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A B S T R A C T 

In this report, we study procedures for robust detection of slowly fading narrow­

band signals in nearly Gaussian noise, a common model for radar/sonar systems. 

For the classical quadrature matched filter test, we introduce an uncertainty about 

the envelope statistic and develop a robust test for this one-sample situation. It is 

demonstrated that this test is capable of protecting only against relatively weak contam­

inations. 

With uncertainty taken directly on the noise samples, we develop an estimation-

detection theoretic approach: the detection statistic preserves the structure of the qua­

drature matched filter, but in place of the linear sample mean, a minimax robust estima­

tor of the random amplitude is substituted. This test is shown to be asymptotically 

maximin optimal (in the sense of Huber) for a wide family of decision rules and for 

several common target signal models. In addition, the maximin bound on the desired 

detection probability is sufficiently large to be in the range of practical interest. 

This test is then extended to handle the important case of unknown power level. 

When noise reference samples are available, the extended test utilizes an adaptive thres­

hold, which serves as an estimator of the variance of the amplitude estimator under the 

noise-only situation. This version is shown to be maximin robust in the class of 

"Sliding-window" tests. Its implementation in the nominally Gaussian case is relatively 

simple, as it requires only a-trimmed estimators. When detection is to be performed with 

the signal-plus- noise observations only, scale invariance is achieved by coupling the 
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"location" estimators with a robust scale estimator. Here, only qualitative robustness is 

achieved. However, within various parametrized mixture families, the false-alarm (detec­

tion) probability can be bounded from above (below). 

Finally, Monte Carlo simulation results show that the asymptotic analysis accu­

rately predicts the small sample performance, down to n =16 samples. Moreover, the 

proposed tests substantially outperform the corresponding robust tests derived from the 

traditional weak signal assumption. 

-u-



Table of Contents 

1. INTRODUCTION 1 

1.1 Motivation and outline of the work 1 

1.2 Review of Huber's results for maximin testing of simple hypotheses 5 

1.3 Review and critique of robust tests based on weak signal assumption 8 

2.THE NARROWBAND SIGNAL AND NOISE DETECTION 
ENVIRONMENT 13 

2.1 Models and problem statement 13 

2.2 Performance degradation of the envelope detector in contaminated 

Gaussian noise 15 

3. ROBUST TEST ON THE SAMPLE ENVELOPE 23 

4. ASYMPTOTICALLY MAXIMIN ROBUST TEST 30 

4.1 Introduction 30 

4.2 Nonrandom signal amplitude 31 

4.3 Random signal amplitude 43 

4.4 Relationship with weak signal LORD 48 
5. ROBUST DETECTORS FOR REALISTIC ENVIRONMENT 51 

5.1 Sensitivity to unknown contamination ratio 51 

5.2 Extensions of the SSQME test for unknown scale of the nominal density 
56 

5.3 Unknown signal frequency and implementation complexity 74 

5.4 Finite sample simulation results 78 

APPENDICES 100 

A. Small sample performance of the sign detector 100 

B. An approximation for the distribution of the envelope detector 102 

C. The maximin test for a single observation 107 

D. Statistics of the SSQME test with unmatched frequency 110 

REFERENCES 113 

-in-





1. INTRODUCTION 

1.1 Motivation and Outline 

The classical theory of signal detection is based on a complete statistical characteri­

zation of the signals and interference that are typical of the environment. In many cases, 

especially for the adverse situations in which radar and sonar systems operate, this pre­

cise modeling is either prohibitive or impossible. Consequently, there is a strong motiva­

tion to study the design of detection procedures which are robust against deviations 

from the assumed statistical models. 

Following the fundamental work of Huber on robust estimation of location parame­

ters [1] and on robust hypotheses testing [2], extensive applications and further research 

have appeared in the communication and information sciences literature, of which refer­

ences [4]-[12] are a representative sample. Inspection of these references reveals that 

they are mostly concerned with lowpass deterministic (i.e., unknown but non-random) 

signals, except [9] which treats robust detection of weak stochastic signals, and [12] 

where results have recently been presented for deterministic narrow-band signals. How­

ever, the target signals that are received by radar-sonar systems (which are among the 

most important engineering applications of statistical detection theory) in typical 

environments, are represented by more complicated structures than those studied in the 

above mentioned references. These would include slowly fading narrow-band signals 

with random amplitude and phase, or range and doppler spread targets [14]. While an 

extensive detection-estimation theory exists for these complex models when both signal 

and noise are Gaussian narrow-band processes, c.f [13]- [15], robust detectors have not 

been devised for these signal structures. The results of [4]-[12] are not directly applicable, 

except for those of Shin and Kassam in [11] who proposed a rather ad-hoc robust detec­

tor for a Rayleigh narrow-band signal. 

The main purpose of this work is the design and analysis of robust detection pro­

cedures for coherent , slowly fading narrow-band signals l in nearly Gaussian noise. 

This is probably the most important case for modern radar-sonar systems that operate 
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Under the slow-fading model, the signal random amplitude and phase are essentially con­

stant over the observation period; while their distributions are assumed to be known, the 

average amplitude level is unknown. Unlike previous works [5],[7]-[10], and [12], where 

the objective was to robustify the local performance for weak signals, we seek a global 

solution which will be optimal for any signal amplitude. We achieve this through a 

different approach in which the detection test statistic is based on a robust estimation of 

the random amplitude. (A similar structure was proposed by El-Sawy and VandeLinde 

for the limited case of deterministic lowpass signals). This procedure is shown to be 

asymptotically maximin optimal in the sense of Hubej [2] within a very wide family of 

decision rules. 

Outline Of The Work 

Chapter 2 introduces the problem and presents a performance analysis of the com­

mon (unrobustified) quadrature detector under situations of contamination. Since in 

most practical applications even if the noise distribution is known its level is not, the 

adaptive threshold version of the detector is emphasized. Here, the test statistic is nor­

malized by the Maximum-Likelihood (ML) estimate of the noise level. While this test 

achieves the desired Constant False Alarm Rate (CFAR) property asymptotically, it is 

demonstrated that for small sample sizes the false alarm probability (P /„) can increase 

intolerably under contamination, in addition to a large decrease in the detection proba-

bility (Prf). 

In Chapter 3 we study a robust test on the "coherent envelope" of the observables, 

i.e., on the output of a quadrature matched filter which is the sufficient statistic under 

the purely Gaussian noise case. For this scalar statistic, extension of Huber's [2] robust 

test is straightforward. It consists essentially in finding the threshold setting and a ran­

domization constant under a least favorable noise distribution. However, it is found that 

in severe clutter (correlated noise) background, where coherent filtering ("whitening'') is 
unavoidable. 
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the proposed test can protect against contaminations that would have roughly doubled 

the Pja of the unrobustified quadrature receiver. Beyond that, the maximin bound on 

Pi decreases rapidly as a function of the contamination. Hence, this test is rather inap­

propriate for radar/sonar, where very low Pja is required, and the percentage contami­

nation (e) can be much larger than this probability. 

In Chapter 4 an asymptotically robust test is proposed and analyzed. The common 

large sample assumption is an unavoidable necessity in order to get explicit functional 

for the error probabilities, on which optimization according to a maximin criterion 

becomes possible. However, we abandon the weak signal assumption that has dominated 

the literature. By avoiding this assumption, we hope that the proposed test will be ade­

quate for the small sample sizes typical of radar/sonar systems. Hence, the proposed 

test statistic is derived from minimax robust ML estimation of the amplitude. This is 

achieved by applying Huber's [1] M-estimator of "location" to the quadratures samples. 

and then independence of the uniform unknown phase is obtained by summing the 

squares of these estimates, exactly as in the quadrature matched filter. This test is 

shown to be maximin robust for sufficiently large values of the desired Pd (in the range 

of practical interest) and for several common target signal models. Finally, the weak sig­

nal locally optimal robust detector for our problem is outlined, and is shown to be a 

local approximation to the derived M-estimation/detection structure. 

In Chapter 5, further uncertainties that must be considered in practical applica­

tions are studied. With regard to e in the mixture model [1], it is shown numerically that 

even a very pessimistic design with €=0.5 incurs a rather small additional loss compared 

to the case when e is known exactly. More important, the robust detector is extended to 

handle an unknown scale (power level) of the nominal noise density in the mixture fam­

ily, by coupling it with a robust estimator of the scale. While it is not possible to exhibit 

maximin properties of the extended test (as is always the case in multi-parameter prob­

lems [3]), it is shown numerically to be qualitatively robust in the sense that an upper 
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bound on Pja and a lower bound on Pj can be guaranteed within various parametrized 

mixture families. The latter bound is quite close to the Pd obtained by the optimal 

detector for the nominal Gaussian noise. When "noise reference" samples are available, 

a similar estimator-detector with an adaptive threshold, which serves as an estimator of 

the variance of the amplitude estimator, is shown to be maximin in the class of "sliding 

window" detectors. Due to its CFAR property for any noise distribution, the restriction 

for sufficiently high Pj of Chapter 4 is relaxed. 

Moreover, when the nominal noise is Gaussian, the M-estimators can be replaced by 

a - trimmed estimators, which are asymptotically equivalent in probability and simpler 

to compute. The same structure can be generalized for non-Gaussian nominal p.d.f. 

with the appropriate optimal robust L-estimators. (The problems of uncertainty in the 

scale/variance of the nominal density and in e have not been treated before in detection 

problems). Finally, the signal frequency which is also unknown in any realistic applica­

tion ( due to doppler shifts), is treated by constructing a bank of contiguous tests which 

covers the uncertainty range. It is shown that the detectability loss for signals whose fre­

quency straddle between adjacent such "filters", is asymptotically identical with that 

incurred by the usual periodogram (FFT) detector. 

The price that is paid for the improved capability is a substantial increase in signal 

processing complexity, compared to the linear FFT bank of filter-detector. However, the 

most demanding nonlinear processing required here consists of several levels of data 

rankings, and this operation is becoming possible for real-time radar/sonar applications 

with VLSI and VHSIC technology. 

The final section of chapter 5 presents a thorough Monte-Carlo study of the small-

sample performance of the various robust detectors. The simulation results show that 

the performance predicted by the asymptotic analysis of the "sliding-window" robust 

detectors is essentially maintained even for sample size = 16, in guaranteeing a high 

lower bound on the detection probability as well as in controlling the false alarm-level. 
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When noise-reference samples are not available, somewhat larger sample sizes are neces­

sary for convergence to the asymptotic prediction. In addition, the corresponding weak-

signal locally optimal robust detector is shown to produce high losses for small desired 

Pfa and large deviation of the signal frequency. These losses are attributed to poor con­

vergence to the Gaussian distribution as a result of hard limiting on the test statistic, 

when the signal is sufficiently large to allow high detection probability. On the other 

hand, our proposed tests limit the influence of outliers around the arbitrary signal 

amplitude, and converge rapidly to the asymptotic values. 

As a consequence of the asymptotic analysis and simulation study, our tentative 

conclusion is that the proposed robust detectors emerge as quite adequate for success­

fully treating most of the important uncertainties that are encountered in the real-world 

radar-sonar detection environment. 

1.2 Review of Huber's Results for Maximin Testing of Simple Hypotheses 

Huber [2] considered and solved the following problem. Let (i,- },"=1 be a sequence 

of independent random variables, and let {P0,.Pi} be distinct probability measures on 

the real line with the corresponding densities {/ 0,f i} with respect to some measure. 

Assume that the likelihood ratio (LR) / i(x)// 0(x) = L (x) almost surely, where L(x) is 

a monotone function. 

Let M be the set of all probability measures on the real line and 0 < e < l a given 

number. The uncertainty in the distribution of the observations is introduced by 

expanding the simple hypothesis P0 and simple alternative Pi into composite ones by 

a mixture model-

#o : Po = {QeM\Q=(l-€)P0+eC0, C0EM} (1.1a) 

Hi- ?l = {Q&A\Q={\-€)Pl+tCl, CX&A) (1.1b) 

Actually, Huber's setup is more general, it allows also the following neighborhoods 

of the nominal model: total variation, Prohorov distance, Kolmogorov distance and L'evy 



I 

distance. Moreover, different e,- are allowed in the //,•. 

The problem is to find the most robust test in the maximin sense between P 0 and 

P 1 ( i.e., to find a saddle-point pair of test d *(x)€D, where D is the class of all decision 

rules, and distributions g,*€M such that 

sup &d,q[) = W,q[) = inf P{d* ,q) , (1.2) 
rfeb jePi 

subject to 

sup a(d,q) = o(</*,go) = <*o ( L 3 ) 

?€P 0 

Here, /3{d,q) is the power of the test (detection probability) at density q: 

&d,q) = Prob{d{y)=Hl\Hl is true (?GPi)} (1.4) 

and a(d ,q) is the level (false alarm probability) 

a{d,q) = Prob{d{x)=Hl\H0is true {qe~P0)} (1-5) 

The meaning of the criterion is clear- d * is the best Neyman-Pearson (NP) decision rule 

for the lest-favorable pair {<7o,<7i }• 

As Huber showed, the most robust test is a NP test on the pair 

1o = 
( l - e ) /o (* ) L{x)<L' ' 

(1.6) 

ai-e)Ji(x) L{x)>L' 

«i = l(l-e)L' /„(*) L ( . ) < £ ' ^ 

The numbers Z-' and V ' are determined such that <7Q a n d <7* are legitimate density 

functions. 

For € sufficiently small (a condition which is equivalent to disjointness of P 0 and 

Pj) the normalizing equations have a unique solution with 0 < L ' <Z/ ' <oo. The LR 

between #o a n ^ Qi is thus given by "soft-limiting" the nominal LR to-

l(x;L' ,L< ' ) 

V when L{x)<L' 

L{x) when L' <L{x)<L' ' (1.8) 

L> ' when L{x)>L' ' 
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n 
and a maximin robust test is a randomized NP test on T (x) = f j /(i,- ;L ' ,U ' ): 

»"=i 

d'{x)=\ 
Hi for T(x) > f 

Hl with probability c for T(x) = £ (1.9) 

# Q for T(x) <t 

The quantities t and c are determined from the right side equality in Eq.(l.3). Note that 

in general the test must be randomized for arbitrary ap since T(x) takes its values at 

the limiter end-points with finite probability. 

It is interesting to point to some peculiarity in the result. The least-favorable densi­

ties are constrained by (1.6-1.7), and in particular the contamination Cx can not be 

related in any other way to C0. While this is reasonable in a game situation against an 

intelligent opponent, it seems unlikely for signal detection problems where the uncer­

tainty in P x is induced by that in P 0 and is not affected by the presence or absence of an 

additive signal whose characteristics are assumed to be known. For example, in a "loca­

tion shift" problem (H0:x,- =n,-, / f 1 : a r ,=n ,+a ) we would like Px to be the class of all 

distributions that are shifted to the right by a from those in P 0 , and specifically 

q *(x )=<jfo (x-a), which can not also satisfy (1.6-1.7). Thus, it is suggested that a 

better solution might exist for this physical formulation of the problem; unfortunately, it 

is unknown 1. The asymptotic reformulation in section 4 essentially avoids this peculiar­

ity. 

It should be emphasized that Huber's proof of optimum robustness relies heavily on 

two assumptions which are not valid for the problems that are considered in this work: 

a) HQ and H1 are simple hypotheses- P0 and P^ do not include any unknown (relevant 

or nuisance) parameters. b)the observations are independent r.v.'s. 

Private communication with P. J.Huber,12/1983. 
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1.3 Review and Critique of Robust Tests Based on Weak Signal Assumption 

Often in detection problems, the true value of the signal amplitude A is small but 

otherwise unknown. In such cases it is plausible, mostly as a theoretical nicety which 

permits an analytical (and usually quite simple for implementation) solution, to employ 

the locally optimum detector (LOD) structure. This is the detector structure which 

maximizes the derivative of the power function (detection probability) at A = 0 , for a 

given test level (probability of false-alarm), [25]. Under suitable regularity conditions on 

the densities, the LOD is identical with the detector which is obtained by taking the 

leading term of a series expansion for the likelihood-ratio in powers of the SNR around 

zero [26]. It also maximizes Pitman's efficacy [27] which is a suitable weak signal measure 

of performance, when the number of the observed samples n —KX>. 

The weak signal local optimality criterion was first extended to problems of robust 

detection by Martin and Schwartz [4], and has been widely applied since then, c.f. 

[5],[7]-[10],[12]. Instead of seeking a maximin relation on the detection probability as in 

Eq. (1.2), it was proposed in [4] to design for an asymptotic (n —KX>) maximin relation 

on the slope of the power function at A = 0 : 

sup/31 (d.qS) = ft (d'.qS) = in/ft (d* ,q0) (1.10) 

where ft {d,q)———/3(d,q | A ) | ^ = 0 and subject to the false-alarm constraint of 
dA 

Eq. (1.3). The interpretation is that d* is the LOD for the least-favorable density q$. 

This criterion has resulted in all the above mentioned references in a limiter -correlator 

structure: the locally optimal non-linearity of the LOD receiver is robustified against e -

contamination by inserting a soft limiter at its output and then correlating the non-

linearly transformed observations with the known signal sequence. This will be denoted 

in the following as LORD - LO Robust Detector. 

The performance of LOD schemes is commonly evaluated using asymptotic meas­

ures such as the Asymptotic Relative Efficiency (ARE), which requires both the assump-
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tions of large n (to satisfy the central limit theorem) and vanishingly weak SNR. In any 

practical engineering application, the number of samples must be finite l and thus the 

input SNR must be reasonably large to obtain meaningful detection probability. It fol­

lows that LOD schemes might perform poorly in practical applications. Several exam­

ples of peculiar and very slow convergence of the finite sample RE to the ARE, can be 

found in [28]-[31]. These references include examples where the finite-sample/large-signal 

ranking of detector performance are actually different from ARE prediction. Another 

new example is given in Appendix A. The large SNR performance of the LOD would be 

extremely poor when the test non-linearity redescends or even vanishes except for some 

region around the origin, i.e. / ( x ) = 0 V | x | > c . In these cases we will obviously get 

lim /3—>0, in contrast to the desired consistency of the power function with increasing 
A >>c 

SNR. This situation was actually obtained in [10]. In principle, this undesired property 

of LOD designs might be corrected by switching between two detectors, where one of 

them is the LOD and the other one is some amplitude-consistent detector. The switching 

should occur as a result of a threshold crossing by an estimator of the signal amplitude 

A . This estimator must obviously be robust against deviations in the assumed noise 

model to prevent incorrect switching. While this heuristic proposal has not been 

analyzed , it does suggest that an optimal robust detector should be based on a robust 

amplitude estimator, as will be studied in section 4. 

Inherently, the LORD scheme is subject to the same consistency problem. In addi­

tion, investigation of the previously mentioned references reveals that they all exhibit 

one or more of the following peculiarities and shortcomings: 

In radar-sonar systems, n is directly related to the total search time of the desired sec­
tor, to the desired maximum non-ambiguous detection range, and to the spatial resolution 
of targets. Moreover, the detectability of coherent signals is (asymptotically) governed 
by the average integrated SNR =nA /2cr . Since transmitters are usually constrained 
by the average rather than peak power, it is only the product nA that matters and im­
proved detectability can be obtained by increasing A as well as n. Hence, in view of the 
other system design goals that were mentioned in the beginning of this note, n is usually 
in the range 1-100, and even in 1-3 samples for very long range systems, in contrast with 
the common theoretical assumptions. 
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i) The support of the contaminating density c in Eq. (1.1) is restricted to lie 

exclusively on the exterior of some interval [ - i i , i i ] , c.f. [9]. This might not be a 

severe limitation since the greatest deterioration in performance of the conventional 

detectors occurs for contaminations that are in the far tails of the nominal density. 

ii) The nominal density itself is not a member of the mixture family P0 in which a 

least-favorable density is sought, but rather "close" to it in some measure, c.f. [12]. 

iii) The test is maximin robust only for a>a(e), which is roughly in the range 0.05-0.2, 

c.f. [4],[5], and [7]. Hence, no robustness is guaranteed for the most important range 

of small a: lO^-lO - 8 ! 

