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Introduction

Studies of the strength of adhesion of a simple elastomeric system

have already been reported (1). The system consisted of crosslinked

butyl rubber (polyisobutylene-co-isoprene) containing a proportion of

uncrosslinked linear polyisobutylene. In such a system, the dissolved

linear molecules can presumably diffuse readily across an interface

into any compatible material. It was found that the strength of

adhesion to an incompatible rigid material, polyethylene terephthalate

(Mylar 300A, E.I. du Pont de Nemours and Co.), was relatively low and

much the same whether linear polyisobutylene molecules of high molecular

weight were present or not. On the other hand, the strength of self-

adhesion of the crosslinked butyl rubber was considerably greater, as

much as 5X, when high-molecular-weight polyisobutylene was present.

This effect seems clear evidence for a direct contribution to self-

adhesion from interdiffusing macromolecules.

However, some of the observed changes in the strength of adhesion

with composition, or with the effective rate of peeling, might have

arisen from stress-induced crystallization (2). Results over a wide

range of temperature were found to obey reasonably well the rate-

temperature equivalence proposed by Williams, Landel and Ferry for

simple amorphous viscoelastic substances (3), and this suggests that

effects due to crystallization, if any, were relatively small. Never-

theless, it seems worthwhile to examine an analogous system which does

not exhibit stress-induced crystallization, and to explore again the

effect upon the strength of adhesion of incorporating high-molecular-

weight linear molecules into a macromolecular network.

. . . . .
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Mixtures of polyethylene-co-propylene (EPR) have therefore

been made with a crosslinkable compatible terpolymer of ethylene,

propylene and a few per cent of a diene comonomer (EPDM). The

small-strain viscoelastic properties of such materials, when the

EPDM fraction is crosslinked and the EPR fraction is present in

solution in the resulting network, have been :tudied by Ferry and

coworkers (4). They were found to behave in a similar way to

corresponding materials made with butyl rubber and polyisobutylene (5).

Measurements of the strength of adhesion of such materials to a rigid

substrate, Mylar, and to themselves, are reported here and compared

with those obtained previously for mixtures of butyl rubber and

polyisobutylene (1).
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2. Experimental details

(a) Materials

Mixtures of EPDM (Vistalon 4608, Exxon Chemical Company) and

EPR (Vistalon 404, v = 2 X 101 g/mole, Exxon Chemical Company) in

various proportions were prepared on an open two-roll mill. It proved

extremely difficult to find a vulcanization recipe for the EPDM fraction

that yielded crosslinked sheets free from surface contamination by

additives or by-products of the vulcanization reaction. The recipe

finally chosen was the following, in parts by weight: EPDM (Vistalon

4608), 100; EPR (Vistalon 404), 0 to 100; zinc oxide, 1.5; tetramethyl-

thiuram disulfide, 1.5; zinc-2-ethyl hexanoate, 1.5. Crosslinking was

effected by heating for 4 h at 150'C in a press. The equilibrium volume

swelling ratio in hexane of the EPDM material containing no EPR was

quite large, 6.7X, indicating a rather low degree of crosslinking.

Sheets were prepared about 1.5 mm thick with a thin cotton cloth backing

adhering to one surface and the other molded against a polished

Ferrotype chrome-on-steel plate (Apollo Metals Inc., Chicago) to yield

a smooth surface.

(b) Test methods

The procedures used to measure the strength of self-adhesion,

adhesion to a rigid (Mylar) substrate, and tear strength were the

same as before (1). For self-adhesion, test strips were first washed

with petroleum ether to remove surface contaminants, dried, and then

pressed into contact for 48 h at 600C.

-. 
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under a pressure of about 1.5 MPa. Longer contact times or higher

pressures did not result in any significant increase in the force

required to peel strips apart subsequently. The results are

expressed in terms of the work Ga required to separate unit area

of interface, given by

Ga = 2F/w (1)

where F is the average peel force and w is the width of the inter-

face, generally 10-20 mm.

The test procedure for determining the work Ga of detachment

from a Mylar substrate was essentially the same, the Mylar film

being held flat by bonding it to a metal plate and the elastomer

layer being peeled back from it at an angle of 1800. Values of

fracture energy Gc for tearing a sheet were determined in a

similar way, the tear force F being employed in equation 1 with

the test-piece width w replaced by the torn thickness t, generally

about 1.5 mm. Two cloth sheets were adhered to each surface of

the elastomer layer and straight cuts made in them along the center

line before tearing. In this way the tear was constrained to follow

a straight path and ductile flow of the elastomer was limited to a

region around the tear tip.
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(c) Data reduction

Measurements of the work of separation Ga or of fracture Gc were

made at various rates R of propagation of the line of separation

or of the tear tip and at various temperatures T. They were

reduced to an effective rate RaT at a reference temperature Ts

of 25"C by means of the WLF rate-temperature equivalence factor

aT, where:

log10  aT = C1 (T-Ts ) / (C2 + T-Ts). (2)

