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\ ABSTRACT 

Is Statisticians have long used moving average type 

smoothing and classical regression analysis techniques to 

reduce tie variability in data sets and enhance the visual 

information presented by scatterplots. This thesis examines 

the effectiveness of Bobust Locally Weighted Regression 

Scatterplot Smoothing (LOWESS), a procedure that differs 

from ether teghnigues because it smooths all of the points 

and works on unequally as well as equally spaced data. The 

IOWESS procedure is evaluated by comparing it to previously 

validated uniform and cosine weighted moving average and 

least squares regression programs. Interactive APL and 

FORTBAN programs and detailed user instructions are included 
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A.  BACKGBOUHD 

The two dimensional scatter plot has been hailed by many 

statisticians as being the single most powerful tool used in 

exploratory data analysis, [Eef. 1 ]. A scatter plot pres- 

ents an entire data set in a compact, unambiguous and easily 

understandable format, in which either: 

1. the points lie in a nearly straight line; 

2. the points almost lie on a smooth curve; 

3. the points are scattered without any apparent corre- 

lation between the X variables and the Y variables; 

4. the points lie somewhere between (1) or (2) and (3); 

5. nest of the points lie near a straight line or saooth 

curve but a few outliers are separated from the rest. 

[Bef. 2] 

These patterns or other hidden peculiarities are much easier 

to discover during a brief glimpse at a well prepared 

scatter plot than during an examination of a data table. For 

example, the strong positive correlation between total users 

and active users logged on to the w.R. Church computer 

system. Figure 1.1, is more easily discerned from the 

plotted points than from the tabulated data1. This is a 

good exacple of case (1), described above. 

Not only does this plot point out the positive trend in 

the data, it also demonstrates that it is nearly linear an! 

provides a rough estimate of the relationship between the 

variables. 

1 The table in Figure 1.1 contains only a small portion of 
the 472 data points included in the plot. A complete listing 
of the data set takes approximately two pages of text and is 
not required for demonstration purposes. 
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104 70 129 81 
104 72 133 83 
107 79 138 84 
107 76 137 88 
103 77 MO 90 
111 69 142 88 
106 71 142 96 
106 71 143 98 
103 75 139 89 

Figure 1.1  Comparison of Data Presentation Bethods. 

Bore precise aathenatical expressions and confirmatory 

proc€dores, including goodness of fit aeasures, can be 

obtained ty eaploying classical regression analysis tech- 

nigues, a logical enhancement of siaple scatter clots. 

Figure 1.2. Nuaerical guantifications such as the Pearson 

product aoaent correlation also provide suaaaries tut can be 

anbigucus if not acccipanied by other information, [Ref. 1 , 

P 77]. 
Scatter plots are net invulnerable to Bisinterpretation, 

ühen the scatter of feints falls into category (4) or (5), 

as in Figure 1.3, it aay not be possible to judge the true 

relationship between the variables during a suick glance at 

the scatter plot, although there obviously is some relation- 

ship. Figure 1.3 contains a plot of the first 200 points of 

test set two (Appendix C) which is used in Chapter III, 

Section 2 to test LCBESS* ability to follow abrupt changes 

in curvature. 

11 
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Figure 1.2  linear Least Squares Regression of 

active Osers on Total Users Logged on to the 
H.H. Church Computer System. 
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Figure 1.3 Scatter Plot of.  the First 200 Points 
of Test Set Two. 

Initial inspection of this data suggests the presence of 

a guadratic type pattern. This iapression leals naturally to 

using the guadratic least sguar*s regression line ci Figure 

1.4 to describe the dependence of Y on X. The accompanying 

analysis of variance table lends some support to this 

choice« since r* ■ .709. 
A closer exaiination of this data r«veals, however, that 

although it locks guadratic, the actual dependence of I on X 

12 
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Figure 1.4  Quadratic Regression on the First 200 
Points of Test Set Two. 

is not described quite that siaply. Figure 1.5 deaonstrates 

this point very clearly. Splitting .the data set into three 

parts at what appear to be logical break points, (x-*i0,25), 

and fitting a linear least squares regression line to each, 

shows that T is not a single function of X over its entire 

range. In fact, there appear to be three separate linear 

trends in this data. 