It is clear that the maximin relation (1.10) is neither sufficient nor necessary for 

obtaining the desired maximin solution in terms of the detection probability itself. Since 

Eqs. (1.2) and (1.3) are contradictory in nature when A can take any value in some inter­

val, the most that can be expected from the LORD approach is as shown in Fig. 1.1: the 

shaded region on the 0 axis indicates the a's obtained for the optimal detector for any 

density q0 in the mixture family; the slope of any p\q^ at A = 0 agrees with (1.10) and 

(1.2) is satisfied for all signal amplitudes that are greater than some critical value : 

A >AC or equivalently /?>/?e . 

However, the power function of a LORD could as well behave as shown in Fig. 1.2 

where (1.3) and (1.10) are satisfied, but the curve of 0{qo) dominates that of /S(q0) V 

A > 0 and V?o£Po- (Other situations are also possible). Nevertheless, if V?o£Po *he 

distance between the curves in Fig. 1.2 could be made sufficiently small, i.e.-

I /#(^*!?o)_/2(^*>?o) | <t>{€><*o,A )—•O, the detector would be practically robust, though 

not in the most general maximin sense. (In that case, g^ actually becomes the most-

favorable density for the detection probability !) 

Closer study of the structure of all the LORD tests in the above mentioned refer­

ences reveal that implicit in all of them is a "robust estimator of zero amplitude" -i.e., 
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the test is actually based on an approximation of the leading term in the expansion of an 

appropriate version of Huber's robust estimator in a power series around zero amplitude. 

This observation establishes another motivation for the asymptotically robust test of sec­

tion 4 which utilizes robust estimation of the amplitude without any small signal approx­

imation, and thus essentially avoids all of the above mentioned problems. 
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/9(d*,q) 

a(d*,(f) 
a(d*,q)-

Fig . 1.1 Qualitative power function curves for a desired maximin robust detector 
of signal with unknown amplitude. 

£(d*q«) 

Fig . 1.2 Qualitative power function curves for a locally-optimal robust detector 
which is not maximin with respect to the detection probability. 
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2. T H E N A R R O W - B A N D S I G N A L A N D N O I S E D E T E C T I O N 

E N V I R O N M E N T 

2.1 Models and Problem Statement 

The problem to be considered is that of robust detection of a slowly fading 

narrow-band signal with unknown phase and amplitude in nearly Gaussian narrow-band 

noise. This signal model is typical of most coherent radar targets [13] and also appears in 

some sonar problems and also in communication over tropospheric links [14]. 

Specifically, the discrete signal plus noise samples that are observed at the systems 

input terminals are 

Z{ = Asi cos((jJti + <j>) + n,- ,i = l,...,n (2.1) 

The «,• are narrow-band noise samples around the known1 center frequency w : 

n,- = nc cosojt - ns sinut (2.2) 

{nc,ns} are assumed to be zero mean, independent 2 and identically distributed (i.i.d) 

random variables (r.v.), from a nominally Gaussian e -contaminated mixture : 

/ ( n c , n s ) = n / o K U o K ) (2-3) 

where 

1 -x2 

f o K , = x ) = / oK, = x) = (1-e) j — exp(——) + ec(x) ,c € M (2.3a) 

<j> is the unknown signal phase which is common for all samples (coherent detection) 

and uniformly distributed over [0,27r]. It does not convey any information on the target 

and is thus a nuisance parameter which has to be averaged out. {«,- }"=i is a sequence of 

known, positive, finite-energy amplitude modulations 3. The amplitude A which is also 

The case of unknown doppler shift will be treated later by the usual "bank of filters" 
approach. 

Notice that sample -to -sample independence either excludes the common situation of 
detection in correlated clutter, or it corresponds to a sub-optimal scheme where the ob-
servables 2,- are obtained by pre- whitening the input sequence. 

Known phase modulations can be introduced without much complication. 
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constant for all the observed samples will be considered in the sequel as either deter­

ministic but unknown or random with some known distribution of unknown scale. 4 

It is well known, c.f. [13], that in the purely Gaussian noise case (e = 0), a uni­

formly most powerful (UMP) test, independent of the amplitude being deterministic or 

random with an arbitrary distribution, is equivalent to a threshold test on the "coherent 

sample envelope" R (x,y) : 

fl(x^ = ( E W + (£>,• *,-)2 (2-4) 
i = l t = l 

where the in-phase and quadrature samples are obtained by applying the input to a pair 

of lowpass mixers: 

Xi = 2ZJ cosut | IPF = Asi cos(j> + nc (2.5) 

t)i = 2zism(jjt | LPF = v4s,-sin<^ + ns (2.6) 

Since the quadrature components are obtained by a reversible operation, they are 

equivalent statistics for the problem, which can thus be reformulated as: 

(2.7a) 

(2.7b) 

It is desired to obtain a maximin relation like Eq. (1.2) for all A >AC (recall the discus­

sion in section 1.3) subject to the false-alarm constraint Eq. (1.3). 

Direct application of Huber's [l] solution for this problem is inappropriate since the 

samples under H1 are actually dependent due to the common random phase </>, even 

when A is deterministic and known. However, a "naive" extension of Huber's test is pos-

H0: < 

Hv ' 

*i = "e,-

Vi = *».,-

Xj = nc. + A S; cos<j) 

Vi — ns + As,-sin^ 

These slow fading assumptions correspond to common radar targets whose cross section 
(RCS) fluctuates with a correlation time much longer than the "blip" duration nT, T = 
intersample period, but much shorter than the scan-to- scan period. This is a most fre­
quent situation [13]. 
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sible if one considers <f> as a non-random but unknown and adopts an "estimation-

detection" procedure. A set of M —KX> tests is performed, where the j& test is matched 

to <J>J=J/2TTM and its objective is a decision about the presence of a signal 

of phase <f>j. Each of the individual tests is then of the correlator -limiter type found 

in [4], but the limiter break-points are now functions of the s{ and also of (j>j. Since 

phase information is irrelevant, the final decision can be reached by accepting Hj if at 

least one of the individual tests has accepted it. 

We have not studied how many parallel tests have to be performed to achieve 

acceptable performance with arbitrary signal phases between the adjacent "filters". It is 

conjectured that it might be prohibitive, especially when the doppler shift is also unk­

nown so that a two-dimensional "filter-bank" (phase, frequency) has to be constructed. 

In the absence of any optimal procedure of design for the finite sample problem, 

we suggest to weaken somewhat the requirements. We will do that in section 3 by 

assuming that the observable is only the envelope statistic of Eq. (2.4) rather than the 

original quadrature samples. We can then construct a most robust test against the 

uncertainty in the distribution of that scalar statistic. 

In section 4, we will extend the asymptotic estimation-detection approach of El-

Sawy and VandeLinde [6] to our problem, utilizing some of Huber's [l] results on robust 

estimation of a location parameter. It is shown that if A is replaced by a robust 

minimax estimate, the resulting test statistic has a limited robust property. 

2.2 Performance Degradation of the Conventional Envelope Detector. 

In this section, the degradation in performance of the envelope detector of Eq. 

(2.4), (which is the UMP detector for slow fading narrow-band signals in narrow-band 

Gaussian noise) will be analyzed when it operates in a background which comes from a 

Huber-Tukey mixture family. The decrease in detection probability as well as the 

increase in false alarm probability are of interest, where the latter is of an extreme 
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importance in an automated search system. These results will serve as a basis for com­

parison with the performance of the robust detectors that are developed later in this 

work. 

Radar and sonar systems usually operate in a highly non-stationary and non-

homogeneous noise background. Except for the receiver thermal noise which is station­

ary and Gaussian, the statistical properties of interference that is the outcome of exter­

nal sources, (such as clutter reflections from ground sea or aerial objects in the radar 

environment, or ambient noise and reverberations in the sonar case [14], [22]), rapidly 

change in time and space. Therefore, even when the Gaussian assumption is adequate, 

the fixed threshold detector based on the envelope statistics of Eq. (2.4) is of little value, 

since its actual false-alarm rate will fluctuate intolerably according to the changes in the 

background noise level. A common adaptive detector for these situations, which is 

invariant to the power level of the background noise, compares the envelope statistics 

from the "test-cell" with an adaptive threshold derived from a "noise-reference" chan­

nel. Specifically, {X,Y} represent the narrow-band observation samples in the 

hypothesis-testing cell, {U,V} are the noise-reference samples which are assumed to 

have the same distribution as that of { X , Y } under H0. The adaptive test is: 

d(x,y,n.w)=H1 iff R ( x , y ) > W ( u , v ) (2.8) 

where 

R=I2+Q2; / ( x ) = l £ s , - ; Q ( y ) = - E y , - (2.9) 
" » = i » i 

W(u,v)=jjE(U?+V?) (2.10) 

n » = i n » = i 

The threshold multiplier t is determined as to achieve the desired false -alarm rate. 

(Notice that there are M reference vectors for the test vector, all of dimension n). 

In search systems where a target presence is to be detected in some spatial sector, 

the noise reference samples are easily obtainable by applying the same signal processing 
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of the hypothesis testing channel to adjacent resolution cells in range, doppler or bearing 

coordinates, c.f. [18]-[20]. This detector is known as the Cell- Averaging CFAR(CA-

CFAR) , Mean Level Detector(MLD), or Sliding Window Detector (SWD). When the 

number M of reference samples grow asymptotically, its performance approaches that of 

the UMP detector for the fixed-variance Gaussian noise. Its structure is also almost 

identical with that of a narrow-band version which can be derived from the Two-

samples^.e., noise-reference) Students-t detector [21], which has some optimum proper­

ties among unbiased and invariant tests for detection in Gaussian noise of unknown 

level. (In the extended t-test, the noise variance is estimated from both the test and 

reference samples in contrast to (2.8). However, the difference in performance is quite 

small when M is sufficiently large, and the structure of Eq. (2.8) enables "sliding-

window" (SW) operation where R as well as Uf+V? are generated sequentially by the 

same hardware during the search). 

In the following we assume that the background interference has an epsilon-

contamination mixture density, where the nominal as well as the contaminating densities 

in Eq.(2.3) are Gaussian: / =(l-e)iV(0,l)+eiV(0,c2). The performance of the detector is 

discussed first when the number of samples n is asymptotically large, and secondly for 

the finite sample case. 

a) n —*oo 

When n is asymptotically large, all the quantities I, Q, Uj, and V; of Eqs.(2.9)-

(2.11) are Gaussian random variables. Hence, it is obvious that this detector is asymptot­

ically nonparametric under the null hypothesis; i.e., it is CFAR for any probability den­

sity of the input test and reference samples for which the central limit theorem holds. 

Under the alternative, for a Rayleigh distributed slow-fading signal the detection-

probability of this detector is uniquely determined by the integrated Signal-to-Noise 

ratio (c.f. [18], [20]): SNR =nA 2/2<r2. Since <r2=(l-e)+ec2 , it is clear that even a small 

amount of high power(c2) contamination can reduce the effective SNR by orders of 
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magnitude, thus spoiling detectability completely. 

b) Finite n 

With regard to the detection probability a similar behavior as above is to be 

expected, as it is not significantly affected by the tails of the distribution. However, it is 

no longer true that the detector remains CFAR for moderate and small sample sizes. 

Since in practice radar-sonar systems are designed for very low false alarm probabilities, 

it is the tails of the distribution of the test statistics that counts, and even a slight devi­

ation from Gaussianity of the input samples will suffice to substantially increase the area 

under the tails. 

In Appendix B, an approximation is derived for the distribution of the coherent 

envelope R, which approaches the desired one-sided exponential distribution for large 

n. * The approximation is based on an expansion of the distribution in a series of ortho-

normal Laguerre polynomials, where its leading term is (with proper normalization such 

that E(R)=1) the Gamma density 

a -aR pa-l 
f(R)= ' f , A > 0 (2.12) 

where a=(l+A;/2n)_ 1 and A; is the kurtosis of the input samples. This is given for a 

Gauss-Gauss mixture by 

it = E(x*) _ 3 = 3<E(1 - e) 

Notice that when e —• 0 but ec2 » 1, k —• 3/e » 1. Table 2.1 demonstrates 

that k can be very far away from zero for a Gauss-Gauss mixture, thus a is also much 

smaller than 1 leading to higher false-alarm probability. 

c 2 - l 

1 - £ + ec' 
(2.13) 

1 Actually, an exact analytic expression was derived for the special case of a Gauss-
Gauss mixture, but it was found to be very difficult to compute numerically. 
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€ C 

0.001 
0.02 
0.1 

3.162 
.238/.992 
2.02/.941 
6.06/.841 

10 
24.3/.568 
73.5/.303 
22.37.589 

31.62 
748.5/.041 
245.4/.115 
26.477.547 

Table 2.1. Kurtosis(left entry) and a (right) , Gauss-Gauss mixture, n=16. 

Figures 2.1 thru 2.5 depicts the false alarm probability vs. the threshold multiplier 

t, where t is set according to the Gaussian assumption. In each figure, the graphs 

marked "known sigma" corresponds to the adaptive threshold detector of Eq.(2.8) with 

M —K>O; in that case the variance estimation is error-free and the detector is identical in 

performance to the UMP detector for the known variance case. The graphs marked " 

e=0" give Pja when the input is indeed Gaussian. In all figures, n=16 and M = 8 . This 

is sufficiently small for poor convergence to Gaussianity of the sample means in the tails, 

but is representative of the number of samples actually employed in most systems. The 

adaptive-threshold curve with e=0 was computed from Pfa=(l+t/M)~~M, c.f. [18], [20]. 

The Laguerre approximation was computed only for the M —»-oo case, since for the adap­

tive threshold test no similar approximation is possible. 2 The squares were obtained 

from a Monte-Carlo simulation; it is observed from the figures that the Laguerre approx­

imation is quite reasonable and agrees closely with the simulation results in its region of 

low variance(roughly the reciprocal of the number of runs in the simulation). The main 

conclusion from the figures is that the increase in Pja is very high, for desired values of 

10~4 and lower whenever a<0.9, and that this deterioration is ordered in correspondence 

with the deviation of k and a from their values at the Gaussian density. This increase in 

Pfa is much more severe for the adaptive-threshold detector with finite number of refer­

ence cells; in Fig. 2.5, for example, the threshold setting for 10"6 at the Gaussian pro­

duces about 310 - 2 at the contaminated mixture. 

Since it is not possible to obtain analytic expressions for the moments of the ratio R/W 
of Eq. (2.8). While it is possible to derive a similar approximation to the distribution of 
W and then to integrate numerically Pr{R>tW}, this approach was not taken. 
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3. ROBUST T E S T O N THE SAMPLE E N V E L O P E 

When non-contaminated hypotheses contain nuisance (vector) parameters 6X with 

known distribution they are actually simple hypotheses, and the optimal test is a 

Neyman-Pearson test on the likelihood ratio of the averaged densities: 

L (x) = Etl[f i(x | < y / £ , J / 0(x | •„)] (3-1) 

An attempt to incorporate averaging into the proof of optimality of Huber's test fails 

due to the fact that the marginal density is in general not a product of densities of the 

n 

components i,-: E9[f (x | 0)} j ^ Ft Es[f (i,- | 6)\, unless n = 1. When n — 1, the 
> = 1 

structure of Huber's test extends to the case where there are nuisance parameters; the 

only correction needed is to replace L (x) of section 1.2 by L (x ) = Eg[f i(x \ $)}/f 0(x), 

provided it is a monotone function of x . 

Therefore, in the absence of an optimal procedure for the design of a robust test on 

the original observables {z,-, y,- J/L^ of Eq. (2.7), it is proposed to weaken the require­

ments and to consider instead a most robust test on some scalar statistic. Since for 

e = 0 the sample envelope R (x, y) = (£] x,)2 -I- (]T] y,)2 is a sufficient statistic for the 

problem, and its distribution is independent of the phase, it is natural to try to robustify 

a test based on R . 

Thus we will consider the modified problem: 

P0={q(R)eM\q(R) = {l-e' ) f 0(R ) + e' c0(R), c0 6 M} 

P x = {q (R ) 6 M \q (R ) = (1 - e' ) / X(R ) + e' c X(R ) , c x € M} 

where e' is the amount of contamination on the envelope R. ^ ' 

' ' If one knows how to find e,- of the original observables (by physical reasoning, estima­
tion or guessing), he should be able to apply his procedure for finding e' . Nevertheless, 
it can be verified that if the uncertainty in the measure is given by a mixture model, non­
linear operations on random variables do not change e and summation of n i.i.d. contam­
inated r.v's results in e„ = 1 - (1 - e , ) n , from which we get c' = 
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We now apply this approach to Gaussian contaminated quadrature noise com­

ponents and Rayleigh distributed signal amplitude.^ It is well known [13] that the nom­

inal densities are given by: 

fx{R\A )=af exp[-<T?{R +n2A2)}I0(A x / F /<r2) , R > 0 (3.2) 

/ i (£ )=EA [f i(R I A )H<7J ( l+5„ ^expi-R /*$(1+SU )] , R > 0 (3.3) 

where <r2=Ef o(n
2)=Ef 0(n

2), (Tg =2TKT2,S =A Q /2(72 is the input signal to noise ratio 

under the nominal conditions, A0
2 =E{A2) and Sn =nS. 

The least favorable pair is given by Eqs.(l.6-1.7), with / X(R) from (3.3) and / 0(R ) 

by the same expression with Sn = 0, and 

L(R)=(l+Sn)-
1exp(KR) , R > 0, K ±Sn/a$(l+Sn) (3.4) 

As L (R) is monotone, an equivalent test statistic is 

a2rf
 f R <<r%r> 

T(R)=- R , a%r> < R < a%r" (3.5) 

. CFRr ' R > air" 

where the limiter breakpoints are found by solving the normalization equations (C.2-C.3) 

of Appendix C. These equations yield 

exp[-^ ( i+S B r 1 ] -Kl+$ . r 1 exp[» ' S„(l+S„)-1][l-exp(-r ' ) ] = ( W )"! (3-6) 

l-expf-r' ' )+(l+5„)exp[-r ' ' S„ (1+S„ r ^ e x p h r ' ' ( 1 + 5 . ^ = ( 1 ^ )_1 (3-7) 

It is shown in Appendix C that the resulting maximin test can take three different 

forms, depending on e and the desired a0. Roughly, when e/a0 is large, it is a random­

ized test where Hi is decided with probability c < 1 if R >t. For intermidiate values of 

e/aQ, it is a deterministic threshold test on R , and for small values, H0 is decided with 

probability c, if R <t. Equation (3.7) is explicitly solved by 

(2) This correspons to Swerling I target model [17], which is a very good description of 
the radar cross section (RCS) fluctuations for microwave frequencies, where the target size 
is much larger than the wavelength so that the quadrature components are due to sum­
mation of many independent reflectors and the central limit theorem holds - [13]. 



25 

r " = l n [ S „ ( l - 6 ' )/e' ] (3.8) 

while solutions for the first one can be found numerically from the set of solutions 

{o < 1} of 

Sna+a-J*=(l+Sn)(l-e' Y1 , a=exp[-r' (l+Sn) \- i i (3.9) 

Table 3.1 shows the values of the "sufficiently small" ec' for which P 0 and P : are dis­

joint and the maximin test exists {V (e' )<V ' (e' ),\/e' <ec' ). These are given as a 

function of the integrated signal to noise ratio Sn, the natural measure of distance 

between the hypotheses for this problem. 

Sn 

<. ' 

10"2 

3.5 10-3 

IO-1 

4 • 10~2 

1 

.2 

10 

.42 

102 

.49 

103 

.498 

oo 

.5 

Table 3.1 Values of critical contamination ec' vs. integrated nominal signal-to-

noise ratio Sn = nE (A 2)/2<r2. 

A suitable measure of performance of a robust test is how far is the lower bound on 

the power /3{d*, q*), from the power of the Neyman-Pearson test for e= 0 , f3Q. For 

our problem f3Q = aQ " , and using (3.7) with (C.7) and (C.15) of Appendix C, we 

get 

W,q') 

( i - € ' ) 5 " / ( 1 + 5 J K - * ' ) 1 / ( 1 + 5" 

<*0 

l + 5„ 
1-e' 

* e' 

e' < 

c' > 

Snc*o 
l + Sn 

Sn<*0 

1 + Sn 

(3.10) 

The different expressions correspond to cases b) and c) in the appendix. The last one is 

valid for those desired values of a0 when the limiter is "effective" and one must resort to 

a randomized test, which in turn causes faster decrease of the power curve. Case a) of 

the appendix is never applied in this Rayleigh signal example, as it was found numeri-
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cally that it corresponds to false-alarm probabilities higher than 0.5. 

