| ‘AD-A152 314 EVALUATION OF ADA (TRADEMARK)> AS A COMMUNICATIONS iz
PROGRAMMING LANGUAGE YOLUME 1(U) SYSCON CORP SAN DIEGO
CA A L BRINTZENHOFF ET AL. 81 MAR 85 DCﬁiOB 53 C-0029

UNCLRSSIFIED

“mé;—g fze B

B =

w28 -
it fe

el X)
|

JI== 12 e

S S MO Bt Shenn S e VAR MM e e SR Bees Bss i JEsvh Setn J

o
| o EVALUATION OF ADA*
. ® AS A
< COMMUNICATIONS
Q PROGRAMMING LANGUAGE

. PHASE II

VOLUME |
FINAL PHASE Il REPORT

Alton L. Brintzenhoff -
Steven W. Christensen
Donald G. Martin
john G. Reddan

SYSCON CORPORATION
San Diego Division

3990 Sherman Street
San Diego, CA 92110

15 FEBRUARY 1985
Final Report for Period 4 February 1983 - 15 February 1985

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Y
.

Prepared for %J X b

DEFENSE COMMUNICATIONS AGENCY e SLECTE Bm™
DEFENSE COMMUNICATIONS ENGINEERING CENTER QLA "'4. g
1860 Wiehle Avenue APR9 185 R
Reston, VA 22090 :

...

Report DCA100-83-C-0029

EVALUATION OF ADA*
AS A
COMMUNICATIONS
PROGRAMMING LANGUAGE
PHASE I1

VOLUME |
FINAL PHASE Il REPORT

Alton L. Brintzenhoff
Steven W. Christensen
Donald G. Martin
John G. Reddan

SYSCON CORPORATION T
San Diego Division
h 3990 Sherman Street
San Diego, CA 92110

L: APRO 1985 3
15 FEBRUARY 1985 w

51 = A
lo

Final Report for Period 4 February 1983 - 15 February 1985

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Prepared for

DEFENSE COMMUNICATIONS AGENCY

DEFENSE COMMUNICATIONS ENGINEERING CENTER
1860 Wiehle Avenue

Reston, VA 22090

*Ada is a Registered Trademark of the U.S. Government (Ada joint Program Office)

ri - P e A B e A e aee gy 4 T T T T R T T -
] 1

UNCL ASSIFIED
SECURITY CLASSIFICATION QF THIS PAGE (When Daeta Entered)

REPORT DOCUMENTATION PAGE BEFORE COMBL B rTNG FORM o
r 'BE‘K:BB“%%"C 0029 Z GOVT ACCESSION NG| 3= RECIFIENT'S CATALOG NUMBER S B]
00-83-C- D ArsA Y
4. TITLE (and Subtitle) . 4 S. TYPE OF REPOAT & PERIOD COVERED | 3
EVALUATION OF ADA AS A COMMUNICATIONS PROGRAMMING | Final Phase II Report -
LANGUAGE - PHASE II 4 Feb 83 - 15 Feb 85 1
6. PERFORMING ORG. REPORT NUMSCR _V.'.w
T AUTROR(S) 3. CONTRACT OR GRANT NUMBERTs)]
Alton L. Brintzenhoff, Steven W. Christensen, DCA100-83-C-0029 :*j
Donald G. Martin, John G. Reddan T
"s;gzﬁ?qmézc oncr:.mg;nnozsnmeDA_no Aooaiz;s. on) 0. FROCRAM ELEMENT. PROJECT. TASK
rporation an uiego 1s10n
3990 Shermgn Street ’ 33126K, 1053(B461), 351C,-
San Diego, CA 92110
11 CONTROLLING OFFICE NAME AN%ADQRESS . 12. REPORT DATE
Egggnigzgommun1cat1ons Fngineering Center 1 March 1985
1860 Wiehle Avenue '3 NUMBER OF PAGES
Reston, VA 22090
4. MONITORING AGENCY NAME & ADORESS(If different (rom Controlling Ollice) 15. SECURITY CLASS. (of this report) {
Unclassified]
15a. DECL ASSIFICATION/ COWNGRADING <
SCHEDULE)
16. DISTRIBUTION STATEMENT (of this Report) — . ‘:
Approved for Public Release, Distribution Unlimited A
q
—ed]
17. DISTRIBUTION STATEMENT (of the sbetract entered In Block 20, i ditferent from Repart) o

- ceiad

18. SUPPLEMENTARY NOTES

DCEC Contract Officers Representatives
Mr. Paul M. Cohen, Mr, John Nowakowski

19. KEY WORDS (Continue on reverae eide if necessary and identify by biock number)

Ada, Communications Protocols, Transmission Control Protocol (TCP), Internet
Protocol (IP), Advanced Data Communications and Control Procedures (ADCCP),
Trusted Software, Advanced Command and Control Architectural Testbed (ACCAT)
GUARD, software development/performance quality factors, Ada-based design
methodology, object-oriented design, Ada program design language (PDL), ANNA

20. ABSTRACT (Continue on reverae side If necessary and identify by block number)

This report documents the results of the Evaluation of Ada as a Communications
Programming Language. The overall objectives of the Defense Cormunications
Agency are to evaluate the ability of Ada to effectively implement communica-
tions protocol software and the ability to support the DoD Computer Security
Initiative Program with regard to designing and implementing trusted and multi-
level secure software. The evaluation context was one of software quality
using a set of software quality factors which deal with both software develop-
ment and software performance aspects. A large scale software development was

0D ':2:“" 1473 Eoimion OF 1 NOV 68 18 OBSOLETE

$/N 0102-LF 014.6801 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ('_h.n Data Entereg)

''''''''''''''''''''''

i e e
o ol S AN Ml e et e Lan dne e auu aees — ; A ;

. J—

. UNCLASSIFIED

. SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

emulated through the formation of two mini software development projects using
two actual applications with executable code required as one of the end products
The host and target environment consisted of a VAX 11/780 VMS timesharing system
. and a prototype, partial-implementation Ada compiler. The original set of
protocols was the Segment Interface Protocol (SIP) and the Advanced Data Com-
H munications Control Procedures (ADCCP) (Mode VI) of the AUTODIN II packet
.. switched network, Subsequently, the SIP and ADCCP (Mode VI) were eliminated
% and the standardized and published Transmission Control Protocol (TCP) and
5 the Internet Protocol (IP) were incorporated and the ADCCP (Mode VI) was
revised to the more standard ADCCP (Asynchronous Balanced Mode (ABM)) protocol.
The protocols were implemented in a host-subscriber network architecture with
monitoring of resources and injection of errors provided. In the communications
protocols area, data transfers across five layers of the 0SI architecture were
accomplished. This application consisted of 19 virtual packages, 26 library
units, 24 secondary units, 8131 Ada statements, 10,309 comments and a total of
23,674 source lines which included the use of approximately 30 tasks. The
trusted software consisted of the reimplementation of a subset of the Advanced
Command and Control Architectural Testbed (ACCAT) GUARD application which was
a system designed to monitor, sanitize, and "downgrade" the flow of information
exchanged between a high (top secret) and low (secret) system via the Upgrade
and Downgrade Trusted Processes which were defined in SPECIAL. In general,
the full, planned set of capabilities was implemented. This application con-
sisted of 12 virtual packages, 25 library units, 23 secondary units, 6775 Ada
statements(;), 9529 comments and a total of 21,305 source lines which included
the use of approximately 30 tasks. The software architectures of both appli-
cations were evaluated with respect to software development and software per-
formance characteristics. At the beginning of the project, a prototype design
methodology was formed and was based on established software engineering prin-
ciples, and the use of existing generic models such as the ISO Open Systems
Interconnections Reference Model and Sublayer models. These elements which v
included the virtual package concept and both graphical and textual representa- o
tions of the design with an Ada-based POL were then organized into the macro-
scopic/microscopic design methodology. The methodology described above is
highly compatible with DOD-STD-SDS. Several general software design guidelines

2 were formed and evaluated. [t is shown how the methodology can be adapted for

- trusted software development by supplementing the Ada PDL of the formal speci-
fications with Annotated Ada (ANNA)}. The evaluation of the Ada language in-

{ cluded the syntax, semantics, implementation dependencies and run-time dependen-

. cies, Distinguished as well as problematic features are identified and various
b recommendations are made. A preliminary set of approximately 30 trusted soft-
~ ware implementation restrictions were formed, and approximately 70 programming
guidelines were defined and evaluated. Specific suggestions and recommenda-
tions are given concerning Ada education, where significant training and experi- R
ence will be required at several different levels. Both compile-time and run- '
time error information was acquired, analyzed, and subsequently correlated with
the various aspects of the intra- and inter-package architectures to determine
the effects of various software architectural choices on errors, Several recom- Y
mendations are made based on the activities of the project. These recommenda- S
tions encompass the software development methodology, the use of the Ada lan- -9
guage, the software application architectures formed, the implications of com- :
pile-time and run-time error analysis, the assignment of values to the necessary
software quality factors, and the use of software tools and programming support
environments. Finally, recommendations for completing the original architecture
as a prerequisite to conducting meaningful performance evaluation are given.
Volume II and Volume III contain the software listings of the Communications
Protocols and Trusted Software applications, respectively,

2 ko h

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

iv

...........................

TABLE OF CONTENTS
{
PAGE
i 1 INTRODUCTION 1-1
' 1.1 PURPOSE 1-2
1.2 SCOPE 1-2
h 2 SUMMARY 2-1
2.1 PROJECT OVERVIEW 2-1
2.2 SOFTWARE APPLICATIONS OVERVIEW 2-2
2.2.1 Communications Protocols 2-2
L 2.2.2 Trusted Software 2-3
b 2.3 SOFTWARE DEVELOPMENT METHODOLOGY 2-4
2.4 ADA LANGUAGE EVALUATION 2-7
2.5 SOFTWARE ARCHITECTURES 2-9
2.6 SOFTWARE PERFORMANCE 2-11
2.7 SOFTWARE ERRORS 2-12
2.8 PROGRAMMING SUPPORT ENVIRONMENT 2-12
2.9 PROJECT RETROSPECTIVES 2-13
2.10 RECOMMENDATIONS 2-15
3 TECHNICAL APPROACH 3-1 x
3.1 PROJECT OVERVIEW 3-1 -]
h 3.1.1 Background 3-1
! 3.1.2 Ada Issues 3-2 3
5 3.1.3 General Approach 3-2 ;
3.1.4 Defense Communications Agency Objectives 3-3
3.1.4.1 General Objectives 3-4
3.1.4.2 Specific Communications Protocol jﬁ
Objectives 3-4]
3.1.4.3 Specific Trusted Software DR
Objectives 3-4 T
3.1.4.4 Development Methodology]
Objectives 3-5 i;;ﬁ
. -]
! 2
i’ v h
LH;;“:g;gp:dzgizﬁhﬂﬁii:kﬁﬂf """"" T e e L T i]

3.2 PROTOTYPE METHODOLOGY FORMULATION 3-5

3.2.1 Requirements Formulation Phase 3-7
3.2.2 Top-Level Design Phase 3-7
3.2.3 Detailed Design Phase 3-8
3.2.4 Code/Debug Phase 3-9
3.3 SOFTWARE DEVELOPMENT AND PROJECT MANAGEMENT 3-9
3.3.1 Software Development Phases 3-9
3.3.1.1 Ada Indoctrination Phase 3-9
3.3.1.2 Macroscopic Design Phase 3-9
3.3.1.3 Microscopic Design Phase 3-11
3.3.1.4 Code/Debug/Modify Phase 3-11
3.3.1.5 Integrate/Test Phase 3-11
3.3.1.6 Development/Performance
) Evaluation Phase 3-11
3.3.2 Project Management 3-11
3.3.2.1 Preliminary Design Reviews 3-12
3.3.2.2 Interim Design Reviews 3-12
: 3.3.2.3 Critical Design Reviews 3-12 v o
l 3.3.2.4 Progress Reviews 3-13
3.3.2.5 System Testing Reviews 3-13
3.3.3 Software Development Control 3-13
| 3.3.4 Integration and Testing Procedures :)
and Standards 3-14 o]
3.3.4.1 Integration and Testing Overview 3-14 Sl
3.3.4.2 Module Testing Objectives 3-14 o
3.3.4.3 System Integration and Testing ‘ j
: Objectives 3-15 T
3.3.4.4 Test Software Development 3-15

<
L
o]
~
i
]
n
L
a4 A A

3.4 SOFTWARE QUALITY ASSESSMENT 3-15
3.4.1 Software Quality Factors 3-15)
3.4.2 Criteria for Software Quality Factors 3-16
3.4.3 Application-Oriented Requirements 3-21
3.4.3.1 Communications Application
Requirements 3-21
3.4.3.2 Trusted Software Application
Requirements 3-22
3.4.4 Ada Language Characteristics 3-23
3.5 DATA COLLECTION 3-24
3.5.1 Criteria For Data Collection and
Evaluation 3-24
3.5.2 Software Architecture Data 3-26
3.5.2.1 Software System Architecture 3-27
3.5.2.2 Compilation Unit Architecture 3-27
3.5.2.3 Compilation Unit Statement
Characteristics 3-28
\é 3.5.2.4 Application-Dependent Architecture -
Characteristics 3-28]
3.5.3 Software Error Data 3-29 . ﬁ
3.5.3.1 Ada Language Errors 3-31 R
3.5.3.2 Design Errors 3-32 e
3.5.4 Programmer Interview Data 3-32 4
3.5.4.1 Ada Language 3-33 1
3.5.4.2 Methodology 3-33 S
3.5.4.2.1 Macroscopic Design Phase 3-34
3.5.4.2.2 Microscopic Design Phase 3-35 1
3.5.4.2.3 Code/Debug Phase 3-36 ‘
3.5.4.2.4 System Integration Phase 3-36
3.5.4.2.5 Design Guidelines 3-37
3.5.4.2.6 Software Tools 3-37]
3.5.4.3 Project/Application Evaluation: ‘%
Alternatives/Retrospectives 3-37 -3
3.5.4.3.1 Communications Protocols 3-38 :
3.5.4.3.2 Trusted Software 3-38

.....

e
feala & .2 A

.....................
P P P e e ta e e lalial

Dt i G R

——TTTTTTTT T T R T T Ll st i S) Casil e At i

3.5.5 Software Performance Data 3-39

3.5.5.1 Application Architecture 3-39
3.5.5.1.1 Communications Protocols 3-39
3.5.5.1.2 Trusted Software 3-39
3.5.5.1.3 General Performance
Considerations 3-41
3.5.5.2 Ada Language Issues 3-41
3.5.5.3 Programming Support Environment
Issues 3-42
4 ANALYSIS -
4.1 SOFTWARE DEVELOPMENT METHODOLOGY ANALYSIS -
4.1.1 Overview -
Jd.2 Macroscopic Design Phase -

4,1.2.1 virtual Package Concept
4.1.2.2 Object Oriented Design Diagrams
4.1.2.3 Macroscopic PDL

[- N S R A
I
0 ~N AW NN -

Microscopic Design Phase
Code/Debug Phase
System Integration Phase

- S -
L]

N
L]

W ~N o e W

Design Guidelines 4-8
.d. Programming Guidelines 4-9 f““j
1. General Design Methodology Factors 4-10)
4.1.8.1 PDL Characteristics 4-190 ﬂ
4.1.8.2 DOD-STD-SDS Compatibility 4-13]

4.1.9 Application Dependent Methodology
Characteristics 4-15 _]

.......
e PP AP T AP LI VL. Tl VA SR S Vhil VY Tl UL Wil SOl VAl WAl Wl VI SIS SHPy VU vy s 9|

.......................

4.1.9.1 Communications Protocols
4.1.9.1.1 Transmission Control
Protocol (TCP) and Inter-
net Protocol (IP)
Specifications Issues
4.1.9.1.2 Transmission Control
Protocol (TCP) and Inter-
net Protocol (IP)
Transition Issues
4.1.9.2 Trusted Software
4.1.10 Software Tools
4.2 ADA LANGUAGE EVALUATION
4.2.1 Ada Language Factors
4,2.2 Ada Education Factors
4.3 SOFTWARE ARCHITECTURE ANALYSIS
4.3.1 Software System Architecture
4.3.1.1 Communications Protocols
Software Architecture Analysis
4.3.1.1.1 1Inter-virtual Package
Architecture Analysis
4,3.1.1.2 Intra-virtual
Architectural Analysis
4.3.1.2 Trusted-Software Software
Architecture Analysis
4.3.1.2.1 1Inter-Virtual Package
Architecture Analysis
4.3.1.2.2 1Intra-virtual Package
Architecture Analysis
4.3.2 Compilation Unit Architecture
4.3.2.1 Communications Protocols System
Compilation Unit Statement
Characteristics
4.3.2.2 Trusted Software Compilation Unit
Architecture

ix

..................

............

PP, S B I SRR S 0 S At LN L At T avtava el ESPNE TP TP AP P Sl SO S

4-15

4-15

4-16
4-19
4-20
4-21
4-21
4-25
4-26
4-26

4-29

4-31

4-32

4-41

4-42
4-43

PP WY

A Ao boh

4.3.3 Compilation Unit Statement Characteristics 4-46
4.3.3.1 Communications Protocols System
Compilation Unit Statement

Characteristics 4-46
4.3.3.2 Trusted Software Compilation Unit
Statement Characteristics 4-49
4.4 SOFTWARE PERFORMANCE ANALYSIS 4-49
4.4.1 General Performance Characteristics 4-49
4.4.2 Communications Protocols Performance :
Characteristics 4-52 :
4.4.3 Trusted Software Performance j
Characteristics 4-52]
4.5 SOFTWARE ERROR ANALYSIS 4-53)
4.5.1 Compilation Errors 4-53 4
4,5.2 Execution Errors 4-55
4.5.3 Software Error-Architecture Correlation 4-56 ?
4.5.3.1 Communications Protocol 4-56 E
4.5.3.2 Trusted Software 4-57 _"1
4.6 PROGRAMMING SUPPORT ENVIRONMENT 4-57
4.6.1 Compile-Time Environment 4-57
4.6.2 Run-Time Environment 4-59 _
w_j
5 CONCLUSIONS/RESULTS 5-1
5.1 SOFTWARE DEVELOPMENT METHODOLOGY 5-1]
5.1.1 Macroscopic Design Phase 5-1 .
5.1.2 Microscopic Design Phase 5-3
5.1.3 Code/Debug 5~4 :
5.1.4 System Integration 5-4 .
5.1.5 Design Guidelines 5-6
5.1.6 Programming Guidelines 5-6
5.1.7 General Software Development Methodology
Considerations 5-7
5.1.8 Application-Dependent Characteristics 5-9
5.1.8.1 Communications Protocols 5-9

5.1.8.2 Trusted Software 5-10

E— r v v b S S s i g e e R ATIR J Aba dy I L A St A

5.2 ADA LANGUAGE EVALUATION
5.2.1 Ada Language Syntax and Semantics
5.2.2 Ada Language Education

5.3 SOFTWARE ARCHITECTURE
5.3.1 Communications Protocols System

5.3.1.1 Inter-virtual Package Analysis
Summary

5.3.1.2 Intra-virtual Package Analysis
Summary

5.3.1.3 Compilation Unit Analysis Summary

5.3.1.4 Compilation Unit Statement

Characteristics
5.3.1.5 Other Observations
5.3.2 Trusted Software System
5.3.2.1 Inter-Module Architectural Analysis
Summary

5.3.2.2 Intra-virtual Package Architectural
Analysis Summary

5.3.2.3 Compilation Unit Architecture
Analysis Summary

5.3.2.4 Compilation Unit Statement
Characteristics

5.3.2.5 Other Observations

SOFTWARE PERFORMANCE

5.5 SOFTWARE ERRORS
5.6 PROGRAMMING SUPPORT ENVIRONMENT
5.6.1 Compile-Time Environment

5.6.2 Run-Time Environment

X3

5-10
5-10
5-13
5-14
5-14

5-14

5-17
5-19

5-19
5-22
5-25

5-31
5-31
5-32
5-33
5-34
5-34
5-35

®
6 RECOMMENDATIONS 6-1
6.1 SOFTWARE DEVELOPMENT METHODOLOGY 6-1 o
6.1.1 Macroscopic Design Methodology 6-1
6.1.2 Microscopic Design Methodology 6-2
6.1.3 Code/Debug 6-2 B
6.1.4 Integrate/Test 6-3 °
6.1.5 PDL Considerations 6-3
6.1.6 Software Tools Recommendations 6-3
6.1.7 Trusted Software Development Methodology 6-4
6.2 ADA LANGUAGE 6-~5 ®
6.2.1 Ada Language Features 6-5
6.2.2 Ada Language Education 6-7
6.3 SOFTWARE ARCHITECTURES 6-7
6.3.1 Communications Protocols 6-8 °®
6.3.2 Trusted Software 6-9
-4 SOFTWARE PERFORMANCE 6-9
.5 SOFTWARE ERRORS 6-10
6.6 PROGRAMMING SUPPORT ENVIRONMENT 6-11 ® ®
6.6.1 Compile-Time Environment 6-11
6.6.2 Run~Time Environment 6-11
6.6.3 Programming Support Environment 6-12
6.7 PROJECT RECOMMENDATIONS 6-12 'S
7 REFERENCES 7-1 3
7.1 Military Standards and Specifications 7-1
7.2 System Specifications and References 7-2 ®
7.3 Other Government References 7-3]
7.4 Nongovernment References 7-3
*
1
[§
3
]

- : Coe et e e .ot R R . o PRI N TN
P N P AR NEAE N W T Y AT N R AP Wy P IR G T Py Seadinade o M

usable Ada subset given the restrictions imposed. Implementing
these restrictions requires both syntactic and semantic analysis

and thus some type of Ada preprocessor or modified compiler front
end will be required.

In the area of Ada education, significant training and experience
will be required at several different levels. Managers will need
to be aware of the increased emphasis placed on software design
and this emphasis will be even greater to produce transportable
and reusable software. To use many of the Ada features
effectively, the developer will need to have a strong software
engineering orientation. Although Ada has many excellent
features, Ada usage will become truly effective and productivity
will increase only when software tools become available which
directly support a given software methodology and Ada users
become familiar with the methodology and the supporting tools.
The existing Reference Manual for the Ada Programming Language
/M18183/ is an acceptable document for compiler writers.

However, it presents significant usability problems in terms of
learning Ada, especially in understanding the language
complexities and subtleties. A recommendation is that an
abridged reference manual be formed which emphasizes the
developer's usability of the document. The Rationale for the Ada
Programming Language /HONE84/ should become an integral part of
any Ada education effort. It is clear that four to six weeks of
dedicated education may be required to produce effective and
efficient programmers; a one-week, syntax-oriented Ada class will
not be effective in producing programmers who can apply Ada in a
software engineering context.

2.5 SOFTWARE ARCHITECTURES

In the communications protocols application, an early objective
was to incorporate the principles of the Open Systems
Interconnection (OSI) Refererce and Sublayer models. They were
incorporated into the software designs at the virtual package

2-9

RPN S

adadeadh e

calls, representation capabilities, and many of the pragmas

germane to communications applications were not available or were '
partially implemented. With the Ada features used, there were no
specific problems other than those summarized below.

Exceptions appear to be problematic from several points of view.)
Exactly how, when, and where they should be used, and how to

include the management of both standard and user-defined error

conditions and required processing as an integral part of the

design are problem examples. In package specifications, ’
exceptions are "weakly" associated with their source, with the

result that exception handlers may be needlessly proliferated.

Somewhat more problematic is dealing with implementation-specific »
dependencies and run-time support mechanizations which are not

specified as part of the Ada standard. Examples of such problems

are package size limitations, task stack size limitation (both of

which can severely impact architectural considerations), ° ’
algorithms selected for task context switching and selective

wait mechanization, and whether or not generic instantiations ' ff
share bodies when data representations are the same at the '~-ﬂ
machine level. It is necessary to obtain a validated, evaluated »

compiler in which the evaluation criteria have been derived from
the application for which the compiler is targeted. ’

Approximately 78 programming guidelines were defined which were »
evaluated at the conclusion of the effort. The guidelines were

effective when they were used; however, judgement in their use is

still required in some instances. ,)

®
In addition to the programming guidelines, approximately 30
trusted software implementation restrictions were formed. These
were formed in the context of producing software which would be
rated high with regard to the software quality factors of »

Maintainability, Testability, Correctness, Integrity,
Reliability, Robustness, formal verifiability and retaining a

2-8 '

A ¢ ot e tatalata‘atal

that a set of software quality weights be defined as part of the
requirements to assure that the developed software will have the
correct software quality characteristics.

Because of the additional requirements for trusted software,
especially the formal design and implementation verification
associated with the Al and previous A2 levels of /USDO83/, the
methodology was adapted to the development of trusted software.
The essential difference is that early in the requirements phase
of the development cycle, the trusted and nontrusted software
were separated and permitted to proceed along parallel paths,

The only difference between the two paths is that the trusted
path will use the Formal Top-Level Specifications (FTLS) and
Descriptive Top-Level Specifications (DTLS). These may be
refined into more detailed specifications at each level of design
to produce what are generally referred to as FnLS and DnLS.
Another key difference is that, in producing the lower level FnLS
and DnLS specifications in Ada PDL, the designs are supplemented
with Annotated Ada (ANNA) /KRIE83/ and /LUCK84/ to provide more
complete and precise descriptions of the trusted software.

During the course of the project, a draft version of DOD-STD-SDS
/DSDS83/ was reviewed. It was concluded that the methodology is
highly compatible with DOD-STD-SDS, since the macroscopic designs
correspond to the Top-Level Design Specification (C5A), and the
microscopic designs correspond to the Detailed Design
Specification (C5B). Other correspondences exist at the
configuration management level,

2.4 ADA LANGUAGE EVALUATION

The Ada language has excellent features for producing modular
software and providing multiple levels of design abstraction for
the types of applications considered. Unfortunately, due to the

compiler used, the full power of Ada was not available. Separate
compilation, generics, task types, timed and conditional entry

2-7

aleia s

The methodology has worked very well both for the initial designs
and for assisting in making the software changes which resulted
from the transition to TCP, IP and ADCCP (ABM) from the original
SIP/ADCCP (Mode V1) protocols.

Several issues were raised during the use of this design
methodology. The transition from the macro to the micro and the
micro to the code encountered some difficulty in that some
components had been over-designed while others had been under-
designed. Either case is undesirable since detailed design or
coding should not be done in the macro design phase and neither
should macro design be done in the coding phase. This problem
may be reduced by using design reviews, walkthroughs and possibly
by obtaining statistics for PDL expansion ratios. Another Kkey
aspect is to have the requirements/macro design phases, the
macro/micro design phases, and the micro/code-debug phases
overlap. As each lower level of detail is explored and refined,
it is possible to make corrections or improvements to the

preceding higher level of design or requirements prior to a full)
commitment to next-level details. This is similar to the rapid ‘~4
prototyping concept which permits alternatives to be explored S

rather than initially committing to a single idea. The concept
of rapid prototyping, including the use of a supporting -
executable PDL, should be provided for in the methodology. o]

Several design guidelines were formed and evaluated. To make the
guidelines more complete, they should be compatible with or . }
refer to the set of programming guidelines which will be usedg, o
they should refer to particular application-dependent criteria i)
which may influence the overall architectures, and they should i
include specific transportability and reusability requirements

applicable to the developed software.

Many different types of architectures can be formed in Ada, each
meeting the basic set of requirements but with rather different
coincidental characteristics. Because of this, it is essential

2-6

''''''''''''''''''''''''''''

virtual packages and which will be "hidden" and used to support
the visible packages.

The second step consists of organizing the actual compilation or
library units within each virtual package and indicating their
interdependencies in terms of control flow among the visible
entities of each Ada package. This results in the object oriented
design diagrams which are similar to those of /BOOC83/ and
/BUHR84/. The overall software architecture of the system will
have been defined at this point such that considerable design
visibility exists without commitment to significant detail.

In the third step, the diagrams are converted into the
corresponding macroscopic PDL which allows refinements such as
completed data types, specification of formal arguments for
generics, subprograms and task entries, the description of major
logic decisions and data types within visible entities of
packages, the declaration of lower level hidden entities and the
use of embedded English language statements %o indicate details
which are to be converted to Ada source code.

In the fourth step all library units are compiled as a step in
verifying the correctness of the designs and achieving an initial
step toward system integration,

The microscopic design phase is similar except that more details
are added to existing units by either converting existing
embedded English statements into Ada source code or into more
refined statements. Secondary and tertiary units which were
previously only declared are now expanded into their bodies and
may indicate still lower levels of nested support units.

The code/debug phase deals with the conversion of the microscopic
designs into Ada source code and production of completed virtual

packages which are integrated with other virtual packages to form
the final system.

LS. P

b, e

AP LA T

a — e e = = = =

2.3 SOFTWARE DEVELOPMENT METHODOLOGY

At the beginning of the project, approximately one month was 3-;f
devoted to Ada indoctrination, which included a review of the Ada

language, especially the more advanced features such as data .
types, tasks, generics, and exceptions as well as a review of the ®
issues associated with the formulation and use of program design

languages. Based on the work of Grady Booch in /BO0OC83/, and a
presentation at a SIGAda meeting by Dr. R.J.A. Buhr, whose design

approach is now documented in /BUHR84/, a prototype design L
methodology was formed. The principles included in the design

methodology were: to use established software engineering

principles, establish an early Ada orientation with late

commitment to Ada details, provide early and continual design [
visibility, provide for design continuity across the various

software development phases, provide a basis for configuration

management, and to be able to incorporate existing generic ‘
models. Because of the desire to have an intermediate level of ® _d‘"
design abstraction between Ada packages and the Ada program

library, the virtual package concept was formed. These elements L
were then organized around the use of graphical and textual A
representations of the design with an Ada-based PDL as the means o
for refinement. This resulted in the formulation of the 1
macroscopic/microscopic design methodology. 41;fq

The macroscopic design phase consists of four steps which are '.
summarized below and assume that the application requirements

already exist. The first step is to divide the entire set of

requirements into a collection of virtual packages which

represent major functional entities, The use of the virtual ° -
package accomplishes two goals. It precludes having to deal with
the many packages (possibly hundreds) which may result in a large
system at the beginning of a design. Since a virtual package is
similar to an Ada package, it permits a design to show readily,
via an architecture other than nested Ada packages, which
components will be exported for use by components of other

2-4 °

................................ R e R TR P L - DRI I .
... ISP A WAL WD WL T AU Sl S W 3

ST P — —— O ‘O A ans e 2na e ma s rafe e

(Mode VI) to the more standard ADCCP (Asynchronous Balanced Mode
(ABM)) protocol. A host-subscriber type network was established
in which both suitable system management functions, similar to an
actual system, and capabilities to inject various types of
protocol-related error conditions would be implemented.

2.2.2 Trusted Software

In the trusted software application, the original Advanced
Architectural Command and Control Testbed (ACCAT) GUARD /WOOD78/,
/LOG179aA/, /LOGI79B/, /BALD79/ is designed to provide secure,
monitored, controlled transfer of data between a high-level (TOP
SECRET) and a low-~level (SECRET) system. Separation of high-level
and low-level entities (files, queues) is maintained by use of
the Kernelized Secure Operating System (KSOS). To accomplish the
intersystem transfer of data, the high-level and low-level
software in the KSOS GUARD system is interfaced by two trusted
processes. The Upgrade Trusted Process (UGTP) is responsible for
transferring low-level information to the high-level system; the
Downgrade Trusted Process (DGTP) is responsible for transferring
high-level information to the low-level system under the control
of Sanitization Personnel (SP) and a Security Watch Officer
(SWO). The KSOS was used for all high-low and low-high message
transfers by the trusted processes. Other adjunct routines were
defined to deal with UNIX interprocess communication via ports.
Since the communications interfaces with the ARPANET were not an
area of special concern with respect to trusted software, they
were simulated with elementary CRT man-machine interfaces. The
SWO and the SP interfaces were preserved as originally specified.
Because of the dependency of the trusted software, which was
formally specified in SPECIAL /CHEH8@/, on the use of KSOS
executive service calls, this interface was preserved and the
functionality of KSOS was emulated.

2-3

....................

MR an Snn Ml Ao 2o g oo 2

. H L 1 .
. e ST
e iJ_!J/ & o

Y o o
. N a

H
A

= N

4
Y
.

4
.

LI 2B e aags et S Suae Sndn Bnh it Mt SRt

Because the Ada language represents a new tool, derived in part
from software engineering principles and considerations, it
appears that overall software quality is the real issue addressed
by the introduction of Ada. Therefore, the emphasis is on
conducting this evaluation in the context of software quality. A
set of software quality factors, concerning both development and
performance aspects, based on work in /COOP79/, formed the basis
for the evaluation. These software quality factors are the
frequently discussed quantities of Efficiency-I (language
expressability), Flexibility, Interoperability, Maintainability,
Reusability, Testability and Transportability in the software
development area; and Correctness, Efficiency-II (execution
efficiency), Integrity, Reliability, Robustness and Usability in
the software performance area.

In both applications the requirement was to produce executable

code as a means of obtaining firsthand experience in the

development aspects of Ada features and with the performance '
aspects of the implemented software. Because of this, the

project exhibited a considerable degree of realism.

2.2 SOFTWARE APPLICATIONS OVERVIEW

2.2.1 Communications Protocols

The original requirements were to implement the Segment Interface
Protocol (SIP) and the Adva ~e Data Communications Control

Procedures (ADCCP) (Mode VI, of the AUTODIN 11 /WEST78/, /WEST79/ '
packet switched network as a way of evaluating the use of Ada in : xﬂ
this type of application. With the demise of the AUTODIN II ’

| J
network and the publication of the Transmission Control Protocol :__‘J
(TCP) /M17883/ and the Internet Protocol (IP) /M17783/ standards, _ﬂf '
the project, which had been active for approximately ten months, 'f:
was directed to terminate activities on the SIP and ADCCP (Mode ;-'

VI) and begin the necessary redesign to implement the TCP and IP . o
protocols. A decision was then made to revise the ADCCP IO

p— v Lanan 4 M-
m'tvf1‘—','.f.‘,'_A.v — — - T "

gy
N

L an e

SECTION 2
SUMMARY

2.1 PRCJECT OVERVIEW

The objectives of the Defense Communications Agency in the
evaluation of Ada as a communications programming language are to
evaluate the ability of Ada to effectively implement
communications protocol software and to support the DOD Computer
Security Initiative Program with regard to designing and
implementing trusted and multilevel secure software., 1In both
application areas, the objectives are to evaluate the use of Ada
for these types of applications, identify any problems or other
factors which need to be considered, and to recommend a suitable
Ada development methodology.

The communications protocols application objectives are to
develop embedded software that would improve the software quality
characteristics of transportability, reusability, maintainability
and reliability. Finally, the objectives are to determine how to
achieve effective use of Ada, decrease software development time,
provide more accurate development results, and provide a more
reliable means of achieving the results.

Due to the overriding importance of correctness, integrity and
reliability of trusted software, the robustness of the features
of the Ada language, and the corresponding capability of
producing very complex designs, limitations may have to be placed
on the use of Ada in the development of trusted software. The
emphasis is to explore the use of various Ada features used for
this type of application and determine whether these features
result in verifiable designs and code, whether specific
programming guidelines which proscribe or prescribe the use of
certain features are required, and how such restrictions should
be implemented and enforced.

2-1

a's & ca

A

subsections are: 1) Software Development Methodology Evaluation,
2) Ada Language Evaluation, 3) Software Architecture Evaluation,
4) Software Performance Evaluation, 5) Software Error Evaluation,
6) Programming Support Environment Implications, and 7) Project
Retrospectives. These primary areas provide the basic
information for making recommendations in these respective areas.
In addition, application-specific data, information and results
are included for the communications protocols and trusted

k; software applications.

aaaziaia 4 r A&

1-2

Ty v g v— 0 U Ba s S Bons Jhesn e feies s emas bt ¢ T T Y TS VYT TR T TR O W Tw
i B S g Bagh e S0y medd RdnBhetd Mnfe Mt S a It AT y T — ~ YL Ty L B R

SECTION 1 _
INTRODUCTION -

1.1 PURPOSE .

This Final Phase II Report for the Evaluation of Ada as a -
Communications Programming Language documents the findings of a

two-year project designed to assess the effectiveness of the use

of Ada as a communications programming language. Two types of

communications applications were examined: a communications
protocols application with a simulated network architecture, and
a trusted software application designed to arbitrate the flow of
messages between a top secret and a secret system.

- f7H—,

Volume I of this Report 1) defines the software applications that

were implemented, 2) identifies the technical approach that was

taken in collecting and analyzing the data, 3) establishes the :
criteria for evaluating the results of the project, 4) identifies —
the analysis that was performed on the data and information that
were produced or derived, 5) documents a set of conclusions/
results based on the criteria, data and analysis, 6) makes
recommendations based on the conclusions and results, and

7) provides a summary of the conclusions, results,
recommendations, and project retrospectives.

et

volume II, Final Phase II Report: Communications Protocols
Application, and vVolume III, Final Phase II Report: Trusted -
Software Application, include design diagrams, Ada source-code

listings, and a summary User Manual for the respective .
applications. v

1.2 SCOPE

This report covers all phases of the project and addresses all
results, both positive and negative, that were identified -
throughout the entire project. The major topics of the various

..................

LIST OF TABLES -

TABLE PAGE
3.4-1 Software Development Quality Factors 3-17
3.4-2 Software Performance Quality Factors 3-17
3.4-3 Criteria for Software Quality Factors 3-18
3.4-4 Specific Performance Requirements 3-22
3.4-5 General Performance Requirements 3-22
3.5-1 Macroscopic Ada PDL Criteria 3-35
3.5-2 Software Performance Criteria 3-40
3.5-3 Class Al - Verified Design Criteria 3-41
4.1-1 Software Design Methodology Objectives 4-1
4.1-2 PDL Expansion Ratios 4-12
4.2-1 Software Application-Dependent Performance
Requirements 4-24
4.3-1 Composite Software Development Statistics 4-43
4,.3-2 Communications Protocols System Software Statement
Analysis Summary 4-45 -
4,3-3 Trusted Software System Software Statement
Analysis Summary 4-47 ,
4.3-4 Communications Protocols System Aggregate Statement
Statistics 4-48 i
4,.3-5 Trusted Software Aggregate Statement Statistics 4-50 .
4,5-1 Compilation-Related Errors 4-54 N
Q; 5.3-1 Software Development Statistics 5-21
6.1-1 Software Tool Recommendations 6-4

Xv

...................................
L I I R TR SR TR R T I P D TR
D IR D I i Y T Yald Yol Wl WP U Ul Gul W U5 G -0 W, DR)

:

> W wWwwwww
« » e o o
|

1
W N b

L3 -1
" o o

LU L | |
N HoHKFREFEOOONOU &
- S

VT U U B b b o b b

e & & & ¢ o & & o a o

w WHMHWWWWWWWwW W w W [V] v W
[}

(9]
.

w
w
]
w

5.3-4
5.3-5
5.3-6

LIST OF ILLUSTRATIONS

Software-Development-Phase Notations

Software Development Phases

Software Quality Factor-Criteria Interrelationships
Ada, Methodology and Architecture Evaluation
Components

Software Structure/Error Analysis
Communications Protocols Detailed Architecture
Transition Components

System Architecture Model Development

Detailed Architecture Development
Communications Protocols System Detailed
Architecture

Host_TCP_Server Virtual Package Diagram
Original ACCAT GUARD System Configuration

ACCAT GUARD Software

Modified GUARD Configuration

Trusted Software System Detailed Architecture
GUARD Message Flow

GUARD Transaction Flow

Downgrade Trusted Process Interactions
Methodology Compatability with DOD-STD-SDS
Trusted Software Design Methodology
Communications Protocols System Inter-Virtual
Package Analysis Summary

Communications Protocols System Intra-Virtual
Package Analysis Summary

Communications Protocols System Compilation Unit
Analysis Summary

Trusted Software Inter-vVirtual Package Analysis
Summary

Trusted Software Intra-vVirtual Package Analysis
Summary

Trusted Software Compilation Unit Analysis Summary

Xiv

3-6
3-19
3-20

3-25
3-30

4-18

4-30

5-28
5-30

SOFTWARE DEVELOPMENT GUIDELINES

ADA RESTRICTIONS FOR TRUSTED SOFTWARE
IMPLEMENTATION

SOFTWARE TOOL RECOMMENDATIONS, DESCRIPTIONS

COMPILER LIMITATIONS AND IMPACTS

xiiq

D-1

e e e A AR A Sr—————— —— T T T

{

.......

level to capture the transportability and reusability
characteristics, Collections of virtual packages were
distributed across the application, TCP, IP, ADCCP, pseudolink
layers, and the system management services. The organization of
the software along these architectural lines significantly
facilitated the modifications which were made to the software
when the transition from the SIP/ADCCP to the TCP/IP/ADCCP
protocols was made. Within a given protocol layer, the software
was partitioned into Ada packages which principally followed the
0SI sublayer model boundaries and consisted of the service,
protocol, access, and intralayer management components. At least
one issue which warrants further study with respect to
transportability and reusability is the placement of system
management functions with two extremes being either totally
within the layer or totally outside the layer.