Values were assigned to C1 of 6.6 and to C2 of 137"C, in accordance

with the "Universal" form of the WLF relation, taking the glass

temperature of EPR and EPDM to be -600 C (3,6). Measurements at

different temperatures are denoted by different symbols in the

figures given later. They were in reasonable accord in all cases

with single relations between the work of separation or fracture

and the effective rate of separation or fracture RaT. Thus, the

observed temperature dependence of the adhesive and cohesive

strengths of the present materials appear to arise solely from

their viscoelastic character.
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3. Results and discussion

(a) Adhesion to Mylar

Measurements of the work Ga required to separate a layer

of the uncrosslinked ethylene-propylene copolymer EPR from a

Mylar substrate are plotted in Figure 1 against the effective

rate RaT of peeling at 25-C. These measurements were made over

a wide temperature range; -40C to + 100-C; they superimpose

reasonably well using the WLF rate-temperature equivalence,

equation 2. Measurements of the work Gc required to tear in two a

layer of the EPR material are also plotted in Figure 1 against

the effective rate of tear propagation.

The tear strength increased continuously over the entire

range of tear rate. The strength of adhesion to Mylar, however,

was found to undergo a rather broad transition. At low peel rates,

it was comparable to, but somewhat lower than, the tear strength

and increased with the rate of separation in a similar way. In the

transition region, it was quite erratic, varying by large factors,

and failure proceeded in a "stick-slip" fashion. Then, at high rates

of peel the strength of adhesion - now two orders of magnitude

smaller than the tear strength - increased smoothly again with

increasing rate of peel.

Similar behavior was shown by the crosslinked EPDM material and

by the crosslinked EPDM material containing EPR molecules in solution,

Figure 2. For the crosslinked EPDM material, the strength of adhesion

at low rates was considera ly smaller and the transition was less

obvious, but at high rates t~e adhesion strength became indistinguishable

. . . .
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from that for EPR and EPDM plus EPR. Thus, linear EPR, crosslinked

EPDM, and a mixture of both, show greater adhesion at low rates of

peel than would be expected from a simple extrapolation of results

obtained at high rates, represented by the broken curves of Figures

1 and 2. This extrapolation was made by comparison with results

for butyl rubber and mixtures of butyl rubber and polyisobutylene,

which did not exhibit a similar transition in their adhesion to

Mylar (1).

A transition in adhesive strength with increasing peel rate

was observed previously for a simple uncrosslinked elastomer, a

copolyme- of styrene and butadiene (7). At low peel rates the

material split apart, leaving a thin layer on the Mylar substrate,

and the measured strength represented the cohesive (tear) strength.

Then, at a well-defined peel rate a sharp transition took place

to interfacial failure at much lower forces.

The transition was attributed to a change in the physical

character of the adhering material. At low rates it flowed apart

under the imposed peeling stresses, like a viscous fluid, whereas

at high rates molecular entanglements did not slip free so that it

behaved like a loosely-crosslinked layer and pulled away cleanly.

A similar explanation is proposed for the present results. The

relation between nominal tensile stress z and tensile strain for the

EPDM-EPR material is strongly dependent upon the rate of strain e, as

shown in Figure 3. At high effective rates aT, this material is

relatively stiff and elastic. At low effective rates, however, it

becomes highly extensible and shows semi-ductile behavior, even

though it is lightly crosslinked. Apparently, molecular entanglements

.1 1.1 -i -1 1 . .1 " i . . . " i -' - - . -
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account for much of the observed stiffness at high rates of deformation,

and, when the rate of deformation is sufficiently slow, they rearrange i

and allow extensive deformation to occur.

The onset of strain hardening at large deformations takeplace

at strain rates of 1 - 100s- ' Figure 3. This corresponds to a range

of peel rates of about 1 - 100 mm/s for an adhering layer 1 mm thick,

if it is assu,7ed that the whole layer is subjected to a tensile

deformation at the peel tip.

The transitions in adhesive strength shown in Figures 1 and 2

do, indeed, cccur at peel rates in this general range. They are

therefore attributed to changes in the rheological response of the

adhering layers, from highly-extensible semi-solids at low rates of

defor-ation to rubberlike elastic materials at high rates, when the

molecular entanglements are fully effective.

No comparable effect was found in the adhesion of butyl-rubber-

based 7aterials to Mylar, probably because they were crosslinked to

a sorlewnat higher degree than the present materials and also because

the density of molecular entanglements is considerably lower.

70
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'b) Self-adhesion

Measurements of the work Ga required to separate two layers

of a crosslinked EPDM material containing EPR dissolved within it

are plotted against the effective peel rate RaT in Figure 4. For

compariscn, the strength of adhesion to Mylar is shown again, from

Figure 2. The two measures of adhesion are approximately equal

at low rates, when duoz Ile processes within the adhering layer appea'-

to account for -ost of the work expended in detachment. At higher

Dee& rates, hc . eir, :he strength of self-adhesion is much larger than

tre adhesion to Yylar, by a factor of up to bOOX. This marked increase

is atrib uted to interdiffusion.