Figures 3.1 - 3.2 depict fl(d* ,q*) versus e' for different values of e' and Sn . All 

the graphs are clearly characterized by a sharp "knee" at e' £&a0Sn /(1+Sn) <=& a0, such 

that when e' is larger than this critical value the power of the test deteriorates rapidly. 

Notice that even an increase of orders of magnitude in the effective signal to noise ratio 

Sn does not help to alleviate the problem. The figures also show the false alarm proba­

bility of the optimal detector for the uncontaminated case , when it actually operates in 

a worst-case contamination under H0: a{N.P. ,w.c. )=a0(l-e' )+e' . (Under Hx the 

worst case power is ( l -e ' )/?0 which is insignificantly lower than /30 for the small d s con­

sidered). 

Thus we conclude that the proposed test can protect against contaminations which 

would have roughly doubled the false alarm probability of the Neyman-Pearson test 

(e' <^2a0). Beyond that, this protection is achieved at an intolerable price of decrease of 

the power. In radar applications, a0 is very small and its variation is significant only for 

an order of magnitude changes. Thus the test proposed in this section is not very useful 

in many practical situations. 

A somewhat similar robust detector for a Rayleigh signal in nearly Gaussian noise 

was recently studied by Shin and Kassam [11]. Motivated by insight gained from the 

structure of various robust detectors, they suggested inserting a limiter-squarer non-

linearity at the outputs of the in-phase /=£]:£,• and quadrature Q =Y^Vi channels, 

summing the outputs and comparing to a threshold. The amount of limiting was optim­

ized numerically and the performance was analyzed. Comparing Fig. 6 of [11] with Figs. 

(3.1)-(3.2) here, it is observed that the scheme of [11] is somewhat better. However, the 

numerical analysis of [11] was carried out only for the range £ < a0, and it is not known 

whether the performance degrades further when e is orders of magnitude higher than 

a0S
3^ At the least, this comparison demonstrates that it is advisable to "push back the 

' ' Private communication with the authors. 
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limiting" (or more precisely, an adequate censoring of the outliers as will be clear from 

Chapter 4) as far as possible from the threshold comparison point to the original observ-

ables. 
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Figure 3.1 a) False alarm probability that would have resulted when worst-case con­
tamination is applied to the UMP test for purely Gaussian noise, vs. e. b) Maximin 
bound on the detection probability vs. e. a0 = 1(T* 
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Figure 3.2 a) False alarm probability that would have resulted when worst-case con­
tamination is applied to the UMP test for purely Gaussian noise, vs. e. b) Maximin 
bound on the detection probability vs. e. a0 = 10" 

| <x(NP,W.C.) ao"K)"2 
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4. ASYMPTOTICALLY MAXIMIN ROBUST T E S T 

4.1 Introduction 

In this section a test will be derived which is asymptotically (n —• oo) most robust 

in a maximin sense. In a following section, we will show by means of simulation that 

this test maintains its performance even for small sample sizes. 

Utilizing some of Huber's [l] results on robust estimation of a location parameter, 

El-Sawy and VandeLinde [6] derived an asymptotically most robust test for the problem 

of detecting a completely known signal in additive noise of uncertain distribution. A 

similar approach is possible (and turns out to be optimal) for the problem formulated in 

Section 2.1. We observe the similarity between the narrowband slowly fading coherent 

signal and the lowpass deterministic signal: for a given received sample {X, Y}, A cos<j> 

and A sin<f> are essentially unknown location parameters for the quadrature signal com­

ponents. Moreover, in purely Gaussian noise the unknown phase (which is a nuisance 

parameter) is "averaged out" in the UMP test statistic R = I2 -f- Q2, where / and Q 

are the sample-means of the in-phase and quadrature components of the narrowband 

observations. / and Q are the Maximum-Likelihood estimates of the component loca­

tions and thus R is a good estimate of the amplitude (squared) which is the "true" 

parameter of the problem, i.e., the one that distinguishes between HQ and Hv 

Building further on insight gained from the UMP statistic R, we observe that in 

the purely Gaussian case the detection probability f3=EAE^Prob {R >t \ A ,</>} is 

analytically tractable as a result of the unbiasedness and Gaussianity of / and Q under 

both hypotheses. Since in order to exhibit a maximin property for a composite testing 

problem, it is necessary to obtain analytical expressions for the error probabilities func-

tionals, it appears natural to preserve the structure of the R test, but to replace the 

sample-mean estimates with robust estimates of the locations {A cos</>, A sin<f>}, which 

will have the following properties. The estimates should be: 
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i) Shift invariant (or unbiased) for all n . 

ii) Efficient and consistent. 

iii) Asymptotically Gaussian. 

iv) Possess the minimax property on the estimation variance (which is translated 

into the effective SNR when iii is valid). 

v) Maintain the above properties for medium and even small n . 

Huber's M-estimator [1], and the a-trimmed mean estimator (when the nominal 

p.d.f. is Gaussian) have all these properties. This facilitates the proof of maximin 

optimality of the proposed test when the amplitude is non-random. For random ampli­

tudes which are of more interest in practical applications, the expectation of the detec­

tion probability over the amplitude must be taken. It turns out that for the most fre­

quently used target model in radar applications (Rayleigh amplitude or Swerling case I), 

the maximin property of the proposed test is only "almost" preserved (recall Fig. 1.2), 

but it is maintained exactly for a higher order chi-squared amplitude model. (Rayleigh is 

first order while constant amplitude is the limit of the chi-square family when the 

number of degrees of freedom tends to infinity). 

For the sake of continuity and convenience in the exposition, we will begin with the 

non-random amplitude case, and then move to the more realistic random amplitude 

models. Throughout this section the amount of contamination e in the Huber-Tukey 

model, as well as the variance of the nominal p.d.f., are assumed to be known. These 

strong assumptions which are inherent in previous work on robust detection [4]-[12], but 

are rarely satisfied in practice, will be relaxed in Section 5. 

4.2 Non-random Signal Amplitude 

Before presenting the test, we need some definitions. Define a class of functions ^ 

on R1 such that {L , / } 6 * if: 

(4.1) 
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1) L is convex, symmetric about the origin and strictly increasing for positive argu­

ment. 

2) l(x) = dL Idx is continuous. 

3) for all q 6 P0, 0 < Eq \l\x)\ < oo. 

4) for all q € P0 , —— E. [l(x - &)] exists and is nonzero at ff = 0. 
off 

Define the estimates by the following implicit equations 

A x ( / ) = A r ^ { E / ( a r l - 5 i A , ) = 0 } , Ay(l)=Arg { £ / (y .-S.- i , )=0} (4.2) 
i = l i = l 

(J4X and Ay are the robust M-type estimates [1] for the location parameters A cos<£ and 

A sin^ of the observables in Eq.(2.7b), for a given realization of the random variables A 

and <j>.) Define: 

rn(/0) = [ix(/0)]2 + [iy(/0)]2 (4.3) 

where 

lQ{x) = -d\\oZq*Q{x)\/dx (4.4) 

and go € Po minimizes Fisher's information: 

/(<7o) </(<?) = / [ - £ • log g(x)]2g(*)«k, V g € P 0 (4.5) 

Consider a threshold test on Tn(l0) 

f # i - rB(/o)>«»(/o)=*(/o)/n 
<C(x, y) = | Rn otherwise ^ 

and let T(l) be any other test based on Ax(l) and Ay(l) with / G ^ but Z, 7^ -/oy q$ . 

The following proposition states the asymptotic maximin properties of the test d^, which 

we will subsequently refer to as the SSQME (Sum of SQuared M-type Estimates) test. 

Proposition 4.1 Consider the detection problem defined on the observables of Eq. (2.7) 

with the uncertainty in the independent quadrature noise samples obeying an e- mixture 

model P 0 with symmetrical p.d.f. When A is nonrandom and </> is uniformly distributed 
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on [0, 2TT], among the class of all tests T(l) based on Ax(l) and -4y(/) of Eq. (4.2) with 

/ £ ^ , there exists a least-favorable p.d.f. q$ E Po and a constant 0 < f3c < 1 such 

that the SSQME test d^ defined in (4.6) with n —+ oo achieves: 

3UJ?Mj8(rf1?0 ') = ^ , ? o ' ) = inf /3(rf4, g) (4.7) 
<* G f(l) q € P 0 

whenever /3(</4 , ?o) ^ ^ an<^ subject to 

su 
i € T{1 
9 e P 0 

ID o(d, g) = a(rf^, go) = ao (4-8) 

Moreover, when the nominal p.d.f. in P 0 is Gaussian, the nonlinearity /0 is a sym­

metric soft limiter whose breakpoints depend on the noise variance but not on the signal 

amplitude: 

llxlo\-KI<y,Kjo) = 
K{e)/a , x > K{e)cr 

x/a2 , -K{e)a <x< K{e)a (4.9) 

-K[e)/a , x < -K{e)(T 

with K(e) and e related by 

/ 0(K(e))/K(e) - * ( -*(«) ) - e/2(l - e) (4.10) 

and / 0(x ) = d$(x)/dx is the standard normal p.d.f. 

Comments 

1) Note that the theorem shows the saddle-point pair of p.d.f. and test only among a 

certain class T{1). We would like the left relation in (4.7) to be valid for any 

hypotheses test on the original observables {X, Y } . Unfortunately, this could not 

be proved, unlike the case of a deterministic signal in [6], as will be clear in the 

sequel. However, the class T(l) is quite large. As limiting cases it contains the 

sample means of X and Y when e = (j-1', the sample medians (e = 1) and with 

' ' Thus the SSQME test is better (at least asymptotically) than the "scalar" envelope 
test which was derived in the preceding section. 
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weak regularity conditions which usually holds [1] Ax and Ay can be any transla-

n " 
tion invariant statistics, such as Ax= £] a,- x^\ provided Yjai—1 ( J(i) a r e t n e 

t ' = i t = i 

rank ordered samples x^ < x^2) < • • • < £(„) ), and similarly for ^4y. 

2) The theorem remains valid (but /0 given by a different expression than (4.9)) for 

any other description of the uncertainty in the noise, provided the asymptotic vari­

ance of the M-estimates (4.2) computed with 1$ is the maximum achievable over the 

class of densities in P 0 . An example is the P family [6]. Others can be found in 

[1], [3]-

3) In contrast to Huber's finite sample size test, this asymptotic test satisfies a more 

desired and natural optimality criterion. Namely, the maximin relation for the 

power Eq. (4.7) is specified in terms of the uncertainty in P 0 alone, allowing the 

uncertainty in P j to be induced by that in P 0 as a shift of the densities of the qua­

drature samples (recall the discussion in Section 1.2). 

4) Extension to unknown frequency is straightforward by constructing a parallel bank 

of SSQME tests, the ith best being matched to w,- = i/nT where T is the sam­

pling period. This will be discussed in more detail in section 5.3. The individual 

test is shown pictorially in Fig. 4.1. Note that a routine for solving for a zero of a 

function is needed/ ' Thus, a real time implementation in a radar or sonar system 

calls for substantially larger number of calculations than encountered in the more 

common detection systems that incorporate linear filtering, FFT and at most, pass­

ing the samples through a nonlinearity. 

'2 ' This is true except for the case where the nominal p.d.f. of the uncertainty family is 
Gaussian, where a considerable simplification is possible as will be shown later. 
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Figure 4.1- Block-diagram structure of SSQME test for robust 

detection of slow-fading narrowband signal. 

^ " • - • ^ S f ^ ™ * 

2 ( 2tt»(V¥t,+0,) 

2sin(Wtf-fd,) 

H§>—•- L! • « © — * < • > I 

SOLVE FOR A y 

• • 0 

(•)« 

Proof of proposition 4.1 We need to study the asymptotic distribution of 

T(l), I € V- It can be derived using the following lemmas from [1], with a slight 

modification from [6j. 

Lemma 1 Whenever / 6 • and q is any symmetric p.d.f., conditioned on A and <j>, 

\fn (Ax(l)-Ax) and vn (Ay(l)-Ay) are asymptotically distributed as normal r.v.'s with 

zero mean and variance V{1, q) 

V{l,q) = —T 

c 

E.[l\z)\ 

a_ JLEq[l(x-9)\\e = 0 

2 ' 
C ^ lim 

1 " 

- £ $ > = i 

(4.11) 

where the parameters (Ax ,Ay) are the true values of the locations (0 under H0, 

Ax =A cos(j> and Ay =A sin</> under H j). 
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Lemma 2 Let q G Po be an e-contaminated mixture family where the nominal p.d.f. / 0 

is symmetric and twice continuously differentiable, such that -log f 0 is convex on the 

convex support of F0. Whenever / G * , there exists q$ G Po which minimizes Fisher's 

information (4.5) over P 0 and an / 0 £ • given by (4.4). Thus, the asymptotic variance 

of the M-estimates computed with /0 at the least favorable p.d.f. q$ satisfies the 

minimax relation 

sup V(l0, q)= V(l0, g0*) = l / / ( , 0 *) = inf V(l, q^) (4.12) 
7 € P 0 / € # 

where q$ is given by 

9o(x) = (1 - e ) ' 

, / ,. K(x - x0) ^ 
f 0{xQ)e x < xQ 

f0{x) x0 < x < xx (4.13) 

and x0 < Xi are the endpoints of the interval where | / o' / / o I S K> a n ^ K is 

related to e through 

X j 

J f 0{x )dx + = j—j (4.14) 
x0 

We note that the right inequality in (4.12) is a consequence of Ax(/0) and Ay(l0) 

being the maximum likelihood (ML) estimates of the corresponding location parameters, 

when the underlying p.d.f. is q$, under both hypotheses. In addition, they are efficient 

under the assumed conditions on V, i.e., they achieve the Cramer-Rao lower bound 

I~\<lo)- The left inequality follows from the fact that q$ minimizes I(q) over P 0 . 

Relaxation of the symmetry requirement and other noise uncertainty models are treated 

in [1], [3] and [6]. 

From Lemma 1 and the mutual independence of X and Y, Ax(l) and Ay(l) are 

independent and jointly Gaussian when j> is fixed. Averaging over (f> is straightforward 

with transformation to polar coordinates and yields 
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/ (Ax(l), Ay(l) | A ) = EM (Ax(l), Ay(l) \A,4>)f (+)] = • • (4.15) 

T(l)£ A2(l)+A2(l) 

where 70(-) is the zeroth order modified Bessel function. Also, 

f(T(l)\A) = *f(Ax(l),Ay(l)\A) (4.16) 

Now, restricting ourselves to the class of tests based on Ax(l) and Ay(l) as the 

new observables of the problem, the likelihood-ratio is A(AX(/), Ay(l) | A ) = 

exY>(-nA2/2V) I0[nAT1'2(l)/V\ which is monotone increasing in T(l) for any A , deter­

ministic or random. Therefore, in view of the Neyman-Pearson Lemma T(l) is a 

sufficient statistic and a threshold test based on it is UMP for Hy. A > 0 vs. 

H0: A = 0. 

Unlike the known lowpass signal case that was treated in [6], it can not be proved 

here that T(l) is a sufficient statistic of the original observables {X,Y}. There, where 

the additive signal was non-random, use was made of theorems by Wald [23] and 

ChernofT [24] that a test based on the ML estimate 9 (i.e., solution to £]/(:r,-0)=O with 

l=(-logf )' 6^ ) is asymptotically equivalent to a NP test. In our problem, T(l0) is not 

the ML estimate of A when the underlying quadrature noise p.d.f.'s are q$ '3 ' . How-

o 
ever, its expected value is E(T(I)) == A2-\ V(ltq). Thus, it is asymptotically 

n 

unbiased and the variance of T(/0) has a minimax property by virtue of Eq.(4.12). 

Indeed, it can be shown that 

Var{nll2T{l)) = AA2V(l, q)[l + Al V(l, q)\ — 4A2V{l,q) 
n n » A2 

Hence, T1/2(/0) is a good robust estimate of A , and as was discussed before, the class 

^ ' The MLE of A is given by solving 
j n 

——- log E ^ II <7Q {X(- A cos <fi) <7Q (y,- - A sin <j>)] — 0, which is analytically in-
dA «=i 

tractable unless q^ is identically Gaussian. 

2*V(l,q) exp 
T{l)+A2 

2V{l,q)/n 
A Tll\l) 
V(l,q)/n 
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{T(l)} is quite large. 

Having shown that in the restricted class of tests the optimal procedure must be a 

threshold test on the envelope T(l), it remains to validate Eq.(4.7) subject to (4.8). 

Using (4.16) with the definition of Marcum's Q-function Q{a, b)= 

00 

Jzexp[—— (a;2 + a2)] I0(ax)dx, and recalling that when / 7^ /0 we are free to adjust the 
b 2 

threshold t(l) in (4.6) such that a(l, q$) = a0 while for the pair (/0, q) the threshold 

remains t(l0), the various false-alarm and detection probabilities are as summarized in 

Table (4.1). 

C , « o ) 

( * 0 i <7o" 

(t0,q) 

<*(l,q) 

expH(/)/2V(/,9o*)] 

expM(/0)/2V(/0, ?o)] 

exp[-t(l0)/2V(l0,q)} 

p(l,q) = Q\a =As/n/V{l,q),b = y/t{l)/V{l, q)] 

a =Ay/n/V(l,qS),b = 6 0 

a =A^/n/V{lQ,q*0)*a0,b = y/-2 log a0 J b0 

a = Ay/n/V(l0, q) = aQy/V(lQ, qSyVVo, q) 

b = y/t(l0)/V(l0, q)= b0^/v(l0, qS)/V(lQ, q) 

Table 4.1- False alarm and detection probabilities for various test-p.d.f. pairs. 

Note that the parameter a 2 /2 defined by 

1r<''<> = w j r 7 T (4'16a) 

is the "effective integrated SNR," by analogy with the UMP detector for the purely 

Gaussian noise where the integrated SNR is given by the same expression with V —• a2. 

From the first and second row of the table, by monotonicity of the Q-function with 

respect to the first argument (a ) when the second is fixed, and since from Lemma 2 

inf V(l, qo) = V(/0 , <?o), we get: 
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sup /?(/, ?o) = PHo> ?o) 
/ e * 

This proves the left hand side of (4.7). 

From the first column of the second and third row of the table, since the exponent 

function is monotonic increasing when V increases, by virtue of the other inequality in 

Lemma 2, we get sup a(l0, q) = a(l0, q$). It remains to find under what conditions 

/3(l0, q)=Q(a0C,b0C) > f3(l0, ?0*), where C(q, q^)^ y/V(l0l q£ )/V(l0, q) > 1 for 

all q E Po- Note that the Q function is monotonic in either of its arguments only when 

the second is fixed, but here they both change proportionally and the inequality is 

analytically intractable. Since numerical computation of the Q function is notoriously 

difficult, we give only a sufficient condition by solving for a0 with a fixed b0 those values 

which satisfy d(3(l0t q)/dC > 0, C > 1. Using known properties of the partial 

derivatives [15, Appendix F]: 

^pyl=yeM-^±yl]il{xy) , iQ^yl=-yeM-^]ioM (4.17) 
ox z ay z 

we obtain an equivalent relation which is sufficient for the right hand side of Eq. (4.7) 

7 i ( f l ° 6 ° C a ) > i i , V C > 1 (4.18) 
I0{a0b0C

2) a0 

From the definition of the modified Bessel functions, I\/IQ is monotonic increasing 

from 0 to 1 when the argument increases from 0 to infinity, so it suffices to solve (4.18) 

for C = 1. By continuity and monotonicity of both sides of Eq.(4.18), a solution exists, 

and upon fixing the false alarm probability (60 = y/-2 log a0) and by virtue of the 

monotonicity of the Q -function with respect to a0, the solution of Eq. (4.18) with equal­

ity defines a critical value f3c such that when (3(l0, q$) = Q{a0, b0) > (3C, 

inf /?(/0, q ) = [3(l0, q£) > f3c . This completes the proof of proposition 4.1 
? e P 0 

Some numerical values of fic are given in Table 4.2. Recall that they are found 

from a sufficient condition so that they are a conservative estimate for the range of 
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maximin optimality; we see that for typical false alarm levels fic ^ 0.60. 

an 

an 

0c = Q fan, &n 

lO"1 

2.41 
0.68 

lO"2 

3.20 
0.64 

10^ 
3.86 
0.62 

10"4 

4.41 
0.60 

10'5 

4.92 
0.60 

10"6 

6.16 
0.59 

^ 0 

- & n 
Q\bn, bn] 

Table 4.2 - Critical values of p\l0, go ) f° r which the 
SSQME test is maximin robust, non-random amplitude. 

