
RD-R152 314 EVALUATION OF ADA (TRADEMARK) AS A COMMUNICATIONS In3
PROGRAMMING LANGUAGE VOLUME ICU) SYSCON CORP SAN DIEGO
CA A L BRINTZENHOFF ET AL. @I MAR 85 DCA±6S-83-C-6629

UNCLASIFIED G 9/2 M

mmmmmmmmmEimmmmnEmhhmhEmhEE
nEnnnEnnnnnnnI
IIIIIIIIIIIIII
IEEEIhhEIIIIhE
EEIIIIIIIIhlhI

13.

HI 2 5 P86

Report DCA 1 00-83-C-0029

* ~ ef

EVALUATION OF ADA*
AS A

COMMUNICATIONSI

0 PROGRAMMING LANGUAGE
*PHASE II

VOLUME I
FINAL PHASE il REPORT

Alton L Brintzenhoff
Steven W. Christensen
Donald G. Martin
John G. Reddan

SYSCON CORPORATION
San Diego Division

S 3990 Sherman Street
San Diego, CA 92110

15 FEBRUARY 1985

Final Report for Period 4 February 1983 - 15 February 1985

N APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Prepared for
..

DEFENSE COMMUNICATIONS ENGINEERING CENTER LECTE
* DEFENSE COMMUNICATIONS AGENCY CENT-

1860 Wiehle Avenue 'APR 9 85
Reston. VA 22090

*Ada is a Registered Trademark of the U.S. Government (Ada Joint Program Office)

~ ~S94
.'.

° .,

p. .
Report DCA I 00-83-C-0029

EVALUATION OF ADA*
AS A

COMMUNICATIONS
PROGRAMMING LANGUAGE

PHASE If

VOLUME I
FINAL PHASE If REPORT

Alton L Brintzenhoff
Steven W. Christensen
Donald G. Martin
John G. Reddan

SYSCON CORPORATION
San Diego Division
3990 Sherman Street
San Diego, CA 92110 A" 85

APR 9 1985

15 FEBRUARY 1985

Final Report for Period 4 February 1983 - 15 February 1985

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Prepared for
DEFENSE COMMUNICATIONS AGENCY
DEFENSE COMMUNICATIONS ENGINEERING CENTER
1860 Wiehle Avenue
Reston, VA 22090

*Ada is a Registered Trademark of the U.S. Government (Ada Joint Program Office).

. "-'.

SECURITY CLASSIFICATION OF TNIS PAGE f(men Data Entred)

REPORT. DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM.

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

DCAlOO-83-C-O029 3i'-
4. TITLE (md Subtifle) S. TYPE OF REPORT 6 PERIO0 COVERECI

EVALUATION OF ADA AS A COMMUNICATIONS PROGRAMMING Final Phase II Report
LANGUAGE - PHASE II 4 Feb 83- 15 Feb 85

S. PERFORMING ORG. REPORT NUM L" -

7. AUTOR(e) S. CONTR4ACT OR GRANT NUMBER(*)

Alton L. Brintzenhoff, Steven W. Christensen, DCAI0-83-C-029
Donald G. Martin, John G. Reddan

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

SYSCON Corporation (San Diego Division) ,REA & WORK UNIT NUMBECS

3990 Sherman Street -1 3

San Diego, CA 92110
18 CONTROLLING OFFICE NAME AND AOORESS 12. REPORT DATE

efen Comnunications Engineering Center 1 March 1985
ode 13. NUMBEROFPAGES
1860 Wiehle Avenue
Reston, VA 22090

14. MONITORING AGENCY NAME I ADORESS(II dillerent from Controllind Office) IS. SECURITY CLASS. (of this report)

Unclassified

SIS.. OECLASSIFICATION/OOWN GRAOI NG
SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for Public Release, Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abetrct enlered In Block 20, It different from Report)

10. SUPPLEMENTARY NOTES

DCEC Contract Officers Representatives
Mr. Paul M. Cohen, Mr. John Nowakowski

IS. KEY WORDS (Continue on reverse elde It neoeay md Identify by block numbe)

Ada, Communications Protocols, Transmission Control Protocol (TCP), Internet
Protocol (IP), Advanced Data Communications and Control Procedures (ADCCP),
Trusted Software, Advanced Command and Control Architectural Testbed (ACCAT)
GUARD, software development/performance quality factors, Ada-based design
methodology, object-oriented design, Ada program design language (PDL),ANNA

20. ABSTRACT (Continue on reverse side It necesmay and Identit y by block mmrbet)

This report documents the results of the Evaluation of Ada as a Communications
Programming Language. The overall objectives of the Defense Communications
Agency are to evaluate the ability of Ada to effectively implement communica-
tions protocol software and the ability to support the DoD Computer Security
Initiative Program with regard to designing and implementing trusted and multi-
level secure software. The evaluation context was one of software quality
using a set of software quality factors which deal with both software develop-
ment and software performance aspects. A large scale software development was

D '0 1473 EDITION OF I NOV 65 IS OBSOLETE UCASFE
SN 0102.LF0144601 UNCLASSIFIED•

SECURITY CLASSIFICATION OF THIS PAGE (ien Date gntered)

iii

UNCLASSIFIED
SECURITYV CLASSIFICATION OF THIS PAGE(Whon Data Enter.E)

emulated through the formation of two mini software development projects using
two actual applications with executable code required as one of the end products,

* The host and target environment consisted of a VAX 11/780 VMS timesharing system
and a prototype, partial-implementation Ada compiler. The original set of
protocols was the Segment Interface Protocol (SIP) and the Advanced Data Comn-ri munications Control Procedures (ADCCP) (Mode VI) of the AUTODIN II packet
switched network. Subsequently, the SIP and ADCCP (Mode VI) were eliminated
and the standardized and published Transmission Control Protocol (TCP) and
the Internet Protocol (IP) were incorporated and the ADCCP (Mode VI) was
revised to the more standard ADCCP (Asynchronous Balanced Mode (ABM)) protocol.
The protocols were implemented in a host-subscriber network architecture with
monitoring of resources and injection of errors provided. In the commiunications
protocols area, data transfers across five layers of the OSI architecture were
accomplished. This application consisted of 19 virtual packages, 26 library
units, 24 secondary units, 8131 Ada statements, 10,309 comments and a total of
23,674 source lines which included the use of approximately 30 tasks. The
trusted software consisted of the reimplementation of a subset of the Advanced
Command and Control Architectural Testbed (ACCAT) GUARD application which was
a system designed to monitor, sanitize, and "downgrade" the flow of information
exchanged between a high (top secret) and low (secret) system via the Upgrade
and Downgrade Trusted Processes which were defined in SPECIAL. In general,
the full, planned set of capabilities was implemented. This application con-
sisted of 12 virtual packages, 25 library units, 23 secondary units, 6775 Ada
statements(;), 9529 comments and a total of 21,305 source lines which included
the use of approximately 30 tasks. The software architectures of both appli-
cations were evaluated with respect to software development and software per-
formance characteristics. At the beginning of the project, a prototype design
methodology was formed and was based on established software engineering prin-
ciples, and the use of existing generic models such as the ISO Open Systems -

Interconnections Reference Model and Sublayer models. These elements which
included the virtual package concept and both graphical and textual representa-
tions of the design with an Ada-based PDL were then organized into the macro-
scopic/microscopic design methodology. The methodology described above is

*highly compatible with DOD-STD-SDS. Sever 'al general software design guidelines
were formed and evaluated. It is shown how the methodology can be adapted for
trusted software development by supplementing the Ada PDL of the formal speci-
fications with Annotated Ada (ANNA). The evaluation of the Ada language in-
cluded the syntax, semantics, implementation dependencies and run-time dependen-
cies. Distinguished as well as problematic features are identified and various
recommendations are made. A preliminary set of approximately 30 trusted soft-
ware implementation restrictions were formed, and approximately 70 programming
guidelines were defined and evaluated. Specific suggestions and recommenda-
tions are given concerning Ada education, where significant training and experi-
ence will be required at several different levels. Both compile-time and run-
time error information was acquired, analyzed, and subsequently correlated with
the various aspects of the intra- and inter-package architectures to determine
the effects of various software architectural choices on errors. Several recoin-
mendations are made based on the activities of the project. These recommenda-
tions encompass the software development methodology, the use of the Ada lan-
guage, the software application architectures formed, the implications of com-
pile-time and run-time error analysis, the assignment of values to the necessary
software quality factors, and the use of software tools and programming support
environments. Finally, recommendations for completing the original architecture
as a prerequisite to conducting meaningful performance evaluation are given.
Volume 11 and Volume III contain the software listings of the Communications
Protocols and Trusted Software applications, respectively.

UNCLASSIFIED
SECURtITY CLASSIFICATION OF THiIS PAGErUYn Date gnter~d)

iv

TABLE OF CONTENTS

INTRODUCTION 1-1

1.1 PURPOSE 1-2

1.2 SCOPE 1-2

2 SUMMARY 2-1

2.1 PROJECT OVERVIEW 2-1

2.2 SOFTWARE APPLICATIONS OVERVIEW 2-2

2.2.1 Communications Protocols 2-2

2.2.2 Trusted Software 2-3

2.3 SOFTWARE DEVELOPMENT METHODOLOGY 2-4

2.4 ADA LANGUAGE EVALUATION 2-7

2.5 SOFTWARE ARCHITECTURES 2-9

2.6 SOFTWARE PERFORMANCE 2-11

2.7 SOFTWARE ERRORS 2-12

2.8 PROGRAMMING SUPPORT ENVIRONMENT 2-12

2.9 PROJECT RETROSPECTIVES 2-13

2.10 RECOMMENDATIONS 2-15

3 TECHNICAL APPROACH 3-1

3.1 PROJECT OVERVIEW 3-1

3.1.1 Background 3-1

3.1.2 Ada Issues 3-2

3.1.3 General Approach 3-2

3.1.4 Defense Communications Agency Objectives 3-3

3.1.4.1 General Objectives 3-4

0 3.1.4.2 Specific Communications Protocol

Objectives 3-4

3.1.4.3 Specific Trusted Software

Objectives 3-4

3.1.4.4 Development Methodology

Objectives 3-5

V

3.2 PROTOTYPE METHODOLOGY FORMULATION 3-5

3.2.1 Requirements Formulation Phase 3-7

3.2.2 Top-Level Design Phase 3-7
3.2.3 Detailed Design Phase 3-8
3.2.4 Code/Debug Phase 3-9

3.3 SOFTWARE DEVELOPMENT AND PROJECT MANAGEMENT 3-9
3.3.1 Software Development Phases 3-9

3.3.1.1 Ada Indoctrination Phase 3-9

3.3.1.2 Macroscopic Design Phase 3-9
3.3.1.3 Microscopic Design Phase 3-11

3.3.1.4 Code/Debug/Modify Phase 3-11
3.3.1.5 Integrate/Test Phase 3-11

3.3.1.6 Development/Performance

Evaluation Phase 3-11
3.3.2 Project Management 3-11

3.3.2.1 Preliminary Design Reviews 3-12

3.3.2.2 Interim Design Reviews 3-12
3.3.2.3 Critical Design Reviews 3-12

3.3.2.4 Progress Reviews 3-13

3.3.2.5 System Testing Reviews 3-13
3.3.3 Software Development Control 3-13

3.3.4 Integration and Testing Procedures
and Standards 3-14

3.3.4.1 Integration and Testing Overview 3-14
3.3.4.2 Module Testing Objectives 3-14

3.3.4.3 System Integration and Testing
Objectives 3-15

3.3.4.4 Test Software Development 3-15

. -, -- *V

\ -,
viI

3.4 SOFTWARE QUALITY ASSESSMENT 3-15

3.4.1 Software Quality Factors 3-15

3.4.2 Criteria for Software Quality Factors 3-16

3.4.3 Application-oriented Requirements 3-21

3.4.3.1 Communications Application

Requirements 3-21

3.4.3.2 Trusted Software Application

Requirements 3-22

3.4.4 Ada Language Characteristics 3-23

3.5 DATA COLLECTION 3-24

3.5.1 Criteria For Data Collection and

Evaluation 3-24

3.5.2 Software Architecture Data 3-26

3.5.2.1 Software System Architecture 3-27

3.5.2.2 Compilation Unit Architecture 3-27

3.5.2.3 Compilation Unit Statement

Characteristics 3-28

3.5.2.4 Application-Dependent Architecture -

Characteristics 3-28

3.5.3 Software Error Data 3-29

3.5.3.1 Ada Language Errors 3-31

3.5.3.2 Design Errors 3-32

3.5.4 Programmer Interview Data 3-32

3.5.4.1 Ada Language 3-33

3.5.4.2 Methodology 3-33

3.5.4.2.1 Macroscopic Design Phase 3-34

3.5.4.2.2 Microscopic Design Phase 3-35

3.5.4.2.3 Code/Debug Phase 3-36

3.5.4.2.4 System Integration Phase 3-36

3.5.4.2.5 Design Guidelines 3-37

3.5.4.2.6 Software Tools 3-37

3.5.4.3 Project/Application Evaluation:

Alternatives/Retrospectives 3-37

3.5.4.3.1 Communications Protocols 3-38

3.5.4.3.2 Trusted Software 3-38

Vjj

3.5.5 Software Performance Data 3-39
3.5.5.1 Application Architecture 3-39

3.5.5.1.1 Communications Protocols 3-39

3.5.5.1.2 Trusted Software 3-39

3.5.5.1.3 General Performance

Considerations 3-41

3.5.5.2 Ada Language Issues 3-41

3.5.5.3 Programming Support Environment

Issues 3-42

4 ANALYSIS 4-1

4.1 SOFTWARE DEVELOPMENT METHODOLOGY ANALYSIS 4-1

4.1.1 Overview 4-1
4.1.2 Macroscopic Design Phase 4-2

4.1.2.1 Virtual Package Concept 4-2

4.1.2.2 object oriented Design Diagrams 4-3
4.1.2.3 Macroscopic PDL 4-5

4.1.3 Microscopic Design Phase 4-6

4.1.4 Code/Debug Phase 4-7
4.1.5 System Integration Phase 4-8
4.1.6 Design Guidelines 4-8
4.1.7 Programming Guidelines 4-9

4.1.8 General Design Methodology Factors 4-10

4.1.8.1 PDL Characteristics 4-10

4.1.8.2 DOD-STD-SDS Compatibility 4-13

4.1.9 Application Dependent Methodology

Characteristics 4-15

viii

- - - - - -- -

4.1.9.1 Communications Protocols 4-15

4.1.9.1.1 Transmission Control

Protocol (TCP) and Inter-

net Protocol (IP)

Specifications Issues 4-15

4.1.9.1.2 Transmission Control

Protocol (TCP) and Inter-

net Protocol (IP)

Transition Issues 4-16

4.1.9.2 Trusted Software 4-19

4.1.10 Software Tools 4-20

4.2 ADA LANGUAGE EVALUATION 4-21

4.2.1 Ada Language Factors 4-21

4.2.2 Ada Education Factors 4-25

4.3 SOFTWARE ARCHITECTURE ANALYSIS 4-26

4.3.1 Software System Architecture 4-26

4.3.1.1 Communications Protocols

Software Architecture Analysis 4-26

4.3.1.1.1 Inter-Virtual Package

Architecture Analysis 4-29

4.3.1.1.2 Intra-Virtual

Architectural Analysis 4-31

4.3.1.2 Trusted-Software Software

Architecture Analysis 4-32

4.3.1.2.1 Inter-Virtual Package

Architecture Analysis 4-41

4.3.1.2.2 Intra-Virtual Package

Architecture Analysis 4-42

4.3.2 Compilation Unit Architecture 4-43

4.3.2.1 Communications Protocols System

Compilation Unit Statement

Characteristics 4-43

4.3.2.2 Trusted Software Compilation Unit

Architecture 4-44

ix

4.3.3 Compilation Unit Statement Characteristics 4-46

4.3.3.1 Communications Protocols System

Compilation Unit Statement

Characteristics 4-46

4.3.3.2 Trusted Software Compilation Unit

Statement Characteristics 4-49

4.4 SOFTWARE PERFORMANCE ANALYSIS 4-49

4.4.1 General Performance Characteristics 4-49

4.4.2 Communications Protocols Performance

Characteristics 4-52

4.4.3 Trusted Software Performance

Characteristics 4-52

4.5 SOFTWARE ERROR ANALYSIS 4-53

4.5.1 Compilation Errors 4-53

4.5.2 Execution Errors 4-55

4.5.3 Software Error-Architecture Correlation 4-56

4.5.3.1 Communications Protocol 4-56

4.5.3.2 Trusted Software 4-57

4.6 PROGRAMMING SUPPORT ENVIRONMENT 4-57

4.6.1 Compile-Time Environment 4-57

4.6.2 Run-Time Environment 4-59

5 CONCLUSIONS/RESULTS 5-1

5.1 SOFTWARE DEVELOPMENT METHODOLOGY 5-1

5.1.1 Macroscopic Design Phase 5-1

5.1.2 Microscopic Design Phase 5-3

5.1.3 Code/Debug 5-4

5.1.4 System Integration 5-4

5.1.5 Design Guidelines 5-6
5.1.6 Programming Guidelines 5-6

5.1.7 General Software Development Methodology

Considerations 5-7 -

5.1.8 Application-Dependent Characteristics 5-9

5.1.8.1 Communications Protocols 5-9

5.1.8.2 Trusted Software 5-10

5.2 ADA LANGUAGE EVALUATION 5-10

5.2.1 Ada Language Syntax and Semantics 5-10

5.2.2 Ada Language Education 5-13

5.3 SOFTWARE ARCHITECTURE 5-14

5.3.1 Communications Protocols System 5-14

5.3.1.1 Inter-Virtual Package Analysis

Summary 5-14

5.3.1.2 Intra-Virtual Package Analysis

Summary 5-17

5.3.1.3 Compilation Unit Analysis Summary 5-19

5.3.1.4 Compilation Unit Statement

Characteristics 5-19

5.3.1.5 Other Observations 5-22

5.3.2 Trusted Software System 5-25

5.3.2.1 Inter-Module Architectural Analysis

Summary 5-25

5.3.2.2 Intra-Virtual Package Architectural

Analysis Summary 5-27

5.3.2.3 Compilation Unit Architecture

Analysis Summary 5-29

5.3.2.4 Compilation Unit Statement

Characteristics 5-31

5.3.2.5 Other Observations 5-31

5.4 SOFTWARE PERFORMANCE 5-32

5.5 SOFTWARE ERRORS 5-33

5.6 PROGRAMMING SUPPORT ENVIRONMENT 5-34

5.6.1 Compile-Time Environment 5-34

5.6.2 Run-Time Environment 5-35

xi

6 RECOMMENDATIONS 6-1
6.1 SOFTWARE DEVELOPMENT METHODOLOGY 6-1

6.1.1 Macroscopic Design Methodology 6-1
6.1.2 Microscopic Design Methodology 6-2
6.1.3 Code/Debug 6-2
6.1.4 Integrate/Test 6-3

6.1.5 PDL Considerations 6-3
6.1.6 Software Tools Recommendations 6-3
6.1.7 Trusted Software Development Methodology 6-4

6.2 ADA LANGUAGE 6-5
6.2.1 Ada Language Features 6-5
6.2.2 Ada Language Education 6-7

6.3 SOFTWARE ARCHITECTURES 6-7
6.3.1 Communications Protocols 6-8
6.3.2 Trusted Software 6-9

6z4 SOFTWARE PERFORMANCE 6-9
6.5 SOFTWARE ERRORS 6-10
6.6 PROGRAMMING SUPPORT ENVIRONMENT 6-11.

6.6.1 Compile-Time Environment 6-11
6.6.2 Run-Time Environment 6-11
6.6.3 Programming Support Environment 6-12

6.7 PROJECT RECOMMENDATIONS 6-12

7 REFERENCES 7-1
7.1 Military Standards and Specifications 7-1
7.2 System Specifications and References 7-2
7.3 Other Government References 7-3
7.4 Nongovernment References 7-3

Xii

usable Ada subset given the restrictions imposed. Implementing

these restrictions requires both syntactic and semantic analysis

and thus some type of Ada preprocessor or modified compiler front

end will be required.

In the area of Ada education, significant training and experience

will be required at several different levels. Managers will need

to be aware of the increased emphasis placed on software design

and this emphasis will be even greater to produce transportable

and reusable software. To use many of the Ada features

effectively, the developer will need to have a strong software

engineering orientation. Although Ada has many excellent

features, Ada usage will become truly effective and productivity

will increase only when software tools become available which

directly support a given software methodology and Ada users

become familiar with the methodology and the supporting tools.

The existing Reference Manual for the Ada Programming Language

/M18183/ is an acceptable document for compiler writers.

However, it presents significant usability problems in terms of

learning Ada, especially in understanding the language

complexities and subtleties. A recommendation is that an

abridged reference manual be formed which emphasizes the

developer's usability of the document. The Rationale for the Ada

Programming Language /HONE84/ should become an integral part of

any Ada education effort. It is clear that four to six weeks of

dedicated education may be required to produce effective and

efficient programmers; a one-week, syntax-oriented Ada class will

not be effective in producing programtmers who can apply Ada in a

software engineering context.

2.5 SOFTWARE ARCHITECTURES

In the communications protocols application, an early objective

was to incorporate the principles of the Open Systems

Interconnection (OSI) Referen~ce and Sublayer models. They were

incorporated into the software designs at the virtual package

2-9

calls, representation capabilities, and many of the pragmas

germane to communications applications were not available or were

partially implemented. With the Ada features used, there were no

specific problems other than those summarized below.

Exceptions appear to be problematic from several points of view.

Exactly how, when, and where they should be used, and how to

include the management of both standard and user-defined error

conditions and required processing as an integral part of the

design are problem examples. In package specifications,

exceptions are "weakly" associated with their source, with the

result that exception handlers may be needlessly proliferated.

Somewhat more problematic is dealing with implementation-specific

dependencies and run-time support mechanizations which are not

specified as part of the Ada standard. Examples of such problems

are package size limitations, task stack size limitation (both of

which can severely impact architectural considerations), S

algorithms selected for task context switching and selective

wait mechanization, and whether or not generic instantiations

share bodies when data representations are the same at the

machine level. It is necessary to obtain a validated, evaluated

compiler in which the evaluation criteria have been derived from

the application for which the compiler is targeted.

Approximately 70 programming guidelines were defined which were

evaluated at the conclusion of the effort. The guidelines were

effective when they were used; however, judgement in their use is

still required in some instances.

In addition to the programming guidelines, approximately 30

trusted software implementation restrictions were formed. These

were formed in the context of producing software which would be

rated high with regard to the software quality factors of

Maintainability, Testability, Correctness, Integrity,

Reliability, Robustness, formal verifiability and retaining a

2-8

that a set of software quality weights be defined as part of the

requirements to assure that the developed software will have the

correct software quality characteristics.

Because of the additional requirements for trusted software,

especially the formal design and implementation verification

associated with the Al and previous A2 levels of /USD083/, the

methodology was adapted to the development of trusted software.

The essential difference is that early in the requirements phase

of the development cycle, the trusted and nontrusted software

were separated and permitted to proceed along parallel paths.

The only difference between the two paths is that the trusted

path will use the Formal Top-Level Specifications (FTLS) and

Descriptive Top-Level Specifications (DTLS). These may be

refined into more detailed specifications at each level of design

to produce what are generally referred to as FnLS and DnLS.

Another key difference is that, in producing the lower level FnLS

and DnLS specifications in Ada PDL, the designs are supplemented

with Annotated Ada (ANNA) /KRIE83/ and /LUCK84/ to provide more

complete and precise descriptions of the trusted software.

During the course of the project, a draft version of DOD-STD-SDS

/DSDS83/ was reviewed. It was concluded that the methodology is

highly compatible with DOD-STD-SDS, since the macroscopic designs

correspond to the Top-Level Design Specification (C5A), and the

microscopic designs correspond to the Detailed Design

Specification (C5B). Other correspondences exist at the

configuration management level.

2.4 ADA LANGUAGE EVALUATION

The Ada language has excellent features for producing modular

software and providing multiple levels of design abstraction for

the types of applications considered. Unfortunately, due to the

compiler used, the full power of Ada was not available. Separate

compilation, generics, task types, timed and conditional entry

2-7

The methodology has worked very well both for the initial designs

and for assisting in making the software changes which resulted

from the transition to TCP, IP and ADCCP (ABM) from the original

SIP/ADCCP (Mode VI) protocols.

Several issues were raised during the use of this design

methodology. The transition from the macro to the micro and the

micro to the code encountered some difficulty in that some

components had been over-designed while others had been under-

designed. Either case is undesirable since detailed design or

coding should not be done in the macro design phase and neither

should macro design be done in the coding phase. This problem

may be reduced by using design reviews, walkthroughs and possibly

by obtaining statistics for PDL expansion ratios. Another key

aspect is to have the requirements/macro design phases, the

macro/micro design phases, and the micro/code-debug phases

overlap. As each lower level of detail is explored and refined,

it is possible to make corrections or improvements to the

preceding higher level of design or requirements prior to a full

commitment to next-level details. This is similar to the rapid

prototyping concept which permits alternatives to be explored

rather than initially committing to a single idea. The concept

of rapid prototyping, including the use of a supporting

executable PDL, should be provided for in the methodology.

Several design guidelines were formed and evaluated. To make the

guidelines more complete, they should be compatible with or

refer to the set of programming guidelines which will be used,

they should refer to particular application-dependent criteria

which may influence the overall architectures, and they should

include specific transportability and reusability requirements

applicable to the developed software.

Many different types of architectures can be formed in Ada, each

meeting the basic set of requirements but with rather different

coincidental characteristics. Because of this, it is essential

2-6

virtual packages and which will be "hidden" and used to support

the visible packages.

The second step consists of organizing the actual compilation or

library units within each virtual package and indicating their

interdependencies in terms of control flow among the visible

entities of each Ada package. This results in the object oriented

design diagrams which are similar to those of /BOOC83/ and

/BUHR84/. The overall software architecture of the system will

have been defined at this point such that considerable design

visibility exists without commitment to significant detail.

In the third step, the diagrams are converted into the

corresponding macroscopic PDL which allows refinements such as

completed data types, specification of formal arguments for

generics, subprograms and task entries, the description of major

logic decisions and data types within visible entities of

packages, the declaration of lower level hidden entities and the

use of embedded English language statements to indicate details

which are to be converted to Ada source code.

In the fourth step all library units are compiled as a step in

verifying the correctness of the designs and achieving an initial

step toward system integration.

The microscopic design phase is similar except that more details

are added to existing units by either converting existing

embedded English statements into Ada source code or into more

refined statements. Secondary and tertiary units which were

previously only declared are now expanded into their bodies and

may indicate still lower levels of nested support units.

The code/debug phase deals with the conversion of the microscopic

designs into Ada source code and production of completed virtual

packages which are integrated with other virtual packages to form

the final system.

2-5

. ."..
- . .'. . " • - -~~... --- -' -. k.. ... '....- .2:

2.3 SOFTWARE DEVELOPMENT METHODOLOGY

At the beginning of the project, approximately one month was

devoted to Ada indoctrination, which included a review of the Ada

language, especially the more advanced features such as data

types, tasks, generics, and exceptions as well as a review of the 0

issues associated with the formulation and use of program design

languages. Based on the work of Grady Booch in /BOOC83/, and a

presentation at a SIGAda meeting by Dr. R.J.A. Buhr, whose design

approach is now documented in /BUHR84/, a prototype design S

methodology was formed. The principles included in the design

methodology were: to use established software engineering

principles, establish an early Ada orientation with late

commitment to Ada details, provide early and continual design 0

visibility, provide for design continuity across the various

software development phases, provide a basis for configuration

management, and to be able to incorporate existing generic

models. Because of the desire to have an intermediate level of S

design abstraction between Ada packages and the Ada program

library, the virtual package concept was formed. These elements

were then organized around the use of graphical and textual

representations of the design with an Ada-based PDL as the means S

for refinement. This resulted in the formulation of the

macroscopic/microscopic design methodology.

The macroscopic design phase consists of four steps which are
summarized below and assume that the application requirements

already exist. The first step is to divide the entire set of

requirements into a collection of virtual packages which

represent major functional entities. The use of the virtual

package accomplishes two goals. It precludes having to deal with

the many packages (possibly hundreds) which may result in a large

system at the beginning of a design. Since a virtual package is

similar to an Ada package, it permits a design to show readily,

via an architecture other than nested Ada packages, which

components will be exported for use by components of other

2-4

(Mode VI) to the more standard ADCCP (Asynchronous Balanced Mode

(ABM)) protocol. A host-subscriber type network was established

in which both suitable system management functions, similar to an
actual system, and capabilities to inject various types of

protocol-related error conditions would be implemented.

2.2.2 Trusted Software

In the trusted software application, the original Advanced

Architectural Command and Control Testbed (ACCAT) GUARD /WOOD78/,

/LOGI79A/, /LOGI79B/, /BALD79/ is designed to provide secure,
monitored, controlled transfer of data between a high-level (TOP

SECRET) and a low-level (SECRET) system. Separation of high-level
and low-level entities (files, queues) is maintained by use of

the Kernelized Secure Operating System (KSOS). To accomplish the

intersystem transfer of data, the high-level and low-level

software in the KSOS GUARD system is interfaced by two trusted

processes. The Upgrade Trusted Process (UGTP) is responsible for

transferring low-level information to the high-level system; the

Downgrade Trusted Process (DGTP) is responsible for transferring

high-level information to the low-level system under the control

of Sanitization Personnel (SP) and a Security Watch Officer

(SWO). The KSOS was used for all high-low and low-high message
transfers by the trusted processes. Other adjunct routines were

defined to deal with UNIX interprocess communication via ports.

Since the communications interfaces with the ARPANET were not an

area of special concern with respect to trusted software, they

were simulated with elementary CRT man-machine interfaces. The

SWO and the SP interfaces were preserved as originally specified.

Because of the dependency of the trusted software, which was

formally specified in SPECIAL /CHEH80/, on the use of KSOS

executive service calls, this interface was preserved and the

functionality of KSOS was emulated.

2-3

"79

Because the Ada language represents a new tool, derived in part

from software engineering principles and considerations, it

appears that overall software quality is the real issue addressed

by the introduction of Ada. Therefore, the emphasis is on

conducting this evaluation in the context of software quality. A

set of software quality factors, concerning both development and S

performance aspects, based on work in /COOP79/, formed the basis

for the evaluation. These software quality factors are the

frequently discussed quantities of Efficiency-I (language

expressability), Flexibility, Interoperability, Maintainability, S

Reusability, Testability and Transportability in the software

development area; and Correctness, Efficiency-II (execution

efficiency), Integrity, Reliability, Robustness and Usability in

the software performance area.

In both applications the requirement was to produce executable

code as a means of obtaining firsthand experience in the

development aspects of Ada features and with the performance

aspects of the implemented software. Because of this, the

project exhibited a considerable degree of realism.

2.2 SOFTWARE APPLICATIONS OVERVIEW 0

2.2.1 Communications Protocols

The original requirements were to implement the Segment Interface

Protocol (SIP) and the Adva e Data Communications Control

Procedures (ADCCP) (Mode VI) of the AUTODIN II /WEST78/, /WEST79/

packet switched network as a way of evaluating the use of Ada in

this type of application. With the demise of the AUTODIN II

network and the publication of the Transmission Control Protocol

(TCP) /M17883/ and the Internet Protocol (IP) /M17783/ standards,

the project, which had been active for approximately ten months,

was directed to terminate activities on the SIP and ADCCP (Mode

VI) and begin the necessary redesign to implement the TCP and IP

protocols. A decision was then made to revise the ADCCP

2-2

•~•.-.-i.<< .i-••..............

SECTION 2

SUMMARY

2.1 PROJECT OVERVIEW

The objectives of the Defense Communications Agency in the

evaluation of Ada as a communications programming language are to

evaluate the ability of Ada to effectively implement

communications protocol software and to support the DOD Computer

Security Initiative Program with regard to designing and

implementing trusted and multilevel secure software. In both

application areas, the objectives are to evaluate the use of Ada

for these types of applications, identify any problems or other

factors which need to be considered, and to recommend a suitable

Ada development methodology.

The communications protocols application objectives are to

develop embedded software that would improve the software quality

characteristics of transportability, reusability, maintainability

and reliability. Finally, the objectives are to determine how to

achieve effective use of Ada, decrease software development time,

provide more accurate development results, and provide a more

reliable means of achieving the results.

Due to the overriding importance of correctness, integrity and

reliability of trusted software, the robustness of the features

of the Ada language, and the corresponding capability of

producing very complex designs, limitations may have to be placed

on the use of Ada in the development of trusted software. The

emphasis is to explore the use of various Ada features used for

this type of application and determine whether these features

result in verifiable designs and code, whether specific

programming guidelines which proscribe or prescribe the use of

certain features are required, and how such restrictions should

be implemented and enforced.

2-1

subsections are: 1) Software Development Methodology Evaluation,

2) Ada Language Evaluation, 3) Software Architecture Evaluation,

4) Software Performance Evaluation, 5) Software Error Evaluation,

6) Programming Support Environment Implications, and 7) Project

Retrospectives. These primary areas provide the basic

information for making recommendations in these respective areas.

In addition, application-specific data, information and results

are included for the communications protocols and trusted

software applications.

1-2

............................. * *

-. i.. . -. .. .-- a C * ..

SECTION 1

INTRODUCTION

1.1 PURPOSE

This Final Phase II Report for the Evaluation of Ada as a

Communications Programming Language documents the findings of a

two-year project designed to assess the effectiveness of the use

of Ada as a communications programming language. Two types of

communications applications were examined: a communications

protocols application with a simulated network architecture, and

a trusted software application designed to arbitrate the flow of

messages between a top secret and a secret system.

Volume I of this Report 1) defines the software applications that

were implemented, 2) identifies the technical approach that was

taken in collecting and analyzing the data, 3) establishes the

criteria for evaluating the results of the project, 4) identifies

the analysis that was performed on the data and information that

were produced or derived, 5) documents a set of conclusions/

results based on the criteria, data and analysis, 6) makes

recommendations based on the conclusions and results, and "

7) provides a summary of the conclusions, results,

recommendations, and project retrospectives.