Analyses of this type ace seldoa undertaken because of 

the tediui involved in selecting appropriate splitting 

points ence it has teen determined that doing so nay be 

helpful. 

How then, can an analyst discover the existence of 

subtle trends or define the shape of unusual patterns 

contained in a scatter plot? The answer is to use local 

smoothing procedures rather than global (regression) fitting 

13 



Figure 1.5  linear Regressions on Pa.rst 200 Points of 
Test Set Two Split at I » 10 and 25. 

techniques. Using a flexible smoothing procedure that 

responds to local changes in the data structure allows the 

data itself to determine the shape of the final curve, as 

opposed to the classical approach of fitting polynomials 

which have predetermined shapes. 

The Eobust Locally Weighted Regression and Scatterplot 

Smoothing (LOUESS) procedure, [Ref. 3 ], described in the 

remainder of this caper, is a very good method for 

preventing the acceptance of assumptions like the one that 

led to using the guadratic model in Figure 1.<*. The LCWESS 

smoothing technique applied to this data, the right hand 

plot of Figure 1.6, shows very clearly, that the dependence 

of ¥ on X resembles a combination of three distinct linear 

functions  (the parameter F=.25 will be explained later). 

1« 
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The LOWESS smoothing process has a tendency to round angular 

corners. The straight lines in the center of each segment 

suggest linear trends similar to those contained in Figure 

1.5. 

The major problem with trying to use polynomials to 

depict subtle trends cr to describe unusual relationships in 

a data set, is that they are neither flexible nor local. By 

way of example, the points on either extreme of the first of 

the twc plots in Figure 1.6, have a significant affect on 

the middle of the fitted polynomials. 

i i 

QUADRATIC REGRESSION 
i      i      i      i      i      i 

• •• I i  i   i      i      i      i      i      i      i 
0 10 JO JO « 

LOWESS F - .25 

Figure 1,6  Comparison of a Quadratic Regression and LOWESS 
Smoothing (F « .25) on First 200 Points of Test Set Two. 

The LOflESS procedure on the other hand, allows the data 

points themselves to determine the shape of the smoothed 

curve. Figure 1.6 also demonstrates that global polynomial 

regressions have a more difficult time following abrupt 

pattern changes than do local smoothing procedures. 

8.  SCOPE 

locally Weighted Regression and Scatterplot Smoothing 

(LOWESS) , introduced by William S. Cleveland in 1977, 

[Ref. 3], is a generalized extension of the locally fitted 

15 



polynomial smoothing techniques used for many years in the 

field of tine series * analysis. 

The essential idea behind the simplest of these clas- 

sical smoothing techniques is the following. If the data 

points (Xi,Yi) come from an additive model or the form 

Y, - G(X,) ♦ 6, 

2 
«here E (€i) = 0 and Var (€i) = 0" and S(Xi) can be approxi- 

mated locally, over the interval i-m,...i,i+1,.. .i*m, by the 

linear function 

Y, - B0(X,) + B,(X,) x x,+ 6, 

then aveiaging the Yi over this range yields 

M !_ r T Yi "2M+1 L*  Y 
j—u 

vhere 

E(Y.) - B0(X.) ♦ B,(X,) xX,+ €, 

VAR(Y,)-VAR(€,) 
2M+1 

If the assumption that the €i are uncorrelated is true, then 
A 

this moving average process produces estimated Yi's that are 
unbiased and have smaller variance than the raw Yi's. This 
technigue makes it easier to distinguish G(Xi) through the 
noise   (6i) .    "Jsing  a bandwidth«  N,     larger  than the interval 

» K time series is a sequence of random variables Yi whicl 
are naturally ordered By time (i) and can therefore b< 
presented as a scatter  plot  of    Yi versus i.       Although i i: 

:h 
>e 

— s 
usually the integers, missing values can occur." 
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over which the linearity assumption holds, will introduce 

lias into the results, [fief. 4] 

The purpose of this thesis is to translate the generali- 

zation of classical snooting techniques proposed by 

Cleveland [Ref. 3], and expounded upon by Chambers et al 

[Eef. 1], into user friendly computer programs available for 

use as exploratory data analysis tools by students and 

faculty cf the Naval Postgraduate School. 