In the trusted software application, the existing UNIX-based
architecture was translated into an Ada-based architecture.
Several significant changes occurred in making this transition.
The entire architecture was translated from a multiprocessing to
a multitasking environment; the original processes were
reimplemented as Ada tasks; interprocess communication

entities, implemented as UNIX ports, were reimplemented as
transporter tasks in Ada; the Kernelized Secure Operating System
interfaces were preserved and treated as Ada service entities
because the Upgrade Trusted Process and the Downgrade Trusted
Prccess, specified in SPECIAL, were directly dependent on KSOS
services. A final deviation was that interfaces with the high
and low side of the GUARD to the respective high and low systems
via ARPANET and crypto devices were emulated as online terminal
users to permit messages to be transferred between the high and
low sides via the GUARD. No difficulties existed with the
reimplementations. However, significant changes had to be made to
the software architecture at the intrapackage level to circumvent
compiler problems, specifically those associated with task stack
size limitations. As a result, extensive stress testing and

2-19

. -,_'-_~_, o) .
SRR P, T NN, WO, SO . . v

e a a A e

meaningful architecture evaluation with regard to Al trusted
software evaluation criteria was not possible. Consequently,
there may be problems associated with the planned architecture
which impact on the Correctness, Integrity, Reliability, and
Robustness of the trusted software, particularly in the areas of
data flow and covert channels.

2.6 SOFTWARE PERFORMANCE

The objectives in software performance were to assess the

Correctness, Efficiency-II, Integrity, Reliability and Robustness
of the two applications.

In the communications protocols application, overall assessment
of the software performance factors was severely impeded because
of compiler problems, specifically problems resulting from the
lack of a time-sliced environment, task stack size limitations,
somewhat weak use of exceptions and adverse interactions between
tasking and TEXT_IO resulting in spurious errors. Several
features of the Ada language which could contribute positively to
overall performance were either used or would have been used had
they been available. These include access variables, unchecked
conversion, and use of pragma INLINE if it had been available.

In the trusted software application, again little was
accomplished in the performance area because of the revisions to
the planned software architecture to achieve an executing program
and because of the lack of project time to inject various error
conditions and conduct stress testing. Many questions related to
overall performance, especially Correctness, Integrity,
Reliability, and Robustness, will need to have the original
designs restored and implemented and extensive stress testing and

error injection performed to fully assess these performance
factors.

2-11

BEIPLIILD T SUCRL SSg0-UROT S SV P SRt SR U S Wi WA e S S o

WP - ——

2.7 SOFTWARE ERRORS

During the early portion of the project, software compilation
error information was collected from both application areas. The
programming errors were indicative of a lack of familiarity with
the syntax of Ada type and object declarations, inattention to
the full implications of using a strongly typed language, the
failure to include context clauses resulting in numerous
undeclared entities, and conflicts in the use of attributes and
types. At the module architecture level, a small number of
errors resulted in erroneous programs being produced; objects
were operated on concurrently by both a task and a procedure from
the same package or by two different tasks concurrently without
pragma SHARED being declared for the objects in question. This
problem represented a more fundamental misunderstanding of the
difference in semantics between tasks and subprograms as
processing entities. At the system architecture level,

especially in the communications protocols application,
insufficient attention was given to the use of exceptions and
their semantics as an integral component of the overall design;
in the trusted software application, possibly because of the use
of exceptions in the SPECIAL specifications, exceptions were -
included much more effectively. Other minor errors occurred
during elaboration (improper ordering, access before elaboration)
and during execution (uninitialized variables).

2.8 PROGRAMMING SUPPORT ENVIRONMENT

The host programming support environment as well as the target
environment consisted of a VAX 11/780 VMS* timesharing system
supporting a variety of users. Because of the resources required
by the Ada compiler, the online compilations were limited to

*DEC, VAX and VMS are trademarks of Digital Equipment Corp.

2-12

..........................

. . - . . - Tt . .t . - . -t LY Lt Wt oL

- . N - . N “ B T T e N T T N . o e e e e e e sy S L e e B . . -
S HER S L I N Tt T T T e T e e e e T

cac vt e e et e e atatara et taiatakalobododededoiodaniio o fciion it W

R AT i S e 4o g e e e bt S pes i cne s machenc A S AR S AR Aese s S B A A ER

small jobs and larger jobs were required to be run in the batch
mode. Programmer productivity could have been increased had

there been a less fully loaded system available and had there >
been more software tools available. A

JYON CrErERT Ty

.y

Tools which could have been helpful are a PDL processor, source-
level debugger, pretty printer, generalized call-graph generator
and, most importantly, a validated, full-capability Ada compiler.
The software tools which were used included a screen-oriented
text editor; SKETCHER, an interactive ASCII graphics editor for -
producing object-oriented design diagrams; and a prototype, ‘
partial-implementation Ada compiler. As more software tools are
developed and as larger Ada systems are designed, implemented and _
debugged, the demands on programming support environment .
resources will increase substantially. ..

Both the compile-time and run-time environments permit

significant variations in their implementations with respect to —ird
the MIL-STD-1815A. It will be necessary to have not only a 4
validated compiler, but also an evaluated one with the evaluation
3 criteria based, in part, on the application to be implemented and o
ii the design methodology to be used. ot

2.9 PROJECT RETROSPECTIVES

In terms of the overall project, there were several major
accomplishments and some major and minor disappointments.

In the communications protocols area, data transfers across five
layers of the architecture were accomplished, including the
opening and closing of connections, and single terminal
echo-testing as well as two-terminal interactive testing.
Several major capabilities, although not all, within each of the
protocols layers were implemented. Particular disappointments
were that more of the protocol error processing features could
not be implemented in order to test the overall Efficiency-II,

2-13

......................... . - S N T B
............................... P TN S P I
P e A PR T P e T TP T T IR R I S R e T L T N R T SRR S NS SRS S S SN S TR TRt S .

L e R LT AP ST e PP S S R AP RPN FRUC LN P N L I S R P P A L AL L. R R T e

SRS TAOLCE CUULENDMOVOVE UMD IMERE GOLC SRR T OESEREE SRR L SE APV PV RV ARl e e s

e — v v— - - Ty s <
A ——— y— e —————————————— . . :

Correctness, Reliability, Integrity and Robustness of the
software, This application consisted of 19 virtual packages, 26
library units, 24 secondary units, 8131 Ada statements, 10309
comments and a total of 23674 source lines including
approximately 3@ tasks. In attempting to use the TCP and IP
specifications, considerable insight was gained into how they
might be placed online and revised to make the contained PDL,
which is strongly Ada-like, more complete, consistent and usable.

In the trusted software application, the full, planned set of
capabilities was implemented within limitations imposed by
existing compiler problems. The significant accomplishments
include the transition from a UNIX-type architecture, the ability
to use Ada tasks to achieve a four-terminal interactive system
and the capability to accomplish the transfer of messages and
transactions between all four operator stations. Disappointments
included the inability to fully implement the original set of Ada
designs, the inability to evaluate the designs and architectures v
against the Al trusted software criteria because of the
compromises made in the architecture, and the inability to
conduct extensive stress testing and code analysis with regard to
programming style and formal verifiability. This application
consisted of 12 virtual packages, 25 library units, 23 secondary
units, 6775 Ada statements, 9529 comments and a total of 21305
source lines including approximately 36 tasks.

Finally, three important policy issues which had an overall T
influence on the project are summarized below: First, because of f
the newness of Ada and the desire to fully explore the use of .
these features in a "real" application, liberal use of Ada -
features was attempted at all architectural levels. Second, the R
development emphasis was on achieving execution of the '
applications, even at the expense of reduced functionality and

altered designs rather than on achieving execution of narrowly

limited portions of the system which had been fully implemented.

2-14)

Third, because of the prototype nature of the project and
richness of the Ada language, it was difficult at times to
maintain the proper balance between design, exploring alternative
designs, and selecting one and implementing it.

2.10 RECOMMENDATIONS

Several recommendations can be made based on the activities of
the project.

The development methodology should be formalized, adapted to a
set of corresponding documentation standards such as DOD-STD-SDS,
and augmented with a set of compatible software tools to make the
methodology both effective and efficient. Specific design and
programming guidelines addressing transportability and
reusability of communications protocol applications with respect
to overall software architecture considerations should also be
formed.

For the Ada language, a set of compiler system evaluation
criteria which are driven by application requirements and
software development methodology characteristics should be formed
and used to evaluate any validated compiler before selection for
a given development project. These criteria must address the
compile-time and compiler pragmatics parameters as well as the
run-time support environment characteristics.

For trusted software development, the designs should be
implemented in an Ada/ANNA combination from the beginning to
obviate the need for making subsequent translations from another
language and dealing with the various translation and
interpretation issues. Since ANNA can supply additional semantic
information in package specifications, the use of ANNA should
also be considered for enhancing protocol specifications either
at the specification level, such as the TCP and IP documents, and
definitely at the software implementation level.

2-15

..............

T T Ty an 10 @ S e Boe aarer ¢ - T Y T ¥ v

e B,

AN
L,

For Ada education, a solid software engineering basis is required
to use many of the Ada features effectively. This foundation
must be supplemented with education on the Ada language itself,
the use of the planned development methodology, and the use of
the supporting software tools.

Software quality weights need to be established as part of the
requirements definition effort to assure that the designed
software architectures, from the highest level, reflect these
requirements. In both applications, however, for different
reasons the software architectures as planned should be fully
implemented and carefully evaluated to explore alternative
designs and what their impacts would be on the development and
performance software quality factors.

In software performance, real progress, insights and definitive
answers can be obtained only by completing the original
applications and conducting fairly extensive stress testing of
the systems and evaluating various software alternatives at both
the inter- and intra-package levels.

Programming errors can be reduced with a combination of education
and experience. Other errors of a more subtle nature such as
those occurring at the inter-package architecture level require
careful attention to the overall design and the semantics of
specific features used such as the combination of global data or
exceptions with tasks. These situations may also be aggravated
by run-time support environment idiosyncrasies. To the extent
that many of Ada's more advanced features such as task types,
allocators, generics with parameterized subprograms and nested
generics are combined to produce the overall software
architecture, it is difficult to speculate on the nature of the
development and performance characteristics of the software until
additional experience has been gained.

2-16

miaca'a o ok

SECTION 3
TECHNICAL APPROACH -

3.1 PROJECT OVERVIEW

The project components are presented as originally planned to
provide a context for identifying and evaluating the activities
that occurred throughout the project and what their impacts were
on the final accomplishments. The variations, deviations, and
events are presented and evaluated in Section 4, Analysis;
Section S5, Conclusions/Results; and Section 6, Recommendations.

3.1.1 Backaround

SYSCON performed Phase I of this effort; it consisted of
evaluating the Ada concurrent programming (tasking) capabilities ;
B as related to communications applications, comparing Ada to the .
\e CCITT High-Level Language (CHILL) which is used in
telecommunications system applications, and formulating a test
and evaluation plan as the basis for this Phase II effort.

The availability of the new programming language, Ada, presents
opportunities for developing quality software through the use of
language features used previously only in research environments.
New controls in the form of programming standards and guidelines
and new software design and development methodologies are SR
required to maximize the potential for producing quality
software. To evaluate the Ada language, and formulate these
standards, guidelines and methodologies, the Defense

Communications Agency requested that a test and evaluation plan o
be formed using Ada to implement two prototype communications RINRR
applications.

The SYSCON-developed evaluation plan established the approaches 1
to be used in designing, developing, and testing the software,

— ——————— WY W e~ m st T e v s e s
S —— T T ey e d

evaluating the efficiency and effectiveness of Ada as used in

these applications, and identifying standards, guidelines, and °
methodologies to assure overall software quality in the use of

Ada.

3.1.2 Ada Issues L4

The existing version of Ada, ANSI/MIL-STD-1815A, has resulted

from extensive open review, test, and evaluation by individuals

from government, industry, and educational institutions. Despite e
this review process and the constructive changes which were made

to Ada by the time it became MIL-STD-1815A, there are still

innumerable issues which can be explored further through actual

use of Ada in attempting to solve some real problems. e

Based on actual use of Ada for implementations of stand-alone
applications, preliminary results indicate that software
development approaches which are different from those presently
used may be required to effect the optimal use of Ada. These
include the use of Ada as a Program Design Language (PDL),
changes in the approach to modularization, additional emphasis on :
data abstraction, and Ada-tasking constructs for developing b ?
J
}

concurrent processing applications. Another issue is the effect
of individual programming styles on the production of quality
software, particularly with regard to transportability and
maintainability. Although Ada is a rich, powerful, and versatile

o
language which provides the programmer with many opportunities, a)
final area of concern is how suitable, effective, and efficient . 1
the features of Ada are with regard to specific categories of]
applications and how Ada can effectively provide the basis for a ° i

4
PDL in these categories. '
3.1.3 General Apgroach T
.
As a means of evaluating Ada and addressing other objectives, the .
Defense Communications Agency, through the Defense Communications
3-2 ®

Engineering Center, has selected representatives of two
categories of software to be implemented on a prototype basis
using Ada. The first category is a communications application,
which began with two communications protocols, the Segment
Interface Protocol and the Advanced Data Communications Control
Procedure (SIP/ADCCP) of the former AUTODIN II packet switched
network. Subsequently, the SIP was replaced with a combination of
the newly released (August 1983) Transmission Control Protocol
(PCP) /M17783B/ and the Internet Protocol (IP) /M17783A/. The
ADCCP (Mode V1), which was peculiar to AUTODIN II, was replaced
with the more general ADCCP (Asynchronous Balanced Mode (ABM)).
The second category is the Advanced Command and Control
Architectural Testbed (ACCAT) GUARD trusted software application,
which uses the Kernelized Secure Operating System (KSOS) and
functions as a trusted process to permit the controlled exchange
of information between separate SECRET and TOP SECRET systems.
Thus, the software prototyping will serve as the vehicle for .
B using Ada and acquiring the data and information which are needed e
to address the Defense Communications Agency's objectives,

3.1.4 Refense Communications Agency Qbjectives

The objectives of the Evaluation of Ada as a Communications
Programming Language are divided into four categories. These are
objectives which address Ada issues and solutions generically,
objectives peculiar to those types of applications that employ
standard protocols, objectives unique to trusted software types]
of applications, and objectives to recommend a software
development methodology for developing Ada software in the
communications protocols and trusted software application areas.,

This project is designed to acquire realistic experience and
knowledge that can be used to form an effective Ada-based
software engineering methodology and to determine what problem
areas will impact communications applications implemented in Ada. .
The emphasis is on exploring alternative methods and approaches

3-3
1

«
- N

and identifying both successes and failures to provide a

perspective for forming the necessary methodology and software
tools.

3.1.4.1 General Objectives

An objective of the software prototyping effort is to investigate
typical communications applications and evaluate the use of Ada
in such applications. A related objective is to identify any
generally interesting results which may apply outside the
communications area. Missing or inefficient Ada features that
are germane to communications applications will be identified.
The use of assembler code and target machine dependencies will be
identified. Software architectures and Ada characteristics that
have a major influence on developing transportable and reusable
software will be identified. The ability of Ada tasking features
to be effective, efficient, and to adequately represent real-
time, multi-tasking requirements will be evaluated.

3.1.4.2 Specific Communications Protocol Objectives

The TCP, IP and ADCCP protocols specify interfaces across which
information must flow. Servicing of information requires
concurrent processing for an effective implementation. The Ada-
tasking features and mechanism will be evaluated for efficiency
and effectiveness. Since it is desirable to transport protocols
to other application areas, another objective will be to
determine the influence of Ada, Ada software design, and Ada

implementations on the transportability of the implementations.
3.1.4.3 Specific Trusted Software Objectives

Trusted software characteristics may require administrative
restrictions on the use of Ada features. Such restrictions will
be identified along with a strategy for implementing them.
Correspondence tests between the Ada source code and the trusted

L AL e e - fare L < o " e ’ R AR T e i e 4 "

software requirements will be performed to determine the
influence of Ada features and stylés on trusted software
development. Due to the real-time requirements of this
application, objectives similar to those of the TCP/IP/ADCCP
application will apply.

3.1.4.4 Development Methodology Objectives

A methodology for developing communications software with Ada as

the implementation language will be recommended based upon the

results of the prototyping effort. A specific objective within

the methodology formulation is the use of Ada or Ada-like

components as a Program Design Language (PDL). Acquired

information will provide the basis for forming DCA management -
decisions relating to software standards, conventions, policies,

tools, procedures, and directives in the use of Ada.

3.2 PROTOTYPE METHODOLOGY FORMULATION ~

The methodology will incorporate a combination of two design
methods used to produce software designs: the Structured
Analysis and Design Methodology (SADM) as summarized in /PRIV82/
and the object-oriented design approaches presented in /B0O0OC83/
and /BUHR84/. The methodology consists of two phases of design,
a code/debug phase, and culminates in the integration/testing of
the resulting software. To effectively understand the issues and
problems involved in producing software in Ada, four levels of]
abstraction following the concept formulation will be utilized.

Figure 3.2-1 illustrates these levels and the appropriate points

where Ada features are involved. These methodologies are applied

in a series of stepwise refinements and are augmented with 1
variations on the graphical design notation presented in

/BUHR84/.

e i St e Shanc Sk e Snagh anasu

vay

3003

P ——

VY P
" 1

SUOT3IPION aseyd-jzusudoTansg-a21eml3og

vav
104 ..Vav..

»

-—

N3JIS3a
aittviia

104 .vav.,
SWYH9IVIO .VOV..
SIIVWIHIVIN

~“~ HSI19N3

é

‘1-2°¢ @anbtg

SWvHavig .vav.
SWSITVIWNHO4 HIHLO

SWyHaviIa
N9IS3a SIUVYWIHIVN
BAIdor | HSIT9N3

*

NOILYINWYHO4 |
SINIWIYINDIY

T ——— o -y -

SWyHaviIa
SIUVYWIHIYWN

HSITIN]I

#

NOILVININYOA
143INGI

LSS o e Sa0 an an

ol

ke

Aol

PR Sl SRS S

>y

[}

PR .,
PP U G B S

o

o

3.2.1 Reguirements Formulatiopn Phase

This refinement consists of defining system-system interfaces,
functionally identifying subsystems and defining inter-subsystem
interfaces, intra-subsystem interfaces, and data flow paths. For
each subsystem a set of characteristics/requirements will form
the basis for refinement into the functional components of each
subsystem. This phase culminates with the formation of a
detailed architectural design which represents the hierarchial,

structural orientations and data dependency relationships of the
functional modules.

3.2.2 Top-Level Design Phase

The top-level design phase introduces conceptual components
called virtual packages. (In the notation of /M15272/, /M49068/
and /M48379/, these elements correspond to Computer Program
Components (CPCs) of Computer Program Configuration Items
(CPCIs).) These components are referred to as virtual packages
because they exist at a level which is one step higher than
actual Ada packages, and they exhibit the characteristics of Ada
packages such as having visible and private (internal)
components.

The design information will consist of overview diagrams that
address interfaces, followed by a Detailed Functional
Requirements section for each virtual package. At this level,
the SADM approach will be used to form the basic Ada compilation
units that make up a virtual package. The visible details of the
compilation units will then be documented using object-oriented
design diagrams.

The top-level design phase is referred to as the macroscopic
design. This step will continue use of specifications to define
the operations needed on abstract data types. These operations
establish all program units (packages, tasks, subprograms,

3-7

A

e ikl hrataralatatata oA e s aaTa 0 e 8" ¢ Tl tan Tar Tk T3 Tl et i A i

b

3.4.3 Application-Oriented Requirements

There are application-oriented requirements which a language must
satisfy to facilitate the development of software for the target

applications. This section identifies specitic requirements for

communications and trusted software applications.

3.4.3.1 Communications Application Requirements

A previous study performed for the Defense Communications Agency
/BBN176/ resulted in the definition of the syntax and semantics
of the Communications Oriented Lanquage (COL). As part of that
study, three alternative sets of requirements, which are
desirable for a COL to have, were examined. The first set was
obtained from the "U.S. Air Force HOL Standardization Study";

the second set was obtained from "The Initial Report on the
Suitability of JOVIAL for Communications Systems Implementation®;
the third set was Obtained from "The Rome Air Development

Center Report on Common-Communications Processors."

There is commonality among the items of each set; however, there
is also some discrepancy. Each list is also a mixture of high-
level language-inherent features as well as requirements for
access to data, instructions, and controls at the machine level.
From these lists a composite of specitic requirements, shown in
Table 3.4-4, was formed. This list serves as a basis for
assessing the efficiency and effectiveness of Ada as a lanquage
for developing communications software. The report also
indicated some general performance requirements which are shown
in

Table 3.4-5.

Bt PP - - - — e e S el il WS R WY SO S Fp et d a0 L P N VT Wy

ALITIAVI3vyL

ALIJIdNIS

SSIN3AILAIEISIA413S
JINIONIJIONI WILSAS ONILYH340
JYNLIILINIYY WILSAS INILVHE IO
AlIN9VY3I40

All¥vingow

NOILVINIWI VW 3OVNAINYI
SLINYLSNGD] IIVNINVYT
NOLLVININNY LSNI

FINIONILIONS 3UVMOYVH
3ENLIILINIBY IHYMOUVYH
ALITvH3INID

ANIWIOYNYW HOYEI
ALITYNOWWO3J vivQ
AINILSISNGD

SSIN3SIINGD

SIINILI W0
SSINFAILVIINNWKGD
ALITYNOWWOI NOILYIINNWWO2D

AdvuNnaly

CRITERIA

SOF IWARE
QUALITY

SOFTWARE
QUALITY
FACTORS

EFFICIENCY |

INTEROPERABILITY
MAINTAINABILITY

FLEXIBILETY
REUSABILITY
TESTABILITY

TRANSPORTABIITY

CORRECINESS

EFFICIENCY B
INTEGRITY
RELIABILITY
ROBUSTNESS

USABILITY

LN3IW4CI3A3Q
3HVMLLCS

3ONVWHOJH3d

IHVYML40S

3-20

SR S S A A

. B

-o -

——TTT T T T T Y

Software Quality Factor-Criteria Interrelationships

Figure 3.4-1,

Sl B,

etk ol

PSP

——v

"uo) }DjuUdwWa |dw) IPOD @DINOS Y} O} UOIIDII14129ds JO |9A9)

18aybiy ayy wosy A}1A1}29UUOD @un}onJ}s pub |0d)16o| Joy SapiAoOsd DY} @iDM}JO8 JO @3INQII3}0 Y] -— ALITIGVIOVYL
"poo3}sSiapun A|I1SDe }SOW SWIP) U) UOj}DlUIWE|dW] @y} 40 SaplAaoud DY)} JJDM)} 408 JO BINQIIYI0D BY]l -~ ALIDITLNIS
‘uo1}pziupobio s} pup pesn Buieq wyj1iobjD Oy} SD | |IM SD 2JDM}JOS 3y} jO uoj}dunj 10 asodisnd

9y) buiqradsep u) ss9ujuss0ddo pup A)10}d 4oy saprAacsd DY) 94OM}JOS O ¥INQIIII0 Oyl - SSINIAILLINISIA-3113S
"s0an)ype) bBuijoisedo d1§12ads yyitm esom)jos pedojensp

40 UO1}D013}3U) }D8J 1P WNWIUIW dY] 10y S3PIACICD J0Y) 9JDM}JOS JO 23NQ1I1,0 a4y - 3IONIANIHIANI WILSAS INILVH¥IdO
"swpiboisd suoryoo||ddo AQ pasn A)aa13128)42 910 AJ1[1QISS925D J1ey} puD

‘uoryosnbijuod si1ayy ‘sjuswe)@ waysks burybsedo yosym o) eeubap ey - AL]171811VdNOD JUNIDILIHONY WILSAS ONI1v¥3dO
"9JOM}JO8 94} Y}im 95D193u| 10 @}0s9do o)

pasinbas sasnpecoid sasn yo A)ytjuonb pup 9dA) 9y} SAUIWIS}IP)IDY)} PJDM} 08 O BINQIII0 YL - ALITIOVYNILO
‘sjuswe e Bujyjosedood

juspuadapu| Oju) 2JDM}JOS @y} jo uo1}0zZ1unbio Yy} J0) S9pIAOCId DY)} SIOM]}JOS jO 2)}NQI1J4Y})ID Syl — ALIMVINAON
‘POINJIXS ©Q UDD YdIym

uo{}ojuecaides SUIYOOW O Ul £35nJ)suo0d dbonbudb| SY) JO UOIIDZIUDYIAW Y] — NOILYININITGNI 3OVNONVI

“juowdo |9ASp 91DM)} OS

ayy) u! pasn abonbup| Bujwwoisbosd @y} jo S>1jUDWES PI}DIDOESED PUD XDJIUAS Yyj - SLINNISNOD FOVNONVY

"$150Q |DUOI}IpPUOD—UOU JO |DUOI}IPUOD D UC O}DP JO ‘SJUIAD

‘SUO1}IPUC) 9)10IPOWIRIUL JO AD|dSIp JO |OI1}UOD 9y} IOy sepiaosd DY) 2JDM}JOS O 9)1NQ1I3I0 Yl ~ NOILVININNHISNI
"9}D0J9dO || IM 9IDM}JOS 9Y) YdIYyMm UO 9IDMPIDY 9y} PUD S}ONI}EUOD

9b6onbup| ey) ueemy}aq bBuijdnod jo 99 6ep @y} SO}DDIPUI DY) FIDM}JOS JO @INQIIYID Yyl -~ IJINIANIJIANT INVMANYH

‘u01}0211ddo up AQ pesn A|eAi}29))@
9)0 uo1)ounbyjuod J19Y) PUD SJUCWE|O SIDMPIDY Yo iym 0} 90u6ep Byl - ALITIBILIVANOD UNLOILTHONY IUYMGHVYH

(z 30 ¢ °beaq)
s1030B4 A3}TIEN) 2IEM3JOS I0J BTIIBITIAD °€-b°¢ algel

3-19

‘palji1o9ds ssoy) uoyy

SUO 1} IpuUOd Jo nEo_nmLa 9doos 19pDOJQ 9|PUDY O})| S)lwiad DY} 2.0M} 08 JO 9ING1I3}0 Y] — ALITVHNINIO
‘SUO|) IPUOD J0JIIS

Patj1dads 10 wiojut puo ‘oboudw ‘9310(08Y "}38319p K1)391100 O} SIDMYIJOS)0 PINQIIIID Byl — ININIOVNVN HONNI
"$UO L }DYyUSSPIdas puD

§3}0WJO) DIDOPp POZ|IpPIOPUDIE JO 9SN Sy} 40, seplaosd oY) 9JOM}JOS JO @INQLIYI0 Oy] - ALITYNONNOD VIVQ

‘U0 }DjOoU pUD ‘SPIDPUD}S ‘SoUr | apInb

‘sanbiluyoe} uoijojuows|dwi puo ubisep w0 un §9p1A0Id JDY) SIDM}JOS 4O 93NQII}3I0 OY) - AONILISISNOD

"9pod @24nos jo Ayirjuond

Wnwiulw 0 O @8N 9Y} Y}im uoiduUNy DO 4O UOilDjuUSwWe|dw] J0j SOPIAOID }DY} 9JDM}JOS JO @23NnQ1i}}D Y] - SSINISIINOD
‘peij1oeds s91}111qodDd

PUD sUO1I3UN} (D JO Uoi}DyUGWAIduwr | (N} 9y} 10} €9P1A0Jd DY) SIDM}SOS JO SINGIIIID BY)] - SSINILIVANOD

"498n 9y} Aq pe)ddns A 1ppos 9q ubd ystym synduy sesinbe.
puo Josn o AQ pa}D|IWISSD A)1POOJ @G UDD YdIym $)INdIN0 saptAcId DY} 9JOM}JOS 4O @}NQ1J})D 9yl - SSINIAILYIINNANOD

‘$juouodwod e4DM)jOs Om} Jo BuidDjISUl BY) IO SWE UDYdPW
pPuo §1030304d PJOPUD}IS JO 96N SY) JO) EepIA0OId JDOY} PIDMIJOE O SINGIINIO Oyl — AL]TYNONNOD SNOTLYDINNNNOD

"SSOUI|PW|) PUD ‘UOIS100Jd ‘BERU}D91I0D
0} pJob3s yii1m §3|NSes |oUOI}DINdWOD @Y} JO A3)| 1qQDEN U} JO) SOPIAOId JOY) DIDM}JOS 4O BINQIIII0 OYL - AIVHAIIV

(z 30 1 ®beq)
SI1030BJ A3TIEN() dIeM3JOS I0J BIASITID ‘¢-p ¢ °1gel

3-18

1 TJUSWUOIIALUG POPURIUL S}t U

woisbosd @y} esn o} uipbs| puo wosboisd ey) jo uoy}oiedo josjuod pup ‘wosy DIDP Indyno

J 1@4disajutr '4oj DjOp jndu! eusodasd uod sisasn woibosd Yoiym O} JUSIXS ey} jO e.nsDeOw ¥y - Allriavsn
"S$)ULWUOI | AUS |DUOI}DIBdO PIPUPIUL S} BPISINO SUO|}|PUCD O} PuOdSel

. 10 oboupw £jQqp3d9290 0} 2)q0 st wosbosd |DUO|}DIGdO UD YD IyM O} JUSIX® Py} JO 9.iNSDOW Yy — SSINLISNBOY

f ‘JUSWUOJIAUS pPBPUSIUL S} UL SUOI}duUNny Ppa1inbai $}) wiojied o) payd9dxe oq uod> woiboud
D ydiym 0} 'SINjYIDY o K31 DO} 14> pup Aouanbesy o) pUDBRI y)im ‘JUIIXS BY)} JO PINSDIW Yy — AL118VI3N

‘suolyouny s9yjo Auo wiojied A|}13A05 10 A|}19A0 J0U §20p puo
S§UO1)duny papudju) 8}) Ajuo swiojiad woibosd LUOI}DISMO UD YO ym O} JUSIX@ BY} JO SINSDAW Yy — ALIY9IINI

*s|psaydiiad puo ‘Asowew ‘awiy ng) buipn|ouy sedsinosel
wo3sAs sy) jo 9sn jowjjdo §93DW wpiboid |DUOC|I}DIGAO UD YD Iym O} JUSIX® By} O PINSDSW y - 11 AON3ID1443

"8} |Ns9s 9)1qD}d929D €99nposd puo suUO|}douny s} swioyied
‘SU01}IDO)109ds S} Y)im s9}|dwod wpibosd |puoiipisedo UD YO ym O) JUSIXS BY)} O VJNSDEW Yy - SSINLIINNOD

E s1030®BJ AITTEND SOUBWIOIIDG 9IBMIJOS *Z-p°€ oTge]

"UO 1001 J1pow YNOY}IMm A[}991100 WI0)19d PUD JUSWUOI |AUD SJIDM)}JOS JO 9IDMPIDY JUDIB 4 |P

r~
: D 0} peiidjsuns) A)i1ppes @#q uod woibosd |DUOIIDIEdO UD Ydiym O) JUSIX® Yy} jJO dinsOOW Y - ALl 1 1BY1IHOJSNYYL .ﬂ
, ™
“sosoyd UOI}DO11POW puop ‘@dudDuadjUIDW ‘juewdo)srep oy} bursnp jow Q4D DIIR}IID SJUDWIORd
10y} 9inss0 0} payse) A|1ppes 9q upd wosboud O YOS Iym 0) JUSIXS® By} O VINSOSW Y — INS RRL: V28X
‘U0 |)02t} IPOW YnOoyY)im Uo|}Ddy|ddo Jeyjyoup ul
jusuodwod o so pesn 9q ubpd wouboud |DUOI}DIGAO UD YDdIym O) JUIIXS Y} 4O 2INSOPW ¥y - ALTTI8VSNIY
. "P@}29440D puD PAYD|OSL ‘pPIIjiIusp!
2q upd woibousd |DUOI}DISdO UD U) JOJID UD YdIym O} JUSIX? Py} JO INSDOIW ¥ - ALITIGYNIVINIVYA
‘$913111qodpd |ODUOL)}dUNy O
. 9oupDwioji13d PO5UOYUI O} UOCI DD IPOW INOY)}IM PIdDJIRIUY JOo pa|dnod @q upd
swa}sAs jJues9jj1p jo swuoisboisd jouoci}Diedo OM) Ydiym O} JuOIXP Sy} JO 9INSDIW Y - ALINT1GYNILONIINI
. ‘69131 11G0dDD JOUCIIDdUN) MU IPN|DUY
’ 0} patjipow oq upd woibosd |DUOIIDISMO LD UYDIYM O} JUPIXS® SY) JO SINEOSW Yy — ALITI8IX3V4

‘§39n1)suo0d 9bonbup| 9|qo|10AD @Yy} bBuisn
Jowsoy ui pojuesaides 8q ubd JO 8D BWY)LIJOB|D Ydjym 0) UL IXO Y} JO PiNSOOW VY - 1 AON3ID1443

s1030ed A3TTEN) JUSWQOTIADQ BIBMIJOS °T-%'¢ °OTd9el

and at the lowest level are the measurable parameters which can
be related to the software guality criteria.

Software quality is a relative and imprecise entity in that “"the
deqree of excellence" required of software is not absolute.
Different organizations and projects may have different
objectives., For example, "throw-away" code need be given very
little consideration with respect to life-cycle maintainability.
Software quality factors such as transportability and efficiency
are potentially in conflict and thus necessitate a trade-off or
compromise to be achieved.

The primary emphasis of this development effort is to gauge the
effect of Ada on both the development cycle of communications
software and on the performance aspects of the resulting code.
The need is to key on software quality factors which relate to
development and performance. Table 3.4-1 lists those software
quality factors which relate to or impact on the software
development, maintenance, and moditication process. Table 3.4-2
lists those software quality factors which relate to or impact on
the performance of software implemented in Ada.

-y

3.4.2 Criteria for Software Quality Factors

The criteria identified in Table 3.4-3 represent a set of)
independent attributes which software may possess both with

regard to software development and software performance. An

individual criterion may be correlated with more than one

software quality factor. The interrelationships between the)
software quality factors and the software quality criteria are
illustrated in Figure 3.4-1. These criteria are taken from

/COOP79/ and minor additions have been made.

S T
PV EDV I O S

A A alte

-------------- L S
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ R IR D I T . At SRS L IR AL SO WAt V5P V.1 V. YU LY b doa £ PO N LA W VAL T S|

\o

3.3.4.3 System Integration and Testing Objectives

The objective of the system integration and testing is to combine
all software for each application, including the test support
software, and exercise the software through the use of the
functionally oriented system integration tests. Detailed system
integration and testing objectives are identified in MIL-STD-16/9
(NAVY) /M16778/, Section 5.8.3.

3.3.4.4 Test Software Development

Specific requirements for test support software which need to be
developed for the TCP/IP/ADCCP and ACCAT GUARD applications will
be identified as required. This software will be designed using
the macroscopic/microscopic approach established for the
application software and will be coded during the
code/debug/modify portion of the software development.

3.4 SOFTWARE QUALITY ASSESSMENT

This section identifies the software quality factors and
constituent software quality criteria used to evaluate the
architectures with respect to the use of the Ada language.
Application-specific requirements, which will be used for
evaluation, are also listed.

3.4.1 Software Quality Factors

Software quality can be defined as a hierarchical set of software
quality parameters. At the highest level is the concept of
software quality which is "the composite of all attributes which
describe the degree of excellence of computer software" /COOP79/.
Next are the conceptual software quality factors which represent
the attributes that it is desirable for software to have. At the
next lower level are the constituent software quality criteria

3-15

ak A

i s

ot < s S G e it e e A i L i el e st DA S A A R S I

Three additional classes ot libraries will be used as
repositories tor storing the System Design, Macroscopic Design,
and Microscopic Desiqn documentation.

As a means of documenting program execution errors, a minimal
software trouble report system will be used on the VAX. This
capability will be implemented using existing software to
document corrections and provide a historical record for future
analysis.

3.3.4 Integration and Testing Procedures and Standards

This section describes the definition and development of test
software and the testing objectives.

3.3.4.1 1Integration and Testing Overview o
Two levels of testing will be performed during software
development. These comprise module testing and system .
integration testing. The module and system integration testing i‘”1
is performed by the programmer responsible for each application. , .j
Test specifications will be provided for each level of testing
along with the respective designs. E
1
»
3.3.4.2 Module Testing Objectives]
- 4
The objective of the module testing is to exercise each module to 1 f
assure that all internral program errors have been detected and -‘ i
1
corrected prior to system integration testing. Detailed module |
testing objectives are identified in the MIL-STD-1679 (NAVY) SRR
/M16778/, Section 5.8.1. s
- » 4
J
1
1
’ . h
3-14 Tl
Ny
PR R G 't-' e e -~::'A o P PR S '-_-- ;- .- .L :L TR AU Y “.;L“ ai it i j

used, and addresses any other outstanding design or Ada
programming support environments elements which may influence the
implementation. Information gained from the code/debug/modify
phase which may have an influence on the designs is evaluated.

3.3.2.4 Progress Reviews

Informal progress reviews with the entire project team will be
conducted nominally every two weeks. These reviews are used to
exchange ideas, avoid redundant related efforts, and to generally
monitor progress and identify problems.

3.3.2,5 System Testing Reviews

During the Integration/Test Phase, a System Testing Review (STR)
will be conducted to monitor test/integration results. The
purpose is to identify any systematic errors in the designs,
implementations or Ada compiler so that corrective action can be
taken as early as possible.

3.3.3 Software Development Control

As a means of providing control over and visibility into the o
software development process and providing control over the Iif;
status and availability of the software, three classes of program »
libraries will be used. These are the Development Library,
Integration Library, and Release Library. The Development -
Library will contain all software which is undergoing coding, '
debugging, or module testing. Upon completion of module testing,
the module is moved to the Integration Library for integration.
When a cycle of integration has been completed and a portion of ’_f
the system is ready for use, that portion will be placed in the
Release Library. The individual programmers will be responsible
for making the transitions under the review of the project
manager. T

Lo
PN
. -
4 . A a4 4 a2 &

3-13

........
........
.................................
..

) W LA . e e e e e T A
S e e R A S T S I v R M I I I R R PSS P el
[PP/ S PR S PSP Ry i bl i PPN T ST W Y PRSP S ST T N ﬂl“

development, and to assure that the application requirements have
been met. Reviews provide a means of establishing milestones and
evaluating overall progress. Design walkthroughs will be used to
facilitate discussion of critical or unclear design elements and
of Ada language and Ada PDL issues.

3.3.2.1 Preliminary Design Reviews

Preliminary Design Reviews (PDR) are conducted following the
macroscopic designs and approximately two weeks after the
initiation of the microscopic design phase. The PDRs will be
designed to accomplish several objectives. They will represent a
milestone against which progress can be formally measured. They
will determine if application requirements have been met, if the
macroscopic designs are complete and consistent, and whether the
extracted designs are complete and consistent. During the PDRs
outstanding problems and design or implementation issues will be
identified and reviewed. The PDRs will provide an opportunity to
discuss insights gained from the microscopic design phase.

3.3.2.2 1Interim Design Reviews

Throughout the project several Interim Design Reviews (IDR) will
be held. These serve as formal milestone reviews and as a way of
obtaining lessons-learned information which may have a bearing on
the remainder of the project. These reviews provide a means for
formalized interchanges among management, development, and
evaluation personnel.

3.3.2.3 Critical Design Reviews

Following completion of the microscopic designs a Critical Design
Review (CDR) will be held. This review evaluates the
completeness, correctness and suitability of the microscopic
designs, provides a means to identify and resolve any open design
issues, evaluates the module and system test specifications to be

3-12

[
.............