Volume II, Final Phase II Report: Communications Protocols

Application, and Volume III, Final Phase II Report: Trusted

Software Application, include design diagrams, Ada source-code

listings, and a summary User Manual for the respective

applications.

1.2 SCOPE

This report covers all phases of the project and addresses all

results, both positive and negative, that were identified

throughout the entire project. The major topics of the various

1-1

• ""-• ..-" -" ," .''.-.' o-.- .-' ." " " " "-"-" ". '""•".""". . " "...".-,-...."..".-..-....'- 2.J- h....-

LIST OF TABLES

PAGE

3.4-1 Software Development Quality Factors 3-17
3.4-2 Software Performance Quality Factors 3-17
3.4-3 Criteria for Software Quality Factors 3-18
3.4-4 Specific Performance Requirements 3-22
3.4-5 General Performance Requirements 3-22
3.5-1 Macroscopic Ada PDL Criteria 3-35
3.5-2 Software Performance Criteria 3-40
3.5-3 Class Al - Verified Design Criteria 3-41
4.1-1 Software Design Methodology Objectives 4-1
4.1-2 PDL Expansion Ratios 4-12
4.2-1 Software Application-Dependent Performance

Requirements 4-24
4.3-1 Composite Software Development Statistics 4-43
4.3-2 Communications Protocols System Software Statement

Analysis Summary 4-45
* 4.3-3 Trusted Software System Software Statement

Analysis Summary 4-47
4.3-4 Communications Protocols System Aggregate Statement

Statistics 4-48
4.3-5 Trusted Software Aggregate Statement Statistics 4-50
4.5-1 Compilation-Related Errors 4-54
5.3-1 Software Development Statistics 5-21
6.1-1 Software Tool Recommendations 6-4

0

* xv

LIST OF ILLUSTRATIONS

3.2-1 Software-Development-Phase Notations 3-6
3.3-1 Software Development Phases 3-10
3.4-1 Software Quality Factor-Criteria Interrelationships 3-20
3.5-1 Ada, Methodology and Architecture EvaluationSComponents 3-25
3.5-2 Software Structure/Error Analysis 3-30

4.1-1 Communications Protocols Detailed Architecture
Transition Components 4-18

4.3-1 System Architecture Model Development 4-27
4.3-2 Detailed Architecture Development 4-28
4.3-3 Communications Protocols System Detailed

Architecture 4-30
4.3-4 HostTCPServer Virtual Package Diagram 4-33
4.3-5 Original ACCAT GUARD System Configuration 4-34
4.3-6 ACCAT GUARD Software 4-35

* 4.3-7 Modified GUARD Configuration 4-36
4.3-8 Trusted Software System Detailed Architecture 4-37
4.3-9 GUARD Message Flow 4-38
4.3-10 GUARD Transaction Flow 4-39
4.3-11 Downgrade Trusted Process Interactions 4-40
5.1-1 Methodology Compatability with DOD-STD-SDS 5-2
5.1-2 Trusted Software Design Methodology 5-11'
5.3-1 Communications Protocols System Inter-Virtual

Package Analysis Summary 5-15
5.3-2 Communications Protocols System Intra-Virtual

Package Analysis Summary 5-18
5.3-3 Communications Protocols System Compilation Unit

Analysis Summary 5-20
5.3-4 Trusted Software Inter-Virtual Package Analysis

Summary 5-26
5.3-5 Trusted Software Intra-Virtual Package Analysis

Summary 5-28
5.3-6 Trusted Software Compilation Unit Analysis Summary 5-30

4

xiv

:. . .-: ::..: . ,-- . - -".' - . "•". " -' ". ., , -- .:.: , . . i . &

PAGI

A SOFTWARE DEVELOPMENT GUIDELINES A-I

B ADA RESTRICTIONS FOR TRUSTED SOFTWARE
IMPLEMENTATION B-1

C SOFTWARE TOOL RECOMMENDATIONS, DESCRIPTIONS C-1

D COMPILER LIMITATIONS AND IMPACTS D-I

0

o

I xi ii

.

,-,• , . a,,.,L. n &a- ''-'t,.
--

. .-.. ..-- '. .,,,..-. . ..,. .."-.'. . . ._ "_" ,T

level to capture the transportability and reusability

characteristics. Collections of virtual packages were

distributed across the application, TCP, IP, ADCCP, pseudolink

K. layers, and the system management services. The organization of

the software along these architectural lines significantly

facilitated the modifications which were made to the software

when the transition from the SIP/ADCCP to the TCP/IP/ADCCP

protocols was made. Within a given protocol layer, the software

was partitioned into Ada packages which principally followed the

OSI sublayer model boundaries and consisted of the service,

protocol, access, and intralayer management components. At least

one issue which warrants further study with respect to

transportability and reusability is the placement of system

management functions with two extremes being either totally

within the layer or totally outside the layer.

In the trusted software application, the existing UNIX-based

architecture was translated into an Ada-based architecture.

Several significant changes occurred in making this transition.

The entire architecture was translated from a multiprocessing to

a multitasking environment; the original processes were

reimplemented as Ada tasks; interprocess communication

entities, implemented as UNIX ports, were reimplemented as

transporter tasks in Ada; the Kernelized Secure Operating System

interfaces were preserved and treated as Ada service entities

because the Upgrade Trusted Process and the Downgrade Trusted

S Prccess, specified in SPECIAL, were directly dependent on KSOS

services. A final deviation was that interfaces with the high

and low side of the GUARD to the respective high and low systems

via ARPANET and crypto devices were emulated as online terminal

users to permit messages to be transferred between the high and

low sides via the GUARD. No difficulties existed with the

reimplementations. However, significant changes had to be made to

the software architecture at the intrapackage level to circumvent

compiler problems, specifically those associated with task stack

size limitations. As a result, extensive stress testing and

2-10

....... .. ,. - - .[. .- : . ,, :. ,. - -. . . - - - - - , - - - m ,, .,,,. l -,m i i .

meaningful architecture evaluation with regard to Al trusted

software evaluation criteria was not possible. Consequently,

there may be problems associated with the planned architecture

which impact on the Correctness, Integrity, Reliability, and

Robustness of the trusted software, particularly in the areas of

data flow and covert channels.

2.6 SOFTWARE PERFORMANCE

The objectives in software performance were to assess the

Correctness, Efficiency-II, Integrity, Reliability and Robustness

of the two applications.

In the communications protocols application, overall assessment
1of the software performance factors was severely impeded because

of compiler problems, specifically problems resulting from the

lack of a time-sliced environment, task stack size limitations,

somewhat weak use of exceptions and adverse interactions between

tasking and TEXTIO resulting in spurious errors. Several

features of the Ada language which could contribute positively to

overall performance were either used or would have been used had
they been available. These include access variables, unchecked

conversion, and use of pragma INLINE if it had been available.

In the trusted software application, again little was

accomplished in the performance area because of the revisions to

the planned software architecture to achieve an executing program

and because of the lack of project time to inject various error

conditions and conduct stress testing. Many questions related to

overall performance, especially Correctness, Integrity,
Reliability, and Robustness, will need to have the original

designs restored and implemented and extensive stress testing and

error injection performed to fully assess these performance

factors.

2-11

.

2.7 SOFTWARE ERRORS

During the early portion of the project, software compilation

error information was collected from both application areas. The

programming errors were indicative of a lack of familiarity with

the syntax of Ada type and object declarations, inattention to

the full implications of using a strongly typed language, the

failure to include context clauses resulting in numerous

undeclared entities, and conflicts in the use of attributes and

types. At the module architecture level, a small number of

errors resulted in erroneous programs being produced; objects

were operated on concurrently by both a task and a procedure from

the same package or by two different tasks concurrently without

pragma SHARED being declared for the objects in question. This

problem represented a more fundamental misunderstanding of the

difference in semantics between tasks and subprograms as

processing entities. At the system architecture level,

especially in the communications protocols application,

insufficient attention was given to the use of exceptions and

their semantics as an integral component of the overall design;

in the trusted software application, possibly because of the use

of exceptions in the SPECIAL specifications, exceptions were

included much more effectively. Other minor errors occurred

during elaboration (improper ordering, access before elaboration)

and during execution (uninitialized variables).

2.8 PROGRAMMING SUPPORT ENVIRONMENT

The host programming support environment as well as the target

environment consisted of a VAX 11/780 VMS* timesharing system

supporting a variety of users. Because of the resources required

by the Ada compiler, the online compilations were limited to

*DEC, VAX and VMS are trademarks of Digital Equipment Corp.