1CWESS, written in API, an acronym for "1 PROGRAMMING 

LANGUAGE," was designed to be used alone or in conjunction 

with the IBM GRAFSTAT statistical graphics package. 

GRAFSTAT, an experimental program, currently under develop- 

ment by the IBM Ratscn Reaearch Center, is available at the 

Naval Postgraduate School for test and evaluation purposes 

[Ref. 5]. All graphs contained in this paper were produced 

by the GENERAL PLOT function of the GRAFSTAT program. 

LCDS, a modification of LOWESS, when used in conjunction 

with GRAFSTAT and expanded versions of the DRAFTSMAN DISPLAY 

programs described in [Ref. 6], enhances an already powerful 

exploratory data analysis package. 

A FORTRAN version of the basic LOHESS program was 

designed to be used in conjunction with either DISPLA 

[Bef. 7], or any other w.R. Church computer system supported 

graphing package. 

These programs are interactive and can be used easily by 

individuals who have little or no APL or FORTRAN programming 

skills. Users who are well versed in these languages should 

te able to modify them to provide tailor made outputs, 

expand their capabilities or incorporate them into ether 

analysis packages. 

Detailed user instructions are contained in Chapters 17 

and V while examples of their use are presented in Chapter 

III. Users who are interested in the mathematical details 

of Robust Locally Weighted Regression and Scatterplot 

Smoothing should read Chapter II. 

17 
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II.   TECHNICAL fiESCJI£TION OF  I0WES5 

A. 07IR7IEW 

locally Weighted Regression Scatterplot Smoothing 

(LOWESS). is a generalized extension of locally fitted poly- 

nomial smoothing techniques used by many statisticians in 

time series analysis ». Unlike its predecessors, however« 

10WESS was designed to work on unequally §.§ well as egually 

s£a£ed X's. It also contains a robust fitting procedure 

that guards against possible distortion of the smoothed 

curve by outlier points. The general procedure used by 

Cleveland is an adaptation of iterated least sguares regres- 

sion techniques developed by Albert Beaton and John Tukey 

[Ref. 8]. 

The overall objective of LOWESS,  like most smoothing or 
A 

regression routines, is to compute a "fitted" value, Y, that 

depicts the middle of the empirical distribution of Y at 

each X. unfortunately, most data sets do not contain enough 

repeated observations at each X to provide a good estimate 

of the middle of this distribution. LOWESS derives its esti- 
A 

mate of Y from the equation of a weighted least squares 

regression line fitted to a set of data points whose X 

values are located in a user defined neighborhood about Xi 

{X value of the point being smoothed). 

B. ÜATBEHATICAL DETAILS:   NOH-ROBOST LOIESS  SMOOTHING 

The first step in generating a LOWESS smoothed point 

consists of forming a neighborhood. Figure 2. 1, centered 

around Xi and comprised of its Q nearest neighbors. The user 

* A  brief theoretical explanation of these techniques was 
presented in Chapter I. 

18 
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determines Q by choosing the parameter F, vhich is approxi- 

mately ecjual to the percentage of the number of data points 

used in computing each fitted value. Q is (F x N) rounded to 

the nearest integer, and the Q nearest neighbors are those 

points whose X values are closest to Xi. Note that there 

are not necessarily an equal number of neighborhood points 

on either side of Xi. Also, Xi is considered to Le a 

neighbor of itself. The parameters F and Q, determined 

prior to smoothing the first data point, are held constant 

and used throughout the procedure. 