We note that the test in [6] for a completely known signal is asymptotically maxi­

min robust only for 0C = 0.5 (regardless of a0), a fact that was not directly stated 

there. Closer examination of the situation in [6] reveals that /3C = 0.5 is due to the 

symmetry of the normal p.d.f. of the test statistics around its mean under both H0 and 

if j . This is not the case for the SSQME test, and results in a higher value. Neverthe­

less, when designing a radar, sonar or communication system, the desired goal is in high 

quality detection. Consequently, systems are specified to achieve /?=0.8-0.95, and the 

technical parameters which result in the required SNR are designed accordingly. There­

fore, obtaining the robustness of the SSQME test only for a limited range of 0 is of no 

practical limitation. 

From the expression for p\l0, g0*) in Table 4.1, it is clear that the maximin bound 

is only slightly inferior to the detection probability in the uncontaminated case, where j3 

is given by the same equation but with a = A \fn /a. This is so since for small e , 

ru*(e) AV(l0, qo)/a2 «s 1, as can be seen in Table 4.3. (See also [3, p. 87]). 

e 
TV *(e) 

0 
1 

.001 
1.01 

.002 
1.02 

.005 
1.04 

.01 
1.07 

.02 
1.12 

.05 
1.26 

.1 
1.49 

.15 
1.75 

.2 
2.05 

.25 
2.40 

.4 
4.0 

Table4.3- Upper bound on the estimation variance (and upper bound on the 
loss in the effective integrated SNR), ru*(e) A V(l0) qo)/a . 

SSQME test for narrowband signal with non-random 
amplitude in nearly Gaussian noise. 
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The corresponding maximin bound on the detection probability is depicted in Fig. 

4.2 for various values of an, along with the results of the robust test on the envelope of 

section 3 (marked RET). All the curves are computed with fixed input SNR = A 2/2a2, 

such that the detection probability at the nominal Gaussian p.d.f. for all a0 's is 0.9. 

Very similar behavior was obtained for other SNRs. A dramatic improvement in perfor­

mance compared to the RET is clearly observed. While the effectiveness of the RET is 

limited to contaminations which are smaller than roughly twice the desired false-alarm 

probability, (note that RET curves with a 0 < 10~4 are outside of the range of the figure) 

the SSQME test can protect against e which is of orders of magnitude higher than a0, 

before the detection probability decreases substantially, roughly up to e =0 .1 - 0.2. 

(The discontinuous portion of the curves indicate that the test may not be maximin 

there in accordance with Table 4.2.) 
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Figure 4.2- Maximin bound on the detection probability vs. e, narrowband 
signal with non-random amplitude and unknown phase in nearly Gaussian noise. 

Full lines: SSQME test (discontinuous lines indicate that the test 
may not be maximin). Dotted lines: RET. 
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4.3 Random Signal Amplitude 

In radar-sonar applications, modeling targets with non-random amplitude is an 

oversimplification. ^4' Since in nominal Gaussian noise the coherent envelope test is UMP 

regardless of the signal amplitude statistics, it seems natural to try to also use its robust 

version, the SSQME test, for random amplitudes. Therefore, we will study the robust­

ness of the SSQME test by averaging the asymptotic power of the deterministic case 

with respect to the assumed amplitude p.d.f. (Obviously, the false alarm probability is 

bounded as before.) Two cases will be treated. 

a) Swerling Case 1 Target. 

This is the most common radar target, composed of many independent scatterers. 

The amplitude is Rayleigh, f(A) = 2A exp(-A 2/AJ)/AJ, for A > 0, I 7 AE {A 2). It 

turns out that the performance of the SSQME test is somewhat less desirable than that 

for the deterministic signal case. 

Proposition 4.2 Under the conditions of proposition 4.1 and a Rayleigh distributed sig­

nal amplitude, the SSQME test with the nonlinearity /0 of Eq.(4.4) satisfies 

0(10><1 )^/^0;<7o) V <7 GPo subject to Eq.(4.8) - i.e., g<J is t n e least- favorable p.d.f. 

under H0 but the most- favorable under Ht. However, when the nominal noise p.d.f. in 

P 0 is Gaussian and /0 is the soft limiter of Eq.(4.9), the right side inequality of Eq.(4.7) 

can be replaced by 

P(lo, l)>C I3(l0, qt) , 0 < tf < 1 (4.19) 

such that the constant C (which generally depends on e, a0 and 0(10, q$)) approaches 

unity as e—•(), a0—•() and as /?(/o,9o )—*•!• 

Proof Upon averaging with respect to A , the power of the SSQME test is easily found 

to be 

' ' Except when the target is a perfect reflecting sphere. 
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/?(/, q) = exp - V C T ; * ' -aj/i'+ '('••» ( t») 

where S ( / , ?) * nA 7 /2 F ( / , g). Thus sup /?(/, ?0*) = # / 0 , go) since 

l°g 7- = log^o ; : ; < 0 , V ' 6 * (4.21) 
Wo, ?o ) [1 + 5-H/, ?o*)] [1 + S-HJo, ?0*)] " 

by virtue of the right side inequality in (4.12). Unfortunately, the right side inequality 

of (4.7) is never satisfied here: 

« l . ,) - ao""+S<'^>l , r A J ^ J L l < , V , 6 P„ (4.22) 

Thus /3(/0, ?o), which is given by (4.22) with r = 1, is always higher. This is actually 

the second case that was discussed in section 1.3. 

However, the SSQME test will practically be *qalmost" optimal robust (in the sense 

that for V ? € P o the performance is bounded in a narrow neighborhood: 

I Wo, <7o ) -Wo>?) I < ^(€, ^Oi A.) —• 0, according to the discussion preceding Fig. 1.2 

of section 1.3), if the right hand side of the maximin relation (4.7) could be replaced by 

Eq.(4.19) such that the constant C (which generally depends on e, a0 and f3(l0, qg)) is 

very close to unity. From Eq.(4.22), C is obtained for the p.d.f. for which r achieves its 

smallest possible value over P 0 . Some algebra yields 

1 log a0 ""_1 

log C = 
1 - r m i n (€ ) log Wo, <7o) 

- 1 log Wo, <?o) (4-23) 

It is clear from this expression that c —•!. monotonically as a0—•() and as rmjn—+1. 

Some basic calculus shows that this convergence is also true when Wo,?o ) — ^- ^ ^ s 

stage we restrict the class P 0 to the nominal Gaussian case. Using Eqs. (4.9) and (4.11) 

K 

K2Pq{\x | > K} + J x2q{x)dx 

V(l0, q) = jf (4-24) 

i =(l-t)g0 + th [J q(x)dx)2 

-K 
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where g0 is the normal p.d.f. and K(e) is given in (4.10). It is not difficult to see that 

(4.24) and hence also r are uniquely minimized when h is a point mass at the origin, as 

each of the terms in the numerator achieves its minimal value and the denominator its 

maximal value; using Eq.(4.24) with (4.10) yields 

V(la, q) l-lK2V{lQ,q*Q) 
r min(e) = inf 

9 = (1 - e)»o+ eA 

*M2 V(/0, ?o) [1+c V{l0,qS)] 

hence r min —• 1 as e —• 0. 

(4.25) 

an 

10~2 

io-4 

io-6 

IO"8 

e 
K(e) 

r„Je) 
0.2 

/?* = 0.5 
0.9 
0.2 

/?* = 0.5 
0.9 
0.2 

0* = 0.5 
0.9 
0.2 

13* = 0.5 
0.9 

.001 
2.63 
.9910 
.995 
.999 

1-2-KT6 

.997 
1-5-HT* 
1-1 10^ 

.998 
1-3-IO"1 

1-7-KT" 
.9987 

1-2-IO"1 

1-5-KT8 

.01 
1.945 
.9396 

.97 
.994 

1-1 IO"4 

.98 
.997 

1-7-10"5 

.99 
.998 

1-5 10-5 

.991 

.998 
1-3 10-5 

.1 
1.14 

.6108 
.78 
.96 

.999 
.89 
.98 

1-5 IO-4 

.93 
.986 

1-3-IO"4 

.95 

.99 
1-2- IO-4 

.2 
.862 
.349 
.62 
.93 

.998 
.81 
.97 

.999 
.88 
.98 

1-5-HT* 
.91 
.98 

1-4- KT* 

.3 
.685 
.177 
.52 
.91 
.998 
.76 
.96 
.999 
.84 
.97 

1-7 IO-4 

.88 

.98 
1-5 IO-4 

.5 
.436 
.028 
.44 
.89 
.998 
.72 
.95 

.999 
.81 
.96 

.999 
.86 
.97 

1-6 IO"4 

Table 4.4 - The constant C such that /3(/0, q) > C /3[l0, q^), 
V q € P 0 . SSQME test for Sw.l target 

in nearly Gaussian noise. 
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The computation of (4.23) with (4.25) is summarized in Table 4.4. We observe that 

for the typical small a0 's and large /?0's desired in radar-sonar systems, C is almost 

indistinguishable from 1, even for very large contamination e. Thus, for any q 6 Po and 

for the the range of practical interest, the asymptotic power is almost equal to the maxi-

min bound, and the SSQME test is "almost robust" as conjectured. As in the deter­

ministic amplitude case, the performance of the SSQME test is characterized by the 

identical decrease in the effective SNR S(l0, <?0* )/(nAy2cr2), which is very small for 

small e. Thus the qualitative behavior as in Fig. 4.2 is repeated here, with dramatic 

(asymptotic) improvement over the test of section 3. 

Further thought reveals that this "almost robustness" is a consequence of always 

using the same fixed threshold. If it were also possible to precisely estimate the variance 

of the test statistic under H0 and to adjust the threshold accordingly: 

t(q*)=-2\na0V{qo)—*t(q)=-2\na!0V(q)=-2\na0V{q), then we would obtain 

0(q)=ao °' >0{q*) V ? 6 Po- Since in practical applications almost always the 

scale (variance) of the nominal noise p.d.f. is also unknown, adaptive thresholding will 

be unavoidable in conjunction with th* robust structure to maintain CFAR. This will 

be treated in more detail in Section 5.2 

Comparing the known lowpass signal [6] and the non-random amplitude cases with 

the Rayleigh amplitude case, some thought suggests that the power fails to satisfy the 

desired maximin relation exactly, due to an absence of a mode in the p.d.f. of the test 

statistic T(IQ) in the present case. To verify this, we also consider the following case 

which does possess a mode, and represents some physical targets. 

b) Swerling Case 3 Target. 

This model corresponds to one dominant reflector plus Rayleigh; the amplitude 

p.d.f. is / (A) = SA3exp{-2A2/A~'I)/A^ for A > 0 [17]. In this case, the desired 

behavior of the deterministic amplitude case is possible. 
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Proposition 4.3 Proposition 4.1 is valid for a Swerling 3 target model. 

Proof The power of the SSQME test is found, in a manner similar to [13], by averaging 

the non-random amplitude result with respect to the above amplitude p.d.f., and is given 

by 

-t(l)/2V(l,g)' 
l + S(l,q)/2 

(4.26) 

)/2] 

from which sup (3(1, qn) = /#(/0, <?o ) follows by virtue of 4.12 with some algebra. Also, 
/ € * 

/3(/o, </) = 

where r £ ^(^o> ?)/^(^o> 1o) 5: 1 ^ before. A sufficient condition for 

fth> <l) > P(lo, ?o) Vr < 1 is obtained from solving d/3{l0t q)/dr < 0, V r < 1. 

Upon differentiating (4.27) a quadratic inequality in 5( / 0 , ^o) is obtained, whose single 

proper solution is given by 

S{10, <7o ) > Sc = -log a0 + V log 2a0 + 4 (4.28) 

It is easy to see that Eq.(4.26) is monotonic increasing when S(lQ, q$) increases, hence 

the maximin relation (4.7) is fully satisfied whenever f3(l0, q$) > (3C where 0C is 

obtained upon substituting Sc in (4.26) 

The critical values are given in Table 4.5; they are somewhat higher than those of 

the deterministic amplitude case, but still in the range of practical interest. Since the 

one-dominant-plus-Rayleigh p.d.f. corresponds to Chi-squared p.d.f. of A 2 with 2 degrees 

of freedom, while the non-random amplitude can be regarded as the limit of the Chi-

squared family when the number of degrees of freedom N tends to infinity, it is conjec­

tured that whenever the amplitude squared belongs to this family but N 7^ 1 (Ray-

/3(l,q) 1 + 
t(l)/2V(l,q) 

(l + 5 ( / l g ) / 2 ) ( l + 2 / 5 ( / , , ) exp 

l o g a 0 5 ( / , g) /2 

(l + S(l,q)/2f 
« 0 

}/[l + S(l,q 

l o g q 0 5 ( / 0 , g0*)/2 

(r +S(lQ,q'Q)/2? «o 
l/\r+S(l0,q'0)/2\ 

(4.27) 
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leigh), there exists a /3C such that when f3(l0, g<J) > j3c the SSQME test is asymptoti­

cally maximin robust, and flc decreases when N increases. It seems, however, that each 

case needs a separate derivation to prove this conjecture. 

<*0 

Sc 

0c 

10-1 

5.36 

0.78 

10-2 

9.70 

0.75 

10-3 

14.1 

0.743 

10^ 

18.7 

0.740 

10"5 

23.2 

0.738 

10~6 

27.8 

0.738 

10"8 

36.9 

0.737 

Table 4.5 - Critical values of 0(1$, q$) for which the 
SSQME test is maximin robust, Swerling 3 target. 

4.4 Relationship with Weak Signal LORD 

For a given observation sequence, the M-estimates defined by Eq. (4.2) are fixed 

numbers; they are expected to be close to zero under H0 and also under Hi when A is 

small, due to the robust properties of the estimator. Thus, an approximation is obtained 

by expanding the summands of (4.2) in a Taylor series in powers of A , and then solving 

(4.2) using only the two leading terms. This yields 

. A / ( x i ) i -
A S - I = ! S i £ /(*,.) (4.29) 

E <'(*,) ^ 
i = l 

The second approximation is justified as follows: For nominal Gaussian p.d.f. with 

the optimal robust nonlinearity /0, the denominator just equals the number of x{ which 

are in [-K(e), K(e)}; it is quite close to n when e is small (since K(e) is then larger than 

the variance of the samples), and only weakly changes for different realizations of x. 

All of the locally-optimal robust detectors that have been studied in [4], [5], [9], [10] 

and [12] are based on this test statistic, and thus they all hide an "approximate robust 

estimator of zero." It is worthwhile to note that the weak result of [4] and [5], namely, 
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the LORD satisfies the maximin relation Eq. (1.10) on the slope of the power function at 

A = 0 only for cv > amjn(e) is actually a consequence of this approximation. (This 

lower bound should be noted is much larger than false-alarm levels of any practical 

E?(A) 
interest ). Though the incremental SNR = lim r— is identical with (4.16a), 

A - o VAR {A ) 
the numerator and denominator are somewhat different from those stated in Lemma 1 

E1(A)\A^0 = A Eq{l< ) + 0 ( A 2 ) ; VAR (A ) | A = 0 = - Eq(l
2) (4.30) 

n 

Thus there are actually two related optimization problems (for a and f3 ), which are not 

parametrized by the same functional V(l,q) as in the SSQME test; this lead to a 

different condition that must be satisfied for Eq.(l.lO) to hold - see [4], [5]. 

The same approach could be taken for our problem. The structure of Eqs. (4.3)-

(4.6) is preserved, but the M-estimators are replaced with A of (4.29). The locally-

optimal robustness can be verified using similar techniques as those in [4]. Under the 

regularity conditions stated in [4], which require more than the conditions in (4.1), the 

central limit theorem is satisfied and the detection probability is again Marcum's Q-

function where the parameters {a, b } are modified according to (4.30). Using the 

expression for —— Q{a, b ) in Eq. (4.17), along with /i(0) = 0, / / (0) 7^ 0, it can be 
da 

shown that the right side inequality of Eq. (1.10) is satisfied, and thus the detector is LO 

robust, for a limited range in the false alarm probability given by 

where 

« o > « m i n ( 6 ) = mm [d(q)e(q)\-^'^-^ (4.31) 

d{q)± „,{!f,\ , d(q)>l \iq G P 0 (4.32) 

and 

E.M) 
e{q)h J ° x , e(q)> 1 \i q G P 0 (4.33) 

EM) 
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where /0 = -(In q^)' is the locally-optimal nonlinearity. The inequality in (4.32) is 

valid since /0 ' is zero over the interval where the least-favorable p.d.f. go of Eq. (4.13) 

puts all of its contamination; the one in (4.33) is valid due to the last mentioned fact on 

(Jo and to the additional regularity requirement that /0 is monotonic nondecreasing. 

Because of this, the false alarm bound of Eq. (1.3) is obtained also here for V a £ (0, 1), 

but not by the same derivations as for the SSQME test. Utilizing these inequalities, it is 

easily verified that amin(e) € (0, 1). However, we have not solved (4.31) to see if the 

actual values are small enough to be acceptable, as we believe that the SSQME test is a 

preferred solution; it is neither restricted by any amjn(e) nor limited to weak signals. This 

conclusion has been verified by simulation results, to be presented in Section 5.4 
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5. R O B U S T D E T E C T O R S F O R R E A L I S T I C E N V I R O N M E N T 

The derivation of maximin robustness of the SSQME test in section 4 was based on 

several major assumptions, all of which have been required for previous studies of robust 

detection [4]-[12]. The following were assumed as completely known: a) the percentage 

of contamination e, b) the nominal p.d.f. in the class P 0 ; specifically, the variance was 

assumed known for the nearly Gaussian case, c) the frequency of the signal to be 

detected. Such knowledge concerning the detection environment is usually absent in 

any realistic application where robust procedures are needed. This is particularly true 

under the detection environment of radar (sonar) systems where the clutter (reverbera­

tion) processes rapidly change in time and space. This section extends the utility of the 

SSQME test for such situations, and ends with a finite-sample Monte-Carlo analysis. 

5.1 Sensitivity t o Unknown e 

In all previous works [4]-[12] the amount of contamination e was assumed known. 

Clearly, this might not hold for a nonstationary and nonhomogeneous detection environ­

ment. Theoretically, when any knowledge of e is lacking, the mixture family is no longer 

convex and is not well defined to allow an optimum robust test. In practice though, it 

might be possible to bound e<e m a x based on physical considerations. (If emax=l> the 

robust estimators of the SSQME test reduce to median estimators). 

An obvious but apparently unstated observation is that any density of the form 

/ (x ;e) of Eq. (2.3a) belongs to the mixture family Po(emax) ' / / e^emax-

(1-e)/ 0+eh = ( l - e m a x ) / 0 + < w [ ( l — — ) / o + - ^ ] = • ' • (5.1) 

^max ^max 

• • =£ ( 1 - W ) / o+*m«A' ,(f0,h,h')6M 

and the expression in square brackets h' is a legitimate density because it is positive 

( l -e /e m a x >0) and integrates to 1. 

Table 5.1 shows the asymptotic variances of the M-estimators of Eq.(4.2) when the 

input noise density is a Gauss-Gauss mixture and c2 is the variance of the 



- 52 -

contaminating density. They were computed from Eq.(4.1l) with the soft- limiter of 

(4.9-4.10). In each sub table the limiter break-point k is designed according to emax, and 

the variances are given for €<em a x . Also indicated in the headings are the upper bounds 

on the estimation variance computed with the least-favorable density. It is seen (and can 

be shown analytically using the properties of the Gaussian c.d.f. when solving (4.11) in 

conjunction with (4.14)) that the variance monotonically increases with e and c to the 

minimax bound. A similar behavior occurs with the detection probability since it is a 

monotone function of the effective SNR Eq.(4.16a), which is inversely proportional to the 

estimation variance. 

The main conclusion from the table is that even when the test is designed for large 

emax) * n e variance is much smaller when actually e « e m a x . An even more important con­

clusion is drawn from Table 5.2, which shows a very pessimistic case: the test is designed 

with k (emax = 0.5), and the entries in the table are the ratio of variances between those 

obtained with this design, and those that could be obtained if e was actually known and 

k(e) was used- Var (k (emax),e)/ Var (k (e),e). It is clearly seen that even for €=0.001 the 

efficiency loss is merely about 28%. This is translated to an increase of only 1.07 dB in 

the SNR required to achieve the same Pt. When €max can be more tightly bounded, the 

difference is even smaller. 