2-12

~~~.......-. ... .... .. ... .. .....,-- ..-.--.. ..... .. .. ... . L . .



small jobs and larger jobs were required to be run in the batch
mode. Programmer productivity could have been increased had

there been a less fully loaded system available and had there

been more software tools available.

Tools which could have been helpful are a PDL processor, source-

level debugger, pretty printer, generalized call-graph generator

and, most importantly, a validated, full-capability Ada compiler.

The software tools which were used included a screen-oriented

text editor; SKETCHER, an interactive ASCII graphics editor for

producing object-oriented design diagrams; and a prototype,

partial-implementation Ada compiler. As more software tools are

developed and as larger Ada systems are designed, implemented and

debugged, the demands on programming support environment

resources will increase substantially.

Both the compile-time and run-time environments permit

significant variations in their implementations with respect to

the MIL-STD-l8l5A. It will be necessary to have not only a

validated compiler, but also an evaluated one with the evaluation

criteria based, in part, on the application to be implemented and

the design methodology to be used.

2.9 PROJECT RETROSPECTIVES

In terms of the overall project, there were several major

accomplishments and some major and minor disappointments.

In the communications protocols area, data transfers across five

layers of the architecture were accomplished, including the

opening and closing of connections, and single terminal

echo-testing as well as two-terminal interactive testing.

Several major capabilities, although not all, within each of the

protocols layers were implemented. Particular disappointments

were that more of the protocol error processing features could

not be implemented in order to test the overall Efficiency-Il,

2-13



Correctness, Reliability, Integrity and Robustness of the

software. This application consisted of 19 virtual packages, 26

library units, 24 secondary units, 8131 Ada statements, 10309
comments and a total of 23674 source lines including

approximately 30 tasks. In attempting to use the TCP and IP

specifications, considerable insight was gained into how they

might be placed online and revised to make the contained PDL,
which is strongly Ada-like, more complete, consistent and usable.

In the trusted software application, the full, planned set of

capabilities was implemented within limitations imposed by

existing compiler problems. The significant accomplishments

include the transition from a UNIX-type architecture, the ability
to use Ada tasks to achieve a four-terminal interactive system

and the capability to accomplish the transfer of messages and

transactions between all four operator stations. Disappointments

included the inability to fully implement the original set of Ada

designs, the inability to evaluate the designs and architectures

against the Al trusted software criteria because of the

compromises made in the architecture, and the inability to

conduct extensive stress testing and code analysis with regard to

programming style and formal verifiability. This application

consisted of 12 virtual packages, 25 library units, 23 secondary

units, 6775 Ada statements, 9529 comments and a total of 21305

source lines including approximately 30 tasks.

Finally, three important policy issues which had an overall

influence on the project are summarized below: First, because of

the newness of Ada and the desire to fully explore the use of

these features in a "real" application, liberal use of Ada
features was attempted at all architectural levels. Second, the

development emphasis was on achieving execution of the

applications, even at the expense of reduced functionality and
altered designs rather than on achieving execution of narrowly

limited portions of the system which had been fully implemented.

2-14



Third, because of the prototype nature of the project and
richness of the Ada language, it was difficult at times to

maintain the proper balance between design, exploring alternative

designs, and selecting one and implementing it.

2.10 RECOMMENDATIONS

Several recommendations can be made based on the activities of

the project.

The development methodology should be formalized, adapted to a

set of corresponding documentation standards such as DOD-STD-SDS,

and augmented with a set of compatible software tools to make the

methodology both effective and efficient. Specific design and

programming guidelines addressing transportability and

reusability of communications protocol applications with respect

to overall software architecture considerations 9hould also be

formed.

For the Ada language, a set of compiler system evaluation

criteria which are driven by application requirements and

software development methodology characteristics should be formed

and used to evaluate any validated compiler before selection for

a given development project. These criteria must address the

compile-time and compiler pragmatics parameters as welJ. as the

run-time support environment characteristics.

For trusted software development, the designs should be

implemented in an Ada/ANNA combination from the beginning to
obviate the need for making subsequent translations from another

language and dealing with the various translation and

interpretation issues. Since ANNA can supply additional semantic

information in package specifications, the use of ANNA should

also be considered for enhancing protocol specifications either

at the specification level, such as the TCP and IP documents, and

definitely at the software implementation level.

2-15



For Ada education, a solid software engineering basis is required

to use many of the Ada features effectively. This foundation

must be supplemented with education on the Ada language itself,

the use of the planned development methodology, and the use of

the supporting software tools.

Software quality weights need to be established as part of the

requirements definition effort to assure that the designed

software architectures, from the highest level, reflect these

requirements. In both applications, however, for different

reasons the software architectures as planned should be fully

implemented and carefully evaluated to explore alternative

designs and what their impacts would be on the development and

performance software quality factors.

In software performance, real progress, insights and definitive

answers can be obtained only by completing the original

applications and conducting fairly extensive stress testing of

the systems and evaluating various software alternatives at both

the inter- and intra-package levels.

Programming errors can be reduced with a combination of education

and experience. Other errors of a more subtle nature such as

those occurring at the inter-package architecture level require

careful attention to the overall design and the semantics of

specific features used such as the combination of global data or

exceptions with tasks. These situations may also be aggravated

by run-time support environment idiosyncrasies. To the extent

that many of Ada's more advanced features such as task types,

allocators, generics with parameterized subprograms and nested

generics are combined to produce the overall software

architecture, it is difficult to speculate on the nature of the

development and performance characteristics of the software until

additional experience has been gained.

2-16

-• b .,
. . . . . . . . . .. • .-. . - . - -. - -. - - - .. •. . .- . ' -..-.- , .- ' - -- - -, "_- -.- --- -



SECTION 3

TECHNICAL APPROACH

3.1 PROJECT OVERVIEW

The project components are presented as originally planned to

provide a context for identifying and evaluating the activities

that occurred throughout the project and what their impacts were

on the final accomplishments. The variations, deviations, and

events are presented and evaluated in Section 4, Analysis;

Section 5, Conclusions/Results; and Section 6, Recommendations.

3.1.1 Backgrou

SYSCON performed Phase I of this effort; it consisted of

evaluating the Ada concurrent programming (tasking) capabilities

as related to communications applications, comparing Ada to the

CCITT High-Level Language (CHILL) which is used in

telecommunications system applications, and formulating a test

and evaluation plan as the basis for this Phase II effort.

The availability of the new programming language, Ada, presents

opportunities for developing quality software through the use of

language features used previously only in research environments.

New controls in the form of programming standards and guidelines

and new software design and development methodologies are

required to maximize the potential for producing quality

software. To evaluate the Ada language, and formulate these

standards, guidelines and methodologies, the Defense

Communications Agency requested that a test and evaluation plan

be formed using Ada to implement two prototype communications

applications.

The SYSCON-developed evaluation plan established the approaches

to be used in designing, developing, and testing the software,

3-1

.. .



evaluating the efficiency and effectiveness of Ada as used in

these applications, and identifying standards, guidelines, and S

methodologies to assure overall software quality in the use of

Ada.

3.1.2 A I

The existing version of Ada, ANSI/MIL-STD-1815A, has resulted

from extensive open review, test, and evaluation by individuals

from government, industry, and educational institutions. Despite e
this review process and the constructive changes which were made

to Ada by the time it became MIL-STD-1815A, there are still

innumerable issues which can be explored further through actual

use of Ada in attempting to solve some real problems. 0

Based on actual use of Ada for implementations of stand-alone

applications, preliminary results indicate that software

development approaches which are different from those presently

used may be required to effect the optimal use of Ada. These

include the use of Ada as a Program Design Language (PDL),

changes in the approach to modularization, additional emphasis on

data abstraction, and Ada-tasking constructs for developing

concurrent processing applications. Another issue is the effect

of individual programming styles on the production of quality

software, particularly with regard to transportability and

maintainability. Although Ada is a rich, powerful, and versatile

language which provides the programmer with many opportunities, a

final area of concern is how suitable, effective, and efficient

the features of Ada are with regard to specific categories of

applications and how Ada can effectively provide the basis for a

PDL in these categories.

3.1.3 General Approach

As a means of evaluating Ada and addressing other objectives, the

Defense Communications Agency, through the Defense Communications.-

3-2

. .~.........................--- .......--- •-.-..-,
• ". . - . • .°. .~~~ ~ ~~~~. . . .... . ... • . . . .. " .. .. ..... ............ ' . ... ?. ....



Engineering Center, has selected representatives of two

categories of software to be implemented on a prototype basis

using Ada. The first category is a communications application,

which began with two communications protocols, the Segment

Interface Protocol and the Advanced Data Communications Control

Procedure (SIP/ADCCP) of the former AUTODIN II packet switched

network. Subsequently, the SIP was replaced with a combination of

the newly released (August 1983) Transmission Control Protocol

(TCP) /M17783B/ and the Internet Protocol (IP) /M17783A/. The

ADCCP (Mode VI), which was peculiar to AUTODIN II, was replaced

with the more general ADCCP (Asynchronous Balanced Mode (ABM)).

The second category is the Advanced Command and Control

Architectural Testbed (ACCAT) GUARD trusted software application,

which uses the Kernelized Secure Operating System (KSOS) and

functions as a trusted process to permit the controlled exchange

of information between separate SECRET and TOP SECRET systems.

Thus, the software prototyping will serve as the vehicle for

using Ada and acquiring the data and information which are needed

to address the Defense Communications Agency's objectives.

3.1.4 Defense Communications Agency Objectives

The objectives of the Evaluation of Ada as a Communications

Programming Language are divided into four categories. These are

objectives which address Ada issues and solutions generically,

objectives peculiar to those types of applications that employ

standard protocols, objectives unique to trusted software types

of applications, and objectives to recommend a software

development methodology for developing Ada software in the

communications protocols and trusted software application areas.

This project is designed to acquire realistic experience and

knowledge that can be used to form an effective Ada-based

software engineering methodology and to determine what problem

areas will impact communications applications implemented in Ada.

The emphasis is on exploring alternative methods and approaches

3-3



and identifying both successes and failures to provide a
perspective for forming the necessary methodology and software

tools.

3.1.4.1 General Objectives

An objective of the software prototyping effort is to investigate
typical communications applications and evaluate the use of Ada
in such applications. A related objective is to identify any
generally interesting results which may apply outside the
communications area. Missing or inefficient Ada features that
are germane to communications applications will be identified.

The use of assembler code and target machine dependencies will be
identified. Software architectures and Ada characteristics that
have a major influence on developing transportable and reusable
software will be identified. The ability of Ada tasking features

to be effective, efficient, and to adequately represent real-
time, multi-tasking requirements will be evaluated.

3.1.4.2 Specific Communications Protocol Objectives

The TCP, IP and ADCCP protocols specify interfaces across which
information must flow. Servicing of information requires
concurrent processing for an effective implementation. The Ada-
tasking features and mechanism will be evaluated for efficiency
and effectiveness. Since it is desirable to transport protocols
to other application areas, another objective will be to
determine the influence of Ada, Ada software design, and Ada
implementations on the transportability of the implementations.

3.1.4.3 Specific Trusted Software Objectives

Trusted software characteristics mray require administrative
restrictions on the use of Ada features. Such restrictions will
be identified along with a strategy for implementing them.
Correspondence tests between the Ada source code and the trusted

3-4



software requirements will be performed to determine the

influence of Ada features and styles on trusted software

development. Due to the real-time requirements of this

application, objectives similar to those of the TCP/IP/ADCCP

application will apply.

3.1.4.4 Development Methodology Objectives

A methodology for developing communications software with Ada as

the implementation language will be recommended based upon the

results of the prototyping effort. A specific objective within

the methodology formulation is the use of Ada or Ada-like

components as a Program Design Language (PDL). Acquired

information will provide the basis for forming DCA management

decisions relating to software standards, conventions, policies,

tools, procedures, and directives in the use of Ada.

3.2 PROTOTYPE METHODOLOGY FORMULATION

The methodology will incorporate a combination of two design

methods used to produce software designs: the Structured

Analysis and Design Methodology (SADM) as summarized in /PRIV82/

and the object-oriented design approaches presented in /B00C83/

and /BUHR84/. The methodology consists of two phases of design,

a code/debug phase, and culminates in the integration/testing of

the resulting software. To effectively understand the issues and

problems involved in producing software in Ada, four levels of
abstraction following the concept formulation will be utilized.

Figure 3.2-1 illustrates these levels and the appropriate points

where Ada features are involved. These methodologies are applied

in a series of stepwise refinements and are augmented with

variations on the graphical design notation presented in

/BUHR84/.

3-5



01

44
0

z
U)

14 4

0

U)

6OLL

4)

6LcJ

I3-6



3.2.1 Requirements Formulation Phase

This refinement consists of defining system-system interfaces,

functionally identifying subsystems and defining inter-subsystem

interfaces, intra-subsystem interfaces, and data flow paths. For

each subsystem a set of characteristics/requirements will form

the basis for refinement into the functional components of each

subsystem. This phase culminates with the formation of a

detailed architectural design which represents the hierarchial,

structural orientations and data dependency relationships of the

functional modules.

3.2.2 Top-Level Design Phase

The top-level design phase introduces conceptual components

called virtual packages. (In the notation of /M15272/, /M49068/

and /M48379/, these elements correspond to Computer Program

Components (CPCs) of Computer Program Configuration Items

(CPCIs).) These components are referred to as virtual packages

because they exist at a level which is one step higher than

actual Ada packages, and they exhibit the characteristics of Ada

packages such as having visible and private (internal)

components.

The design information will consist of overview diagrams that

address interfaces, followed by a Detailed Functional

Requirements section for each virtual package. At this level,

the SADM approach will be used to form the basic Ada compilation

units that make up a virtual package. The visible details of the

compilation units will then be documented using object-oriented

design diagrams.

The top-level design phase is referred to as the macroscopic

design. This step will continue use of specifications to define

the operations needed on abstract data types. These operations

establish all program units (packages, tasks, subprograms,

3-7



. ~ ~ ~ ~ . ..

3.4.3 Application-Oriented Requirement-a

There are application-oriented requirements which a lanquaqe must

satisfy to facilitate the development of software for the target

applications. This section identifies specitic requirements for

communications and trusted software applications.

3.4.3.1 Communications Application Requirements

A previous study performed for the Defense Communications Aqencv

/BBNI76/ resulted in the definition of the syntax and semantics

of the Communications Oriented Lanquaqe (COL). As part of that

study, three alternative sets of requirements, which are

desirable for a COL to have, were examined. The first set was

obtained from the "U.S. Air Force HOL Standardization Study";

the second set was obtained trom "The Initial Report on the

Suitability of JOVIAL for Communications Systems Implementation";

the third set was Obtained from "The Rome Air Development

Center Report on Common-Communications Processors."

There is commonality among the items of each set; however, there

is also some discrepancy. Each list is also a mixture of high-

level language-inherent features as well as requirements for

access to data, instructions, and controls at the machine level.

From these lists a composite of specific requirements, shown in

Table 3.4-4, was formed. This list serves as a basis for

assessing the efficiency and effectiveness of Ada as a language

for developing communications software. The report also

indicated some general performance requirements which are shown

in

Table 3.4-5.

3-21



SS3N 3Al~dIMOS3 0113S S )*
33N3GN~d3ONI WILSAS 9MllVV3dO0

Q)

A±WWnflQOSoo0 0 S 0 0 0

30±VN3N330hi 3HVfl~i40

4jJ

A111VI13N35 0 .10

INWv39VmvW4 tiM3 00

4 1
AON1±SISMOD 0

SS3M3St3WO3

SS3N3131dWO3 4-

SS3N3AIv~ixfnvvbo3

L4-4

0
cl-

< !: 0 . = I-

Ow I a 4 6 w '-

U. IN; ~ IAC 0 V1 U 0, .

3UVMLiC 3HM5O

3 -2



0

0
C C - - 4)0

0 4) 0 0 C4

I 0' *-- c
0 0 -0 :1 0 0
I0 3 0 *0 0 0 0

I 4) C C*0 '-,4
I 0 0 0 C-C U .. 4

I 0 - U ) 3 0 ) .

I~~~~W C ) 4 ) )4 c
Il 0 .C - ' Z-
I4 e 0 Q C 4

c DC . 4 0 e. a
I 0 C 0 - - M) -c

0' ! I- .- C) 0
0 0 9) 6)4 0 - 0 . 0

0 4) -L M0 0 0

44 c 0 '- !- ' )C

o~~~1 c )'. .

>o I 0. > 0 1) 0 0C C 3 0
I C 0 0 z V$ c. '

I~~ 0 0 - '4c .' 4

I4 U0 0. C- 41--0 c 4
V 0. -0 U 0C3 0 4

r C- 0 - 0. or C > 0 C
o4 o 0 EL > 0 c CO -

0 ) 0 >. 0 a

I 4 0 - t 0 0 0- - 4
I 3 4) 0 3 0 .0 0

0I * 0 m , 0~ - 0 -1 '

I - - 0' 0. ) 5
I4 4) 4 40U4* 0U ) ) 0

Q)~~ ~ 0 CV.- -0
0 0) z U 0.0'- 0 3 0 '3 644 It - 0 CO 0 - 0

z 0 0 u) 4) a, M' 0.U- . 0' 0
3~ ~ 0 ) .C C C'D . 0

it CL- - 0 0 >0 .C0 - 0
I4 0- 0 U 0 - I3'- 0. 0))

I C C-0 0 - C 4) 0 .

I z ) 0. I z - .) !. .
I . 4 '0 0 4)' 0- . f 0- 000 "o C 0 f0 C 'o- 3 '

I 0 - C f' -) 0 40
P. -0 0 0t - 0) a) 0

I4 - '- c 4)D 4) * - - 0 -0 *0 >

3 ) ' 0 c - .C0 3-4 4)4 >

m' .0 .C - 00.> 4) 3 . 4)
>. L 3 - 0 - P.0 0. .. 0 D 0-u

*: 0 ;- - 0 34) '-0 -0C

u4 - f. 4)0 U0 0 0 .' 0 0 -
-z4 0 3t -C 0 C - )-) *- 0

I~ ~~ C0 0 0 - - - -' - - 4)
I- I- J 0 o 3 0 ' 0 ) - C- 04 41

_a I,-,N ) -- J- .- 03 f) 00) u u 1)V
IT a< C C Z- " 00 - (I 1- - 30

E-- I - 0 0 *0 C; 0o z 3 X 0 W )0 0_ z
0 0C C1 0 Z -- z4 )- .

1 .0 0 .C 4). 0>, COJ 3 c

I -'- 0 X 4 0 .-1 0 L
I ~ L -0 .-. 0 02U'0 , -

r UA- 3 4) - -4) 0 a it V 00V

1 0- 0 "0 C 4) 0. <." - r- - 0
WI W0 Ca 3C M. M 0 C - -0 4-

1 -U z) 0 0 0- a LLA4 LJ- 0>
I 0-- .C -- IE .-0 W2 CU40

IL <- 04 '- V) - 3. V) Z4 C -:3

L) 00 0 PC -V- z > 0- -, 0--->-
I r> < 0 0 Z0 V) -4 ) 0. -

< C - 4)U u 00 - U -- 0- - -I D LJ z~ C- -00 I- V UI 0 - 0

< < ~ - -:) < 00 Cc 40 - 0 0 4)-1
W> Z9 ( It D C - 4)' < -(I < < 0C

Ir .0 V) IC Z-4 Z- OC C0 <. 4)J >.O
I 0 0 0 0 ZUr4 -- * - Z- .

I~C CL4 LJ a- W0 2x 4 - bJr.3
I -0 a~ 0- u- 0~4 0 0 0-. -C

I 13 AJC (nO IS 3-19 l ()- -



0 z
1 0

0 0

E V

0 0 -c

x 02 cC 0 0
). 0 E

I @ -~0 0 @2
I6 E - 0

I 0 0 2 0

I- 0 0 0

I4 @2 0 o- - -
0 - -- - 0C 0 C

u V . 3 0.

I~~ 62 0 2 ~ .
> 3O -0 @2 0 a .01
41 0 0 0 0

I - C U~-C - @-4 01 0 0

v c C0 0
-0 02 a2 .- - N 0

Iv - - E - w

0 0 c 3 0 3 0.

I4 0. @ 0 -

I ~ 0 0 C 0.
4- 0 E . 0

I4 .C4 3 3

0 0 ->-0 - 0 .
4- 0a. 0 0

M 0 0
E D- 0 0 )@2 5

0 0 -- .

~4->I 0 0. 0
I z 0

I 0 0 0- .

0 Cc0 0 0 C, 0 Y

--0 .- - .' v

I 0. 0.

.0 . 0.

Io 0 05 )-2 0 0 -

E-4 a- -C
I 0 .00 ~ 0. 2 - 5

*Q 0 .C -@ z 0 0 0 0 w 2 *

@20 ) it 0
0 0 V)- .

I I' 0- z- z2 6 2

c 3- 0. -V o - CL@
r- Qf3 00 - . -- 0

ow -E I- <0 "D 0- 00

I~~ 0- 0 -5 ' - .0 0

.0CL~ 0 0 0 -L c
C C )- 0 Z0 0 z0 0 - z

0 00 Z 0 00 0 0 2- -

I --- -- 'j *3 08



4)~ 0 0

z C 1 0 4) U

0. -0 z. - 1 ;U

0 C V- 10 so ~ 34 )

Z 0 c) ILc~- 4 -

404)0 0 0 C'El 41) 4) -7
12 a0 U 0 - 'U V
I C z 4)V IC C 4> >1 o
10 -0 .- CO a0 - C C

0 4 C U -- 02 E4 0I- 0 4

I c . 0 a -- 0.0 C1 0
0C 44 0 -V c

IV CO U - I - U 4

I- 1 - 2 V 00 V-1 0 92- 0 0
IC V 1 CO 0 C -00.- 2 > O ) 0

14)~~ ~ -C 0: CU -1)040 ~C -

10 . 0 . 40 .0U0 0 c. 4) -x - 0

I 'D CC C a. 4) 0 .0 cC4

I0 C 0 06 0 0) 12 .. 0
I1 U 4) ~C U 0 0 '0 - )> C

IC 0 c 0 VE u 0 12 0 2 0U U 2 0.0
10 0 0 - 0 - 404 0- C 0- C

U 0 00 C 0 0 IE 1)- '-4 z~ V- a- 0
, 00 E- C 0 '1 '-*H 1) ) 0. CU cl 0

4..) ~~~~ ~4 I) Z- 0. 0 - C )) ~l~ 0 - O 0 0)
10 . 0 0. C 0.C 0,4 )-- 0) c- C

--0 00 0. 004 0 0 a >c 0' m~

IC - 0- - 0 L 0 'a 'o 0'. U, 01 U0

a i~ 0 C. 0 0 10V ' 4 -0. . V -
10 C 00 C 0- C44 .- 4) 4) 04 0i

I 0 -U C 0 UC 00 IC Cc C .c 3 C 1. Z-o 1)- *- -0 10.0 .04 0).. a,- .0 0 4)-.
z2 - . 0 24E 1- -06 *C 0~. 4

4J I 0 :- )- 0-- OV OC Z.- -0 -0m~-
:;. 0,0 CV 0 - C 100. 01V 0 C 04)0 0

V - 0. 020 ) 0U m 0 0. 0 CU C 4) 0 CC C

rz 0 0 0- 4 0-- 1- 0 0 4 I01U ix 0.0 4 ) 0.) -
0 . 0 0 0 0-2 0- 0)--:

z-- C) 3 C C. ON C-- 0 i>. ' - C 0-o a0 04) -0 O0 O0 OCa 0 > '4- 44 Cc CC )- C- 00
0, I ) -- 4 0 - C 4 104 0a0 0 0. 02 0 0'

Ic ZC - - =- 6C =C': C= w U E)- CA n
UO0 U.- U- UU U) =~ U) z 0 Z . CO C .C0.

> U -- 3 v - - al I UV U2 U -- U- U

0 I iC .0 3V1 3)- 30 R - 30 ) - - C .C --
I 0) 0 4) 0 It 4 06 4 0 34 34 - 6 0. It 0-

0) ~ -0 a- 0 - u - Id IOV 0-- 0 0 30 04) 0C
I4 cm U .- 0 > I.C -- U -- C
I. - - Cu - -,,- -4"C - 4 0 E .02

M C c0 C - CC- - CO CC CO C 4. 0. -1 -V -0 Uc
IC - 40 C.V - 4) 4)0 ) C' 4-4 IC a CL. CO CC C )C 0

4I 1 - -C- -V - -.- 0 -0 0 C O C 4.-- C) C)

IC0 - x4 0 C. m) C) CC x IX x0 0~ C XO O>o I .0 - a0 0 U- C '-C CC C0- 40.Q 0 4)- CC

tfl 14 .0 C 40 D C- C-- lo 4) c U *- "0 X 0C- -CE

- ~ .'V ) 0. ).. z.' C-C C0 C> 0C1C0.

0 I- - -- 0 Co -o -o 0 0 0 -

-4~ 10 0 00.C 0- 0 4 0- c -4 0C- "-
C~~~4 u0V ) 0 0-- 0 O 0 004

ICC~~~ 0 CC 4)0- CC 44 C . C 0 0 -

10)c . ~ 0 000 O 0) a4'- 4)) 4)0 40. 9.C 004
IC C- C CC CE E' .C 04 0 0 mV 0) 0 0 -0) 12- EU EC 2C 2 2' 4)'- E ICE- C 0 E) 40) CE )

E- a, C 0)- V CK C )2 2) 4 -

IL I I I W

I )- ILA V
L" -C I

W- -L -J I crC30 -

I --r - -I

~ < ~ 4 1 3 <17



and at the lowest level are the measurable parameters which can

be related to the software quality criteria.

Software quality is a relative and imprecise entity in that "the
deqree of excellence" required of software is not absolute.

Different organizations and projects may have different

objectives. For example, "throw-away" code need be given very

little consideration with respect to life-cycle maintainability.
Software quality factors such as transportability and efficiency

are potentially in conflict and thus necessitate a trade-off or

compromise to be achieved.

The primary emphasis of this development effort is to gauge the

effect of Ada on both the development cycle of communications

software and on the performance aspects of the resulting code.

The need is to key on software quality factors which relate to

development and performance. Table 3.4-1 lists those software P

quality factors which relate to or impact on the software

development, maintenance, and moditication process. Table 3.4-2

lists those software quality factors which relate to or impact on

the performance of software implemented in Ada.

3.4.2 Criteria for Softw x._Ouality Factors

The criteria identified in Table 3.4-3 represent a set of

independent attributes which software may possess both with

regard to software development and software performance. An

individual criterion may be correlated with more than one

software quality factor. The interrelationships between the

software quality factors and the software quality criteria are

illustrated in Figure 3.4-1. These criteria are taken from

/COOP79/ and minor additions have been made.

3

I

3-16" "

. . . . . . . . ..



3.3.4.3 System Integration and Testing Objectives

The objective of the system integration and testing is to combine . -

all software for each application, includinq the test support

software, and exercise the software through the use of the

functionally oriented system integration tests. Detailed system

integration and testing objectives are identified in MIL-STD-16/9

(NAVY) /M16778/, Section 5.8.3.

3.3.4.4 Test Software Development

Specific requirements for test support software which need to be

developed for the TCP/IP/ADCCP and ACCAT GUARD applications will

be identified as required. This software will be designed using

the macroscopic/microscopic approach established for the

application software and will be coded during the

code/debug/modify portion of the software development.

3.4 SOFTWARE QUALITY ASSESSMENT

This section identifies the software quality factors and

constituent software quality criteria used to evaluate the

architectures with respect to the use of the Ada lanquage.

Application-specific requirements, which will be used for

evaluation, are also listed.

3.4.1 Software _ity Factors

Software quality can be defined as a hierarchical set of software

quality parameters. At the highest level is the concept of

software quality which is "the composite of all attributes which

describe the degree of excellence of computer software" /C00P79/.

Next are the conceptual software quality factors which represent

the attributes that it is desirable for software to have. At the

next lower level are the constituent software quality criteria

3-15



Three additional classes ot libraries will be used as

repositories tor storing the System Desiqn, Macroscopic Desiqn,

and Microscopic Desiqn documentation.

As a means of documentinq program execution errors, a minimal

software trouble report system will be used on the VAX. This

capability will be implemented using existing software to

document corrections and provide a historical record for future

analysis.

3.3.4 Integration and Testing Procedures and Standards
I

This section describes the definition and development of test

software and the testing objectives.

3.3.4.1 Integration and Testing Overview " S

Two levels of testing will be performed during software

development. These comprise module testing and system

integration testing. The module and system integration testing

is performed by the programmer responsible for each application.

Test specifications will be provided for each level of testinq

along with the respective desiqns.

S

3.3.4.2 Module Testing Objectives

The objective of the module testing is to exercise each module to

assure that all internal program errors have been detected and 0

corrected prior to system integration testing. Detailed module

testing objectives are identified in the MIL-STD-1679 (NAVY)

/M16778/, Section 5.8.1.

31
3-14.



used, and addresses any other outstanding design or Ada

programming support environments elements which may influence the

implementation. Information gained from the code/debug/modify

phase which may have an influence on the designs is evaluated.

3.3.2.4 Progress Reviews

Informal progress reviews with the entire project team will be

conducted nominally every two weeks. These reviews are used to

exchange ideas, avoid redundant related efforts, and to generally

monitor progress and identify problems.

3.3.2.5 System Testing Reviews

During the Integration/Test Phase, a System Testing Review (STR)

will be conducted to monitor test/integration results. The

purpose is to identify any systematic errors in the designs,

implementations or Ada compiler so that corrective action can be

taken as early as possible.

3.3.3 Software Development Control

As a means of providing control over and visibility into the

software development process and providing control over the

status and availability of the software, three classes of program

libraries will be used. These are the Development Library,

Integration Library, and Release Library. The Development

Library will contain all software which is undergoing coding,
debugging, or module testing. Upon completion of module testing,

the module is moved to the Integration Library for integration.

When a cycle of integration has been completed and a portion of
the system is ready for use, that portion will be placed in the

Release Library. The individual programmers will be responsible

for making the transitions under the review of the project

manager.

3-13

. .. . . . . .. . .



development, and to assure that the application requirements have

been met. Reviews provide a means of establishing milestones and

evaluating overall progress. Design walkthroughs will be used to

facilitate discussion of critical or unclear design elements and

of Ada language and Ada PDL issues.

3.3.2.1 Preliminary Design Reviews

Preliminary Design Reviews (PDR) are conducted following the

macroscopic designs and approximately two weeks after the

initiation of the microscopic design phase. The PDRs will be

designed to accomplish several objectives. They will represent a

milestone against which progress can be formally measured. They

will determine if application requirements have been met, if the

macroscopic designs are complete and consistent, and whether the

extracted designs are complete and consistent. During the PDRs

outstanding problems and design or implementation issues will be

identified and reviewed. The PDRs will provide an opportunity to*

discuss insights gained from the microscopic design phase.

3.3.2.2 Interim Design Reviews

Throughout the project several Interim Design Reviews (IDR) will

be held. These serve as formal milestone reviews and as a way of

obtaining lessons-learned information which may have a bearing on

the remainder of the project. These reviews provide a means for

formalized interchanges among management, development, and

evaluation personnel.

3.3.2.3 Critical Design Reviews

Following completion of the microscopic designs a Critical Design

Review (CDR) will be held. This review evaluates the

completeness, correctness and suitability of the microscopic

designs, provides a means to identify and resolve any open design

issues, evaluates the module and system test specifications to be

3-12



3.3.1.3 Microscopic Design Phase

The microscopic design phase consists of refining the macroscopic

designs to the microscopic design level. This includes supplying

lower level units, more detailed PDL, and converting the PDL of
the top-level units into more nearly completed Ada code. -

3.3.1.4 Code/Debug/Modify Phase

The code/debug/modify phase consists of converting the

microscopic designs into Ada code, debugging the code and forming

integrated packages within each virtual package. The modify

portion is designed to have each programmer implement a small

portion of the other's design as a way of assessing software

maintainability issues.

3.3.1.5 Integrate/Test Phase

The integrate/test phase consists of integrating the software

asociated with the various virtual packages and conducting

performance testing on the resultant software.

3.3.1.6 Development/Performance Evaluation Phase

The development/performance evaluation phase consists of defining

criteria for evaluation and evaluating the development

methodology, the software architectures, the Ada language, the

performance of the developed systems and assessing the types of
errors encountered and their correlation with the architectures

developed during the design process.

3.3.2 Project Management

A part of the development approach is to conduct reviews

throughout the project at critical points. The objectives are to
discern the difficulties encountered during the design and

3-11



00

z

ca aa
z-

C2 cm
(a11

C2

-0 z

U ca

a w

(a

- i

C2z
us 4
C2

a Q
-I4

2t

3-10



3.2.4 Code/Debug Phase

The last phase in the stepwise refinement process will be to

convert the compilation units, both library and secondary, into

valid Ada code by supplying the necessary details.

3.3 SOFTWARE DEVELOPMENT AND PROJECT MANAGEMENT

This section describes the overall approach taken with respect to

the development of the software and the overall management of the

project.

3.3.1 Software Development Phases

The formal software development phases are illustrated in Figure

3.3-1. Not shown is a Development/Performance Evaluation phase

which is unique to this project.

3.3.1.1 Ada Indoctrination Phase

The project is initiated with the Ada indoctrination phase. This

phase reviews the more novel features of the language to gain

more complete understanding of the features and their use.

Issues relating to complex features and the use of Ada as a PDL

will be explored. Methodology issues and objectives will be

reviewed to assure that a proper focus is maintained with respect

* to using Ada and that the methodology is Ada oriented to the

maximum extent possible.

3.3.1.2 Macroscopic Design Phase

The macroscopic design phase will consist of identifying the

virtual packages, converting them into the object oriented design

diagrams, converting them into the corresponding (refined and

extended) PDL, and compiling the Ada library units.

3-9



compilation units and subunits, and their dependencies), ther definition of formal input/output parameters, and the definition

of inputs, outputs, and global data. Major decisions within a

module may be indicated as a means of delineating overall control

* flow. To accomplish the macroscopic design, an attempt will be

made to use a proper subset of Ada constructs as a PDL, the

objective being to produce compilable modules. This allows an

early, increased understanding of Ada without considerable

detail, and orients the designs to the language features.

End products of this step will be the formal object oriented

design diagrams (OODD), virtually complete library units, which

make up the virtual packages, and the PDL designs for the visible

subprograms and tasks. As an adjunct, an extracted design

summary will be produced which provides compilation unit

summaries, call graphs, and other design summary information.

3.2.3 Detailed Design Phase

The detailed design phase consists of applying the next level of

detail to the previously completed compilation unit PDL designs

and completing the as-yet unspecified private (internal) portions

of package bodies.

This design phase is referred to as the microscopic design for

the remainder of this document. The microscopic design level of

detail will include the definition of the components of the

abstract data types, the refinement of all global or common data

objects (as opposed to strictly local), assignment of preset and

default object values, and the specification of all major control

decisions within each compilation unit. The objective will be to

produce compilable modules.

During this phase composite test specifications will be produced

which define the tests to be performed in debugging and

integrating the software.

3-8



Table 3.4-4. Specific Performance Requirements

Bit/byte acces- and manipulation
Provide for insertion of assembly language code
Provide access to operating system functions,
primitives
Provide access to and control of interrupts
Provide access to real-time clocks and associated
timer s
Provide macro definition and generation*
Provide generation of 1/0 tables
Support software modularity
Provide parallel processing contructs
Provide strong data typing
Provide support structured programming concepts
Provide data and control encapsulation*
Provide for formal verification of source code*

*specifically required for trusted software

Table 3.4-5. General Performance Requirements

Provide very high performance
Provide capability to interface with
and manipulate specialized hardware
Provide high transportability of source code
Provide sophisticated data structures
Provide sophisticated control structures
Provide very high reliability

4 3.4.3.2 Trusted Software Application Requirements

It appears that no studies have been performed which explicitly

identify a set of requirements that a language should possess for

implementing trusted software. Upon examination of the

application area, however, it is apparent that many desirable

features are similar or identical to communications applications.

Two other features are believed to be strongly related to the

characteristics inherent in trusted software. The first is data

and control encapsulation. With this ability it should be

3-22

.. m



possible to construct more secure data and control structures

which can be used effectively but without knowledge of the

details of the implementation and, therefore, without the ability

for unauthorized alteration or manipulation of the structures.

The second is formal verification (proofs of correctness) of the

designs and source code. Although this evaluation of Ada will

not include formal verification of the trusted software source

code, indications are that there is a strong correlation between

the style in which programs are written and the ability to

formally verify those programs /SR1178/.

There is a correlation between the style in which programs are

written and the features provided by a language which encourages

the writing of programs in a clear, intelligible, and verifiable

style or at least proscribes certain undesirable styles. An

analysis of the trusted software and Ada features will be made

with respect to style and formal verification to determine if any

administrative Ada language restrictions are required. Specific

criteria to be used for evaluation are Maintainability,

Testability, Correctness, Integrity, Reliability, Robustness,

formal verifiability of the designs and code, and the ability to

retain a usable Ada subset in the context of restrictions which

may be required.

3.4.4 Ada Language Characteristics

The last component of overall software quality to be evaluated is

the Ada language and its required run-time support environment.

Individual features and combinations of features will be

evaluated given both the context of the two applications and the

interactions with the run-time support environment and the host

operating system.

3-23

.................................. Ad



S

3.5 DATA COLLECTION

This section identifies the sources and data to be collected

during the project including the criteria for data collection,

analysis and evaluation.

3.5.1 Criteria For Data Collection And Evaluation

The major sources of data and information which will be used to

conduct the evaluation are shown in Figure 3.5-1.

The primary objective is the evaluation of the Ada programming

language with regard to effectiveness in expressing the designs

and implementations and with regard to efficiency of execution.

To achieve this objective, several different types of data must 0

be collected and evaluated. Data will be collected regarding

which Ada features were used, whether they were used effectively,

and whether the resultant designs and implementations were

efficient with respect to execution characteristics. 0 0

Because of the expressive power of Ada, many different types of

software architectures can be formed for any given application.

Depending on the architectures selected for implementation, the .

resulting software may have many different characteristics. Data

will be collected and evaluated regarding the specific software

architectures that have been formed to determine whether the

architectures are suitable for the application and whether they

have been effectively represented using Ada.

Since the methodology involving the macroscopic and microscopic

design levels was formed specifically for the project, it will be 9

evaluated to determine whether it provides suitable levels of

design refinement, whether the information required at each level

is necessary and sufficient, and whether the levels are "uniform"

with regard to providing a smooth transition from the S

requirements to the implementation.

3-24 •



6w wi
z 6W

CL0

6IJ ua

= !2 -60

4c 6U

cn - In IJ -4

C.) WA

C00

I 4-6U)

(n C2

ci)

3-2

pz



It is envisioned that there will be a significant interplay

between the software architecture, the features of the Ada

language, and the software methodology components. A consequence

is that various types of errors may be encountered throughout the

development process. Overly complex debugging and system

integration requirements could result in various types of errors

remaining hidden after integration and testing. It is also

possible that secuential processing concepts may be applied to

Ada tasks with anomalous results produced. To address the

interplay among these components, various type of error data will

be collected ani evaluated.

Although the above areas are of primary concern, incidental

evaluation will also be made with respect to: 1) Ada education,

both methodology and the language, 2) effects of an Ada

Programming Support Environment and a suitable set of Ada-

oriented software tools on the software development process, and

3) the characteristics of the respective Kernel Ada Programming

Support Environments and their effect on run-time performance and

characteristics of the two applications.

3.5.2 Software Architecture Data

The primary objective of the software structure analysis is to

determine which Ada features were used and to assess the degree

of success or difficulty encountered in their use. The secondary

objective is to assess in a qualitative and, if possible,

quantitative manner the effectiveness and suitability of the .

features used. To accomplish the first objective, the software

will be examined at two levels. The first level will address the

overall organization of the software into modules comprising

packages, subprograms, tasks and compilation units and subunits.

This organization will be compared with the totality of Ada

features and with the software quality factors in order to

determine how "good" or suitable the structure is. The second

level will address the internal organization of the data

structures and bodies of the various riodules to assess the

3-26

%.................."...... ..



breadth of the Ada features used and to determine the overall

composition of the features used. Of particular concern will be

whether full advantage was taken of the Ada features or whether a

subset of Ada features was used in the style of some other

language.

To accomplish the second objective, the Ada features used within

each module will be analyzed. In cases where a particular Ada

feature, construct, or set of constructs appears to be suboptimal

regarding efficient representation in Ada, or especially

difficult to implement or understand, a detailed review of the

constructs will be made with a view toward finding alternate,

improved representations.

3.5.2.1 Software System Architecture

The software system architecture will be evaluated at two

sublevels. The first deals with the number, type and

interconnectivity of the virtual package architecture. The

virtual packages will be evaluated with regard to the

Flexibility, Interoperability, Maintainability, Reusability and

Transportability software quality factors.

The same software quality factors will be applied to the intra-

virtual package architecture. They will be applied to the

architecture of the library units which constitute each virtual

package. The emphasis will be on assessing the architecture of

the software in terms of high-level Ada entities such as library

units and the visible components of library units through which

control and data flow interactions will be effected.

3.5.2.2 Compilation Unit Architecture

The objective of the compilation unit architecture evaluation is

to determine how the visible and non-visible components of each

compilation unit are organized from logical and lexical aspects.

The emphasis will be on the number, type and interaction of

3-27



visible, private, and hidden components and external

dependencies. Software quality factors from the development and I
performance subcategories will be derived from the respective

software quality criteria.

3.5.2.3 Compilation Unit Statement Characteristics
I

The Ada Statement Analyzer will be used to determine the

characteristics in terms of Ada source code statement types used.

This statement summary will be used as an indication of overall

module complexity. Compilation units which are deemed unusually

complex or to have other idiosyncrasies will be selected for

further review.

Once appropriate compilation units have been identified, the code

will be reviewed to determine if problems exist. The software

quality factors will be applied for both the software development

and software performance categories. The deficiencies, if any,

will then be categorized according to the relevant software

quality criteria. Selected Compilation Units (CU) will be

evaluated to determine the effect of the established programming

guidelines on the architecture and the components of the CU.
p

3.5.2.4 Application-Dependent Architecture Characteristics

The objective of the software architecture data collection is to

determine the effectiveness of the system software architecture

with respect to external, conceptual models or objectives which

were used as primary drivers in shaping the software system

architecture designs.
*

In the communications protocols application the ISO Open Systems

Interconnection Reference Model served as the primary

architectural model. An adjunct to the functional sublayers is

the concept of systems management functions which provide

services common to more than one layer. The objectives of data

collection and evaluation in this area will be to determine

3-28 S

. .. . . . ... .. . . . . ... . . . . . ...- ... . ... .. . ..... -.... . ... ..



possible alternative software system architectures and their

suitability and to examine how effectively the use of Ada

entities was able to capture the system architecture.

Two aspects of the ACCAT GUARD software architecture will be

examined. The first deals with the ability to capture the essence

of the SPECIAL specifications for the Upgrade Trusted Process and

the Downgrade Trusted Process in an Ada implementation. The

second deals with the ability to separate trusted and non-trusted

software in a manner that prohibits or minimLzes data flow from

the trusted to the nontrusted components. Special attention will

be given to separating KSOS emulation idiosyncrasies from other

trusted software problems. Since the ACCAT GUARD application was

implemented as a single process in a multitasking environment, an

evaluation will be made of the use of Ada tasks for interprocess

communication as opposed to UNIX-like ports.

3.5.3 Software Error Data

The overall approach for using software architecture data and

software error information and correlating these with the Ada

features used is shown in Figure 3.5-2.

The error statistics to be collected comprise two groups:

compilation-related errors and execution-related errors. The . -

objectives are: (1) to determine if there are any particular Ada .

constructs which seem to be systematically difficult to use; (2)

to determine which type(s) of errors, if any, remain hidden

following a successful compilation and must be detected during

execution; (3) to relate errors to module complexity; and (4) to

help in the identification of guidelines and alternatives which

will either diminish or remove the most severe problem-causing

areas.

3-29

. . ...... ........ ... .. .... ... ... .,. .. - .- .... -.



aU c

66 , =.

(2f

b'c~j I

0

S-4

LU X

U33 W .3

4

0.0

UP

0 ca

3--



Errors encountered for compilation unit or subunit compilation

will be identified by type and frequency of occurrence.

Execution-related errors detected via unanticipated exceptions,

elaboration errors, and erroneous (inaccurate, incomplete,

inconsistent) computational results will be grouped by type and

frequency of occurrence.

3.5.3.1 Ada Language Errors

Ada language-related errors will be divided into five categories,

which are conceptual, syntactic, semantic, execution, and

integration errors.

Conceptual errors will deal with Ada language-related problems in

which the basic concept of the Ada entity or the purpose of the

entity was fundamentally misunderstood and misapplied. Syntactic

errors will deal with problems which are encountered in forming

the various Ada constructs. Semantic errors will deal with

problems which are encountered either during compilation or

during execution. The compilation errors will reflect

inconsistent use of Ada-defined or user-defined entities which

are detected at compile time. Execution-related semantic errors

will reflect programs which execute correctly, but produce an

unintended result. This type of problem can result, for example,

from variable overloading and inappropriate scope declaration or

variable identifier qualification. Execution errors consist of

those errors which are encountered during either elaboration or

execution of program units.

In some instances, errors may not become evident until a

significant number of components have been integrated and

executed together. This is particularly true of software

architectures involving tasking and the dynamic instantiation of

generic units. During the system integration process, an "error"

log will be maintained by each programmer which will indicate the

integration errors encountered and the characteristics of each.

3-31

. . -.



3.5.3.2 Design Errors

Within the Ada programming language a class of errors which can

result in an "erroneous program" are identified. These errors

result from taking advantage of known facts, such as operating

system or run-time dependencies, which lie outside the

specification of the Ada language. As a result, the program may

work properly in one environment but not in another, or the

program may no longer work after an operating system change has

been implemented.

Another class of design errors which result in erroneous programs

are those implementations which covertly or inadvertently rely on

implementation choices made by the compiler or run-time software

implementor.

3.5.4 Programmer Interview Data

Interviews will be conducted with the communications protocol and

trusted software programmers following the PDR and CDR. The

objective will be to elicit qualitative information regarding

Ada. Information will be obtained by having one programmer

implement a small portion of the other's design as a means of

assessing maintainability issues. An attempt will be made to

understand the rationale applied in the design and development

phase for those approaches which worked, as well as those

approaches which had problems. An additional result of this

understanding should be the ability to formulate new and improved

approaches to design and implementation using Ada.

All project personnel have been directed to maintain a notebook

consisting of perceptions, problems, solutions, insights and

other useful information which they acquire as the project

progresses.

3-32



3.5.4.1 Ada Language

Each programmer will be asked to identify those Ada features

which contributed most significantly to the respective software

development effort and to supply the rationale as to why those

features were significant.

Each programmer will be asked to identify deficiencies or

weaknesses within the Ada language and to supply the rationale as

to what the specific difficulties were. These deficiencies will

be divided into those which exist within the language itself and
those which are caused by the omission of a specific feature from

the language. Those deficiencies within the language will be

divided into two groups which address either individual

syntactical/semantical forms or problems which exist as a result

of combining several syntactical forms.

Those Ada features which are unused will be identified and the

reasons for their non-use will be documented.

Certain complex Ada features may be misinterpreted. In those

instances, features will be identified and the reason for the

misinterpretation will be sought.

A preliminary set of programming guidelines was formed to avoid

certain obvious problems in the use of the Ada language, such as

excessive nesting of programs or the use of an inordinate number

of formal arguments in a single subprogram or task entry call.

These guidelines will be reviewed for relevance according to the

following criteria: 1-used, effective; 2-used, ineffective; 3-not

needed, not used; 4-needed, not used; 5-new addition; 6-change to

existing guideline.

3.5.4.2 Methodology

The methodology which is used will be evaluated in these

respective areas: the macroscopic design phase, the microscopic A

3-33



design phase, the code/debug phase, the system integration phase,

the relevance of the original design guidelines, and the

relevance of software tools for assisting the methodology.

3.5.4.2.1 Macroscopic Design Phase

The macroscopic design phase results in the object oriented

design diagrams (OODDs) and the corresponding PDL. Data

collection will focus on determining whether the OODD diagrams

provide a reasonable initial step for producing a design, how the

diagrams should be correlated/coordinated with the higher level

preceding requirements, when the OODD should be initiated, what

level of detail should be required, and what problems were

encountered when using the OODDs. Recommended changes or

alternative approaches will be solicited.

Data will be collected on the utility of the virtual package

concept with respect to the following criteria: 1) ability to

establish early Ada orientation, 2) effectiveness in avoiding 5

inordinate detail at the software architecture level, 3) the

ability to provide for enhanced design visibility and

understanding, 4) the ability to provide for continuity across

software development phases, 5) the ability to provide a basis

for software configuration management, 6) the ability to assist

in the effective scheduling of software development

implementation orders, 7) the ability to address and emphasize

software quality factors by indicating the key elements of the 0

designs, and 8) the ability to provide for early incorporation of

conceptual models which should influence or guide the overall

software architecture design.

The PDL will be evaluated to determine: 1) its correspondence

with the OODD, 2) if the appropriate level of refinements have

been made, 3) if the PDL is uniform in detail across all units,

and 4) what difficulties or problems arise in making the 5

transition from the OODD to the PDL. The PDL itself will be

3-34 S



examined to determine whether it provides the minimum Ada

criteria given in Table 3.5-1.

Table 3.5-1. Macroscopic Ada PDL Criteria

Virtual Package Definitions
Compilation Unit Definition
Packages Definition
Subprograms Definition
Task Definition
Formal Parameter Definition
Abstract Data Type Definition
Exception Definition
Major Logic Definition

Another factor which will be evaluated is whether the combination

of OODD and PDL are at the suitable levels of abstraction for

communicating the information required of a Preliminary Design

Review or similar type of review.

As for the macroscopic designs, the number, quality, placement,

suitability and uniformity of PDL statements and text contained

in square brackets ([]) will be carefully evaluated since this

information, along with regular Ada comments constitutes the

basis for forming a well-structured design.

Information regarding weaknesses in the use of the OODD and

corresponding PDL will also be sought and any changes or

recommendations will be incorporated. Careful consideration will

be given to potential problems or deficiencies which might result

when the approach is applied to software development projects

involving larger numbers of personnel.

3.5.4.2.2 Microscopic Design Phase

The microscopic PDL level will be assessed for uniformity of

design detail across all modules. Several other factors which

are unique to this level of design will also be considered.

These include whether sufficient detail and organization existed

3-35



generic entities are identified early. They must be completed

early in order not to impact other dependent units. The problem

of completeness and uniformity of the designs again occurs with

respect to proceeding to the code/debug phase. This is very

critical here since the only remaining opportunity to rectify

omissions is in the code/debug phase.

An issue with the microscopic designs is, again, how to determine

completeness. A particular problem with the macro designs of the

communications protocols software prior to concluding the

microscopic designs is that many of the calls to known entities

within the respective bodies were not indicated. Although this

problem was easily corrected, the apparent cause appeared to be
one of oversight and of not having a specific requirement to do

so in the methodology.

4.1.4 Code/Debug Phase

No major problems were found with the procedure of converting the

microscopic designs into Ada code. In the communications

protocol software, considerably more design was required to

complete the coding. One consequence of this was that the

code/debug took longer than anticipated. Another significant

problem occurred related to the Ada compiler. The

implementations had to deviate from some designs because certain

Ada features were not implemented and compiler-related errors

caused considerable numbers of workarounds to be attempted to

obtain working code. Work on the trusted software application

was suspended for approximately six months while awaiting

delivery of a validated compiler. Several compiler problems were

traced to heap overflow and heap management problems, resulting

in tasking that frequently did not work properly. In part, these

problems were solved by relocating code from the bodies of tasks

to their containing package bodies and forming subprograms of the

relocated code to reduce the size of tasks.

4-7



suggested. This resulted in a considerable number of problems

which could easily have been detected during the macro phase

instead of the later micro and code phases. As a result, the

design guidelines have been changed making compilation of at

least the package specifications mandatory for completion of each

of the design phases.

4.1.3 Microscopic Design Phase

At the beginning of the microscopic design phase the virtual

package structure, the compilation unit structure, and the

corresponding PDL of the macroscopic design phase should be well

defined and ready for further refinement. A significant step

which can contribute to assuring this is to perform some portions

of the microscopic design prior to the formal conclusion of the

macroscopic design phase. This has the benefit of uncovering

lower level details which may influence the overall compilation

unit architecture or the allocation of capabilities across the

various compilation units.

During this phase the secondary program units were more

completely defined by supplying the necessary bodies. Tertiary

and lower level program units were also defined. PDL statements

which were qualitatively similar to the macroscopic PDL

statements were supplied. In the case of primary routines, the

previous PDL statements were expanded into more detailed PDL

statements and into direct Ada code in some instances. The

declaration of local data types, objects and default values was

completed. By the completion of the microscopic design phase, the

primary program elements were essentially completed except for

minor processing details.

It was recognized that generic declarations needed to have their

bodies esentially completed since they would be some of the first

entities used to produce other nongeneric entities. An important

factor here, and in the overall methodology, is to assure that

4-6



4.1.2.3 Macroscopic PDL

Since it is neither possible nor desirable to communicate all the

design information such as completed types, formal parameters,

guard conditions and similar entities via graphical

representations, the macroscopic design phase was augmented with

the use of Ada as a PDL. The objective was to provide a means of

refining or extending the OODDs by incorporating additional

detail that advance the designs one more step into Ada code. The

refinements or extensions to be included were: completion of

exported data types and objects, default value assignments,

declaration of all formal parameters for subprograms, task

entries and generic declarations and instantiations, declaration

of exceptions, declaration of blocks, declaration of nested

secondary subprograms or tasks, specification of major logic

decisions in the visible components of library units, at the very

least those exported from the virtual package, and the use of PDL

comments (text included in square brackets) which would

ultimately be converted into bona fide Ada code.

In general this approach worked very well, but there were some

notable problems. Names of called subprograms or task entries

were either omitted or not clearly indicated even though the

entities were defined. The incorporation of exceptions was

omitted throughout the macroscopic designs even though there were

numerous instances where they could occur and should be managed.

The most difficult problem was knowing when the designs were

completed, that is, when all the necessary information had been

supplied. This is significant since providing too little detail

will result in requiring top-level design to be performed at the

microscopic level, while providing too much detail will generally

result in uneven levels of detail because of schedule

considerations.

During the early portions of the macroscopic design phase in both

applications, the package specifications were not compiled as was

4-5



on Ada-based graphical design representations become known to the

project. The first was the Object Oriented Design approach of

/B00C83/ and the other, in preliminary form, was presented at the

February 1983 San Diego AdaTEC meeting and is now documented in

/BUHR84/. A synthesis of these approaches was made with

refinements and extensions to provide representations that would

satisfy the project needs.

The manual creation, modification and control of these diagrams

during the initial portion of the project was barely tractable.

During the design process, much iteration and refinement occurs

until all compilation units are defined and the visible

components are defined and properly distributed. This process is

even more complicated when tasking interactions are required to

achieve resource sharing/protection and inter-protocol-layer

communication.

A second problem was determining which Ada entities should be

represented since different entities communicated different

levels of information. For example, if only task specifications

were represented, it would not be possible to indicate that

entries were guarded, if that were the case, since guard

conditions can be represented only in task bodies. Similar

considerations prevail for timed/conditional entry calls,

selective waits, discriminating between subprograms which are

functions and those which are procedures, and distinguishing

between units which are generic declarations and those which are

generic instantiations. This has been resolved by permitting the

maximum level of architectural information to be communicated.

This is consistent with providing the necessary information

required to conduct a preliminary design review and indicate what

the key software architecture considerations and factors are and

thus provide the necessary design visibility at an early stage of

software design or possibly in precursor form prior to concluding

the requirements phase.

44-4 •

...................................................... " ................................................................. -



these problems have been resolved and the virtual package concept

has been refined and is an integral part of the methodology.

During development, it was recognized that virtual packages could

be related directly to Computer Software Components (CSCs) of the

DOD-STD-SDS. The formation of virtual packages during the

requirements phase would pro 'vide an excellent opportunity for

iteration between the requirements and design phases. This

feature is critical since it frequently is the case that

requirements can be optimally organized and more clearly stated

if some preliminary design is performed prior to requirements

definition. A note of caution here is that care must be taken to

assure that Ada language characteristics do not unduly influence

requirements. In cases where CSCs were large, or design criteria

such as reusability or transportability were factors, it was also

the case that requirements could be preserved and that nested

virtual packages could be used.

An additional benefit of virtual packages is that a designer can

organize Ada packages into those visible and those hidden from

other system components (virtual packages). The virtual package

has many of the characteristics of an Ada package except that it

is not necessarily a compilable entity. This has the side benefit

that software architectures other than nested architectures can

be cleanly represented while achieving design visibility and

modularization.

4.1.2.2 Object Oriented Design Diagrams

Since virtual packages partition the system into top-level "Ada"

units, the next step is to begin stepwise refinement. It was

determined that only information which could be conveyed via Ada-

library units should be represented within each virtual package

as a way of indicating the architecture of that virtual package,

and that this information should be conveyed graphically to

minimize premature attention to details. Two significant works

4-3



abstraction were selected. These are the macroscopic and
microscopic design phases which were followed by the code/debug
phase and the system integration phase. In completing the design
philosophy, one additional problem was recognized: at the early
stages of design, the package concept represented too tine a
level of detail and the program library represented too coarse a
level of detail. Although the Ada language does permit the use
of sublibraries or their equivalent, it does not require
sublibraries. To deal with this granularity problem, the virtual

package concept was formed and implemented.

4.1.2 Macroscopic Design Phase

This section presents the analysis of the use and effectiveness
of the elements of the macroscopic design methodology.

4.1.2.1 Virtual Package Concept

The virtual package is designed to show the first level of "Ada"
design in progressing from the requirements definition to design
and to improve continuity across the requirements-design

boundary. The concept emphasizes the top-level architectural
components in terms of Ada library units and avoids premature

detail.

In both applications, the virtual package concept was used as the
point of departure for producing the design from the very high
level requirements contained in the original proposal and the
specifications supplied. In using the virtual package approach,
several additional considerations had to be addressed. Early
versions were unclear as to marking imported and exported
components, the level of intermodule interconnection which should
be achieved, how best to annotate the diagrams, whether virtual
packages containing a single Ada package were acceptable, how to
deal witi. generic units, and nesting of virtual packages. All

4-2



SECTION 4

ANALYS IS

4.1 SOFTWARE DEVELOPMENT METHODOLOGY ANALYSIS

This section presents the analysis of the design methodology

which was used for producing the designs initially and for
revising the designs during the transition from SIP/ADCCP to

TCP/IP/ADCCP.

4.1.1 Oeve

An overall goal of this project was to develop an Ada-based

design methodology for the types of applications under

consideration. In analyzing this goal, several objectives were
established which are identified in Table 4.1-1.

Table 4.1-1 Software Design Methodology Objectives

o Provide for early Ada orientation of design
o Avoid premature Ada details
o Provide for early software architecture design visibility
" Provide for detailed software design visibility
o Provide for design continuity across development phases
o Provide basis for configuration management
" Use Ada features to support software engineering

principles
o Incorporate existing models and architectural principles

To use Ada most effectively, the methodology should be Ada-based

with Ada selected for use as the PDL. To achieve the early Ada
orientation and to minimize premature involvement in Ada details,.-

the graphical representations of the object-oriented design
methodology of /BOOCH83/ were selected to precede the use of Ada.

Since software design proceeds best via stepwise refinement and

can frequently be organized around the overall architecture and
the lower level detailed designs, two levels of design

4-1



3.5.5.3 Programming Support Environment Issues

Because of the underlying complexity of Ada and the fact that the
distinction between operating system functions and run-time
support functions has been made less precise, it is likely that
various programming support environment or run-time support
characteristics, which are beyond the direct control of the
programmer, will impinge on the designs and consequently on the
performance. The objective here is to collect and note such
relevant data.

3-42
...... .



An additional set of criteria used for evaluation of the trusted

software are the Class Al - Verified Design Criteria for Trusted

Software of /USD083)/. Primary elements of evaluation in this

area are identified in Table 3.5-3.

3.5.5.1.3 General Performance Considerations

Several criteria affect the Correctness, Efficiency II,

Integrity, Reliability and Robustness software quality factors

which are common to both applications. These criteria are

identified in Table 3.5-1.

Table 3.5-3. Class Al - Verified Design Criteria

Object Reuse (4.1.1.2)
System Architecture (4.1.3.1.1)
Covert Channels (4.1.3.1.3)

*Security Testing (4.1.3.2.1)
Design Specification & Verification

(4.1.3.2.2)
Design Documentation (4.1.4.4)

3.5.5.2 Ada Language Issues

The purpose will be to review the existing implementation and

determine if alternative implementations could have been used

which conceivably would have better performance characteristics

with respect to any of the software quality factors. To the

extent that such alternatives can be identified and project time

permits, alternative implementations may be attempted to
determine if performance can actually be improved.

-. 4



Table 3.5-2. Software Performance Criteria

SOFTWARE TESTS

TCP/IP/ADCCP ACCAT GUARD

FUNCTIONALITY TESTING: FUNCTIONALITY TESTING:
TCP HIGH-LOW MAIL

MISSING SEGMENT(S) LOW-HIGH MAIL
DUPLICATE SEGMENT(S) HIGH-LOW QUERY
SEGMENT CHECKSUM ERRORS LOW-HIGH RESPONSE

SECURITY/PRECEDENCE VIOLATIONS LOW-HIGH QUERY
HIGH-LOW RESPONSE

IP DOWNGRADE REJECTION
DATAGRAM CHECKSUM HIGH/LOW BUFFER WATERMARKS

DESTINATION-UNREACHABLE GUARD TERMINATION
TIME-TO-LIVE DOWN GRADING

SAN ITI ZATIO0N"
INVALID-SUBNET- PARAMETERS

ADCCP

OUT-OF-CONTEXT COMMANDS
OUT-OF-CONTEXT RESPONSES
TIMEOUTS
INVALID FRAME ERRORS
CRC ERRORS

LINE CONTROL MODULE (LCM)
TIME-OUTS (LINE DROP)
DATA ERRORS (BIT DROP)

ADA-SPECIFIC EFFICIENCY II CRITERIA

PRAGMAS: CONTROLLED, INLINE, OPTIMIZE, PRIORITY, SHARED, SUPPRESS
TYPES/OBJECTS: DYNAMICALLY VS. STATICALLY CREATED OBJECTS
SUBPROGRAMS: EFFECTS OF EXTENSIVE ELABORATION
TASKS: REGULARI iY, ACCURACY OF EVENT TIMING, INTERRUPT PROCESSING

TASK ACCESS ALTERNATIVES
EXCEPTIONS: HANDLING, PROPAGATION, TASKING INTERACTIONS .

GENERICS: EFFECTS OF DYNAMIC INSTANTIATIONS
IMPLEMENTATION-DEPENDENT FEATURES: UNCHECKED PROGRAMMING

3-40



3.5.5 Software Performance Data

Software performance data will be collected from the respective

application requirements and characteristics, Ada language

issues, and programming support environment issues.

3.5.5.1 Application Architecture

Application-dependent requirements will be identified, and the

performance of the software will be evaluated with respect to

those criteria.

3.5.5.1.1 Communications Protocols

The communications protocol performance tests relating to

protocol error conditions of Table 3.5-2 will be generated and
used to evaluate the Efficiency-II criteria. Of specific concern

is whether the completed program contains errors relating to

performance and, if so, the source of these errors.

3.5.5.1.2 Trusted Software

Because of the emphasis on correctness in trusted software, the

trusted software application will be evaluated very carefully

with respect to Maintainability, Testability, Correctness,

Integrity, Reliability and Robustness. Within these software

quality factors, specific attention will be given to the spurious

occurrence of exceptions, their handling, and their impact on the

overall software. These conditions will be tested by generating
the maximum number of messages possible and verifying that the

first, last or requeued messages do not become lost or
erroneously transferred and deregistered. The types of . -

operations which will be used for evaluating the overall

performance of the trusted software are presented in Table 3.5-2.

3-39
q I



3.5.4.3.1 Communications Protocols

The original basis for the design was the top-level network

architectural design and the low-level protocol specifications

for SIP and ADCCP. A set of "requirements" was formed which

enabled the relevant components of the architecture to be used to

produce a mini-network. This is substantially different from the

one described for the trusted software application.

A transition to the TCP/IP protocols and a revision of the ADCCP

protocol was made prior to the completion of the macroscopic and

microscopic designs for the SIP/ADCCP protocols. This shift in

requirements prior to the completion of the original designs

presented an opportunity to assess the methodology with respect

to changing requirements and design flexibility. Specific

factors of the methodology to be evaluated are the ability to use

a partially completed design as a reference for incorporating a

new set of requirements and to isolate portions of the design

requiring modification.

3.5.4.3.2 Trusted Software

Both requirements and design documentation (/WOOD781, /LOGI79B/,

/BALD79/) were in existence for the entire ACCAT GUARD

application. Also available was a preliminary draft of the

Upgrade and Downgrade Trusted Processes /LOGI79A/ and the adjunct

software that was used as a basis for the trusted software

design. The transition to Ada was complicated by the fact that

the trusted processes were written in SPECIAL and that the basic

design and requirements were couched in UNIX terms which required

translation to Ada.

3-38

" • - ' - . ' ''' --.-- " - " - "." """ . .-- -.- ' -.. " ---- ' -" " -



3.5.4.2.5 Design Guidelines

A preliminary set of design guidelines was formed to assure that

a certain minimum set of information was provided at each level

of design. These guidelines will be reviewed for relevance

according to the following criteria: 1-used, effective; 2-used,

ineffective; 3-not needed, not used; 4-needed, not used; 5-new

addition; 6-change to existing guideline.

3.5.4.2.6 Software Tools

During this project no software tools were available, other than

text editors and two Ada compilers, until just prior to the

completion of the Draft Detail Designs for the TCP/IP

implementations. At that time SKETCHER, an on-line, interactive

graphics support tool, became available and was used to produce

the object-oriented design diagrams. Since software tools can

contribute significantly to making a software development

methodology effective and efficient, a list of desired tools and

their functionality will be compiled.

3.5.4.3 Project/Application Evaluation:

Alternatives/Retrospectives

The two application areas were implemented from substantially

different starting points and with different requirements. To

assess the impact of individual characteristics on the software

development methodologies, "free form" information will be

collected. The objective here is to evaluate the effects of

different baseline information on the design methodology and the

use of Ada.

3-37



IMF

at the macroscopic level in order to proceed directly with the

r microscopic design or whether substantial changes had to be made

to the macroscopic design before proceeding and, if so, what the

causes were. Other design related problems will be documented.

Since this level of design requires the fundamental completion of

the macroscopic designs in greater detail as given in the design

guidelines, the level of completion will be evaluated and the

suitability of the microscopic design, including the secondary

and tertiary modules, will be evaluated. The number, quality,

placement, suitability and uniformity of PDL statements and text

contained in square brackets ([H) will be carefully evaluated

since this information, along with regular Ada comments,

constitutes the basis for forming a well-structured design.

3.5.4.2.3 Code/Debug Phase

Two key factors to be evaluated are the degree of design changes,

extensions or variations that had to be made, and the underlying

reasons. These are significant in that they potentially indicate

a deficiency in the design with respect to level of detail

provided or to the soundness of the design. In the latter case,

problems may be an indication that the methodology may need to be

revised to require more or different detail earlier in the

software liiecycle.

3.5.4.2.4 System Integration Phase

The system integration phase will be somewhat different in nature

than the classical notion of system integration. Segments of

code will have been "integrated" through the use of context

clauses during the macroscopic and microscopic design phases and

the code/debug phases. Traditional problems will have already

been addressed. Attention will be given to specific design or

performance issues which arise during system integration to

determine how they are related to the design methodology and what

changes need to be made.

3-36



4.1.5 System Integration Phase

This phase has different characteristics from normal system

integration due to the separate compilation capabilities of Ada.

It is possible to achieve incremental system integration, at

least at the library unit interface level, if library units are

made "compilable" in the macroscopic and microscopic design

phases. The benefits are that typical interface

incompatibilities are eliminated early in the development cycle.

As a result, emphasis can be placed on more difficult integration

issues of the semantics of control and data flow sequences with

regard to the visible components of library units.

In large systems which may contain hundreds of packages, the use

of the virtual package concept also can help to identify which

components need to be available to higher level units in the

system. The virtual package concept also aids in formulating

top-level schedules early in the design process, reduces schedule

difficulties, and assists in producing effective integration

schedules.

One software tool which could assist in the system integration

phase is an executable PDL. By being able to explore alternative

designs and achieve top-level integration in an incremental

manner, many design problems could be identified and resolved as

the design evolves. The need for early identification and

resolution of design problems is especially important in large

systems which depend on a multitasking/multiprocessing

environment.
S

4.1.6 Desilgn Glui..deline .

A small set of design guidelines was formed at the outset of the

project. The primary purpose was to assure that some minimal

.evel of design information, consistent with Ada syntax and

,omantics, was achieved. Although the guidelines generally

S

4-8

.............................. .......-... M



proved effective when they were used, they are viewed as being
not very comprehensive. The imposition of design guidelines may
have other purposes, such as proscribing certain Ada features,
depending on the application, to assure transportability or
reusability. The result of the guideline evaluation is given in

Appendix A.

Ada is a very robust language with the ability to achieve many
different implementations for a given set of requirements. When
such factors as software architecture, execution efficiency,

transportability and maintainability are considered, it is
necessary to specify the degree of importance of the software
quality factors that each virtual package or package is to have.

* If this is not done, designs with extensive elaboration

requirements may result with a detrimental impact on execution

efficiency, especially if the elaborations are performed in
frequently called subprograms. Similar effects may result from

S the use of recursively formulated algorithms and dynamic

instantiation of generics.

4.1.7 Programming Guidelines

A general principle in formulating the programming guidelines was
that the list should be small and simple. The objective of the
guidelines was to assure some level of uniformity across
compilation units and to eliminate some of the more obvious

problems. Appendix A contains the evaluation of the guidelines
and includes additions which have been made as a result of

project experiences.

The guidelines were generally effective when used. However, the
guidelines were not always used or interpreted correctly. They - "
did not include transportability or reusability goals. This will

generally require more effort, especially when tasking and
implementation features are considerations. Moreover, the
guidelines may well be a function of the application itself such

4-9

. .. .. - ... °.



as determining how to partition the systems management functions

with regard to the individual layer functions in a communications

node application.

4.1.8 General Design Methodology Factors

This section presents the analysis of several factors which

either span design phases or which deal with design issues not

specific to a given phase.

4.1.8.1 PDL Characteristics

One topic of continued debate is whether a PDL should be directly

compilable or whether the PDL should be Ada-like and perhaps
"compilable" via a PDL processor. The advantages of compilation

are that a separate PDL processor is not required and more detail

will generally be supplied. Specific disadvantages are that the

use of TBD-types and TBD-object statements may require

considerable effort to include or parameterize from a PDL-

standards package, and do not provide additional design

information that can be assessed. There is also the risk that

designers become the programmers and become enmeshed prematurely

in coding details which can obscure top-level architecture design

objectives. Where the objective is to indicate control flow,

based on requirements, through the use of if and case statements,

it may be more desirable to communicate initially what the

conditions are, via the use of embedded English language

statements, as opposed to the specific variables that are used to

form the expression of the condition.

Another factor of an Ada-based PDL is whether the PDL should be

executable and precisely what "executable" means. One benefit of

having executable PDL is that the semantics of the designs and

their dynamic aspects can be verified incrementally as the design

proceeds from one level to the next. In sequential types of

applications, such as mathematical applications, this appears to

4-10

..- ,... ',-[. i ,:[ i."." ',f." •"',","' -' , .;'' . . ' . " . - ' 
'

n 'h"h 'h . . . . ..



be less important. However, in applications involving tasks, an

executable PDL could provide considerable support in achieving

early "integration." Complex intertask interactions could be

evaluated, and errors corrected early in the design cycle. A

specific problem to be resolved is determining the features or

attributes of an executable PDL with respect to what specific

goals are to be achieved. A simple capability could provide a

trace of the control flow given statically determined conditions.

This could be expanded to permit conditions to be varied either

based on program computations or via some type of operator

interaction. Problems dealing with whether or how to use English

language statements, if permitted in the PDL, need to be

resolved.

A question regarding the development phases is determining when

the design of a particular phase has been completed. This can be

related to PDL expansion ratios in making the transition from one

0 phase to the next. A procedure can be declared with one Ada

statement. If it is assumed that a procedure is limited to

approximately 200 Ada statements, then some possible expansion

sequences to progress from the declaration through the

macro/micro design phases into the code might involve multipliers

of approximately 20, 3 and 3, or 20, 5 and 2 or 20, 2 and 5 or

10, 5 and 4. A way of determining when a given level of design

has been completed is to sketch the top level design and apply

the expansion ratios.

Table 4.1-2 indicates ratios for a limited sampling of modules

from both applications and provides composite results. In

comparing tae regularity of the calculated ratios, one possible

interpretation of the high ratio of 3.2 for the HGSD is that

perhaps the macro PDL for this module should have been larger

than it actually was and that perhaps this was detectable during

the design review process.

4-11



Table 4.1-2. PDL Expansion Ratios

Module BUFFMGT HGSD LGSD AVERAGE
Macro 59 33 25
Ratio 1.3 3.2 1.4 2.3
Micro 76 106 60 5
Ratio 2.0 2.0 2.2 2.1
Code 150 215 133
Composite 2.5 6.5 5.3 4.8

To form a basis for the use of expansion ratios, additional work B

is needed to determine their validity based on such factors as

type of computations, effect of comments, effects of

architectures, etc. This could provide useful information that
would contribute to assuring that designs were completed at the B
correct level of detail. Application of expansion ratios could

be used to determine the soundness of code estimates by providing

an estimate which could be compared with other efforts, an
available data base of information, or general assessments by .

experienced individuals as to the magnitude of the effort.

Another issue is whether the PDL should be maintained with the
code or whether the PDL should be maintained separately from the

code. Each approach has several advantages and disadvantages.

In both applications, two levels of PDL were maintained

separately from the code except for the SPECIAL specifications of
the trusted process. Advantages of maintaining the PDL and code

separately are that source files are smaller, easier to manage,
and easier to read; and the question of whether to maintain PDL

and code in contiguous blocks or interleaved is avoided.

Disadvantages are that crosschecking of any of the entities

involves examining two or three separate sets of information.

There is also greater chance that PDL levels will not be

consistent as development progresses due to design changes. There

is the need to explicitly and separately update the documentation S

after the code has been completed, assuming the PDL will be

required for future maintenance efforts.

4-12

• . ,



4.1.8.2 DOD-STD-SDS Compatibility

The development of the methodology was not oriented toward a

specific set of documentation, due to the differences in

documentation standards across the DOD services and agencies. It

was also anticipated that new documentation standards would be

formed that were compatible with Ada as an implementation

language and with the use of Ada-based PDLs, since many of the

existing standards are generally not compatible.

Although this evolution is taking place, another development,

namely, the formation of the new (draft) DOS-STD-SDS. It appears
the methodology will have to be combined with the final version

of DOD-STD-SDS. A small study effort was initiated to gain

familiarity with DOD-STD-SDS and assess the compatibility of the

methodology. The DOD-STD-SDS documentation requirements, as

recommended, are highly compatible with the development

methodology. Three different aspects of compatibility, including

development phases, components hierarchy and design components,

were briefly assessed. In the DOD-STD-SDS nomenclature, the

Computer Software Configuration Item (CSCI) and the Computer

Software Component (CSC) are simply new names for the previous
MIL-STD-490 Computer Program Configuration Item (CPCI) and

Computer Program Component (CPC).

Although there is strong compatibility between the two, there are

several issues which need to be addressed either universally or

on an ad hoc basis when documentation tailoring occurs or
specific project requirements are established. One of these

involves how the AdaPDL will be used, what data and information
are derived from the PDL, how the derived data and information

are organized and presented, and where they are presented.

Through the use of AdaPDL, it is possible to specify such items

as protocol headers with respect to the component names and data

types and even the physical data layouts through object and type

declarations for records and representation specifications to fix

4-13



record component locations. To reduce development and

documentation times and schedules, it should be permissible to

accept such Ada representation directly in lieu of other formats.

Tables of set/used information can be derived from the PDL and

readily organized in several different ways to enhance the

visibility of the information. Other issues which are presently

in conflict with Ada entail the use of overloading, single

entry/exit requirements, the restriction on the use of language

key words such as _TYPE as a suffix and the use of code which is

dynamically "self-modifying" code; such as generics which are

dynamically instantiated and generic objects which take on values

determined by computational results. One final item is the

adaptation of documents, such as the Software Detailed Design

Document and Software Top-level Design Document, to be compatible

with Ada entities such as packages, context clauses, and

exceptions. These elements can be readily identified and easily

located by reviewing personnel who need not be familiar with the

PDL.

A final design issue entails the schedule proportions for the

macro and micro design, code/debug and software integration

phases. In the original schedule formulations, both applications

were treated identically, with proportions of 2 months, 4 months,

3.5 months and 3 months, respectively. The 50% allocation to
design is considerably higher than has been typical. The

approximation of 25% for integration is considerably lower than

the commonly touted 50% figure. Although no specific conclusions

can be drawn from these figures because of the many compiler

limitations and problems, some specific points can be addressed. "

Given a software engineering emphasis, it will be required to
devote considerably more time to the design phase than there has A
been in the past. Because of the data abstraction capabilities

of Ada, data-oriented design should become more integral to the

design process in terms of viewing an algorithm as a combination

of both data and control structure. The design time required

will increase, both absolutely and relatively, when software

4-14
• : -: .



transportability and reusability requirements are imposed on an

application. To the extent that truly capable PDL processors and

executable PDL processors are available, there will be a

justification for reducing the system integration time. If the

emphasis is placed on both levels of design, the coding phase can

also be smaller than normal, since some units will essentially be

coded and the process of converting the designs into code should

be rather direct and require little high-level thinking to effect

the transition.

4.1.9 Application Dependent Methodology Characteristics

This section addresses various factors which are strictly related

to the specific characteristics of one of the applications.

4.1.9.1 Communications Protocols

4.1.9.1.1 Transmission Control Protocol (TCP) and Internet

Protocol (IP) Specifications Issues

Following the decision of DCA to terminate the effort on the

Segment Interface Protocol (SIP) and make the transition to the

TCP and IP protocols, two significant issues arose. The first

issue involved the on-line availability of the TCP and IP

Specifications; the second involved the interpretation of the

Specifications with respect to requirements and design.

Since both specifications contained considerable "design"

information and much of this information was organized in quasi

Ada Program Design Language format, the question of on-line

availability of the specifications arose. The primary motivation

was to minimize redundant work and capture as much information as

possible. After telephone conversations with Defense

Communications Engineering Center personnel, it was determined

that the Specifications were not readily available on-line to the

SYSCON VAX. The alternative was to re-create the information

4-15



needed as part of a new design or to enter the specification with

a high probability of recovering a significant portion.

Subsequently, the specifications were placed on-line from the

textual hardcopies.

In some instances it seemed that a specific design was implied by

the Specifications. Specifically, there was a question of the

intent of the Specifications regarding the interface between the

TCP and IP protocols WITHIN a given machine for a given

implementation. The question was whether an actual record format

must be exchanged between the two layers or whether an access

variable pointing to the record could be exchanged. At issue is

not the compatibility of two peer layers in two different

machines in two different implementations and two different

languages, since that could be achieved as long as the TCP or IP

protocols are followed. Rather, the problem is one of protocol-

layer software transportability and interoperability since a TCP

implementing the TCP/IP interface as a record structure will be

incompatible with an IP implementing the interface as an access

variable. This lies outside the Ada language capabilities and is .- ,

not clearly addressed in the IP Specification. Section 10.2 of

the IP Specification seems to allow enough latitude to implement

the InterProcess Communication (IPC) any way desired. A similar

situation exists in the TCP Specification in Section 6.5.4.1 and

6.5.4.3 where the FROMLULP and TOULP data structures are

specified and are implied as record structures to be passed as

opposed to a parameter list or access variable.

4.1.9.1.2 Transmission Control Protocol (TCP) and Internet

Protocol (IP) Transition Issues

Following the completion of the macro/micro designs for the

original SIP/ADCCP protocols and following the beginning of the

implementation of the application layer and system management

layer software, SYSCON was directed to discontinue work on the

SIP/ADCCP protocols and begin implementation of the newly

4-16

. . . . . .. . . . .-. . . . . . . . . - --



standardized TCP/IP protocols. Since a change in requirements

frequently occurs on projects, this presented an ideal

opportunity to assess how effective the methodology would be in

supporting changes in requirements and design. Several features

of the methodology are evaluated below and assessed as to how

well they supported making the necessary requirements and design

changes.

Figure 4.1-1 presents an overview of the transition. The virtual

packages were organized according to the OSI Reference Model

architecture which assisted considerably in directly identifying

major pieces of the software architecture which needed to be

reviewed. The HOSTUNIT_SERVER, HOST_SIP_SERVER,

TERMINALUNITSERVER, TERMINALSIP_SERVER, and NETWORKSIP_SERVER

VPs were identified for deletion. The HOSTADCCPSERVER and

NETWORKADCCPSERVER VPs were identified for modification to

incorporate the standard ABM mode of ADCCP as opposed to the

AUTODIN-II specific mode. The SYSTEMINITIALIZATION,

COMMUNICATIONCONFIGURATION, SYSTEM_TESTS and SYSTEMMONITOR VPs

were identified as requiring changes to accommodate changes

necessitated by the TCP/IP requirements themselves. The next

step was to examine the OODDs to determine which compilation

units would require alteration in terms of either deletion or

modification. The next step was to examine the micro PDL to

isolate the changes to particular components of the packages.

The PDL was extremely helpful in that it was possible to

concentrate on the architectural level of the design rather than

the code details. The micro PDL was selected because the same

person who performed the initial design was making the design

changes. If another person had been making the design changes,

it would have been desirable to include the macro level in making

the transition.

This type of analysis was carried through to the coded modules.

Since the existing designs could be reviewed incrementally, it

greatly facilitated identifying areas requiring changes and the

4-17

- - • " . . . . .. . . . . ..-. . ..-. . . . . . ." ' • " " " ° °' ',J o•



-4 2

VIiW

x00
z zI

46.

I- SO

V-I-

W~ -C w~U

z Y0

z0

4

0 P4

z CD~

2.1 . .....z

f- - - -- 4

4-)

4-1-8

w cc"

-~ >0
-z w ~ Z C a > a

-~ 22

2 6 CC.

0. CC4 o w 141 c-
V)~~4. ccb aw

w 0

Us &a

4-18



exact nature of the changes. The SIP macro PDL contained too

much detail and required more effort to review than it should

have. This resulted in proceeding directly to the micro PDL.

During the code/debug phase another lesson became clear. In

systems where complicated tasking occurs, attempts should be made

to conduct some amount of prototyping which results in executable

skeletons. The benefits are that basic control and data flow

paths can be established and evaluated prior to committing effort

to refining the PDL.

The macro/micro levels of abstraction, if they contain the

correct level of detail, can assist considerably in making

modifications to existing designs and code by enabling quicker

identification of modules to be retained, deleted, modified and

added. By following the macro/micro design for the new

requirements, it is possible to retain the overall software

architectures and follow the same methodology for the inclusion

of the new requirements.

4.1.9.2 Trusted Software

The design of the ACCAT GUARD application was based on /W00D78/,

/LOGI79A/, /LOGI79B), /BALD79/. The PGTP and UGTP were formally

specified using the language SPECIAL. In producing the

macroscopic and microscopic designs, the SPECIAL specifications

were included directly as annotated comments in the respective

Ada units. Since these specifications were a preliminary

version, they contained several errors and oversights which

complicated the creation of the Ada PDL. Interpretations had to

be made as to what was intended with the result that some

requirements which were implied were not captured directly.

There is difficulty in translating a computer program from one

language to another with respect to syntax and semantics. The

case with SPECIAL was further aggravated due to the preliminary

nature of the specifications. In trusted software, where

4-19



considerable emphasis is placed on correctness, completeness,

consistency and clarity, translation is a significant problem.

One way of eliminating this problem is to use a language for

formal specification which is compatible with or is a

dialect/superset/subset of the implementing language. The

language ANNA (Annotated Ada) illustrates such a language.

Given that a set of trusted software requirements exists, the

issue becomes one of how the methodology can effectively support

translating the requirements into a design and implementation.

With regard to the macroscopic/microscopic design phases of the

methodology, two elements are central. It is necessary to

separate the trusted and nontrusted software in order to

establish well defined boundaries. It is necessary to further

separate the user-visible trusted software from the nonvisible

trusted software so that appropriate secure interfaces can be

defined. The methodology achieved this separation very well

beginning with the virtual package concept. At the macroscopic

and the microscopic levels, it is relatively straightforward to

include the ANNA as a way of supplying more complete semantic

information and providing the formal definition of the design as

required by the Formal Top-level Specification.

With regard to translating the nontrusted software from the

requirements into the macro and micro designs, there were no

basic difficulties encountered.

4.1.10 Software Tools

Throughout the project, only three software tools were used.

These consisted of the VAX/VMS screen-oriented editor, EDIT/EDT;

the Ada compiler; and a program for converting all Ada keywords

to lower case. Prior to the completion of the microscopic

designs for the TCP/IP implementation, SKETCHER, a software tool

developed under IR&D funding, was completed. SKETCHER is

designed to interactively produce OODDs in ASCII character format

4-20



ising a VT-100 type terminal. The need for SKETCHER was a direct

:esult of the work performed on the DCA contract. SKETCHER was

implemented entirely in Ada as a prototype version that could

Drovide an early, if somewhat rudimentary, capability. Another

software tool that was developed with IR&D funding for another

project is the Ada Statement Analyzer (ASA). The ASA provides a

statement count of all statements and clauses used in a

zompilation unit by the sections of /M18183/ and has been used to

::ollect the Ada source statement statistics on this project.

Several other tools, had they been available, would have been of

significant assistance during the design, code/debug and

integration/test phases. These tools could have contributed

significantly to improving software productivity by eliminating

rather tedious and unrewarding tasks such as formatting the Ada

source code to achieve pretty printing. A list of these tools is

given in Section 5.

4.2 ADA LANGUAGE EVALUATION

rhis section addresses problems or inconsistencies with the use

of Ada, including specific language factors and also more general

Nda education issues.

4.2.1 Ada Language Factors

rhe following sections address features of the Ada language which

seem to be problematic in one way or another. For example, the

features may be difficult to understand or they may contain

limitations in certain situations. The elements in question are

organized according to the sections of the LRM.

1. Introduction - Problems exists in learning the Ada

language, since LRM is difficult to read as a user document. A

number of sections prove to be misleading in that the examples

3re either highly stylized, excerpted or not totally

4-21



RD-A152 314 EVALUATION 01' ADA (TRADEMARK) AS A COMMUNICATIONS 2/'3
PROGRAMMING LANGUAGE VOLUME l(U) SYSCON CORP SAN DIEGO
CA A L BRINTZENHOFF ET AL. 91 MAR 85 DCRIBB-83-C-B629

UNCLASIFIED F/G 9/2 NL

llllllElllllI
IIIIIIIIIIIIII
EIIIIIEIIEIIEEI
IEIIIIIIIIIEI
IIIIIIIIIIIIIu
IIEEIIIIIIIIIE



1. 0 2l 8 5.L
1111112-

1111111114 8

I1*125 111111___4 1-jj.6



representative of the textual material. Information is either

ddistributed and needs to be accumulated to understand the issue

at hand or is available in weak form in that it needs to be

deduced or inferred from the given material. Although textbooks

are numerous now, examples tend to be tedious and may not

adequately address the issue at hand. Some other means of

quickly learning Ada and being able to locate basic information

is required.

3. Declarations and Types - The declaration of variant

records presents problems in certain instances. Components with

the same identifiers cannot be multiply declared within the same

record even within different variants of the records, since it is

the record structure itself which establishes the scope and not

the variant structures. Identical (syntactical and semantical)

components which occur in different variants of a variant record

therefore must be named differently. This has the potential of

causing confusion and presenting a maintainability and

reusability problem.

9. Tasks - The dichotomy between the specification of

the entry points of a task in a task declaration which is visible

to a task caller and the actual architecture of the accept

statements of the corresponding task body, which generally will

be hidden from the user, is a potential source of problems.

There is no way to determine that guard conditions are

implemented as a result of examining the task specification.

Consequently, there is no information to determine whether

unconditional, timed or conditional entry calls should be made.

* The result is a possible impact on the design and performance of

the system. To the extent that some entries are serial and

outside a selective wait statement or that selective waits

contain multiple accepts for the same entry or that accept

statements are nested, the caller will know less about the

particular implementation and the impact on his design and

overall system performance. In general, this situation needs to

4-22

............................................



be explored further to determine to what extent such

implementation-dependent choices influence design considerations,

* and then whether the Ada language should be modified or whether

task-entry specifications should be augmented with ANNA or

whether some task-entry architectures should be proscribed via

design guidelines.

11. Exceptions - A particular difficulty with

exceptions is that they are associated with a package and are

made visible via the corresponding package specification.

Consequently, they are only weakly associated with their source

or sources, Unless some type of additional association

conventions are established, it is impossible to determine which

* visible entities can raise which exceptions. This can result in

the needless proliferation of exception handlers in calling

* modules to cover all possible circumstances. More problematic is

the situation where an exception may or may not be raised during -

a rendezvous for the same entry when that entry occurs in

multiple accept statements. A similar argument applies to.

overloaded subprograms declared in the same package

specification.

Appendix B-Pragmas - A pragma OVERLAY will be required

to obviate recopying data to achieve change in representation.

(4x5 bytes vs. 2x10 bytes and contiguous) in a manner that is

guaranteed to function correctly in all cases. The LRM

specifically states that achieving overlays via the use of

address clauses results in an erroneous program.

Table 4.2-1 indicates a qualitative assessment of how well the

Ada language satisfies both general and specific requirements

which are required by the applications.

4-23



Cm ci L"

4J =* 0
66 cz o
9 - z C0J LU L-C

-4 ~ ~ 1 ',Zua 0 c LUic 3c
0 0>. 0 Luj 0 L

.a) =U1  I 0~ t 0

La -- 'C

2 . 2 0 S 0

=~ LU 0I6 'UU

0 4.C b

C0a z~Jc~ ~'LU -AC U Z
124 0 A cI.. MC~ 0 =c > g

: ; U3 3 cnC; =cm =0 .

04

LU

4

*4 L" LiUi

C.7 cj 144 cm

LUU

-l uj Ej - A L

* ==

>- S -

-4 C

LA cco UC4l >

4-24



4.2.2 Ada Education Factors

To use the features of the Ada language effectively, one needs to
have a significant understanding of software engineering

principles. Without such an understanding, the Ada language may

result in producing programs which are Ada programs written in a
FORTRAN, JOVIAL or CMS-2 dialect. There must exist a philosophy
of identifying error conditions and responses to error conditions

as integral parts of the design and the design process, not as

afterthoughts added only when programs malfunction. The fact

that Ada provides a facility to achieve this in terms of

exceptions in no way assures that the facility will be used

effectively.

It is necessary to have a methodology and software tools context

for consistent application of the software engineering principles

and the Ada language. Without this context, it is likely that

Ada will be misused and misapplied. A methodology and supporting

tools allow for significantly improved designs by providing

constraints on required information, by consistently formatting

the information and by permitting multiple, alternate views of

the designs and the information implicit in those designs.

After the "basicsn have been mastered, there is the need to deal

with restrictions imposed on the full Ada language to achieve

transportabiity, reusability, trustedness, machine verification

and other application-dependent goals. On this project,

significant effort and discussion were given to reviewing

alternative communications protocol architectures regarding

placement of the system management functions. How to partition

and parameterize software to produce useful generic units will

require consiaeraDle time and etrort oevona the normal oesion.

It transvortabilitv and reusaDijtv are not sottware oualitv

criteria trom the Decinnina ot the Droiect. tnev will not be

achieved as Dv-Droducts Ot anv desion or methodoloav.

4-25