@®!

s -

Al Sete (b A Sate St St deve e w2 - - > e T T R ¥ TV T T TTT YT 3T v e s v w

3.3.1.3 Microscopic Design Phase

The microscopic design phase consists of refining the macroscopic
designs to the microscopic design level. This includes supplying
lower level units, more detailed PDL, and converting the PDL of
the top-level units into more nearly completed Ada code.

3.3.1.4 Code/Debug/Modify Phase

The code/debug/modify phase consists of converting the
microscopic designs into Ada code, debugging the code and forming
integrated packages within each virtual package. The modify
portion is designed to have each programmer implement a small
portion of the other's design as a way of assessing software
maintainability issues.

3.3.1.5 Integrate/Test Phase

The integrate/test phase consists of integrating the software
asociated with the various virtual packages and conducting
performance testing on the resultant software.

3.3.1.6 Development/Performance Evaluation Phase

The development/performance evaluation phase consists of defining
criteria for evaluation and evaluating the development

methodology, the software architectures, the Ada language, the -
performance of the developed systems and assessing the types of '
errors encountered and their correlation with the architectures)
developed during the design process. S

3.3.2 Project Management
A part of the development approach is to conduct reviews

throughout the project at critical points. The objectives are to 1
discern the difficulties encountered during the design and R

3-11]

- - - - - " . - . - - .. -t = . . - - . . B - 0 o -
M ~ ~ U W A S S S A R T T L AU - - - - - . - .- “ o - L S S S -
AR TP T SOV SR, SO, Syt W S S M WP S S Y PP e WP DT SRR My Y SO S T D ST W SUNS T ST WP W S ia L% PSS

T ——

.

e~ e v~y

IS

-y

*T~€°€ 2anbtyg

.._ - . i . ' m
soseyd juswdorsaag aIeMIIOS
SI9VNIVI L INIISIL
WALNIA NOILVYOILNI
A3IvHIIING
NOILVIIFIQ0W
YoV -1 9N199n930/9N100D
vav N9IS30
advay (© | 21402SOUIIN

vaviad vov
SWYHOVIO NDISID DIINIINO 123780) ~—
1430N0D 39VNIVL 1VNLHIA

N9IS3a
Jid0IS0HIVN

SIANVNEY AD0T10GHIIW
39VsSn 104 vavy
JOVNINVY VOV

NOULYNIHLI0aN!
vay

3-18¢

afa'a® a

. sl
C_ et s ar,

2

(

—r—

rA,,x(‘m..c

s = e — e —

- T P SE M ke S) T T CHar S it §

3.2.4 Code/Debug Phase

The last phase in the stepwise refinement process will be to
convert the compilation units, both library and secondary, into
valid Ada code by supplying the necessary details.

3.3 SOFTWARE DEVELOPMENT AND PROJECT MANAGEMENT

This section describes the overall approach taken with respect to
the development of the software and the overall management of the
project.

3.3.1 Software Development Phases

The formal software development phases are jllustrated in Figure
3.3-1. Not shown is a Development/Performance Evaluation phase
which is unique to this project.

3.3.1.1 Ada Indoctrination Phase

The project is initiated with the Ada indoctrination phase. This
phase reviews the more novel features of the lanquage to gain
more complete understanding of the features and their use.

Issues relating to complex features and the use of Ada as a PDL
will be explored. Methodology issues and objectives will be
reviewed to assure that a proper focus is maintained with respect
to using Ada and that the methodology is Ada oriented to the
maximum extent possible.

3.3.1.2 Macroscopic Design Phase

The macroscopic design phase will consist of identifying the
virtual packages, converting them into the object oriented design
diagrams, converting them into the corresponding (refined and
extended) PDL, and compiling the Ada library units.

3-9

-T e e — s — . — e

compilation units and subunits, and their dependencies), the
definition of formal input/output parameters, and the definition
of inputs, outputs, and global data. Major decisions within a
module may be indicated as a means of delineating overall control
flow. To accomplish the macroscopic design, an attempt will be
made to use a proper subset of Ada constructs as a PDL, the
objective being to produce compilable modules. This allows an
early, increased understanding of Ada without considerable
detail, and orients the designs to the language features.

End products of this step will be the formal object oriented
design diagrams (OODD), virtually complete library units, which
make up the virtual packages, and the PDL designs for the visible
subprograms and tasks. As an adjunct, an extracted design
summary will be produced which provides compilation unit
summaries, call graphs, and other design summary information.

3.2.3 Detailed Design Phase

The detailed design phase consists of applying the next level of
detail to the previously completed compilation unit PDL designs

and completing the as-yet unspecified private (internal) portions
of package bodies.

This design phase is referred to as the microscopic design for
the remainder of this document. The microscopic design level of
detail will include the definition of the components of the
abstract data types, the refinement of all global or common data
objects (as opposed to strictly local), assignment of preset and
default object values, and the specification of all major control
decisions within each compilation unit. The objective will be to
produce compilable modules.

During this phase composite test specifications will be produced
which define the tests to be performed in debugging and
integrating the software.

3-8

....................
...................................

............

T——
T 7 mnE
P ey .

Table 3.4-4. Specific Performance Requirements

Bit/byte acces- and manipulation
Provide for insertion of assembly language code
Provide access to operating system functions,
primitives
) Provide access to and control of interrupts
I Provide access to real-time clocks and associated
timers
Provide macro definition and generation¥*
Provide generation of I/0 tables
Support software modularity
' Provide parallel processing contructs
Provide strong data typing
F Provide support structured programming concepts
. Provide data and control encapsulation*
' Provide for formal verification of source code*
»

* gpecifically required for trusted software
r
4
] Table 3.4~5. General Performance Requirements R
F Provide very high performance
- Provide capability to interface with
! and manipulate specialized hardware
3 Provide high transportability of source code
Provide sophisticated data structures
F Provide sophisticated control structures
1 Provide very high reliability
* 3.4.3.2 Trusted Software Application Requirements
S
3 It appears that no studies have been performed which explicitly
' identify a set of requirements that a language should possess for

implementing trusted software. Upon examination of the
application area, however, it is apparent that many desirable
features are similar or identical to communications applications.
Two other features are believed to be strongly related to the
characteristics inherent in trusted software. The first is data
and control encapsulation. With this ability it should be

3-22

possible to construct more secure data and control structures
which can be used effectively but without knowledge of the i}
details of the implementation and, therefore, without the ability
for unauthorized alteration or manipulation of the structures.
The second is formal verification (proofs of correctness) of the R
designs and source code. Although this evaluation of Ada will o
not include formal verification of the trusted software source
code, indications are that there is a strong correlation between
the style in which programs are written and the ability to
k~ formally verify those programs /SRII78/.
[

There is a correlation between the style in which programs are

written and the features provided by a language which encourages _

3 the writing of programs in a clear, intelligible, and verifiable -

style or at least proscribes certain undesirable styles, An

analysis of the trusted software and Ada features will be made

with respect to style and formal verification to determine if any .

ii _ administrative Ada language restrictions are required. Specific e
\ criteria to be used for evaluation are Maintainability,

- Testability, Correctness, Integrity, Reliability, Robustness,

' formal verifiability of the designs and code, and the ability to S

retain a usable Ada subset in the context of restrictions which i

may be required.

3.4.4 Ada Language Characteristics

The last component of overall software quality to be evaluated is
the Ada language and its required run-time support environment.
Individual features and combinations of features will be
evaluated given both the context of the two applications and the
interactions with the run-time support environment and the host
operating system.

3-23

.......................

.........................
..................................

3.5 DATA COLLECTION

This section identifies the sources and data to be collected

during the project including the criteria for data collection,
analysis and evaluation.

3.5.1 Criterja For Data Collection And Evaluation

The major sources of data and information which will be used to
conduct the evaluation are shown in Figure 3.5-1.

The primary objective is the evaluation of the Ada programming
language with regard to effectiveness in expressing the designs
and implementations and with regard to efficiency of execution.
To achieve this objective, several different types of data must
be collected and evaluated. Data will be collected regarding
which Ada features were used, whether they were used effectively,
and whether the resultant designs and implementations were
efficient with respect to execution characteristics.

Because of the expressive power of Ada, many different types of
software architectures can be formed for any given application.
Depending on the architectures selected for implementation, the
resulting software may have many different characteristics. Data
will be collected and evaluated regarding the specific software
architectures that have been formed to determine whether the
architectures are suitable for the application and whether they
have been effectively represented using Ada.

Since the methodology involving the macroscopic and microscopic
design levels was formed specifically for the project, it will be
evaluated to determine whether it provides suitable levels of
design refinement, whether the information required at each level
is necessary and sufficient, and whether the levels are "uniform"
with regard to providing a smooth transition from the
requirements to the implementation.

3-24

. e e e e T e T T T e T T e e e KPR
&.".".-. P N L SRS W AR, UCAL SVIILE VLS PR, Uolll S Wil Sl S VAR W o Sl S ST o Ry

A —p—

sjuauodwo) uoT3lEnIRAd 2IN3093TYOAY pue ABOTOpoOY3IanW

‘epy °T1-G°¢ =2anbtg

AD01000H1IW
'SINDIAIND
vav
NOILYAIVAI NOILYNTVAI
MLV O I SISKvNY
vav INLVYNYILY
NOILVATVAT
WIaoyd 1IVNOLLVY NONLYIIISSYTD NOILVIIISSVID
_ INIWJO1IAID IN1ao3 Houy3 TR
JUYMLIOS NDI1S30 'SHOHY3 'SHOHY3
A
SMIINYILNI SISATVNY
WIWWVHI04d JUN1INULS 9NIISIL NOHLVIIdW0)
R R _))
SN9IS30
'124N0S
:quvN9 1VIIV
d32av/d1/431
'@
P
—_ - Wl = Y 5

[aln:]: Lr1bet:d

3-25

v g N ————p——y YTy T E W Y T XU ® S — e - e = v = = -

It is envisioned that there will be a significant interplay
between the software architecture, the features of the Ada
language, and the software methodology components. A consequence
is that various types of errors may be encountered throughout the
development process. Overly complex debugging and system
integration requirements could result in various types of errors
remaining hidden after integration and testing. It is also '
possible that secuential processing concepts may be applied to

Ada tasks with anomalous results produced. To address the

interplay among these components, various type of error data will

be collected and evaluated. '

Although the above areas are of primary concern, incidental
evaluation will also be made with respect to: 1) Ada education,
both methodology and the language, 2) effects of an Ada '
Programming Support Environment and a suitable set of Ada-
oriented software tools on the software development process, and
3) the characteristics of the respective Kernel Ada Programming

Support Environments and their effect on run-time performance and ° Y
characteristics of the two applications. 4
3.5.2 Software Architecture Data B

v e

The primary objective of the software structure analysis is to

determine which Ada features were used and to assess the degree

of success or difficulty encountered in their use. The secondary
objective is to assess in a qualitative and, if possible, '
quantitative manner the effectiveness and suitability of the

features used. To accomplish the first objective, the software

will be examined at two levels. The first level will address the

overall organization of the software into modules comprising '
packages, subprograms, tasks and compilation units and subunits,

This organization will be compared with the totality of Ada

features and with the software quality factors in order to -
determine how "good" or suitable the structure is. The second '
level will address the internal organization of the data

structures and bodies of the various r»dules to assess the

4 —a atara s _a_a-A

3-26)

S .>A..1_-\-4-"L-A‘;‘L. RS NN DR S WL W, SO SL YN WS O P |
------ S S S iy

‘.— interconnectivity of the virtual package architecture. The

breadth of the Ada features used and to determine the overall
composition of the features used. Of particular concern will be
whether full advantage was taken of the Ada features or whether a
subset of Ada features was used in the style of some other
language.

To accomplish the second objective, the Ada features used within
each module will be analyzed. 1In cases where a particular Ada
feature, construct, or set of constructs appears to be suboptimal
regarding efficient representation in Ada, or especially
difficult to implement or understand, a detailed review of the
constructs will be made with a view toward finding alternate,
improved representations.

3.5.2.1 Software System Architecture

The software system architecture will be evaluated at two
sublevels. The first deals with the number, type and

virtual packages will be evaluated with regard to the
Flexibility, Interoperability, Maintainability, Reusability and
Transportability software quality factors.

The same software quality factors will be applied to the intra-
virtual package architecture. They will be applied to the
architecture of the library units which constitute each virtual
package. The emphasis will be on assessing the architecture of
the software in terms of high-level Ada entities such as library
units and the visible components of library units through which
control and data flow interactions will be effected.

3.5.2.2 Compilation Unit Architecture

The objective of the compilation unit architecture evaluation is
to determine how the visible and non-visible components of each

compilation unit are organized from logical and lexical aspects.
The emphasis will be on the number, type and interaction of

3-27

—p - P aa e 20l af Jesh St ieath S i

visible, private, and hidden components and external
dependencies. Software quality factors from the development and
performance subcategories will be derived from the respective ’
software quality criteria.

3.5.2.3 Compilation Unit Statement Characteristics

The Ada Statement Analyzer will be used to determine the

characteristics in terms of Ada source code statement types used.

This statement summary will be used as an indication of overall

module complexity. Compilation units which are deemed unusually ’

complex or to have other idiosyncrasies will be selected for
further review.

Once appropriate compilation units have been identified, the code ’
will be reviewed to determine if problems exist. The software

quality factors will be applied for both the software development

and software performance categories. The deficiencies, if any, -
will then be categorized according to the relevant software . »
quality criteria. Selected Compilation Units (CU) will be ;,---
evaluated to determine the effect of the established programming ff;f;
guidelines on the architecture and the components of the CU. -l

.i

3.5.2.4 Application-Dependent Architecture Characteristics

The objective of the software architecture data collection is to
determine the effectiveness of the system software architecture »
with respect to external, conceptual models or objectives which

were used as primary drivers in shaping the software system o
architecture designs. IR

»)
In the communications protocols application the ISO Open Systems
Interconnection Reference Model served as the primary
architectural model. An adjunct to the functional sublayers is
the concept of systems management functions which provide

services common to more than one layer. The objectives of data
collection and evaluation in this area will be to determine

3-28 ’

...
...
...................

b

T —" T e e Siaciiie i
pa——" QI B s e Gess SUE Jhee - UERMC S e CRRaCE - e Sl . . . AR e

possible alternative software system architectures and their
suitability and to examine how effectively the use of Ada
entities was able to capture the system architecture.

Two aspects of the ACCAT GUARD software architecture will be
examined. The first deals with the ability to capture the essence
of the SPECIAL specifications for the Upgrade Trusted Process and
the Downgrade Trusted Process in an Ada implementation. The
second deals with the ability to separate trusted and non-trusted
software in a manner that prohibits or minimizes data flow from
the trusted to the nontrusted components. Special attention will
be given to separating KSOS emulation idiosyncrasies from other
trusted software problems. Since the ACCAT GUARD application was
implemented as a single process in a multitasking environment, an
evaluation will be made of the use of Ada tasks for interprocess
communication as opposed to UNIX-like ports.

3.5.3 Software Error Data

The overall approach for using software architecture data and
software error information and correlating these with the Ada
features used is shown in Figure 3.5-2.

The error statistics to be collected comprise two groups:
compilation~-related errors and execution-related errors. The
objectives are: (1) to determine if there are any particular Ada
constructs which seem to be systematically difficult to use; (2)
to determine which type(s) of errors, if any, remain hidden
following a successful compilation and must be detected during
execution; (3) to relate errors to module complexity; and (4) to
help in the identification of guidelines and alternatives which

will either diminish or remove the most severe problem-causing
areas.,

3-29

................

SW3180Hd
ALITVND
JHvml40s

sTsATeuy I0xxd/s92in3ionijis sIlemljos

L R e J0e b d
P

ER—
1

Y

LRAe § A Asi et AL
S . L .
F)
L3

Z-G€ 3Inbtyg

NOILNDIX3

INILSIL

NOILVTIdWOD

A

|

SISATUNY

NOILYIIISSY 1D
B HOHY3
SISATYNV
‘NOILY13HU0D
(] youy3
. NOILVIIFISSY 1D
) HouY3
SIHLIN SIAILYNHILY
- ‘SYayy
JHYMLA0S W378044d
JUNLIILIHIUY
- 311n00W
VIH3ILIY)
aNy
SH019V4
ALITVAD
JYYML40S
- JUNLIILINIYY
W3IISAS

3JUN1IILINIYY
JHVMLI0S

JHvmliios

ayvno
ivIo¥

433av/d1/dI1

3-30

PRG-I RY T |

et g ety

LG Ul S WG Y W | e "

PR

v

L gte e e g

A L S R

I A
PR Sy

Ty T (N mhen Shos Begs e e s S She v M e e e bant ol B S e A P

Errors encountered for compilation unit or subunit compilation
will be identified by type and frequency of occurrence.
Execution-related errors detected via unanticipated exceptions,
elaboration errors, and erroneous (inaccurate, incomplete,
inconsistent) computational results will be grouped by type and
frequency of occurrence,

3.5.3.1 Ada Language Errors

Ada language-related errors will be divided into five categories,
which are conceptual, syntactic, semantic, execution, and
integration errors.

Conceptual errors will deal with Ada language-related problems in
which the basic concept of the Ada entity or the purpose of the
entity was fundamentally misunderstood and misapplied. Syntactic
errors will deal with problems which are encountered in forming
the various Ada constructs. Semantic errors will deal with
problems which are encountered either during compilation or
during execution. The compilation errors will reflect
inconsistent use of Ada-defined or user-defined entities which
are detected at compile time. Execution-related semantic errors
will reflect programs which execute correctly, but produce an :
unintended result. This type of problem can result, for example, ;:-'
from variable overloading and inappropriate scope declaration or

variable identifier qualification. Execution errors consist of -]
those errors which are encountered during either elaboration or
execution of progdgram units.

1
i

b
u

Y VEI I S S G G Y

In some instances, errors may not become evident until a
significant number of components have been integrated and
executed together. This is particularly true of software
architectures involving tasking and the dynamic instantiation of
generic units. During the system integration process, an "error"
log will be maintained by each programmer which will indicate the
integration errors encountered and the characteristics of each.

PR
PR WP N W U WY S R

r
ala

ol . A

3-31

...................
..............

3.5.3.2 Design Errors

Within the Ada programming language a class of errors which can
result in an "erroneous program" are identified. These errors
result from taking advantage of known facts, such as operating
system or run~time dependencies, which lie outside the
specification of the Ada language. As a result, the program may
work properly in one environment but not in another, or the
program may no longer work after an operating system change has
been implemented.

Another class of design errors which result in erroneous programs
are those implementations which covertly or inadvertently rely on
implementation choices made by the compiler or run-time software
implementor.

3.5.4 Programmer Interview Data

Interviews will be conducted with the communications protocol and
trusted software programmers following the PDR and CDR. The
objective will be to elicit qualitative information regarding
Ada. Information will be obtained by having one programmer
implement a small portion of the other's design as a means of
assessing maintainability issues. An attempt will be made to
understand the rationale applied in the design and development
phase for those approaches which worked, as well as those
approaches which had problems. An additional result of this
understanding should be the ability to formulate new and improved
approaches to design and implementation using Ada.

All project personnel have been directed to maintain a notebook
consisting of perceptions, problems, solutions, insights and
other useful information which they acquire as the project
progresses.

3-32

_.\: -

PR Lt e e . T T T P
PR PO TR S SR PP S ST S S YOO G Wit W SRl SR St S e

— . N P e s e o e o s aen BB i Mt S S Iaion L s M el e . P

3.5.4.1 Ada Language

Each programmer will be asked to identify those Ada features
which contributed most significantly to the respective software
development effort and to supply the rationale as to why those
features were significant.

Each programmer will be asked to identify deficiencies or

weaknesses within the Ada language and to supply the rationale as
to what the specific difficulties were. These deficiencies will
be divided into those which exist within the language itself and

those which are caused by the omission of a specific feature from
the language. Those deficiencies within the language will be
divided into two groups which address either individual
syntactical/semantical forms or problems which exist as a result 1
of combining several syntactical forms. : i

Those Ada features which are unused will be identified and the
reasons for their non-use will be documented.

Certain complex Ada features may be misinterpreted. 1In those
instances, features will be identified and the reason for the T
misinterpretation will be sought. T

A preliminary set of programming guidelines was formed to avoid
certain obvious problems in the use of the Ada language, such as
excessive nesting of programs or the use of an inordinate number
of formal arguments in a single subprogram or task entry call.
These guidelines will be reviewed for relevance according to the K
following criteria: l-used, effective; 2-used, ineffective; 3-not
needed, not used; 4-needed, not used; S5-new addition; 6-change to
existing guideline, o

3.5.4.2 Methodology]

The methodology which is used will be evaluated in these
respective areas: the macroscopic design phase, the microscopic

3-33

st A
) ' e e e
(TR S S

. - L IS P L I IR SR T D T T S) et .
RS SPNL AP PN LU L SN S SO LY LRSI I, SR R e TP WA DU SPAT W i UHhP DI TP P Dl TV Sy Tt U U, U T T . - |

design phase, the code/debug phase, the system integration phase,
the relevance of the original design guidelines, and the
relevance of software tools for assisting the methodology.

3.5.4.2.1 Macroscopic Design Phase

The macroscopic design phase results in the object oriented
design diagrams (OODDs) and the corresponding PDL. Data
collection will focus on determining whether the OODD diagrams
provide a reasonable initial step for producing a design, how the
diagrams should be correlated/coordinated with the higher level
preceding requirements, when the 0OODD should be initiated, what
level of detail should be required, and what problems were
encountered when using the 0OODDs. Recommended changes or
alternative approaches will be solicited.

Data will be collected on the utility of the virtual package
concept with respect to the following criteria: 1) ability to
establish early Ada orientation, 2) effectiveness in avoiding
inordinate detail at the software architecture level, 3) the
ability to provide for enhanced design visibility and
understanding, 4) the ability to provide for continuity across
software development phases, 5) the ability to provide a basis
for software configuration management, 6) the ability to assist
in the effective scheduling of software development
implementation orders, 7) the ability to address and emphasize

software quality factors by indicating the key elements of the g 4
designs, and 8) the ability to provide for early incorporation of
conceptual models which should influence or guide the overall]

software architecture design.

The PDL will be evaluated to determine: 1) its correspondence o
with the 00ODD, 2) if the appropriate level of refinements have

been made, 3) if the PDL is uniform in detail across all units,

and 4) what difficulties or problems arise in making the ®
transition from the OODD to the PDL. The PDL itself will be

3-34 °

examined to determine whether it provides the minimum Ada
criteria given in Table 3.5-1.

Table 3.5-1. Macroscopic Ada PDL Criteria

Virtual Package Definitions
Compilation Unit Definition
Packages Definition
Subprograms Definition

Task Definition

Formal Parameter Definition
Abstract Data Type Definition
Exception Definition

Major Logic Definition

Another factor which will be evaluated is whether the combination -
of OODD and PDL are at the suitable levels of abstraction for

communicating the information required of a Preliminary Design
Review or similar type of review.

As for the macroscopic designs, the number, quality, placement, -
suitability and uniformity of PDL statements and text contained
in square brackets ([]) will be carefully evaluated since this

information, along with regular Ada comments constitutes the X
basis for forming a well-structured design. :

Information regarding weaknesses in the use of the 0OODD and }Eﬁ
corresponding PDL will also be sought and any changes or)
recommendations will be incorporated. Careful consideration will 1
be given to potential problems or deficiencies which might result
when the approach is applied to software development projects ;
involving larger numbers of personnel.

'
PRSIy

3.5.4.2.2 Microscopic Design Phase

- aa a

The microscopic PDL level will be assessed for uniformity of
design detail across all modules. Several other factors which L
are unique to this level of design will also be considered.

These include whether sufficient detail and organization existed

3-35

generic entities are identified early. They must bLe completed
early in order not to impact other dependent units. The problem
of completeness and uniformity of the designs again occurs with
respect to proceeding to the code/debug phase. This is very
critical here since the only remaining opportunity to rectify
cmissions is in the code/debug phase.

An issue with the microscopic designs is, again, how to determine
completeness. A particular problem with the macro designs of the
communications protocols software prior to concluding the
microscopic designs is that many of the calls to known entities
within the respective bodies were not indicated. Although this
problem was easily corrected, the apparent cause appeared to be
one of oversight and of not having a specific requirement to do
so in the methodology.

4.1.4 Code/Debug Phase

No major problems were found with the procedure of converting the
microscopic designs into Ada code. 1In the communications
protocol software, considerably more design was required to
complete the coding. One consequence of this was that the
code/debug took longer than anticipated. Another significant
problem occurred related to the Ada compiler. The
implementations had to deviate from some designs because certain
Ada features were not implemented and compiler-related errors
caused considerable numbers of workarounds to be attempted to
obtain working code. Work on the trusted software application
was suspended for approximately six months while awaiting
delivery of a validated compiler. Several compiler problems were
traced to heap overflow and heap management problems, resulting
in tasking that frequently did not work properly. In part, these
problems were solved by relocating code from the bodies of tasks
to their containing package bodies and forming subprograms of the
relocated code to reduce the size of tasks.

T W K —w — T =& T Ty o= o= -

suggested. This resulted in a considerable number of problems }
which could easily have been detected during the macro phase

instead of the later micro and code phases. As a result, the

design guidelines have been changed making compilation of at

least the package specifications mandatory for completion of each
of the design phases.

4.1.3 Microscopic Design Phase

At the beginning of the microscopic design phase the wvirtual
package structure, the compilation unit structure, and the
corresponding PDL of the macroscopic design phase should be well
defined and ready for further refinement. A significant step
which can contribute to assuring this is to perform some portions
of the microscopic design prior to the formal conclusion of the
macroscopic design phase. This has the benefit of uncovering 1
lower level details which may influence the overall compilation S
unit architecture or the allocation of capabilities across the
various compilation units.

Puring this phase the secondary program units were more SEREES
completely defined by supplying the necessary bodies., Tertiary 1
and lower level program units were also defined. PDL statements

which were qualitatively similar to the macroscopic PDL _:-3

]
statements were supplied. In the case of primary routines, the . ;
previous PDL statements were expanded into more detailed PDL)

statements and into direct Ada code in some instances. The
declaration of local data types, objects and default values was
completed. By the completion of the microscopic design phase, the

primary program elements were essentially completed except for
minor processing details.

It was recognized that generic declarations needed to have their
bodies esentially completed since they would be some of the first
entities used to produce other nongeneric entities. An important
factor here, and in the overall methodology, is to assure that

.............................

4.1.2.3 Macroscopic PDL

Since it is neither possible nor desirable to communicate all the
design information such as completed types, formal parameters,
guard conditions and similar entities via graphical
representations, the macroscopic design phase was augmented with
the use of Ada as a PDL. The objective was to provide a means of
refining or extending the OODDs by incorporating additional
detail that advance the designs one more step into Ada code. The
refinements or extensions to be included were: completion of
exported data types and objects, default value assignments,
declaration of all formal parameters for subprograms, task
entries and generic declarations and instantiations, declaration
of exceptions, declaration of blocks, declaration of nested
secondary subprograms or tasks, specification of major logic
decisions in the visible components of library units, at the very
least those exported from the virtual package, and the use of PDL
comments (text included in square brackets) which would
ultimately be converted into bona fide Ada code.

In general this approach worked very well, but there were some
notable problems. Names of called subprograms or task entries
were either omitted or not clearly indicated even though the
entities were defined. The incorporation of exceptions was
omitted throughout the macroscopic designs even though there were
numerous instances where they could occur and should be managed.
The most difficult problem was knowing when the designs were
completed, that is, when all the necessary information had been
supplied. This is significant since providing too little detail
will result in requiring top-level design to be performed at the
microscopic level, while providing too much detail will generally
result in uneven levels of detail because of schedule
considerations.

During the early portions of the macroscopic design phase in both
applications, the package specifications were not compiled as was

4-5

on Ada-based graphical design representations become known to the
project. The first was the Object Oriented Design approach of
/BO0OC83/ and the other, in preliminary form, was presented at the
February 1983 San Diego AdaTEC meeting and is now documented in
/BUHR84/. A synthesis of these approaches was made with
refinements and extensions to provide representations that would
satisfy the project needs.

The manual creation, modification and control of these diagrams
during the initial portion of the project was barely tractable.
During the design process, much iteration and refinement occurs
until all compilation units are defined and the visible
components are defined and properly distributed. This process is
even more complicated when tasking interactions are required to

achieve resource sharing/protection and inter-protocol-layer
communication.

A second problem was determining which Ada entities should be
represented since different entities communicated different
levels of information. For example, if only task specifications
were represented, it would not be possible to indicate that
entries were guarded, if that were the case, since guard
conditions can be represented only in task bodies. Similar X
considerations prevail for timed/conditional entry calls,
selective waits, discriminating between subprograms which are]
functions and those which are procedures, and distinguishing 9
between units which are generic declarations and those which are -
generic instantiations. This has been resolved by permitting the
maximum level of architectural information to be communicated.

This is consistent with providing the necessary information »

required to conduct a preliminary design review and indicate what N

the key software architecture considerations and factors are and '

thus provide the necessary design visibility at an early stage of 'i

software design or possibly in precursor form prior to concluding e ’ o

the requirements phase. . .i
’

e T T T o

these problems have been resolved and the virtual package concept -
has been refineéd and is an integral part of the methodology.

During development, it was recognized that virtual packages could
be related directly to Computer Software Components (CSCs) of the
DOD-STD-SDS. The formation of virtual packages during the
requirements phase would provide an excellent opportunity for
iteration between the requirements and design phases. This
feature is critical since it frequently is the case that
requirements can be optimally organized and more clearly stated)
if some preliminary design is performed prior to requirements]
definition. A note of caution here is that care must be taken to

assure that Ada language characteristics do not unduly influence S
requirements. In cases where CSCs were large, or design criteria
such as reusability or transportability were factors, it was also
the case that requirements could be preserved and that nested
virtual packages could be used.

PR

An additional benefit of virtual packages is that a designer can
organize Ada packages into those visible and those hidden from
other system components (virtual packages). The virtual package

.o
has many of the characteristics of an Ada package except that it 1
is not necessarily a compilable entity. This has the side benefit]
that software architectures other than nested architectures can 'g'f
be cleanly represented while achieving design visibility and :

modularization. 1

4.1.2.2 Object Oriented Design Diagrams

Since virtual packages partition the system into top-level "Ada"
units, the next step is to begin stepwise refinement. It was

determined that only information which could be conveyed via Ada
library units should be represented within each virtual package {
as a way of indicating the architecture of that virtual package, _
and that this information should be conveyed graphically to o
minimize premature attention to details. Two significant works

4-3

Liadd s aoeh i RS
T T e e
e T .

abstraction were selected. These are the macroscopic and
microscopic design phases which were followed by the code/debug
phase and the system integration phase. In completing the design
philosophy, one additional problem was recognized: at the early
stages of design, the package concept represented too fine a
level of detail and the program library represented too coarse a
level of detail. Although the Ada lanquage does permit the use
of sublibraries or their equivalent, it does not require
sublibraries. To deal with this granularity problem, the virtual
package concept was formed and implemented.

4.1.2 Macroscopic Design Phage

This section presents the analysis of the use and effectiveness
of the elements of the macroscopic design methodology.

4.1.2.1 Virtual Package Concept

The virtual package is designed to show the first level of "Ada"
design in progressing from the requirements definition to design
and to improve continuity across the requirements-design
boundary. The concept emphasizes the top-level architectural

components in terms of Ada library units and avoids premature
detail.

In both applications, the virtual package concept was used as the
point of departure for producing the design from the very high
level requirements contained in the original proposal and the
specifications supplied. 1In using the virtual package approach,
several additional considerations had to be addressed. Early
versions were unclear as to marking imported and exported
components, the level of intermodule interconnection which should
be achieved, how best to annotate the diagrams, whether virtual
packages containing a single Ada package were acceptable, how to
deal wit: generic units, and nesting of virtual packages. All

NSPR-

w.t e, .

NPT W -

SECTION 4
ANALYSIS

4.1 SOFTWARE DEVELOPMENT METHODOLOGY ANALYSIS

This section presents the analysis of the design methodology
which was used for producing the designs initially and for

revising the designs during the transition from SIP/ADCCP to
TCP/IP/ADCCP.

4.1.1 Qverview

An overall goal of this project was to develop an Ada-based
design methodology for the types of applications under
consideration. 1In analyzing this goal, several objectives were

established which are identified in Table 4.1-1.

Table 4.1-1 Software Design Methodology Objectives

Provide for early Ada orientation of design

Avoid premature Ada details

Provide for early software architecture design visibilityl
Provide for detailed software design visibility

Provide for design continuity across development phases
Provide basis for configuration management

Use Ada features to support software engineering
principles

Incorporate existing models and architectural prirciples

0000000

(o]

To use Ada most effectively, the methodology should be Ada-based
with Ada selected for use as the PDL. To achieve the early Ada
orientation and to minimize premature involvement in Ada details,
the graphical representations of the object-oriented design
methodology of /BOOCH83/ were selected to precede the use of Ada.
Since software design proceeds best via stepwise refinement and _,J
can frequently be organized around the overall architecture and ;;3
]

the lower level detailed designs, two levels of design

3.5.5.3 Programming Support Environment Issues

Because of the underlying complexity of Ada and the fact that the
distinction between operating system functions and run-time
support functions has been made less precise, it is likely that
various programming support environment or run-time support
characteristics, which are beyond the direct control of the
programmer, will impinge on the designs and consequently on the

performance. The objective here is to collect and note such
relevant data.

3-42 T

.................

An additional set of criteria used for evaluation of the trusted
software are the Class Al - Verified Design Criteria for Trusted

Software of /USDO83)/. Primary elements of evaluation in this
area are identified in Table 3.5-3.

3.5.5.1.3 General Performance Considerations
Several criteria affect the Correctness, Efficiency II,
Integrity, Reliability and Robustness software quality factors

which are common to both applications. These criteria are
identified in Table 3.5-1.

Table 3.5-3, Class Al - Verified Design Criteria

Object Reuse (4.1.1.2)

System Architecture (4.1.3.1.1)

Covert Channels (4.1.3.1.3)

Security Testing (4.1.3.2.1)

Design Specification & Verification
(4.1.3.2.2)

Design Documentation (4.1.4.4)

L4

3.5.5.2 Ada Language Issues RIS

The purpose will be to review the existing implementation and]
determine if alternative implementations could have been used :,]
which conceivably would have better performance characteristics
with respect to any of the software quality factors. To the
extent that such alternatives can be identified and project time
permits, alternative implementations may be attempted to
determine if performance can actually be improved.

PP
) .
. it b ks

3-41 T

..
L T e T T P e T T B P S S S N T
......................................

Table 3.5-2. Software Performance Criteria

SOFTWARE TESTS

TCP/1P/ADCCP ACCAT GUARD
FUNCTIONALITY TESTING: FUNCTIONALITY TESTING:
TCP HIGH-LOW MAIL
MISSING SEGMENT(S) LOW-HIGH MAIL
DUPLICATE SEGMENT(S) HIGH-LOW. QUERY
SEGMENT CHECKSUM ERRORS LOW-HIGH RESPONSE

LOW-HIGH QUERY

SECURITY/PRECEDENCE VIOLATIONS HIGH-LOW RESPONSE

IP DOWNGRADE REJECTION
DATAGRAM CHECKSUM HIGH/LOW BUFFER WATERMARKS
DESTINATION-UNREACHABLE GUARD TERMINATION
TIME-TO-LIVE T
INVALID-SUBNET-PARAMETERS

ADCCP

OUT-0F-CONTEXT COMMANDS
OUT-OF-CONTEXT RESPONSES
TIMEOUTS

INVALID FRAME ERRORS

CRC ERRORS

LINE CONTROL MODULE (LCM)
TIME-QUTS (LINE DROP)
DATA ERRORS (BIT DROP)

ADA-SPECIFIC EFFICIENCY 11 CRITERIA

PRAGMAS: CONTROLLED, INLINE, OPTIMIZE, PRIORITY, SHARED, SUPPRESS
TYPES/OBJECTS: DYNAMICALLY VS. STATICALLY CREATED OBJECTS
SUBPROGRAMS: EFFECTS OF EXTENSIVE ELABORATION

TASKS: REGULARI Y, ACCURACY OF EVENT TIMING, INTERRUPT PROCESSING
TASK ACCESS ALTERNATIVES

EXCEPTIONS: HANDLING, PROPAGATION, TASKING INTERACTIONS
GENERICS: EFFECTS OF DYNAMIC INSTANTIATIONS
IMPLEMENTATION-DEPENDENT FEATURES: UNCHECKED PROGRAMMING

3-40

................................

ey
L] .
r -

—

L

@t

2ala ah _ma s 2

s
PRI

p— - Slut ana au.. 4 " ———— - S
P SRR A it e g ara suw man aes o T — T BRI S e i e PR e -~

3.5.5 Software Performance Data

Software performance data will be collected from the respective
application requirements and characteristics, Ada language
issues, and programming support environment issues.

3.5.5.1 Application Architecture
Application-dependent requirements will be identified, and the

performance of the software will be evaluated with respect to
those criteria.

3.5.5.1.1 Communications Protocols

The communications protocol performance tests relating to
protocol error conditions of Table 3.5-2 will be generated and
used to evaluate the Efficiency-II criteria. Of specific concern
is whether the completed program contains errors relating to g
) performance and, if so, the source of these errors. S

PR ST oy
PRSP PR

3.5.5.1.2 Trusted Software

Because of the emphasis on correctness in trusted software, the j T
trusted software application will be evaluated very carefully '
with respect to Maintainability, Testability, Correctness,
Integrity, Reliability and Robustness. Within these software
quality factors, specific attention will be given to the spurious .
occurrence of exceptions, their handling, and their impact on the f.w
overall software. These conditions will be tested by generating &
the maximum number of messages possible and verifying that the
first, last or requeued messages do not become lost or
erroneously transferred and deregistered. The types of R
operations which will be used for evaluating the overall .

performance of the trusted software are presented in Table 3.5-2.

P .
Vo

s .

PR RTRY)

LT
t rastala’ala

3-39

...................................

3.5.4.3.1 Communications Protocols

The original basis for the design was the top-level network

architectural design and the low-level protocol specifications

for SIP and ADCCP. A set of "requirements" was formed which -
enabled the relevant components of the architecture to be used to -
produce a mini-network. This is substantially different from the

one described for the trusted software application.

A transition to the TCP/IP protocols and a revision of the ADCCP 3
protocol was made prior to the completion of the macroscopic and
microscopic designs for the SIP/ADCCP protocols. This shift in
requirements prior to the completion of the original designs
presented an opportunity to assess the methodology with respect -4
to changing requirements and design flexibility. Specific)
factors of the methodology to be evaluated are the ability to use
a partially completed design as a reference for incorporating a
new set of requirements and to isolate portions of the design

E regquiring modification.

A ks

- 3.5.4.3.2 Trusted Software

O
#ﬂ Both requirements and design documentation (/WOOD781, /LOGI79B/, »_1
. /BALD79/) were in existence for the entire ACCAT GUARD .
application. Also available was a preliminary draft of the
Upgrade and Downgrade Trusted Processes /LOGI79A/ and the adjunct
{0 software that was used as a basis for the trusted software 1
{ design. The transition to Ada was complicated by the fact that :
q the trusted processes were written in SPECIAL and that the basic o
® design and requirements were couched in UNIX terms which required o
Ll translation to Ada. o

3-38

............
.........................
.............

—— T

3.5.4.2.5 Design Guidelines

A preliminary set of design guidelines was formed to assure that
a certain minimum set of information was provided at each level
of design. These guidelines will be reviewed for relevance
according to the following criteria: l-used, effective; 2-used,
ineffective; 3-not needed, not used; 4-needed, not used; 5-new
addition; 6-change to existing guideline.

3.5.4.2.6 Software Tools

During this project no software tools were available, other than
text editors and two Ada compilers, until just prior to the
completion of the Draft Detail Designs for the TCP/IP
implementations. At that time SKETCHER, an on-line, interactive
graphics support tool, became available and was used to produce
the object-oriented design diagrams. Since software tools can
contribute significantly to making a software development
methodology effective and efficient, a list of desired tools and
their functionality will be compiled.

3.5.4.3 Project/Application Evaluation:
Alternatives/Retrospectives

The two application areas were implemented from substantially
different starting points and with different regquirements. To
assess the impact of individual characteristics on the software
development methodologies, "free form" information will be
collected. The objective here is to evaluate the effects of

different baseline information on the design methodology and the
use of Ada.