Mclecular strands which have diffused across the interface and

becoe entan-led in the adjoining layer cannot readily disentangle

at high ceel rates. Moreover, ethylene-propylene copolymers are known

to entangle densely (8). Thus, a major contribution to self-adhesion

from interdiffused and entangled molecules would be expected for these

'-"aterials at high peel rates.

A small discontinuity was noted in the strength of self-adhesion

at an effective peel rate of about 100 mm/s at 25°C. Above this rate,

the strength appeared to decrease to a value about one-half to one-third

as large. A similar transition was seen before in the self-adhesion

of butyl rubber materials containing polyisobutylene, and attributed

to a change from pull-out to fracture of interdiffused molecules (1).

For the presert -aterials, the traf;sition takes place at abct the same

peel rate as that at which contributions to the strength of adhesion

to Mylar from ductile processes finally disappear, Figures 2 and 4.

" ' " "" " " : - . _ - :: - . . , -
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Figure Captions

Figure 1. Adhesion to Mylar and tear strength of EPR 404, plotted

against the effective rate of peeling or tearing at

250C. Temperature of measurement: -40°C,O,+; -200C,

V,V; O°C,<,*; 250C, 0,@ ; 600C,&,&; l00OC,E3,m.

Figure 2. Adhesion to Mylar of crosslinked EPDM 4608 (open points)

and crosslinked EPDM 4608 containing an equal amount of

EPR 404 (filled-in points) plotted against the effective

peel rate at 250C. The temperature of measurement is

represented by the same symbols as in Figure 1. The

upper dotted curve represents the tear strength of

EPR 404 as a function of the rate of tearing, taken from

Figure 1.

Figure 3. Tensile stress-strain relations at different effective

rates of strain at 25°C for crosslinked EPDM 4608 containing

an equal amount of EPR 404.

Figure 4. Self-adhesion (filled-in points) and adhesion to Mylar

(open points) for crosslinked EPDM 4608 containing an

equal amount of EPR 404, plotted against the effective

peel rate at 250C. The temperature of measurement is

denoted by the same symbols as in Figure 1.

Figure 5. Self-adhesion (filled-in points) and adhesion to Mylar

(open points) for crosslinked EPOM 4608, plotted

against the effective pe.l rate at 25°C. The temperature

of measurement is donoted by the same symbols as in Figure 1.

The upper full cur.s for EPDM + EPR are taken from Figure 4.
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of such interdiffused molecules is noted, when the (high) strength of

self-adhesion undergoes a small reduction at a peel rate of about

100 mm/s.

The effect of interdiffused species on self-adhesion seems to be

more pronounced for the present materials than in previous studies

with butyl rubber networks containing linear polyisobutylene

molecules (1). This is probably due to a somewhat lower degree of

crosslinking in the present EPDM system, and to the tendency of

ethylene-propylene polymers to entangle more densely (10).
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4. Conclusions

The strength of adhesion of a layer of uncrosslinked EPR to a

Mylar substrate undergoes a marked transitiun at effective peel rates

in the range 100 im/s - 100 mm/s at 250C. Below this range, adhesion

is relatively strong, close to the tear strength of the polymer.

Above this range of rates, the adhesion is weaker although it increases

markedly at higher peel rates as the material approaches the glassy

state.

The transition is attributed to a cessation of entanglement

slipping as the rate of imposed deformation increases. In consequence,

the EPR material changes from a highly-extensible soft solid to a

stiffer elastic substance. Apparently, ductile flow processes

are associated with a major part of the work of separation at low

peel rates.

A similar, but smaller, transition is seen in lightly-crosslinked

EPDM, and a quite-comparable one in crosslinked EPDM containing EPR.

Such materials also appear to be softer and more extensible when

the rate of deformation is low and entanglement slippage is possible.

* The peel strength is correspondingly enhanced. However, at high

peel rates when no entanglement slippage occurs, all of these

materials show a similar, and rather low, level of adhesion to a

* Mylar substrate.

In contrast, the level of self-adhesion of these materials is

much higher at high peel rats, as much as lOOX higher. This

* remarkable enhancement is att-ibuted to the presence of inter-

diffused molecular strands, e<pecially when linear EPR molecules

are present, which are unable to disentangle at high peel rates.

* Indeed, some evidence for a transition from forced flow to fracture

i +? , - . .. .' - / i .
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It may be concluded that entanglements within the polymer layer no

longer slip free at this peel rate. In the case of self-adhesion,

the interdiffused molecules must then break, rather than disentangle.

There is apparently somewhat less work expended in rupture of molecules

crossing the interface rather than in pull-out, so that the peel force

then becomes smaller.

Even the crosslinked EPDM material with no added EPR showed a

remarkably high level of self-adhesion at high rates of peeling, Figure 5.

Experimental values at an effective peel rate of 1 m/s were some 30X

greater than for adhesion to Mylar, approaching one-half of those

obtained for the EPDM-EPR mixture. It may be inferred that a considerable

amount of interdiffusion and entanglement of network strands takes place

between two layers of this lightly-crosslinked material.

0
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