Similar behavior is found when the contaminating density is the longer tailed 

Laplace density, as can be seen by dividing the entries of Table 5.3a by the correspond­

ing ones in 5.3b.(Here however, the variance is not monotone with e for small c). 

To summarize this discussion, we have: A design with emax preserves the maximin 

robustness properties for \7e<emax>
 a n d the loss incurred from not knowing the actual e 

is shown numerically to be reasonably small for the Gauss-Gauss and Gauss-Laplace 

mixture families considered. 
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Table 5.1 Estimation variances with fixed limiter fc(emax) f° r e<emax-

Gauss-Gauss mixture. 

EPS/C 

EPS/C 

EPSMAX=0.005 K(EPSMAX)= 2.160 VMAX(K)=1.037 

F=(1-EPS)*N(0,1)+EPS*N(0,C**2) 

10 30 100 

0.0010 
0.0020 
0.0030 
0.0040 
0.0050 

1.0066 
1.0066 
1.0066 
1.0066 
1.0066 

1.0097 
1.0127 
1.0158 
1.0189 
1.0220 

1.0116 
1.0167 
1.0218 
1.0269 
1.0320 

1.0123 
1.0180 
1.0237 
1.0294 
1.0351 

1.0125 
1.0184 
1.0243 
1.0303 
1.0362 

EPSMAX=0.010 K(EPSMAX)= 1.945 VMAX(K)=1.065 

E=(1-EPS)*N(0,1)+EPS*N(0/C**2) 

10 30 100 

0.0020 
0.0040 
0.0060 
0.0080 
0.0100 

1.0121 
1.0121 
1.0121 
1.0121 
1.0121 

1.0177 
1.0233 
1.0289 
1.0346 
1.0403 

1.0210 
1.0300 
1.0391 
1.0482 
1.0573 

1.0220 
1.0321 
1.0422 
1.0523 
1.0626 

1.0224 
1.0328 
1.0432 
1.0538 
1.0644 

EPSMAX=0.050 K(EPSMAX)= 1.399 VMAX(K)=1.256 

EPS/C 

0.0100 
0.0200 
0.0300 
0.0400 
0.0500 

F=(1-EPS)*N(0, 

1 

1.0467 
1.0467 
1.0467 
1.0467 
1.0467 

3 

1.0695 
1.0928 
1.1165 
1.1408 
1.1655 

1)+EPS*N(0, 

10 

1.0807 
1.1157 
1.1518 
1.1890 
1.2274 

,C**2) 

30 

1.0840 
1.1226 
1.1625 
1.2037 
1.2464 

100 

1.0852 
1.1250 
1.1662 
1.2088 
1.2530 
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Table 5.1 (continued). 

Table 5 1 (continued). EPSMAX=0.100 K(EFSMAX)> 1.140 VMMC(K)=1.490 

F«(1-EPS)«N(0,1)*EPS*N(0,C**2) 

EPS/C 10 30 100 

0.0200 
0.0400 
0.0600 
0.0800 
0.1000 

1.0812 
1.0812 
1.0812 
1.0812 
1.0812 

1.1239 
1.1685 
1.2149 
1.2634 
1.3139 

1.1433 
1.2092 
1.2793 
1.3539 
1.4333 

1.1490 
1.2214 
1.2989 
1.3817 
1.4706 

1.1509 
1.2254 
1.3053 
1.3909 
1.4829 

EPSMAX=0.200 K(EFSMAX)- 0.862 VMAX(KJ«2.046 

F"<1-EPS)«N(0,1)*EPS«N(0,C**2) 

EPS/C 10 30 100 

0.0400 
0.0800 
0.1200 
0.1600 
0.2000 

1.1393 
1.1393 
1.1393 
1.1393 
1.1393 

1.2221 
1.3121 
1. 4i02 
1.5175 
1.6350 

1.2574 
1.3904 
1.5411 
1.7125 
1.9083 

1.2678 
1.4142 
1.5818 
1.7748 
1.9982 

1.2706 
1.4208 
1.5933 
1.7928 
2.0249 

EPSMNOO.300 X(EPSMAX,- 0 . 6 8 5 VMAX(K) =2.822 

r » ( l - E P S ) « N ( 0 , l ) * E P S * N ( 0 , C * « 2 ) 

EPS/C 10 30 100 

0.0600 
0.1200 
0.1800 
0.2400 
0.3000 

1.1916 
1.1916 
1.1916 
1.1916 
1.1916 

1.3162 
1.4580 
1.6200 
1.8061 
2.0214 

1.3684 
1.5802 
1.8367 
2.1508 
2.5405 

1.3838 
1.6177 
1.90S8 
2.2655 
2.7219 

1.3870 
1.6260 
1.9220 
2.2941 
2.7698 

EPS/C 

EPSMAXsO.400 K(EPSMAX)s 0 . 5 5 5 VMAX(K)=3.996 

F«(1-EPS)*N(0.1)+EF5*N(0,C**2) 

1 

1 .2395 
1.2395 
1.2395 
1.2395 
1.2395 

3 

1.4087 
1.6100 
1.8518 
2.1455 
2.5064 

10 

1.4794 

1.7855 
2.1838 
2.7140 
3.4395 

30 

1.5007 

1.8409 
2.2945 
2.9160 
3.7973 

100 

1.5061 

1.8557 
2.3256 
2.9761 
3.9099 

0800 
1600 
2400 
3200 
4000 

EPSMAXsO.500 K(EPSMAX)« 0.436 VNAX(K)-5.928 

F-(1-EPS)*N(0.1)*EPS*N(0.C*«2) 

EPS/C 10 30 100 

0.1000 
0.2000 
0.3000 
0.4000 
0.5000 

1.2916 
1.2916 
1.2916 
1.2916 
1.2916 

1.5086 
1.7789 
2.1211 
2.5626 
3.1447 

1.5999 
2.0195 
2.6094 
3.4734 
4.8072 

1.6267 
2.0949 
2.7747 
3.8124 
5.5038 

1.6294 
2.1047 
2.8021 
3.3808 
5.6726 
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Table 5.2 ratio of estimation variances between designs with fixed fc(€max
=0-5) 

and variable k (e),Gauss-Gauss mixture. 

VAR(K(EPSMAX))/VAR(K(EPS)) EPSMAX=0.500 K(E PSMAX)= 0.436 

F=(1-EPS)*N(0,1)+EPS*N(0,C**2) 

EPS/C 

i 
i-i 3 10 30 100 

********************************************************* 
0.0010 
0.0050 
0.0100 
0.0500 
0.1000 
0.2000 
0.3000 
0.4000 
0.5000 

1.2897 
1.2832 
1.2762 
1.2340 
1.1946 
1.1337 
1.0839 
1.0420 
1.0000 

1.2868 
1.2734 
1.2605 
1.1963 
1.1482 
1.0880 
1.0493 
1.0224 
1.0000 

1.2838 
1.2645 
1.2471 
1.1687 
1.1162 
1.0582 
1.0271 
1.0099 
1.0000 

1.2828 
1.2617 
1.2428 
1.1600 
1.1062 
1.0484 
1.0194 
1.0040 
1.0000 

1.2824 
1.2604 
1.2409 
1.1547 
1.0987 
1.0394 
1.0117 
1.0031 
1.0000 

************************************************************* 

Table 5.3 Estimation variances for Gauss-Laplace mixture, a) Fixed k(emax). 

b)Variable Jfc(e) 

EPSMAX=0.500 K(EPSMAX)= 0.436 VMAX(K)=5.928 

F=(1-EPS)*N(0,1)+EPS*LAPLACE(0,C**2) 

EPS/C 1 10 30 100 

0.1000 
0.2000 
0.3000 
0.4000 
0.5000 

1.1863 
1.0922 
1.0076 
0.9314 
0.8626 

1.4343 
1.5996 
1.7924 
2.0189 
2.2874 

1.5708 
1.9403 
2.4425 
3.1478 
4.1795 

1.6172 
2.0676 
2.7139 
3.6848 
5.2347 

1.6379 
2.1252 
2.8392 
3.9411 
5.7638 

VARIANCES WITH OPTIMAL K(EPS) 

F=(1-EPS)*N(0,1)+EPS*LAPLACE(0,C**2) 

EPS/C 1 3 10 30 100 

0.1000 
0.2000 
0.3000 
0.4000 
0.5000 

1.0438 
1.0318 
0.9914 
0.9327 
0.8626 

1.2455 
1.4711 
1.7138 
1.9821 
2.2874 

1.3979 
1.8222 
2.3675 
3.1101 
4.1795 

1.4570 
1.9647 
2.6536 
3.6591 
5.2347 

1.4799 
2.0244 
2.7837 
3.9318 
5.7638 U. 3UUU VJ.OOCO £.£OfH H.I I yj 3 . £ J t l J.IUOO 



- 5 6 -

5.2 E x t e n s i o n of t h e S S Q M E T e s t for U n k n o w n Scale of t h e N o m i n a l 

D e n s i t y 

The scale cr of the nominal density in the e-mixture family affects the implementa­

tion and performance of the SSQME test in two ways. First, cr must be known for con­

struction of the optimal robust M-estimates, as the break points of the nonlinearity are 

functions of it, Eq.(4.14); e.g., they are equal to ±<rk((.) for the nominal Gaussian case. 

Second, the detection threshold setting t (/0) must be proportional to V(l0,qQ) to obtain 

the desired a 0 level, (see Table 4.1), and V itself is proportional to cr2. Even if the 

optimal M-estimators are replaced by some other robust and scale invariant estimators 

of the quadrature locations, the second crucial problem must still be addressed. 

In the specific case of nominal Gaussian density, which is the main interest of our 

work, the first problem is solved together with a substantial simplification in implemen­

tation complexity by utilizing Tukey's alpha-trimmed mean estimator instead of the M-

estimator. This estimate is defined by: 

x.- ' n -l-[n o| 
£ *(,•) + (l+[n<*]-na)[s (1+ [ l i aj + *(„_[„ a|)] 

»=2+|nal 
(5.2) 

n(l-2a) 

where x/^ are the ordered samples: Z(i)<£(2)^ x(n)> a Qd [na] is the greatest integer 

in n a for 0 < a < 0 . 5 . The estimator simply deletes [na\ samples from each end and then 

takes the weighted mean of the remaining. Its advantage over Huber's M-estimator is 

that solving an implicit nonlinear equation is not necessary. With the above weighting it 

is translation invariant for all n (and unbiased when Ej (i:-) exists). Bickel [33] showed 

that it is asymptotically Gaussian and its variance for symmetric f is 

Var(V^Xa)^--
(l-2aY 

j x2f {x)dx+ax?_a (5.3) 

where F ( i 1 _ a ) = l - a . The two estimators are quite similar for proper choice of a and 

k (c); they both sum linearly the main bulk of the samples, but Huber's estimator treat 
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large samples and outliers by limiting them, while the a-trimmed estimator censors them 

completely. The main difference is that for small n the a -trimmed will always discard 

some of the observations, even if they all are small and come from the nominal, while 

the other might not. For n —•oo, however, they are equivalent in quadratic mean. The 

variance of Huber's estimator with the soft- limiter nonlinearity l0(x ,-k ,k ) is 

k 

2[JV/ {x)dx + k2F{-k)} 

v(l°J' = ' MF(-*y <"> 
This is identical to (5.3) when one choses a ( e ) = F (-k (e)). Hence they both have the 

same asymptotic distribution and minimax property so that the scale invariant a-

trimmed mean can be substituted in the SSQME test without change in the derivation. 

Two different asymptotically scale invariant extensions of the SSQME test are next 

discussed. The difference between them depends on the availability of a "noise-reference" 

channel. 

a) "Sliding-Window" SSQME test 

We follow the definitions and the physical setup of section 2.2. In addition to the 

"test-cell" samples {x,y}, there are also available M "noise- reference" vectors of obser­

vations: {uij,Vij},i = l,...n ,j = 1,...,M. Uj:={u,y }i"=i,j = 1,...M are statistically 

independent vectors that are identically distributed as x is under H0, and likewise for 

v;- and y. An adaptive threshold test is constructed by using the SSQME structure in 

both the "test-cell" statistic R (x,y) and in the threshold estimator W(u,v) of Eqs.(2.8)-

(2.11). Specifically, the test is 

DECIDE Hl iff Ra{x,y) > t(M)Wa(*,v) (5.5) 

where R a(x,y) is identical with r „ ( / 0 ) of Eq.(4.3) with the M-estimators Ax and Ay 

replaced by the a- trimmed means of the x and y samples, respectively. In a similar 

M _ _ _ _ 
manner, VKa(u,v)=(l/M) J ] Wya. where Wja=Uja+Vj2

a; Uja and V;-a are the a-
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trimmed means of u ; and v;-, respectively. The test structure is shown in Fig. 5.1. 

Fig. 5.1 Sliding-Window scale invariant SSQME robust test 

TEST-CELL 

REFERENCE (NOISE-ONLY)CELLS 

lu.v.}| 

{UttJ 

(AS ABOVE) 

ffZ 
W 

w. 
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Under H0, for n —• oo the Wj\fj and R are not only identically distributed (this 

is true also for finite n), but the unknown input scale appears only through V(l0,q), 

which is again a scale parameter of the (one sided exponential) distributions of these 

statistics. Hence, the test (5.5) is scale invariant and CFAR: a0 = Prob {R > tW } V 

q € P 0 . It is important to emphasize that here, unlike the fixed threshold SSQME test, 

the multiplier t (M) is not a function of V(l0,qQ ), so that the same a0 is obtained for \7 

"<7€Po- Moreover, the expected value of the statistic Wj is exactly equal to the variance 

^ C O J ? ) °f t n e estimators in the "test-cell" by definition, and, in addition, when 

M —• oo the estimation of this variance by the "sliding-window" sample mean W(u,v) 

converges almost surely to the true value. Hence, the test (5.5) will be asymptotically 

(M—KX>) a.s. equivalent to the SSQME test when a2 of the nominal density is known. 

For finite M the false alarm probability is given by a0—(l+t {M)/M)"M , and the 

detection probability of a Rayleigh amplitude signal by (compare [18]-[20] for the pure 

Gaussian case) 

ftl0,q)= [l+t(M)/M(l+S(l0,q)]-M (5.6) 

Here S(l0,q)= UAQ /2c2V(I0,q) is the effective SNR computed at the optimal non-

linearity (or its corresponding trimming ratio a) for density q 1. Note that the limit of 

these expressions with M—+oo are indeed the exponential probabilities which are valid 

for the SSQME test as in section 4.3 case a), and that for M > 1 6 the detectability loss 

incurred by the adaptive threshold scheme is very small, c.f. [l8]-[20]. 

The monotonity of (3(lo,q) in S(l0,q) ensures as before that the upper bound on 

the variance in qEPo is translated to a lower bound on the detection probability . Note 

that the problem with the Rayleigh signal of section 4.3 case a) is solved here, as t (M) is 

not a function of ^ ( / 0 , ^o ) as it was there. Hence 0{lo,q)>f3{lo,<lo) V £(^4 2 )>0! 

Moreover, this conclusion remains valid for the various amplitude models discussed in 

The expression for deterministic signal amplitude can be derived as in [18] with the 
effective SNR as given by (4.16a) 
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section 4, and in general, for any amplitude p.d.f. that leads to a monotone increasing 

P(S | W) in S for the known scale case. (Since f3(S)=Ewl3(S \ W) is obviously mono-

tonic). 

We can summarize this discussion in the following proposition: 

Proposition 5.1 Let Dy be the class of all hypothesis tests of the form 

R{TX, Ty)>tM W(TU ,TV ,j =1, • • • M) where W and R are as in Eq. (5.5), with 

the a-trimmed estimators replaced by any other translation invariant statistics T, and 

let d (a) EDM be the test with a-trimmed estimators. Let D w be the class of all deci­

sion rules based on {Tx,Ty} - i.e., without imposing the structure of Eq. (5.5) and pre­

cluding reference samples. Then — 

a) The test is CFAR for any ?€P<xr and Pfa={l+t(M)/M)'M. 

b) If a*(e)=FQ (~k(e)), where FQ is the c.d.f. of go, go and d*(a*(e)) are a saddle-

point pair in ( P O ^ D A / ) f° r * n e detection probability 

/? (g0V) < M,*') < P (q,d*) (5.7) 
d€DM q €Po„ 

i.e., the test is asymptotically maximin robust. Moreover, as e—"0, @{qQ ,d*)—• mono-

tonely to the detection probability of the best scale invariant test against pure Gaussian 

noise. Thus, small deviations from the assumed nominal model only slightly degrade the 

performance. 0{qQ,d*) is given by Eq. (5.6) evaluated at q§ . 

c) When also M—+oo,d* is equivalent to the Neyman-Pearson test in the wider class D ^ 

for go(<r=l) - i.e., assuming that a is known and only {Tx,Ty} are available as observ-

ables. 

For the general case of a non- Gaussian nominal density / 0, the a- trimmed mean 

is not the optimal estimator, although it is still robust in Hampel's sense as will be dis­

cussed in the following. All the previous conclusions remain valid, if the a -trimmed 

estimators are replaced by the optimal L-estimators for the same least favorable p.d.f. 

of Eq. (4.13). The location invariant and scale equivariant L-estimators are given by 
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L n ( x ) = Yjanix{i)i e*c-i where the weights are generated from a score function m(s) 

according to 

iln 

(5.8) 

»/» 

<*m = / m{s)ds 
(i-l)/n 

and m(-) is related to <7Q °f Eq.(4.13) through 

m(F 0 * ( * ) ) = • l / ( F ; > > l o s / ° ( l i l ) ) , M - " 
0 , otherwise (5.9) 

where 

/0(x1 ; l) /A;-F0(-a; i,\)=e/2(l-c) and | / „' ( x ^ l ) / / 0(a:1;l) | =& . Notice that also here 

the censoring percentage is F^-x^. The minimax relation on the estimator's variance 

remain valid (where V{q$ )=l/7(<]io )), due to the asymptotic equivalence between L 

and M-estimators [Jaeckel, 46], provided the ani are chosen as above. (Stigler [47] proved 

later that if the nominal p.d.f is any symmetric, twice differentiable and strongly unimo-

dal p.d.f. on R1, the L-estimator corresponding the above score function is indeed 

asymptotically Gaussian with the variance assumed in [46]). 

To summarize, the SW adaptive threshold extension of the SSQME test is a suit­

able choice for radar-sonar systems where "noise-reference" samples are conveniently 

available. It possesses all the asymptotic desired maximin properties; its implementation 

in the nominal Gaussian case is relatively easy based on a-trimmed estimators which do 

not require more than ordering of the data, an operation that is common to most non-

parametric tests and is becoming available for real time implementation with VLSI tech­

nology. 

b)SSQME test with a preliminary scale estimate 

We assume now that {x,y} are the only available observables, and the nuisance 

scale estimate must be derived from the "signal plus noise " data itself. We draw and 

build on Huber's theory [3] of simultaneous estimation of location and scale. For 
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completeness of the presentation, we next quote and make some interpretations on 

Huber's main results: 

i) Simultaneous M-estimates for location and scale are a pair of statistics (Tn,Sn) 

determined by solving equations of the form 

£ J ¥ ( J 5 L I £ L ) = 0 (5.10a) 
i = l ^n 

E X ( ^ ) = 0 (5.10b) 

These are similar to the ML estimates of 0 and a for a family of densities 

1 x — 6 
— / ( ), with proper selection of ^ and Y. AS most common test statistics and 
a a 

estimators depend on the samples only through the empirical distribution function 

F„ (x ; x).=—YJI{X,<X}> where / t A \ is the indicator function of the set A, it is 

convenient to express Tn (x) = T(Fn) and Sn (x) = S(Fn) in terms of the func­

t ional defined by: 

J»(*~ffiVw = 0 (5.11a) 

fx{Xf(F)))F{dx) = ° (511b) 

Hampel's [34] influence curve (IC) is a very useful heuristic tool of robust statistics, 

which describes the (suitably normed) limiting influence of a single observation on 

the estimator. Intuitively, a qualitative robust estimator must have a bounded IC. 