~~~~~~~~~~~~~~~~~. ............... •.... .. •. .... .... ...-. °....... .. -. .. .. . ... .. -... .-i-.'- .... "-,-.' "-.


4.3 SOFTWARE ARCHITECTURE ANALYSIS

This section presents the analysis of the software at the

software system architecture level, and at the compilation-unit

architecture level.

4.3.1 Software System Architecture

This section presents the inter- and intra-virtual package

software architecture analysis for the communications protocols

and trusted software application.

4.3.1.1 Communications Protocols

Software Architecture Analysis

The Communications Protocols application was initially required

to implement the Segment Interface Protocol (SIP), and the Mode --

VI subset of the Advanced Data Communications Control Procedures

(ADCCP). The generic Open System Interconnection (OSI) Reference

Model was utilized to structure the Communications Protocols

system into a tive-layer architecture and lower-level system

management functions. Figures 4.3-1 and 4.3-2 summarize the

processes that achieved the initial detailed architecture. The

application was required tor the transition to the Transmission

Control Protocol (TCP), the Internet Protocol (IP) and the

Asynchronous Balanced Mode subset of the Advanced Data

Communications Control Procedures (ADCCP) later in the project.

A basic assumption in the requirements of the communications

protocols system was that communication system software provides

resource sharing types of services to user and end-process

software. An assumption of scarce resources was made which

implies both economy and management of system resources. The

communications protocols system was to include environments that

addressed distributed/multiple user components, host application

components, and simulated interface component capabilities. The

4-26

................ ..

a , ,- o-•

"I $ " ,u, U

LI
VIl

V -a ,AM
a "n
= u - >
c (A US

-0

~'A CC~

LI 0
00

%
4J

%U

- a) -

4

4-1

-U-Si 42 CC
InI

i "I
w-"OA.U'

a -ca
ca -

-C CC
us /C:I

II OI I ?A

UVICC lia

CJ =
(A us

C6'

b~d I 4-27

lit at

_=rr r-r'---------

"
=3

-44.1=

3

-: "- ' - -
" 3 i 3 - -.