■ i 
I 

• ■ 
i 

> • 

<• 
■ 

i 
!    . 
i 

• • •                • 
'      .   •   '   . 

• 

e j 

Figure 2.1 rertical strip Containing the 10 Nearest 
ghbors of X6 in Data Set Two. 

Xn Figure 2.1, the point to be smoothed, X6, is high- 

lighted by a dotted line and the strip boundaries are delin- 

eated by solid lines passing through XI and X10. 

S1EP TtiO consists of defining the local weighting func- 

tion and calculating individual weights for each point, 

(Xk,Yk), in the strip formed during STEP ONE. This weighting 

function is to be centered at Xi and scaled so that it hits 

zero for the first time at the 0— nearest neighbor cf Xi 

(the strip boundary furthest from Xi). Functions navicg the 

following properties will satisfy these requirements: 

19 
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1. fl(U)  > 0    for jU| < 1   (positivity) , 

2. W(-U) ■ H(ü) (symmetry), 

3. S (U) is a nonincreasing function for u > 0, 

U. H(0)  * 0    for 101 > 1. 

Cleveland, [Ref. 3], suggests using a tricube weight func- 

tion of the form: 

W(U) (1 - lulV FOR IUI <   1 
OTHERWISE 

Note  that this    function uses the absolute  value    of (J.     The 

weight given to any point within the strip is calculated ty: 

W(U) ■ W 
Xi - XK 

DI 

The variable Di is th« distance along the X axis from Xi to 

its Q— nearest neighbor. This is the distance from X6 to 

the left hand boundary in Figure 2.1. When LOHESS starts 

its smoothing pass at XI, the right hand boundary passes 

through its Q~ nearest neighbor, X10 in this example. The 

neighborhood which, at that time, contains the points XI ... 

Xg remains fixed until the distance (Xi-X1) is greater than 

(Xq-Xi). This usually occurs at i * Q/2 for evenly spaced 

data. At this point the neighborhood is advanced and the Q 

nearest neighbor shifts to the left hand boundary where it 

remains until all of the data points have been smoothed. Oi 

therefore, is generally the distance from Xi to the right 

hand boundary for i * 1...(Q/2) and is the distance from Xi 

to the left hand boundary for i * (Q/2)...N. 

The weight given to any point in the strip is e-jual to 

the height of the ccrve, 8 (u), at Xk, Figure 2.2. This 

figure demonstrates that the tricube weight function: 
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1. gives the largest weight to the point being smoothed; 
2. decreases smoothly as Xk moves away  from  Xi; 
3. is symmetric afcout the point  being  smoothed; 

th 
4. hits zero for the first time at  the Q~     nearest 

neighbor of Xi. 

*• rrv 
3 / \ 

■ 

Sa / \ . 

8: 
t 

• 
e / \ 

S 

© /. 

' 

I    I 
X 

Figure 2.2  THICOEE ieight Function for the 10 learest 
■eighbors of X6 in Data Set Two. 

In cases where several points have abscissas egual to 

Xi, all of them are given weight 1. If Di is zero, meaning 

that all Q points in the strip have abscissas egual tc Xi, 

it is impossible to estimate the slope of a fitted line. In 

this instance, a constant egual to the mean Y value for all 

C points is fitted tc the point (Xi,Yi). 

STEP THREE uses weighted least sguares regression tc fi«. 

a polynomial of degree P to the data points that lie within 

the strip containing Xi. The parameters of the equation 

that describes this line are the values of Bj j ■ 0,1,...P 
that ainimize: 

£ WK(U)(YK - Bo - BIXK - ... BPXJ) 
K-1 
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Figure 2.3 shows straight (p=1) and guadratic (p=2) lines 
fit to the neighborhood points surrounding X6 in data set 

two. 

LINEAR 
f    •    i     i     i 

QUADRATIC 

• 
• 

>   » 
/ 

•• 
■/■ 

o 

Figure 2.3  Linear and Quadratic Fits. 