If \fn [T(Fn) - T(F)] is asymptotically zero mean Gaussian, its variance is given 

by (using (5.13) below)-

V(F,T) = JlC2{x;F,T)F{dx) = S2{F)- £HJ w (5.12) 

with a similar expression for V(F ,S). If (and only if) F and x a r e symmetric, and 

ty is skew-symmetric, the IC's of the simultaneous estimates are uncoupled; in par-



- 63-

ticular, only S(F) but neither the IC nor the asymptotic variance of S enters into 

the expression of IC(T). The IC's are given by: 

* (T7W ) 5 ( F ) 

IC{x;F,T) = mj (5.13) 

IC{x;F,S) = ^ - ^ (5.14) 

Note that for a given distribution, T(F) and S(F) are numbers; Tn and Sn are 

Fisher consistent estimates if T(F) and S(F) are equal to the estimated parameters. 

Under the above mentioned symmetry conditions, the estimates are asymptotically 

uncorrelated and hence independent. 

The asymptotic robustness (in Hampel's sense ) is clear from (5.13)-(5.14), provided 

that ^ and x a r e bounded functions. In section 6.4 of [3] it is shown that under 

relatively mild conditions the coupled estimates are consistent 

P 
{Tn,Sn) -+{T{F),S{F)) and jointly Gaussian. 

The IC of T for the case when the nominal scale is known is given by the same 

expression as (5.13) but with S(F)=1. If S(F) does not change too much when 

F£P0 (a property which must be satisfied for any reasonably consistent and robust 

estimate of the scale), the desired properties of the location estimate with known 

scale will be roughly preserved. However, it is not possible to obtain an exact 

minimax, since the loss of the translation invariance symmetry in the multi­

parameter case does not enable extension of the parametrization of the nominal 

model throughout a convex uncertainty neighborhood, c.f. [3, section 11.1]. It 

should also be clear that the variational techniques of [3] are not applicable for 

finding the density that minimizes V(F,T), even when the asymptotic variance of 

S is considered as a nuisance factor, due to the deep and implicit nonlinear coupling 
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of Eq.(5.12) subject to Eqs.(5.11). 

The simultaneous solution of equations (5.10) is perhaps an unnecessary compli­

cated. Simplified variants are the one step M-estimates. They are obtained by 

starting with some preliminary estimates T,}0' and SjP\ and then solving Eq.(5.11a) 

approximately by applying Newton's method just once . The following variant 

emerged in the extensive "Princeton Monte-Carlo study " of Andrews et.al. [35] as 

very robust, even for small sample sizes. The preliminary estimates are the median: 

r,/0 '(x) = med {XJ }, and the median of the absolute deviations from it (MAD): 

S^°\x) = med{ | i,-T„(0 '(x) | }/0.6745, where 0.6745S<|>-1(3/4) to get consistency 

at the Gaussian (\{x)=sign( | x | -1), thus S(Q\F )=F~\3/4) for asymmetric den­

sity from (5.11b)). The MAD is the limiting case (e—*1) of the minimax robust scale 

estimate, and its computation is simpler. Then, 

_T (°) 

±.ywXi n w(°) 
7\W(x) = Ti%) + " (0) (5-15) 

Lyy (Xi n ) 

Tj-1) is asymptotically (n —•oo) equivalent to the full solution of Eq.(5.10a) T^°°\ 

provided the previously mentioned symmetry conditions are satisfied. Moreover, 

with these symmetry conditions, any one-step estimator with translation invariant 

and odd T„(°' : T„(°\x+c )=Tn
{0\x)+c ,T^0\-x)=-T^0\x)), will have the same IC 

(and hence identical asymptotic properties) as the full solution of the coupled equa­

tions. Note that for the nominal Gaussian case the computation of (5.15) is of the 

same order of complexity as of the nonlinear detectors typical of the LORD 

approach (section 1.3), provided 7Y°) and S,/0) are available after two orderings of 

the data (the denominator is just the number of normalized samples in [-k ,k]). 

With this background , it seems natural to preserve the structure of the SSQME 

, but with scale invariant location estimators and an adaptive threshold which is 
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derived from the scale estimate. Thus we propose the following test: 

DECIDE Hx iff R{x,y) > tnW{x,y) (5.16) 

where 

R(x,y) A \T^(x))2+[TP(y))2 , W(x,y) * [S„(0)(x)]2+[S»(0)(y)]2 (5.17) 

T„(1) is the one step M-estimator of Eq.(5.15) and 5„(0) is the MAD scale estimator. The 

structure of the test is shown in Fig. 5.2. 

Fig. 5.2 SSQME test with MAD preliminary scale estimate. 
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The asymptotic properties of the test are summarized in the following. They are 

valid for all simultaneous and one step M-estimators provided the symmetry properties 

that were mentioned before hold. 

Proposition 5.2 a) The test (5.16) is CFAR for any fixed density / 6 P 0 with unk­

nown (variable) a. b) With variable f , the changes in the asymptotic false-alarm proba­

bility are governed only by the normalized variance of the location estimates : 

V {FjW) i V{F,rW)/(5(0)(F))2 , but not by the variance of the scale estimate, c) 

The asymptotic detection probability is given by the same expression as for a fixed 

threshold SSQME test: ^F)=a(F)1^1+SNR^^ ( for a Rayleigh signal), where 

nA 2 

SNR(F) = M s -2 _ - (5.18) 
2[S^\F)]2V (F,T{1)) 

is also not a function of the scale estimator variance. 

Proof 1) Both r„W and Sn^ are scale invariant: Sn^\ax)=aSj-°\x), etc., from 

which a) follows immediately. Also, S^0'(Fa) = aS^Q\Fa==l), hence we will omit the scale 

subscript on F for convenience. 

00 OO 

2) The probability of acceptance of Hx is given by J f w(w )dw j f R (r )dr , since R and 
0 (.to 

W are asymptotically independent when the symmetry conditions of i) above are met. R 

is one sided exponentially distributed, with 

E0(R) = l(s(°\F)fV {FjW) , EX{R) = E0{R)[l+SNR] (5.19) 
n 

by straightforward calculation. Note that the definition of SNR is justified (by analogy 

to the classical case) as V (F ,T^) is also a invariant by its definition, as long as the 

scale and location estimates are also invariant. Hence the input noise variance affects 

SNR only through S^Q\Fa)=aF^\Fx). As W is the sum of the squares of two indepen­

dent identically distributed Gaussian r.v.'s N(a,v2), it has a noncentral x2 distribution 

with 2 degrees of freedom and noncentrality parameter X=2a 2 , c.f. [13]. Explicitly, 
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t i \ * i w + 2 a 2 , r , a \/2w , , , on> 
2v 2v v 

where I0 is the modified Bessel function of zeroth order. Here a=S(°\F) and 

v =Lv(F ,Sl0)) under H0 and under Hh as S;(0)(x+c )=Sn^°\x). The desired probabili-

ties are thus computed from: 

„ 00 . 

exp(-o / v ) r , , 1 . 'n W f , ov2u i u „ „ ,_ 01s 

The evaluation of this integral is facilitated by-

00 

Jexp(-x)I0(2\/yx)dx = exp(y) (5.22) 
o 

which can be derived by a change of variables from the normalization of the Rician den­

sity. The result is 

«p[--^7j7( l+2'»w/^( f i)rI] 
Pi = — ' T T T T ^ , i=H0,H1 (5.23) 

- l+2*„ i ; /£,•(#) ° 1 V j 

As a /E{ (R) pa n and v /E{ (R) is not a function of n , in order to get a non-zero a as 

n —t-oo we must have tn = £ jn . Thus when n —>oo the terms that contain V î*1 ^^'(i*1)) 

through y cancel out and lim p0 = e x p ( - f / V (F ,T^>) follows and proves b). The 
n —*oo 

proof of c) is similar upon substitution of Ei{R ) from Eq.(5.19) into (5.23) and taking 

the limit as n —•oo. 

Comments and interpretation 

l)Since the error probabilities are not functions of the variance of the scale estimator, 

Sjjy> should be chosen to achieve better and flatter consistency over P 0 , and not accord­

ing to its variability. 2) The false alarm probability with the preliminary estimate is 

parametrized by V (F,T^'), which is roughly equal to the variance under the known 

scale case, if S^°'(F)=l and it does not change too much over P 0 . Hence we have a simi­

lar situation as in Chapter 4, and the upper bound on the false alarm probability is 

approximately satisfied if the least favorable density q$ is chosen. While it does not 
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seem possible to give an analytic characterization of the density that maximizes 

over the e-mixture family P 0 as was discussed in iii) above, if the noise den­

sity is restricted to a narrower family (e.g., Gauss-Gauss or Gauss-Laplace e- mixtures), 

the supremum of the variance can be found (at least numerically) and adjusted accord­

ingly to obtain an upper bound on the a over the restricted family. 3)With that res­

tricted maximization, an approximate upper bound on the detection probability will also 

be obtained as follows. Denote by P 0 r the restricted noise family. Since 

S(°\F,D )=F-\3/4)/D (for the MAD estimator) ch anges over Por> its arbitrary normal­

ization D can be used as an optimization parameter. Let V**(D)= MaxV (F,T^',D) 

and a0=exp(-t / V** (D ))>a(F ,D ) . Under the same approximation of section 4.3 for 

sufficiently high desired probability of detection (/?;>0.5), with substitution of SNR from 

Eq. (5.18): 

W,D) = a(F,D)^™"^) S aWW)?vW! ( 5 2 4 ) 

Hence the additional detectability loss from scale estimation relative to the worst case 

where a is known is characterized by the effective SNR loss 

and D ** can be chosen to minimize the maximum loss over P Or 

D ** = ArgMin{ Max L (F ,D )}. Hence, a (/?) is bounded from above (below) over the 

family, and the additional loss due to scale estimation is low if L (F** ,D ** ) ~ 1 . 

Figures 5.3a-5.3f show the results of such a numerical optimization over the Gauss-

Gauss mixture family, vs. the r.m.s. power of the contamination c . In each figure the 

dashed lines are of V (F ,T^')/V**, and the continuous lines are of L [F ,D ). One set 

of graphs in each figure corresponds to the optimization with respect to D , while the 

other was obtained where D was taken to get consistency at the least-favorable density 

of the known a case, i.e., D*=F* (3/4). Using Eq.(4.10), it is given by 



69 

D* = 

A-—In 
k 

fo(k) 1 

4( l -c ) / 0 (* ) 

<*r 1 + 2(l-e) 
4(1 - e) 

k ~ 4(l-e) 

fo(k) 

(5.26) 

<• 
1 

k ~ 4(l-e) 

The figures demonstrate that there is not any additional loss (above that incurred from 

V(l0,qQ)/a2) from the scale estimation for e<0.2, that the loss is negligible (about 4%) 

for e=0.3, and it is quite small (about 26%,corresponding to 1 dB) for e=0.4. Even for 

the huge uncertainty e=0.5 the loss is reasonable (50%) if c <20. For €>0.5, it seems 

that L (F ,D **) is unbounded. This agrees with the "breakdown" point of the joint esti­

mation, as evaluated by Huber [3, pp. 141-146]. Also, the loss difference between the 

optimal D ** and the normalization D * is quite small. As D ** >0.6745, the efficiency at 

the nominal Gaussian is somewhat sacrificed to obtain better performance over P 0 r 

(compare with Table 5.1). Similar conclusions can be drawn from Figures 5.4a-5.4d 

which are valid for the Gauss-Laplace mixture family. When the nominal p.d.f. is Gaus­

sian, the test of Eq.(5.17) can be simplified by utilizing a-trimmed estimators in place of 

the one step location estimator. In that case, it turns out that the agreement with the 

performance of the known scale is even closer, see [48]. 
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Fig. 5.3 Normalized variance V (F,TW)/V** (dashed lines) and effective SNR loss 
L(F,D) of SSQME test with a preliminary scale estimate. Gauss- Gauss mixture, 
c 2=contamination variance. D * - scale normalization of the known-a least favorable 
density, D **- optimal scale normalization, a) e=0.01 . 



- 71 -

5.3 (continued) 
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Fig. 5.4 Normalized variance V (F ,T^)/V** (dashed lines) and effective SNR loss 
L[F ,D) of SSQME test with a preliminary scale estimate. Gauss- Laplace mixture, 
c 2=contamination variance. D * - scale normalization of the known-cr least favorable 
density, D **- optimal scale normalization. 
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Finally, we note that the undesired result where the false alarm probability still 

depends on / £ P 0 (unlike the SW-SSQME version) is a consequence of estimating the 

scale of the input samples and utilizing it for the threshold, instead of direct estimation 

of the variance of the location estimator. (Recall that in the classical normal case the 

variance of the sample mean estimator differs only by a factor of n from the variance of 

the input samples). This might be resolved with additional implementation complexity, 

by taking the adaptive threshold to be proportional t o F (x)+V (y), where 

n*) - 1 i,|/c^"^''-Jr'W-r"'")] <5 2 7» 
and the IC is given by Eq. (5.13). Under the previously stated regularity and symmetry 

conditions this estimate of V(F ,T^') is consistent. Thus it is reasonable to assume that 

V (F ,T^') will cancel out from the error probabilities. However, the error probabilities 

with this estimate are analytically intractable even when n —•oo (see also [3], section 6.8). 

We feel that this additional complication is probably unnecessary, as is evident 

from Figs. 5.3-5.4. Moreover, Monte-Carlo finite sample simulation results indicate that 

when the test of Eq.(5.16) is implemented with the breakpoints corresponding to the 

density q$, both error probabilities did not deviate in any noticeable way from the 

known a case (i.e., when (5.12) is computed with S(F)=1), when e<0.2 and n >50. 



- 74-

5.3 Unknown Signal Frequency and Implementation Complexity 

In radar-sonar detection, the frequency of the signal is often unknown, since it is 

proportional to the target radial velocity by the Doppler shift effect. In the Gaussian 

noise case, the problem is commonly solved by employing a bank of M contiguous 

coherent envelope tests , each of the form of Eq.(2.4), where the itk is matched (by 

baseband conversion) to a Doppler shift of i* fr/M (fr —l/T =pulse repetition fre­

quency). If the Doppler shift is spread uniformly over [0,/ r], almost optimal performance 

over this range is obtained by implementing the contiguous bank with a weighted FFT 

processor of length n , as the envelope of the FFT filters outputs is almost flat.1 This will 

serve in the following as a basis for comparison of implementation complexity of the 

various robust tests. 

In a similar manner, robust tests for unknown frequency can be constructed as a 

bank of M contiguous SSQME tests. Specifically, in the ktk channel, Jk=0,l,...M-l. the 

input observables of Eqs.(2.5-2.6) are transformed according to 

Ii (k )=/?e [(*,- +jy{ )exp(-; 2mk /M)] , Q{ {k )=/m [(a* +jVi )exp(-j 2mk /M)] 

and then M parallel SSQME tests are performed on (I(fc),Q(fc)}, see Fig. 5.4a. In this 

way, for the M discrete frequencies kfr/M in the uncertainty range [0, / r] , the perfor­

mance will be optimal as before, with some loss for straddling frequencies. The question 

now arises if this loss is comparable to that of the FFT processor when Af=n . At first 

glance we might suspect that it would be larger due to the nonlinear processing, but it 

turns to be identical at least for large sample sizes. 

Propositions.3 Let the frequency shift of the signal relative to the down conversion 

mixers be f d and let n -*oo. Then, the detection probability of the various SSQME tests 

is given by the same expressions as for /,; = 0 , where the effective SNR is attenuated 

by G(fd) which is identical to that of the FFT processor: 

'Flatness of about 1 dB is achieved with Hamming weighting. 
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<*(/-) = . I ; ; v (5-28) 
sm\nirfd/fT) 

sin2(7rfd/fr) 

The proposition is proved in appendix D; the key property is an asymptotic normality 

result for M-estimators of a sequence of r.v.'s with unequal means. The implications 

should be clear: not only that it is not necessary to construct a bank of more than n 

contiguous SSQME tests, but it is also possible to apply the same weighting techniques 

that are employed with the FFT processor to get a flatter performance over the fre­

quency range (at a price of reduced resolution and reduced SNR at f i=0). (See appen­

dix D for the details.) 

The major increase in complexity stems from the nonlinear processing of the 

SSQME test. Thus, the number of operations required for a single frequency must be 

multiplied by n resulting in 0(n2) for the full range, compared to nlogn for the linear 

FFT processor (in the following, logn =log2n). It does not seem possible to perform some 

of the nonlinear operations bef ore the n frequency conversions. 

For purposes of simplicity, we assume that multiplications, additions and comparis­

ons are equally costly. Hence, the FFT processor requires O (5n logn +4n ) real operations. 

The SSQME test for the nominally Gaussian noise is based on a-trimmed means. If ord­

ering the data is done by the QUICKSORT algorithm [39], the expected number of 

operations for an i.i.d. sequence is O(nlogn) 2. Hence a- trimming requires 

O (n logn-I- c (a), l<c (a)<n. With it available, the MAD scale estimator requires 

O (nlogn +2n) operations in addition, and the 1-step estimator T^1' for the non-Gaussian 

nominal density needs O ( l ln) more, assuming that the evaluation of a nonlinear func­

tion is done by interpolation between two stored values. With these, the order of com­

plexity for the various tests of the previous section is easily obtained by counting. For 

the SW version we do not count the operations in the adjacent M reference cells, as the 

SW is performed by sequentially repeating the algorithm on adjacent spatial cells and it 

QUICKSORT is a random algorithm, it can require up toO (n2) operations. 
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is only required to keep in memory the outcomes of operations that have already been 

performed. Table 5.4 summarizes the order of the number of operations. The last entry 

belongs to the narrow-band Wilcoxon nonparametric test [40] which is a candidate for 

comparison with the robust tests. The test statistic for a single frequency is 

RNBw(*,9) = [Efl+te)tf(*.-)l8 + [E*+ to)tf(rf (5.29) 
1=1 i = i 

where R+(XJ) is the rank of \ x{ \ in | xx \ , \ x2 | ,...• | xn \ , and U(x() is the unity step 

function. The test has the same order of complexity as the SSQME test, which substan­

tially outperforms it as will be shown in the next section. 

Type of Test 

FFT processor 

SW-SSQME for nominal Gaussian noise 

SSQME with preliminary scale estimate 

for nominal Gaussian noise 

SW-SSQME for nominal non-Gaussian 

noise 

SSQME with preliminary scale estimate 

for nominal non-Gaussian noise 

Wilcoxon NB 

Order of Complexity 

5n logn + 4n 

2n2logn + 2n(e(a)+l) 

4n2(logn + 1) + 2n (c (a)+2) 

4n2(logn + 12) + 8n 

4n2(logn + 12) + l ln 

2n 2(logn + 3) + 4n 

Table 5.4 Order of complexity for various tests of narrow-band input of length n. 
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5.4 Finite Sample Simulation Results 

The asymptotic approach to robust statistical procedures is an unavoidable neces­

sity, as the n —>-oo assumption allows one to invoke the central limit theorem in order to 

obtain explicit functional which parametrize the performance of the procedure. Thus, 

optimization by some criterion becomes possible. Although asymptotically one could 

find true optimal procedures by estimating the underlying distribution, this usually 

requires a prohibitive number of samples [49]. Thus, the central reason for the asymp­

totic formulation is the hope that robust estimation and testing procedures will approach 

their asymptotic behavior quickly. The "Princeton Monte Carlo Study" of Andrews 

et.al. [35] showed that this is indeed the case for the variance of M and other robust 

estimators of location. For detection, we need also to demonstrate the tail behavior. 

In most communication engineering applications, n will be quite small. This is true 

particularly for radar - sonar systems, where such considerations as the desired non 

-ambiguous detection range, angular resolution and minimization of the required time to 

search the detection spatial sector, call for decreasing n . Moreover, we have seen time 

and again through this work that detectability of coherent signals is governed (at least 

asymptotically ) by the integrated SNR nA . In active systems, this product is propor­

tional to the average transmitter power, which usually is the fundamental constraint 

rather than the peak power A 2. Therefore, at a given time period the same detectability 

can be maintained by increasing A and reducing n while keeping nA2 constant, thus 

achieving the other important systems objectives. As a result of that, most radar sys­

tems are designed with n =0 (10-50) or even smaller for long range systems. This simple 

observation which is probably known to any practicing engineer has been totally over­

looked in theoretical considerations, and the usefulness of procedures resulting from 

asymptotic analysis remains questionable without small - sample performance analysis. 

