0
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V' RSQ = 0.106 P~ \\\
‘Equation &
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a. Quadratic splines piotzed

CONTINUDOUS Cp

T~

Cle —hil Jhie T 2 3

7/ 3.0
1.5 g A
o \,/ . IONTINUOUS Cp
p 9] AND SILCPE
\ 2.0
1.0 ‘,4'
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0.5 Cp = CDo + C0252 1.0
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b, gQuadratic splines piott~d vs
Flo. & Comparison of classic quadratic ang Fig., 8 Conyurisor of cuadratic - 1iv
. fourth order expansions continuous  and discentin.one wloves
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The quadratic snlines with a continuous Cp
expansion only (Equation 5) and a continuous Cp
and slope expansion (Equation A) are cowpared in
Pigure 8. Part a of this figure shows both
expansions plotted against f; whereas, Part b
shows the expansions plotted vs £2, Neither of
these expansions resulted in a fit to the chosen
set of data as well as the fourth order
polvnomial or the three segment linear spline.

Boih of these expansions also contain a
condition in which the coefficient extraction
technique hecomes indeterminate. This condition
exists when the user permits the knot location to
be a free variable and the slope of the first
segment is nearly equal to the slope of the
second segment (C|3C,). When this occurs,
the minimum RSQ is insensitive to the location of
the knot and the iteration process fails to
converge. However, if it is recognized that this
condition exists, the knot location can be held
constant and the iterative process again he “omes
stable. This condition is also indicative of an
overlv defined svatem. For instance, a single
quadratic expansion would fit the data as well as
the two quadratic expansions splined together.

It seems for the set of data used, neither
quadratic expansion appears to he advantageous.
Nevertheless, this technique does appear to hold
promise far modeling other aerndvnamic
crefficients which are highly qonlirear such as
mignuLs (armg,

CONCLITS TN

‘irious total drag coertisient exnansinns
asine polvnomialae and Hr an'ines have heen
jeveloped and compared, A aet ot tour flights
was selectad to show the applicahility and
versatilitv of these meth s,

A'l of the expansions provided a hetter fit
to the experimental data than the classic linear
theorv sugegesting the need for a relatively
complex expansion of Cn with angle of attack
and velecity., The fourth ~risr polvnomial and
the three sagment spline provided superior fits,
However, these results are nigue for this
~irticniar lata set and 4o not implv that thev
are the hest expansions to use in everv case.

Theee techniques as applied in the
aerodvnamic coefficient estimation process show
zreat potential for other highlv nonlinear
applications. Moreover, thev Jemonstrate that
Zonventional, continuous functions are not the
wnls choices available to the data analyst.
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