3-37

TTTE v '."]

e e
v
e d b

s as ath

P
) . @

-y —r—T—y
A e W MR W TR T N R .

at the macroscopic level in order to proceed directly with the
microscopic design or whether substantial changes had to be made
to the macroscopic design before proceeding and, if so, what the
causes were. Other design related problems will be documented.
Since this level of design requires the fundamental completion of
the macroscopic designs in greater detail as given in the design
guidelines, the level of completion will be evaluated and the
suitability of the microscopic design, including the secondary
and tertiary modules, will be evaluated. The number, quality,
placement, suitability and uniformity of PDL statements and text
contained in square brackets ([]) will be carefully evaluated
since this information, along with reqular Ada comments,
constitutes the basis for forming a well-structured design.

3.5.4.2.3 Code/Debug Phase

Two key factors to be evaluated are the degree of design changes,
extensions or variations that had to be made, and the underlying ST
reasons. These are significant in that they potentially indicate

a deficiency in the design with respect to level of detail

provided or to the soundness of the design. In the latter case,

problems may be an indication that the methodology may need to be o
revised to require more or different detail earlier in the

software lirfecycle.

3.5.4.2.4 System Integration Phase

The system integration phase will be somewhat different in nature
than the classical notion of system integration. Segments of
code will have been "integrated"™ through the use of context
clauses during the macroscopic and microscopic design phases and
the code/debug phases. Traditional problems will have already
been addressed. Attention will be given to specific design or
performance issues which arise during system integration to

determine how they are related to the design methodology and what
changes need to be made.

3-36

..........

S Rad Man) o

Y

4,1.5 System Integration Phase

This phase has different characteristics from normal system
integration due to the separate compilation capabilities of Ada.
It is possible to achieve incremental system integration, at
least at the library unit interface level, if library units are
made "compilable" in the macroscopic and microscopic design
phases. The benefits are that typical interface
incompatibilities are eliminated early in the development cycle.
As a result, emphasis can be placed on more difficult integration
issues of the semantics of control and data flow sequences with
regard to the visible components of library units.

In large systems which may contain hundreds of packages, the use
of the virtual package concept also can help to identify which
components need to be available to higher lev=2l units in the
system. The virtual package concept also aids in formulating
top~-level schedules early in the design process, reduces schedule

difficulties, and assists in producing effective integration
schedules.

One software tool which could assist in the system integration
phase is an executable PDL. By being able to explore alternative
designs and achieve top-level integration in an incremental
manner, many design problems could be identified and resolved as
the design evolves. The need for early identification and
resolution of design problems is especially important in large

systems which depend on a multitasking/multiprocessing
environment.

4.1.6 Design Guidelines

A small set of design guidelines was formed at the outset of the
project. The primary purpose was to assure that some minimal
.evel of design information, consistent with Ada syntax and
semantics, was achieved. Although the guidelines generally

4-8

r_- T PT——— s e T ———r— V—r————— T ——————r—Y

proved effective when they were used, they are viewed as being
K] not very comprehensive. The imposition of design quidelines may
have other purposes, such as proscribing certain Ada features,
depending on the application, to assure transportability or

reusability. The result of the guideline evaluation is given in
b Appendix A.

R i S I A

Aal

Ada is a very robust language with the ability to achieve many
different implementations for a given set of requirements. When
such factors as software architecture, execution efficiency,
transportability and maintainability are considered, it is
necessary to specify the degree of importance of the software 1
quality factors that each virtual package or package is to have. - }

PO NPT S S)

If this is not done, designs with extensive elaboration 1
requirements may result with a detrimental impact on execution
efficiency, especially if the elaborations are performed in
frequently called subprograms. Similar effects may result from -~~i

\e the use of recursively formulated algorithms and dynamic
instantiation of generics.

4.1.7 Programming Guidelines

A general principle in formulating the programming guidelines was

that the list should be small and simple. The objective of the

guidelines was to assure some level of uniformity across

compilation units and to eliminate some of the more obvious

problems. Appendix A contains the evaluation of the guidelines

and includes additions which have been made as a result of R
project experiences.

The guidelines were generally effective when used. However, the I
guidelines were not always used or interpreted correctly. They -
did not include transportability or reusability goals. This will :";j
generally require more effort, especially when tasking and
implementation features are considerations. Moreover, the
guidelines may well be a function of the application itself such

ncaaalaena 4 m

4
. .o
b . L1l

as determining how to partition the systems management functions
with regard to the individual layer functions in a communications
node application.

4.1.8 General Design Methodology Factors

This section presents the analysis of several factors which
either span design phases or which deal with design issues not
specific to a given phase.

4.1.8.1 PDL Characteristics

One topic of continued debate is whether a PDL should be directly
compilable or whether the PDL should be Ada-like and perhaps
"compilable®” via a PDL processor. The advantages of compilation
are that a separate PDL processor is not required and more detail
will generally be supplied. Specific disadvantages are that the
use of TBD-types and TBD-object statements may require
considerable effort to include or parameterize from a PDL-
standards package, and do not provide additional design
information that can be assessed. There is also the risk that
designers become the programmers and become enmeshed prematurely
in coding details which can obscure top-level architecture design
objectives. Where the objective is to indicate control flow,
based on requirements, through the use of if and case statements,
it may be more desirable to communicate initially what the
conditions are, via the use of embedded English language
statements, as opposed to the specific variables that are used to
form the expression of the condition.

Another factor of an Ada-based PDL is whether the PDL should be
executable and precisely what "executable" means. One benefit of
having executable PDL is that the semantics of the designs and
their dynamic aspects can be verified incrementally as the design
proceeds from one level to the next. In sequential types of
applicaticns, such as mathematical applications, this appears to

4-10

Lala s 3 m

-

\e

be less important. However, in applications involving tasks, an
executable PDL could provide considerable support in achieving
early "integration." Complex intertask interactions could be
evaluated, and errors corrected early in the design cycle. A
specific problem to be resolved is determining the features or
attributes of an executable PDL with respect to what specific
goals are to be achieved. A simple capability could provide a
trace of the control flow given statically determined conditions.
This could be expanded to permit conditions to be varied either
based on program computations or via some type of operator
interaction. Problems dealing with whether or how to use English

language statements, if permitted in the PDL, need to be
resolved.

A question regarding the development phases is determining when
the design of a particular phase has been completed. This can be
related to PDL expansion ratios in making the transition from one
phase to the next. A procedure can be declared with one Ada
statement. If it is assumed that a procedure is limited to
approximately 200 Ada statements, then some possible expansion
sequences to progress from the declaration through the
macro/micro design phases into the code might involve multipliers
of approximately 28, 3 and 3, or 26, 5 and 2 or 208, 2 and 5 or
19, 5 and 4. A way of determining when a given level of design

has been completed is to sketch the top level design and apply
the expansion ratios.

Table 4.1-2 indicates ratios for a limited sampling of modules
from both applications and provides composite results. In
comparing tae regularity of the calculated ratios, one possible
interpretation of the high ratio of 3.2 for the HGSD is that
perhaps the macro PDL for this module should have been larger

than it actually was and that perhaps this was detectable during
the design review process.

4-11

..........

e
PRI

e

PR
e
PRI IR AP Y

...........

- - . BN
- . - P o .
PN A e T e . PR s . . - S e P VA S G T T Sl S W |
- - ‘ . L ® :. - P ’ - A o . M PP T UL ThY Uil W S Wil Wholl WA Wous.
PR UL AP WAy SILA SR AR WA T WA -0 il W) A AA Py P Y S S

i Shan S s sos Site

Table 4.1-2.

PDL Expansion Ratios

——TT T T i

Module BUFFMGT HGSD LGSD AVERAGE
Macro 59 33 25

Ratio 1.3 3.2 1.4 2.3
Micro 76 106 60

Ratio 2.0 2.0 2.2 2.1
Code 150 215 133

Composite 2,5 6.5 5.3 4.8

To form a basis for the use of expansion ratios, additional work
is needed to determine their validity based on such factors as
type of computations,

effect of comments, effects of

architectures, etc. This could provide useful information that
would contribute to assuring that designs were completed at the
correct level of detail. Application of expansion ratios could
be used to determine the soundness of code estimates by providing
an estimate which could be compared with other efforts, an
available data base of information, or general assessments by

experienced individuals as to the magnitude of the effort.

Another issue is whether the PDL should be maintained with the
code or whether the PDL should be maintained separately from the
code. Each approach has several advantages and disadvantages.

In both applications, two levels of PDL were maintained
separately from the code except for the SPECIAL specifications of
the trusted process. Advantages of maintaining the PDL and code
separately are that source files are smaller, easier to manage,
and easier to read; and the question of whether to maintain PDL
and code in contiguous blocks or interleaved is avoided.
Disadvantages are that crosschecking of any of the entities
involves examining two or three separate sets of information.
There is also greater chance that PDL levels will not be
consistent as development progresses due to design changes. There
is the need to explicitly and separately update the documentation
after the code has been completed, assuming the PDL will be
required for future maintenance efforts.

..
..................

P
PRV S T WP 2P

w——w d - ——— e St e gt Safiiee S S ada e TR W T, TN L LT

4.1.8.2 DOD-STD-SDS Compatibility

The development of the methodology was not oriented toward a
specific set of documentation, due to the differences in
documentation standards across the DOD services and agencies. It
was also anticipated that new documentation standards would be
formed that were compatible with Ada as an implementation
language and with the use of Ada-based PDLs, since many of the
existing standards are generally not compatible.

Although this evolution is taking place, another development,

namely, the formation of the new (draft) DOS-STD-SDS. It appears o
the methodology will have to be combined with the final version ' 34
of DOD-STD-SDS. A small study effort was initiated to gain :
familiarity with DOD-STD-SDS and assess the compatibility of the]
methodology. The DOD-STD-SDS documentation requirements, as
recommended, are highly compatible with the development

-

methodology. Three different aspects of compatibility, including “ e
development phases, components hierarchy and design components, _;};
were briefly assessed. In the DOD-STD-SDS nomenclature, the S
Computer Software Configuration Item (CSCI) and the Computer . ;;
Software Component (CSC) are simply new names for the previous C
MIL-STD-49@ Computer Program Configuration Item (CPCI) and R

Computer Program Component (CPC). ;*fi

Although there is strong compatibility between the two, there are
several issues which need to be addressed either universally or
on an ad hoc basis when documentation tailoring occurs or
specific project requirements are established. One of these
involves how the AdaPDL will be used, what data and information o
are derived from the PDL, how the derived data and information U
are organized and presented, and where they are presented.
Through the use of AdaPDL, it is possible to specify such items
as protocol headers with respect to the component names and data
types and even the physical data layouts through object and type
declarations for records and representation specifications to fix

4-13

........................

record component locations. To reduce development and
documentation times and schedules, it should be permissible to
accept such Ada representation directly in lieu of other formats.
Tables of set/used information can be derived from the PDL and
readily organized in several different ways to enhance the
visibility of the information. Other issues which are presently
in conflict with Ada entail the use of overloading, single
entry/exit requirements, the restriction on the use of language
key words such as _TYPE as a suffix and the use of code which is
dynamically "self-modifying™ code; such as generics which are
dynamically instantiated and generic objects which take on values
determined by computational results. One final item is the
adaptation of documents, such as the Software Detailed Design
Document and Software Top-level Design Document, to be compatible
with Ada entities such as packages, context clauses, and
exceptions. These elements can be readily identified and easily

located by reviewing personnel who need not be familiar with the
PDL.

A final design issue entails the schedule proportions for the SRS
macro and micro design, code/debug and software integration A
phases. In the original schedule formulations, both applications i)
were treated identically, with proportions of 2 months, 4 months,
3.5 months and 3 months, respectively. The 50% allocation to
design is considerably higher than has been typical. The
approximation of 25% for integration is considerably lower than - 1
the commonly touted 50% figure. Although no specific conclusions ',~‘:
can be drawn from these figures because of the many compiler SRS
limitations and problems, some specific points can be addressed.
Given a software engineering emphasis, it will be required to
devote considerably more time to the design phase than there has e
been in the past. Because of the data abstraction capabilities 1ﬂfﬁ3
of Ada, data-oriented design should become more integral to the RS
design process in terms of viewing an algorithm as a combination
of both data and control structure. The design time required
will increase, both absolutely and relatively, when software

4-14

.........
................................
................
.................

transportability and reusability requirements are imposed on an
application. To the extent that truly capable PDL processors and
executable PDL processors are available, there will be a
justification for reducing the system integration time. If the
emphasis is placed on both levels of design, the coding phase can
also be smaller than normal, since some units will essentially be
coded and the process of converting the designs into code should

be rather direct and require little high-level thinking to effect
the transition.

4.1.9 Application Dependent Methodology Characteristics

This section addresses various factors which are strictly related
to the specific characteristics of one of the applications.

4.1.9.1 Communications Protocols

4.1.9.1.1 Transmission Control Protocol {TCP) and Internet
Protocol (IP) Specifications Issues

Following the decision of DCA to terminate the effort on the
Segment Interface Protocol (SIP) and make the transition to the
TCP and IP protocols, two significant issues arose. The first
issue involved the on-line availability of the TCP and IP
Specifications; the second involved the interpretation of the
Specifications with respect to requirements and design.

Since both specifications contained considerable "design"
information and much of this information was organized in quasi
Ada Program Design Language format, the question of on-line
availability of the specifications arose. The primary motivation
was to minimize redundant work and capture as much information as
possible. After telephone conversations with Defense
Communications Engineering Center personnel, it was determined
that the Specifications were not readily available on-line to the
SYSCON VAX. The alternative was to re-create the information

B i el ST

needed as part of a new design or to enter the specification with
a high probability of recovering a significant portion.
Subsequently, the specifications were placed on-line from the
textual hardcopies.

In some instances it seemed that a specific design was implied by
the Specifications. Specifically, there was a question of the
intent of the Specifications regarding the interface between the
TCP and IP protocols WITHIN a given machine for a given
implementation. The question was whether an actual record format
must be exchanged between the two layers or whether an access
variable pointing to the record could be exchanged. At issue is
not the compatibility of two peer layers in two different
machines in two different implementations and two different
languages, since that could be achieved as long as the TCP or IP
protocols are followed. Rather, the problem is one of protocol-
layer software transportability and interoperability since a TCP
implementing the TCP/IP interface as a record structure will be
incompatible with an IP implementing the interface as an access
variable. This lies outside the Ada language capabilities and is
not clearly addressed in the IP Specification. Section 10.2 of
the IP Specification seems to allow enough latitude to implement
the InterProcess Communication (IPC) any way desired. A similar
situation exists in the TCP Specification in Section 6.5.4.1 and
6.5.4.3 where the FROM_ULP and TO_ULP data structures are
specified and are implied as record structures to be passed as
opposed to a parameter list or access variable.

4.1.9.1.2 Transmission Control Protocol (TCP) and Internet
Protocol (IP) Transition Issues

Following the completion of the macro/micro designs for the
original SIP/ADCCP protocols and following the beginning of the
implementation of the application layer and system management
layer software, SYSCON was directed to discontinue work on the
SIP/ADCCP protocols and begin implementation of the newly

standardized TCP/IP protocols. Since a change in requirements -
frequently occurs on projects, this presented an ideal

opportunity to assess how effective the methodology would be in

supporting changes in requirements and design. Several features

of the methodology are evaluated below and assessed as to how

well they supported making the necessary requirements and design
changes.

Figure 4.1-1 presents an overview of the transition. The virtual
packages were organized according to the OSI Reference Model
architecture which assisted considerably in directly identifying
major pieces of the software architecture which needed to be
reviewed. The HOST_UNIT_SERVER, HOST_SIP_SERVER,
TERMINAL_UNIT_SERVER, TERMINAL_SIP_SERVER, and NETWORK_SIP_SERVER
VPs were identified for deletion. The HOST_ADCCP_SERVER and
NETWORK_ADCCP_SERVER VPs were identified for modification to
incorporate the standard ABM mode of ADCCP as opposed to the
AUTODIN-II specific mode. The SYSTEM_INITIALIZATION,
COMMUNICATION_CONFIGURATION, SYSTEM_TESTS and SYSTEM_MONITOR VPs
were identified as requiring changes to accommodate changes
necessitated by the TCP/IP requirements themselves., The next
step was to examine the 0OODDs to determine which compilation
units would require alteration in terms of either deletion or o
modification. The next step was to examine the micro PDL to ffﬂ
isolate the changes to particular components of the packages.
The PDL was extremely helpful in that it was possible to
concentrate on the architectural level of the design rather than
the code details. The micro PDL was selected because the same
person who performed the initial design was making the design
changes. 1If another person had been making the design changes,

it would have been desirable to include the macro level in making
the transition.

<

PTG U R

This type of analysis was carried through to the coded modules.
Since the existing designs could be reviewed incrementally, it
creatly facilitated identifying areas requiring changes and the

o
PR SO

4-17 1

sjuauodwo) uoTjTSsuer] ain3ida3TUDaY paTTe3Iad STOD030Id SUOTID TUNUUIOD

SIIviHILINI HOLVINWIS
NIISAS O/ NI
INIWIOVNVYWN
0-VI0
HOL1INOW
JINYNUYO JUId
$31AHIS
LININNOYIANS ININIL
SWA/XVA
? IS4V
14083131 ININIIVYNYIN
INIAI
ININIIVNYN $1531 NOLLYYNOIINDGD NOILYZ)IVILINGI
33HN0S3IY WILSAS | NOILVIINNNWOD NILSAS
1ININIDVNYN HoLlIRON ANINITVYNYN T0HINGD
TUYNInY3L WILSAS vivo 1531 NILSAS

~

*1-1°% 2Inb1a

LELY B LELY B
13INGNS 1IN9NS
TYNINU 3L 1501
H3IAH3S LELLEH
dl L}
TYNINY3L 1S0H
HIAY3S Y3iauas
a1 a1
TVNINUE 3L 1SOH
H3IAHIS HIAYIS
4300V 4)3av
NHOM1IN 1SOH
HIAHIS 41 HIAYIS NS LELLEH
TYNINYIL NHOML IN 4IS LSO
HIAYIS LINA HIAYIS
TYNInY3L 1IN 1SON

PRV LIPS WY

FORPE,

A A a

2

v—v ——— W T e T W TTE € TTF T ® e m - w Cw
- e~ ame T - P - . S - . Hs

exact nature of the changes. The SIP macro PDL contained too -
much detail and required more effort to review than it should
have. This resulted in proceeding directly to the micro PDL.

During the code/debug phase another lesson became clear. In
systems where complicated& tasking occurs, attempts should be made
to conduct some amount of prototyping which results in executable
skeletons. The benefits are that basic control and data flow

paths can be established and evaluated prior to committing effort
to refining the PDL.

The macro/micro levels of abstraction, if they contain the
correct level of detail, can assist considerably in making
modifications to existing designs and code by enabling quicker
identification of modules to be retained, deleted, modified and
added. By following the macro/micro design for the new
requirements, it is possible to retain the overall software

architectures and follow the same methodology for the inclusion Y
of the new requirements,

4.1.9.2 Trusted Software

The design of the ACCAT GUARD application was based on /W@@D78/,
/LOGI1794a/, /LOG179B), /BALD79/. The INGTP and UGTP were formally
specified using the language SPECIAL. In producing the
macroscopic and microscopic designs, the SPECIAL specifications
were included directly as annotated comments in the respective
Ada units. Since these specifications were a preliminary
version, they contained several errors and oversights which
complicated the creation of the Ada PDL. Interpretations had to
be made as to what was intended with the result that some
requirements which were implied were not captured directly.
There is difficulty in translating a computer program from one
language to another with respect to syntax and semantics. The
case with SPECIAL was further aggravated due to the preliminary _
nature of the specifications. In trusted software, where RO

S,
LY VUL S T SO

4-19

P % WP G ISP . L

s 4 -~ i SR R M 1
vy T S BN

considerable emphasis is placed on correctness, completeness,
consistency and clarity, translation is a significant problem.
One way of eliminating this problem is to use a language for
formal specification which is compatible with or is a
dialect/superset/subset of the implementing language. The
language ANNA (Annotated Ada) illustrates such a language.

Given that a set of trusted software requirements exists, the
issue becomes one of how the methodology can effectively support
translating the requirements into a design and implementation.
With regard to the macroscopic/microscopic design phases of the
methodology, two elements are central. It is necessary to
separate the trusted and nontrusted software in order to
establish well defined boundaries. It is necessary to further
separate the user-visible trusted software from the nonvisible
trusted software so that appropriate secure interfaces can be
defined. The methodology achieved this separation very well
beginning with the virtual package concept. At the macroscopic
and the microscopic levels, it is relatively straightforward to
include the ANNA as a way of supplying more complete semantic
information and providing the formal definition of the design as
required by the Formal Top-level Specification.

With regard to translating the nontrusted software from the
requirements into the macro and micro designs, there were no
basic difficulties encountered.

4.1.10 Software Tools

Throughout the project, only three software tools were used.
These consisted of the VAX/VMS screen-oriented editor, EDIT/EDT;
the Ada compiler; and a program for converting all Ada keywords
to lower case. Prior to the completion of the microscopic
designs for the TCP/IP implementation, SKETCHER, a software tool
developed under IR&D funding, was completed. SKETCHER is
designed to interactively produce OODDs in ASCII character format

4-20

R R I A R T TR (YL AP JE TR T SO WANE JUAT VMR NS A Ve SO0 Al S . VW - PO VLT W W Waay Wl VA ¥

——— T T T T TN Y T YT T T e
T v - T B T .

i1sing a VT-100 type terminal. The need for SKETCHER was a direct -
result of the work performed on the DCA contract. SKETCHER was
implemented entirely in Ada as a prototype version that could

>rovide an early, if somewhat rudimentary, capability. Another

software tool that was developed with IR&D funding for another

oroject is the Ada Statement Analyzer (ASA). The ASA provides a

statement count of all statements and clauses used in a

compilation unit by the sections of /M18183/ and has been used to

collect the Ada source statement statistics on this project.

Several other tools, had they been available, would have been of

significant assistance during the design, code/debug and

integration/test phases. These tools could have contributed - -
significantly to improving software productivity by eliminating

rather tedious and unrewarding tasks such as formatting the Ada

source code to achieve pretty printing. A list of these tools is
given in Section 5.

4.2 ADA LANGUAGE EVALUATION

This section addresses problems or inconsistencies with the use

of Ada, including specific language factors and also more general
Ada education issues. '

4.2.1 Ada_Language Factors

The following sections address features of the Ada language which
seem to be problematic in one way or another. For example, the
features may be difficult to understand or they may contain
limitations in certain situations. The elements in question are
prganized according to the sections of the LRM.

1. Introduction - Problems exists in learning the Ada
language, since LRM is difficult to read as a user document. A
number of sections prove to be misleading in that the examples
are either highly stylized, excerpted or not totally

4-21

RD;6152 314 EVALUATION OF ADA (TRADEMARK) AS A COMMUNICATIONS 273 .
PROGRRHHING LANGUAGE YOLUME 1<U) SYSCON CORP SAN DIEGO
L BRINTZENHOFF ET AL. 01 MAR 85 DCA180- 83 C-OOZS

UNCLRSSIFIED

: - X

Londi s il o St S gsl Saes sdRm R anh S man ——r

"m_.l_o PR 5

L

it iE e

=gl .
ll==

JEE s pee

...................

representative of the textual material. Information is either -
distributed and needs to be accumulated to understand the issue

at hand or is available in weak form in that it needs to be

deduced or inferred from the given material. Although textbooks :
are numerous now, examples tend to be tedious and may not -
adequately address the issue at hand. Some other means of

quickly learning Ada and being able to locate basic information

is required.

3. Declarations and Types - The declaration of variant
records presents problems in certain instances. Components with
the same identifiers cannot be multiply declared within the same
record even within different variants of the records, since it is -
the record structure itself which establishes the scope and not
the variant structures. Identical (syntactical and semantical)
components which occur in different variants of a variant record
therefore must be named differently. This has the potential of AR
causing confusion and presenting a maintainability and
reusability problem.

9. Tasks - The dichotomy between the specification of -
the entry points of a task in a task declaration which is visible
to a task caller and the actual architecture of the accept
statements of the corresponding task body, which generally will
be hidden from the user, is a potential source of problems.
There is no way to determine that guard conditions are
implemented as a result of examining the task specification.
Consequently, there is no information to determine whether
unconditional, timed or conditional entry calls should be made.
The result is a possible impact on the design and performance of
the system. To the extent that some entries are serial and
outside a selective wait statement or that selective waits
contain multiple accepts for the same entry or that accept
statements are nested, the caller will know less about the R
particular implementation and the impact on his design and
overall system performance. In general, this situation needs to

4-22

At .
...............

- . P Tt .
PRSP E SR PRI)

Y T Y W e T Y T Ty e T v
ey Ny —— Y " 3 it RN

_ be explored further to determine to what extent such

E implementation-dependent choices influence design considerations,
: and then whether the Ada language should be modified or whether
o task-entry specifications should be augmented with ANNA or

! whether some task-entry architectures should be proscribed via
design guidelines.

11. Exceptions - A particular difficulty with
exceptions is that they are associated with a package and are
made visible via the corresponding package specification.
Consequently, they are only weakly associated with their source
or sources. Unless some type of additional association
conventions are established, it is impossible to determine which
visible entities can raise which exceptions. This can result in
the needless proliferation of exception handlers in calling
modules to cover all possible circumstances. More problematic is

B the situation where an exception may or may not be raised during

Q.‘ a rendezvous for the same entry when that entry occurs in
multiple accept statements. A similar argument applies to
overloaded subprograms declared in the same package
specification.

———

Appendix B-Pragmas - A pragma OVERLAY will be required
to obviate recopying data to achieve change in representation
: (4x5 bytes vs, 2x18 bytes and contiguous) in a manner that is
é. guaranteed to function correctly in all cases. The LRM
specifically states that achieving overlays via the use of
address clauses results in an erroneous program,

Table 4.2-1 indicates a qualitative assessment of how well the
Ada language satisfies both general and specific requirements
which are required by the applications.

4-23

........................
...

.........................

alemyog paysnij Ajjeayroadg—

+1003 334N0S 10 NOILYIHHIYIA TYWHO4

«NOLLVINSdYINI 1041NOI ANV ViVa

SIINYISNOI INIWWYYDO0Hd 0IYNLINYLS

ONIJAL VIVA ONOHLS

SLINYISNOI INISSI0U 1I1IVHVd

ALIYVINGOW

$319v1 0/1 40 NOILVHINID

«NOLLVHINID aNV NOILINIZIG OUIVIN
(S)4IWIL QILVIDOSSY

GNV }3012 3IWIL-TV3Y 01 SS399V

S1dNYYILNI 40 104INOD ANV 01 SSIDIV
SIAILIWIYD ANV

SNOILLINNS WIL1SAS ONILVHILO 0L SSI9IV

1002 I9VNINYI A18INISSY 40 NOILHISNI

NOILVINdINVIN NV SSI9IV ONIYLS T1A8/118

SINIWIHINDIY JI4133dS

sjusuLiITnbay sourwiojxad juspuadag-uorieorTddy siem3jzos

D »’.I

QILVNIVAY 10N - N

SISIX? WIINIIOd 4
IN3ON3dI0

NOILVENIWINIWI -4

T2ITT=xxQ

ALITIEVITIH HOIH AHIN
| SIUNLINYLS T0HINOD GILYIILSIHAOS
| SIUNLINYLS VIVO QILYIILSIHAOS

3000 324NO0S 40 ALINIGVIHOD HOIH
! JUVMAHVH @3Z1Tvid3dS ILIVINdINVYIN
N ANV H1IM 3IV4HILINI 0L ALITISVdAVYD
H/I JINVINHOIYI HIIH AYIA

LRLILLIRE]
NOIAYY 3D

Mol)

SINFWIHINDIY TYHINID

‘1-2¢°% @19eL

A

-

(=

()

4-24

Pt

- W D W

-,_\,'-'-'-'

YRS

o il

* -

- ——r——— v e v wm e e e s
- ————— - e v S Tt B At du A S e A U S AC T R A A v T T Y e -

4.2.2 Ada_Education Factors

To use the features of the Ada language effectively, one needs to
have a significant understanding of software engineering
principles. Without such an understanding, the Ada language may
result in producing programs which are Ada programs written in a
FORTRAN, JOVIAL or CMS-2 dialect. There must exist a philosophy
of identifying error conditions and responses to error conditions
as integral parts of the design and the design process, not as
afterthoughts added only when programs malfunction. The fact
that Ada provides a facility to achieve this in terms of

exceptions in no way assures that the facility will be used
effectively.

3 It is necessary to have a methodology and software tools context

g for consistent application of the software engineering principles

and the Ada language. Without this context, it is likely that

ﬁ ‘5’ Ada will be misused and misapplied. A methodology and supporting
1 tools allow for significantly improved designs by providing

constraints on required information, by consistently formatting

3 the information and by permitting multiple, alternate views of g
P. the designs and the information implicit in those designs. .
[-

After the "basics" have been mastered, there is the need to deal
with restrictions imposed on the full Ada language to achieve
transportabiity, reusability, trustedness, machine verification
and other application-dependent goals. On this project,
significant effort and discussion were given to reviewing
alternative communications protocol architectures regarding
placement of the system management functions. How to partition
and parameterize software to produce useful genericC units willi

require conslideraple time and errort pevond the normal desidan.

4 .
et ok o a

It transvortabillitv and reusabilitv are not sottware cgualitv
criteria trom the beainnina ot the proiect. thev will not be
achieved as bv-products ot anv desian or methodoloav.

P A TN ST e e e T RIS SR S
PRI PSP TIPS S VIS Ul USRI St YD J00 TR e Sav e S S S | s 4 3

....................

——— e Y T e ITREE
e A v MR S A A R i e o .- A At Al o T . . - LI

4.3 SOFTWARE ARCHITECTURE ANALYSIS ' -
This section presents the analvsis of the software at the
software svstem architecture level, and at the compilation-unit KR
architecture level. -
4.3.1 Software Svstem Architecture

This section presents the inter- and intra-vartual package
software architecture analysis for the communications protocols

and trusted software application.

4.3.1.1 Communications Protocols -

Software Architecture Analysis

The Communications Protocols application was initially required
to implement the Segment Interface Protocol (SIP), and the Mode .
VI subset of the Advanced Data Communications Control Procedures]
({ADCCP). The generic Open System Interconnection (0SI) Reference

Model was utilized to structure the Communications Protocols 9
system into a tive-layer architecture and lower-level system ——
management tunctions. Figqures 4.3-1 and 4.3-2 summarize the i 1
processes that achieved the initial detailed architecture. The
application was required tor the transition to the Transmission el
Control Protocol (TCP), the Internet Protocol (IP) and the T
Asynchronous Balanced Mode subset of the Advanced Data }
Communications Control Procedures (ADCCP) later in the project. o

A basic assumption in the requirements of the communications

protocols system was that communication system software provides I
resource sharing types of services to user and end-process .
software. An assumption ot scarce resources was made which

implies both economy and management of system resources. The

communications protocols system was to include environments that F
addressed distributed/multiple user components, host application - ;{ﬁ
components, and simulated interface component capabilities. The

4-26

— —— v- ML JNst e et A e St R w
.«) AR v . S

3

3

~ T

T

juswdoTaAa3@ TOPOW 2IN3083TYDAY Wa3IsAs “*T-g°p 2anbtyg

. SIIVIUIINI WIISAS .:»ﬁ:rﬁ.ws..._
1 —-T T T T TTIIIZZaimao
- N P e L TSTa,,

~ - - v,

4230V -~ .- ~

g S32IAY3IS $321AY3S 8 s tae 1300W ¥3AVIENS
/ NN SNOILINNS d1s s T
- u“.__.._u.‘..w“we .E....uu_wﬁ_i NOISSIS HIAVI SIUNIINYLS vivg F----mmmmm- seemomomoos]
[(s$323v) 1IND 8 10201044
f ANINIOVNVW IRV f--mm oo omoomo oo 1
v SNOMVIIddY JIVIVIINL 3DIAWIS
3 CELITRI LN ,
[\
[. \
v. l// /

~. \
~ \
. /// ’/
. SISATVNY A
5 WYN1331IHIYY L
/ ‘—
\
| 1300W 3INIYISIY IS0 X
3
’ SIIVIHILNI WILSAS YIISAHS __ _.
1041NOD XNiT .."
"
1100 NHOMIIN "
J W115AS8NS/WILSAS $33IA83S S12IAY3S H
1 WiLsasans NI 3 SNOILINNA 1¥0dsnveL 1
$32UN0SIY SIJYUNOSIY NOILYIINNWWO)D /WILSAS ININIOYNYN NOISSIS]
Y B S131AH3S wiisasans BNILYHI40 wISAS
i LNIVINDHIAN] SIJAYIS NOIRVIINDWWOD NOILVINISIHd
w01 witsasens
¥814258NS TYNIWYIL NOILVINd4Y

4-27

jusudoTsasg a1n3093TYSIY patTTelad

SISATYNY
1ININOJWOID
HIAVI-VHLINI

IUNLIILIHIYY aINVIIG

(
S1IVIY M uoLYVINWIS 01 WK
NHSAS
ﬁl ININIIVNYN
D0t WIAHIS YIANIS
[4770V d23av
NHOM1] 1son
Vol NON 0MLIN
JINYIRYO {034
ININNOYIAN] SIS WIANIS IS WIAUIS dIS ¥iANIS
NUOMIIN dIs 1508
- oNIwI WNINYTE 1 S 1S
a 354y -
54 1NINITYNYIN WIAMIS 1IND YIANIS
1Hosh 1N3A) NI 18R 1508
1NINIDVNYI sisi NOTIVUNDIINDD NOUVZITVILING
wine nisAs NONVINNWND) niisas
.
ININITYNYN vorINOW 1MINI9VNYY 1081909
LT MIISAS vive 1s3 misas

SISATYNY

TVNOI1INNS
INIWIOVYNVIN
W3L1SAS

*Z-€°p @anbry

TI00W TVEN1IILIHIUY WILSAS

SIIVINIINT WILSAS .3.2.-.“».”.._32.
#3AV) 2320v
s31ANIS N
S1MAYIS . i s .
Aunn SNOILINNY
/WALSAS 1NINISYNYW .
NNV wiisss NOISSIS WYY \
1sS323v) 11M0 __
1
]
SHONYIIIEY]
(3R TH \
’
J ’
’
rd
- ‘\
PPt Lt ‘
_-- ’
- -7 /
’
-
- 130N H3IAVIONS)
JIVINL SS12IV
SIS VIVE oo ool 4
o 1IN IYNY I 3121A01510301004
WY bl .
IV 1D

4-28

software architecture analysis was conducted on two levels, the
inter-virtual package level, and the intra-virtual package level,
using the previously defined software quality factors of

Section 3.

4,3.1.1.1 Inter-Virtual Package Architecture Analysis

This analysis focused on the number of modules, functional types
of modules, and the inter-connectivity characteristics of the

system. Figure 4.3-3 presents the virtual package design diagram 4
that resulted after the TCP/IP transition. The diacram is a one- j.-?
to-one representation of the cdetailed architecture. T

The virtual packages are derived from tour subsystems that are 1
represented as the exploded portions of the Figure 4.3-3. The
Terminal Subscriber subsystem modules provide the man—-machine]
interface for invocation ot major testing, monitoring,

configuration, initialization and termination operations of the

i

14

.!‘,V.v"v I K
r
1

system. The Communication Services subsystem modules encompass
the protocol layer services provided by the system
(TCP/IP/ADCCP). The I/O Simulator subsystem module simulates
communication device interface and transmission facilities. The
System Management subsystem modules provide low level resource
sharing/resource management services, data structures, and
interfaces that are common to entities residing in multiple
layers. They shield the protocol layers from details of the
local operating system/hardware confiquration environment. The 4
arrows on the tigure indicate major control flow direction. Data S
flow is in both directions.

DA

A a Al Bl oin

Aol

-L't

The 19 virtual packages repiesent a taithtul capture of the
detailed architectural requi.:ments 1n Ada teatures and
terminology at a high level ot the design. The Test Data
Management virtual package was not i1mplemented because of

compiler implementation/run-time support problems with disc file
I/0 operations. The inter-virtual package dependencies generally

4-29 oo

O T I P I I I E L. STt I o . e S AU, a AP I S SRR PO PR PSP S G TU S SRS |

-

Pt

T

2IN30931TYSIY PSITeRIag wWa3ISAg STOD03014 SuoI3ed

S3OVI¥ILNI
NILSAS
ININIGYNYN
07 1v501 <
HO1INOW
LNIANOYIANI JONVAY04YId |<~-
SHA/XVA
]
3Sdv) <—- S321A¥3S
ONINIL <—-
14083131
ININIOYNYN
iIN3A3 <—-
<-- ININIOVNYN
334N0S3Y <—
<-- LNINIOVNVYN
TYNINYIL <—-

TUNWWOD *¢-¢°p 2Inb1g

YOLVYINNIS MMOMLIAN - 1SOH

Y3A¥3S

d3IAN3IS
13N8NS 13NENS
TYNINY3L 1SOH
Y3AyN3S Y¥IANY3S
dl TYNIWy3L dl LSOH
¥3A¥3S Y¥3A¥3s
dldl TYNINN3L ddl 1SOH
A A
| |
S1S834 NOTIVHNIIANOD [NOILYZITVILINI
N3LSAS NOTLYDINNANOD N3IL1SAS
YOL1INON ININIOVYNVYN T041NOD
N31SAS viva 1S3} N3L1SAS

4-30

\e

follow the hierarchical organization of user/server relationships
as inherited from the OSI model concepts. The calling pattern is
strictly hierarchical, which was not the original intent of the
system design. Implementing a more interrupt-driven design
required the separate compilation feature of Ada which was not
available with the compiler.

In the tollowing inter-virtual package architectural analysis,
each criterion is assigned a subjective value of excellent, very
good, satisfactory, poor, or not evaluated.

CRITERION EVALUATION
Communications Commonality Excellent
Conciseness Excellent
Consistency Excellent
Data Commonality Very Good
Generality Excellent
Hardware Independence Very Good
Instrumentation Not Evaluated]
Language Constructs Excellent
Modularity Excellent]
Operating System Architecture Not Evaluated
Operating System Independence Very Good
Self Descriptiveness Poor
Simplicity Not Evaluated s
Traceability Excellent .

The architecture exhibited excellent modularity characteristics]
which were evident 1in the transition to the TCP/IP protocols.

Paragraph 4.1.9.1.2 of this section provides details concerning
the transition. 1

4.3.1.1.2 Intra-Virtual Package Architectural Analysis

This analysis emphasizes the assessment of the virtual package 1
modules 1n terms of high level Ada entities. The following
presents the evaluation of appropriate criter.a that apply to the i
software development quality factors cited in Section 4. The |
criteria are assigned subjective values of excellent, very gcod,
satisfactory, poor, or not evaluated.

fatatala s em

. ’ [P i it el la oaiial st s P Tl IS - Bt Simmsosemmmsoss S UL ol SR T SO VUL VRl SN W L. WU . e |

AP WET———T Chalicd e A P ARl
PP - » PP - - Lt

CRITERION EVALUATION o

Communications Commonality Excellent

Conciseness Satisfactory
Consistency Excellent
Data Commonality Excellent

Generality Very Good b
Hardware Independence Very Good

Instrumentation Not Evaluated

Language Constructs Satisfactory

Modularity Excellent

Operating System Architecture Not Evaluated

Operating System Independence Very Good ®
Seif Descriptiveness Poor

Simplicity Poor

Traceability Very Good

Figure 4,3-4 illustrates the organization of the Communication
Services Subsystem modules. The Ada package features capture the
characteristics of the sublayer model extremely well.

4.3.1.2 Trusted-Sottware Software Architecture Analysis

Fiqure 4.3-5 illustrates the system confiquration of the original

ACCAT GUARD confiquration and Figure 4.3-6 illustrates the .
processes of the original ACCAT GUARD software. Since all of P
these were not germane to the analysis relating to the trusted
processes, a subset was defined as shown in Figure 4.3-7. These
components and the necessary support components were then
organized into the virtual package architecture of Figqure 4.3-8.
Figure 4.3-9 illustrates the interprocess message flow, and
Figure 4.3-10 illustrates the interprocess transaction flow. In
both figures, the various processes, file managers and
interprocess communication (ports) processes are mechanized as
Ada tasks. Finally, Figure 4.3-11 illustrates the interaction of
the Downgrade Trusted Process with KSOS and the Read-Write-
Interprocess-Communication (RWIPC) software. In the moditied
configuration the interfaces to the high and low hosts are
emulated via 1dentical MMI software contained in the HSNS and
LSNS virtual packages.