€

23 . ---
4C

_a

0-2

" ', ! ii,4 SM

........ at g
'

•

C4 z z -: an 1 ! WE

A -

20- 2.1 (1

.3.1. .-. .. ;-..

" 4-);

-4-0
.-;......

3. - S4

SMZU a.
23 4J

4-28

software architecture analysis was conducted on two levels, the
inter-virtual package level, and the intra-virtual package level,
using the previously defined software quality factors of

Section 3.

4.3.1.1.1 Inter-Virtual Package Architecture Analysis

This analysis focused on the number of modules, functional types
of modules, and the inter-connectivity characteristics of the
system. Figure 4.3-3 presents the virtual package design diagram
that resulted after the TCP/IP transition. The diagram is a one-
to-one representation of the detailed architecture.

The virtual packages are derived from tour subsystems that are
represented as the exploded portions ot the Figure 4.3-3. The
Terminal Subscriber subsystem modules provide the man-machine
interface for invocation ot major testinq, monitorinq,
configuration, initialization and termination operations of the
system. The Communication Services subsystem modules encompass
the protocol layer services provided by the system
(TCP/IP/ADCCP). The I/O Simulator subsystem module simulates
communication device interface and transmission facilities. The
System Management subsystem modules provide low level resource
sharing/resource management services, data structures, and
interfaces that are common to entities residinq in multiple
layers. They shield the protocol layers from details of the
local operating system/hardware configuration environment. The
arrows on the figure indicate major control flow direction. Data
flow is in both directions.

The 19 virtual packages represent a taithtul capture of the
detailed architectural requix'.nents in Ada features and
terminology at a nigh level ot the design. The Test Data
Management virtual packaqe was not implemented because of
compiler implementation/run-time support problems with disc file
I/O operations. The inter-virtual package dependencies generally

4-29

•- ..-... ,..... - • .. -

0 z
tn tn > 0 I W Iaw . I 11J I V) cr

>i > (I-I
zI I

"-4

I a I QW I' IL.J I L V, I u a~ I zWcr 2 I 2 I Z2 1 Z:E 2 < 0 I 1 -2La = ~LJ I a L" I - I 1 I <w I20 I 00 I >0 I > II 0cc -K V)< < 0 - I O 0< I 4j WZ I WZ 4-)-W I 4.C I J

A A AA AA

I I II I -

I j w I 0. I I I

.- I II I - -I C - II

I 2 0 2 I I I ZL.J W I I

I II I I I X
N o II I -Iw cc i ul u Ir I C II~ I- - --..--- I I .-V) z 1 0I ~~~ > Z I II

If w- W 4< I ID I I I II~ (f2 I V) wI~~~~~V V)II II

I 0 I O I I 4I 00

follow the hierarchical organization of user/server relationships

as inherited from the OSI model concepts. The calling pattern is

strictly hierarchical, which was rnot the original intent of the

system design. Implementing a more interrupt-driven design

required the separate compilation feature of Ada which was not

available with the compiler.

In the following inter-virtual package architectural analysis,

each criterion is assiqned a subjective value of excellent, very

good, satisfactory, poor, or not evaluated.

CR ITER ION EVALUATION

Communications Commonality Excellent
Conciseness Excellent
Consistency Excellent
Data Commonality Very Good
Generality Excellent
Hardware Independence Very Good
Instr umentat ion Not Evaluated
Language Constructs Excellent
Modularity Excellent
Operating System Architecture Not Evaluated
Operating System Independence Very Good
Self Descriptiveness Poor
Simplicity Not Evaluated
Traceability Excellent

The architecture exhibited excellent modularity characteristics

which were evident in the transition to the TCP/IP protocols.

Paragraph 4.1.9.1.2 ot this section provides details concerning

the transition.

4.3.1.1.2 Intra-Virtual Package Architectural Analysis

This analysis emphasizes the assessment of the virtual package

modules in terms of hiqh level Ada entities. The followinq

presents the evaluation of appropriate criter.L.a that apply to the

software development quality factors cited in Section 4. The

criteria are assigned subjective values of excellent, very good,

satisfactory, poor, or not evaluated.

4-31

CRITERION EVALUATION 6

Communications Commonality Excellent
Conciseness Satisfactory
Consistency Excellent
Data Commonality Excellent
Generality Very Good 0
Hardware Independence Very Good
Instrumentation Not Evaluated
Language Constructs Satisfactory
Modularity Excellent
Operating System Architecture Not Evaluated
Operating System Independence Very Good B
Self Descriptiveness Poor
Simplicity Poor
Traceability Very Good

Figure 4.3-4 illustrates the organization of the Communication

Services Subsystem modules. The Ada package features capture the

characteristics of the sublayer model extremely well.

4.3.1.2 Trusted-Software Software Architecture Analysis

Figure 4.3-5 illustrates the system configuration of the original

ACCAT GUARD configuration and Figure 4.3-6 illustrates the

processes of the original ACCAT GUARD software. Since all of

these were not germane to the analysis relating to the trusted

processes, a subset was defined as shown in Figure 4.3-7. These

components and the necessary support components were then

organized into the virtual package architecture of Figure 4.3-8.

Figure 4.3-9 illustrates the interprocess message flow, and

Figure 4.3-10 illustrates the interprocess transaction flow. In

both figures, the various processes, file managers and

interprocess communication (ports) processes are mechanized as

Ada tasks. Finally, Figure 4.3-11 illustrates the interaction of

the Downgrade Trusted Process with KSOS and the Read-Write-

Interprocess-Communication (RWIPC) software. In the modiried

configuration the interfaces to the high and low hosts are

emulated via identical MMI software contained in tne HSNS and

LSNS virtual packages.

4-32

0

V) W 0

mw 0 u0 I1r Q_j IO LiA

Oz2 o 00 WjV) < I - I I I II
II) 1002 1 1 1 1 1 1

0mmo I ZI I I I I
I L L D z - _j0 0 1 1LI I I I

I wowmlwua II 1 01 ZN I WId
->W> 0 w I I -I X I~

w m u I I I I I I DI I I
1I 0 01 0

I AAAAAAA Lul ZII I LI I I II

01 lL. I 0 I I

ItI I I II i LOI
t - 0 I I I AI

I I0 I I I I

l l (AI I I II I

l(III Il I I 1(1 I

LI I I I I I Z
>-0

<o - WI- I Ia. < I a. < I a. < I
11< U I I U I

00

I I _ _jI U- uI

+ + +
IA A A0

I I I i
I I+- - +- + >4 +

I AAIAAAA"I

II AA ~ I A A l

0 - ---- -0- - - - - - I

IL I mI IIII
0 1 Ij II II I I II

I II 1 1 A1

I~ II I "jI II~ < IIII 4 i I u

I I Il I I I I L)
I I a I I I I I IL I I CL I I I I Nz N I I I

0)

I 1 +V-- I 1 - -I --- - - - - :Du Il I

> I) (j I I
I w In v l< II II

I (A 101 1 n a. o II r
I I I w.3 II I- x

< 10. 00 1~ _j
IL I u - - -I -~ -0. -I - -Il-- -l

I I l..I1.lI II II

> I A 1.111II I~i l

cv

CI 121 V) 10. I< ILlII 01-
u <0. Z C0. Z0. x01I -

I I- I- I I o
0 at I Ir I ~

m +- w -- -+--+- - - -- - - - -+ - - I - -L - - -

WI I I II
>1 (I a_(I. C

4-33

, (lI/ < I

tl - r -. 00 'n I Z I 0

0-4 -0 00 00-

4.).

4.4 0--q W 00 - C.-0

C4 W-10r

4-4,

4C

U)

114 -u

U, 7,

a) L

4-, 4-47

I

The following present the evaluation of the compilation unit

analysis. Subjective values of excellent, very qood,

satisfactory, poor or not evaluated are assigned.

CRITERION EVALUATION

Accuracy Not Evaluated
Communications Commonality Excellent
Communicativeness Excellent
Completeness Satisfactory
Conciseness Very Good
Consistency Excellent
Data Commonality Excellent
Error Management Excellent
Generality Very Good
Hardware Architecture Not Evaluated
Hardware Independence Not Evaluated
Instrumentation Excellent
Language Constructs Very Good
Language Implementation Not Evaluated
Modularity Excellent
Operability Excellent
Operating System Architecture Not Evaluated
Operating System Independence Not Evaluated p
Self Descriptiveness Very Good
Simplicity Satisfactory
Traceability Poor

Table 4.3-3 summarizes the compilation unit characteristics of

each virtual package.

4.3.3 Cmiioi _n _Statement Characteristics

This section provides summary information on the number and types
p

of Ada statements used across all compilation units of each

application.

4.3.3.1 Communications Protocols System

Compilation Unit Statement Characteristics

The statement characteristics of the compilation unit software

are summarized in Table 4.3-4.

4-46

-44

UW3

-4f-

Q4)
04

24 ' IT 0 21 C
0 f4 C-e 4 O r- W)f- -)"

fn m -T

41)

0

.4

0 0

4J)

m 0
0 LU :=-4c z zV

u <LU , x wLULy "

o 0 W -=V, u z

'a-= I - z- i-

-* E~ L~ L - > ;

E-- I

4-45

CRITERION EVALUATION S

Accuracy Not Evaluated
Communications Commonality Excellent
Communicativeness Excellent
Completeness Poor
Conciseness Poor
Consistency Excellent
Data Commonality Excellent
Error Management Poor
Generality Very Good
Hardware Architecture Not Evaluated
Hardware Independence Very Good 0
Instrumentation Poor
Language Constructs Satisfactory
Language Implementation Not Evaluated
Modularity Excellent
Operability Excellent
Operating System Architecture Not Evaluated 0
Operating System Independence Very Good
Self Descriptiveness Poor
Simplicity Poor
Traceability Poor

Table 4.3-2 summarizes the compilation unit characteristics for

each virtual package.

4.3.2.2 Trusted Software Compilation Unit Architecture

The final GUARD implementation does not faithiully reflect the

intent ot the original designs. Due to the compiler

restrictions, moditications were made to the internal

architecture ot many modules to make them executable.

The virtual packaqe DATA-STRUCTURES defined two "qeneric"

packaqes to provide the ports, files, and locks for the hiqh

GUARD side and the low GUARD side. The ports, files, and locks

were to be instantiated as entities in one of these two packaqes.

Since generic instantiations are not implemented in the current
compiler release, the two data structure packages were not

created. The instantiations of the ports, files and locks were
done independently via a pseudo-generic (text editor) approach.

44-44

values of excellent, very qood, satisfactory, poor, or not

evaluated is assigned to each of the criteria.

CRITERION EVALUATION

Communications Commonality Excellent
Conciseness Very Good
Consistency Excellent
Data Commonality Excellent
Generality Excellent
Hardware Independence Not Evaluated
Instrumentation Not Evaluated
Language Constructs Excellent
Modularity Excellent
Operating System Architecture Not Evaluated
Operating System Independence Excellent
Self Descriptiveness Sactisfactorv
Simplicity Excellent
Traceability Excellent

4.3.2 Compilation Unit Architectu e

The compilation unit software development statistics for the

communications protocols and trusted software application are --

shown in Table 4.3-1.

Table 4.3-1. Composite Software Development Statistics

Communica.tions Trusted
Protocols Software

Virtual Packages 19 12
Library Units 26 25
Secondary Units 24 23
Statements 8,131 6,775
Comments 10,309 9,529
Lines 23,674 21,305

4.3.2.1 Communications Protocols System

Compilation Unit Architecture Analysis

The following presents the evaluation of the compilation units on

an individual criterion basis. Subjective values of excellent,

very good, satisfactory, poor, or not evaluated.

4-43

compiler. A pseudo-generic approach was taken by using the text

editor such that the "instantiations" of each generic package

were created manually and compiled in a regular manner.

The criteria for the intervirtual package analysis are described

below. Each criterion is assigned subjective values of

excellent, very good, satisfactory, poor, and not evaluated.

CRITERION EVALUATION
-- S

Communications Commonality Excellent
Conciseness Excellent
Consistency Excellent
Data Commonality Excellent
Generality Excellent
Hardware Independence Not Evaluated S
Instrumentation Not Evaluated
Language Constructs Excellent
Modularity Excellent
Operating System Architecture Not Evaluated
Operating System Independence Not Evaluated
Self Descriptiveness Excellent
Simplicity Excellent
Traceability Excellent

The trusted and non-trusted processes are independent of each

other. The only communication between them is through the port

and tile modules. The GLOBAL module is the package

GUARDGLOBALTYPES which contains data type declarations used

throughout the system. No data objects were declared in this

package. The GMASTER is the GUARD_MASTER virtual package,

representing the activation of the terminal drivers for the

respective modules. The DSTRUCTURES is the DATA-STRUCTURES

virtual package that consists of the ports, files, locks, the

statistics module, and other utility modules.

4.3.1.2.2 Intra-Virtual Package Architecture Analysis

The intra-virtual package analysis focuses on the high level Ada

entities associated with the virtual packages. The evaluation of

the criteria for the software development quality factors at the

intra-virtual package level are described below. Subjective

4-42

The Trusted Software system software architecture analysis

addresses the architectural organization of the software modules

from the inter-virtual package and the intra-virtual package

perspectives. The characteristics of the virtual package

architecture are addressed in terms of the criteria associated

with the software development quality factors presented in

Section 3.

4.3.1.2.1 Inter-Virtual Package Architecture Analysis

The major subdivisions of the system are the High Side processes,

the Low Side processes and the Trusted processes. The High Side

processes service transactions originating in the secure portions

of the system (Secure Networks), sanitize these transactions and,

it permissible, make them candidates for "downgrading" to the low

side of the system (lower classification networks). The High

Side processes consist of the Data Structures, High Downqrade

j O Daemon, High Guard Server Daemon, Terminal Interface for

Sanitization Personnel and High Network Emulator (MMI) virtual

packages.

The Low Side processes service transactions originating in the

low side of the system (lower classified networks) and transfers

these transactions for servicing by the High Side processes. The

Low Side processes consist of the Data Structures, Low Guard

Server Daemon and High Network Emulator (MMI) virtual pacKages.

The Trusted Processes consist of the Downgrade Trusted Process,

which transfers message from the high side to the low side, and

the Upgrade Trusted Process, which transfers messages from the

low side to the high side.

The functionality of several sets of the processes (the GUARD

ports, files locks and the high/low user MMI operations) was

identical with the result that these were excellent candidates

for the Ada generic teature, which was not implemented by the

4-41

- •-.. -.... .. ',-:,"..'...." . .--... i.: - i.., .-.

---- ---

a-'2

L4,6

-- - - - - - - -- - - - - - - - --- - - -- - -

u I

*- a

L- I Do

wa ... --------------------- U------- ----

a ------- ------

a Sa
I 0

a a *

: Ita

. . .. a

V4 ~ C" -i-

a= aco cl,

1 0

1
-

I

cm 41

C61

NIm

I U))

In
-4

4-39

cz cz

Iz CL0 1

CL cm
= ~ c

CIO

CSS

ca w

4-38

2I -. IJ z
>. 1.- 0

<n Z (m I I

Ix ir >- 0 - I - I

I0 _j w. . I

AA A A
41

a I CII1 (1 -

V) I V) I - I -

51) i CO n i
MO CM OX 44

I I 4 -7

LLSCA

0

* IM ca=4c
0n

LU *a

-j4 .

o I

0
C-d

z :

4-36

......................................

S
3

I
33 0

3
a 0

I
a)
S-i

4-i
4-I
0

6

U
U

I

I a
Ia

£
-3=

Ii? -4

*
'1

*1
I
I
.1
a

4-35
0

0 cc
00c U) O

ow::
4-U -

-~ *

00
.)

U)

U, 0 u

0
4

U,

44

'S.

4-34

02 1, - Q (0 N ~ - -4 P,0 00) C40 I

0 (0 OD
4'J 1 C1 -
U) I

H I 'n - -I
101

.J-: 1*-I - ! -0)1
a I-4 ..- -0 I

101 -- 0_ NU

101 0f C- -41- 0 Wc ~r
C4 -E q--Q000-c0 00 -0 , c

0 IM 3 ~ n 00 N0 V)0

D aZ 3.' '- 0 0 IeUZ n- u'
(1.0 V) u) -; -- 1 00

10 0 .- C4 :;4 :; .N
j- 10. 0 ND .- -L V "0 " I

41 1() .jIu)C ,-- 0 10 0 . 06 -3 6) I0C

I mix
4.) cc I y- 0 0-C 6 ~ ~ C 0-- 0 - . 6 0 I -0

I (A 0 -0 00C0 0 ZO C Z3000 I> 0-0)
I) I. -) N X- w w0-- OC 0c 1 0-Uz 0 D00a
Ij :) 0 -' o o 2 - U) w w 0 0 -6) r~ -o1 ZeEE

I ~~~~4 Q M-~6 -6-z>.(l zI0 010 0 D 0(0 2 C

4.. I IL-j0 0 -0 ' 0- 6 1nl-l -0 0Cf0 . I- * 0-

U3) 12-- CI0 - - 0-- --- ~ 0 1 - Z

0 L.ui0
41 0, 0) y - 21 .

120 (n 0 W . < 1-*0 0-0 tO
-I - -i, 0 rcm -- - N) - I

V It C * - -1 -) I

0- 10 .0 VL

I I z-

oj OD 1 0
131 10.

I 1 0--480rO Oil-r- 0. 'r~-40 - 040 3 00

O i - 0) V) W)- 00 .)-O -' 4- N0

0 -n LD01 ~ v4 0) N - 1-4- 0 I- 0l
0 101 1- -. 1 0 .0

(A1 r.- 2.cC9

02 ~c I. I 00

Ir N C 0 0>-- N10 "0 00)0 a 120 0000=0000 (D0 (0000 0 0 0C
.jL (0 - I- 10acc c -I V)4 10 '10c--

101 NM I 0 10> WC00a(X) aV
10W I)MW P< c 1

a ZI Inu> - . 000a aV 0 *00
-H 2- , 6) ID0 1.-I C 0 10 " -- WE- 0 - 00 MCJ00W 0 3 --

101 L L0 , 00 m) V)W 0 0 0It " 6 .

(/6) C C - . .-C-
I" 2CC = 0 L 0 0 -.- 1; 0 ?) 0 >.-O

W 0 00 0) 6O 2 - > 0 0u" - 3 3 2 < 0 I0OOc

C I 12 I -'- (000 0. C - 6C) -*-1

I 9 W(<0 L.Z-- W.0 6C. 0 - . O
E- 1< I 0 6 C C C 0 0 0 3 0 C

-I N~ < 0 -00 0 OC 63(l.C00 0 0 u-S14-

* I 0. ~-30 C20 22 U 0O .04-48-

4.3.3.2 Trusted Software Compilation Unit

Statement Characteristics

The statement size characteristics of the compilation unit

software are summarized in Table 4.3-5. The smallest modules

tended to be the support and utility packages. The larqest was

the Downgrade Trusted Process package (DGTP) since it was desired

to preserve as much of the SPECIAL architecture as possible;

otherwise, the DGTP could have been divided into smaller

packaqes. The size of the ARPANET connection emulations (17%)
consists mostly of the MMI drivers. The non-trusted processes,

which were the Hiqh Downqrade Daemon (HDGD), the Hiqh Guard

Server Daemon (HGSD), the Low Guard Server Daemon (LGSD) and the

Terminal Interface for the Sanitization Personnel (TISP), were of

a moderate size with the TISP being the largest. This was to be

expected since their function is to sort and route the

transactions from one place to another. The statistics for the

number and types of statements used in the GUARD are in Table

4.3-5.

4.4 SOFTWARE PERFORMANCE ANALYSIS

This section addresses both general and application-specitic

software performance issues.

4.4.1 Genteral Performance Characteristics
0

Very little was accomplished in assessing performance of the two

applications. Considerable effort was devoted to struqglinq with

compiler problems which complicated basic execution of both

applications. Such problems included heap manaqement problems

involving task stack size and adverse interactions between

DIRECTIO operations performed from within tasks. Both resulted

in proqram execution being terminated prematurely with few clues

as to what was nappeninq. Many features which could be used to

assess performance were not available in the partial compiler

4-49

I N(f I z -

I I I

U I n 00C4 1 C

04 E 0

101 I- 00

1*- NW m -- -(1) 14a 0 0-~t
InI - a- -. 1zC e

4J 0-0 U-0 -0 0E0 D (10 00 0

10140 In0 N - 1 0 0.-

V)) * c, N 0 10W.0
-) 1- 0 a%.lU v' a.- L1 f oo n- l

101)I 0 -- 0 CI.O W L 00 i NU :0
1 -) C) E- ON 01 06Z .0CO 0 , 0fl1n0 0- I

IJ 10.1 Y.a' D N 0'- - L C-D 0 r 0 E .0IC..c
ILLl W C 0 04 0 0 0

(n aI < 0 0 0 cc-00. '0 00 -- 0'.-'LIV 0 10 IL -0.

Q) I "I M cI-$-0- . . C.0 .- 0 03-3e) i jc 0. .0 0 0 -jWa

Ir I 0. -- 0C OC 0 0~ "a C 00 02 I0
49 ' 02 0-. 0fO 0 2 -.-) C

I OD 0) 00 -) 0)l 11 0- C 0IO 0 -a
.I~J I ILJ00 00000 0-~ 0 - 0 400 .- 1--I 0

W 2 - - 0 - -4 - U ~ 0 00 1 C

I L.J~I 00 e

0 OD 0 0 0 0*I-ZZIOCOO C

Q) I I V 0 N) V)d r,
4- 10 100 9 >

I-C

z 1 10 0

In C1 100r C4- 0

0 c 1 0 C
I I OCO

2.z010 10 0. C0
1- 1. L z0 00 00I.OQr-l V0- NNc.P(l,0 00~ 0 C-fl z

111 O (0 - 0 -,0() W -
0,' . 0)-QcE 00e 0 o u0 0 I 00W .0

I I L CD - 0 0 > . >. C 0 CC 0 06 n V V :E O E L 0 > > 1 0 - C EO n
1 -V W :IZ F LI> >W0 0 Wm .

W~ N V) ..- 00 (A< 00 a'.00W0 1-)0 00000000(n0 Cc O NOOOV I : 0 0
1.- I: N . ju00 0Vr nV)c 0000 % 10 C.

IL 1 1 0 I COCO . 00 . 40. 0t _a1 07
10W1 0I -<- 0 0 c-
101 u (002> -v)Za- 1-a O 0 DL o j(A(3)n< C LC JI M , 0-

I c-I 06 W ~~.*

1 40 n 0 0 ~~~~~~C n01 tO D

(flI CC 0 0 F) - I .-50

implementation. Such features included timed and conditional

entry calls, lack of task priorities, and lack of pragma INLINE.

It was learned that the underlyinq taskinq model for context

switching was the run-until-block model. Once a task gained

control it would retain control until some action, such as an I/O

operation, caused the task to become blocked and force a context

switch. This problem was circumvented by usinq a "null" task

called intermittently from tasks to achieve a context switch. A

second problem was detected with the activation of the multi-

terminal capabilities. TEXTIO was completely synchronous. An

input request at a terminal resulted in all other activity in the

system beinq suspended until that user entered the appropriate

data. This is clearly unacceptable with regard to usability of

the compiler and runtime support environment. This problem was

never satisfactorily corrected. However, a partial solution was

implemented for the sole purpose of permittinq the development to

progress so that as many features of both applications as

possible could be implemented. The solution was to make sliqht

moditications to the MMI and use the VAX type-ahead buffer

capability to queue "null" commands which would permit the

various tasks to receive control as context switches occurred.

It is important to note that althouqh both of these run-time

support environment aspects are specifically not addressed as

requirements of /M18183/, they can directly affect the usability
of an Ada compiler system.

None of the Ada-specific Efficencv-II criteria of Table 3.5-1,

Section 3, were evaluated except for unchecked proqramminq.

Each criterion, depending on the nature and extent of its use,

could siqnificantly affect Efficiency-II.

4-51

1.7

4.4.2 CommuniationsPrzotcols Performance Characteristics

Early in the system integration, several packages were

reorqanized as a result of a design review. This reduced the

number of packages in the architecture and resulted in faster

execution. Analysis determined that the program was being linked

dynamically during execution and that execution was faster since

there were fewer packages. This situation has some distinct

negative implications with regard to how software architectures,

which are designed for transportability, reusability and

maintainability, may be influenced by performance optimization or

run-time environment characteristics. At the very least, run-

time considerations can not be ignored during the design process.

Unfortunately, because of compiler-related problems and

limitations, little performance testinq was accomplished on the

communications protocols application. Little can be said about

the software quality factors which affect performance. Tests

which were planned are identified in Table 3.5-1, Section 3.

There were several tasks and subprograms in which the pragma

INLINE could have been used very effectively to achieve execution

efficiency while at the same time preserving the overall software

modularity. Significant, successful use was made of access

variables and unchecked conversion for obtaining/managing bufter

space from a compiler-supplied memory management package.

4.4.3 Trausted SoftwaxePerform nce Characteristics

All the tests indicated in Table 3.5-1, Section 3, were performed

successfully. Stress testing, in terms of buffer/message

saturation, and the emulation of KSOS-related errors were not

performed. A compromising factor was that the original

architecture was significantly altered to achieve an executing

program given the compiler problems and limitations. The ability

to preserve tiles across GUARD activations and assess the

4-52

recoverability aspects of this feature was not possible, since

the files were implemented as memory-resident queues.

To evaluate the trusted software implementation with respect to

Correctness, Integrity, Reliability, Robustness and formal

verifiability, a validated, full-capability Ada compiler is

needed. The original architecture can then be implemented and

evaluated with respect to SPECIAL, the interpretation of the

SPECIAL requirements, the suitability of the Ada features used,

and the viability or necessity of placing further restrictions on

the Ada language.

4.5 SOFTWARE ERROR ANALYSIS

4.5.1 Compilation Errors

A summary of the error types for both applications is given in

Table 4.5-1 by generalized usage category. This information was

gathered from early compilations and is a reasonable indication
of what difficulties were encountered in the initial use of Ada.

Typographical errors were not considered.

The majority of errors fall into four broad categories:

Undeclared Identifiers (25%); Improper Type, Subtype, Object

Declarations (20%); Unresolved Subprogram, Task Entry Calls

(15%); and Type Conflicts in Executable Statements (11%).

The first of these can be attributed primarily to carelessness in

the need to declare all objects before they are used, failure to

specify proper context and use clauses, and simple misnaming

problems. The second can be attributed to the detailed syntax

formats required by the type, subtype and object declarations

where both constrained and unconstrained types are intermixed and

the fact that unconstrained types are permitted in some

instances, but not in others. The third can be attributed to the

failure to provide context and use clauses in order to achieve

the appropriate visibility. The fourth category indicates an

4-53

. . - .-.

"I 0 00q C4 Ccl 0

CL

CA

U) 0m

(N N

41

w z. ;5 Z .

-4 c

55

0~ CA&J Cc L
u) C. . L" U

-Lm CIc 0zL".

LU..

4 ** *J * C6 CA ** * f
cn U

4-54

initial lack of awareness of the implications of strong typing

and the need to assure compatibility of the types at the object

declaration level.

4.5.2 Execution Errnrs

The error data gathered during the execution of the programs,

both during debugging/testing and software integration, were not

as systematically collected as were the compilation data. The

difficulties with the compiler would have required considerable

effort to completely sift the compiler related errors from the

programming errors. In addition, the desire to obtain executing

programs resulted in placing emphasis on reorganizing the

software architectures either at the system or module level in

order to progress, and this would have presented another obstacle

to error data collections and analysis.

However, some noticeable error patterns were detected. A number

of errors were caused because default initialization values were

not provided as directed by the programming guidelines. In the

communications protocols application, a significant number of

problems with exceptions were encountered. There was a failure

to include exception handlers or to use the compiler-provided

exception handling and reporting facility. In the trusted

software application, exceptions were incorporated more

systematically from the outset of the design, due to their being

specified directly in the SPECIAL specifications. The exception

reporting facility was used systematically as the only available

debugging tool other than user-produced execution traces

accomplished via TEXTIO.

Several one-of-a-kind errors were encountered. During initial

integration on the communications protocol application,

elaboration errors were encountered due to: 1) incorrect context

clauses being specified, 2) incorrect or out-of-date code files

being detected, and 3) objects being initialized to out-of-range

4-55

-..-.[-. . .-. ./"..

values. Several standard Ada exceptions were also encountered:

1) TASKING-ERROR resulting from debugging activities,

2) CONSTRAINT-ERROR resulting from assigning out-of-range values

or misuse of discriminants, and 3) Access checks resulting from

reference to access objects with a null value.

Numerous run-time-system errors were encountered which were

generally uninformative as to the cause. They were generally

related to task stack overflow conditions which occurred as a

result of a task containing too many nested subprograms,

subprogram calls, too much inline code or interaction with

DIRECTIO. Once the cause was isolated, the software

architecture was modified, if possible, to reduce the problem.

4.5.3 Software Error-Architecture Correlation

4.5.3.1 Communications Protocols

Some global variables were used to communicate overall system

status between application layer entities and lower level tasks.

Without the use of pragma SHARED on these variables, the program

was clearly erroneous. Although this was thought to be the

source of some early errors found during debugging, integration

and testing, it turned out not to be the case since code

optimization was not occurring. This problem did not occur in

the trusted software application for two primary reasons. First,

the use of global data was completely eliminated because of the

nature of the software. Second, the interprocess communication 1
was implemented via the sending and receiving system-control

transaction which received the same routing and control as other

transactions except that they could affect the state of the

system depending on Security Watch Officer (SWO) actions.

Another area in which error types can be correlated directly with

the architecture is in the case of exceptions. To the extent

that the software architecture is not designed to handle

4-56

exceptions, the architecture will not be very reliable, modular

or robust with regard to error processing.

Another type of error occurred in which tasks used as a resource

monitor were accessed via one or more encapsulating subprograms

with the data normally manipulated by the task contained in the

enclosing package body. In some instances, the data were

manipulated by the subprograms directly as opposed to by the

encapsulated task, with the result that the data would not always

be assured of being correct. The solution is to not use mixed-

mode data accesses and to place all controlled data within the

task itself if system limitations permit.

4.5.3.2 Trusted Software

No specific errors occurred in the trusted software application

that could be traced directly to architectural

considerations,which indicated a misunderstanding of Ada

principles or semantics.

4.6 PROGRAMMING SUPPORT ENVIRONMENT

This section provides information on the compile-time and run-

time environments which had an influence on the project and which

may have an influence on future projects.

4.6.1 Compile-Time Environment

Because of the limitations of the NYU Ada/ED translator-

interpreter, it was used only to verify the results of the

development compiler regarding syntactical and semantical

correctness of the code, to prototype ideas or achieve basic

understanding of features. The version used was the validated

version, 1.1.

4-57

" - - - " . - " - " : " . ' ." " . •,. .• . . • . --° - _ , - .. _ . . _ ._ _: - - ,.. :. ,

A validated development compiler was not received in time to be

used on the project. Three successive versions of the

development compiler were used in both applications. All three

versions were partial implementations in that: I)MIL-STD-1815A

was not completely implemented, 2) features were not always

implemented as per MIL-STD-1815A, and 3) there were numerous

errors or unreasonable limitations within the features which

required alternative designs or implementations. A summary of

significant deficiencies and their impact is provided in Appendix

D. Although some of these features and their disposition are

more significant than others, each one has had some impact on the

implementation and on the overall schedules. Their impact on

design was minimal since the design direction was to proceed as

if a full, validated MIL-STD-1815A compiler was available for

implementation. Some of the features which caused significant

consequences are summarized below.

In both applications, there were substantial opportunities to use

generics for the definition of queue managers and other entities.

The use of generics here would have saved considerable coding and

debugging time, and in the trusted software application could

have eliminated approximately 5000 lines of Ada source code that

were "instantiated" manually.

Only one compilation unit could be compiled at one time. Both a

package specification and its corresponding body had to be

compiled in the same compilation stream with no other entities.

Another lacking feature was the separate compilation of

subunits; bodies of code which grew larger than anticipated

within a package body could not be stubbed out as subunits with

separate bodies. As a result, package bodies tended to be large

and required considerable time to rework.

Several features were lacking in the tasking area. These included

task types, conditional and timed entry calls and task

priorities. Task declarations were limited to one level of

4-58

nesting downward from the outermost unit. Although none of these

was catastrophic, in the aggregrate they represented a large

nuisance factor.

4.6.2 Run-Time Environment

Several problems were encountered with the run-time environment

which resulted in delays and workarounds. The most significant

was the limitation on the task stack size. The result was that

calls to tasks which contained nested subprograms or large

amounts of in-line code frequently resulted in an ambiguous

system error being produced and the program terminated. A

similar situation occurred in making DIRECTIO calls from within

tasks. Other run-time environment problems were that tasking was

mechanized using a run-until-block mechanization and that TEXTIO

was mechanized using synchronous instead of asynchronous input.

The run-until-block mechanization was circumvented; no truly

effective alternative was possible for the synchronous TEXT_I/O

problem.

A major difficulty is that many features dependent on the run-

time environment are not specifically identified in the LRM nor

are they required to be provided in Appendix F, Implementation-

Dependent Characteristics. To the extent that run-time

environment parameters are not known, there may be significant

problems with planned software architectures and such problems

may become visible only during debugging or, worse yet, during

system integration.

4-59

..

SECTION 5

CONCLUS IONS/RESULTS

5.1 SOFTWARE DEVELOPMENT METHODOLOGY

This section presents conclusions on the software development

methodology which was formed and used.

5.1.1 Macroscopic Design Phase

The three components of the macroscopic design phase, the virtual

package concept, the object oriented design diagrams, and the

macroscopic PDL, have worked very well. They have accomplished the

goal of achieving early Ada awareness in the designs while

permitting late commitment to details. They have provided

visibility into the system software architecture at a very high

level and fully supported the software engineering principles. The

approach is compatible with the DOD-STD-SDS design documentation

and easily adapted to the documentation standard. A summary of the

compatibility levels is shown in Figure 5.1-1. The methodology

proved readily able to support the use of existing models and

requirements such as the OSI Reference Model and sublayer models in

the communications protocols application and the translation of

both English language and formal SPECIAL specifications in the

trusted software application.