Unfortunately, analytic tools for studying finite sample performance are not avail­

able. Results in the spirit of the Berry-Essen theorem [37], which bounds the deviation 
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from Gaussianity of the distribution of the sample mean estimator are non-existent for 

M-estimators. This is so because it is not possible to obtain an analytic expression for 

the finite sample moments. (Notice that its asymptotic variance was derived indirectly 

through the convergence of its distribution). We must resort to either numerical or 

simulation studies which do not analytically exhibit the rate of convergence. 

For M-estimators with a monotone nonlinearity /, the distribution can be com­

puted from an n-fold numerical convolution since Prob {A <a} 

=Prob {£) / (z , -a ) < 0 } . For our SSQME test more integrations are required since 

i ? = i x
2 + i y

2 , and A and <f> have to be averaged out. Field and Hampell [42] recently 

showed how to alleviate the enormous amount of computations by their so called "small 

sample asymptotics" technique, which is closely related to Daniels [43] saddlepoint 

approximation. Though this technique was shown to be very accurate down to sample 

sizes of 3, even in the extreme tails, it is still numerical in nature and involves a substan­

tial programming effort. Therefore we have not proceeded in this direction but per­

formed instead a Monte-Carlo study - programming is relatively straightforward and 

flexible, and the empirical distribution estimates are known to be unbiased and converge 

to the true distribution with a large number of repetitions. 

Heuristically, the SSQME tests based on robust amplitude estimation should con­

verge at a faster rate than the locally optimal robust detector (section 4.4) based on 

weak signal assumptions. The latter incorporates a hard "non tracking" nonlinearity; 

the distribution of the test statistic has finite support (when n is finite) with a point 

mass at the upper end of the interval. In contrast, the M-estimator can take any value 

on R 1 and its distribution will be smoother and hence converge faster to Gaussian. This 

is most significant under Hl when the distribution of the LORD test statistic will be 

mostly concentrated around the boundary of the intervals for large SNR. 

When adopting the asymptotic theory testing structure for finite sample size, the 

amount of trimming or limiting must be increased if very small Pfa is desired, since we 
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are dealing with the tail of the distribution where deviations from theory are larger. This 

is explained more precisely as follows. Define Ak = { number of outliers in either of the 

quadrature channels that is exactly k, and less than or equal k in the other channel }. 

Since these events are mutually exclusive and their union is the certain event we can 

write 

(5.30) 

Pf.=Pr{R>t}=Y;Pr{R>t \Ak}P(Ak)+ £ Pr {R >t \Ak}P(Ak) 
* = 0 *=2[r»a| + l 

Thus, a lower bound for Pfa is the second term. In it, the number of outliers exceeds 

the trimming capability of either estimator; hence, if t is fixed according to asymptotic 

theory Pr {R >£ | Ak} will be large and close to 1, and approximately 

Pfa^ S P(-A-k)- Assuming that the contaminated samples come from a switching 
k>2[na\+l 

model, the probability of having k outliers out of n in either channel is binomial: 

(n) 
^k = I k I ( l - e ) " e ' a n c ' C 'ue t o independence of the quadrature samples 

P(Ak) = Pk
2 + 2Pk'j;Pl (5.31) 

/=o 

The following table exhibits this approximation for n = 1 6 and e=0.1 . With the asymp­

totically optimal a=0.164, Pja can not be smaller than roughly 10-3, while or=0.27 is 

sufficient for 10-6; simulation results have validated this approximation. 

a 
km=2\na\+l 

E P(Ak) 

.125 
5 

3.37 10-2 

.1875 
7 

1.01-KT3 

.25 
9 

1.18-KT5 

.3125 
11 

5.41 10"8 

.375 
13 

8.36-10_n 

Several versions of scale-invariant detectors of section 5.2 were studied, for the 

nominally Gaussian case. They will be denoted Dl - D5 as follows: 

(Dl) SW-SSQME test of Eq.(5.5) based on a- trimmed estimators with the number of 

reference cells M = 4 . 
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(D2) like Dl but M—•oo (i.e.,the estimation of the variance of the test statistic con­

verges to the true value). For that, the reference statistics W(u,v) of the Dl simu­

lation was accumulated over all runs to produce the adaptive threshold. Thus, a 

huge saving was possible. 

(D3) SW-SSQME test with a "one-step" location estimators of Eq.(5.15) based on the 

MAD scale estimate; its normalization factor D=0.632 was adjusted to get (empiri­

cally) consistency of the scale estimator ES ( x ) = l at the Gaussian (this value is 

somewhat lower than predicted from the asymptotic theory ). The nonlinearity was 

the soft limiter / (x ,-k ,k). 

(D4) SSQME test of Eqs. (5.16)-(5.17) - no reference cells - based on the same location 

and scale estimators of D3 . 

(D5) SW version of the LORD from section 4.4 (obtained from weak signal assumptions 

by replacing the M - estimators with the nonlinearity-integrator of Eq. (4.29)), 

M—•oo. 

For D1-D4, both a and k were adjusted to obtain better false-alarm control as discussed 

before; for D5 we chose k as the optimal for the given e from the asymptotic theory. 

For each test, two simulation programs were built. The first is for H0 and its out­

put are graphs of the false alarm probability vs. the normalized threshold, as well as the 

first two moments of the location and scale estimators. The second program is for Hv 

It simulates the detection probability as a function of the SNR for several levels of the 

false alarm probability and for a Swerling I target model, i.e., coherent narrowband sig­

nal with Rayleigh distributed amplitude and uniform phase (see section 4.3, case a). In 

each of the simulations, the test was subjected to four different noise p.d.f.'s from an e-

mixture family where the nominal is normal Gaussian: 

( / i ) < = 0 

( / 2) £ = 0-1 a n d two point masses at ±15 
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( / 3) e— 0-1 a Qd a Gaussian contamination with variance c 2 =100 

( / 4 ) e=0.01 and a Gaussian contamination with c 2 =900 

In the sequel, we shall use these numbers to identify the situation. The input variances 

are thus 1, 23.4, 10.9 and 9.99 respectively - all e^O cases represent large, heavy tailed 

contaminations and would have resulted in a substantial degradation of performance if 

the unrobustified envelope detector was employed (see Section 2.2). The e- mixture r.v.'s 

were generated from a switching device: at each step, a normal r.v yt- was generated 

together with a binomial r.v st- that is equal to 1 with probability €; Xj =y,- if S j ^ l 

and Xi= c •?/,• ( or a;,- = ± 1 5 with probability 0.5 for f 2 ) otherwise. Almost all simula­

tions were for n = 1 6 . 

Table 5.5 displays the Monte- Carlo variances of the a- trimmed estimator for vari­

ous a's. For comparison, from the asymptotic theory at the least-favorable p.d.f. 

V*(e=0.l) =1.49, and for a=0.225 we computed from Eq.(5.3) 

V(l)=1.17, V(2)=1.51, V(3)=1.46, V(4)=1.2. This good correspondence between 

asymptotic theory and finite sample simulation (for n=20) was observed before by 

Andrews et. al. [35]. The asymptotically optimal trimming ratio is a(e=0.l)= 0.164; as 

was discussed before it is necessary to apply more trimming with small sample size when 

very small false alarm probabilities are desired. The simulations indicated that 

a=0.225 to 0.3 is sufficient; the table shows that except for / l for this a range the vari­

ances are roughly as those for a = 0.164 (or even smaller). The results suggest that the 

detectability loss compared to theory is small. This has been verified from the Hi simu­

lation results, which will be presented below. Similar conclusions can be drawn from 

Table 5.6, which is for the "one-step" estimator; here the asymptotically optimal limit­

ing is &(e=0.1) = 1.14, and very small losses ( if any ) are incurred by taking k =0.75. 
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a 
0.164 
0.225 
0.25 
0.3 
0.4 
0.5 

V(fA 
1.09 
1.15 
1.17 
1.21 
1.36 
1.47 

V(f.) 
1.43 
1.34 
1.35 
1.41 
1.56 
1.68 

V(f.) 
1.60 
1.53 
1.51 
1.55 
1.69 
1.81 

V(f.) 
1.13 
1.18 
1.20 
1.25 
1.39 
1.50 

Table 5.5 Monte-Carlo variances of the a- trimmed estimator. n=16 , 20,000 runs. 

k 
1.14 
0.9 
0.75 
0.5 
0.3 

V(f,) 
1.08 
1.13 
1.16 
1.29 
1.41 

V(fo) 
1.29 
1.31 
1.34 
1.46 
1.60 

W M 
1.53 
1.51 
1.50 
1.62 
1.74 

V(fA 
1.12 
1.16 
1.24 
1.32 
1.42 

Table 5.6 Monte-Carlo variances of the "one - step" estimator with MAD scale estima­
tor. n=16, 20,000 runs. 

Probability of false alarm curves are shown in Figures 5.5 - 5.16. In all these 

figures, the smooth curves marked "T" are computed from the asymptotic theory -

Eqs.(5.6) and (5.23), and the numbered curves are the simulation results for the densities 

/ i~ / 4- Fig- 5.5 corresponds to Dl and 5.6 to D2, with a=0.165. We see clearly that 

here a is too large, since for the more contaminated cases Pja is much higher than 

desired. This problem is solved by taking c*=0.225 as can be seen from Figs. 5.7-5.8. In 

the first one, the Monte-Carlo curves are all remarkably close to the theoretic curve, 

within the range where the simulation results are reliable , Pja ^>4/nr =2-10~4. The 

test is clearly CFAR, for very different noise p.d.f.'s. In Figure 5.8 Pja is even some­

what smaller than the theoretic, (this means that the distribution of the test statistic R 

has shorter tails compared to the one sided exponential). Thus, if the threshold is fixed 

according to the asymptotic theory, Pja is bounded from above as desired. The same is 

valid for cv=0.3 as can be seen from Figs. 5.9-10. The curves for D3 are shown in Figs. 

The empirical distribution for nr repetition of the Monte-Carlo experiment 

Fn [x )= number{J , ->X} , is a binomial r.v. with m e a n ^ l - i ^ ( x ) and variance 

= F(x)(l-F(x)). Therefore, for Pfa « l , f o r y/Var{P!a )/Pfa < 0 . 5 one obtains 

^ r > 4 / n r . 
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5.11-12; in the first one, the limiter breakpoint is A; =1.14 according to the asymptotic 

theory - it is again seen that the limiting is not "hard" enough, as Pfa for / 3 is higher 

than the theoretic bound when Pja <0.01. This problem is corrected by taking k =0.75 

as can be seen from Fig. 5.12. 

Results for D4 are displayed in Figs. 5.13-5.14; notice the two sets of curves in Fig. 

5.13: the first is of \ogProb {R {x,y)>{t/n)V* W(x,y)} where V*=IA9, which should 

approach a straight line when n —•oo according to proposition 5.2. In the second case the 

scale is contracted by taking V * = 3 . Here asymptotic theory is no longer valid: the 

curves are not linear and for achieving small Pfa's higher threshold settings are 

required. These higher settings, in turn, would cause higher detectability losses. This 

deviation from asymptotic theory is not surprising, and is equivalent to the behavior of 

the "Quadrature t-test," which is the maximum likelihood test for a coherent nar­

rowband signal in Gaussian noise of unknown variance 

H 

(L E « f + i- E Vi f V - E(* - ' f + Eta - y )21 (5.32) 

For small n , the right hand side cannot be approximated by a Gaussian distribution (it 

is chi-squared for all n ), and also the dependency between the right and left sides of Eq. 

(5.29) cannot be neglected as we did in proving Proposition 5.2. In Fig. 5.14 n was 

increased to 48, in order to check convergence. It is evident that the curves almost con­

verge to asymptotic theory, although some curvature is still noticed. 

Finally, Fig. 5.15 is for the LORD test D5. Here, as in Fig. 5.8, a tendency for 

shorter tails is observed. This could be heuristically described by the hard limiting that 

restricts the distribution of the test statistic to have a finite support. 

Dramatic improvement in false alarms control over the unrobustified SW detector 

Eq. (2.8) is evident when comparing the previous figures with Fig. 5.16. When it operates 

in a Gauss-Gauss (e=0.1, c = 1 0 ) noise, Pfa is intolerably increased from the design 

1CT4 to about 0.1 when M = 4 , and from 10"6 to 210~4 when M—••oo. Compare also Fig. 

file:///ogProb
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2.5 for <5=0.01. Thus we can confidently conclude that the various SW-SSQME tests 

essentially maintain CFAR according to the asymptotic theory of section 5.2 even for n 

as small as 16 with Pfa down to (at least) 10~4. For the test without reference samples 

D4, n is not much larger than 48. Based on these curves, the detection thresholds for 

the H± simulation were simply taken from the smooth theoretical curves, and extrapo­

lated from them for P ^ a = 1 0 - 6 . Future work could utilize reduced variance sampling 

techniques such as "importance sampling "[44] to validate this extrapolation. 

Probability of detection curves for Dl, D2 and D5 are shown in Figs. 5.17-27. Here 

5000 repetitions are sufficient to get Var^2{Pd)/Pd <0.1 for .02<Pd <0.98. The ordi­

nate is the effective integrated SNR =nE {A2)/a2 where a2 is the variance of the nomi­

nal Gaussian p.d.f. The known signal frequency case is depicted in Figs. 5.17-20. The 

Monte-Carlo curves are clearly bounded from the left by the computed Pd for the 

unrobustified SW detector when e=0 , and from the right by the maximin lower bound 

computed from asymptotic theory, Eq. (5.6), with V* of the least-favorable p.d.f. / *. 

Here again the fit between asymptotic theory and small sample performance is striking: 

the curves for / x-f 4 are ranked exactly according to the estimation variances of Table 

5.5, and the simulated Pd values generally differ by no more than a few percent when 

the simulation variances are substituted in Eq. (5.6) or (5.23). Equivalently, the horizon­

tal differences between curves are roughly the dB values of the variances from Table 5.5. 

We also note that the difference between a=0.225 and a = 0 . 3 is very small, again 

according to the variance difference. 

In contrast with the above results, the unrobustified SW detector of Eq.(2.8) was 

found to suffer substantial detectability losses. They were almost identical to the 

increased input variances of / 2 - / 4, with respect to / l. 

Some non-parametric schemes were developed for detection of narrowband signals 

in unknown noise; the narrowband Wilcoxon detector, Eq.(5.29), was proposed by Car-

lyle and its Monte-Carlo performance in purely Gaussian noise was studied by Hansen 
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[40]. It was found that the SNR losses compared to the UMP detector for n = 1 6 and 

P / a = 1 0 - 6 are 5 and 14 dB, for Pd =0 .5 and 0.9, respectively (smaller losses are incurred 

for larger n ) - compared to merely 0.6 db for D2 in Fig. 5.18 ! Furthermore, the perfor­

mance in non-Gaussian noise has not been studied. 

The performance of the detector without reference samples, D 4 with n = 16, is 

shown in Fig. 5.20. Although convergence to the asymptotic theory is not yet reached 

(in accordance with the higher required threshold values - recall Fig. 5.13), the detector 

is clearly robust. This is evident from the small differences between the curves for 

/ ! - / 4. By comparison with Fig. 5.18, the SNR losses are roughly 1.8 and 5.8 dB for 

Pja = 10~2 and 10-6, respectively, independent of the Pd . However, when comparing it 

with the SW-SSQME test Dl of only 4 reference channels, D4 outperforms it by roughly 

1 and 3.4 dB, for Pfa = 10~2 and 10-6, respectively. By virtue of the shift invariance of 

the one-step location estimator, if convergence to Gaussianity is reached under H0, the 

performance under Hi will agree with the asymptotic prediction. Thus, when n > 50 

D4 would hardly suffer any detectability losses compared to the UMP detector for the 

least favorable noise p.d.f. 

In contrast to the excellent performance of the structures proposed in this work, 

Fig. 5.21 shows that while the LORD test D5 performs roughly the same for P'j a =10~2, 

it is inj trior for Pfa =10~6; its SNR should be higher by 4.6 dB to achieve P d = 0 . 9 at 

/ 3. This can be simply explained: when the SNR is sufficiently high for high Pd, the 

"non-tracking" hard limiter of Eq. (4.29) prevents the distribution of R from tilting 

towards higher values. Also, asymptotic theory does not properly describe its behavior 

at the most interesting zone Pd-+1. (Recall that SNR —>-0 was necessary for the deriva­

tion of its asymptotic distribution, but not for the tests which are based on true robust 

estimation of the arbitrary amplitude.) 

The performance with unmatched signal frequency when a bank of n contiguous 

SW-SSQME tests is utilized for unknown frequency (section 5.3 ), are depicted in Figs. 
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5.22-24 where the normalized deviation A / j ^ n A / d / / r =0.25, and in Figs. 5.25-27 for 

A / =0 .5 (halfway between the central frequency of adjacent tests ). The mismatch loss 

is almost indistinguishable from that of Proposition 5.3 - i.e., the same loss incurred by 

the FFT processor for a frequency unmatched signal in pure Gaussian noise. While this 

loss is reasonable for Dl and D2, 0.91 dB and 3.9 dB for A / =0.25 and 0.5 respectively, 

the weak signal locally - optimal test D5 totally breaks down under this situation, as 

demonstrated by Figs. 5.24 and 5.27. We note that this loss for D x and D2 can be 

reduced by weighting the input samples. (See appendix D.) 

Another interesting conclusion can be drawn. In many practical cases, the noise 

p.d.f. is variance constrained, as it is proportional to the total ( nominal plus contam­

inating components ) noise power. This is true in particular for the clutter (reverbera­

tion) environment, where the noise power is proportional to the radar (sonar) transmit­

ted power. A question now arises as to which variance constrained noise p.d.f. consti­

tutes the worst detection environment. Consider for example Fig. 5.18 and / 3 for which 

the detector D2 is essentially optimal. However, the variance of / 3 is 10.9. Conse­

quently, in a Gaussian noise environment of equal power <r2=10.9, the UMP detector 

would perform worse by 10.9 -1.5 = 9.4 dB than the detector D2 ! This turns to be true 

in general. In [45], we show that the Gaussian is the least favorable variance constrained 

p.d.f. for detection of lowpass as well as narrowband coherent signals with random 

parameters. 
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Fig. 5.5 False alarm probability. Test - Dl , a=.164. 
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Fig. 5.8 False alarm probability. Test - D2 , a=.164. 
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Fig. 5.7 False alarm probability. Test - Dl , a=.225. 
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Fig. 5.9 False alarm probability. Test - Dl , a = . 3 . 
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Fig. 5.11 False alarm probability. Test - D3 , K=1.14. 
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Fig. 5.12 False alarm probability. Test - D3 , K=.75. 
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Fig. 5.13 False alarm probability. Test - D4 , K=.85, n=16. 
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Fig. 5.15 False alarm probability. Test - D5 , K=1.14. 
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Fig. 5.17 Detection probability. Test - Dl, a=.225,A/ = 0 
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Fig. 5.19 Detection probability. Test - Dl, a= .3 ,A/ = 0 

; 3(_F--~p!*1 DE'EC'OP, QLF°=0. 300 

! «;CPCT ; -E THRESHOLD, "I- 4 

^ . 0 0 5.DO ID.GO 15.00 20.00 
INTEGRATED SNR IN OE 

? C fi-"< i n ,-in 

Fig. 5.20 Detection probability. Test - D4, n = 16, Af = 0 

a 
a 

1-STEP DETECTOR.KLIM=0.^5 

(WITHOUT Alt£*£A/c£ SAHplfs) 

NO. M.C. RUNS= 2000 

N= 16 
o 

r>«.- ' " ' 

^ . 0 0 
« ^ - 1 1 

S.00 10.00 15.00 20.00 
INTEGRATED SNR I N OB 

2S.oo 3 0 . : : 



- 96 -

Fig. 5.21 Detection probability. Test - D5, K = 1.14, A / = 0 
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Fig. 5.23 Detection probability. Test - D2, a=.225,A/ =.25 
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Fig. 5.24 Detection probability. Test - D5, K =1.14,A/ =.25 
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Fig. 5.25 Detection probability. Test - Dl, a=.225,A/ = .5 
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Fig. 5.27 Detection probability. Test - D5, K=l.l4,Af =-5 
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A p p e n d i x A 

Smal l S a m p l e P e r f o r m a n c e of t h e S ign D e t e c t o r 

The sign detector (SD) is the simplest and probably the most popular non-

parametric detector for a deterministic lowpass signal in noise with uncertain symmetri­

cal density. Under several assumptions, it is known to be the UMP detector [32] or the 

minimax LORD detector [5] for those particular situations. Under the asymptotic weak-

signal/large-sample (n—*oo,H^H0) assumptions, the ARE with respect to the linear 

detector (LD) at noise density / (•) is ARESD ( LD «=*4(<r/ (0))2. This is 0.637 for Gaussian 

noise, 2 for Laplace (double exponential) noise and in between for many other densities. 