PRI P PO UL ST a3

ey Ty Y AR A I Sl Dty Al £ o v vy . <o
I
! weaibetq sbeoed TENIIATA u®>uwmlm09lumoz ‘b-f°p L@anbtg .
r e e e e e e e e e e e e E — e - ' .-A
1 e e - - - I]
llllllll _ P
! [/ i / _ _ .
||||||||||||||||||||||||| / / \ / K
] e (v)<—t<~/ \ / / i .
1 / \ / == /
b [\ / / / I
|||||||||||||| | / / IZIWILINTD /[[<=—mmmmmmmmmmmeem e/ /
! / / [INOILVINWISTHONN3 / / /<-——————m—mmmmmmm e /7 ~ 9
1 / / [)snivis / / /<———————m—rmmmmmmmo e /7 g
1 | I / / _~umzoamum F A ittt s)
] { J<———- + / / 1183n03Y /<~/ /<————————mmmmmmmmm e // :
. _ | A / / I
! | (SNOT1v¥v1030) / / |
1 | $3¥NA300¥4™NOT LoV dOL ¥3A¥3ISTdOL | o
1 ,
H———— ~= + o]
ﬁ Y R —— | —— = | .
/ \ el e | 4
1 | \ / R R I | 4
|||||||||||||| [1<-+ ;
s I M _ ! - .
N T e e S = .
i OMdTIDIANIS 4L f !
g [J<——+ | | | e - ¥
i | _ ! o
| O 5 |
! | (SNO11vHY103Q) +<~|-~|-—--—- -—- [J<—+ | o
| +<-— I)
[I SNOTLONN4™NOISID3Q7dOL I I O e - [;
; - _ 9Nd~$SIVOV dOL y
. | _ n»»||||||\||||n|a|nqﬂ I 3
"
] I I R - [I]
{ T -—- [)<+
| (SNOI1v¥vV103Q) +<—— | ! .
“ I NOT1VO14103dST¥3AVI T dOL 9%dT1000108d™dI1L _ ;
e e - >+ .
lon- _ [L
X HOL INONTIONVAYOIHId <-(3) - -]
: 0~1v001 <-(q) (3'g'2'8'v)<——| I | A
. OTINIAI <-(J) | I < 1S30D3¥”4INTIVOIINT > -
] SIDIAYISTONINIL <-(8) | { 1<+ (QHOD3Y NOILVHIJO dd1) .
LOW™308N0S3y <-(V) |] (3dA1THONN3 401)
3 $1v8019 M3ALSAS < | mmmmmme—— i (SNOI11v¥3d407dO1)
. | N3LSAS < OXd” 1IN dOL (SNOT1vyv10230) (INYNTNOTLIINNOD)
||| _ s
] ¥IAYISTJIOLTLSOH ! -
_ 3OVMOVETIVNLNIATHIAYIS dOL T ISOH .
y A
v

g T

1. . . - p—y y y N p— . 4 Cafl g DN 1.44, AN S A A AR LA S SN S P
SOttt 6156 SLLY 1 4 TV.LOL
7988 vigg £L97 81 SANLOMILS Vivd
vse L | 66 (4 SSAD0Ud AaLSNAL FAaviaodn
LE9T €091 r8s [4 $SAD0dd AALSNAL FAVIDNWX
87f¢¢ 9011 0SL (4 WA LSAS ONILVYAdO

TAFANDAS A Z UTNYANA
90€¢ 608 L&) 13 TANNOS Y3 d MO1LVZILINVS
THOVAYAUNT TYNHNYAL
L0881 878 66S t JOLVINNLS
THOMLANTFIal ST M0
8LT [N 01 | NaNE VA
THAAYES AQIvVND M0
06L1 (AR £6S £ JOLVININIS
TOROMLEN 3AaIS HOIH
38t 901 ott 1 NN VA
THAANAS a¥vND HOIH
161 16 ovli 1 NONT VA
T HAVEONAOT HOILH
ve L 61 1 JILSYW advno
oLl 66 LAY ! FdAL TVEOT1D advND
saui sjuawaIels sl1uslleL§ s.ND Jo awepN
tei0] 1usuRUO) 221n0¢§ 13qunN adeyoed (en111p

ATeuuns STsATeuy 3juswalelsS 9IeM3JOS Wa3SAS 9IPMIJOS PoOISniIL ‘f£-€°p o1qel

4-47

o

PR T WY

P

Py

The following present the evaluation of the compilation unit
analysis, Subjective values of excellent, very good,

satisfactory,

CRITERION

Accuracy

Communications Commonality
Communicativeness
Completeness

Conciseness

Consistency

Data Commonality

Error Management
Generality

Hardware Architecture
Hardware Independence
Instrumentation

Language Constructs
Language Implementation
Modularity

Overability

Operating System Architecture
Operating System Independence
Self Descriptiveness
Simplicity

Traceability

poor or not evaluated are assigned.

EVALUATION

Not Evaluated
Excellent
Excellent
Satisfactory
Very Good
Excellent
Excellent
Excellent
Very Good

Not Evaluated
Not Evaluated
Excellent
Very Good

Not Evaluated
Excellent
Excellent

Not Evaluated
Not Evaluated
Very Good
Satisfactory
Poor

Table 4.3-3 summarizes the compilation unit characteristics of
each virtual package.

4.3.3 Compilation Unit Statement Characteristics

This section provides summary intormation on the number and types
of Ada statements used across all compilation units of each
application.

4.3.3.1 Communications Protocols System
Compilation Unit Statement Characteristics

The statement characteristics of the compilation unit software
are summarized in Table 4.3-4.

(e s taan £

PLICT 60£01 1£18 Lt 1VLOL
16 1oV 987 4 INTNEIOVNWIA HD3N0S Y
6rs 781 8re 1 SADIAYIS ONIWIL
Ley s¢l vst | INFNHOVYNVW LNIAT
€St 121 ot i | ININEHOVNYIN O 1VDO'|
£61 £€ri o8 1 JOLINGA IDNVINHOA 43d
ST¢ N Sh1 i HOLVINAILS O NI
L1ty vt 18¥ 1 ANTFWAOVNYN TVNINY AL
8701 69V vee 1 AIAYAS T LANTNS TYN YL
o9re et 65t £ YIAYIS LANANS LSOl
reol sy ive { YFANAS 41 TYNTAYIL
L6t 6061 06L £ ¥IAYIAS A1 LSO
vt €8y 6LE [YFAYIS dOL IVNIWEAL
TLLs 10LT rigi v YAAYIAS dDL LsoH
0 0 0 0 AINTWIOVNYIN VLVA LSIL
veeLl £9 viL 4 SLSAL WHLSAS
8¢9 9v 871] NOI1LVYND I ANOD NO1.LYD I NNANDD
018 09¢ 97¢ 1 YOLINON WHLSAS
1€ g€ 0zl 1 NOILVZITIVILINI "WALSAS
v Let €81 | TOULNOD WHLSAS

saul sjulwalesg sjuawaye§ s.nND Jjo auwe N

je10] I U3URU0)) 331n0§ JaqunpN adeyoeqg jeni1p

Aleuming STSATRUY 3JUSWD3ILIS 3ILMIJOS Wailshs s10003014d

SUOTILOTUNUWOD °*Z-€°F 9T9elL

45

- ..‘;,i

FVOE VOl W Wl Wi Tl

2

U - \~ ~

P

CRITERION EVALUATION
Accuracy Not Evaluated
Communications Commonality Excellent
Communicativeness Excellent
Completeness Poor
Conciseness Poor
Consistency Excellent
Data Commonality Excellent
Error Management Poor
Generality Very Good
Hardware Architecture Not Evaluated
Hardware Independence Very Good
Instrumentation Poor
Language Constructs Satisfactory
Language Implementation Not Evaluated
Modularity Excellent
Operability Excellent
Operating System Architecture Not Evaluated
Operating System Independence Very Good
Self Descriptiveness Poor
Simplicity Poor
Traceability Poor

Table 4.3-2 summarizes the compilation unit characteristics for
each virtual package.

4,3.2.2 Trusted Software Compilation Unit Architecture

The final GUARD implementation does not faithtully refliect the
intent of the original designs. Due to the compiler :
restraictions, modifications were made to the internal 1
architecture ot many modules to make them executable. 1

The virtual package DATA_STRUCTURES defined two "geheric"
packages to provide the ports, files, and locks for the high
GUARD side and the low GUARD side. The ports, files, and locks
were to be instantiated as entities in one of these two packages.

Since generic instantiations are not implemented in the current
compiler release, the two data structure packages were not :
created. The instantiations of the ports, files and locks were . :
done 1independently via a pseudc-generic (text editor) approach.

Coas .
v .
PRI S

T —— - " - " v R el Tl - At A N I S g —— Ty vy

values of excellent, very good, satisfactory, poor, or not
evaluated is assigned to each of the criteria.

CRITERION EVALUATION

Communications Commonality Excellent -

Conciseness Very Good

Consistency Excellent

Data Commonality Excellent

Generality Excellent

Hardware Independence Mot Evaluated

Instrumentation Not Evaluated

Language Constructs Excellent

Modularity Excellent

Operating System Architecture Not Evaluated

Operating System Independence Excellent

Self Descriptiveness Sactisfactory

Simplicity Excellent

Traceability Excellent
4.3.2 Compilation Unit Architecture
The compilation unit software development statistics for the S
communications protocols and trusted software application are — -

shown in Table 4.3-1. !

Table 4.3-1. Composite Software Development Statistics

Communications Trusted

_Protocols Software
Virtual Packages 19 12]
Library Units 26 25 .
Secondary Units 24 23
Statements 8,131 6,775
Comments 10,309 9,529 b
Lines 23,674 21,305 '

4.3.2.1 Communications Protocols System
Compilation Unit Architecture Analysis _T

The tollowing presents the evaluation of the compilation units on
an individual criterion basis, Subjective values of excellent,
very good, satisfactory, poor, or not evaluated.

[S SN DL DU 1

> P T Y

compiler. A pseudo-generilC approach was taken by using the text
editor such that the "instantiations®" of each generic package
were created manually and compiled in a regular manner.

The criteria tor the intervirtual package analysis are described
below. Each criterion is assigned subjective values of
excellent, very good, satisfactory, poor, and not evaluated.

CRITERION EVALUATION
Communications Commonality Excellent
Conciseness Excellent
Consistency Excellent
Data Commonality Excellient
Generality Excellent
Hardware Independence Not Evaluated
Instrumentation Not Evaluated
Language Constructs Excellent
Modularity Excellent
Operating System Architecture Not Evaluated
Operating System Independence Not Evaluated
Self Descriptiveness Excellent
Simplicity Excellent
Traceability Excellent

The trusted and non-trusted processes are independent of each
other. The only communication between them is through the port
and tile modules. The GLOBAL module is the package
GUARD_GLOBAL_TYPES which contains data type declarations used
throughout the system. No data objects were declared in this
package. The G_MASTER is the GUARD_MASTER virtual package,
representing the activation of the terminal drivers for the
respective modules. The D_STRUCTURES is the DATA_STRUCTURES
virtual package that consists of the ports, files, locks, the
statistics module, and other utility modules.

4.3.1.2.2 Intra-virtual Package Architecture Analysis

The intra-virtual package analysis tocuses onh the high level Ada
entities associated with the virtual packages. The evaluation of
the criteria tor the software development quality factors at the
intra-virtual package level are described below. Subjective

4-42

L e
AT .

R R T T T L S RO L L, P U U ! U (PP WP W A YT urer
AIPOR | v et . D N R e TN | W R A NS P FEPrw

[}
-
9,

E W et et Lt et
e e st e el

—~ + R A = - —w W= ¥ TR KT W TR -V T W<, v

The Trusted Software system software architecture analysis
addresses the architectural organization of the software modules
from the inter-virtual package and the intra-virtual package
perspectives. The characteristics of the virtual package
architecture are addressed 1n terms of the criteria associated
with the software development quality factors presented in
Section 3,

4.3.1.2.1 Inter-vVirtual Package Architecture Analysis

The major subdivisions of the system are the High Side processes,
the Low Side processes and the Trusted processes. The High Side
processes service transactions originating in the secure portions
of the system (Secure Networks), sanitize these transactions and,
it permissible, make them candidates for "downgrading™ to the low
side of the system (lower classification networks). The High
Side processes consist of the Data Structures, High Downgrade
Daemon, High Guard Server Daemon, Terminal Interface for

Sanitization Personnel and High Network Emulator (MMI) virtual
packages.

The Low Side processes service transactions originating in the
low side of the system (lower classified networks) and transfers
these transactions for servicing by the High Side processes. The
Low Side processes consist of the Data Structures, Low Guard
Server Daemon and High Network Emulator (MMI) virtual packages.

The Trusted Processes consist of the Downgrade Trusted Process,
which transfers message from the high side to the low side, and
the Upgrade Trusted Process, which transfers messages from the

low side to the high side.

The functionality of several sets of the processes (the GUARD
ports, files locks and the high/low user MMI operations) was
identical with the result that these were excellent candidates
for the Ada generic teature, which was not implemented by the

4-41

UL - LT N S T e e, S
- . o Lm T I e T T T T T T T e T e e
PR A VPR AT P R WL G JE wr0 I W A N .

A

L oSNl anih: il et & vl il suiiic on

SUOTIORIDIUI SSB8D0I14d poS3IsniIy meM.HmCQ»OD

A —

"

(ams =

SNOUVINNI
19VNIVd WVALYIA -

sesscsoscesnasacssersy

dn19

(Covors o

0

@)

soodees
®20enves

JdIMis

(=)

“11-€°p @anbtg

.........

FITTTE) 3

Jdimy

<+
—

nosnN

e .

S3YNLINYLS VivO

PYIY LYY TN

escsssssssvsonceses

(7] J

H.,Ju_luf

1504 % }—{]1—

$$33084 (1SNNL T JOVNINMOO

O

AS—

NI IwW oms _

4190

ol

4-49

1/
/

/

74

b

uved % —{}

gl

e

L

MINUIN

SOSH

$S3304¥d™ Q31SNYL™ IAVHINMOO

RS

LA A e SAr Al g s

-

at et At s

VWY

P

PRI VPP PO N

BN

G aialn -

8

g
b
MOTJ uoTtj3desuel] QI¥ND °*0I-€°py 2anbrtg
LTI
(wwint)
é .
[,
L T 4
] .
< ‘A
b, s
[K ‘.
) .x.“.
....m
- (o1 R
ATHOH - 21 ..H“
03YaH - 11 o3
- noal - 90 A..g
[- nos9? - 50 1
i noont - +0 o
. ND9CH - €D
NOS9H - 20 -
NOOH - 1D e

_mu
W

v

T

T W W

MOTJ obesssi qUvND

O,

dSil

HOHY/ o

........

‘6-£°y 2anbtg

S$3419

Caman [(viswo

94019

.

dH19 |

(53010 |

(I M
()

(10019 |

. S

"'..J'..' o L.'__

144" 4

bt

IR W IR

-

2I1N3093TYDIY paTTelad Wa3SAS 2aeM3JOS PoISNIL °8-¢°F 21nbHT 4

S3OVAYILINI NILSAS

T I-
<= SNST SNSH N

<-- SUNLONAYLS
IN3INNOYIANI viva 4

4-37

3Sdv¥ 14083131 ot

hd <-- dsilt GOaH .
N31SAS N

ONILlV¥3d0 | = |-————————- N

. aso1 aSoH R
X SHA/XYA :

<-- SOSH <—- e
dion d19a R

S e e s o

P

v oe s

-

uotyeINBTIIUOD QIVND POTITPOW °L-€°p 2Inb1g

XHOMLIN MO1 NHOMILIN HIIH

SNS1

e el BRI N .
VNI,

R

4-36

-f
]
[}
!
]
[}
1
[}
1
i
!
1
I
1
[}
1
t
}
1
i
[}
[}
!
[}
]
1
1
]
1
1
]
]
]
[}
1
[}
[}
t
1
[}
[}
!
1
t
1
1
]
!
3
]
)
[}
4
I
1
]
]
[
|}
!
]
!
}
[}
[}
)
1
[}
]
1
[}
]
I
!
1
[}
S

LR

R

-—-
O

et

-
LA N

1nogm

SISHVIS

AY Lt e

P———

4331440 HILYM
ALIYNIIS

[e L LY LY Py e e |

TINNOSH3Id NOILVZILINVS

f
]

] 2I1eM31J0S AYYND IVOOVY °9-€°p =2anblg

(emaqe 1ou) QI SMISTI/yiey NYM 0505003016000 emg o

fse3sn me) rwemiin Moy {SUIEN ROtN] WeomI N NIM

I TN IV R IR . - .
AR R A T I A I I A I R A
PN VR VR W VI UT WYY W Y WA SO WA P S

4-35

v e At
salela o

VI PIVINIM
foms) 9231140 NIIVM AIWRIIS Us) ymneseIe RONIVIILINYS

N I AR M S K
I YOUE SO VAP SO SV S Ll R Sl W W WA S

TMNSSEN QUVRD NOM

vy

el

syasn
HOIH

uotieanbrjuo) weisAs Q¥¥ND LVOOY TeutbTiO

1SOH
HOIH

TAIN

- — — =

nd

sHIsn
MO

1SOH
MO

L AIN

nd

[¥ X &4 14

T3INNOSHId
NOILYZILINVS

O

‘G-E°¥

TAIN

- - — -

4

LA

nd

3ais
HOIH

$$3004Hd
qaisnyl

i
|

3as
Mo

1504 QHVNO

CERIEEL
HOLVYM
ALIHND3S

4~34

0/1 18693u] O17LX31 PUO NOISYIANOD QINDIIHONN 92UPI9)0. SUOIIDIJUDISU!L D1IBURY (s)

(1L @10N @0u9s9j0y) A)1| 120 ji0des J0II@ SY) P)0USP S.49|PUDY UO!}dEOXD }EON Mcv

| §110> woibosdqns puo AJjue SO} ueem}aq ysinbuiysip joUUDD |00} §I1}381)D}S ¢
91n}pej opy pejudwe |dwu]-uoN ANW

Ay1j1120) buiyiodes 10119 2)}3108ds J9)1dwod O S88jy0AUI O4N]IJNNOS owboud (1)

i Si6gl 6SLY SOUiT jo JsequUNN "] [*) s$0dA] poj 1wl
a 8269 LLt §juUsWa} oIS jO JIqunN Qo 0 s89dA) @j0A1ugd
L SINNOD LIN3IN3LVIS 1 24) se1pog eboxdoy)
. ") 9z $u0}021j129dg eboydoy
g S3oVYNIVd @' ¢ - d
f 9161 0 (g)s1103 wosboudgng 0
3 (X2 ") s91pog woiboidqng
5 ") 0 (Z) soesno{) sso1ppy e 86 suo))pip|d29g woibousdqnsgt
: e) (Z) sesno) day piooay SAVHO0NdBNS ©°9 9
g ") @ (Z) seosno|) deoy uoijoiownul ° %) s{9qo" cd
]] (Z) sesnoj) yjbue] 0 §jUdWe}0}§ 0309)
[S3SNVY1D NOIL1VIN3S3¥d3IY @ '€ ¥4] SjuaWeo}g uINIeYy v
L 6S @ (S) SuoijoljuDIsuU] d140UH 14°} o SjuLdweo}s 3 1x3 .
. ") ") (Z) suo1}0iD}20Q d140U9H \ ") $judWe}D}S Nd0|g 4
SOI¥IN3ID @°Z! L6Z (2] sjuowyojls doon —y
61l %] S$JUGWE)ID IS 9SIDY +Z1 [”] s$jusdwe)}D)gS 980D 4
1 2%4 0 (¥) si9|puoy uoijdesxy LLw ° sjuoweln)s 4| v
L") L suoi}psp|d9Qg uojjdeox3 €641 e sjuswe}n}s juewubissy v,
s SNO11d33X3 @ 1 SININILVLIS @e'§ ©
-) 0 {(Z) sytunansg 9 e s40)Dd0] |V¥ <r
LIt 18 $9SNDID YIIM 69i € $031NnQliY |
SLINNGNS % SISNVIO HIIM @ 0L S31NgidllyY @' ¢ -
L [s9dA] sso9d0y B
LL %] No0|g SNOAZIPUIY L 9G 000%._. pi40oay
18 ") SUOI}IpUO) piDNYH Sl [s9dA} Aoiay B
1 Q $juawan)S djoUtWIe) Q) juiod pexi4 :
[} [} Sjuaweln)s ja0qQy e] yutod buiyoo) 4 :
0 e (Z) s1103 Aajul pawry e 0 s9dA) Doy .
") @ (Z) 110D AJaju3 (ouoi}tpuo) 0 ") sodA) ieboju]
t A - S)IDM 9A1)}09)0S L€ 19 s9dA} uojijosowWnuUl S
") ") (Z) sjyuewainys Ap)jag ") e sodA| peataeg e
98 ") sjuewe}b}s 1dedoy 8.2 L9 suo13}04D|29q @dAyqng
o e (¢) s110D Aayu3 96 14 suo|}os0|28Q 9dL}y
L Ly $3129(q0 %80} SNOI1v¥v123a
e 0 (z2) sodAy xsoy 3dA18NS ¥ 3dAl
[-¥4 ") s@|pog %S0 ° ") §UO1)0J0D|D29(Q JOQUNN
[N} L1 $UO1)}04D (D90 4SO} L6 cri suo|}jos0i20Q }29(qQ
(se¢+) SMNSYL 06 SNOI1v¥¥103Q 103r80 @°¢
€1 [+ SU01}104D 290 Burwouay i (24 (1) sowbouy
GL *S 98N0D|) 98N (18 72 2L82 $jusuwwo)n
® 3Snv1D 3Sn o8 SYNOVYEd ® LNINNOD ©°'C
$91pog $u01}031)1d0edg IONIYILIY MY | se|pog §uO}}DI|jid0edg JON3INIAIN AT |

SOT3ST3elS Jusdwojlels d3ebsibby welsAg sST0D03014 SUOTIBDOTUNUMIOD °*p-€°F 22T1dBL

4.3.3.2 Trusted Software Compilation Unit
Statement Characteristics

The statement size characteristics of the compilation unit

software are summarized in Table 4.3-5. The smallest modules
tended to be the support and utility packages. The largest was
the Downgrade Trusted Process package (DGTP) since it was desired
to preserve as much of the SPECIAL architecture as possible;
otherwise, the DGTP could have been divided into smaller
packages. The size of the ARPANET connection emulations (17%)
consists mostly of the MMI drivers. The non-trusted processes,
which were the Hiqgh Downqgrade Daemon (HDGD), the High Guard
Server Daemon (HGSD), the Low Guard Server Daemon (LGSD) and the
Terminal Interface for the Sanitization Personnel (TISP), were of
a moderate size with the TISP being the largest. This was to be
expected since their function is to sort and route the
transactions from one plaée to another. The statistics for the
number and types of statements used in the GUARD are in Table
4,3-5,

4.4 SOFTWARE PERFORMANCE ANALYSIS

This section addresses both general and application-specitic
software performance issues.

4.4.1 General Performance Characteristics

Very little was accomplished in assessing performance of the two
applications. Considerable effort was devoted to struggqling with
compiler problems which complicated basic execution of both
applications. Such problems included heap management problems
involving task stack size and adverse interactions between
DIRECT_IO operations performed from within tasks. Both resulted
in program execution being terminated prematurely with few clues
as to what was happening. Many features which could be used to
assess performance were not available in the partial compiler

4-49

P A PP R R I T . P P TP IR VR P CNE, PR L P I P P L

1102 woibosdqns puo Asjue €30} uUeeMm}eq ysINBu|}E)P JOUUDD |OO)} E§D1}8(}D}S

94n)j09; Opy pojuewejdw]-uoN

Ay11120) Bbuijiodes Josi19 d1j109ds 19)1dwod O E940AUI O4N] 3IDJNNOS owboud

suo)josp|dep ob6DyoDd 2140ueb ey} JO) SUOIIDIIUDISUI JO JOQWNU (DIO) Oy} JUPEEIdeI J0U Op BJUNO) wFOYY
c19 | 1dwod oy} Aq pejuswa | dwi }OU SDM DPy JO @in3joe) d119ueb eyy) edu|s uexD) som ysposddo s1seueb-opnesd vy

o

€1961 2691 §ouU1T jo JequnN 0 %) sedA} poejiwt)
LLL6 sly $jUsWe DS O JequnN o e s9dAj 930A)1g
SINNOD LNIN3LVYIS 81 0 sejpog eboxyd0g O
° t A suo)01 j129dg eboydsoy .
S3OVXOVd 0 ¢ A
S9¢L o (g£)s110) wosboudqng N
981 L") s91pog woiboudgng e
[’} e (Z) sosno|) ss9.PPY %) [-Y4 suo1}0J0|28Q woisboadqgng R
)) {Z) sesno) dey piod0Yy SHYYO0NdENS @ 9
1 ") @ (Z) sosnoj) doy uoijosewnul ") %) §)9QDY} N
4 ? ") (Z) sesnoj) yjbue e o §]1UPWO DS 0309 e
< SASNYID NOILVINIS3¥d43Y @ ¢ S9 %) §1USWIID)S uUINYIeY 4
(e*)62Z %] (Z) suo1)o1juDyisU] D1J9URH [0 S$judwWe}oD)s Y i1x3 ,px
[") (Z) suoi1oiD29Q 2140U8H €C %) SjueweInS %%0)8 T
1 SOIN¥3INIYD 0" ZI L %) sjuow)o)sg dooq .uu
L€ ") S}USWIID}S OSIDY cr ") §)USWR)ID}S 98D) ‘e
! v91 0 §19|pupy uoy}deoxy3 Ziz e S1URWeD}S 1 L
it ct SUO1)}DJD}|D8Q uol}dedx] 266 ") sjuowe}lp}s juswubissy e
SNOI1d30X3 @' 11 SININILVYILIS 9§ iu
)) §jrunqgng i %) §J03020) Vv o KN
901 1 4% S98ND D YIim 88 € LA RLLIRREA J wn B
S1INNBNS ¥ S3SNVID HLIM 001 SIINBIYLIY © ¥ 1 e
%) i s0dA| ss9d0y < o
8l ° 3§20 g SNOAZIpPUIY S 8 sedAj pisodaey B
[} ") SUO |} pPUO) PIDNY L 9 s9dA} Aoiuy N
L Q SJUWI DS 9)DUIWID o 1} jultogd poxi 4 En
e) S1UPWa) DY YJogy] 0 tutod Bbuiyoo)y a
]] (Z) s110Q Aayuz powy)]] sedA) joey Ly
] @ (Z) s110D A13u3 [ouo1}|puod]] sod4) Jebejuj L
] 0 $}10M OA1 309|085 L (%4 s9dA] uorjpaewnul zh
) e (Z) sjusuweyo)s Apjeg)) (Z) sedAy peatieq .
€S ") Sjuowajols jdedoy .1} -4 suoj}bipnj|deqg edAiqng Zﬁ
e e $1j00 Aiju3 8l LE suo1)1biD|d0Q 0dL} _
vl \ €322/qQ xso) SNOI11v¥v103Q
]) (z) sedAy xspy 3dALANS # 3dAL
(-3} ") s9ipog WSO ° ") SUO|}DJD D8] JOQUNN
vl } $uo0) 304D |d9Q YED] 69+ or suo1}D1D|2eQ }190(qQ
(ese) SHSYL ©°6 SNOI11vdY123Q 103r80 '€ .
69 ") suo|}pi0j29g Bulwouay ") L (1) sowboigyg e
[4A 14 98ND | o8N 689¢ x4} sjuewwo) L
¥ 3Snv1d 3Isn @8 SYAOVYHd ® ININNOD 0°2 -
| s9)1pog suo}0d1j190dg ION3YISIY WY | so)pog SUO0}}DIYjid0dS 30N3Y¥3IS38 m | .

SOT3ST3e3S jJuULWI3P3lS 33eboaibby saemljos pajisnil °G-f ¢ 9T14BL o

prg——p———— T W T A S e e . ;

» implementation. Such features included timed and conditional _
k entry calls, lack of task priorities, and lack of pragma INLINE. -
1

It was learned that the underlvying tasking model for context
_ switching was the run-until-block model. Once a task gained
. control it would retain control until some action, such as an I/0
F operation, caused the task to become blocked and force a context
switch. This problem was circumvented by using a "null®" task
called intermittently from tasks to achieve a context switch. A
second problem was detected with the activation of the multi-
terminal capabilities. TEXT_IO was completely synchronous. An
input request at a terminal resulted in all other activity in the
system being suspended until that user entered the appropriate
data. This is clearly unacceptable with regard to usability of -
the compiler and runtime support environment. This problem was
never satisfactorily corrected. However, a partial solution was
implemented for the sole purpose of permitting the development to
progress so that as many features of both applications as -
possible could be implemented. The solution was to make slight
moditications to the MMI and use the VAX tvpe-ahead buffer
capability to gueue "null" commands which would permit the
various tasks to receive control as context switches occurred. -

It is important to note that althouah both of these run-time
support environment aspects are specifically not addressed as
requirements of /M18183/, they can directly affect the usability
of an Ada compiler system.

None of the Ada-specific Efficency-II criteria of Table 3.5-1,
Section 3, were evaluated except for unchecked programming.
Each criterion, devending on the nature and extent of its use,
could significantly affect Efficiency-II.

4-51

cL . . - P e e m e m et et A
AR N T T S PR P - AL TeuTe L. L DY
.....

S PP o S G R S SO W Sl N AT E PO L, o) B, S, VU L LT T T Py P DSt T T - TR D S D! S D P BT B o)

Date g prT—— R — a n " . v w— T

4.4.,2 Communications_Protocols Performance Characteristics

Early in the system integration, several packages were
reorqanized as a result of a design review. This reduced the
number of packages in the architecture and resulted in faster
execution. Analysis determined that the progqram was being linked
dynamically during execution and that execution was faster since
there were fewer packages. This situation has some distinct
negative implications with regard to how software architectures,
which are desiqned for transportability, reusability and
maintainability, may be influenced by performance optimization or
run-time environment characteristics. At the very least, run-
time considerations can not be iqnored during the design process.

Unfortunately, because of compiler-related problems and

limitations, little performance testing was accomplished on the
communications protocols application. Little can be said about L
the software quality factors which affect performance. Tests . .
which were planned are identified in Table 3.5-1, Section 3.
There were several tasks and subprograms in which the pragma

INLINE could have been used very effectively to achieve execution :
efficiency while at the same time preserving the overall software meriad
modularity. Significant, successful use was made of access ’
variables and unchecked conversion for obtaining/manaqing bufter
space from a compiler-supplied memory management package.

4.4.3 Trusted Software Performance Characteristics T

All the tests indicated in Table 3.5-1, Section 3, were performed]
successfully., Stress testing, in terms of buffer/message O
saturation, and the emulation of KSOS-related errors were not , 1
performed. A compromising factor was that the original .;
architecture was siqnificantly altered to achieve an executing Lfﬂﬁ
program given the compiler problems and limitations. The ability o
to preserve tiles across GUARD activations and assess the

-3

t

w
. [\ %]
Atk o ala s

RN el

. - P S SN S T @ ot et e et ata

. - PRYRI . . <L T et AR NPT " * VPR o P P AP . v
LT T N WK SRS E R SO S i T AalAlaelatalata " alaal a LA A P P 3 P | a o= o P

m. CEa v .-i.'("rv-_-»-rv"*» R —— . TP ——

recoverability aspects of this feature was not possible, since
the files were implemented as memory-resident queues.

To evaluate the trusted software implementation with respect to
Correctness, Integrity, Reliability, Robustness and formal
verifiability, a validated, full-capability Ada compiler is
needed. The original architecture can then be implemented and
evaluated with respect to SPECIAL, the interpretation of the
SPECIAL requirements, the suitability of the Ada features used,
and the viability or necessity of placing further restrictions on
the Ada language.

4.5 SOFTWARE ERROR ANALYSIS

4,5.1 Compilation Errors

A summary of the error types for both applications is given in
Table 4.5-1 by generalized usage category. This information was
gathered from early compilations and is a reasonable indication
of what difficulties were encountered in the initial use of Ada.
Typographical errors were not considered.

The majority of errors fall into four broad categories:
Undeclared Identifiers (25%); Improper Type, Subtype, Object
Declarations (20%); Unresolved Subprogram, Task Entry Calls
(15%); and Type Conflicts in Executable Statements (11%).

The first of these can be attributed primarily to carelessness in
the need to declare all objects before they are used, failure to

specify proper context and use clauses, and simple misnaming
problems. The second can be attributed to the detailed syntax
formats required by the type, subtype and object declarations 1
where both constrained and unconstrained types are intermixed and _ _.
the fact that unconstrained types are permitted in some :”W
instances, but not in others. The third can be attributed to the o

failure to provide context and use clauses in order to achieve T
the appropriate visibility. The fourth category indicates an

:, 4-53 L

i o IR S S L S D T S T S S T IR
. - Lo . St e, - .- . . . L. N St e “ Tt At . . [I B ISR P BN .ot RN LR
R - et . e T e Ta T T R . Ct T T et et L tataMLt . A T TR N H O S S P T UL I U TN TR S o e
- - G et . DR W R S A UL . S R S T TR W P MY Y L WO PR SN L PR T TR Y. | handhaedsidnedion b demedidbte e fing dondion et

Y 9 > YT i e s e
DEEOaL S an A 4 e p—————T T Y \ ZalEans) T

) e oA
a ..l - e e , [) e .7 o “
]
. . _]
s A
3 4
[]
‘ o
“A 0001 597 w101 -
. 0Ll 62 SHIHI0 2
068 9£2 wio18ns]
- v ALIGISIA 123410 =
HSI18V1SI HO 1HOJWI 01 0IIVS,
- v SNOISSIYAXI QIS1TVAD INISN NIHM]
NUYW-IdAL INILSIXI-NON/LIIUHOINI, g
61) SINIWILVIS NUNLIY, o
0z G SHOUYI XIONI AVHuY, x

0¢ G SINIWILVIS ISV, - ;
92 L SAHOM G3AY3ISIY 40 ISP TVOITI, -
! 92 L SIINGIYLLY ONISN NI SHOHYI, x
8'E 01 AINILISISNOINI INIWVN HIld1INIal, y
| 0Ll 62 $3SS30IV 133740 NI 19114N0J 3dAL,]
| 051 o . STIVD AULN] <
| NSVL ‘'STIV WVHI0UdENS AIAT10SIUNN, o
002 b5 SNOILYHV1230 123180 '3dALENS ‘IdAL, b
052 L9 SHII411NIGI 0IYVIDIANN, X
! 19VINIOHId SHOHYI HO ON g
i S10X3g pajeray-uorlefrdwod -y-¢°y o149el .

initial lack of awareness of the implications of strong typing
and the need to assure compatibility of the types at the object
declaration level.

4.5.2 Execution Errors

The error data gathered during the execution of the programs,
both during debugging/testing and software integration, were not
as systematically collected as were the compilation data. The
difficulties with the compiler would have required considerable
effort to completely sift the compiler related errors from the
programming errors. In addition, the desire to obtain executing
programs resulted in placing emphasis on reorganizing the
software architectures either at the system or module level in
order to progress, and this would have presented another obstacle
to error data collections and analysis.

However, some noticeable error patterns were detected. A number
of errors were caused because default initialization values were
not provided as directed by the programming guidelines. In the
communications protocols application, a significant number of
problems with exceptions were encountered. There was a failure
to include exception handlers or to use the compiler-provided
exception handling and reporting facility. 1In the trusted
software application, exceptions were incorporated more
systematically from the outset of the design, due to their being
specified directly in the SPECIAL specifications. The exception
reporting facility was used systematically as the only available
debugging tool other than user-produced execution traces
accomplished via TEXT_IO.

Several one-of-a-kind errors were encountered. During initial
integration on the communications protocol application,
elaboration errors were encountered due to: 1) incorrect context
clauses being specified, 2) incorrect or out-of-date code files
being detected, and 3) objects being initialized to out-of-range

4-55

......

PO A das -y

" A Saun . T W

values. Several standard Ada exceptions were also encountered:

1) TASKING~-ERROR resulting from debugging activities,

2) CONSTRAINT-ERROR resulting from assigning out-of-range values
or misuse of discriminants, and 3) Access checks resulting from

reference to access objects with a null value.

Numerous run-time-system errors were encountered which were
generally uninformative as to the cause. They were generally
related to task stack overflow conditions which occurred as a

result of a task containing too many nested subprograms,
subprogram calls, too much inline code or interaction with
DIRECT_IO. Once the cause was isolated, the software
architecture was modified, if possible, to reduce the problem.

4.5.3 Software Error-Architecture Correlation
4.5.3.1 Communications Protocols

Some global variables were used to communicate overall system
status between application layer entities and lower level tasks.
Without the use of pragma SHARED on these variables, the program .
was clearly erroneous. Although this was thought to be the L oed
source of some early errors found during debugging, integration
and testing, it turned out not to be the case since code
optimization was not occurring. This problem did not occur in
the trusted software application for two primary reasons. Firét,
the use of global data was completely eliminated because of the)
nature of the software., Second, the interprocess communication .

was implemented via the sending and receiving system-control T
transaction which received the same routing and control as other '"-;
transactions except that they could affect the state of the ‘
system depending on Security Watch Officer (SWO) actions.

Another area in which error types can be correlated directly with
the architecture is in the case of exceptions. To the extent
that the software architecture is not designed to handle

4-56

exceptions, the architecture will not be very reliable, modular
or robust with regard to error processing.

Another type of error occurred in which tasks used as a resource
monitor were accessed via one or more encapsulating subprograms
with the data normally manipulated by the task contained in the
enclosing package body. In some instances, the data were
manipulated by the subprograms directly as opposed to by the
encapsulated task, with the result that the data would not always
be assured of being correct. The solution is to not use mixed-
mode data accesses and to place all controlled data within the
task itself if system limitations permit.

4.5.3.2 Trusted Software

No specific errors occurred in the trusted software application
that could be traced directly to architectural
considerations,which indicated a misunderstanding of Ada
principles or semantics.

4.6 PROGRAMMING SUPPORT ENVIRONMENT

This section provides information on the compile-time and run-
time environments which had an influence on the project and which
may have an influence on future projects.

4.6.1 Compile-Time Epvironment

Because of the limitations of the NYU Ada/ED translator-
interpreter, it was used only to verify the results of the
development compiler regarding syntactical and semantical
correctness of the code, to prototype ideas or achieve basic

understanding of features. The version used was the validated
version, 1.1.

4-57

A validated development compiler was not received in time to be
used on the project. Three successive versions of the
development compiler were used in both applications. All three
versions were partial implementations in that: 1)MIL-STD-1815A
was not completely implemented, 2) features were not always
implemented as per MIL-STD-18l15A, and 3) there were numerous
errors or unreasonable limitations within the features which
required alternative designs or implementations. A summary of
significant deficiencies and their impact is provided in Appendix
D. Although some of these features and their disposition are
more significant than others, each one has had some impact on the
implementation and on the overall schedules. Their impact on
design was minimal since the design direction was to proceed as
if a full, validated MIL-STD-1815A compiler was available for
implementation. Some of the features which caused significant
consequences are summarized below.

In both applications, there were substantial opportunities to use
generics for the definition of queue managers and other entities.
The use of generics here would have saved considerable coding and
debugging time, and in the trusted software application could
have eliminated approximately 5080 lines of Ada source code that
were "instantiated" manually.

Only one compilation unit could be compiled at one time. Both a
package specification and its corresponding body had to be
compiled in the same compilation stream with no other entities.
Another lacking feature was the separate compilation of
subunits; bodies of code which grew larger than anticipated
within a package body could not be stubbed out as subunits with
separate bodies. As a result, package bodies tended to be large
and required considerable time to rework.,

Several features were lacking in the tasking area. These included
task types, conditional and timed entry calls and task
priorities. Task declarations were limited to one level of

4-58

—~— v— - T e e = = =~ w = e
Dl 2 e dn-me e s S C IR S su G S Shag g T Ll Bt Sl i 4 ——— Bl il b

nesting downward from the outermost unit. Although none of these

was catastrophic, in the aggregrate they represented a large
nuisance factor.