One major problem area which will require further analysis to

achieve a more solid methodology is whether or not the PDL should

be strictly compilable. If substantial quantities of TBDINTEGER

type declarations and TBDCONDITION objects are used to make the

code compilable, the code can become rather difficult and tedious

to read, thus diminishing the overall utility of the PDL.

Regardless of the outcome of this issue, considerable emphasis

should be placed on achieving package specifications which are

correct, complete and consistent at the conclusion of the

5-1

I--~

z~ 661
-E--

z = o Cfl- 0 U)

-JJ 7x6
-LU CL WU-.

0. LU-i -4
LLJ. - 0LJ -i

06 CL C. .- c 6U0 j
wi1.0 C= .1.10n 0~LU0 LU 41

>L.C= 00

1.- 0

< 0

uj rj

6U 6U

-- 0 >.<U

cno3 c cn ccnc.=o - L
> . =0

C= LW.,

cx-
CL"~ * 6W

CE = w 0j0C

-5-

The virtual package concept, which exhibits some of the
characteristics of the Ada package, is the primary tool for
capturing the OSI Reference model concepts and the system

requirements which are presented in the detailed architecture of the
system. The criteria that inhibit an excellent evaluation in all
the development quality factor areas are hardware independence,

operating system independence (including the implementation run-time

support mechanisms), and the self-descriptiveness criteria. In

communication systems, communication device specific interfaces
cannot be ignored. Dependencies on operating system/executive

characteristics must be localized to the highest degree possible.

Where the inter-virtual package architecture analysis identified
poor characteristics was in self-descriptiveness. This evaluation

was based on the choice of names for package names, object/type
declarations, and package entry point names (tasks/subprogram

declarations) . A considerable amount of renaming activity occurred

at all levels of the project. A strong naming policy needs to be
formulated, implemented, and enforced across all development phases

to properly capture the readability potential of Ada PDL and code.

The architecture exhibits a high degree of module coupling between
the TCP/IP/ADCCP server modules and the System Management modules
which reduces transportability characteristics and increases service
interface complexity at modules below the TCP layer. An alternative

architecture that could eliminate or reduce this coupling would be
to define the various System Management modules as generics to be

instantiated in each layer. Although this approach would enhance

transporability and reusability, it could adversely affect

Efficiency II. Some experimentation would be required to draw any

firm conclusions.

5-16

a +- a +- - - -

I I F I I I I
I ---------- M---- - +-+- +-+-

U2a jL.J < -JL l I I I I I I I

I<o ~ w I I IZI I I I

zo a z w u i I I I I I I I I

II I I I I

I IOX W I I I 1 1 4-

I- r cI 0 M I L>

QZ <OIAZ J1) Il I 0

F- - - +-+-+-+++-+-+- Iz 0

UOZLt-V7) OIJ -Lfl IL I l 4-)I I

UI I IA) I I I 00

---- - --- - - - - -+ + + + - -

I I I I -i I I I 0)

0I IOZ I-t.4 I M I I D I I v

x I I z I Ln I I I

ZuI C Lj I I L, I I I I I I

0. 0)
I ~ ~~~~~ 13)jz - - - -+ + +

0 D < I I I I I Ci)H
I) a LI I I I

L.J~c~O 0 0 I .I 0

5-- + + - -+ +

To use Ada effectively, a solid software engineering basis is

required to assure that such Ada features as packages and generics

are properly understood in the context of transportable, reusable

and modular software. Without such an understanding, many of the

Ada features will be used improperly or suboptimally resulting in

many potential Ada benefits not being achieved. To have an

effective combination of Ada with software engineering principles, 0

a software development context consisting of a well-defined

software development methodology, compatible software tools and a

compatible Ada programming support environment must be provided.

There will be no shortcuts to learning the Ada language because it

is complex. Moreover, the ultimate objective is not just learning

the language, but rather learning to use the language effectively

to achieve software engineering objectives. The one-week syntax

and limited semantics training course can be eliminated from

consideration. A much more substantial course in a broader

framework needs to be implemented.

5.3 SOFTWARE ARCHITECTURE

This section presents conclusions on the designed and implemented

software architectures and summarizes results of the previous S

architectural analysis.

5.3.1 Communications Protocols System

The following paragraphs present the Communications Protocols

system software architectural analysis summary and conclusions.

Subjective evaluation weights of excellent, very good,

satisfactory, poor, or not evaluated, are used.

5.3.1.1 Inter-Virtual Package Analysis Summary

Figure 5.3-1 provides the summary of the inter-virtual package

architectural analysis documented in Section 4 of this report.

5-14

-.

model and package TEXTIO. The tasking model was the run-until-

block model which places a significant portion of the burden for

achieving context switching directly on the programmer. Although

this model may be acceptable in some types of applications, such as

navigation and guidance control programs in missiles, it is

certainly not a suitable algorithm for implementing communications

protocols in multiple layers in a communications node. The Ada

standard does not specify whether the mechanization of TEXTIO

should be synchronous or asynchronous. For single-user

applications, either one will be acceptable. Since both

applications were implemented for multiple-terminal users, a

synchronous TEXT_10 mechanization in which ALL tasks within the

entire system wait for a given user input is not acceptable from a

usability standpoint. Although these two examples could possibly

be dismissed as artifacts of a prototype, incomplete Ada compiler,

they are representative of the type of problems that can ensue from

the lack of specification of such entities.

5.2.2 Ada Language Education

One significant difficulty encountered is simply learning the Ada

language. This is difficult for several reasons based on project

experience. Ada includes many features which were previously

available only in experimental or very special-purpose languages.

Individuals need to learn not only the syntax and semantics of Ada,

but also the concepts and ramifications of the features. Ada also

demands attention to numerous details ranging from top-level

logical and lexical architecture considerations down to which

components should be private or limited private. This becomes more

difficult when features interact with each other. The Ada

reference manual as it stands today is complete, consistent and

correct, but, unfortunately, it is not very usable from a practical

user viewpoint because of the highly precise language used to

describe all the interactions and subtleties. Thus, it seems that

some alternative form of a manual is required to make the use and

learning of the Ada language by programmers who are users, not

implementors, easier.

5-13

In the area of software performance, particularly in Efficiency-II,
little was accomplished regarding actual evaluation of the Ada

features. There were a few instances in which Efficiency-II

features were used and several instances in which some of those

features could have been used had they been available. Unchecked

conversion was used considerably in the communications protocols

application. Other features which could have been used had they

been available were the pragmas PRIORITY, INLINE, OPTIMIZE, SHARED

and SUPPRESS, and timed and conditional entry calls. One negative

factor was encountered in the use of recursive subprogram calls in

that task stack overflow occurred due to a significant number of

recursive calls made from within the task itself. Although this

was subsequently corrected by converting the recursive

mechanization to an iterative one, the problem warrants

consideration. To the extent that large numbers of recursive

subprograms are used, the calling sequences are highly data

dependent and exception management has not been properly addressed.

The program, although correct, may not be very reliable.

One area of considerable concern is the implementation-dependent

features such as the pragma PRIORITY and the declaration of

representation specifications for record types. To the extent that

these features are implementation-dependent and a compiler

implementor is permitted to NOT implement those features and still

have its compiler validated, considerable difficulties may result

in attempting to produce transportable and reusable code. If

representation specifications are not provided, encoding and

decoding of protocol packet and frame headers will need to be done

explicitly either in Ada or via assembly language routines, in
which case the choice may directly impact transportability.

A major concern is those features or alternatives which are not

specified by the Ada standard and are not identified as being

implementation dependent. Two significant areas in which

difficulties were encountered are the mechanization of the tasking

5-12

TRUSTED COMPUTING BASE CONCEPT

SECURITY POLICY
OPERATIONAL ENVIRONMENT
PERSONNEL
APPLICATION REQUIREMENTS

(NON-SECURITY PATH) (SECURITY PATH)

SYSTEM SEGMENT SPECIFICATION (A)
NORMAL REQUIREMENTS
TCB REQUIREMENTS

TC8 RauIREENTSSECURITY POLICYEVALUATION CRITERIA
MANDATORY/DISCRETIONARY ACCESS3 MODEL

SOFTWARE REQUIREMENTS SPECIFICATION (B5A)
q; HARDWARE "

OPERATING SYSTEM
MAN-MACHINE INTERFACE - FS S
NON-TRUSTED SOFTWARE IDENTIFICATION FTL/DTLS --- I
TRUSTED SOFTWARE IDENTIFICATION (Ada/ANNA)

I S I

SOFTWARE TOP LEVEL DESIGN DOCUMENT (C5A)
VIRTUAL PACKAGE DESIGNFLSDL

MACROSCOPIC DESIGN L
(Ada/ANNA) ----

SOFTWARE DETAIL DESIGN DOCUMENT (C5B) / I
MICROSCOPIC DESIGN (Ada/NNA

~~(Ada/ANNA) --

SOURCE CODE FnLS/OnLS -

(Ada/ANNA)

Figure 5.1-2. Trusted Software Design Methodology

5-11

implemented using access variables as a way of transferring the

FROM_ULP and TOULP record structures. Since this mechanism

provided both efficiency and flexibility in separating header and

data portions of the segment.

5.1.8.2 Trusted Software
I

The design methodology functioned very well for the trusted

software application with one exception. The primary difficulty

was the translation of given SPECIAL requirements for the UGTP and

DGTP into Ada effectively and at the correct level of detail. In

terms of capturing the original requirements and translating them

into Ada terms, the methodology was successful.

To produce h more effective methodology suited specifically to the

development of trusted software, the methodology will have to be

restructured into two parallel development paths, one for the - -

trusted and the other for the non-trusted software. Separation

must be established at a very high level, namely, the virtual

package level, followed by further separation of visible and

nonvisible portions of the trusted software at either the virtual

package or object oriented design level. Figure 5.1-2 illustrates

how such parallel development paths might be implemented and shows

the successive refinements of the trusted software using Ada PDL

and ANNA to produce the corresponding formal and descriptive top-

level and n-level specifications.
S

5.2 ADA LANGUAGE EVALUATION

This section presents conclusions on the Ada language features

which were used and on Ada language education and training issues.

5.2.1 Ada Language Syntax and Semantics

The features which Ada provides that can be used for producing top-

level designs are excellent. These include such Ada-unique

features as packages, generics, tasks and exceptions.

5-10

5.1.8 Application-Dependent Characteristics

This section presents conclusions on the design methdology for

those cases in which the application characteristics have a

specific influence on the methodology.

5.1.8.1 Communications Protocols

The design methodology was highly effective in permitting the OSI

Reference Model concepts to be captured and refined through

successive levels of detail into the final Ada code. The

methodology is very capable in terms of taking generalized

communications system requirements and translating them into

effective software implementations which can achieve

transportability and reusability. The graphical nature of the

early portion of the design provides an excellent way of minimizing

irrelevant details, but at the same time permitting key design

decisions to be made highly visible.

The decision was made to reenter the TCP and IP specifications in

their entirety since it was not clear which sections or subsections
were to be used and to what extent. Another factor influencing

this decision was that much helpful descriptive information was

contained in the Specifications and that the Ada-like PDL had the

strong potential of being assimilated directly in both the

macroscopic and microscopic levels of design. Significant time as
saved by reentering the Specifications in their entirety since this

enabled portions to be used selectively, as appropriate, and in

different phases of the design.

The second i-sue involving the degree of design information implied

by the TCP and IP specification was resolved through subsequent

discussion with DCA personnel from the Protocols Standards Group.

They indicated that the intent of the specification was to assure

functional compatibility of peer layers and not to necessarily

achieve inter-layer interoperability within a single machine or to

achieve overall transportability. Consequently, the interface was

5-9

• ,. ' : _ , . . _

design may then be well on the way by the time the full macroscopic
design begins. Similarly, an overlap should occur between the

macroscopic and microscopic phases, and between the microscopic and

code/debug phases.

Based on the experience with the transition to the TCP and IP from

the SIP and the modification of the ADCCP, the various levels of

the design methodology work very well in supporting the

identification, isolation and modification of units to meet

changing requirements.

To provide more control of the level of detail in the macro and

micro PDL, two factors need to be considered. The macro PDL needs

to be reviewed carefully to be sure that it represents the correct

level of detail, since both too much and too little detail will be

harmful. Once this has been accomplished, and the level of detail

has been determined to be correct, attempts should be made to use

PDL expansion ratios to control the quantity of micro POL.

This will assure a reasonable progression from the macro PDL and

provide a reasonable base to progress into the code/debug phase.

Mnother conclusion regarding the design methodology is that several
small steps will be more effective in achieving A~ satisfactory
design than a few large steps. It is possible to become

prematurely involved in many Ada details that need not be
considered to achieve the top-level design.

In conclusion, the macro/micro levels of abstraction, if they

contain the correct level of detail, can assist considerably in

making modifications to existing designs and code by enabling

quicker identification of modules which are to be retained,

deleted, modified and added. By following the macro/micro design

for new requirements, it will be possible to retain the overall <
software architectures and follow the same methodology for the

inclusion of the new requirements.

5-8

These should have been stated "Use [limited] nesting..." and "Avoid

[excessive] package [and subprogram] nesting...". In many

instances the guidelines will merely serve as guidelines and some

judgement and interpretation will still be required. Additional

guidelines need to be formed to specifically address

transportability and reusability criteria and to identify such
standard information items as programmer name, completion dates,

and other data which may vary between facilities.

A preliminary set of trusted software design/programming guidelines

has been formed. This set of guidelines is viewed as only the first

step in a series to achieve a firm set of guidelines. The major

problem is to form a set of guidelines that satisfy three

fundamentally conflicting criteria: 1) being able to achieve formal

verification of the designs and the implemented code, 2) being able

to retain a useful subset of Ada constructs, and 3) being able to

minimize unauthorized information flows via covert channels. To

make further progress in this area, the full set of designs or a

revised set based on the use of ANNA must be implemented.

Extensive static and dynamic testing must also be conducted to

determine the suitability of the restrictions and whether the set

is complete.

5.1.7 General Software Development Methodology Considerations

The methodology has worked very well given the limitations under

which the project was conducted. Several points need to be made

regarding supplements to the methodology. A key component of the

methodology is the need to overlap the phases in order to minimize

interphase disconnects. Before completing the requirements phase,

some amount of the macroscopic design should be initiated, probably

at the virtual package and object oriented design diagram level, to -. -

provide an assessment of the completeness, correctness and

consistency of the requirements as well as the feasibility of

achieving a reasonable and satisfactory design. In this way, the

requirements will receive a degree of validation, and some initial

design prototyping will have been accomplished. Portions of the

5-7

concurrent processing situation with the expectation that most

problems will be related specifically to tasking itself.

Whatever approach is taken, a sophisticated source level debugger

will be required to effectively debug concurrent processing

implementations. In order to have the debugging be efficient, I
access to such entities as task queues, task priorities, and task

entry queues will be required so that experimentation can be

conducted without the need for frequent recompilation.

Although the problems cited were aggravated by compiler problems,

each application was self-contained and under the responsibility of

a single individual. In large system applications which may

involve hundreds of tasks distributed across several groups of

programmers, a systematic way to achieve the integration will be

required.

5.1.5 Design Guidelines

The design guidelines developed were generally effective. They were

limited primarily to indicating what level of detail should be

supplied at each level and did not explicitly address application-

specific requirements. This area could be expanded further to

address application-specific requirements with regard to

performance issues, and software transportability and reusability

issues. Additional design guidelines will also be required for

implementing a distributed system where tasks may reside on

different processors at different times.

5.1.6 Programming Guidelines

The programming guidelines developed were generally effective when

used, but there existed some difficulty in interpretation. For

example, two seemingly conflicting requirements were "Use nesting

of modules in order to simplify or minimize overall compilation 0

dependencies and number of compilation units." and "Minimize

package nesting unless exceptional requirements exist."

5-6 0

were integrated and functioned in a serial manner, any subsequent

problems resulting from the concurrent processing activation could

be related directly to tasking activities. After the serial

integration was acomplished, the transition to the full concurrent

processing structure was accomplished with little difficulty except

for the task stack size problems.

In the communications protocols application, the integration

approach was rather different: the approach was to make an initial

integration pass through all layers to establish basic interface

communications, followed by another iteration to enable all the

basic features of each layer, followed by another iteration to

enable the special processing requirements (timeouts, missed/

duplicate segments, etc.) and any remaining detailed requirements

of each layer. A problem occurred in that as additional segments

of code or tasks were activated, the characteristics of the

software changed, with the result that new errors were encountered

in areas which previously worked. Although some of these errors

were traced to null access values and other programming errors, a

significant number were also related to task stack size problems.

Based on these experiences which are heavily colored by the

compiler problems, no firm conclusions can be drawn; however, some

alternatives can be explored. A factor to consider is that each

application includes approximately 30 tasks, and all tasks are

continually active once the system has been completely activated.

One approach to minimizing integration problems would be to have an

executable PDL which allows task skeletons to be executed early in

the design process. Another approach is to simply deactivate the

code of the task bodies for the express purpose of achieving some

initial integration. Another approach is to integrate and test

small groups of tasks in their entirety and then integrate them

into larger groups to the extent that this is possible within, for

example, a virtual package boundary. Still ano'..- approach is to

attempt to do the fundamental integration piecewise using serial

processing to the extent feasible and then "convert" to the

5-5

5.1.3 rode/nehus

The coding process entailed no special difficulties in and of
itself or with respect to making the transition from the

microscopic designs, aside from the fact that some of the micro

designs were underspecified.

Nevertheless, some other major difficulties had to be managed. The

Ada compiler deficiencies, particularly at the detailed statement

level, were detected incrementally resulting in initial confusion

as to which problems were Ada problems and which problems were Ada

compiler implementation problems. This was compounded by the fact

that, initially, macroscopic- and microscopic-level PDL code was

generated as if a full Ada compiler implementation were available,

but the PDL was not actually compiled. There was also insufficient

effort expended to conduct some rapid prototyping either for the

purpose of becoming more familiar with the compiler, to resolve

design issues, or to improve understanding of various Ada features.

The result was that early in the code/debug phase considerable time

and effort were devoted to isolating Ada misunderstandings from

compiler/run-time system problems and making the necessary

corrections. Although separating Ada language problems from

compiler/run-time support problems became less of a problem as

coding progressed, other run-time support problems such as

synchronous I/O and task stack size limitations surfaced that again

caused confusion regarding the source of errors and methods of

resolving them.

5.1.4 System Integration

Because of early difficulties with the compiler on the trusted

software application, the software was integrated piecewise in a

serial processing environment as opposed to directly attempting the

integration and activation of the full concurrent processing

architecture. In retrospect, it appears this approach was probably

a wise choice. Once the various inter-virtual package entities

5-4

.. .
.

macroscopic design phase. A complete compilation of all library

and secondary units should be required, even if some secondary

*1 units consist of null bodies, so that all entities and dependencies

can be checked and the initial step can be made toward achieving

system integration. The correctness, completeness and consistency

of library units are particularly important. Otherwise,

substantial refinement of the interfaces will be required during

the microscopic design with the result that substantial

recompilation of existing units will be required to resolve the

deficiencies. Such recompilations will have a negative impact on

schedules, costs, and the quantity of programming support

environment resources required because recompilations may ripple

through a large number of specifications until all problems are

resolved.

Assessing the completeness of the PDL for any given entity is
another problem to be resolved. The primary concern is to assure

that top-level design, and only top-level design, is being

accomplished. At this time, there is no specific indication as

to how this problem should be managed, other than to require

in-process design walkthroughs. An approach which may be viable is

to iterate through the PDL two or three times covering all modules

on each phase. Doing this would assure to some greater extent that

each entity receives a more equitable proportion of the total

design time and would diminish the possibility of some modules

being designed in great detail while others are given only

superficial treatment.

5.1.2 Microscopic Design Phase

The transition from the macroscopic design phase to the microscopic

design phase progressed in a straightforward manner. One difficulty

that was not detected at the micro design level was that, in

several instances in the communications protocols application,

considerable refinement was required at the coding level before the

code could actually be written. Again, the issue is one of

determining when the correct level of detail has been reached.

5-3

..

It is highly desirable for quality software to achieve information

hiding to the highest extent possible. Communication system

requirements generally must address the following system-wide

considerations:

o Security/Precedence/Priority Considerations
o Performance/Resource Utilization and Management
o Inter-layer Event Signalling/Scheduling

As such, the amount of globally visible data in the system is

probably more than desirable. Information hiding was extremely

successful at the compilation unit level where implementation

details could be hidden from external user modules.

5.3.1.2 Intra-Virtual Package Analysis Summary

Figure 5.3-2 provides the summary of the intra-virtual package

architectural analysis, documented in Section 4 of this report.

There is a decline in Efficiency I primarily due to requirements for

complex data structures and compiler feature limitations.

Flexibility which is evaluated as very good, was exhibited when the

TCPServer modules became too large for the compiler to process and

were reorganized. The subsequent reorganization of the TCP_Server

virtual package architecture was effected quickly, accurately, and

the overall modularity characteristics of the virtual package

remained unchanged. Interoperability characteristics remain

excellent. There is a significant falloff of the maintainability

factor based on the evaluation of poor for the self-descriptiveness

and simplicity criteria. The reusability and transportability

evaluation of very good carries over from the inter-virtual package

analysis summary. The testability factor falls to a value of

0 satisfactory due to the poor evaluation of the self-descriptiveness

and simplicity criteria.

5-17

.. i Q IL _

rii
IZW . Z W (W I I I I I I I

om m -oL.J -- l--I I I 1>

O M MI I I I I I I I

I I I uj I A I w I uj I Li I

(n ~ .J- - . >-1 10.1 1 1I I

m D Iz 4 I I z I I~

O9.JC/ o w~ LzLo J(ICl I I I I I I I z$
I~~~ .01 0 10 1 .1 .

X l l a 3: w I I I I I I I I
+-+-+4-+-+-+-+-i 1

I I I I I I 1 0

I IJ Z WIr I > 1 0
I~ ~ I I I

z < 0 w xIjz . I I

U0 XV) JZU -I I I I I I I

QocnIwwo 1 I 1 I I I) I 1 0

I W 0
Iom i - z o I I I I I I . (04

U 2M~m t.JZI-.(I---0ZI I I I I 11 I

Q x = Z L < - O I I I I I I I 1I

iZ. . Z I JZ W I I I

I I I L I I I Ix I
I I - I (L I I I I 1

aI)0 I (z 1I 1 4 I < I (an

I-i.~ J I" I I I r I
w I w I I m I I I 0

cL.JZ.J r%-- 0 1 1 I >1 1
< I- I XI 0

2<Z(OL.~L.J3t 0

I I I I
L j0 I < I > I I L 0. zI.

001~0ZC-J-i) - I I I I
I I I IbJI I :3

O< -0 I 6- m W

4 - + - - + - + - - + - I 0 D4

5 -18I I I I - J

5.3.1.3 Compilation Unit Analysis Summary

Ii
Figure 5.3-3 provides the summary of the compilation unit architec-

tural analysis, documented in Section 4. The evaluation of the

development factors remain the same as for the intra-virtual package

analysis with the exception of the testability, which fell to an

evaluation of poor. This resulted from the inability to insert

instrumentation mechanisms such as TEXTIO calls without

significantly altering the performance/functionality

characteristics of the software under test, and the inability to

complete and use the Performance Monitor and System Monitor

capabilities.

Because of the inability to complete several major functional areas

of the communications protocols system, the evaluation of the

software performance quality factors cannot be meaningfully

accomplished.

5.3.1.4 Compilation Unit Statement Characteristics

Table 5.3-1 summarizes the compilation unit sizes of the developed

software. Some generalities that can be made concerning the system

statement characteristics are as follows:

COMPILATION UNIT SIZE AVERAGE LARGEST SMALLEST
Code Statements - 300 603 90
Comment Statements - 381 1385 * 143
Total Lines - 621 2480 293
* (Includes Remaining PDL)

Communication Services => 60% of system code
System Management => 20% of system code
Terminal Subscriber => 19% of system code
Link 10 Simulator => 1% of system code

5-19

Ij I

I I.I I a . 1 .. .-

. ".JI- Z(f>(l-, ". 1 I I I I I)

-W L O W L I I I I

4-4-+-4+-+-+-+- I +++++
I ~ ~ I I I i I I I i I

o2OO<I-- (3.)- Cn.--)- I IL.I I4I I I I

I I I D _j X I.) I W I I I

m Ii I I I I I I ZI I I V
I I I I I I 1 I

z J Z)- ~ I(l W I- r I I z I. < 1. 0 I I I I

111)1 I I I I I I I I I I
.J~(~<CL~I I >I I I > >

X < O < W I I I I I I I I I I I I

I I I I I I II I I

x <> CC 0> 3>1 < Ir I I

4- -+ + + + + Z I X0 j-I.) -

N<Z - (wm wz -I I I I I I I I I I I I I It
I II I I I I I I I l o

W. r. I I I I I I I I I 1 0 I o .

UI Z W 0 0 1C I I I CL I I CL I I I I a. I I I I 0

uo 2 L jwl-w z I-I I I I I I I I CLII I I I I I>

I~~~ -+ + + + +

U- 0 -2 -- z < -j . - I I I I I I I I I I I I I 1 0
I -+-+-Q<I-+- I 0

_jI I I I I I I I I I 0

*c I U) I Ir i M< i I 1 i Ui I i i Iun i . i
OOZU-ClZ~~fI. IZ 10.1 10.1 I z I 0. I

o CEI co I I K I O I OD I a.I L I I m I m I I I
I I I I < I -C I W I Ui I I I I I

W* I OD-W~WLJu(l I 01 <Z I Mm 10 a I I MKI
U . I j L I I I m I 1 U I I I a I0 1 0

I L" Iw I $- I - l I I I cc I I n I (il

- I I. m I

I. -C+- - -+

I I I x < w I I 0I I I < m 1 C

5-20-+ +- -

Table 5.3-1. Software Development Statistics

Communications Trusted
Protocols Software

Virtual Packages 19 13
Library Units 26 25
Secondary Units 24 23
Statements 8,131 6,775
Comments 10,309 9,529
Lines 23,674 21,305

Given an arbitrary guideline of 1,000 lines per module, 12 of the

27 compilation units were at or significantly over this guideline.

The following are some observations concerning the overall module

size characteristics of the system:

o Large number of comments exist due to capture of TCP/IP
O specifications (This may or may not be desirable.)

o Lack of generics/separate compilation features resulted

in generally larger modules

o Better performance with fewer packages resulted in

generally larger packages

o Reduction of recompilation dependencies influences

overall compilation unit size

o Workarounds at the code/debug phases tended to increase

module size.

The modules over 1,000 lines could ha ce been significantly reduced

in size with the generic/separate compilation Ada features. It

seems reasonable that library units and subunits should fall into

or below the 1,000-2,000 line range consistently, especially when

the separate compilation and generic features of Ada are used.

5-21

• o. . . , - , . . . - , . - -

5.3.1.5 Other Observations

The analysis of the communications protocols system evaluated

software quality criteria from three difterent perspectives: the

inter-virtual package level (Al), the intra-virtual packaqe level

(A2), and the compilation unit level (C). It is of some interest

to note the following:

CRITERIA Al A2 C

Communication Commonality E E E
Conciseness E S P
Data Commonality V E E
Generality E V V
Hardware Independence V V V
Lanquage Constructs E S S
Modularity E E E
Operating System Independence V V V
Self Descriptiveness P P P
Simplicity N P P
Traceability E V P

The communication commonality, consistency, and modularity criteria

evaluation remained excellent throuqh all three levels of analysis.

This is due in part to the following:

o Commitment to OSI Reference model and sublaver modelinq

concepts.

o Hiqh degree of conceptual compatibility between

protocol specifications and generic layered

architecture concepts.

o Ability to capture architectural concepts at a hiqh

level of desiqn usinq Ada features.

The implementation was able to localize the hardware and operatinq

system (run-time support) dependencies to a hlqh deqree. These

criteria were consistently evaluated as very qood. The self-

descriptiveness and simplicity criteria were consistently evaluated

as poor across all analysis levels. This is attributed to the Door

choices for names, complex data structures, asynchronous control

5-22

flows, and implementation decisions based on Efficiency-Il

performance factors.

The deterioration of the traceability and conciseness criteria from

excellent at the inter-virtual packaqe analysis to poor at the

compilation unit analysis is due to the following:

o The initial macroscopic and microscopic design PDL was

not compilable.

o Failure to utilize the externally generated TCP/IP PDL

statements correctly and at the correct level of

detail.

o The nature of the run-time system support of taskinq

(context switching) and I/O processes was not
understood soon enough in the project.

o The workaround during the code/debug and

integration/test phases of the project could not

feasibly be reflected back to the previous desiqn level

PDL.

This situation was a major factor in the recommendation for

inclusion of compilable (and possibly executable) PDL at both the

macroscopic and microscopic levels of design in the methodologv.

One criterion, data commonality, was evaluated higher at the intra-
virtual package and compilation analysis levels, than at the inter-

virtual package level. In hindsight, one can conclude there was

some difficulty dealing with the very specific and complex data

structure declarations provided in the protocol specification

documents at the earlier stages of the virtual package

(macroscopic) level of design.

A major issue is the inclusion of siqnificant amounts of TCP/IP

specification text as comments in the code. This is extremely

useful durinq development/maintainance activities. However,

significant overheads are produced such as increased recompilation

5-23

:!C- 1

time, larger listings to assimilate, and trackinq the comments in

source code with specification chanqes, deviations, and/or

performance alternatives. There are clearly tradeoffs to be made.

A major issue arose concerninq declaration of tasks in the

specification of library units, namely that tasks not be visible in

packaqe specifications. The qeneral concensus was that a task was

an implementation decision and not a design decision. From the

perspective of communication system dpsiqn and development, points

of asynchronous/event driven processinq are an inteqral part of the p

desiqn of the system, and not merely an implementation option.

Additional issues associated with "hiding" tasks are that: 1)

conditional or timed entry calls are not directly possible from

user modules, and 2) user r,.>dules may needlessly declare tasks to p

monitor major data structures which are already guarded by a non-

visible service module task. Finally, if tasks are visible, it

will be easier to encapsulate them if desired then it will be to

make them visible if they are initially encapsulated. .

A major issue concerning the transportability characteristics of

the system was debated throughout the life of the project.

The issue centers on what "boundaries" are pertinent when the topic

of transportability is being discussed. If the entire system is to

be rehosted on a different host environment, the system management

subsystem modules (package bodies) would have to be

adjusted/modified to conform to the new operatinq system and/or

run-time support interfaces and features presented while the

remainder of the system could be transported directly. Since the

system management subsystem comprises approximately 20% of the

system, this rehosting could be considered transportable. If a

laver of the system, say a TCPServer module, was miqrated and

integrated to an existinq system, alonq with the system management

modules, then the system management modules would have to adjust as

above; however, the percentaqe of code to chanqe would increase to

50% or better (i.e., moderately transportable). If the TCPServer

module were migrated and integrated by itself (dependent system

5-24

........-. "

manaqement modules not provided), at a minimum the service

sublaver, the access sublayer, and the management sublaver would

have to adjust to the new environment. The OSI Reference model

architecture together with the sublayer model, which was captured

in the desiqn and preserved in the compilation unit architecture,

identifies and maintains these "transportability boundaries" to a

high deqree. The transportability characteristics of software can

only reasonably be discussed relative to such boundaries.

5.3.2 TIr..sted Software System

The following paragraphs present the Trusted Software system

software architectural analysis summary and conclusions.

The summaries are presented accordinq to the orderinq of the

analysis in Section 4. The summary assiqns subjective evaluation

weights of excellent, very qood, satisfactory, poor, or not

evaluated,

5.3.2.1 Inter-Module Architectural Analysis Summary

Fiqure 5.3-4 provides the summary of the inter-virtual packaqe

architectural analysis, documented in Section 4 of this report.

The desiqn and definition of the transaction data were ideal for

the variant record structure. The flexibility of a sinqle record

type for use in all cases of transaction type formats increased the

effectiveness of the system software architecture. Emulated

generics were used whenever common proqram structures were

identified. The instantiation of the ports, files and other

structures allowed a sinqle desiqn to be used in several roles.

Exception handling was very successful at trappinq error

conditions. Errors were propagated to the callinq entity as a

raised exception condition, which proved to be simple, and

processinq control was greatly enhanced. The readability of the

code was also increased since the exception handlers were explicit

in their representations of error management.

5-25

X IL < CD _jI I I I I

--- -+- + -+-+-+--+-
:;Z U (n W I I I I I I I I

I I I I I Ij

I- - -4 -+- +- - +- - + -

C-4 -+-+-+-+-+-+- I

zZO W O nZO W ZO I I I I I I I I

I Ii IZ Z
OO W I- . (< z 0 D -w I I I I I I I 1 0

+ -44 -- +- + -+- I>~- - O -~ I I I I I I I I L
OO.UJ -ZD2 1.l- 0 z-W I I I I I I z I U I

I I4

I I M

I I CL

M Z o w I I I I I I I~

4 +--+-+-+-+- I40
0 O 2 0Z < j -I--cn-I I I I I I I Ia

IL~.JI I I I I -
-l Z ~ ~ W I I I I 1 0 04

0I I).)w z)V I I I I I

I I I I I I I - 4)
-+4-+-+-+-+-+-+-1 0 4-

UON D OU<-OI-W WVi I i i I InZ

I0 2I < IJ) I I 1 0

<U4 -+)m--U-- Il

Ir I D I I i I

I O z I -i I w I z I iI Ij I .M I
Q O 2 Z - I > I I - I I I - I - I I

0:3 x t I m 1 I 1 1I I m I R i 0
V)aU I - I CC I I < I < I W '1-43

I I 1 I4 I I I
QOLd-- ZU - I WI w I IW I U a)

r In I I I I I I~ ~
UOD-<Zowf> wll I 0I CL I I I I '

(A I I I I l
-4 -+ -+- -+ +- -

5 -26I I I '

The renaming capabilities of Ada allowed the references of the

packages defined in the DATASTRUCTURES virtual package to conform

to the references defined in the requirements documentation,

resulting in increased readability and traceability to design

specification.