Hence, the SD is generally considered to be very efficient for many situations of uncer­

tainty. 

Small sample analysis reveals that it may not perform as well, as the fine details of 

the actual small sample-size error probabilities are lost in the asymptotic analysis. The 

sign test is given by: 

r(x)= £«(*,) 
>t , H, 
=t , Hx with probability c (A.l) 

. < * , # o 

where u ( ) is the unity step function. Notice that a randomized test is required since 

T(x) is a discrete binomially distributed r.v. Assuming symmetry of / (•), the false 

alarm probability is given by: 

«o , 2 

n t<n-l 

When n is small and the desired aQ is very small, the second row of (A.2) must be 

chosen, and therefore the detection probability is also proportional to the randomization 

constant c which might be very small. Denoting ProbHi{x{ > 0 } = p , it is given by 

Pd=cpn = a02
npn < <*o2" | SNR-.oo (A.3) 
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The critical values of the sample size such that for n <nc the detector becomes 

very poor (Pd <0.5, even for SNR —•oo) are found to be 12, 19 and 26 for 

a0 = 10-4, 10~6, 10~8, respectively; these numbers are typical of many practical systems. 

A similar situation is encountered with the Wilcoxon detector, as its minimal false alarm 

probability (without randomization) is also 2~" . 
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Appendix B 

An Approximation for the Distribution of the 

Envelope Detector 

In this appendix an approximation is derived for the distribution of the coherent 

n n 
envelope statistic: R = I2 + Q2, I = ( l / n ) J ] x{ , Q = (1 /n) J ] y{, where x and y 

1 1 

are i.i.d. vectors which are also independent of each other. When the samples are Gaus­

sian, R is one sided exponentially distributed. Thus, we are interested in an approxima­

tion which exhibits this exponential limiting behavior. 

Formally, any univariate density / (x) can be expanded in a series of orthonormal 

functions {$>k (x )} as 

00 

/ ( * ) = E ck <M*) (B.i) 
* = 0 

which is Z 2 convergent when all moments of / exist. A classical expansion in terms of 

the Gaussian density and its derivatives (which are proportional to Hermite polynomials) 

is the type A Gram-Charlier series [36], or its reordered version, the Edgeworth's form 

which, when applied to the distribution of the samples mean, gives the best order in 

powers of ra-1'2. Conditions for convergence of the infinite Edgeworth series are rather 

technical and implicit (they require conditions on / which is usually unknown); more­

over, they are of little value from the statistical viewpoint where the important question 

is whether a small number of terms can furnish a reasonable approximation. In particu­

lar, while the Edgeworth expansion of the sample mean converges to the Gaussian den­

sity with finite terms as n —*• oo, when the expansion is carried for finite n , adding more 

terms in the series above some optimal number usually results in a worse fit. See 

[36,Chap. 6] and [37,Chap. 16]. 

As pointed out in a footnote [36,section 6.24], when an approximation for the distri-
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bution of a positive random variable is desired, it is plausible to use a family of functions 

which are supported only on [0, oo). In this way, the error from the tails of the Gaus­

sian density and its derivatives at x < 0 would be eliminated. Since in our case the 

limiting one sided exponential distribution belongs to the Gamma family, the appropri­

ate polynomials are those of Laguerre defined by [38] 

L?{x) = ££- JL(e-*xi+°) (B.2) 
»' dx 

The orthonormality relation is 

00 

/ e - xa L&x ) Lf{x ) = r ( a +.] + i) «,-,. (B.3) 
o l ! 

hence the expansion is 

/ ( * ) = E Ct e-x'Lftx) (B.4) 
t = 0 

where 

The first four polynomials are 

L$[x) = l (B.6) 

Ll(x) = 1 + a -x (B.7) 

L${x) = - [(a + 1) (a + 2 ) - 2 x ( a + 2 ) + a;2] (B.8) 

^ ! ( « ) = 4- [(o+l) (a+2) ( a + 3 ) - 3 z ( a + 2 ) (a+3) + 3 i 2 ( a + 3 ) - i3] (B.9) 
6 

Like the Edgeworth expansion, it is possible to eliminate the terms i = 1, 2 by a 

transformation. Defining x =by, the following expressions are obtained from (B.5) and 

(B.6).(B.9): 

°» = TT(7TT) (B10) 



- 104-

C7o = 
1 \(a +2) (a + 1) _ 2(a + 2) ^ - + -jl] 

bT(a + 3) 6 b' 
(B.12) 

(B.13) 

°Z = 6T(a+4) [(a+3Xf l+2)(a+1H(a+3)(«+2)^- +3(a+3)-^f - -p-] 

where //,- = Ex(x*). Solving for Ĉ  = C2 = 0, we obtain: 

, /*2"/*i A 1 

2// . . .. 2̂  ! A a = tix/(ti2 - it') - 1 3 a 

Hence, upon substituting back with y = 0x 

(B.14) 

(B.15) 

(B.16) 

/ ( , ) _ Z £ _ f l £ ! l + _ _ ^ _ _ [(a + 2 ) A I 2 - / ? A I , ] fre-*x*-lLrx{ft*) + 

The leading term is recognized as the Gamma density which, as a—*1, tends to the 

desired exponential density. 

Integrating (B.16) to get the false alarm probability Pr {x > t //j} = Pr {y > t a} 

is simplified by using the defining expression for the Laguerre polynomials (B.2). Some 

tedious algebra yields: 

Pfa = Pr {x > t Mi} = [1 - / ( a , t a)] + 
CV 

+ ^ - ( a , Mi, / / 3 )e ' a ' (a* ) a [2af (a + 2) - (at )2 - (a + 1) (a + 2)] + 
b 

where 

CV a 
r(a + 3) 

2 

(a+l)(a+2) 2 . 
Mi 

(B.17) 

(B.18) 

and 

at 
c - ' t " " 1 * 

/ ( a ' a , ) = ( r(a) 
(B.19) 

is the incomplete Gamma function. It is clear from (B.17) that the second term vanishes 

for t = 0 as well as for t =oo , thus fulfilling some of the properties of a proper distribu­

tion (since the first term is a proper distribution). However, it cannot be said whether or 



- 105-

not (B.16) can assume negative values, a common feature of all finite Gram-Charlier 

expansions. The following term in the expansion turns to be so complicated so it will 

not be given here. 

To get specific results for the coherent envelope statistics R defined in the begin­

ning of the appendix, we need to express the moments of R in terms of those of the i.i.d. 

1 n n 

samples, E(Rm) = E [{Y\xi )2 + (ZjJ/i )2lm • Using the moment generating func-
n i ] 

tion, tedious but straightforward manipulations yield 

2 . 2 Hl = E(R) = —at (B.20) 
n 

,2 = E(R2)=^i4+K-] , t f A ^ f - 3 (B.21) 
nL n a? 

H = E{R*)=^[2A+™K. + - L (L-15K)] , L ^ -15 (B.22) 

where crf^Efa2), rrij =E(xt
J) and K is the coefficient of kurtosis. When xi are 

Gaussian, both K and L obviously vanish. Substituting these into (B.15) and (B.18) we 

obtain: 

a = (l + K/2n)-1 (B.23) 

1 [a + 6) In \ n 

Hence, the limiting behavior of the approximation with only the first four terms of 

(B.4) occurs when the number of samples n is much greater than the kurtosis 

(K jn —• 0). Then a —• 1 and the first term in (B.17) approaches e - ( as required by the 

central limit theorem, though (unlike the Edgeworth expansion) the first term itself actu­

ally includes all powers of K jn in a highly nonlinear fashion. When a < 1, a com­

parison with tables of the incomplete Gamma function shows that for sufficiently large t 

(such that the nominal false alarm probability Pja = e~l is small), the outcome of Eq. 

(B.17) could be orders of magnitude higher than the Pja as expected. In the second 

term of (B.17), all the expressions tend to a constant when a—+1 except C3 ' which 
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vanishes identically when a = 1. For other values of a, expansion in K /n gives 

"m cv =— -£ +°(K) 
n 

n 12 
(B.25) 

For the normal-normal mixture: / (a:,) = (1 - e) iV(0, 1) + eiV(0, C2), 

K = 3e(l - e) C2-l 
tc2» l e 

L = 15 
eCa » 1 € 

15_ 
2 

(B.26) 

(B.27) 

1-e + eC2 

(1-e + eC*) 
(1-e + eC2)3 

Therefore, with small amounts of large contamination and n not very large, a can be 

much smaller than one and the contribution of (B.24) is also not negligible. 

Actual computation of (B.17), using equations (B.20)-(B.24), (B.26), (B.27), is shown 

in figures 2.1-2.5 of section 2.2 and compared to Monte-Carlo simulation results. For a 

roughly in the range [0.5,1], this approximation is seen to be quite good. It is still a rea­

sonable prediction of the amount of increase in the false alarm probability down to 

a = 0.3. 
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A P P E N D I X C 

The Maximin Test for a Single Observation 

For a single observation of a r.v. R which comes from simple mixture hypotheses 

P 0 and Pl as in Eq. (1.1), Huber's [2] maximin robust test takes the form 

Hi , 1{R;L' ,L" )> t 

d*{R)=\ Hx with probability c , l[R ; L' , L" ) = t (C.l) 

H0 , l(R;L',L")<t 

where the soft limited l(R;L' , L" ) is given by Eqs. (1.6-1.8). The constants 

0 < L' < L" <oo are found by solving 

PX{L >L' } +L' P0{L < L> } - ( 1 - e ) " 1 (C.2) 

P0{L <L" } + {l/L" )Pl{L >L" }=(l-e)-1 (C.3) 

where L (R) = f X(R ) / / o ^ ) is the LR under the nominal situation, and is assumed to 

be continuous.. Application of these equations to the distribution of the coherent 

envelope of a Rayleigh narrowband signal in narrowband Gaussian noise, Eqs. (3.3-3.4), 

results in Eqs. (3.6-3.7). 

Since l(R ; L' , L " ) is a monotone increasing function of L [R ), which in turn is 

monotonic in R , Eq. (C.l) can be reformulated as a randomized test on R . The thres­

hold and the randomization constant are functions of the least favorable p.d.f.'s. Three 

different cases are possible, according to t = L' , L' < t < L" and t — L" , see 

Figure 1. Define R' and R" by L (R1 ) = L' , L(R" ) = L" . Define also 

00 00 

<*(*) = J f o(r )dr , P(x ) = / / x(r )dr . Then, 

Cage A t=L' => e < (a0 - a(R ' ))/(l - a(R > )) (C.4) 

f Hi , R > R' 
d*{R)={ / / 1 With probability c , R < R' ^C^ 

where 0 < c < 1 is given, as a function of the desired a0 and of R ' which solves (C.2), by 
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a 0 - e - (1 - e)a(# ' ) 

a 0 - a ( f l ' ) a 0 - a ( f l " ) 

*(i2 ' ) - € < 1 - a ( # " ) 

( Hx R >Rt 

where 

Here, 

where 

Here, 

(C.6) 
(l-e)(l-a(R' )) 

The detection probability under the least-favorable q{ is 

W,q{) = c +(l-e)(l-c)(3(R' ) = 1 - (1 - aQ)L ' (C.7) 

* " * L < f < L " = > f r ^ r f * '< 7-of^; (a8) 

(C.9) 

a 0 = £ + ( l - € ) a ( J 2 t ) (CIO) 

/9(r,9n = (i-6)/?(^) (en) 

CaseC L " = t = > € > (a0 - a ( # " ))/(l - a ( £ " )) (C.12) 

{ Hl with probability c R > R" 

H0 \ R<R" ( ° 1 3 ) 

c " t + (i-'o(r) ( C 1 4 ) 

* ' ' «'> = e+(l-e)a(R») = ^ ( ° 1 5 ) 

Notice that in this case where large e necessitates randomized maximin test, the result­

ing maximin lower bound on /?, Eq. (C.15) is very small, as it is proportional to the 

desired a0. 

The proof of Eqs. (C.4-C.15) follows from (C.1-C.3). For Case A, (C.l) is 

translated into (C.5) as a result of the above mentioned monotonicity properties. To 

satisfy the constraint on the probability of false alarm, we must have 
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a0 = Po{R >R'} + c P£{R <R' } 

= Po{R' <R <R" }+PZ{R >R" } + cPo{R < R' } 

Utilizing the expression for the least favorable density q$ , Eq. (1.6), 

a0 = (l-e)P0{R' <R <R" } + c(l-e)P0{R < R' } + i ^ A P,{R > R" } 

The last term is equal to 1 - (1 - e)P0{R < R" }, by virtue of Eq. (C.3). Collect­

ing terms, we obtain 

a 0 ( l -€ ) ( l -<* (# ' ))(c -1 ) + 1 

from which (C.6) follows. In order to satisfy c > 0, we get the appropriate e range, Eq. 

(C.4). In a similar manner, from Eq. (1.2) for q*, 

P(d',qi) = P!{R >R' } + cP;{R <R' } 

= {l-e)Pi{R>R' } + {l-e)L'cPQ{R < R' } 

and the last term, by virtue of Eq. (C.2), is equal to c [1 - (l - €)PX{R > R' }]. Col­

lecting terms, the first equality of Eq. (C.7) is obtained, and the second one is found by 

substitution of (C.6) and using (C.2) again. 

Cases B and C are proved in a similar manner. 

Figure 1 

k L(R) 

L" 
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A p p e n d i x D 

Statistics of the SSQME Test with Unmatched Frequency 

We first generalize the asymptotic normality of M-estimators for a sequence of r.v.'s 

which are not identically distributed. 

Lemma 

Let / G ^ of Section 4.1 and assume also that / is bounded. Let {a;,} be a sequence of 

, 1 . Xi-Arrii 
independent r.v.'s with p.d.f. / ( ) where / is symmetric and absolutely 

is 
t"=i 

continuous, and lim nA2=a2<oo. Then \fnAn , where An =arg { J ] / ( Z J - A „ ) = 0 } 
n —»oo 

asymptotically distributed as N(m ,V) where 

flEmi£.-C) ^ , m A f „ , u , x ,dx 
m 

and 

, $ ( / / ) A J / W ( . i ) J E . p . ! ) 

V = - 2 , £,-(/2) A j - , 2 ( ; c ) / ( J L ) i i (D.2) 

[-££,(<')12 *• *•' 
n 

Proof The proof follows Huber's [1] with some modifications to account for the 

unequal means and variances, hence it will only be briefly sketched. By monotonicity of 

'(0, 

lim Prob {An v V < * } = lim Prob {£/(*,• - kn'1/2) < 0 } (D.3) 
n —»oo n —»oo 

Define yn=l(xi-kn~1'2). Upon expanding in a Taylor series of powers of n'1' , and 

invoking the assumed symmetry properties of / and / , some terms vanish and one 

obtain es: 

mn.*E(yn.) = n-ll\ami - * )£ , ( / ' ) + 0(n^ (DA) 

vn<*Var(yn>) = £ , ( ' 2 ) + 0 ^ ) (D.5) 

There is a slight complication since the yn are different for different values of n , and the 
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usual formulations of normal convergence do not apply. However, this case is covered by 

the extended Lindeberg - Feller theorem [41], which asserts that a necessary and 

suflficient condition for convergence to a standard normal distribution of 

sn = Yj(yn~mn)/crn w ^ h an= YJ vn•> *s that each summand contributes negligibly to 
»' = i ' ' »'=i 

sn in the sense of Lindeberg condition 

lim max —5- = 0 (D.6) 

Since /(•) is bounded and vn f^O, a% grows as n and the condition is satisfied. Inter­

changing of lim and Prob {•} is allowed since {An} converges. Subtracting 
n -*oo 

lim ^rnn./an=(m-k)/V from both sides of the argument of (D.3) yields 
n -*oo ' 

lim Prob {Any/n'<k} = $ ( - ^ L ) (D.7) 
n -*oo V 

We now apply the lemma to the case of frequency deviation treated in section 5.3. 

The means of the quadrature noise components are given by E{x^)= A cos(<^+< ,̂-) and 

^(y,- ) = A sin(0+0,-) where ,̂- = » 2 i r / r f / / r , and the variances are identical. Denote 

the M-estimators by I and Q for the x and y channels, respectively. They are jointly 

Gaussian with equal variance V=E(l2)/E2(l') (since the noise components have identi­

cal variance), and their means are E(I)=\/n'A £]cos(0+0{) and E{Q)= 

vnA £]sin(0+0,-) from (D.l). The argument of the exponent of the joint Gaussian den­

sity is thus 

jL{ I*+ Qt+ E\I)+ E\Q)-2{E{I)I + E{Q)Q)} 

The middle pair does not depend on <j> 

S i n V / r f / / r 

E { 1 ) \f{Q) = [ E c o s ( ^ ) ] 2 + E s m ( ^ , - ) ] 2 = 
•w A 
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where c,- -4cos(^,) and «,- ̂ sin(^,-), by straightforward calculation. Also, 

IE [I) + QE(Q) = ^ ^ ^ ^ ^ . ( ^ 
Vn A C 

where C JklT,ci+QY,si a n d s = ^ E 5 . ' + $ £ c i . f r o m w h i ch C 2 + S 2 = 

( / 2 + Q 2 ) £ ( / r f ) follows as can be verified by substituting for the definitions. We finally 

have 

(D.8) 

f(I,Q |A ,<A)=^ ? exp 
/ 2 + g 2 + n A 2 G ( / , ) - 2 v T A V(/2+ Q2)G (f d Jcosfo-taiT1^) 

G 

^2? 

Averaging this with respect to <f> on [0,27r] gives the same expression as in section 4.2, 

since 5 and C do not depend on <j>, and where the effective SNR is replaced by 

nA2G (f d)/2V. Hence, the detection probabilities for the various SSQME tests of Sec­

tion 5.2 are identical with the case fd=0 if the effective SNR is attenuated by G(f d). 

In the FFT processor, the sidelobes can be reduced, and the response can be 

flattened over the mainlobes of the individual filters ( | nf d / f r | <0.5), at a price of 

reduced SNR at / r f = 0, by appropriate weighting (e.g., Hamming's): 

n 
{ x,y}-*{'W' rx,w : ry}, which changes G(fd)-+ | £) wk exp(j2irkf d /f r) | 2. The same 

can be done with the SSQME test. The derivation of the test statistic is similar to that 

above, but now we have to account for the unequal variances as a consequence of the 

weighting. The frequency response will be given by G{fd)= 

| Ylwk'exp{j2Trkfd/fr)\
 2, where V = ^ C ' V E ^ C ' ) - T h e d e s i S n o f t h e weighting 

coefficients is more complicated than in the linear FFT case; first {wk' } are chosen for 

the desired response, and then Jl'(wkx)f (x)dx — wk' has to be solved for {wk }. 
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ROBUST DETECTION OF FADING NARROW - BAND SIGNALS 

IN NON - GAUSSIAN NOISE 

ERRATA 

(1) Page 4, the end of the third paragraph should end with: VHSIC technology [16]. 

(2) Page 19, in the table heading^ diagonal separator is missing. The first entry should 

read: e \ c 

(3) Page 25, second line before Eq.(3.10), (C.7) should be changed to (C.ll) . 

(4) Page 32, Eq.(4.2) should be corrected to 

Ax(l)=Arg{f^sil(xi-siAx)=0} , A y(l )=Arg { £ s{ l (&-*,-i„ )=0} (4.2) 
t'=i i = i 

1 n 

(5) Page 35, in Eq.(4.11), the definition of C should read: C A lim — J ] si2 

n —> K> Tl i = i 

(6) Page 44, line 9, *qalmost" should read: ^almost". 

(7) Page 61, line 5 from the end, should finish with: technology [16]. 