4.6.2 Rupn-Time Environment

Several problems were encountered with the run-time environment
which resulted in delays and workarounds. The most significant
was the limitation on the task stack size. The result was that
calls to tasks which contained nested subprograms or large
amounts of in-line code frequently resulted in an ambiguous
system error being produced and the program terminated. A
similar situation occurred in making DIRECT_IO calls from within
tasks., Other run-time environment problems were that tasking was
mechanized using a run-until-block mechanization and that TEXT_IO
was mechanized using synchronous instead of asynchronous input.

The run-until-block mechanization was circumvented; no truly
effective alternative was possible for the synchronous TEXT_I/O
problem.

ro

PN

A major difficulty is that many features dependent on the run-
time environment are not specifically identified in the LRM nor
are they required to be provided in Appendix F, Implementation-
Dependent Characteristics. To the extent that run-time

P PRIy

environment parameters are not known, there may be significant
problems with planned software architectures and such problems
may become visible only during debugging or, worse yet, during 1
system integration,

e
‘a_a

e e B R AP N T T U S L Y
RS NCIRAL VWil S SO, S, S . T Sy L, TR ey Tty T UIE T T D U T LS NN T DV PO Ly S P . P] - - oW

SECTION 5
CONCLUS IONS/RESULTS

5.1 SOFTWARE DEVELOPMENT METHODOLOGY

This section presents conclusions on the software development
methodology which was formed and used.

5.1.1 Macroscopic Design Phase

The three components of the macroscopic design phase, the virtual
package concept, the object oriented design diagrams, and the
macroscopic PDL, have worked very well., They have accomplished the
goal of achieving early Ada awareness in the designs while
permitting late commitment to details. They have provided
visibility into the system software architecture at a very high
level and fully supported the software engineering principles. The
approach is compatible with the DOD-STD-SDS design documentation
and easily adapted to the documentation standard. A summary of the
compatibility levels is shown in Figure 5.1-1. The methodoclogy
proved readily able to support the use of existing models and
requirements such as the 0SI Reference Model and sublayer models in
the communications protocols application and the translation of
both English language and formal SPECIAL specifications in the
trusted software application.

One major problem area which will require further analysis to
achieve a more solid methodology is whether or not the PDL should
be strictly compilable. If substantial quantities of TBD_INTEGER
type declarations and TBD_CONDITION objects are used to make the
code compilable, the code can become rather difficult and tedious
to read, thus diminishing the overall utility of the PDL.
Regardless of the outcome of this issue, considerable emphasis
should be placed on achieving package specifications which are
correct, complete and consistent at the conclusion of the

UGG W ey

. RS
- \;-..‘. ‘

e —————

S AEm on s cns s ce . ane o

S§ds-aLs-dod yatm A3rirgeiredwod Aboropoyisw “*[-T1°G 24nbig

MO14 TOHINOI ‘M014 VLVQ 'Vivd
‘SLINN ‘(13A31 MO1) 2SI
INIWNI00 N9ISIA aINVLI0 IHYMIL0S

MO014 1041NOI ‘MO VIVQ 'Viva
‘(13A31 dO1) 2SI
ININNI00 N9ISIA 1IAT1-d0L FJHYMIL0S

SLINM 252 ‘(13A31 MO1) 389
(13A31 dol) 259
1982

NOILVHIILNI 3SI
IONILSIL LINN "9NIA0D
N9IS3a a3nviia

N91S30 13A71-d01
SISATVNV SINIINIHINDIY JHYML40S

epy
10d epy
N9I1S30 JId0ISOHIIN
10ad epy
‘N91S30 G31NIIHO 123rg0
"J9VIIVA TYNLYHIA
‘N91S30 J1d0ISOHIVIN
NOILVYINUO4NI NOISIa

WYHI0Udans ‘19vNIvd epy

VNIV TVNLHIA

WI1SASANS/INILSAS
AHJHVHIIH SININOJINOD

NOILVHIILINI WILSASENS/WILSAS

9N830/3009

NOI1S3d J1402S0HIIN

NOI1S3a J1d0ISOHIVIN

NOILINIJIAWILSASENS/WILSAS
ISVHd INIWNd013IAIQ

R R e T T T SR
‘-‘A‘A"‘A‘..‘-.‘l--..‘.l‘L...’!.i

FUGIE Winlly UhAR- Wt V-

— T Y T W Y Y Wy ——y— w~ =~ = o~ o~ = = m = - = = — 4=

The virtual package concept, which exhibits some of the
characteristics of the Ada package, is the primary tool for
capturing the OSI Reference model concepts and the system
requirements which are presented in the detailed architecture of the
system. The criteria that inhibit an excellent evaluation in all
the development quality factor areas are hardware independence,
operating system independence (including the implementation run-time
support mechanisms), and the self-descriptiveness criteria. In
communication systems, communication device specific interfaces
cannot be ignored. Dependencies on operating system/executive
characteristics must be localized to the highest degree possible.
Where the inter-virtual package architecture analysis identified
poor characteristics was in self-descriptiveness. This evaluation
was based on the choice of names for package names, object/type
declarations, and package entry point names (tasks/subprogram
declarations). A considerable amount of renaming activity occurred
at all levels of the project. A strong naming policy needs to be
formulated, implemented, and enforced across all development phases
to properly capture the readability potential of Ada PDL and code.

The architecture exhibits a high degree of module coupling between
the TCP/IP/ADCCP server modules and the System Management modules
which reduces transportability characteristics and increases service
interface complexity at modules below the TCP layer. An alternative
architecture that could eliminate or reduce this coupling would be
to define the various System Management modules as generics to be
instantiated in each layer. Although this approach would enhance
transporability and reusability, it could adversely affect
Efficiency II. Some experimentation would be required to draw any
firm conclusions.

5-16

Axeumng sTsATeuy abeyded [BNIITA-IDJUT WDISAS ST00030Id SUOTIRITUNUWO)

MR e o

*1-¢€°G6 @anbtyg

pe}DN| DAY JON — N 4009 — 4 AK10}2D0}81}0§ — § po09H A19pA — A Jud)|9ox3 - 3 :puabaen :
| 41 Al | i3 | ! I Al ! | | |]] | | I | ALITIBV1N¥OdSNYY) 2,
et A e B e e e e s S e +———t———+ + e T
I N a1 | | 3| I I~ I I | | | | 3} i | ! [ALITI8YLSIL 1
———t——————4 + + + + + e S et S S At S B e e et N
! l a1t Al] | 3¢ | | I Al I 3|] | | |]] I | ALI718vSN3Y 3
———t— et —————+ + + + + + + + + + + R e i e e ieatat b N 3
3N g I N | 3 | | | | I | | Al 3] 3| | | { | ALITIGYNIVINIVA d ¥
i e R St S S e S At B S B S S S i S S Rt o v
| | ! [| | 3 | | | i | [] | | | [| 3] | ALIT118vVHIJONILNI 1M
—_——t—— et ———p et —————— = 3 1
| I 41 | | {3 | ! | (N | 3| | {] | I | | ! ALITI81X314 A 4
Bt e e s sl e e e S e e el e i e e e e Al e e Rt 3 (o]
| | | | |] I | 3 I [! | | | i3] | | | | 1 AON3ID1443 a s
R e s At e e e At Gt S e e B Sl e Gttt "
Al A s 4(3 M3 Wl A | A [N3I[S 3] N |3 3|33} A JLa]av] Als s]| s |aN|la SHOLIV4 —_ ﬂ
Ll 1]|s1|o3|d3| t}| st looftololoulysl st |NoOlt a] o s)s]|]sltoloa ALIIVND]
I I |3 3N L|n o] 1 P livlovl 1T INV|nv|l T |3yt vl NT I3)3 |11V JUVYML 40S n "
1 J IN S|3 S]L S| 0 y 1 njin N 1 I ML M n ¥l1 gl 3 N N N LY -] “
I 1 13 Jaaloa|l 1 | vivolyo|l v |agaloal v {3 3|V Ll 3|3t aflvvln
8] 1 |a |NS{3s| g | v I1 Nt Nl L IN¥3E ¥l N s|s | t|aAalfN2]D vIN3ILIND .
v gl |3 |1 v | n[NV[sv| NI|3IV|LYl 3 [V |o I t |31 o1l AL1IYND :
3| wL |aolrof | a3 1N 3 JdHITH N[N [N s| o111 |mNlV JNVYM140S
Ol 1 |d |3INHN 3|0 In Jo R ER T 3 |v [n Nl N[d] Vv inn
v|isit Jat|jottda | mwi3 |o nila |[d 9 |mw Jo ojlo|w]|olomn
9] ¥ [N L]y 1} o0 3 ¥ IN ¥ o) ol olol 1 |omnm
1 2 11 viv v d 1] v 2| N o}
S ¥l ¥ N S ! n] .
3 3l 3 I N " :
a d| 4 I "
o] o o}
2

~ 8 t."‘A‘-'.A

S-S

P

W

" v —— — — ey

To use Ada effectively, a solid software engineering basis is
required to assure that such Ada features as packages and generics
are properly understood in the context of transportable, reusable
and modular software. Without such an understanding, many of the
Ada features will be used improperly or suboptimally resulting in
many potential Ada benefits not being achieved. To have an
effective combination of Ada with software engineering principles,
a software development context consisting of a well-defined
software development methodology, compatible software tools and a
compatible Ada programming support environment must be provided.

There will be no shortcuts to learning the Ada language because it
1s complex. Moreover, the ultimate objective is not just learning
the language, but rather learning to use the language effectively
to achieve software engineering objectives. The one-week syntax
and limited semantics training course can be eliminated from
consideration. A much more substantial course in a broader
framework needs to be implemented.

5.3 SOFTWARE ARCHITECTURE
This section presents conclusions on the designed and implemented

software architectures and summarizes results of the previous
architectural analysis.

5.3.1 Communications Protocols System

The following paragraphs present the Communications Protocols
system software architectural analysis summary and conclusions.
Subjective evaluation weights of excellent, very good,
satisfactory, poor, or not evaluated, are used.

5.3.1.1 Inter-Virtual Package Analysis Summary

Figure 5.3-1 provides the summary of the inter-virtual package

architectural analysis documented in Section 4 of this report.

5-14

model and package TEXT_IO. The tasking model was the run-until-
block model which places a significant portion of the burden for
achieving context switching directly on the programmer. Although
this model may be acceptable in some types of applications, such as
navigation and guidance control programs in missiles, it is
certainly not a suitable algorithm for implementing communications
protocols in multiple layers in a communications node. The Ada
standard does not specify whether the mechanization of TEXT_IO
should be synchronous or asynchronous. For single-~user
applications, either one will be acceptable. Since both
applications were implemented for multiple-terminal users, a
synchronous TEXT_IO mechanization in which ALL tasks within the
entire system wait for a given user input is not acceptable from a
usability standpoint. Although these two examples could possibly
be dismissed as artifacts of a prototype, incomplete Ada compiler,
they are representative of the type of problems that can ensue from
the lack of specification of such entities.

; 5.2.2 Ada Language Education

One significant difficulty encountered is simply learning the Ada
language. This is difficult for several reasons based on project
experience. Ada includes many features which were previously
available only in experimental or very special-purpose languages.
Individuals need to learn not only the syntax and semantics of Ada,
but also the concepts and ramifications of the features. Ada also
demands attention to numerous details ranging from top-level ‘
logical and lexical architecture considerations down to which
components should be private or limited private. This becomes more
difficult when features interact with each other. The Ada
reference manual as it stands today is complete, consistent and
correct, but, unfortunately, it is not very usable from a practical i
user viewpoint because of the highly precise language used to ey
describe all the interactions and subtleties. Thus, it seems that ' ,ﬁ
some alternative form of a manual is required to make the use and]
learning of the Ada language by programmers who are users, not
implementors, easier.

1

. Ca . :
Ble g aa e a4

5-13

In the area of software performance, particularly in Efficiency-II,
little was accomplished regarding actual evaluation of the Ada
features. There were a few instances in which Efficiency-1II
features were used and several instances in which some of those
features could have been used had they been available. Unchecked
conversion was used considerably in the communications protocols
application. Other features which could have been used had they
been available were the pragmas PRIORITY, INLINE, OPTIMIZE, SHARED
and SUPPRESS, and timed and conditional entry calls. One negative
factor was encountered in the use of recursive subprogram calls in
that task stack overflow occurred due to a significant number of
recursive calls made from within the task itself. Although this
was subsequently corrected by converting the recursive
mechanization to an iterative one, the problem warrants
consideration. To the extent that large numbers of recursive
subprograms are used, the calling sequences are highly data
dependent and exception management has not been properly addressed.
The program, although correct, may not be very reliable.

One area of considerable concern is the implementation-dependent
features such as the pragma PRIORITY and the declaration of
representation specifications for record types. To the extent that
these features are implementation-dependent and a compiler
implementor is permitted to NOT implement those features and still
have its compiler validated, considerable difficulties may result
in attempting to produce transportable and reusable code. If
representation specifications are not provided, encoding and
decoding of protocol packet and frame headers will need to be done
explicitly either in Ada or via assembly language routines, in
which case the choice may directly impact transportability.

A major concern is those features or alternatives which are not
specified by the Ada standard and are not identified as being
implementation dependent. Two significant areas in which
difficulties were encountered are the mechanization of the tasking

5-12

Aa

TRUSTED COMPUTING BASE CONCEPT

SECURITY POLICY
OPERATIONAL ENVIRONMENT
PERSONNEL

APPLICATION REQUIREMENTS

‘ l

(NON-SECURITY PATH) (SECURITY PATH)

I
SYSTEM SEGMENT SPECIFICATION (A)
NCRMAL REQUIREMENTS

TCB REQUIREMENTS
EVALUATION CRITERIA }__. SECURITY POLICY _ -

MANDATORY/DISCRETIONARY ACCESS MODEL - } 7
| | .
| [.
SOFTWARE REQUIREMENTS SPECIFICATION (B5A) ! !]
Vo HAROWARE } } _
OPERATING SYSTEM | : 3
MAN-MACHINE INTERFACE ! :
— - FTLS/DTLS —— | -
NON-TRUSTED SOFTWARE IDENTIFICATION (Ada//ANNA) —_ : g
TRUSTED SOFTWARE IDENTIFICATION (Ada/PDL) } |]
| .V
] :
SOFTWARE TOP LEVEL DESIGN DOCUMENT (C5A) : {) 4
VIRTUAL PACKAGE DESIGN | 4
FILS/DILS ——J ! :
MACROSCOPIC DESIGN
opIC * (Ada/ANNA) ——- i 4
|
|
SOFTWARE DETAIL DESIGN DOCUMENT (C5B) ; LSfD LS { |
MICROSCOPIC DESIGN g mis/&m - {
(Ada/ANNA) ——- |
\ |
SOURCE CODE | ——— ~ FnlS/Dals ===———
(Ada/ANNA)

Figure 5.1-2, Trusted Software Design Methodology

5-11

— —y e o e s aan e oon e o Yy —— san ans s e S R An A S T I V]
. (EMArEaS sy Bt e nes e S mase B s e A A

implemented using access variables as a way of transferring the
FROM_ULP and TO_ULP record structures. Since this mechanism -
provided both efficiency and flexibility in separating header and
data portions of the segment.

5.1.8.2 Trusted Software

The design methodology functioned very well for the trusted

software application with one exception. The primary difficulty

was the translation of given SPECIAL requirements for the UGTP and

DGTP into Ada effectively and at the correct level of detail. 1In ’
terms of capturing the original requirements and translating them

into Ada terms, the methodology was successful.

To produce a more effective methodology suited specifically to the ’
development of trusted software, the methodology will have to be
restructured into two parallel development paths, one for the

trusted and the other for the non-trusted software. Separation o
nust be established at a very high level, namely, the virtual . ’
package level, followed by further separation of visible and .
nonvisible portions of the trusted software at either the virtual

package or object oriented design level. Figqure 5.1-2 illustrates -
how such parallel development paths might be implemented and shows ’
the successive refinements of the trusted software using Ada PDL

and ANNA to produce the corresponding formal and descriptive top- S
level and n-level specifications. B

5.2 ADA LANGUAGE EVALUATION 1

This section presents conclusions on the Ada language features
which were used and on Ada language education and training issues. ’

5.2.1 Ada Language Syntax and Semantics

b ok ua B i

The features which Ada provides that can be used for producing top~ _ »
level designs are excellent. These include such Ada-unique
features as packages, generics, tasks and exceptions.

om

5-190

'@

\e

PP W SLEE U

5.1.8 Application-Dependent Characteristics

This section presents conclusions on the design methdology for
those cases in which the application characteristics have a
specific influence on the methodology.

5.1.8.1 Communications Protocols

The design methodology was highly effective in permitting the 0SI
Reference Model concepts to be captured and refined through
successive levels of detail into the final Ada code. The
methodology is very capable in terms of taking generalized
communications system requirements and translating them into
effective software implementations which can achieve
transportability and reusability. The graphical nature of the
early portion of the design provides an excellent way of minimizing
irrelevant details, but at the same time permitting key design
decisions to be made highly visible.

The decision was made to reenter the TCP and IP specifications in
their entirety since it was not clear which sections or subsections
were to be used and to what extent. Another factor influencing
this decision was that much helpful descriptive information was
contained in the Specifications and that the Ada-like PDL had the
strong potential of being assimilated directly in both the
macroscopic and microscopic levels of design. Significant time as
saved by reentering the Specifications in their entirety since this
enabled portions to be used selectively, as appropriate, and in
different phases of the design.

The second i-sue involving the degree of design information implied
by the TCP and IP specification was resolved through subsequent
discussion with DCA personnel from the Protocols Standards Group.
They indicated that the intent of the specification was to assure
functional compatibility of peer layers and not to necessarily
achieve inter-layer interoperability within a single machine or to
achieve overall transportability. Consequently, the interface was

5-9

. A .
P U P T S

design may then be well on the way by the time the full macroscopic
design begins. Similarly, an overlap should occur between the
macroscopic and microscopic phases, and between the microscopic and
code/debug phases.

Based on the experience with the transition to the TCP and IP from
the SIP and the modification of the ADCCP, the various levels of
the design methodology work very well in supporting the
identification, isolation and modification of units to meet
changing requirements.

To provide more control of the lievel of detail in the macro and
micro PDL, two factors need to be considered. The macro PDL needs
to be reviewed carefully to be sure that it represents the correct
level of detail, since both too much and too little detail will be
harmful. Once this has been accomplished, and the level of detail
has been determined to be correct, attempts should be made to use
PDL expansion ratios to control the quantity of micro POL.

This will assure a reasonable progression from the macro PDL and
provide a reasonable base to progress into the code/debug phase.

Another conclusion regarding the design methodology is that several
small steps will be more effective in achieving a satisfactory
design than a few large steps. It is possible to become
prematurely involved in many Ada details that need not be
considered to achieve the top-level design.

In conclusion, the macro/micro levels of abstraction, if they
contain the correct level of detail, can assist considerably in
making modifications to existing designs and code by enabling
quicker identification of modules which are to be retained,
deleted, modified and added. By following the macro/micro design
for new requirements, it will be possible to retain the overall
software architectures and follow the same methodology for the
inclusion of the new requirements.

yupe

0

Lt B R

These should have been stated "Use [limited] nesting..." and "Avoid
[excessive] package [and subprogram] nesting...". In many
instances the guidelines will merely serve as guidelines and some
judgement and interpretation will still be required. Additional
guidelines need to be formed to specifically address
transportability and reusability criteria and to identify such
standard information items as programmer name, completion dates,
and other data which may vary between facilities.

A preliminary set of trusted software design/programming guidelines
has been formed. This set of guidelines is viewed as only the first
step in a series to achieve a firm set of guidelines. The major
problem is to form a set of guidelines that satisfy three
fundamentally conflicting criteria: 1) being able to achieve formal
verification of the designs and the implemented code, 2) being able
to retain a useful subset of Ada constructs, and 3) being able to
minimize unauthorized information flows via covert channels. To
make further progress in this area, the full set of designs or a
revised set based on the use of ANNA must be implemented.

Extensive static and dynamic testing must also be conducted to
determine the suitability of the restrictions and whether the set
is complete.

5.1.7 General Software Development Methodology Considerations

The methodology has worked very well given the limitations under
which the project was conducted. Several points need to be made
regarding supplements to the methodology. A key component of the
methodology is the need to overlap the phases in order to minimize
interphase disconnects. Before completing the requirements phase,
some amount of the macroscopic design should be initiated, probably
at the virtual package and object oriented design diagram level, to
provide an assessment of the completeness, correctness and
consistency of the requirements as well as the feasibility of
achieving a reasonable and satisfactory design. In this way, the
requirements will receive a degree of validation, and some initial
design prototyping will have been accomplished. Portions of the

5-7

T o -

concurrent processing situation with the expectation that most
problems will be related specifically to tasking itself.

Whatever approach is taken, a sophisticated source level debugger
will be required to effectively debug concurrent processing
’ implementations. 1In order to have the debugging be efficient,
l access to such entities as task queues, task priorities, and task ’
: entry queues will be required so that experimentation can be
conducted without the need for frequent recompilation.

Although the problems cited were aggravated by compiler problems,
each application was self-contained and under the responsibility of
a single individual. 1In large system applications which may
involve hundreds of tasks distributed across several groups of

programmers, a systematic way to achieve the integration will be
required,

5.1.5 Design Guidelines

The design guidelines developed were generally effective. They were
limited primarily to indicating what level of detail should be

supplied at each level and did not explicitly address application- .
specific requirements. This area could be expanded further to .
address application-specific requirements with regard to

performance issues, and software transportability and reusability

issues. Additional design guidelines will also be required for
implementing a distributed system where tasks may reside on i 1
different processors at different times.

5.1.6 Programming Guidelines

The programming guidelines developed were generally effective when]

used, but there existed some difficulty in interpretation. For
example, two seemingly conflicting requirements were "Use nesting

e
A Loatatl?

of modules in order to simplify or minimize overall compilation 1
dependencies and number of compilation units." and "Minimize

package nesting unless exceptional requirements exist."

5-6 e

——

were integrated and functioned in a serial manner, any subsequent
problems resulting from the concurrent processing activation could
be related directly to tasking activities. After the serial
integration was acomplished, the transition to the full concurrent
processing structure was accomplished with little difficulty except
for the task stack size problems.

In the communications protocols application, the integration
approach was rather different: the approach was to make an initial
integration pass through all layers to establish basic interface
communications, followed by another iteration to enable all the
basic features of each layer, followed by another iteration to
enable the special processing requirements (timeouts, missed/
duplicate segments, etc.) and any remaining detailed requirements
of each layer. A problem occurred in “hat as additional segments
of code or tasks were activated, the characteristics of the
software changed, with the result that new errors were encountered
in areas which previously worked. Although some of these errors
were traced to null access values and other programming errors, a
significant number were also related to task stack size problems.

Based on these experiences which are heavily colored by the
compiler problems, no firm conclusions can be drawn; however, some
alternatives can be explored. A factor to consider is that each
application includes approximately 38 tasks, and all tasks are
continually active once the system has been completely activated.
One approach to minimizing integration problems would be to have an
executable PDL which allows task skeletons to be executed early in
the design process. Another approach is to simply deactivate the
code of the task bodies for the express purpose of achieving some
initial integration. Another approach is to integrate and test
small groups of tasks in their entirety and then integrate them
into larger groups to the extent that this is possible within, for N
example, a virtual package boundary. Still ano’.. . approach is to éj
attempt to do the fundamental integration piecewise using serial 4
processing to the extent feasible and then "convert" to the

T A TG IR IR SRR PR SV PRI I R
IR S e e e T e X L T e S S T T T e e e e e e e e
R S A S I T P P S PP A T A T A IR I A T P PR L TG W PO S S Ao,

: 5.1.3 Code/Debug

p The coding process entailed no special difficulties in and of

| itself or with respect to making the transition from the
microscopic designs, aside from the fact that some of the micro
- designs were underspecified.

Nevertheless, some other major difficulties had to be managed. The
Ada compiler deficiencies, particularly at the detailed statement
level, were detected incrementally resulting in initial confusion
i, as to which problems were Ada problems and which problems were Ada
compiler implementation problems. This was compounded by the fact
that, initially, macroscopic- and microscopic-level PDL code was
generated as if a full Ada compiler implementation were available,
but the PDL was not actually compiled. There was also insufficient
effort expended to conduct some rapid prototyping either for the
purpose of becoming more familiar with the compiler, to resolve
design issues, or to improve understanding of various Ada featu:es.h ' N
The result was that early in the code/debug phase considerable time
and effort were devoted to isolating Ada misunderstandings from
compiler/run-time system problems and making the necessary

corrections. Although separating Ada language problems from
compiler/run-time support problems became less of a problem as
coding progressed, other run-time support problems such as
synchronous I/0 and task stack size limitations surfaced that again
caused confusion regarding the source of errors and methods of
resolving them.

5.1.4 System Integration

Because of early difficulties with the compiler on the trusted
software application, the software was integrated piecewise in a
serial processing environment as opposed to directly attempting the
integration and activation of the full concurrent processing)
architecture. 1In retrospect, it appears this approach was probably -
a wise choice. Once the various inter-virtual package entities

5~4

B

O R r—

e

macroscopic design phase. A complete compilation of all library
and secondary units should be required, even if some secondary
units consist of null bodies, so that all entities and dependencies
can be checked and the initial step can be made toward achieving
system integration. The correctness, completeness and consistency
of library units are particularly important. Otherwise,
substantial refinement of the interfaces will be required during
the microscopic design with the result that substantial
recompilation of existing units will be required to resolve the
deficiencies. Such recompilations will have a negative impact on
schedules, costs, and the quantity of programming support
environment resources required because recompilations may ripple
through a large number of specifications until all problems are
resolved.

Assessing the completeness of the PDL for any given entity is
another problem to be resolved. The primary concern is to assure
that top-level design, and only top-level design, is being
accomplished. At this time, there is no specific indication as

to how this problem should be managed, other than to require
in-process design walkthroughs. An approach which may be viable is
to iterate through the PDL two or three times covering all modules
on each phase. Doing this would assure to some greater extent that
each entity receives a more equitable proportion of the total
design time and would diminish the possibility of some modules
being designed in great detail while others are given only
superficial treatment.

5.1.2 Microscopic Design Phase

The transition from the macroscopic design phase to the microscopic
design phase progressed in a straightforward manner. One difficulty
that was not detected at the micro design level was that, in
several instances in the communications protocols application,
considerable refinement was required at the coding level before the
code could actually be written. Again, the issue is one of
determining when the correct level of detail has been reached.

.,-,vv, Yy

—_—— T p—— T T ———

It is highly desirable for quality software to achieve information
hiding to the highest extent possible. Communication system
requirements generally must address the following system-wide
considerations:

0 Security/Precedence/Priority Considerations
o Performance/Resource Utilization and Management
o Inter-layer Event Signalling/Scheduling

As such, the amount of globally visible data in the system is
probably more than desirable. Information hiding was extremely
successful at the compilation unit level where implementation
details could be hidden from external user modules.

5.3.1.2 Intra-virtual Package Analysis Summary

Figure 5.3-2 provides the summary of the intra-virtual package
architectural analysis, documented in Section 4 of this report.
There is a decline in Efficiency I primarily due to requirements for
complex data structures and compiler feature limitations.
Flexibility which is evaluated as very good, was exhibited when the
TCP_Server modules became too large for the compiler to process and
were reorganized. The subsequent reorganization of the TCP_Server
virtual package architecture was effected quickly, accurately, and
the overall modularity characteristics of the virtual package
remained unchanged. Interoperability characteristics remain
excellent. There is a significant falloff of the maintainability
factor based on the evaluation of poor for the self-descriptiveness
and simplicity criteria. The reusability and transportability
evaluation of very good carries over from the inter-virtual package
analysis summary. The testability factor falls to a value of
satisfactory due to the poor evaluation of the self-descriptiveness
and simplicity criteria.

5-17

Ty

FECOWCD— Jd=P D>

N FTA A= Q==

QUWONOX—~AF—=>WZWunwn
VW Je

—ZowWwaowZaoawzow

oQLWEAC-—Z0O UT)-(DP—NI*F

CXOL—~WOrFDXW
CAwWExC«r-—2Z0 N>newZ

O WX CD— = >

ZFOO0ODACE = >

—=3FQAJWIFWZFA+-—02Z
S CZO0ODCOW

VOZVNF-EDOFWV
—S«C€ZOD<COW

—ZNFEIZFWZFA=-0Z

—ZOowWawzZowzZzow
Idxaoz<xcw

CXTQOL~——WORDrW
I<dxoF<xw

OWZWE C =

+
FCZCOWIWZ

LwExox
+

COFIOZACI—+— >

Q<<

OCOZN—FW20)>

QOZO—~NWIZWnW

OOZFAJWFHRWZWONWY

QOIFIZIDZ=~OA~D>WZWnW

OCOFIOZ A=)
QOFZEIODZ—=OL+-—02Z

€CO0ODELO >

SOF TWARE
QUALITY
CRITERIA

SOF TWARE

QUALITY
FACTORS

<

4

-4

+— 4

b —— 4

F—+

EFFICIENCY I

b =

b— o —— o — o

+—t — 4

o —— 4

bt —

- — -~

b — = 4

b — 4

b

—_——

_— -

b =

b e o

F—

FLEXIBILITY

|

+
+
+

F—

| PPV

s ST S

I vie

Aj

b — 4+ — +

b o —

b — —

o — —

P— o — o —

b —— -

b— — + —

f—t—+—

b — —

o ——

d o e — e ——

el s

el e

b—t — + —

b —+—

b = e — e e e ——

INTEROPERABILITY
MAINTAINABILITY

REUSABILITY

b —

N S
P
+

+—+

+—+

- —_—

+ —

4+ -+

+—+

+—_+

+—_

D

+ —_—

+—+

TESTABILITY

[—Sp—

+—+—

TRANSPORTABILITY

NOoOL-FT«xW

QUW>WJOoALITWZr

Not Evaluated

P - Poor N -

S - Satisfactory

V - Very Good

Excelient

E -

Legend:

-Virtual Package Analysis Summary

Protocols Svstem Intra

Communications

o~
|
[aa]
"
o
—
3
o
e
P

5.3.1.3 Compilation Unit Analysis Summary

At e e

Figure 5.3-3 provides the summary of the compilation unit architec- ‘ 1
tural analysis, documented in Section 4. The evaluation of the

. e,
R
FEPSTOPLRE)

development factors remain the same as for the intra-virtual package
analysis with the exception of the testability, which fell to an
evaluation of poor. This resulted from the inability to insert f
instrumentation mechanisms such as TEXT_IO calls without

significantly altering the performance/functionality

characteristics of the software under test, and the inability to 4
complete and use the Performance Monitor and System Monitor B
capabilities.

Because of the inability to complete several major functional areas -
of the communications protocols system, the evaluation of the

software performance quality factors cannot be meaningfully
accomplished.

D A Ny S,

5.3.1.4 Compilation Unit Statement Characteristics

Table 5.3-1 summarizes the compilation unit sizes of the developed
software. Some dgeneralities that can be made concerning the system
statement characteristics are as follows:

e e

COMPILATION UNIT SIZE AVERAGE LARGEST SMALLEST
Code Statements - 300 683 90
Comment Statements - 381 1385 * 143
Total Lines - 621 2480 293

* (Includes Remaining PDL)

Communication Services => 68% of system code

System Management => 28% of system code

Terminal Subscriber => 19% of system code

Link IO Simulator => 1% of system code
5-19

..................................

FECOWLCD—~J—F > o Q

bt —p— b — b — b — | —— b —p—p— —

N—=Fa L= OQ—r > Q Q. a a

—t——— b= —— | —p e —f—f — —

OWVNOE—~ALF=>WZWOW
[7, J TV RS B T
~ZOowWaAaWZOoOWZOW
CQLWELH-=Z0O0 O>0NrFWIZE
C«CXOI—+WOFDXxW
CALWELCF-F—~ZO0 OV>0VFWZIX

$—p—fp—m bt —Ft— | —t— b — b= -t —

[AP N R R A e el ek ek R R Rl

bt e b | e — — — — —

O WXxC«O®— = > W | W w

P e O A A o Sy L R ke

00D 4L~ > W wW W

e p o o | o — e — —

—ZALJWIBIWZ2r-rAA-—02Z
~C€Z0DCOW
COZUVKFEDOFWVW
—HC€CZO0DCOW

o e e e o — e [— —— g — e — e —— o ——

b= —p— b —m | — o — + —

~ZNFEDFWZF A =-0Z a

bp—tp—p—p—p—t—t— | —F—p—p——+ —

Not Evaluoted

—ZowWowZowzow
I<SxOoFTC<xw
C«EOLXT=rWODXxW
T«rox«L<xrw

bbb —p—t—F— [—t——+—+— + —

p—t—p— e p— b — = | ——F—F—f — —

OWZWE €I~ > > > (2]

Poor

A N e N N s s el el s s s s it

S<zZ<oWIwzr |
wrxow
CoOIIOZ<a—r >
o<«

P

o — — e e — | — e e e e e o

o o o e e o e o | e = — o —

COZUV=—=UVFWZO> w w W | w

[A S S R S s el ks Rkt e e

COZO—VNWZWONV | a a a *8

b—t—t— b — | —f o —— e — o —— o —

COZFaJWrwWZWonon a

o o e e e | e e — —— o —

S — Satisfactory

QCOZIZFIODZT—OArFr—~>WZWUOHWN w w

t—t—tpm e f—t—t— | ——F —F — f b —

OCOZFFOZLC I >
QOZFIDZ—~QAL-~0Z

B R ek el B o e e

€«0O00ODOX«<O> Zz Z | Z

[A Y S e e o

N
Communications Protocols System Compilation Unit Analysis Summary

V - Very Good

SOF TWARE

QUALITY
CRITERIA

EFFICIENCY 1
FLEXIBILITY
INTEROPERABILITY
MAINTAINABILITY
REUSABILITY
TESTABILITY
TRANSPORTABILITY |
CORRECTNESS
EFFICIENCY 11
INTEGRITY
RELIABILITY
ROBUSTNESS
USABILITY
Excelient

E -
Figure 5.3-3.

QW>WJ0QA FWZ+ QAWELOXEIFCZOW

SOF TWARE
AUALITY
FACTORS

NOL L« W NOLr-rRT«xW

Legend:

gpe—y P ———— T TT——— MO A Sn Sad e emn Sk teskve Rere AR e St Saes S Sen St Sk Sadh el il ie g a0 g T T

Table 5.3-1. Software Development Statistics

Communications Trusted
Protocols Software

Virtual Packages 19 13

| Library Units 26 25
Secondary Units 24 23

Statements 8,131 6,775

Comments 18,3089 9,529

Lines 23,674 21,385

Given an arbitrary guideline of 1,008 lines per module, 12 of the
27 compilation units were at or significantly over this gquideline.

) The following are some observations concerning the overall module
size characteristics of the system:

o Large number of comments exist due to capture of TCP/IP
i \e specifications (This may or may not be desirable.)
o Lack of generics/separate compilation features resulted
in generally larger modules
o Better performance with fewer packages resulted in
. generally larger packages
0 Reduction of recompilation dependencies influences
overall compilation unit size
o Workarounds at the code/debug phases tended to increase
module size.

The modules over 1,068 lines could have been significantly reduced
in size with the generic/separate compilation Ada features. It
seems reasonable that library units and subunits should fall into
or below the 1,000-2,000 line range consistently, especially when
the separate compilation and generic features of Ada are used.

5-21

...
B T TR A T T SR S S PRI AP S AR S S AT e - AT T 0. TG NP TP P AV WT DAY DR DI DR U DIy Pl Sial TN i St Do

T)

RSPV U U S A SRS

5.3.1.5 Other Observations

The analysis of the communications protocols system evaluated
software quality criteria from three difterent perspectives: the
inter-virtual package level (Al), the intra-virtual package level
(A2), and the compilation unit level (C). It is of some interest
to note the following:

CRITERIA Al A2 C
Communication Commonality E E E
conciseness E S P
Data Commonality v E E
Generality E \Y Y,
Hardware Independence v \'4 \'
Language Constructs E S S
Modularity E E E
Operating System Independence V \'4 \'
Self Descriptiveness P P P
Simplicity N P P
Traceability E \Y P

The communication commonality, consistency, and modularity criteraia
evaluation remained excellent through all three levels of analysis.
This is due in part to the following:

o Commitment to OSI Reference model and sublaver modeling
concepts.

0 High deqgree of conceptual compatibility between
protocol specifications and generic lavered
architecture concepnts.

o Ability to capture architectural concepts at a high
level of design using Ada features,

The implementation was able to localize the hardware and operating
system (run-time support) dependencies to a high deqree. These
criteria were consistently evaluated as vervy good. The self-
descriptiveness and simplicity criteria were consistently evaluated
as poor across all analysis levels. This is attributed to the voor
choices for names, complex data structures, asvnchronous control

5-22

e e
PR

-

N R IPI YE)
e et aA . _aa

e e e e T T e e e e T T e R e N R P I N SRS oL . Sy e R .
AT A e A W SRR oL T AT AR P APURAP . U WL UL I, WAL AP W WHIL PR IPS. W AP PO I s WA G W SO PRI P RIS

flows, and implementation decisions based on Efficiency-II
performance factors.

The deterioration of the traceability and conciseness criteria from
excellent at the inter-virtual package analysis to poor at the
compilation unit analysis is due to the following:

o The initial macroscopic and microscopic design PDL was
not compilable.

o PFailure to utilize the externally generated TCP/IP PDL
statements correctly and at the correct level of
detail.

o The nature of the run-time system support of tasking
(context switching) and I/0 processes was not
understood soon enough in the project.

0 The workaround during the code/debug and
integration/test phases of the project could not
feasibly be reflected back to the previous design level
PDL.

This situation was a major factor in the recommendation for
inclusion of compilable (and possibly executable) PDL at both the
macroscopic and microscopic levels of design in the methodoloav.

One criterion, data commonality, was evaluated higher at the intra-
virtual package and compilation analysis levels, than at the inter-
virtual package level. 1In hindsight, one can conclude there was
some difficulty dealing with the very specific and complex data
structure declarations provided in the protocol specification

documents at the earlier stages of the virtual package

(macroscopic)

A maior issue
specification
useful during

level of desiqn.

is the inclusion of significant amounts of TCP/IP
text as comments in the code. This is extremely

development/maintainance activities. However,

significant overheads are produced such as increased recompilation

PWRLIPR L PPN AP

5-23

< L P R B - Lo . - . B T L . .- L) '.'7-"~"«"-~/~‘~". -
- e u . - - - . -t . - Wt et . ‘.- '.- ’.- ‘.- o '.\.
b WIS, WL A Tl Coll W Wl Tall Vol Sl Vh U Wdp Go U WAY Wh i o ¥ 3

e .
Aot et

‘aa A A et Bdta

S et e et A At e et Tt .
Sac A s s g g ot ot g s s

v -y ————— MR A% Mo Ban susiong stareg r—— Bofieit i Snd Baes St e Yl Bl vy

time, larger listings to assimilate, and tracking the comments in
source code with specification changes, deviations, and/or
performance alternatives. There are clearly tradeoffs to be made.

A major issue arose concerning declaration of tasks in the
specification of library units, namely that tasks not be visible in
package specifications. The general c¢oncensus was that a task was
an implementation decision and not a design decision. From the
perspective of communication system desiqn and development, points
of asvnchronous/event driven processing are an inteqral part of the
desiqn of the system, and not merely an implementation option.
Additional issues associated with "hiding™ tasks are that: 1)
conditional or timed entry calls are not directly possible from
user modules, and 2) user nodules may needlessly declare tasks to
monitor major data structures which are already quarded by a non-
visible service module task. Finally, if tasks are visible, it
will be easier to encapsulate them if desired then it will be to
make them visible if they are initially encapsulated.

A major issue concerning the transportability characteristics of
the system was debated throughout the life of the project.

The issue centers on what "boundaries™ are pertinent when the topic
of transportability is being discussed. If the entire system is to
be rehosted on a different host environment, the system management _ i
subsystem modules (package bodies) would have to be s
adjusted/modified to conform to the new operating system and/or !
run-time support interfaces and features presented while the o]
remainder of the system could be transported directly. Since the
system management subsystem comprises approximately 28% of the LT
system, this rehosting could be considered transportable. 1If a]
layver of the system, say a TCP_Server module, was migrated and
integrated to an existing system, along with the system management
modules, then the system management modules would have to adjust as RO
above; however, the percentage of code to change would increase to ' i
50% or better (i.e., moderately transportable). If the TCP_Server i
module were migrated and integrated bv itself (dependent system

5-24 i

- - - -'.. .‘»4
U T S - I o LT N A T R R .*
PR . [i . ST . L. e e R . U P . .l 3.
L I R S S A S T PR SIS PREPURE ST VR WD 2SI YO VA Sy e Y FEIR. ol o ALV ST, W S

9,

~d T T — v LRt St —eene:asats bl aans v T T e

management modules not provided), at a minimum the service
sublaver, the access sublayer, and the management sublaver would
have to adjust to the new environment. The OSI Reference model
architecture together with the sublayer model, which was captured
in the design and preserved in the compilation unit architecture,
identifies and maintains these "transportability boundaries"” to a
high deqree. The transportability characteristics of software can
only reasonably be discussed relative to such boundaries.