The architecture of the packages represents a clean, logical and

straightforward approach. In general, the non-trusted modules are

well organized and structured with respect to the number of

packages and their specifications and with respect to the original

requirements. The trused processes, specifically the Downgrade

Trusted Process, could have been structured more reasonably. Its

architecture, however, was a direct result of attempting to

preserve the architecture of the SPECIAL PDL and to address the

issues of correctness and traceability.

The virtual package concept is the primary tool for capturing the

trusted as well as the non-trusted process specifications along

with the system requirements presented in the detailed architecture

of the system. In almost all cases, the virtual package diagrams

presented the features necessary for the trusted software clearly

and correctly. Such features as separation of trusted and non-

trusted processes, distinction of the IPC as the communication

medium between the processes, and the ability to emulate the

ARPANET connections and the KSOS interfaces proved to be accurate

and descriptive. Imported and exported entities are well

described.

5.3.2.2 Intra-Virtual Package Architectural Analysis Summary

Figure 5.3-5 provides the summary of the intra-virtual package

architectural analysis, documented in Section 4 of this report.

The values given in the intra-module evaluation fell slightly from

the inter-module values. This is in part because of the run-until-

block algorithm used by the run-time system. The specifications

defined by the SPECIAL PDL did not provide the measure of

5-27

.
. --.

cU U U X Q - U z jn)I I I I I I I
In -- _I > - In I I) I n

-z u c w a z w I I I I I I

< JQ I-D I J I I I I I I I
om f<-o 0J-O'-Wm- Z IW

UOuOIZ Oi - cZs u -w I I I I I I I

zw -M:D wzt f < -Oz I I I I I I z I i
+ -4+-+-+-+-+-+-i 0

-zOa W - iz aw z O I I I I I I I I c

4- 4-+ +-+-+ +-4IJ

0 W Z IW O - W M < _I I I- COL

o o m z - - - - I I I I I I I I j

Ioo o - z) I I I I I I

4.- 4 +-+-+ +-+-4
UIUO ZW O > I I > I> I I

< I O n cI < I In

I ~~ I I I I

ZC (C W I I w II I I I I r

OO U- ~ I- U I I 1 1 <
I I I M I I I I I) 1 -

LJLOJOW I w I 1Ic I I I 01

-Z ~ W Z <~ Om W I I Z

I--
-Z W WZ W OnWia I I I I I I v

wI L I x < m w

5-28 I I

modularity that was deemed desirable by our guidelines. The

Downgrade Trusted Process package (DGTP) was too large with respect

to modularity, testability and maintainability. The choice made at

this level was to be as close to the specifications of SPECIAL as

possible; otherwise, this module could have been divided into

approximately three separate packages.

5.3.2.3 Compilation Unit Architecture Analysis Summary

Figure 5.3-6 provides the summary of the compilation unit

architectural analysis, documented in Section 4. The evaluation of

the development factors for the compilation unit evaluation fell in

value from the intra-virtual package analysis. The primary reason

is a restriction of the run-time system whose implications were not

realized at first. Each task has associated with it a stack/heap

space which contains the task code and run-time parameters and the

formal parameters and declared objects of all subprograms called by

the task, directly or indirectly. An overflow condition occurred

at almost every step of the debug/integration phase of the study.

Recursion, which was used in the SPECIAL PDL, compounded the

situation. Because of this restriction, the architectures of the

compilation units were virtually destroyed in terms of modularity,

information hiding and design guidelines. Another restriction is

the case of synchronous I/O. Output to the terminal users by the

individual terminal drivers was done on a first-come, first-served

basis. This was to be expected and produced no problems. The

input requests, however, would block the entire system until the

input request from a specific terminal was supplied.

Because of these restrictions, the final Ada code is not totally

traceable to the intended designs. The system does perform

correctly, accurately and is stable. However, it is believed that

with the changes that occurred, the principles of trusted software

may have been compromised. Moreover, there is a little point,

given the restructuring, in attempting to assess compromises that

may exist since the architecture and total functionality are not

5-29

- .• •.i. . .• i i > 1• < -. - . . .-. < " . . < . . .•• i . _

V) II -j I I I I

(Lj ~ l- Z I)-). LJ Ii 1 z I I I f I I I

i i >1 1 1 1 1 lI >1 I I I

2 Z 2w0. . J O Z W I 0I I I I I I I I I I I
I I I I i Z i i i Z I I I I

UOZO-IX:30- -t- -t- i -i i i i i 1 -
-J Z : < W I I I I I I I I Z I I I 1 0

-Z W L Z ~ u I i i I I I I I I I I I
I 1 z I z I I I I I I I

I -C+ - - + + It 2 CO I I 10

-20.a L Z-(x--0 I It IL 0

U I Z VI I (n I- I IZ U I I w

U 0- Z- - - -- - + + Q -+-(A+--Z- 0 V, >> > 5-

1>1 I I I I I I I I I -n

uI 0 Z - I I I I I I I I I I I I 0
-4 0+--4--Z- -+-) 0-Z-+-+: 0+-

I: IZ U>ZI I I In Ivn I
I I I I I t I z I I I I I

0 X I-L.Jc.I-m IJI I I I I m I coI OR I 'o I , I w 1 1 1
I)C I - I CE I I < I < I (n I u I>31 c I < I I' I u

L I -j I I I j I I I I L I I w I I I
I I t I I 1 1c I U j I ct I L) I w Iz I ~ I In I

I: < I I > I" 10M I C I I Ir I 0Ir24 I 0v

I) a I I I I I I I
I 0 I I9 w I 0 I I, 0I IL J d w

L*j~0~i I I I5I I30 I 0

design. To resolve this issue and also address the performance
aspects of the architecture, it is recommended that the full

designs be implemented and evaluated and that alternative

architectures be explored.

6.3.2 rspdSfta

The trusted software conforms to the original requirements except

that the mechanization is multitasking as opposed to the original

multiprocessing. At the intra-package level of design, many

individual aspects of the original design had to be moditied due to
either compiler limitations or run-time support inadequacies. As a

result, many tests whose results might affect the originally

planned architecture were not conducted.

It is recommended that the intri.-package architectures be restored

to their original designs and the corresponding code be

implemented. It is recommended that careful assessments be made of

the multitasking vs. multiprocessing configuration and the nature

and extent of interactions between trusted and non-trusted

processes. This should be accomplished via extensive stress
testing and the injection of errors into the UGTP and DGTP via the

KSOS interfaces. Only through this approach can all levels of the
architecture be assessed with regard to both specitic trusted

software criteria and the more general software quality factors of

Maintainability, Testability, Correctness, Integrity, Reliability

and Robustness.

6.4 SOFTWARE PERFORMANCE

Because of compiler problems, little opportunity existed for
exploring alternative architectures and what their impact would be

on performance. The impact of encapsulated vs. visible tasks on

performance, and of a large number of task entry points with single

parameters vs. a small number of entry points with multiple

parameters were not explored, nor were the adequacy and performance

6-9

6.3.1 Communigati-onPri ol s

It is hiqhly recommended that generic models, such as the OSI

model, be utilized in a fashion similar to this project. Such

architectural structures provide a relevant architectural basis

that is expressible in Ada language entities and provide concepts

that can be effectively applied at multiple levels of the

methodoloqy recommended by this report. Based on the use of these

concepts, the Ada language provides a natural, and heretofore

unavailable, design bridge between communication system

architectures and requirements and the implementation of the

system.

The TCP and IP Specifications, as well as future standardized

specifications, should be made available on-line so that: 1)

design and development efforts can be reduced by obviatinq the need

for recreating the information, selecting a suitable format and

verifying the information; 2) the Specifications can be made widely *

available at minimal cost; and 3) updates to the material can be

quickly supplied. It is also recommended that anomalies in the Ada

PDL be resolved. It is recommended that future specifications

address the issues of transportability and interoperability more

explicitly by indicating concisely if they are or are not, or to

what degree they are to be met and precisely what constraints, it

any, apply. In the case of the TCP and IP Specifications, future

revisions of the document should assure that somewhat stronger and

more precise statements are made to clarify the intent of the

Specifications with regard to requirements and design options.

Because of compiler limitations, only limited information was

obtained with respect to the transportability, reusability and

performance characteristics of the software. One architectural

concern is the placement of the system management functions and

whether transportability and reusability could be enhanced by using

qeneric representations and placing the majority of these functions

within the respective layers as opposed to the present centralized

6-8 S

6.2.2 Ada Language Education

For the Ada language to achieve many of its goals, comprehensive

training and education programs are needed at both management and

technical levels. At the management level, it will be necessary

for managers to become familiar with Ada concepts and changes in

methodology. These in turn will influence design costs and the

proportions of time devoted to the requirements, design, code and

integration phases because of transportability and reusability

considerations. At the technical level, attemptinq to teach Ada by

giving a one-week syntax-oriented course, without the proper basis

in software engineering will be of little help and may be counter

productive due to the misuse of Ada features. A comprehensive

course which addresses software engineering objectives, the Ada

language features and now they can be used to support the

objectives, and the role of using a well-defined desiqn methodoloqy

and compatible, supporting tools will be prerequisites for

producing personnel who are truly proficient. An important point

will be the understanding of the PDL to be used and what is to be

achieved throuqh its use. An integral part of this traininq should

include the use of the Rationale for the Design of the Ada

Proqramming Lanquage /HONE84/ since it provides an important

context for the purpose and use of the Ada features. Since the

start of the project, considerable literature on the Ada language

has been produced and should be selectively included in any

training program. To the extent that transportability and

reusability are major considerations, additional traxninq and

education will be required since these software characteristics

will not be automatically achieved merely by using Ada.

6.3 SOFTWARE ARCH ITECTURES

This section provides recommendations on alternatives to be

considered and the use ot generic architectures for the

communications protocols and trusted software applications.

6-7

I

combinations of features were not used. Significant difficulty was

encountered in the use of exceptions and in the use of global data S

with tasks. Due to the inherent properties of exceptions, two

specific recommendations are made. It is recommended that total

system error management, in terms of using Ada exceptions, be an

integral part of the design process from. the beginning of the

macroscopic design phase. Since exceptions which occur in a

package specification are only weakly associated with their source,

it is recommended that supplementary ANNA information be provided

to achieve a strong association of an exception with its sources.

Althouqh much has been achieved through the standardization of Ada,

there are still many elements associated with the use of Ada which

have not been standardized.

One such characteristic of Ada not encountered with other languages

is the close coupling between Ada features and the run-time support

environment. Functions which were previously performed explicitly, *

such as task context switching, are now performed implicitly by the

underlying run-time support environment. This is further

complicated by the fact that in these instances the particular

mechanization is NOT specified as part of the Ada standard with the

result that any of several mechanizations may exist, some of which

may be acceptable, some of which may not be. Other features such

as the selective wait statement mechanization are implementation

dependent. The issue of compiler pragmatics, such as stack size

limitations, levels of nesting, size of packages and other factors

lie outside the language and are not specified as part of the

language. To reduce implementation problems, it is recommended

that a set of evaluation criteria, based in part on application

specific criteria, be used to select a compiler so that suitable

information can be obtained on those areas left to the discretion

of the compiler implementor.

6-

6-6 5

because of the advanced type abstraction and software architecture

definition features of Ada compared to other languages such as

FORTRAN, C, and even PASCAL, and the ability to directly expand the

Ada PDL specifications through the use of ANNA, that the previous

distinction between requirements and designs, particularly forma ly

stated requirements and designs, are no longer as distinct as they

were. Consequently, until further experience is gained and

definite structural and functional objectives are formed for the

organization of the FTLS using Ada PDL and ANNA, the exact

placement of the related activities will remain an open issue.

Thus, for example, the DTLS and FTLS could be produced durinq the

requirements phase; the desiqn phase or the DTLS could be produced

during the design phase; and the FTLS, and possibly one or two

lower levels of detail, produced during the macro design phase.

6.2 ADA LANGUAGE

This section provides recommendations on the use of selected Ada-

lanquaqe features and on Ada education.

6.2.1 A a agpe F.atue

Because of the general difficulty in using the MIL-STD-1815A,

/M18183/, an abridged version of the manual should be produced.

This version should, at the very least, be more readable from a

user standpoint, as opposed to that of a compiler implementor. It

may be incomplete in the sense that all semantics of each

syntactical form and all interactions between all lanquage features

need not be addressed, but rather referenced to the unabridged

manual. This would enable individuals to learn Ada and become

effective in its use much more rapidly and to still be aware of and

able to locate necessary details and subtleties when required.

Because ot compiler limitations, all Ada features were not used on

the project. Such features as generics, task types, the use of

allocators for creating tasks dynamically, and many other

6-5

"

effective by providing new information to be used for proqram
analysis, eliminating manual efforts, reducing development time,

eliminating various types of errors, or making the software
interphase transitions smoother. The recommended tools are given
in Table 6.1-1. A complete description which includes the phase to
which the tool applies, purpose, functions, problems addressed, and
the rationale for the tool are contained in Appendix C.

Table 6.1-1. Software Tool Recommendations

o PDL Processor
o Pretty Printer
o Source-Level Debugger
o Expanded Name Generator
o Multi-Mode Syntax Directed Editor
o Task Call Sequence Analyzer
o Advanced SKETCHER
o Ada-Preprocessor for Trusted Software

Restrictions
o Annotated Aad (ANNA) Compiler
o Annotated Ada (ANNA) Run-Time Veritier

6.1.7 Trusted Software Development MethodglO y

Since the recommended methodology provides for stepwise refinement,
it can naturally be applied to the development of trusted software.
To accommodate the trusted software requirements, it is necessary
to develop the Formal Top Level Specifications, Descriptive Top
Level Specifications and their lower level extensions denoted as
FnLS and DnLS. Previously the FTLS or its equivalent has been
written in a language such as SPECIAL or GYPSY during the
requirements phase. This specification was then extended via
refinement until sufficient detail was present to permit codinq in
another language. As was the case on this project, translation and
interpretation problems occur with this approach. To eliminate 7 .
these problems, it is recommended that the Ada PDL of the trusted
software be augmented with ANNA (Annotated Ada) to produce formally
verifiable designs and implementations and that the ANNA be carried-
through the microscopic designs and into the code, if required, to

produce a verifiable implementation. It should be noted that

6-4

6.1.4 IntgAeTest
In the classical software development approach, the inteqrate/test

phase is the first time that all the software is brought together.
This results in detecting module interface problems and adverse

module interactions tor the first time with the consequence that

redesign and recoding of portions of the systems are required.

With Ada and with the macro/micro desiqn methodoloqy, it is not

necessary to wait until the integrate/test phase to brinq the

system components together. By compiling the entire set of

compilation units and possibly including null package bodies to

accommodate the placement of all context clauses, it is possible to

achieve an initial degree of system integration at the conclusion

of the macroscopic desiqn phase. An executable PDL should be

considered to achieve limited execution of the designs very early

in the development effort.

6.1.5 PDL Considerations

It is recommended that reviews be conducted following the formation

of the virtual packages, following the formation of the object-

oriented design diagrams, and following completion and compilation

of the macro and micro PDL. Such reviews serve the normal

functions, as well as to avoid two basic problems. Reviews assure

that coding is not performed in the macroscopic design phase where

the emphasis should be on the system architecture; and that system

architecture designs will not be left for completion during the

coding phase. Careful attention should be given to the

characteristics of the embedded English used in the PDL to assure

that it is neither too detailed nor too abstract; otherwise, too

many details will need to be supplied at another level of design.

6.1.6 Software Tools Recommendatio~ns

This section recommends generic software tools which should be

reviewed for implementation. These tools would contribute toward

* making the software development methodoloqy more efficient and

6-3

6.1.2 MicXC-opic_ Desiga. _qI--MethQdolo

The microscopic desiqn level follows naturally from the macroscopic

level and readily permits refinements of the designs. Coding of

generics is permitted since they will generally be required early

in the code/debug phase.

An integral portion ot the microscopic desiqn is to include all

known calls within the respective bodies whether they are to other

entities within the packaqe body or to entities supplied by another

package of the same or other virtual package. This level of detail

assures that library unit specifications are correct before the

actual coding process is initiated. This has been found to be

particularly important with respect to overall development

efficiency. To the extent that library units need to be

reorganized and recompiled during the code/debug phase, there may

be siqnificant ripple effects which impact on schedules and the

availability of computing resources.

6.1.3 C

The majority of the tasks in the communications protocols

application were initially activated in the code/debug phase. The

result was that both the tasking interface and control aspects as

well as the computational aspects had to be dealt with at the same

time.

In retrospect, it appears that a more effective approach would have

been to achieve some type of executable integration of the tasking
"shells" during the design process or very early in the code/debug

phase. This could be achieved by an executable PDL processor or by

simply forming task skeletons with the majority of the internal

code suppressed. Using this approach, concurrent processing

aspects involving control and data flow could have been isolated

from the internal computational activities of the tasks and

debugging and system integration could have been simplitied.

6-2

SECTION 6

RECOMMENDATIONS

6.1 SOFTWARE DEVELOPMENT METHODOLOGY

This section provides recommendations on the macroscopic and

microscopic desiqn, code/debuq and inteqrate/test phases and on

PDL-usaqe considerations, software tools and a prototype trusted-

software development methodology.

6.1.1 MacroscoDic Design Methodology

The macroscopic design methodology works very well and should be

formally documented and published. The combination of initial

graphics tollowed by corresponding detailed text appears to be

correct to achieve the top-level desiqns. The methodoloqy avoids

extraneous detail, yet provides a PDL as a suitable refinement and

extension once the major design components have been established.

The existing design guidelines focused primarily on assuring that

the correct type ot Ada-based information was provided. The

guidelines snould be expanded to address specitic transportability

and reusability considerations since such requirements need to be

addressed from the outset of the desiqn.

In the classical software development lifecycle, the development

phases are disjoint from each other in that the design phase is

initiated only after the requirements phase has been completed.

This approach permits little opportunity for feedback based on

insiqhts gained in forming desiqns for the qiven requirements and

results in discontinuity across the various phases. To minimize

this problem, it is recommended that each succeeding phase overlap

with its successor. This permits rapid prototyping at the design

level to obtain additional information in areas where potential

problems exist or the designs are very complex.

6-1

methodology and tools, robust compile-time environments will be

required.

A second factor is compiler characteristics. It is essential to

carefully review and understand Appendix F, Implementation-

Dependent Characteristics, before beginning any design or

programming effort. It will be prudent to formulate or obtain a

compiler evaluation checklist regarding such features as compiler

pragmatics (level of nesting of packages permitted, maximum length

of identifiers, maximum number of tasks active, maximum number of

task callers which can be queued) to assure that these features or

limitations are well understood. Any design or programming

restrictions can then be stated as part of some overall software

development guidelines. Such lists are presently available in

preliminary form.

5.6.2 Run-Time Environment

In the run-time environment, many of the same arguments apply as in

the compile-time environment. Unfortunately, there is no specific

place for documenting the information such as Appendix F. Again, a
run-time environment checklist needs to be formed which reflects

both general considerations as well as application-dependent

characteristics. Such lists are presently available in preliminary

form.

5-35

......................

There were also several situations in which errors could occur

but for which no exception handlers had been declared. This

occurred primarily in the communications protocols application

where two factors seemed to be at work which were lack of

understanding of how exceptions functioned and how they were to be

used. There was also a lack of detail in identifying error

conditions as part of an overall software design process which

results in programs working correctly with correct data, but being

weak in integrity, reliability and robustness when erroneous data

is encountered. By contrast, exceptions were much more an integral

portion of the trusted software design since they were identified

as part of the SPECIAL specifications.

In conclusion, the treatment of error conditions as integral to the

design effort must be required, and these error conditions must be

related directly to the use of Ada exceptions. To the extent that

very complex architectures are formed, many Ada features are

combined to achieve a design, and error management has not been an

integral part of the design process, there will be an increased

likelihood of encountering errors at the architectural level in the

form of reduced robustness, integrity, and reliability. In

addition, the likelihood of having erroneous programs may also

increase.

5.6 PROGRAMMING SUPPORT ENVIRONMENT

This section presents conclusions relating to the compile-time and

run-time environments.

5.6.1 Compile-Time Environment

The intent of Ada is not merely to present a new language for

developing embedded computer systems; rather it is to provide a

suitable tool which will permit broader software engineering goals

to be achieved. Since such goals are dependent on software

5-34

architectural experimentation and tuning should be performed to

determine the magnitude of changes in performance resulting from

such changes. Fourth, based on the system testing and tuning

results, it may then be possible to form refined design and

programming guidelines which deal more specifically with the

software performance quality factors.

5.5 SOFTWARE ERRORS

Software errors can be divided into three categories: those
related to inexperience with the Ada syntax and semantics; those

occurring at a somewhat higher level related to particular software

architecture characteristics which result in erroneous Ada

programs; and those occurring as a failure to use exceptions.

The number and types of errors diminished with time as experience

with the limitations of the compiler became better understood.

There was also the tendency to correct errors without fully

understanding their cause, only to have the same type of error

occur later at another place. Once this approach was detected,

specific actions were taken to assure that not only was the error

corrected, but also that the basic nature of the error and the

associated language syntax and semantics were more completely

understood as a way of avoiding the same error later. Constant

referral to the reference manual may be required when initially

learning the language in order to adequately understand the nature

* of the error and the appropriate corrective action.

There were some errors detected which manifested themselves in the

form of erroneous programs. These errors were detected during

*design reviews and as a result of attempting to resolve other

execution-related problems. In all instances, these errors were

due to improper references to global data using tasks or hidden

tasks and visible subprograms.
5

• ~5-33 i

In the trusted software, an attempt was made to have the

classification code of the data affixed to it in some way so that
it could not be improperly modified. The types private and limited

* private seemed ideal to this purpose. However, the problem arises

that a record declaration that contains a private or a limited

private object, becomes itself a private or a limited private type.

To use a record type that is private or limited private would

require another level of complexity. For this reason, the GUARD

does not contain any of these types.

The use of variant records proved valuable as a feature of Ada that

would allow a single record type declaration the ability to define

several different message formats in one structure. The resulting

objects could have different characteristics for different uses,

all under software control. In the case of the GUARD, the various

transaction types, as defined in the requirements documentation,

could use common interfaces and yet have totally different

characteristics. The problem arises when the readability factor is

considered. Embedded case statements are needed to define objects

that can be common to some formats and not to others. The scoping

- rules for these 'case' statements are different from 'case'

statements in the program bodies and can thus present
maintainability problems.

5.4 SOFTWARE PERFORMANCE

0 Unfortunately, only a small portion of what was planned in the

performance evaluation area was achieved due to the compiler

problems. To conduct any meaningful performance tests several

prerequisites need to be achieved. First, the originally intended
6 designs need to be implemented, debugged, and integrated using a

validated, full-capability Ada compiler. Second, moderately

extensive system testing should then be performed to assure that
the desired Efficiency-II, Integrity, Reliability, and Robustness

software quality factors have been achieved. Third, following the

* system testing and, based in part on the system testing results,

5-32

what was originally intended. Thus, two prerequisites for

conducting an evaluation of the trusted software are to implement

the original designs and conduct extensive static and dynamic

testing.

5.3.2.4 Compilation Unit Statement Characteristics

Some generalities concerning the trusted software are as follows:

COMPILATION UNIT SIZE AVERAGE LARGEST SMALLEST
Code Statements 141 560 12
Comment Statements 199 1566 17
Total Lines 444 2555 38

Trusted Processes 25%
Non-trusted Processes 17%
Inter-Process Communication 9%
ARPANET Connection Emulation 17%
Support and Utility Modules 32%

With an arbitrary guideline of 1,000 lines per package, 4 out of 26

exceeded this guideline. If the separate compilation feature of

Ada had been implemented, these four compilation units would have

been smaller. There are 30 tasks operating in the GUARD; this is

one each for the IPCs, the file handlers, and the locks. These

taskp were implemented as data monitors and transaction transport

tasks. There is one task in each of the independent trusted and

non-trusted processes. Each functional process operates

independently of the others. The ARPANET emulators contain two

tasks, one to drive the MMI and the other to communicate

asynchronously with the rest of the GUARD.

5.3.2.5 Other Observations

The workarounds needed to make the GUARD execute added considerable

complexity to the system. The SPECIAL PDL was too complex, on the

one hand, and too vague on the other. The Downgrade Trusted

Process package could have been better organized if the

specifications were not followed as strictly as they weie.

5-31

impacts of exception management assessed. Due to the tight

coupling between Ada and the run-time environment, and the many

implementation-dependent options, it is necessary to understand how

these features are mechanized and what their limitations are.

Failure to do so may cause considerable problems with features such

as recursive subprogram formulations, dynamic instantiation of

generics, use of allocators, and other features which interact

directly with the run-time environment. To the extent that these

aspects are not known or not understood during the design process,

it is recommended that selective prototypinq be performed to gain

the necessary information.

6.5 SOFTWARE ERRORS

Errors fall into two categories, which are the normal programming

errors and those relating to overall software architectures. Many

of the normal programming errors seem to be directly related to the

nature of the Ada syntax and semantics and thus can be overcome via'

Vroper education, training, and experience. This will be

particularly important when many Ada features are combined into a

single design and interactions between features occur.

The software architectures themselves may have an influence on the

types and numbers of errors which occur. Under such circumstances,

architectural guidelines may have to be established to diminish the

number, and severity of errors or to assure that errors are handled

properly. One aspect that needs emphasis is that exception

management must be an integral part of the design process. To the

extent that software architectures are complex, it may become

necessary to develop specific software tools to check, both

statically and dynamically, for various types of error conditions.

The architectures developed here did not appear to be sufficiently

complex and insufficient performance testing was conducted to

determine if such tools could have helped.

6-10

_ ,,.".-.-.-...........--......-'--. ".. .'.....,, ...

6.6 PROGRAMMING SUPPORT ENVIRONMENT

This section provides recommendations with respect to both compile-

time and run-time factors which may impinge on a software

development project as well as the overall quality and capability

of the Ada programming support environment.

6.6.1 Compile-Time Environment

Because of the latitude afforded Ada compiler implementors, it is

recommended that a set of compiler evaluation criteria be formed

which is, in part, application dependent. These criteria should

address the following three categories. First, the implementation-

dependent features, such as the granularity of values for task

0 priority should be evaluated. Second, the compiler pragmatics

which may influence the length of identifier names, level of

nesting and other factors which may impact a particular application

or set of software development standards should be evaluated.

Third, features outside the language specification, such as how

task context switching, TEXT..IO, selective waits, and other

features are mechanized, and the maximum number and size of tasks

and maximum size of compilation units should be evaluated.

Although such evaluation criteria may not solve all compile-time

related problems, a careful assessment should significantly reduce

the number and severity of problems. This evaluation should be

made prior to performing any design so that constraints can be

identified and understood.

6.6.2 Run-Time Environment

*Because of the nature of Ada, many features which were previously
directly provided by the run-time support system of the executive

or operating system, are now qenerally hidden from direct view by

Ada features such as allocators, unchecked deallocation and tasking

features. To avoid a negative impact of particular mechanizations
of these features, a set of run-time support environment criteria

6-11

should be formed and used in selecting a total Ada run-time
environment. This evaluation should be made prior to performinq

any design so that constraints can be incorporated or addressed at

the beginning of the design phase.

6.6.3 Programming Support Environment

The Ada programming support environment used on this project was a

minimum environment in that the only available tools consisted of

the prototype, partial implementation Ada compiler; SKETCHER; and

EDT, the screen-oriented text editor. As full-capability compilers

are developed and used, and as methodologies are formalized and

supplemented with tools to make them effective and efficient, the

programming support environment data storage and processing

requirements will increase substantially. To realize Ada's promise
of producing software which is more cost effective, it is

recommended that significant effort be devoted to determining the

processing and storage requirements at the outset of the project
and that these assessments directly address the use of planned

software development and maintenance tools.

6.7 PROJECT RECOMMENDATIONS

Although a great deal was accomplished in both application areas,

several siqnificant items were not accomplished because of compiler
problems. The majority of these items falls under the category of
performance testing and assessing the Correctness, Efficiency-II,
Integrity, Reliability and Robustness. For both applications, a
compiler should be selected which has been validated and evaluated

to the specific features required for this type of application so

6 that many of the previous problems can be either eliminated or

reduced in severity and impact. The existing programs should be
restored to their original designs and the implementation should be
completed.

6-12

For the communications protocols, the previously planned software

performance testing should be conducted after the originally

planned implementation has been completed. The overall

architecture should be evaluated with respect to the performance

aspects and with regard to design and programming criteria for

achieving transportable and reusable software.

For the trusted software, the previously planned software

performance testing should be conducted after the originally

planned designs have been implemented. This performance testing

should include extensive stress testing, code analysis, and
correspondence testing to the degree that such testing can be

performed given the nature of the SPECIAL requirements for the

Upgrade and Downgrade Trusted Processes and the emulation of KSOS.

An alternative approach would include selectinq a compiler as

indicated above but with a different development and evaluation

approach, which would consist of the following steps. Obtain the

revised set of trusted software requirements for the ACCAT GUARD

which were formed in GYPSY /KEET8lA/, /KEET8IB/, /KEET81C/.

Determine a suitable place in the requirements hierarchy to begin

and apply the previously recommended trusted software methodology

and guidelines, and use Ada and ANNA from the outset of the

development and redesign and reimplement the trusted software

while, in general, reusing the existing nontrusted software.

Evaluate the software with respect to Maintainability, Testability,

Correctness, Efficiency-II, Integrity, Reliability, Robustness and

formal verifiability by performing extensive static and dynamic

testing. Fvaluate the design and programming guidelines used and

revise them accordingly. Assess the impact of restrictions on the

Ada language with regard to usability of the restricted subset.

6-13 . . .o 2

*. - . - . -. *

SECTION 7

REFERENCES

The following references apply totally or partially as cited

throughout this document.

7.1 MILITARY STANDARDS AND SPECIFICATIONS

/M16778/
Department of Navy, Military Standard, Weapon System Software

Development, MIL-STD-1679 (Navy), 1 December 1978.

/M84773/

Military Standard - Format Requirements for Scientific and
Technical Reports Prepared By or For the Department of Defense;

MIL-STD-847A, 31 January 1973, including update notices 1 and 2.

/M18183/

United States Department of Defense, "Reference Manual for the Ada
Programming Language," ANSI/MIL-STD-1815A-1983, 17 February 1983.

/M177 83A/

Department of Defense, Internet Protocol, MIL-STD-1777, 12 August

1983.

/M177 83B/

Department of Defense, Transmission Control Protocol, MIL-STD-1778,

12 August 1983.

/M15272/

Military Standard - Technical Reviews and Audits for Systems,
Equipments and Computer Programs; MIL-STD-1521A (USAF),

1 June 1976.

7-1

' : ,-' " "-" ", - " '": ' ""."" "" '". " ".: "- " ,. . . .-
- ,

. .k I
_

.

/M49068/

Military Standard - Specification Practices; MIL-STD-490,

30 October 1968.

/48379/

Military Standard - Configuration Management Practices for Systems,

Equipment, Munitions and Computer Programs; MIL-STD-483 (USAF),

21 March 1979.

/DSDS83/

Joint Policy Coordinating Group on Computer Resource Management,

Computer Software Management Subgroup, Defense System Software

Development (DOD-STD-SDS), Proposed Military Standard, 5 December

1983.

7.2 SYSTEM SPECIFICATIONS AND REFERENCES

/WOOD78/

J.P.L. Woodward, "ACCAT GUARD System Specification (Type A), MTR-

3634, The MITRE Corporation, Bedford, MA, August 1978.

/LOGI79A/

Logicon, "Formal Specification of GUARD Trusted Software (Draft),"

ARPA-78C032303, September 1979.

/LOGI79B/

Logicon, "ACCAT GUARD Program Development Specification (Type B5),"

ARPA-78C0323-01, February 1979.

/BALD79/

David L. Baldauf, "ACCAT GUARD Overview," The MITRE Corporation

(MTR-3861), Bedford, MA, November 1979.

7-2

.-.

i ". i "-_-"-"-"" -".......

/WEST79/
Western Union, "Initial AUTODIN II Segment Interface Protocol (SIP)
Specification," (System Engineering Technical Note TN 78-07-31),
DCA 200-C-637-P003, 5 March 1979.

/WEST78/

Western Union, "AUTODIN II Design Executive Summary," Western Union
Telegraph Company, McLean, VA 22101, 18 May 1978.

7.3 OTHER GOVERNMENT REFERENCES

/USDO80B/

United States Department of Defense, "Requirements for Ada Program-
ming Support Environments," "Stoneman," United States Government,

February 1980.

/USDO83/
Department of Defense Trusted Computer System Evaluation Criteria,

*- 15 August 1983, CSC-STD-001-83, Library No. S225,711.

7.4 NONGOVERNMENT REFERENCES

/BBNI76/
Bolt, Bernek, and Newman, Inc., "Development of a Communications
Oriented Language, Parts I and II," Report No. 3261, 20 March 1976.

/SR1178/
SRI International, "Verification of Communications-Oriented
Language Programs," SRI International Final Report, Project 6413,
August 1978.

/HALS77/
Maurice H. Halstead, Elements of Software Science, Elsevier North

Holland, Inc., New York, 1977.

7-3

..* , - , . -. . - . . - . - , .. .-

/COOP79/

John D. Cooper and Matthew J. Fisher, Editors; Software Ouality

Manageent, Petrocelli Books, Inc., New York, 1979; "An
Introduction to Software Quality Metrics," by James A. McCall.

/KEET81A/
Jim Keeton-Williams, Stanley R. Ames Jr., Bret A. Hartman, Ronald

C. Tyler, "Verification of the ACCAT-GUARD Downgrade Trusted

Process, Volume 1: Overview and Major Results," (MTR 8463),

Volume 1, September 1981, The MITRE Corporation.

/KEET81B/

Jim Keeton-Williams, Charles H. Applebaum, "Verification of the

ACCAT-GUARD Downgrade Trusted Process, Volume 2: Verification

Theory," (MTR 8463), Volume 2, September 1981, The MITRE
Corporation.

/KEET81C/

Jim Keeton-Williams, Bret A. Hartman, James Abbas, Ronald C. Tyler;

"Verification of the ACCAT GUARD Downgrade Trusted Process, Volume
3: Specification and Proof," (MTR 8463), Volume 3, January 1982,

the MITRE Corporation.