5.3.2 Trusted Software Systen

The following paragraphs present the Trusted Software system

software architectural analysis summary and conclusions.

The summaries are presented according to the ordering of the -
analysis in Section 4. The summary assigns subjective evaluation

weights of excellent, vervy good, satisfactory, poor, or not

evaluated,

5.3.2.1 1Inter-Module Architectural Analysis Summary

Fiqure 5.3-4 provides the summary of the inter-virtual package

architectural analysis, documented in Section 4 of this report. e

The desiqn and definition of the transaction data were ideal for
the variant record structure. The flexibility of a single record
type for use in all cases of transaction type formats increased the
effectiveness of the system software architecture. Emulated
generics were used whenever common prodram structures were
identified. The instantiation of the ports, files and other
structures allowed a sinqle desiqn to be used in several roles.

Exception handling was very successful at trapping error
conditions. Errors were propagated to the calling entity as a
raised exception condition, which proved to be simple, and
processing control was greatly enhanced. The readability of the
code was also increased since the exception handlers were explicit
in their representations of error management.

5-25

P P
T U UL I

e

FECOWC@D—d—— >

V= B D= Q== >

QWL E—~QLF=>WZWuNnn
NwJdu
""ZO!M&IA-IZC)h.IZ()l.a.)'<
CawEx«C<r-—20 N>wnrwz
CAEOT—WOFrDXW
COLWELI-—=Z0O0 WOV>VHWZE

OO0 WX CM— D

FTOOD AL = >

—~ZFQ A WIW2Z-aC-—~02Z
SCZODCOW
QOZVFFEDOFWV
SdCZODCOW

~ZNFFXDODFWZ-FALPF-~0Z

—ZowWawWZowZow
Idxaozcx
CEOI=~rFWOFF2DXW
IT«<«xoTaAxrw

CWZWE L=

FLCZCOWIWZ -
wExon
VOZIIOZC I >
o<+ <

QCOZV=NKFWZO>™

VOZO—-VNWZWOHW

QOZFa W WZWUOHW©N

COZFIDZ—~OArr-—~>WZWWNW

VCOZIIOZCAmt >
VOIIDZ—~UV«C-=02Z

€C«O0ODEACO>

W <
o > -
<@
T —W
[
[
ODx
nwoo

SOF TWARE
QUALITY
FACTORS

PR P P .

P S SV Sl Wi

|
W i
i {]
—_—t—F—F— b — -+ —
w wi
—_—t—t—F+—t—t—+—
w WilWw | wilo
f——+—+—+— +— + — a
z z !
b o e e e o — E o
2z j=}
45}
+—t—t—t————
n
-
— e —p — e — o — o — ()]
>
W w
W W w)
—_—t—t——— — 4+ — - [10]
=t L
°
bt < 1
bt ——+—+—+—+—] R
B

w 3 &

° [

— e — e o — > 1} p

z “ S R
R O)
——— e — —p — — o [} E
4 z z = A)
3 + 3 ! —~ ¢ !
—— e — e — — e —
r4 [}
2
e e e e e o — — -
<4 4 - S o
(] w : -

—_—t—t— b — — — - | ?

N - o

— w—p m—p —p — . —— e — B . . 4

w > =]
- — 4

— e e e e e e —— e — (-] K

-
w o v]
-] ~ -9
+—t—t———p— - - fio]
”

w w w - 3 4
4 + - o o iy -4
P — e — — e — e —— s — e — Yy

17 0 ® 4
] n 4
—_—t—t—t—t—t—t—
7] o] 91
) 1
—t——t—— — - v +J
° 4]
w o =
(&)
+t—Ft—t—t— = —— o)
>
o & °
° 4
— e — e o fp o — e —— o — >
.
> > |
-1 - <
[- — > |
P - ™ v
— — - b . P
i@)l=i>]>|@ -~ e

>l || @I+ | < c

[$] — [' 4 « — — - L4 L

Z1 21wy Z E= RN R I « 4 - Q

w b— a - — — o - ~ .

~ DO I« l@IOIlQ [4

OQl=|Eir-r|<|<|® o 3 d

~IxX {WIZIDI-|Z x o

LWl =1DIn|< w - .

wildlZ| <€) Wiwiliaoe -y

Wik [= F @i+ |+ 1 e S

w - !
N "
.. N k|
OW>WJ0AIWZ - © '
c o
0 - 3
NOL -2 aCxWw o
o
2 .
«
.
®

CeT e L UL L B R S RS
PO IR ST Sl T ¥ Wl Yo U S VoAl WU WA el ¥ W

PP I R IR R AT N AP L T B P PP G I G S

—p— - - T AR i et Bnkh Mt i St AR At Mhets Mt DA A A A I

The renaming capabilities of Ada allowed the references of the
packages defined in the DATA_STRUCTURES virtual package to conform
to the references defined in the requirements documentation,
resulting in increased readability and traceability to design
specification.

The architecture of the packages represents a clean, logical and
straightforward approach. 1In general, the non-trusted modules are
well organized and structured with respect to the number of
packages and their specifications and with respect to the original
requirements. The trused processes, specifically the Downgrade |
Trusted Process, could have been structured more reasonably. Its 4
architecture, however, was a direct result of attempting to

preserve the architecture of the SPECIAL PDL and tc address the -
issues of correctness and traceability.

o

The virtual package concept is the primary tool for capturing the
trusted as well as the non-trusted process specifications along e
with the system requirements presented in the detailed architecture
of the system. In almost all cases, the virtual package diagrams
presented the features necessary for the trusted software clearly
and correctly. Such features as separation of trusted and non- wen e
trusted processes, distinction of the IPC as the communication
medium between the processes, and the ability to emulate the
ARPANET connections and the KSOS interfaces proved to be accurate
and descriptive. Imported and exported entities are well
described. -

PUR PN LI

5.3.2.2 Intra-vVirtual Package Architectural Analysis Summary

Figure 5.3-5 provides the summary of the intra-virtual package
architectural analysis, documented in Section 4 of this report.
The values given in the intra-module evaluation fell slightly from
the inter-module values. This is in part because of the run-until-

e aa

. ' e s

block algorithm used by the run-time system. The specifications
defined by the SPECIAL PDL did not provide the measure of

5-27

FECOWCD— >

N=FA = Q== >

QOWVOLOE—AF—=>WZWNWO
VW JdL

—ZowWawWZowWZow
CawWErdr —Z0 N>NFWI

CAXOI—=+—WODIDXW
CAaWEALC+-—~ZO WVN>NFFWZE

CRL WX <@— =k >

ZF0QD S A X+ >

—Z2aA JWIFWZrrAC=——~02Z
~A€Z20D02C0OW

QOZVFEDOFWV
—SdCZODCOW

—~ZNrFrEDIFWZr-rA<-—02Z

—~ZOoWAWZOoOwWZOow
Idxo®TAxW

CXOI—=rF-WOF,DXW
I«xxaTCxW

OWZWE C«d—r)>

FAZACAQWIFWZ
WO

OQOZFIFIOZAL I+ >

O<C<+—<
+

COZV—VFWZO>™

OCOZO=UNWZWOHW

COZFaA JWr-WwZWnowm

QOIIOZ=OACAr ~>LWZWNO

QOZIFOZ A dr=t >
COZFZIDZ—~QOLCLF =02

«€«OO0ODELCO>

SOF TWARE

QUALITY
CRITERIA

SOFTWARE
QUALITY
FACTORS

+

+
+
+
4
+
+

INTEROPERABILITY
MAINTAINABILITY

EFFICIENCY |
FLEXIBILITY
REUSABILITY

TLSTABILITY

bt —t—+ — — o ——

+t—t— =t ——F— e —

o e — e — e — e —

—t—t— — e — —

b — e —— —

+—t—t—t—+—F—+—

—_—t—t—t—t—t —+—

— e —p — o —p —

t—t—t— b — b —— 4+ —

ot o —— o —

o o e —— e — e — e —

+— b —t— =t —+—

TRANSPORTABILITY |

QW>WJ0QL3IwWwZ

VoL LW

T

Not Evaluated

Poor N -

P -

S - Satisfactory

V — Very Good

Excellent

£ -

Legend:

Trusted Software Intra-Virtual Package Analysis Summary

wn
!
gl
Te}
oy
-
=
o
N
P

modularity that was deemed desirable by our gquidelines. The
Downgrade Trusted Process package (DGTP) was too large with respect
to modularity, testability and maintainability. The choice made at
this level was to be as close to the specifications of SPECIAL as
possible; otherwise, this module could have been divided into

approximately three separate packages.
5.3.2.3 Compilation Unit Architecture Analysis Summary

Figure 5.3-6 provides the summary of the compilation unit 1
architectural analysis, documented in Section 4. The evaluation of
the development factors for the compilation unit evaluation fell in
value from the intra-virtual package analysis. The primary reason
is a restriction of the run-time system whose implications were not 1
realized at first. Each task has associated with it a stack/heap , f
space which contains the task code and run-time parameters and the -
formal parameters and declared objects of all subprograms called by
the task, directly or indirectly. An overflow condition occurred o d
at almost every step of the debug/integration phase of the study.
Recursion, which was used in the SPECIAL PDL, compounded the
situation. Because of this restriction, the architectures of the L
compilation units were virtually destroyed in terms of modularity, o
information hiding and design guidelines. Another restriction is
the case of synchronous I/O0. Output to the terminal users by the
individual terminal drivers was done on a first-come, first-served
basis. This was tc be expected and produced no problems. The

input requests, however, would block the entire system until the
input request from a specific terminal was supplied.

Because of these restrictions, the final Ada code is not totally
traceable to the intended designs. The system does perform
correctly, accurately and is stable, However, it is believed that

. . - "
e M i d ama-dah

with the changes that occurred, the principles of trusted software
may have been compromised. Moreover, there is a little point,

given the restructuring, in attempting to assess compromises that

may exist since the architecture and total functionality are not

5-29

Axreumms sTsATeuy 3TuUn UOTIRTTdWOD SIPMIJOS PaIsSNI] *9-¢°¢ aInbrg

L POI}ON|DA3 JON — N 400d — 4 A10}d2D})8130S ~ G 1206 AU@A — A JU@(}82x3 - 3 :puabeq

[I

e B e e
| | [| SSINLSNAOY

3|3

——————

| i | |
s et TS S
|

I 13l Is

w

A

|
+
t
|
|
+
|
|
t
+
|
|
!
+

W
W | W

| N | Al1ViavIi3y

>

b — — —
z

—t—t—

ALTY¥93INI

+
4
+
+
+
+
+

— — e — — e —

— e — — —

—— g = — —
W

—_—— —— ¢ —

—— e — g — —

1 AON3ID14343

———m

LWXLOXEF<ZOW
NOw-TL<XxW

-4

SS3NLIINYHO0D

—_—t e — — —
— e e e — e —
— e — g — o —

+
+
:
+
+
+
+
+
—+

v
—t—t—F+—+—+—
— = —
—_—— e — e — e — —
— e v — e e c— —
—_—t—t———+—
—t— b= —t —
|

—_——— 4

z

2z

AL1718Y130dSNYYL

(%)

W

>

ALITI8YL1S3L

z

z

>

ALIN18YSN3Y

w

(Y]

>

ALITIGYNIVINIVA

W

ALT1718YY¥3dOY3IINI

—_—t—t——t—t—

>

Wlwilwlw!lw]w

——————

—————————
3

n
—t—t—F—t—t— -
>

3
3
S

L OWCD— = >
D ZFQ A= O >
QWNOE~QAF=>WZWunwn

bt — - b —

>

4

>

[
]
|

i
t
|

+
+
+
+
4
+
+
+
4+
+

|

|

|
+

;-

ALINIEIX34

I AON3IIDI443

OW>D>DWI0Qa 3w+
NOL -

~ZOWaAWZOoOWZOW

CoWELC——~ZO N>nNrkwI

+—t—F—F—+—F— 4 —

«XOIT—~rFWOFDEW

CoWxC«-—2Z20 N>unr-ruwzx

t—t—t—F—t—t— 4 —

CauWEaCM—J—r >

+—t— =t —+—+—+—

bt — = — F —

t—t—t et —t—+ —

b b — o —

+—+—+—F—+—+—+—

ot —t— b — b —F——

- ZoRalem Ul o Aol ool ol

~ZAYWIWZr-rC<-—~02Z
2 C<ZODCOW
QOZNFLFEZDOOFWV

SACZ0DC0OW

—ZVFXEDIWZACA—-—~02Z

I«SCxoTCXxW

—~ZouwawzZowzZo w
CXTOI~r-rWOFLRDXW

I4dxoT«xw

et —t—— b ——t—

OWZWo € D>

bt —p—t—F—— —

WO

FAC«CZALAOWIWZ -
CQOFIIFOZA >

- e e w— s e — e —

B e T e

et — b — b= — b — —

b — e — p—

R i et s s s s

O« <

QOZWV=WFr W O>

OOZO=WNWZWwnw >

VOo3IaAJWrHrWZWunwm

QOIFIODZ—OOCr-r=->DWZWOHWN

b— b — b — b —

b —f— b — —

4

vIi¥3LIyd
AL1VND

SHO10v4
ALIVND
34V¥YML140S

COFIFOZ LA+ >
COZXIDZIT~OAC-~02Z

€00 CO >

JHYML40S

30

design. To resolve this issue and also address the performance
aspects of the architecture, it is recommended that the full
designs be implemented and evaluated and that alternative
architectures be explored.

6.3.2 Trusted Software S

The trusted software conforms to the original requirements except

that the mechanization is multitasking as opposed to the original
multiprocessing. At the intra-package level of design, many

individual aspects of the original design had to be moditied due to
either compiler limitations or run-time support inadequacies. As a
result, manvy tests whose results might affect the originally

planned architecture were not conducted. -

It is recommended that the intru-package architectures be restored
to their original designs and the <orresponding code be
implemented. It is recommended that careful assessments be made of e
the multitasking vs. multiprocessing confiquration and the nature

and extent of interactions between trusted and non-trusted

processes. This should be accomplished via extensive stress .
testing and the injection of errors into the UGTP and DGTP via the .
KSOS interfaces. Only through this approach can all levels of the
architecture be assessed with regard to both specific trusted

software criteria and the more general software quality factors of
Maintainability, Testability, Correctness, Integrity, Reliability

and Robustness. T

6.4 SOFTWARE PERFORMANCE 0

Because of compiler problems, little opportunity existed for . 1
exploring alternative architectures and what their impact would be
on performance. The impact of encapsulated vs. visible tasks on

performance, and of a large number of task entry points with single
parameters vs. a small number of entry points with multiple B

parameters were not explored, nor were the adequacy and performance el

C

6-9

NP L

R P

AR IR VG AP Wit S T PG PO S ST, Sy MU, Ty T Ty TR S Ty L. Sy P S PN D - SP S S TP TP PR WAL I S T

P - PEPPe——— ——— saen B i iy Ol S -t SN RS S I I

6.3.1 Communications Protocols

It is highly recommended that generic models, such as the OSI
model, be utilized in a fashion similar to this project. Such
architectural structures provide a relevant architectural basis
that is expressible in Ada language entities and provide concepts
that can be effectively applied at multiple levels of the
methodology recommended by this report. Based on the use of these
concepts, the Ada language provides a natural, and heretofore
unavailable, design bridge between communication system
architectures and requirements and the implementation of the
system.

The TCP and IP Specifications, as well as future standardized

specifications, should be made available on-line so that: 1)

design and development efforts can be reduced by obviating the need g
for recreating the information, selecting a suitable format and s
verifying the information; 2) the Specifications can be made widely ¢ '
available at minimal cost; and 3) updates to the material can be ’.,.
quickly supplied. It is also recommended that anomalies in the Ada ;ffﬁf
PDL be resolved. It is recommended that future specifications f o
address the issues of transportability and interoperability more ;;“;*

explicitly by indicating concisely if they are or are not, or to
what degree they are to be met and precisely what constraints, if
any, apply. In the case of the TCP and IP Specifications, future
revisions of the document should assure that somewhat stronger and
more precise statements are made to clarify the intent of the
Specifications with regard to requirements and design options.

Because of compiler limitations, only limited information was
obtained with respect to the transportability, reusability and
performance characteristics of the software. One architectural

-

L .
ans A

concern is the placement of the system management functions and

whether transportability and reusability could be enhanced bv using
generic representations and placing the majority of these functions
within the respective layers as opposed to the present centralized

6-8 °

. R N I RN N
° - e * t. . fe e e .
R I T B N P BRI T Tl U T V- T LN

A I S PR S S S PRI SU VI VURPC DY W ey e, N |

—— - P I —— B 4 d Pl v

6.2.2 Ada Language Education

For the Ada language to achieve many of its goals, comprehensive
training and education programs are needed at both management and
technical levels. At the management level, it will be necessary
for managers to become familiar with Ada concepts and changes in
methodology. These in turn will influence design costs and the
proportions of time devoted to the requirements, design, code and
integration phases because of transportability and reusability
considerations. At the technical level, attempting to teach Ada by
giving a one-week syntax-oriented course, without the proper basis
in software engineering will be of little help and may be counter
productive due to the misuse of Ada features. A comprehensive
course which addresses software engineering objectives, the Ada
language features and now they can be used to support the
objectives, and the role of using a well-defined design methodology
and compatible, supporting tools will be prerequisites for
producing personnel who are truly proficient. An important point
will be the understanding of the PDL to be used and what is to be
achieved through its use. An integral part of this training should
include the use of the Rationale for the Design of the Ada
Progqramming Lanquage /HONE84/ since it provides an important
context for the purpose and use of the Ada features. Since the
start of the project, considerable literature on the Ada language
has been produced and should be selectively included in any
training program. To the extent that transportability and
reusability are major considerations, additional training and
education will be required since these software characteristics
will not be automatically achieved merely by using Ada.

6.3 SOFTWARE ARCHITECTURES
This section provides recommendations on alternatives to be

considered and the use of generic architectures for the
communications protocols and trusted software applications.

6-7

— T - T e W ow o
T — T— SMat-Eae Sh e B d e Mevt Seane S Shdu Bt T — ¥ i

combinations of features were not used. Significant difficulty was
encountered in the use of exceptions and in the use of global data
with tasks. Due to the inherent properties of exceptions, two
specific recommendations are made. It fs recommended that total
system error management, in terms of using Ada exceptions, be an
integral part of the design process from the beginning of the
macroscopic design phase. Since exceptions which occur in a
package specification are only weakly associated with their source,
it is recommended that supplementary ANNA information be provided
to achieve a strong association of an exception with its sources.

Although much has been achieved through the standardization of Ada,
there are still many elements associated with the use of Ada which
have not been standardized.

One such characteristic of Ada not encountered with other languages
is the close coupling between Ada features and the run-time support
environment. Functions which were previously performed explicitly,
such as task context switching, are now performed implicitly by the
underlying run-time support environment. This is further
complicated by the fact that in these instances the particular
mechanization is NOT specified as part of the Ada standard with the
result that any of several mechanizations may exist, some of which
may be acceptable, some of which may not be. Other features such
as the selective wait statement mechanization are implementation
dependent. The issue of compiler pragmatics, such as stack size
limitations, levels of nesting, size of packages and other factors
lie outside the language and are not specified as part of the
language. To reduce implementation problems, it is recommended
that a set of evaluation criteria, based in part on application
specific criteria, be used to select a compiler so that suitable
information can be obtained on those areas left to the discretion
of the compiler implementor.

6-6

- .. e T T T T T T e T T Ty T
L T A UK VLA TIPSR WA SR TR VAT A Wl N S R DAY

PRI L G AP Tl UL A -1 WL LA W TP .- h P AL

T rad M s Sae St e an ey Bag) . " v T T T TV T R — —~———————

because of the advanced type abstraction and software architecture
definition features of Ada compared to other languages such as
FORTRAN, C, and even PASCAL, and the ability to directly expand the
Ada PDL specifications through the use of ANNA, that the previous
distinction between requirements and designs, particularly forma ly
stated requirements and designs, are no longer as distinct as they
were. Consequently, until further experience is gained and
definite structural and functional objectives are formed for the
organization of the FTLS using Ada PDL and ANN2, the exact
placement of the related activities will remain an open issue.
Thus, for example, the DTLS and FTLS could be produced during the
requirements phase; the design phase or the DTLS could be produced
during the design phase; and the FTLS, and possibly one or two
lower levels of detail, produced during the macro design phase. -

6.2 ADA LANGUAGE

This section provides recommendations on the use of selected Ada- =
lanquage features and on Ada education.

6.2.1 Ada Language Features S

Because of the general difficulty in using the MIL-STD-1815A,
/M18183/, an abridged version of the manual should be produced.
This version should, at the very least, be more readable from a
user standpoint, as opposed to that of a compiler implementor. It
may be incomplete in the sense that all semantics of each 1
syntactical form and all interactions between all lanquage features

need not be addressed, but rather referenced to the unabridged :
manual. This would enable individuals to learn Ada and become -
effective in its use much more rapidly and to still be aware of and T
able to locate necessary details and subtleties when required. o

Because of compiler limitations, all Ada features were not used on .

the project. Such features as generics, task types, the use of p
allocators for creating tasks dynamically, and many other |

effective by providing new information to be used for program
analysis, eliminating manual efforts, reducing development time,
eliminating various types of errors, or making the software
interphase transitions smoother. The recommended tools are given
in Table 6.1-1. A complete description which includes the phase to
which the tool applies, purpose, functions, problems addressed, and
the rationale for the tool are contained in Appendix C.

Table 6.1-1. Software Tool Recommendations

PDL Processor

Pretty Printer

Source-Level Debugger

Expanded Name Generator

Multi-Mode Syntax Directed Editor
Task Call Sequence Analyzer

Advanced SKETCHER

Ada-Preprocessor for Trusted Software
Restrictions

Annotated Aad (ANNA) Compiler
Annotated Ada (ANNA) Run-Time Veritier PR

OO0O0O0Q0D0O0O0

(ol o]

6.1.7 Irusted Software Development Methodology

Since the recommended methodology provides for stepwise refinement,
it can naturally be applied to the development of trusted software.
To accommodate the trusted software requirements, it is necessary
to develop the Formal Top Level Specifications, Descriptive Top -
Level Specifications and their lower level extensions denoted as =
FnLS and DnLS. Previously the FTLS or its equivalent has been]
written in a language such as SPECIAL or GYPSY during the
requirements phase. This specification was then extended via
refinement until sufficient detail was present to permit coding in
another language. As was the case on this project, translation and R
interpretation problems occur with this approach. To eliminate o
these problems, it is recommended that the Ada PDL of the trusted
software be augmented with ANNA (Annotated Ada) to produce formally
verifiable designs and implementations and that the ANNA be carried —. - A
through the microscopic designs and into the code, if required, to :
produce a verifiable implementation. It should be noted that

L]

6.1.4 Integrate/Test

In the classical software development approach, the integrate/test
phase is the first time that all the software is brought together.
This results 1n detecting module interface problems and adverse
module interactions for the first time with the consequence that
redesign and recoding of portions of the systems are required.
With Ada and with the macro/micro design methodology, it is not
necessary to wait until the integrate/test phase to bring the
system components together. By compiling the entire set of
compilation units and possibly including null package bodies to
accommodate the placement of all context clauses, it is possible to
achieve an initial degree of system integration at the conclusion
of the macroscopic design phase. An executable PDL should be
considered to achieve limited execution of the designs very early
in the development effort.

6.1.5 PDL Considerations

It is recommended that reviews be conducted following the formation
of the virtual packages, following the formation of the object-
oriented design diagrams, and following completion and compilation
of the macro and micro PDL. Such reviews serve the normal
functions, as well as to avoid two basic problems. Reviews assure
that coding is not performed in the macroscopic design phase where
the emphasis should be on the system architecture; and that system
architecture designs will not be left for completion during the
coding phase. Careful attention should be given to the
characteristics of the embedded English used in the PDL to assure
that it is neither too detailed nor too abstract; otherwise, too
many details will need to be supplied at another level of design.

6.1.6 Software Tools Recommendations

This section recommends generic software tools which should be
reviewed for implementation. These tools would contribute toward
making the software development methodology more efficient and

...........

Y

. - .
' S, L.
a2t a

6.1.2 Microscopic Desigan Methodology

The microscopic design level follows naturally from the macroscopic
level and readily permits refinements of the designs. Coding of
dgenerics is permitted since they will generally be required early
in the code/debug phase.

An integral portion of the microscopic design is to include allil
known calls within the respective bodies whether they are to other
entities within the package bodv or to entities supplied by another
package of the same or other virtual package. This level of detail
assures that library unit specifications are correct before the
actual coding process is initiated. This has been found to be
particularly important with respect to overall development
efficiency. To the extent that library units need to be
reorganized and recompiled during the code/debuqg phase, there may
be sigqnificant ripple effects which impact on schedules and the
availability of computing resources. 8

6.1.3 Code/Debug

The majority of the tasks in the communications protocols
application were initially activated in the code/debug phase. The
result was that both the tasking interface and control aspects as

well as the computational aspects had to be dealt with at the same
time.

In retrospect, it appears that a more effective approach would have
been to achieve some type of executable integration of the tasking
"shells"™ during the design process or very early in the code/debug
phase. This could be achieved by an executable PDL processor or by : ;1
simply forming task skeletons with the majority of the internal 14‘-
code suppressed. Using this approach, concurrent processing ?fﬁu
aspects involving control and data flow could have been isolated -
from the internal computational activities of the tasks and RS
debugging and system integration could have been simplitied.) f{f

sl

"’.l PR

.
a'aa’a_a

6~2

..........
o - AL I Y I I S RAT PV IR P G e
Attt Taret e te et aataTal X ottt Sui vl b

L PUR T S S T, W N

Ml ana e 2 2 o T T—————— T ——— . AR T

SECTION 6
RECOMMENDATIONS]

6.1 SOFTWARE DEVELOPMENT METHODOLOGY
This section provides recommendations on the macroscopic and

microscopic desiqgn, code/debug and integqrate/test phases and on
PDL-usage considerations, software tools and a prototype trusted-

software development methodology.

6.1.1 Macroscopic Design Methodology

The macroscopic design methodology works very well and should be
formally documented and published. The combination of initial
graphics tollowed by corresponding detailed text appears to be
correct to achieve the top-level desiqns. The methodoloqy avoids
extraneous detail, yet provides a PDL as a suitable refinement and
extension once the major design components have been established. E—

PSP PR

The existing design guidelines focused primarily on assuring that i
the correct type of Ada-based information was provided. The -
qguidelines should be expanded to address specitic transportability Ry
and reusability considerations since such requirements need to be S
addressed from the outset of the desiqn.) 1

In the classical software development lifecycle, the development
phases are disjoint from each other in that the design phase is
initiated only after the requirements phase has been completed.
This approach permits little opportunity for feedback based on
insights gained in forming designs for the given requirements and
results in discontinuity across the various phases. To minimize

el ok

L

this problem, it is recommended that each succeeding phase overlap i
with 1ts successor. This permits rapid prototyping at the design '
level to obtain additional information in areas where potential
problems exist or the designs are very complex.

mh B fod Azt ¢

6-1 o

LR RN BTN

methodology and tools, robust compile-time environments will be
required.

A second factor is compiler characteristics. It is essential to
carefully review and understand Appendix F, Implementation-
Dependent Characteristics, before beginning any design or
programming effort. It will be prudent to formulate or obtain a
compiler evaluation checklist regarding such features as compiler
pragmatics (level of nesting of packages permitted, maximum length
of identifiers, maximum number of tasks active, maximum number of
task callers which can be queued) to assure that these features or
limitations are well understood. Any design or programming
restrictions can then be stated as part of some overall software
development guidelines. Such lists are presently available in
preliminary form.

5.6.2 Run-Time Envirconment

In the run-time environment, many of the same arguments apply as in
the compile-time environment. Unfortunately, there is no specific
place for decumenting the information such as Appendix F. Again, a
run-time environment checklist needs to be formed which reflects
both general considerations as well as application-dependent
characteristics. Such lists are presently available in preliminary
form.

5-35 R

| 3

.v.*.','.‘. T

There were also several situations in which errors could occur

but for which no exception handlers had been declared. This
occurred primarily in the communications protocols application
where two factors seemed to be at work which were lack of
understanding of how exceptions functioned and how they were to be
used. There was also a lack of detail in identifying error
conditions as part of an overall software design process which
results in programs working correctly with correct data, but being
weak in integrity, reliability and robustness when erroneous data
is encountered. By contrast, exceptions were much more an integral
portion of the trusted software design since they were identified
as part of the SPECIAL specifications.

In conclusion, the treatment of error conditions as integral to the)
design effort must be required, and these error conditions must be
related directly to the use of Ada exceptions. To the extent that
very complex architectures are formed, many Ada features are
combined to achieve a design, and error management has not been an
integral part of the design process, there will be an increased
likelihood of encountering errors at the architectural level in the
form of reduced robustness, integrity, and reliability. In

addition, the likelihood of having erroneous programs may also "ot

increase.
5.6 PROGRAMMING SUPPORT ENVIRONMENT

This section presents conclusions relating to the compile-time and
run-time environments.

5.6.1 Compile~-Time Environment

The intent of Ada is not merely to present a new language for
developing embedded computer systems; rather it is to provide a
suitable tool which will permit broader software engineering goals
to be achieved. Since such goals are dependent on software

5~-34

.........

5

TR
POV S BN S Y

ND SEEA A S sams Mews i ar S S A v YT Y Yow e T

A

architectural experimentation and tuning should be performed to
determine the magnitude of changes in performance resulting from
such changes. Fourth, based on the system testing and tuning
results, it may then be possible to form refined design and
programming guidelines which deal more specifically with the
software performance quality factors.

=N

5.5 SOFTWARE ERRORS

- Software errors can be divided into three categories: those

related to inexperience with the Ada syntax and semantics; those

! occurring at a somewhat higher level related to particular software
architecture characteristics which result in erroneous Ada

programs; and those occurring as a failure to use exceptions. -

The number and types of errors diminished with time as experience
with the limitations of the compiler became better understood.
There was also the tendency to correct errors without fully "~

\e

understanding their cause, only to have the same type of error
occur later at another place. Once this approach was detected,
specific actions were taken to assure that not only was the error
corrected, but also that the basic nature of the error and the
associated language syntax and semantics were more completely
understood as a way of avoiding the same error later. Constant
referral to the reference manual may be required when initially
learning the langquage in order to adequately understand the nature

of the error and the appropriate corrective action. 1

There were some errors detected which manifested themselves in the

form of erroneous programs. These errors were detected during

design reviews and as a result of attempting to resolve other 1
execution-related problems. In all instances, these errors were e
due to improper references to global data using tasks or hidden 7f;¢
tasks and visible subprograms. Y

5-33 S

P T et e et et e e e Mg e T Te Tie T e Tie e T Tl et e PP RS W I S AP PGP -A_L“Ll‘

1
L
L
-
4
”
p
4
+f

In the trusted software, an attempt was made to have the
classification code of the data affixed to it in some way so that
it could not be improperly modified. The types private and limited
private seemed ideal to this purpose. However, the problem arises
that a record declaration that contains a private or a limited
private object, becomes itself a private or a limited private type.
To use a record type that is private or limited private would
require another level of complexity. For this reason, the GUARD
does not contain any of these types.

The use of variant records proved valuable as a feature of Ada that
would allow a single record type declaration the ability to define
several different message formats in one structure. The resulting
objects could have different characteristics for different uses,
all under software control. 1In the case of the GUARD, the various
transaction types, as defined in the requirements documentation,
could use common interfaces and yet have totally different

characteristics. The problem arises when the readability factor is
considered. Embedded case statements are needed to define objects
that can be common to some formats and not to others. The scoping
rules for these 'case' statements are different from 'case'
statements in the program bodies and can thus present
maintainability problems.

5.4 SOFTWARE PERFORMANCE

Unfortunately, only a small portion of what was planned in the
performance evaluation area was achieved due to the compiler
problems. To conduct any meaningful performance tests several
prerequisites need to be achieved. First, the originally intended
designs need to be implemented, debugged, and integrated using a
validated, full-capability Ada compiler. Second, moderately
extensive system testing should then be performed to assure that
the desired Efficiency-II, Integrity, Reliability, and Robustness
software quality factors have been achieved. Third, following the
system testing and, based in part on the system testing results,

5-32

————————— T— e e ey Dl L e TR TR

what was originally intended. Thus, two prerequisites for
conducting an evaluation of the trusted software are to implement

the original designs and conduct extensive static and dynamic
testing.

5.3.2.4 Compilation Unit Statement Characteristics

Some generalities concerning the trusted software are as follows:

COMPILATION UNIT SIZE AVERAGE LARGEST SMALLEST
Code Statements 141 5608 12
Comment Statements 199 1566 17
Total Lines 444 2555 38

Trusted Processes 25%

Non-trusted Processes 17%

Inter-Process Communication 9%

ARPANET Connection Emulation 17%
Support and Utility Modules 32%

With an arbitrary guideline of 1,008 lines per package, 4 out of 26
exceeded this guideline. If the separate compilation feature of
Ada had been implemented, these four compilation units would have
been smaller. There are 30 tasks operating in the GUARD; this is
one each for the IPCs, the file handlers, and the locks. These
taskr were implemented as data monitors and transaction transport
tasks. There is one task in each of the independent trusted and
non-trusted processes. Each functional process operates
independently of the others. The ARPANET emulators contain two
tasks, one to drive the MMI and the other to communicate
asynchronously with the rest of the GUARD.

5.3.2.5 Other Observations

The workarounds needed to make the GUARD execute added considerable
complexity to the system., The SPECIAL PDL was too complex, on the
one hand, and too vague on the other. The Downgrade Trusted
Process package could have been better organized if the
specifications were not followed as strictly as they wete.

5-31

impacts of exception management assessed. Due to the tight
coupling between Ada and the run-time environment, and the many
implementation-dependent options, it is necessary to understand how
these features are mechanized and what their limitations are.
Failure to do so may cause considerable problems with features such
as recursive subprogram formulations, dynamic instantiation of

generics, use of allocators, and other features which interact

b directly with the run-time environment. To the extent that these
{ aspects are not known or not understood during the design process,
- it is recommended that selective prototyping be performed to gain
F‘ the necessary information.

6.5 SOFTWARE ERRORS
l

Errors fall into two categories, which are the normal programming
errors and those relating to overall software architectures. Many
of the normal programming errors seem to be directly related to the
nature of the Ada syntax and semantics and thus can be overcome via

rroper education, training, and experience. This will be
particularly important when many Ada features are combined into a
single design and interactions between features occur.

The software architectures themselves may have an influence on the
types and numbers of errors which occur., Under such circumstances,
architectural guidelines may have to be established to diminish the
number, and severity of errors or to assure that errors are handled
properly. One aspect that needs emphasis is that exception
management must be an integral part of the design process. To the
extent that software architectures are complex, it may become
necessary to develop specific software tools to check, both
statically and dynamically, for various types of error conditions.
The architectures developed here did not appear to be sufficiently
complex and insufficient performance testing was conducted to
determine if such tools could have helped.

6-10

b—f
s
fz
P

6.6 PROGRAMMING SUPPORT ENVIRONMENT

This section provides recommendations with respect to both compile-
time and run-time factors which may impinge on a software
development project as well as the overall quality and capability
of the Ada programming support environment.

6.6.1 Compile-Time Environment

Because of the latitude afforded Ada compiler implementors, it is
recommended that a set of compiler evaluation criteria be formed
which is, in part, application dependent. These criteria should
address the following three categories. First, the implementation-
dependent features, such as the granularity of values for task

priority should be evaluated. Second, the compiler pragmatics
which may influence the length of identifier names, level of
nesting and other factors which may impact a particular application
or set of software development standards should be evaluated. - e
Third, features outside the language specification, such as how k
task context switching, TEXT_ IO, selective waits, and other 1ﬁj
features are mechanized, and the maximum number and size of tasks 'i
and maximum size of compilation units should be evaluated. ﬁwid
Although such evaluation criteria may not solve all compile-time -
related problems, a careful assessment should significantly reduce
the number and severity of problems. This evaluation should be
made prior to performing any design so that constraints can be
identified and understood.

LSS SRRV T I W D DAL

6.6.2 Bun-Time Environment

]
Because of the nature of Ada, many features which were previously : 1
directly provided by the run-time support system of the executive i ‘
or operating system, are now generally hidden from direct view by 5153
Ada features such as allocators, unchecked deallocation and tasking ‘

features., To avoid a negative impact of particular mechanizations .
of these features, a set of run-time support environment criteria A

6-11

................. o . I)
................. . e e e I e e T S e e e e e . R .t
e e et e R I I A I) R IR i A I T T R IR R s e L o
il alalalaa el Salda e aleralelal aldsdatodetadaldolblbak ot o beeclad P LIS I W VO 2 J.J

T\

‘‘‘‘‘‘

—— = = w = = e

should be formed and used in selecting a total Ada run-time
environment. This evaluation should be made prior to performing
any design so that constraints can be incorporated or addressed at
the beginning of the design phase.

6.6.3 Programming Support Epnvironment

The Ada programming support environment used on this project was a
minimum environment in that the only available tools consisted of
the prototype, partial implementation Ada compiler; SKETCHER; and
EDT, the screen-oriented text editor. As full-capability compilers
are developed and used, and as methodologies are formalized and
supplemented with tools to make them effective and efficient, the
programming support environment data storage and processing
requirements will increase substantially. To realize Ada's promise
of producing software which is more cost effective, it is
recommended that significant effort be devoted to determining the
processing and storage requirements at the outset of the project
and that these assessments directly address the use of planned
software development and maintenance tools.

6.7 PROJECT RECOMMENDATIONS

Although a great deal was accomplished in both application areas,
several significant items were not accomplished because of compiler
problems. The majority of these items falls under the category of
performance testing and assessing the Correctness, Efficiency-1II,
Integrity, Reliability and Robustness. For both applications, a
compiler should be selected which has been validated and evaluated
to the specific features required for this type of application so
that many of the previous problems can be either eliminated or
reduced in severity and impact. The existing programs should be
restored to their original designs and the implementation should be

completed.

6-12

"

T * .."--‘-' - M . - < -k~...r‘ -'.-“.'-'-'- --..w-“~‘<--.-'|" . T e >I.A.~
AR I T ST S SR N L P, Y U, S VI, W UL Vol T T T . P I s - S D DRI W W S 2 e = o p ke

e T T Y e M S Bt 2og et Snde Zh S Ante Shgus et dait S e S —— T T e

For the communications protocols, the previously planned software
performance testing should be conducted after the originally
planned implementation has been completed. The overall
architecture should be evaluated with respect to the performance
aspects and with regard to design and programming criteria for
achieving transportable and reusable software.

For the trusted software, the previously planned software
performance testing should be conducted after the originally
planned designs have been implemented. This performance testing
should include extensive stress testing, code analysis, and
correspondence testing to the degree that such testing can be
performed given the nature of the SPECIAL requirements for the
Upgrade and Downgrade Trusted Processes and the emulation of KSOS.

An alternative approach would include selecting a compiler as
indicated above but with a different development and evaluation
approach, which would consist of the following steps. Obtain the
revised set of trusted software requirements for the ACCAT GUARD
which were formed in GYPSY /KEET81A/, /KEET81B/, /KEET81C/.
Determine a suitable place in the requirements hierarchy to begin
and apply the previously recommended trusted software methodology
and guidelines, and use Ada and ANNA from the outset of the
development and redesign and reimplement the trusted software
while, in general, reusing the existing nontrusted software.
Evaluate the software with respect to Maintainability, Testability,
Correctness, Efficiency-II, Integrity, Reliability, Robustness and
formal verifiability by performing extensive static and dynamic
testing. Fvaluate the design and programming guidelines used and
revise them accordingly. Assess the impact of restrictions on the
Ada language with regard to usability of the restricted subset.