/KRIE83/

Bernard Krief-Bruckner, David C. Luckham, Friedrich W. von Henke,
Olaf Owe, "Reference Manual for ANNA, A Language for Annotating Ada

Programs (Preliminary Draft)," March 1983.

/LUCK84/

David C. Luckham, "On the Design of ANNA: A Specification Language
for Ada," Computer Systems Laboratory, Stanford University,

Stanford, CA 94305

7-4

-
.- ° -. . " . . " . .' " . " . . ,- L -

d
, % ,

/CHEH80/

M.H. Cheheyl, M. Glasser, G.A. Huff, J.K. Millen, "Secure System

Specification and Verification: Survey of Methodologies,"

20 February 1980.

/BRIN81/

Alton L. Brintzenhoff, Steven W. Christensen, David T. Moore,

J. Marc Stonebraker, "Evaluation of Ada as a Communications

Programming Language," Report DCAI00-80-C-0037, 31 March 1981, NTIS

AD-A-121938.

/BUHR84/

R.J.A. Buhr, System Design with Ada, Prentice Hall, Inc., Englewood

Cliffs, NJ 07632, 1984.

/B00C83/

Grady Booch, Software Engineering with Ada, The Benjamin/Cummings

Publishing Company, Inc., California, 1983.

/PRIV82/

J.P. Privitera, "Ada Design Language for the Structured Design

Methodology," in Proceedings of the Ada TEC Conference on Ada,

6-8 October, 1982.

/HONE84/

Honeywell, Systems and Research Center, 2600 Ridgway Parkway,

Minneapolis, MN 55413; Alsys, 29 Avenue de Versailles, 78170

La Celle Saint Cloud, France, Rationale for the Design of the Ada

Programming Language (Draft for Editorial Review), January 1984.

7-5

4 ,. . , .. - . ,,-.-- .. 4 - .. ,, ...- , ,-4. -' . . .

APPENDIX A

SOFTWARE DEVELOPMENT GUIDELINES

A-i

The following material is excerpted from the Draft Software

Development/Management Plan, CDRL 002, 4 May 1983. The prefixed

notes indicate the evaluation of the material for the Communica-

tions Protocols (CP) and the Trusted Software (TS) applications,

respectively, according to the following criteria: 1-used,

effective; 2-used, ineffective; 3-not needed, not used; 4-needed,
not used; 5-new addition; 6-change to existing guideline.

3.6 SOFTWARE DEVELOPMENT GUIDELINES

3.6.2 Software Architecture Design Guidelines

The objective of these design guidelines is to assure that

reasonable software engineering principles are used in forming
the designs from the very highest level of abstraction downward.

An additional and equally important objective is to assure that

Ada features which can support and influence high-level software

architectures are highly visible and understood. Specific software

engineering principles which will be used in an Ada context are

abstraction, information hiding, modularity, localization,

uniformity, completeness and confirmability as presented in

/B00C83/.

From virtually the outset of the design, the use of certain

Ada features such as package, subprogram and task specifications

will be emphasized to assure that Ada capabilities which support

the software engineering principles are well understood and are

maximally used to influence the design in a favorable way. One

design abstraction which will be used is the concept of a virtual

package, a level of abstraction one level higher than an actual

package, but drawing on the same concepts embedded in actual

packages. Thus, at a high level of design, the architecture will

already have an orientation toward Ada which hopefully will
simplify the stepwise refinement process which will produce the .. -

macroscopic and microscopic designs and, finally, the code.

A- 2

In documenting the designs at the virtual package and package

level, the object-oriented-design diagrams of /BOOC83/ and /BUHR84/

will be used as a basis for producing the precursors of the

macroscopic designs which will exist in Ada textual form.

If instances occur where these notations are inadequate, then they

will be augmented with additional notations or variations on an

ad hoc basis after due consideration of the surrounding

circumstances.

3.6.3 Ada Program Design Language Guidelines

For uniformity and consistency, the level of detail specified

for the macroscopic and microscopic designs in Section 3.2.4,

Levels of Design, has been extracted and repeated here. Additional

details have also been included.

3.6.3.1 Macroscopic Design Guidelines

The following levels of detail will be produced for the

macroscopic designs:

TS CP

[1] [1] 1) Provide identification of all library and
secondary units.

[i] [11 2) Provide identification of all visible package
components.

[11 [11 3) Provide identification of all formal
parameters for task entries, subprograms, and
generic declarations.

TS & CP - Too Early In the Design Process. In all probabil-
ity, formal parameters will change somewhere later in the
design process. .

A-3

.~~~.. .. °. . ' .. . --'.- .--% .' ."- . ". .;- i .- .'L -. % -. L ".0 . . . , _. ,,

(1 [(1] 4) Provide virtually complete specification of

all visible types.

TS & CP - Too Early In the Design Process.]

[I] 5) Provide identification of compilation unit
dependencies.

[I1 [6] 6) Specify major types and components within
visible modules.

[CP - Change Specification => Identification]

[I] [61 7) Specify major flow control logic within
complex visible modules.

[CP - Change Specification => Identification I

[3] [1] 8) Declare all nested program modules.

(41 [43 9) Identify all exception handlers.

[I] 10) Use English language text between brackets
([]) to indicate where conversion to code is
required.

[1] [1] 11) Use comments, which can be retained in the
code, to provide overviews and augment and
clarify data structures and processing.

[I] [11 12) Provide references to imported exceptions,
subprogram and task calls and to local
exceptions, subprograms and task calls at the
next lower level of detail.

[51 [5] 13) Assign weights to software quality factors for
each compilation unit.

[5] [5] 14) Compile all library units at the conclusion of
the macroscopic design and remove any
deficiencies.

A-4

3.6.3.2 Microscopic Design Guidelines

The following levels of detail will be produced for the

microscopic designs:

TS CP

[11 [1] 1) Complete specification of all components of
the visible and private portions of all
library units.

[I] 2) Complete specification of default
initialization for all visible and private
objects.

[I1 [1] 3) Complete specification of all major flow
control logic within all modules.

[1] [1] 4) Complete identification of local (inner scope)
types and objects.

[I1 [6] 5) Identify all nonvisible subprogram tasks.

[I1 [1] 6) Refine major flow control within visible and
complex modules.

[I] [11 7) Use English language text between brackets
([]) to indicate where conversion to code is
required.

[51 [5] 8) Compile all library units at the conclusion of
the macroscopic design and remove any
deficiencies.

3.6.4 Ada Programming Guidelines

The following sections specify nominal program design

guidelines for the macroscopic and microscopic designs and for the

programs themselves. Obviously, the Programming Guidelines must be

considered not only at the programming level but also at the macro

and micro design levels and, in some cases, even at the system

architectural level.

A-5

RD-A152 314 EVALUATION OF ADA (TRADEMARK) AS A COMMUNICATIONS 3/3
PROGRAMMING LANGUAGE VOLUME 1(U) SYSCON CORP SAN DIEGO
CA A L BRINTZENHOFF ET AL. 91 MAR 85 DCAiSI-83-C-9629

, UNCLASSIFIED F/G 9/2 NL

EEEEEEEEEEEEEE
Ulllllli

.
. .

111114 O 6

L - -'- ,: 7 "-" ".: '- - ' :' :" '_ -:'- : - '."- -- 2. . .O

LL G"

12 141

Because many of these guidelines are closely associated with
the Ada syntax and other program module considerations, they have

been placed at the programming level and oriented along the chapter

titles of the Ada Language Reference Manual.

As the title indicates, these are guidelines and not

standards or mandatory conventions. It is anticipated that because

of individual programming styles, past experience, and special

situations, variations and even some distinctly different

conventions will be formed and used. The objective here is to

avoid what appear to be bad choices, and emphasize nominal good

choices so as to minimize overall program development problems.

Clearly, one aspect of the software evaluation will deal with the

formulation and use of standards, guidelines and conventions based
on the experience gained in the use of the following guidelines.

3.6.4.1 Overall

TS CP

[I] [4] 1) Use comments liberally: on statement lines to
clarify code; as "headers" to introduce
complex sequences of code; for the module
summary which occurs inside the module
including packages, subprograms, blocks,
tasks, and entries, if appropriate.

[1] Il 2) Use only a single statement per line except
for comments and combined with and use clauses
relating to the same compilation unit.

[i] [1] 3) Limit subprogram and task body sizes to
approximately 100 lines of code, and a maximum
of 200 lines.

[1] [6] 4) Limit text to 80-character lines.

CP - A rigid 80 column requirement must be traded off with
overall readability due to the long names and expanded name
notation referencing external units

A-6

. . .

P

[1 61 5) Use blank lines to provide separation of
different entities such as one group of
types/objects and another.

CP -Or user defined separator lines

El] IA]6) Use recommended paragraphing of Ada Language
Reference Manual.

[61 [1] 7) Indent paragraphs in increments of three
characters.

[TS - Used increments of 2 characters for indentation.

Ill [1] 8) Align subprogram, task entry, and generic
formal parameters for easy reading.

[4] [1] 9) Use page breaks (pragma PAGE) to begin major
program units and to otherwise separate -distinct, different entities.

[1 (11 10) Use lower case letters for reserved Ada words.

3.6.4.2 Lexical Elements

TS CP

[6] [61 1) Lexical order: (types(s), objects), packages,
subprograms, tasks, exceptions.

ICP & TS - Ordering may be influenced by nesting, call
dependencies, etc. Cannot always be adhered to as stated.
Important aspect is to be consistent.]

[1] [1] 2) Use the package, subprogram and task
identifier in the respective end statements.

[4] [1] 3) Place pragma statements so they are highly
visible.

A-7

3.6.4.3 Declarations and Types

TS CP

[1,2J [1] 1) Use default initialization when initial values
are required.

[1,2] [61 2) Choose type and object identifiers for
compatibility and meaningfulness.

CP & TS - Add nwhenever possible". Identifiers may be
chosen to reference or be determined by external
specification requirements]

[I] [1] 3) Use enumeration types for improved readability.

[4] [4] 4) Use derived types and subtypes for clarity and
to avoid computational ambiguity.

[31 [1] 5) Keep recursive and mutually dependent type
declarations in close proximity to each other.

[2] [5] 6) Avoid/minimize large and complex data types ane-1-
objects.

CP & TS - Data Structures may be dictated by external
specifications and PDL]

3.6.4.4 Names and Expressions

TS CP

[1] [i] 1) Use a space before and after delimiters and
compound delimiters except for: the apostrophe
in attribute notation; the period in selected/
expanded component notation; the comma
separating array indexes and actual parameters;
parentheses in array component selection.

[1] [Il 2) Avoid use of unnamed literals in executable
code.

[1] [1] 3) Use attribute notation wherever appropriate to
minimize explicit dependencies.

A-8

[41 [1] 4) Use named associations for record and array
aggregates unless the specified values are -

meaningful.

3.6.4.5 Statements

TS CP

[I] [4] 1) Use blocks to provide localized exception
handlers.

(21 (1] 2) Use case statements instead of if statements
when possible.

[21 [41 3) Use blocks to "collect" highly localized
operations and corresponding data.

[31 [3] 4) Provide meaningful block names for blocks.

[3] [31 5) Provide meaningful loop names for loops.

3.6.4.6 Subprograms

TS CP

[61 [3] 1) Avoid recursive invocations.

[31 [11 2) Declare new operators only for frequent and
meaningful use.

[] [1] 3) Use overloading of subprogram identifiers only
when operations are highly similar or number
of arguments vary.

[1] [11 4) Limit formal arguments to approximately five.

[1] [1] 5) Choose formal parameter names which will be
communicative if the named notation is used.

[1] [4] 6) Itemize subprogram identifier and formal
parameters, one item per line, followed by a
descriptive comment.

[I] [] 7) Avoid use of functions which produce side
effects unless absolutely required.

[I] [1] 8) Subprogram identifiers and block and loop
names should be meaningful where they are
used, not where they are declared.

A-9

3.6.4.7 Packages

TS CP

[1] [6] 1) Minimize package nesting unless exceptional
requirements exist.

[CP - Package Nesting should reflect architectural
Requirements/Specifications]

[1] [1] 2) Export only those package components which are
absolutely required.

[1] [6] 3) Use package identifiers which communicate the
package purpose.

CP - Names => Functional and/or Architectural
Significance]

[1] [1] 4) Within package bodies, declare data
types/objects, nonvisible packages,
subprograms, tasks followed by the visible
subprograms and tasks.

[1] [1] 5) Preserve lexical ordering of entities such as
sub-programs, and tasks and entries between
package specification and package body. - .

[3] [1] 6) Use private and limited private types

judiciously since they will require extra
subprograms to provide the necessary user
operations.

[1,2J [1] 7) Visible entities of a package should have
meaningful identifiers not merely generic
names such as, for example, READ and WRITE.

3.6.4.8 Scope and Visibility

TS CP

[1] [31 1) Use use clauses for Ada-defined and locally
declared units only.

[1] [11 2) Use expanded name notation for components of
external, user-defined compilation units.

A-0 0

[1 (1] 3) Use renames to simplify notation or to
abbreviate expanded names such as package
identifiers.

[1] [1] 4) Avoid complex scope, visibility and
overloading relationships which produce hiding
or other disjoint visibility relationships.

3.6.4.9 Tasks

TS CP

[11 [1] 1) Itemize task entry points and corresponding
formal parameters, one item per line, followed
by a descriptive comment.

Il [3] 2) Avoid use of abort.

[I] [1] 3) Use entry names which are meaningful where
they are used, not where they are defined.

[i] [1] 4) Choose formal parameter names which will be
communicative if the named notation is used.

3.6.4.10 Program Structure and Compilation

TS CP

(6] [6] 1) Minimize complex or lengthy compilation unit
dependencies.

CP & TS - The choice/complexity is not always user
determined]

[41 [4] 2) Use subunits and secondary units to control

the size of compilation units.

CP & TS - Needed, Not Available]

[6] [4] 3) Use judicious nesting of modules in order to
simplify or minimize overall compilation
dependencies and number of compilation units.

A-l1

""'-.,, ' :,'' "- , ", " " " ' "" " " " " ' ' " "- " "" " " " ." " "" " ". . '." " " ' I . ." " " i :

[51 [5] 4) Place context clauses with package bodies
whenever possible instead of with package
specifications.

[CP - Needed, Not Available]

[TS - Original design required nested modules for file,
port, and other utility packages in common packages for
both the high and low sides of the GUARD]

3.6.4.11 Exceptions

TS CP

[1,21 [61 1) Use exceptions for truly abnormal error or
exceptional circumstances and not to effect
normal changes in control flow.

CP & TS - Useful Debugging Tool]

(61 [41 2) Avoid the use of others in exception handlers
since it can produce misleading results.

TS - Useful Debugging Tool I

[11 [1] 3) User-declared exceptions should not overload
Ada-defined exceptions.

[1] [1] 4) Localize exception handling as much as
possible.

[11 (1] 5) Use exceptions in tasks and especially in a
rendezvous very cautiously.

[i] [1] 6) Declare, in the package declaration, all
exceptions of modules of packages which will
be visible externally.

A-12

3.6.4.12 Generic Units

TS CP

[21 [3] 1) Limit generic parameters to approximately
five.

[1] [3] 2) Choose formal parameter names which will be
communicative if named notation is used.

[I] [3] 3) Avoid nesting of generics.

[21 [31 4) Use extreme caution and explicit documentation
if generic parameters are used as conditional
compilation flags.

3.6.4.13 Representation Clauses

TS CP

[3] [1] 1) Place representation clauses in close
proximity to the components to which they
apply.

[3] [1] 2) Use unchecked operations cautiously and mark
their locations to be highly visible.

3.6.4.14 Input-Output

TS CP

[61 [61 1) Centralize column, line and page
specifications for text files if possible.

CP & TS - Centralize all I/O operations/routines in
separate units (packages) according to the type of I/O (ie
Disc, CRT/Printer etc.)]

A-13

., - . . . - .- , , - . . ,- .-

APPENDIX B

ADA RESTRICTIONS FOR TRUSTED SOFTWARE IMPLEMENTATION

B-i

The following is a preliminary list of restrictions to be

imposed on the Ada language for the purpose of developing trusted

software. These restrictions were formed based on considerations

of maintainability, testability, correctness, integrity,

reliability, robustness, and formal verifiability of the software

itself and on retaining a basic usability of the Ada language in

the context of these restrictions.

These guidelines or restrictions form a preliminary list

which is based, in part, on some limited Ada programming of

trusted software on a prototype basis. However, this software is

incomplete and has not been implemented along the lines of the

actual designs because of limitations with the prototype compiler

which was used. Thus, because extensive stress testing, covert

channel analysis, and correspondence analysis of the code have not

been performed, the guidelines have not been evaluated or verified

with the result that they may be incorrect, incomplete,

inconsistent or inappropriate at this point.

1. General Considerations

1) Prohibit use of all features or combinations of features

which result in erroneous programs regardless of whether such

programs are in fact incorrect or not in the given implementation.

2. Lexical Elements

3. Declarations and Types

1) Prohibit use of anonymous types.

2) Assign default values to all objects except limited

private objects which should be preset via explicit initialization

in the executable portion of a body.

3) Prohibit trusted-non-trusted process communication from

using access variables.

B-2

4) Prohibit record types and records of the respective types

from becoming private or limited private objects as a side effect

of containing objects which are of a private or limited private

type.

4. Names and Expressions

5. Statements

1) Prohibit the use of goto statements as the predominant

means of effecting changes in control flow.

2) Prohibit use of conditional exit statements which depend

on global objects.

6. Subprograms

1) Attempt to achieve pass-by-copy as opposed to pass-by-

reference variable transfers especially between trusted and non-

trusted entities.

2) Avoid the use of subprogram declarations and

corresponding bodies or subprogram bodies as compilation units

(i.e., place subprograms inside packages except for the main

subprogram).

3) Permit only procedures to produce side effects and

prohibit functions from producing side effects.

4) Prohibit aliasing of in-out mode parameters in

procedures.

5) Prohibit functions from using external global parameters

unless they are constants.

B-3

.. .- -

i

7. Packages

1) Prohibit declaration of visible objects in the package

specification for packages visible to non-trusted software.

2) Prohibit non-trusted software from declaring objects in

its space which are manipulated by the secure package since

unchecked conversion can then be used.

3) Prohibit accessing of global parameters from within a

package body.

I

8. Visibility Rules

1) Prohibit renaming task entries as procedures.

I

9. Tasks

1) Prohibit use of guard conditions on task entries where

global parameters are components of the conditions; permit only

local parameters to be used on guard conditions.

2) Prohibit use of shared variables unless the tasks and

shared variables are declared in the same scope.

3) Permit task types only when they are used to create a

finite number of declared task objects.

4) Prohibit task types from being visible to a non-trusted

process since the user can then create his own tasks.

5) Permit a task to abort only itself.

6) Prohibit the use of tasks where tasks would be used to

achieve elaboration of some data other than that contained within

the task itself.

7) Permit the activation of tasks via allocators only in
I

declarative regions.

8) Prohibit the reassignment of tasks among the set of

access variables designating those tasks.

10. Program Structure and Compilation Issues

B-4

LRM Ada Feature E I O P

13.7 Package System X N 0
13.7 Memory-Size (pragma)
13.7 Storage-Unit (pragma)
13.7 SystemName (pragma)
13.8 Machine Code Insertions X N
13.9 Interface to Other Languages X N
13.10 Unchecked Programming S

13.10.lUnchecked Storage Deallocation X L/H
13.10.2Unchecked Type Conversion

14. Input-Output
14.1 External Files
14.2 Sequential and Direct Files X H

Task stack overflow when
accessed from task

14.3 Text Input-Output X X H
Synchronous vs asynchronous
mechanization
Impedes MMI operations
in multiuser system

14.3.9 Enumeration I/O X H
14.4 Input-Output Exceptions
14.5 Package I/OExceptions (spec)
14.6 Low Level Input-Output X H

A Predefined Language Attributes
B Predefined Language Pragmas

Optimize (pragma) X N
Page (pragma) X L
SourceInfo (pragma)

C Predefined Language Environment
F Implementation-Dependent Characteristics

Run-until-block context switch algorithm H
Synchronous vs asynchronous TEXTIO H
mechanization
Unrealistically small, H
fixed task stack size

D-

D- 5

• " -'- :.:. " -- . , -:-. _ . .:.. . =.. j ,... ,,,:,., i ' ',,,., w l ';,

LRM Ada Feature E I O P

9. Tasks
9.1 Task Specifications X H

1. Must appear at outer-
most scope

9.1 Task Bodies X H
1. Must appear at outer-

most scope
9.2 Task Types and Objects X H
9.5 Entries X M/H

Entry families
9.5 Entry Calls
9.5 Accept Statements
9.6 Delay Statements X M
9.6 Package CALENDAR E E H

Undefined exceptions
9.7.1 Selective Waits
9.7.2 Conditional Entry Calls X M
9.7.3 Timed Entry Calls X M
9.8 Priorities (pragma) X M
9.9 Task and Entry Attributes X M
9.10 Abort Statements X
9.11 Shared Variables (pragma) X M

10. Program Structure and Compilation Issues
10.1.1 With Clauses
10.2 Subunits (is separate) X M/H
10.5 Elaborate (pragma) X N

11. Exceptions
11.1 Exceptions Declarations
11.2 Exception Handlers
11.3 Raise Statement
11.4 Exception Handling
11.7 Suppressing Checks (pragma) X N

12. Generic Units
12.1 Generic Declarations X H
12.2 Generic Bodies X H
12.3 Generic Instantiation X H

13. Representation Clause,
13.1 Representation Clauses X H
13.1 Pack (pragma)
13.2 Length Clauses X H
13.3 Enumeration Rep Clauses X H
13.4 Record Rep Clauses X H
13.5 Address Clauses
13.6 Change of Representation X H

D-4

LRM Ada Feature E I 0 P

4. Names and Expressions
4.2 Literals
4.3.1 Record Aggregates X L/M
4.3.2 Array Aggregates X L/M
4.4 Expressions
4.6 Type Conversion X L
4.7 Qualified Expressions
4.8 Allocators X H
4.8 Controlled (pragma) X H
4.9 Static Expressions
4.9 Static Subtypes
4.10 Universal Expressions

5. Statements
5.2 Assignment Statement
5.2.1 Array Assignment Statement
5.3 If Statement
5.4 Case Statement L

1. Cannot incorporate attributes
2. Subtype or type must be in scope

5.5 Loop Statement
5.6 Block Statement
5.7 Exit Statement X L
5.8 Return Statement
5.9 Goto Statement

*6. Subprograms

6.1 Subprogram Declarations
6.2 Formal Parameter Modes X L/M
6.3 Subprogram Bodies
6.3.2 Inline Expansion (pragma) X N
6.4 Subprogram Calls
6.4.2 Default Parameters X L
6.5 Function Subprograms
6.6 Overloading of Subprogram
6.7 Overloading of Operators

7. Packages
7.2 Package Specs and Decls. X N
7.3 Package Bodies X N
7.4.1 Private Types
7.4.4 Limited Types

8. Visibility Rules
8.4 Use Clauses
8.5 Renaming Declarations
8.6 Package Standard

D-3

:":"-:" .: : "-- •............. '.'..... .". ."-"--. ',.. i.. "
.

The following table indicates the possible types of

deficiencies for each type of Ada feature (E-erroneous feature,

I-incomplete/inconsistent feature, O-omitted feature, P-impact code)

and the specific impact of that feature on the overall design and

implementation (N-none, L-low(minor inconvenience, implementation

(code) detail, M-medium (moderate inconvenience, some micro design

changes, resort to less direct means), H-high (significant change in

design at macro level or incurrence of significant additional work),

T-terminal case (total impass regarding implementation of desired

capability). In some instances supplementary notes are also

provided. The compiler used was the prototype Telesoft-Ada*

compiler, version V30R23 of November 1983.

LRM Ada Feature E I 0 P

*2. Lexical Elements

*3. Declarations and Types
3.2 Named Numbers (constants)
3.3.1 Type Declarations X N
3.3.2 Subtype Declarations X X N
3.4 Derived Types X L
3.5.1 Enumeration Types
3.5.2 Character Types
3.5.3 Boolean Types
3.5.4 Integer Types
3.5.5 Discrete Operations X L
3.5.7 Floating Point X N
3.5.8 Floating Point Operations X N
3.5.9 Fixed Point X N
3.5.10 Fixed Point Operations X
3.6 Array Types X H

Unconstrained array declarations
3.6.2 Array Operations
3.6.3 String Type X M

Unconstrained string declarations
3.7 Record Types
3.8 Access Types
3.8.1 Incomplete Type Declaration
3.9 Declarative Parts

*Telesoft-Ada is a Trademark of Telesoft.

D-2

• -. o

APPENDIX D

COMPILER LIMITATIONS AND IMPACTS

D-1

*Phase Macro/Micro Design. Code/Debug

*Name Annotated Ada (ANNA) Run-time Verifier

*Purpose: Provide run-time verification of specified -.-

ANNA constraints.

*Functions: 1) provide routines which perform run-time
verification of constraints specified via
ANNA

*Problems Addressed: Provide a means of verifying, during

execution, that constraints which are
specified via ANNA are actually being met.

*Rationale: Since extensive run-time testing will normally
be conducted for trusted software, a software
tool which automatically checks for violation
of constraints specified in ANNA will improve
both the quality of the software and the
efficiency and effectiveness with which the
software is tested.

C-7

............................

*Phase : Macro/Micro Design. Code/Debug

*Name : Ada Preprocessor for Trusted Software
Restrictions

*Purpose: Provide syntactical and semantical processing
of Ada and/or Ada PDL to assure that the
trusted software restrictions are enforced in
the Ada PDL and Ada source code.

*Functions:
1) provide mechanization of trusted software

restrictions
2) process Ada PDL and Ada source code to

assure that syntactical and semantical
trusted software restrictions are
enforced.

*Problems addressed: Provide a software tool to effectively and
efficiently assure that trusted software
restrictions are strictly enforced.

*Rationale: Because of the need to impose restrictions
on the Ada features which are used in
implementing trusted software, it will be
necessary to have a software tool which
consistently, effectively and efficiently
assures that the restrictions have not been
violated.

*Phase : Macro/Micro Design. Code/Debug

*Name : Annotated Ada (ANNA) Compiler

*Purpose: Compile ANNA annotations embedded in Ada PDL
and Ada source code.

*Functions: 1) Provide syntactical and semantical
checking of ANNA source code and

2) provide code-generation capabilities for
inclusion of ANNA Run-time Verifier
software

*Problems Addressed: Provide a software tool to assure that the
embedded ANNA is correct, complete and
consistent.

*Rationale: The incorporation of ANNA into the Ada PDL and
Ada of trusted software and other reusable or
transportable software provides the capability
to provide additional semantical information
on the functionality of that software. This
information can be relied upon only if it has
been systematically error checked.

C-6

............... ,

*Rationale: Considerable time and effort were devoted to

refining the code that was produced which
could have been more effectively devoted to an
analysis of the designs and possibly the
enhancement of the designs.

*Phase : Macro/Micro Design. Code/Debug

*Name : Task Call Sequence Analyzer

*Purpose: Provide the designer with textual or graphical
representation of possible task call sequences
or deficiencies.

*Functions: Provide a multi-level caller-callee tree which
can be analyzed for potential starvation,
deadlock, or unreachable callees.

*Problems addressed: A static analysis of complicated applications
involving significant tasking could be per-
formed in order to eliminate as many tasking
errors or to at least identify possible
problems prior to beginning execution.

*Rationale: Debugging of complicated tasking applications
could be simplified and redesign could
possibly be minimized by detecting "obvious"
errors during the design phase.

*Phase : Macro Design

*Name : Advanced SKETCHER

*Purpose: Permit designers to produce top-level designs
interactively using bit-mapped graphics and
automatically convert the graphical
representations into the corresponding
skeletal PDL.

*Functions: Produce bit-mapped graphical representations
of OODD's for inclusion in design documenta-
tion, provide generation of corresponding PDL.

*Problems addressed: Improved productivity during early design
phase by elimination of manual activities.

*Rationale: Avoid dealing with excessive detail required
in textual representations and provide
automation for the straightforward process of
converting the OODD's into skeletal PDL which
can then be refined.

C-5

..-.......................

*Phase : Macro/Micro Design. Code/Debug

*Name : Expanded Name Generator

*Purpose: Provide the expanded names for entities
referenced correctly by the compiler via use
clauses.

*Functions: Prefix the correct expanded name to entities,
such as the package name to a task contained
in the package where the name is obtained by
the compiler via a use clause.

*Problems addressed: Provide completely qualified entities through
the inclusion of expanded names in order to
facilitate code reading, traceability and
maintainability.

*Rationale: During development it is convenient and
efficient to not specify the expanded names,
especially if they are lengthy; although
renames clauses could be used for packages,
for example, this may not be desirable. This
would permit the development to progress
quickly by eliminating the prefixing of
lengthy names and would at the same time
provide an effective way for including them
after the fact to achieve the desired
maintainability and traceability.

*Phase Macro/Micro Design. Code/Debug

*Name : Multi-Mode Syntax Directed Editor

*Purpose: Facilitate the creation of the Ada PDL, the
conversion of the PDL to code and the creation
of Ada source code.

*Functions: Provide syntax directed editing, based on the
particular mode selected (Macro, Micro, Code),
facilitate conversion of English language
entities into Ada or refined English language
entities by supporting various display/
prompting/relocation capabilities.

*Problems addressed: Assure that PDL or source code is produced
which is more nearly complete, correct and
consistent and provide for improved
productivity.

C- 4

.

*Phase :

*Name : Pretty Printer

*Purpose: Provide standardized formatting of source code

*Functions: Provide standardized formatting of produced
code regarding lexical format, placement of
headers and comments.

*Problems addressed: Eliminate the need for manual "pretty-print"
formatting of code during original
production as well as during revisions of
the code during debugging and provide a
method for standardizing the code produced
by different programmers.

*Rationale: Considerable time and effort can be saved
through the use of a Pretty Printer for
"structuring" the code into a more readable
format and, at the same time, providing
standardization in the source code produced
by several individuals.

*Phase : Code/Debug. Integration/Test

*Name : Source-Level Debugger

*Purpose: Provide debug programs using source level
information

*Functions: Provide the ability for setting breakpoints
and examining/setting values based on source
code information as opposed to object code
information. Provide features which are
especially oriented toward tasking and enable
the user to control which tasks are currently
active or suspended and to ascertain the
status of any activated, nonterminated task
and the ability to examine various task queues
to determine which tasks are runnable,
suspended and possibly reorder task queues to
resume a particular task or sequence of tasks.

*Problems addressed: Provide a way for minimizing recompilation and
the insertion of debugging code into the
developed source code which must subsequently
be revised.

*Rationale: A source-level debugger can speed up the
development cycle significantly as opposed to
entering and deleting debugging statements
which may have other adverse effects,
especially in a tasking environment.

C-3

The following software tools are recommended as a minimum

set based on specific experience during the project. It is

believed that if even a subset of these tools had been available,
a significant amount of time could have been saved. The summary

of each tool indicates the phase in which the tool would be used,
the (generic) name, purpose, functions, problems addressed, and

rationale for the tool.

*Phase . Macro/Micro Design

*Name PDL Processor

*Purpose Process and verify Ada PDL and provide
various cross-reference information.

*Functions: 1) provide well defined syntax/semantics
for Ada PDL

2) specify minimum acceptable requirements
as per design phase

31 verify completeness, correctness,
consistency of PDL supplied

4) provide various types of cross-
references such as caller-callee
relationships, type/object cross-
references, and compilation unit
caller-callee relationships

*Problems addressed: Provide a software tool for assuring that
the minimum required information is required
and provide a way of presenting the informa-
tion in alternative formats which will make
various types of errors or deficiencies
evident.

*Rationale: A PDL processor will permit designs to
be produced in an iterative fashion with
refinement as details become known and are
appropriate to the respective level of
design abstraction. This will permit
inappropriate details to be avoided and,
at the same time, permit designs to be
more complete and to be evaluated more
thoroughly.

C-2

- ' -- - - - "."."-.-. . .". "" "- . .. """ " -' ,'; ...- . .-." . . ." . ..". .-" "? '" "'

F

*.

APPENDIX C

SOFTWARE TOOL RECOMMENDATIONS, DESCRIPTIONS

C-1

.....

4) Prohibit instantiation of generics in which generic

parameters are dynamically determined such as those passed into a

block or subprogram.

13. Representation Clauses and Implementation Dependent Features

1) Encapsulate unchecked storage deallocation and assure

overwriting in order to eliminate residual data before

deallocation.

14. Input-Output

A Predefined Language Attributes

1) Prohibit use of attributes P'COUNT, P'CALLABLE,

P I'TERMINATED.

B Predefined Language Pragmas

1) Prohibit suppression of run-time checks within trusted

software.

C Predefined Language Environment

F Implementation-Dependent Characteristics

1) Minimize use of implementation-dependent features since

these features may change with compiler revalidation and thus

require redesign, reimplementation and retesting.

B

i B- 6

11. Exceptions

1) Return input or default values on out, and in out mode

parameters if an exception occurs and make no changes to these

parameters until all results have been calculated correctly.

2) Indicate via ANNA or other annotation which exceptions

are associated with which task entry or subprogram call. (Note

that associating except±ons with entry points may not be adequate

in the case where the same entry appears in multiple accept

statements and different accepts produce different exceptions;

this could be viewed as a design deficiency or could be addressed

by providing annotated instances of multiple occurrences of the

same entry point but with different exceptions.)

3) Prohibit use of predefined exceptions in place of user

defined exceptions.

4) Provide a specific unique exception handler respectively

for each unique exception which can occur.

5) Minimize propagation of exceptions by maximizing local

processing of exceptions.

6) Use others clauses in exception handlers only to capture

unexpected exceptions so that they can be dealt with explicitly

and explicitly enumerate predefined Ada exceptions.

7) Assure that a package body, and its respective task and

subprogram bodies, either remain valid after an exception has been

propagated outside the package or that future calls elicit a

suitable exception.

12. Generic Units

1) Use no generic formal objects of mode in out.

2) Prohibit aliasing of all generic actual parameters at

instantiation.

3) Prohibit declaration of generic parameters which are

subprogram specifications.

B-5

~FILMED

5-85

IDTIC

" ~~~....•.-.... -.- I -''.'