6-13

...............................
PR PP L

L VN
PP

. e e
Loete e
o a o e s

SECTION 7
REFERENCES

The following references apply totally or partially as cited
throughout this document.

7.1 MILITARY STANDARDS AND SPECIFICATIONS

/M16778/

Department of Navy, Military Standard, Weapon System Software
Development, MIL-STD-1679 (Navy), 1 December 1978.

/M84773/

Military Standard - Format Requirements for Scientific and
Technical Reports Prepared By or For the Department of Defense;
MIL-STD-847A, 31 January 1973, including update notices 1 and 2.

\e /M18183/
United States Department of Defense, "Reference Manual for the Ada
Programming Language," ANSI/MIL-STD-1815A-1983, 17 February 1983.

/M177834/

Department of Defense, Internet Protocol, MIL-STD-1777, 12 August
1983.

..'?1
/M17783B/

Department of Defense, Transmission Control Protocol, MIL-STD-1778, , ?
12 August 1983.]

/M15272/ .
Military Standard - Technical Reviews and Audits for Systems,

Equipments and Computer Programs; MIL-STD-1521A (USAF), ﬂfw
1 June 1976.

7-1 L]

/M49068/

Military Standard - Specification Practices; MIL-STD-494,
30 October 1968.

/48379/

Military Standard - Configuration Management Practices for Systems,

Equipment, Munitions and Computer Programs; MIL-STD-483 (USAF),
21 March 1979.

/DSDs83/

Joint Policy Coordinating Group on Computer Resource Management,
Computer Software Management Subgroup, Defense System Software

Development (DOD-STD-SDS), Proposed Military Standard, 5 December
1983,

7.2 SYSTEM SPECIFICATIONS AND REFERENCES

/WO0D78/

J.P.L. Woodward, "ACCAT GUARD System Specification (Type A)," MTR- L
3634, The MITRE Corporation, Bedford, MA, August 1978. R

/LOGI79A/ o

'Y L.\:.'.;
Logicon, "Formal Specification of GUARD Trusted Software (Draft)," %
ARPA-78C032303, September 1979.
/LOGI79B/ 2
Logicon, "ACCAT GUARD Program Development Specification (Type BS5)," 1

ARPA-78C0323-81, February 1979. L

/BALD79/

David L. Baldauf, "ACCAT GUARD Overview," The MITRE Corporation
(MTR-3861), Bedford, MA, November 1979.

e '
P

Vo
aaa A

...................
.............................

..........................

.......

L s e A s s e s LB o B s e a e e aea e - . e M e S e v J Cl

/WEST79/

Western Union, "Initial AUTODIN II Segment Interface Protocol (SIP)
Specification,” (System Engineering Technical Note TN 78-87-31),
DCA 200-C-637-P@03, 5 March 1979.

/WEST78/
Western Union, "AUTODIN II Design Executive Summary," Western Union
Telegraph Company, McLean, VA 22161, 18 May 1978.

7.3 OTHER GOVERNMENT REFERENCES

/USDO8@B/
United States Department of Defense, "Requirements for Ada Program-

ming Support Environments," "Stoneman," United States Government,
February 1984,

/UsDo83/

Department of Defense Trusted Computer System Evaluation Criteria,
15 August 1983, CSC-STD-#81-83, Library No. S225,711.

7.4 NONGOVERNMENT REFERENCES

/BBNI76/

Bolt, Bernek, and Newman, Inc., "Development of a Communications
Oriented Language, Parts I and II," Report No. 3261, 28 March 1976.

/SRI178/
SRI International, "Verification of Communications-Oriented

Language Programs," SRI International Final Report, Project 6413,
August 1978,

/HALS77/

Maurice H. Halstead, Elements of Software Science, Elsevier North
Holland, Inc., New York, 1977.

I W P SHILAR ATy

aaboad

,,
e e

o
yay)

WY

T————— b A e v

/CO0P79/

John D. Cooper and Matthew J. Fisher, Editors; Software Quality
Management, Petrocelli Books, Inc., New York, 1979; "An
Introduction to Software Quality Metrics,"™ by James A. McCall.

/KEET81a/

Jim Keeton-Williams, Stanley R. Ames Jr., Bret A. Hartman, Ronald
C. Tyler, "Verification of the ACCAT-GUARD Downgrade Trusted
Process, Volume 1l: Overview and Major Results," (MTR 8463),
Volume 1, September 1981, The MITRE Corporation.

/KEET81B/
Jim Keeton-Williams, Charles H. Applebaum, "Verification of the
ACCAT-GUARD Downgrade Trusted Process, Volume 2: Verification

Theory," (MTR 8463), Volume 2, September 1981, The MITRE
Corporation.

/KEET81C/ .
Jim Keeton-Williams, Bret A. Hartman, James Abbas, Ronald C. Tyler;
"Verification of the ACCAT GUARD Downgrade Trusted Process, Volume

3: Specification and Proof," (MTR 8463), Volume 3, January 1982, {f;;
the MITRE Corporation. i“;f
/RRIE83/]

Bernard Krief-Bruckner, David C. Luckham, Friedrich W. von Henke, R
Olaf Owe, "Reference Manual for ANNA, A Language for Annotating Ada
Programs (Preliminary Draft)," March 1983. : 3

/LUCK84/

David C. Luckham, "On the Design of ANNA: A Specification Language
for Ada," Computer Systems Laboratory, Stanford University,
Stanford, CA 94385

o o o o P —p— e e
L e e e e Sy ke an gl upe A SRS Al st A Sl S R NTRTR T ST T e B R

/CHEH88/
M.H. Cheheyl, M. Glasser, G.A. Huff, J.K. Millen, "Secure System

Specification and Verification: Survey of Methodologies,"
20 February 1984.

/BRINS1l/
Alton L. Brintzenhoff, Steven W. Christensen, David T. Moore,
J. Marc Stonebraker, "Evaluation of Ada as a Communications

Programming Language,™ Report DCAl00-80-C-8437, 31 March 1981, NTIS
AD-A-121938.

/BUHR84/

R.J.A. Buhr, System Design with Ada, Prentice Hall, Inc., Englewood
Cliffs, NJ 97632, 1984.

/B0O0C83/

Grady Booch, Software Engineering with Ada, The Benjamin/Cummings
Publishing Company, Inc., California, 1983.

/PRIV82/
J.P. Privitera, "Ada Design Language for the Structured Design

Methodology," in Proceedings of the Ada TEC Conference on Ada,
6-8 October, 1982.

/HONE84/]
Honeywell, Systems and Research Center, 2600 Ridgway Parkway, 'f{
Minneapolis, MN 55413; Alsys, 29 Avenue de Versailles, 781748

La Celle Saint Cloud, France, Rationale for the Design of the Ada
Programming Language (Draft for Editorial Review), January 1984.

DB S Sase s Saue S Jemn ane Snte Jhos Same Jaese Sge e e Sieme et Sae Sngs gt

APPENDIX A
SOFTWARE DEVELOPMENT GUIDELINES

PR |

—_— T e vt SR Sttt R G o h b o

The following material is excerpted from the Draft Software
Development/Management Plan, CDRL 082, 4 May 1983. The prefixed
notes indicate the evaluation of the material for the Communica-
tions Protocols (CP) and the Trusted Software (TS) applications,
respectively, according to the following criteria: 1l-used,
effective; 2-used, ineffective; 3-not needed, not used; 4-needed,
not used; 5-new addition; 6-change to existing guideline.

3.6 SOFTWARE DEVELOPMENT GUIDELINES

3.6.2 Software Architecture Design Guidelines

The objective of these design guidelines is to assure that
reasonable software engineering principles are used in forming
the designs from the very highest level of abstraction downward.
An additional and equally important objective is to assure that
Ada features which can support and influence high-level software -
architectures are highly visible and understood. Specific software
engineering principles which will be used in an Ada context are
abstraction, information hiding, modularity, localization,
uniformity, completeness and confirmability as presented in < i
/B00C83/.

From virtually the outset of the design, the use of certain

Ada features such as package, subprogram and task specifications)
will be emphasized to assure that Ada capabilities which support _ f
the software engineering principles are well understood and are]

maximally used to influence the design in a favorable way. One
design abstraction which will be used is the concept of a virtual
package, a level of abstraction one level higher than an actual
package, but drawing on the same concepts embedded in actual
packages. Thus, at a high level of design, the architecture will
already have an orientation toward Ada which hopefully will
simplify the stepwise refinement process which will produce the
macroscopic and microscopic designs and, finally, the code.

e e
ccaltalala

alaad

_‘L- ----- o et e s A N A R N S S PR O R VP A P B VA MG S 4

A

In documenting the designs at the virtual package and package
level, the object-oriented-design diagrams of /BO0OC83/ and /BUHR84/ -
will be used as a basis for producing the precursors of the
macroscopic designs which will exist in Ada textual form.

If instances occur where these notations are inadequate, then they
will be augmented with additional notations or variations on an

ad hoc basis after due consideration of the surrounding
circumstances,

3.6.3 Ada Program Design Language Guidelines
For uniformity and consistency, the level of detail specified
for the macroscopic and microscopic designs in Section 3.2.4,

Levels of Design, has been extracted and repeated here. Additional -
details have also been included.

3.6.3.1 Macroscopic Design Guidelines

The following levels of detail will be produced for the R
macroscopic designs:

TS CP -]

e

[1] [1] 1) Provide identification of all library and
secondary units.

[1] [1] 2) Provide identification of all visible package
components.

[1] {1] 3) Provide identification of all formal]
parameters for task entries, subprograms, and]
generic declarations,

[TS & CP - Too Early In the Design Process. In all probabil-
ity, formal parameters will change somewhere later in the
design process.,]

Aot e
e e S T e
VP TP W I 1 N SRS G

(11

(1]

4)

Provide virtually complete specification of
all visible types.

[TS & CP - Too Early In the Design Process.]

(1]

(1]

(6]

5)

6)

[CP - Change

(1]

(6]

7)

[CP - Change

(3]

(4]

(1]

(1]

(1]

(5]

(5]

(1]
(4]

(1]

(1]

(5]

(5]

8)

9)

18)

11)

12)

13)

14)

Provide identification of compilation unit
dependencies.

Specify major types and components within
visible modules.

Specification => Identification]

Specify major flow control logic within
complex visible modules,

Specification => Identification]

Declare all nested program modules.
Identify all exception handlers.

Use English language text between brackets

([]) to indicate where conversion to code is
required.

Use comments, which can be retained in the
code, to provide overviews and augment and
clarify data structures and processing.

Provide references to imported exceptions,
subprogram and task calls and to local
exceptions, subprograms and task calls at the
next lower level of detail.

Assign weights to software quality factors for
each compilation unit,

Compile all library units at the conclusion of
the macroscopic design and remove any
deficiencies.

. f
. GO v |

b

................................

3.6.3.2 Microscopic Design Guidelines

The following levels of detail will be produced for the
microscopic designs:

TS CP

{1] [1] 1) Complete specification of all components of
the visible and private portions of all
library units.

[1] 2) Complete specification of default
initialization for 2ll visible and private
objects.

[1] [1] 3) Complete specification of all major flow
control logic within all modules.

[1] [1] 4) Complete identification of local (inner scope)
types and objects.

[1] [6] 5) Identify all nonvisible subprogram tasks.

[1] [1] 6) Refine major flow control within visible and
complex modules.

(1] [1] 7) Use English language text between brackets
([1) to indicate where conversion to code is
required.

{5] [S] 8) Compile all library units at the conclusion of
the macroscopic design and remove any
deficiencies.

3.6.4 Ada Programming Guidelines

The following sections specify nominal program design
guidelines for the macroscopic and microscopic designs and for the
programs themselves. Obviously, the Programming Guidelines must be
considered not only at the programming level but alsoc at the macro
and micro design levels and, in some cases, even at the system
architectural level.

AD-R152 314

UNCLRSSIFIED

EVALURTION OF ADA (TRADEMARK) RS A COMMUNICATIONS
PROGRRHHING LANGURGE YOLUME 1(U) SYSCON CORP SAN DIEGO
A L BRINTZENHOFF ET AL. 91 MAR 85 DCRiBB 83 C-.‘ZB

33

END

" v

"m-‘?‘l e 22

wipe 22

Y mﬂ; 20
it f he

s '
=

= M e

" vﬁjvr-'-—,., ——— ,-v’."v-v‘f.
. . ’ . Al A

.

Because many of these guidelines are closely associated with S

the Ada syntax and other program module considerations, they have
been placed at the programming level and oriented along the chapter
titles of the Ada Language Reference Manual.

As the title indicates, these are guidelines and not
standards or mandatory conventions. It is anticipated that because
of individual programming styles, past experience, and special
situations, variations and even some distinctly different
conventions will be formed and used. The objective here is to
avoid what appear to be bad choices, and emphasize nominal good
choices so as to minimize overall program development problems.
Clearly, one aspect of the software evaluation will deal with the
formulation and use of standards, guidelines and conventions based
on the experience gained in the use of the following guidelines.

3.6.4.1 Overall

TS CP

(1] [4] 1) Use comments liberally: on statement lines to
clarify code; as "headers" to introduce
complex sequences of code; for the module
summary which occurs inside the module
including packages, subprograms, blocks,
tasks, and entries, if appropriate.

[1] [1] 2) Use only a single statement per line except
for comments and combined with and use clauses
relating to the same compilation unit.

[1] [1] 3) Limit subprogram and task body sizes to

approximately 100 lines of code, and a maximum
of 200 lines.

[1] [6] 4) Limit text to 80-character lines.

[CP - A rigid 80 column requirement must be traded off with

overall readability due to the long names and expanded name
notation referencing external units]

———— —— M Sl A e e o e e e e e

[1] [6] 5) Use blank lines to provide separation of
different entities such as one group of
types/objects and another.

[CP - Or user defined separator lines]

[1] (1] 6) Use recommended paragraphing of Ada Language
Reference Manual.

(6] [11 7) Indent paragraphs in increments of three
characters.

[TS - Used increments of 2 characters for indentation.]

{1] [1] 8) Align subprogram, task entry, and generic
formal parameters for easy reading.

[4] [1] 9) Use page breaks (pragma PAGE) to begin major
program units and to otherwise separate
distinct, different entities.

[1] (1] 18) Use lower case letters for reserved Ada words.

3.6.4.2 Lexical Elements

TS cp

[6] [6] 1) Lexical order: (types(s), objects), packages,
subprograms, tasks, exceptions,

[CP & TS ~ Ordering may be influenced by nesting, call
dependencies, etc. Cannot always be adhered to as stated.
Important aspect is to be consistent.]

[1] [1] 2) Use the package, subprogram and task
identifier in the respective end statements.

(4] [1] 3) Place pragma statements so they are highly A
visible.

A-7]

3.6.4.3 Declarations and Types

3.6.4.4 Names and Expressions

PN PSSR T UL U S Ly S T Shr Y

TS CP

{1,2] [1] 1) Use default initialization when initial values
are required.

[1,2] [6] 2) Choose type and object identifiers for
compatibility and meaningfulness.

[CP & TS - Add "whenever possible®™. 1Identifiers may be
chosen to reference or be determined by external i
specification requirements]

[1] [1] 3) Use enumeration types for improved readability.

(4] [4] 4) Use derived types and subtypes for clarity and -
to avoid computational ambiguity.

[3] [1] 5) Keep recursive and mutually dependent type
declarations in close proximity to each other.

[2]) [S] 6) Avoid/minimize large and complex data types and - -
objects. .

[CP & TS - Data Structures may be dictated by external
specifications and PDL]

TS Cp

(1] [1] 1) Use a space before and after delimiters and
compound delimiters except for: the apostrophe
in attribute notation; the period in selected/
expanded component notation; the comma
separating array indexes and actual parameters;
parentheses in array component selection. -

{1} {11 2) Avoid use of unnamed literals in executable
code.

bl N has

[1] [1] 3) Use attribute notation wherever appropriate to
minimize explicit dependencies. S

.\
7y
M
|
..'
i

\e

(4]

(1]

4)

3.6.4.5 Statements
TS CP
(1] (4] 1)
[2] (1] 2)
[2] [4] 3)
(3] {31 4)
[3] [3] 5)

3.6.4.6 Subprograms

N VO - SUPRL SR P |

TS
(6]
(3]

(1]

(1]

(1]

(1]

(1]

(1]

.....
.....

CP
[3]
[1]

(1]

(1]
(1]

(4]

(1]

(1]

1)
2)

3)

4)

5)

6)

7)

8)

Use named associations for record and array
aggregates unless the specified values are
meaningful.

Use blocks to provide localized exception
handlers.

Use case statements instead of if statements
when possible.

Use blocks to "collect" highly localized
operations and corresponding data.

Provide meaningful block names for blocks.

Provide meaningful loop names for loops.

Avoid recursive invocations.

Declare new operators only for frequent and
meaningful use.

Use overloading of subprogram identifiers only
when operations are highly similar or number
of arguments vary.

Limit formal arguments to approximately five.

Choose formal parameter names which will be
communicative if the named notation is used.

Itemize subprogram identifier and formal
parameters, one item per line, followed by a
descriptive comment.

Avoid use of functions which produce side
effects unless absolutely required.

Subprogram identifiers and block and loop

names should be meaningful where they are
used, not where they are declared.

A-9

L o o e e am o e s e ACe et A S Bnd el et aet) p— T Barae o gne e Bos) B ar B SR S Su e

3.6.4.7 Packages

TS Ccp

{1) [6] 1) Minimize package nesting unless exceptional
requirements exist.

[CP - Package Nesting should reflect architectural
Requirements/Specifications]

(1] [1] 2) Export only those package components which are
absolutely required.

[1] [6] 3) Use package identifiers which communicate the
package purpose.

[CP - Names => Functional and/or Architectural
Significance]

(1] (1] 4) Within package bodies, declare data _ R
types/objects, nonvisible packages, -
subprograms, tasks followed by the visible
subprograms and tasks.

[1] [1] 5) Preserve lexical ordering of entities such as
sub-programs, and tasks and entries between o
package specification and package body. .l

[3] {1] 6) Use private and limited private types
judiciously since they will require extra
subprograms to provide the necessary user -
operations. "

[1,2] [1] 7) Visible entities of a package should have .
meaningful identifiers not merely generic o
names such as, for example, READ and WRITE. !

3.6.4.8 Scope and Visibility

TS CP =
[1] (3] 1) Use use clauses for Ada-defined and locally B

declared units only. _ -4
(1] {1] 2) Use expanded name notation for components of

external, user-defined compilation units.

A-10

R RSP S AL WAL WAE VR Y AL AP W W S SO P

[1] (1] 3) Use renames to simplify notation or to
abbreviate expanded names such as package
identifiers.

(1] [1] 4) Avoid complex scope, visibility and
overloading relationships which produce hiding
or other disjoint visibility relationships.

3.6.4.9 Tasks

TS CP

[1] [1] 1) Itemize task entry points and corresponding
formal parameters, one item per line, followed
by a descriptive comment.

1] [3] 2) Avoid use of abort.

[1] [1] 3) Use entry names which are meaningful where
they are used, not where they are defined.

[1] [1] 4) Choose formal parameter names which will be
communicative if the named notation is used.

3.6.4.10 Program Structure and Compilation

TS Cp

(6] [6] 1) Minimize complex or lengthy compilation unit
dependencies.

[CP & TS ~ The choice/complexity is not always user
determined]

(4] [4] 2) Use subunits and secondary units to control
the size of compilation units.

[CP & TS - Needed, Not Available]

[6] [4] 3) Use judicious nesting of modules in order to
simplify or minimize overall compilation
dependencies and number of compilation units.

A-11

(3] (51 4)

[CP - Needed,

[TS - Original design required nested modules for file, S

port, and other utility packages in common packages for
both the high and low sides of the GUARD]

3.6.4.11 Exceptions

TS CPp

(1,2] [6] 1)

[CP & TS - Useful Debugging Tool]

(6] (41 2)

[TS - Useful

(1] (11 3)

(1] (11 4)

[1] (11 5)

(1] (1] 6)

Place context clauses with package bodies _ .
whenever possible instead of with package -
specifications.

Not Available]

Use exceptions for truly abnormal error or
exceptional circumstances and not to effect -
normal changes in control flow.

Avoid the use of others in exception handlers '
since it can produce misleading results.

Debugging Tool]

1
User-declared exceptions should not overload 1
Ada-defined exceptions.]
Localize exception handling as much as a
possible,)
Use exceptions in tasks and especially in a f

rendezvous very cautiously.
Declare, in the package declaration, all .

exceptions of modules of packages which will
be visible externally.

A-12

B
. . R
' ala a’s’aa

...................

L J

3.6.4.12 Generic Units

TS
(2]

[1]

(1]
(2]

3.6.4.13
TS
(3]

[3]

3'6'4 .14

TS

(6]

Ccp

(31 1)
(31 2)
(31 3)
(31 4)

Limit generic parameters to approximately
five.

Choose formal parameter names which will be
communicative if named notation is used.

Avoid nesting of generics.

Use extreme caution and explicit documentation
if generic parameters are used as conditional
compilation flags.

Representation Clauses

CP
(11 1)
(11 2)

Place representation clauses in close
proximity to the components to which they
apply.

Use unchecked operations cautiously and mark
their locations to be highly visible.

Input-Output

CP

{61 1)

Centralize column, line and page
specifications for text files if possible.

[CP & TS - Centralize all I/0 operations/routines in
separate units (packages) according to the type of 1I/0 (ie

Disc,

CRT/Printer etc.) |

A-13

R PRI .
. . e
TV IR "SDOY S G 1 e

atd

APPENDIX B
ADA RESTRICTIONS FOR TRUSTED SOFTWARE IMPLEMENTATION

B-1

PPy

| gan and sk i et eI ey

The following is a preliminary list of restrictions to be
imposed on the Ada language for the purpose of developing trusted -
software. These restrictions were formed based on considerations
of maintainability, testability, correctness, integrity,
reliability, robustness, and formal verifiability of the software
itself and on retaining a basic usability of the Ada language in
the context of these restrictions.

These guidelines or restrictions form a preliminary list
which is based, in part, on some limited Ada programming of
trusted software on a prototype basis. However, this software is
incomplete and has not been implemented along the lines of the
actual designs because of limitations with the prototype compiler
which was used. Thus, because extensive stress testing, covert -
channel analysis, and correspondence analysis of the code have not
been performed, the guidelines have not been evaluated or verified
with the result that they may be incorrect, incomplete,
inconsistent or inappropriate at this point.

1. General Considerations

1) Prohibit use of all features or combinations of features
which result in erroneous programs regardless of whether such
programs are in fact incorrect or not in the given implementation.

2, Lexical Elements
3. Declarations and Types

1) Prohibit use of anonymous types. ©]

2) Assign default values to all objects except limited !
private objects which should be preset via explicit initialization ‘
in the executable portion of a body.

3) Prohibit trusted-non-trusted process communication from
using access variables. i]

el e atata sl e [P P I W PP PP USRS R U P, T Y. Loa e o

p—p— — w— -~
Y R —— T ————- e ———— - — v

4) Prohibit record types and records of the respective types
from becoming private or limited private objects as a side effect
of containing objects which are of a private or limited private
type.

4. Names and Expressions

5. Statements

l) Prohibit the use of goto statements as the predominant
means of effecting changes in control flow.

2) Prohibit use of conditional exit statements which depend
on global objects.

6. Subprograms

1) Attempt to achieve pass-by-copy as opposed to pass-by-
reference variable transfers especially between trusted and non-
trusted entities,

2) Avoid the use of subprogram declarations and
corresponding bodies or subprogram bodies as compilation units

(i.e., place subprograms inside packages except for the main
subprogram) . 4

3) Permit only procedures to produce side effects and 'j
prohibit functions from producing side effects. S

4) Prohibit aliasing of in-out mode parameters in
procedures.

5) Prohibit functions from using external global parameters
unless they are constants,

m P———— Y Y

7. Packages

1) Prohibit declaration of visible objects in the package
specification for packages visible to non-trusted software.

2) Prohibit non-trusted software from declaring objects in
its space which are manipulated by the secure package since
unchecked conversion can then be used.

3) Prohibit accessing of global parameters from within a
package body.

8. Visibility Rules

1) Prohibit renaming task entries as procedures.

]
9. Tasks .

1) Prohibit use of guard conditions on task entries where
global parameters are components of the conditions; permit only
local parameters to be used on guard conditions.

2) Prohibit use of shared variables unless the tasks and
shared variables are declared in the same scope.

3) Permit task types only when they are used to create a
finite number of declared task objects.

4) Prohibit task types from being visible to a non-trusted
process since the user can then create his own tasks. e
5) Permit a task to abort only itself.)
6) Prohibit the use of tasks where tasks would be used to 1
achieve elaboration of some data other than that contained within i
the task itself. o

7) Permit the activation of tasks via allocators only in
’
declarative regions.]

8) Prohibit the reassignment of tasks among the set of
access variables designating those tasks.

. .))
18. Program Structure and Compilation Issues A

o RIS .
. Wl e e e
a2 A 6 atalaa . s

.
.{" A'_

et al At et et e At v e e el e [P T SDAY VAl Wit WA W W

13.7
13.7
13.7
13.7
13.8
13.9
13.190

LRM Ada Feature

Package System

Memory_Size (pragma)
Storage_Unit (pragma)
System_Name (pragma)

Machine Code Insertions
Interface to Other Languages
Unchecked Programming

13.10.1Unchecked Storage Deallocation
13.18.2Unchecked Type Conversion

14.
14.1
14.2

14.3

14.3.9
14.4
14.5
14.6

s A Ata atadan PR P P PR . S a0 W LTy B)

Input-Qutput
External Files
Sequential and Direct Files
Task stack overflow when
accessed from task
Text Input-Output X
Synchronous vs asynchronous
mechanization
Impedes MMI operations
in multiuser system
Enumeration 1/0
Input-Output Exceptions
Package I/0_Exceptions (spec)
Low Level Input-Output

Predefined Language Attributes
Predefined Language Pragmas
Optimize (pragma)
Page (pragma)
Source_Info (pragma)
Predefined Language Environment
Implementation-Dependent Characteristics
Run-until-block context switch algorithm
Synchronous vs asynchronous TEXT_IO
mechanization
Unrealistically small,
fixed task stack size

LRM Ada Feature E I 0] P
9. Tasks
9.1 Task Specifications X H

1. Must appear at outer-
most scope
9.1 Task Bodies X H
1. Must appear at outer-
most scope

9.2 Task Types and Objects X H
9.5 Entries X M/H

Entry families
9.5 Entry Calls
9.5 Accept Statements
9.6 Delay Statements X M
9.6 Package CALENDAR E E H

Undefined exceptions
9.7.1 Selective Waits
9.7.2 Conditional Entry Calls X M
9.7.3 Timed Entry Calls X M
9.8 Priorities (pragma) X M
9.9 Task and Entry Attributes X M
9.1 Abort Statements X
9.11 Shared Variables (pragma) X M
10. Program Structure and Compilation Issues
16.1.1 With Clauses
19.2 Subunits (is separate) X M/H
18.5 Elaborate (pragma) X N
11, Exceptions
11.1 Exceptions Declarations
11.2 Exception Handlers
11.3 Raise Statement
11.4 Exception Handling
11.7 Suppressing Checks (pragma) X N
12, Generic Units
12.1 Generic Declarations X H
12.2 Generic Bodies X H 1
12.3 Generic Instantiation X H
13, Representation Clause= .
13.1 Representation Clauses X H]
13.1 Pack (pragma) {
13,2 Length Clauses X H
13.3 Enumeration Rep Clauses X H
13.4 Record Rep Clauses X H
13.5 Address Clauses
13.6 Change of Representation X H

A PP W Y BT 1 S

CAMMB Sem o B e e o Y an NS Arie ue Su dein VS SR Shau 2 S ST

LRM Ada Feature E I 0 P

Names and Expressions
Literals

Record Aggregates
Array Aggregates
Expressions

X L/M

X
Type Conversion X L

X

X

L/M

.
[S

Qualified Expressions
Allocators

Controlled (pragma)
Static Expressions
Static Subtypes
Universal Expressions

WOWWONN&WWN

- - NS g
=

Statements

Assignment Statement

Array Assignment Statement

If Statement

Case Statement L
1. Cannot incorporate attributes

2, Subtype or type must be in scope

Loop Statement

Block Statement

Exit Statement X L
Return Statement

Goto Statement

(SN, N N N,
B WK N

L]

[

* (SN R, N, NE,)
(=, * o o o o e e & 9
WoOodAun

NSO WWN .

Subprograms

Subprogram Declarations

Formal Parameter Modes X L/M
Subprogram Bodies

Inline Expansion (pragma) X N
Subprogram Calls

Default Parameters X L
Function Subprograms

Overloading of Subprogram

Overloading of Operators

.
N N

Packages

Package Specs and Decls. X N
Package Bodies X N
Private Types

Limited Types

bW

&>

Visibility Rules

Use Clauses

Renaming Declarations
Package Standard

0 O o ™ NN NN AN

« o o
A Ut

.....

The following table indicates the possible types of
deficiencies for each type of Ada feature (E-erroneous feature,
I-incomplete/inconsistent feature, O-omitted feature, P-impact code)
and the specific impact of that feature on the overall design and
implementation (N-none, L-low(minor inconvenience, implementation
(code) detail, M-medium (moderate inconvenience, some micro design
changes, resort to less direct means), H-high (significant change in
design at macro level or incurrence of significant additional work),
T-terminal case (total impass regarding implementation of desired
capability). In some instances supplementary notes are also
provided. The compiler used was the prototype Telesoft-Ada¥*
compiler, version V3@R23 of November 1983,

LRM Ada Feature E I 0 P

*
N
.

Lexical Elements

»
w
.

Declarations and Types

Named Numbers (constants)

Type Declarations X

Subtype Declarations X X

Derived Types X

Enumeration Types

Character Types

Boolean Types

Integer Types

Discrete Operations X

Floating Point X

Floating Point Operations X

Fixed Point X
@ Fixed Point Operations X

Array Types X

Unconstrained array declarations

Array Operations

String Type X M

Unconstrained string declarations

Record Types

Access Types

Incomplete Type Declaration

Declarative Parts

[« W)} vt uneawwNn

OO W [N o

bz

WW WWLWwwwwwwwwwww
n Z2ZzZt

. L]
wN

[P VS I VS V%)
L] . * L]
.
-

[Vole < Js B]

*Telesoft-Ada is a Trademark of Telesoft.

s JBm Sham S Bose e ss St sashe Snath Ui 2

APPENDIX D
COMPILER LIMITATIONS AND IMPACTS

)

.......

.....................................

PR AT Y Sl I Y.

*Phase : Macro/Micro Design, Code/Debug

*Name : Annotated Ada (ANNA) Run-time Verifier
*Purpose: Provide run~time verification of specified
ANNA constraints.
*Functions: 1) provide routines which perform run-time L
verification of constraints specified via
ANNA

*Problems Addressed: Provide a means of verifying, during
execution, that constraints which are
specified via ANNA are actually being met.

*Rationale: Since extensive run-time testing will normally
be conducted for trusted software, a software
tool which automatically checks for violation
of constraints specified in ANNA will improve
both the quality of the software and the
efficiency and effectiveness with which the
software is tested.

PR
A

C-7

R P N T I T UL AP S I R T

*Phase :

*Name

*Purpose:

*Functions:

*Problems addressed:

*Rationale:

*Phase :
*Name :

*Purpose:

*Functions:

*Problems Addressed:

*Rationale:

) i g T g T T A s
Cad TR ———— T T > v

" i Desi ~ode/Del

Ada Preprocessor for Trusted Software
Restrictions

Provide syntactical and semantical processing
of Ada and/or Ada PDL to assure that the
trusted software restrictions are enforced in
the Ada PDL and Ada source code.

1) provide mechanization of trusted software
restrictions

2) process Ada PDL and Ada source code to
assure that syntactical and semantical
trusted software restrictions are
enforced.

Provide a software tool to effectively and ‘
efficiently assure that trusted software -
restrictions are strictly enforced.

Because of the need to impose restrictions
on the Ada features which are used in
implementing trusted software, it will be T
necessary to have a software tool which B
consistently, effectively and efficiently
assures that the restrictions have not been
violated.

M /Mi Desi Code/Del
Annotated Ada (ANNA) Compiler

Compile ANNA annotations embedded in Ada PDL
and Ada source code.

1) Provide syntactical and semantical 1
checking of ANNA source code and

2) provide code-generation capabilities for ?
inclusion of ANNA Run-time Verifier
software

Provide a software tool to assure that the
embedded ANNA is correct, complete and
consistent.

The incorporation of ANNA into the Ada PDL and oy
Ada of trusted software and other reusable or SRS
transportable software provides the capability —
to provide additional semantical information .)
on the functionality of that software. This .
information can be relied upon only if it has B
been systematically error checked. S

*Rationale:

*Phase :
*Name :
*Purpose:

*Functions:

*Problems addressed:

*Rationale:
*Phase :
*Name :

*Purpose:

*Functions:

*Problems addressed:

*Rationale:

Considerable time and effort were devoted to
refining the code that was produced which
could have been more effectively devoted to an
analysis of the designs and possibly the
enhancement of the designs.

M /M Desi code /Del
Task Call Sequence Analyzer

Provide the designer with textual or graphical
representation of possible task call sequences
or deficiencies.

Provide a multi-level caller-callee tree which
can be analyzed for potential starvation,
deadlock, or unreachable callees.

A static analysis of complicated applications
involving significant tasking could be per-
formed in order to eliminate as many tasking
errors or to at least identify possible
problems prior to beginning execution.

Debugging of complicated tasking applications
could be simplified and redesign could
possibly be minimized by detecting "obvious"
errors during the design phase.

Macro Design
Advanced SKETCHER

Permit designers to produce top-level designs
interactively using bit-mapped graphics and
automatically convert the graphical
representations into the corresponding
skeletal PDL.

Produce bit-mapped graphical representations
of OODD's for inclusion in design documenta-
tion, provide generation of corresponding PDL.

Improved productivity during early design
phase by elimination of manual activities.

Avoid dealing with excessive detail required
in textual representations and provide
automation for the straightforward process of
converting the OODD's into skeletal PDL which
can then be refined.

*Phase

*Name

*Purpose:

*Functions:

*pProblems addressed:

*Rationale:

*Phase

*Name

*Purpose:

*Punctions:

*Problems addressed:

.............

................
.......

Macro/Micro Design, Code/Debug
Expanded Name Generator

Provide the expanded names for entities
referenced correctly by the compiler via use
clauses.

Prefix the correct expanded name to entities,
such as the package name to a task contained
in the package where the name is obtained by
the compiler via a use clause.

Provide completely qualified entities through
the inclusion of expanded names in order to
facilitate code reading, traceability and
maintainability.

During development it is convenient and
efficient to not specify the expanded names,
especially if they are lengthy; although
renames clauses could be used for packages,
for example, this may not be desirable. This
would permit the development to progress
quickly by eliminating the prefixing of

lengthy names and would at the same time -

provide an effective way for including them
after the fact to achieve the desired
maintainability and traceability.

M /Mi Desi Code/Del
Multi-Mode Syntax Directed Editor

Facilitate the creation of the Ada PDL, the
conversion of the PDL to code and the creation
of Ada source code.

Provide syntax directed editing, based on the
particular mode selected (Macro, Micro, Code),
facilitate conversion of English language
entities into Ada or refined English language
entities by supporting various display/
prompting/relocation capabilities.

Assure that PDL or source code is produced
which is more nearly complete, correct and
consistent and provide for improved
productivity.

PN AP AN PV VDS TS LAY PSP

o !
I

Sl ’ :
I G IO W WP)

a5

*Phase :

*Name :

—
.

*Purpose:

*Functions:

*Problems addressed:

.

*Rationale:
®

*Phase :
- — *Name :
A \e

*Purpose:

*Functions:

*Problems addressed:

*Rationale:

Code/Debug
Pretty Printer

Provide standardized formatting of source code

Provide standardized formatting of produced
code regarding lexical format, placement of
headers and comments.

Eliminate the need for manual "pretty-print”
formatting of code during original
production as well as during revisions of
the code during debugging and provide a
method for standardizing the code produced
by different programmers.,

Considerable time and effort can be saved
through the use of a Pretty Printer for
"structuring® the code into a more readable
format and, at the same time, providing
standardization in the source code produced
by several individuals.

Code/Debug, Integration/Test
Source-Level Debugger

Provide debug programs using source level
information

Provide the ability for setting breakpoints
and examining/setting values based on source
code information as opposed to object code
information. Provide features which are
especially oriented toward tasking and enable
the user to control which tasks are currently
active or suspended and to ascertain the
status of any activated, nonterminated task
and the ability to examine various task queues
to determine which tasks are runnable,
suspended and possibly reorder task queues to
resume a particular task or sequence of tasks.

Provide a way for minimizing recompilation and
the insertion of debugging code into the
developed source code which must subsequently
be revised.

A source-level debugger can speed up the
development cycle significantly as opposed to
entering and deleting debugging statements
which may have other adverse effects,
especially in a tasking environment.

r
4

91
k
."

e Cos

o Y .
oL .
e Lt
PR R G SIS I U

The following software tools are recommended as a minimum
set based on specific experience during the project. It is
believed that if even a subset of these tools had been available,
a significant amount of time could have been saved. The summary
of each tool indicates the phase in which the tool would be used,
the (generic) name, purpose, functions, problems addressed, and
rationale for the tool.

*Phase

*Name :

*Purpose :

*Functions:

*Problems addressed:

*Rationale:

PDL Processor

Process and verify Ada PDL and provide
various cross-reference information.

1) provide well defined syntax/semantics
for Ada PDL

2) specify minimum acceptable requirements
as per design phase

3) verify completeness, correctness,
consistency of PDL supplied

4) provide various types of cross-
references such as caller-callee
relationships, type/object cross-
references, and compilation unit
caller-callee relationships

Provide a software tool for assuring that
the minimum required information is required
and provide a way of presenting the informa-
tion in alternative formats which will make
various types of errors or deficiencies
evident.

A PDL processor will permit designs to

be produced in an iterative fashion with
refinement as details become known and are
appropriate to the respective level of
design abstraction. This will permit
inappropriate details to be avoided and,
at the same time, permit designs to be
more complete and to be evaluated more
thoroughly.

P I A e
EA RN . DS

.
-

. -'l,".'.
AT
et e
LA
e ok acala 2

T T -

APPENDIX C
SOFTWARE TOOL RECOMMENDATIONS,

DESCRIPTIONS

|
v

T 4) Prohibit instantiation of generics in which generic -

parameters are dynamically determined such as those passed into a i
t] block or subprogram.

13. Representation Clauses and Implementation Dependent Features

1) Encapsulate unchecked storage deallocation and assure
overwriting in order to eliminate residual data before
deallocation,

14. Input-Output

A Predefined Language Attributes

1) Prohibit use of attributes P'COUNT, P'CALLABLE,
P! TERMINATED.

B Predefined Language Pragmas < e -

1) Prohibit suppression of run~-time checks within trusted

software.
c Predefined Language Environment
F Implementation-Dependent Characteristics

1) Minimize use of implementation-dependent features since
these features may change with compiler revalidation and thus
require redesign, reimplementation and retesting.

11. Exceptions

1) Return input or default values on out, and in out mode
parameters if an exception occurs and make no changes to these
parameters until all results have been calculated correctly.

2) Indicate via ANNA or other annotation which exceptions
are associated with which task entry or subprogram call. (Note
that associating except.ons with entry points may not be adequate
in the case where the same entry appears in multiple accept
statements and different accepts produce different exceptions;
this could be viewed as a design deficiency or could be addressed
by providing annotated instances of multiple occurrences of the
same entry point but with different exceptions.)

3) Prohibit use of predefined exceptions in place of user
defined exceptions.

4) Provide a specific unique exception handler respectively
for each unique exception which can occur.

5) Minimize propagation of exceptions by maximizing local
processing of exceptions,

6) Use others clauses in exception handlers only to capture
unexpected exceptions so that they can be dealt with explicitly
and explicitly enumerate predefined Ada exceptions.

7) Assure that a package body, and its respective task and
subprogram bodies, either remain valid after an exception has been
propagated outside the package or that future calls elicit a
suitable exception.

12. Generic Units

1) Use no generic formal objects of mode in out.

2) Prohibit aliasing of all generic actual parameters at
instantiation.

3) Prohibit declaration of generic parameters which are
subprogram specifications.

.............

o o AR e Seat i e e

Gl B

FILMED

5-85