The choice of an appropriate P depends on the user's 

perception of the relationship between the points within 

each neighborhood, the need for flexibility to reproduce 

patterns in the data, and coaputational ease. The existence 

of physical theories that define the relationships as teing 

nonlinear light also influence this choice. Saoothed curves 

based en higher order polynomial regressions tend to fellow 

abrupt pattern changes better than those based on linear 

■odels. Cleveland [Hef. 3], feels that computational 

considerations begin to override the need for flexibility 

for values of P greater than 1. 

The smoothing routine written for this thesis is capable 

of perforaing linear cr guadratic regressions. Using p * 1 

or 2 should provide adeguately saoothed points for any data 

set. 

The final step in the Locally Weighted Pegression 

portion of the LCHESS procedure is the deteraination cf the 
A 

saoothed point (Xi,Yi), Figure 2.4, where: 
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Y, - t  Bj(X,).X,J 

J-t 

The notation used here emphasizes that the coefficients of 

the Xi are different for each point Xi. 

Pigure 2.4 Scatter Plot of Data Set Tvo Superimposed 
lith Smoothed Point (16, Y6). 

10VESS differs from most other smoothing routines 

because it smooths a^i of the data points. This becomes 

Important when smoothing small data sets, when important 

pattern changes take place near the ends of the data set, or 

«hen the smoothed curve is tc be used as a regression line 

to predict future trends. Figure 2.5 summarizes the sequence 

of steps described above, as they are used tc compute a 

"fitted" value for (X20.Y20), the right hand end point in 

data set two. 

A comparison of Figures 2.1 and 2.5 reveals that the 

widths of the vertical strips about (X6,Y6) and (X20,Y20) 

are not egual. Rote that the ten nearest neighbors of X20 

are all to the left. Although both strips co. tain ten data 

points,  the requirement to  center them around  their 
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STEP 1 
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• • •                        • • 
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STEP 3 

* 

STEP 2 
o 

f       ' 
© /        I 
• 
ö /            I 

e /               I 
d 

• 

I               i 
IJ. i i 

RESULT 
i  i  i  i  i  i  i 

• i 

Figure 2.5  Suaaary of Steps Required for Computing the 
Smoothed Value at (X20,Y20f in Data Set Two. 

respective (Xi.Yi) points forces the right band portion of 

the weighting function in Figure 2.5 to fall off-scale. The 

left hand portion of the wei-jliting function for (X1,Y1) is 

forced off scale for the saae reason. These partial 

weighting functions still fulfill all of the reguirecents 

outlined earlier« however. Unegual spacing of the X's also 

creates variable strip widths. 

A set of saoothed data points. Figure 2.6, is obtained 

by completing the afcreaentioned steps for each point in the 

original data set. 
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Figure 2.6  Plots of Lovess Sioothed Data Points and 
Smoothed Curve Superimposed on Data Set Two, (F*-5). 

C.  H1TBZH1TICA1 DETAILS: BOBOST 10WBSS SMOOTHING 

The robust smoothing feature of LOU ESS prevents a small 

number of outliers frcs distorting the smoothed curve. The 

point (X10,Y10) in Figure 2.1 is one such outlier. 

The robust procedure computes a new set oi! weights for 

each (Xi,Yi) based on the size of the residuals, (Xi-Yi), 

obtained after the first smoothing pass. Figure 2.7. 

Cleveland £Bef. 3], suggests using a bisguare function 

of the form: 

0(V) . | (1 - v2)2  FOR IVI < 1 
I   0      OTHERWISE 

f.cbustness weights fcx each point are calculated by: 

oK(v) - o[£f.] 

where H is the median of the absolute value of th€ resi- 

duals. Figure 2.8. This is sometimes referred to as the 

Pedian Absolute Deviation (NAD). 
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I   I   I   I 

Figure 2.7  Residuals (Ii-Ti) Versus Zi for the 
Hon-Bobust Smoothed Points of Data Set Two. 

t 

i 
Pigure 2.8 Bobost Weighting Function For the First 

Pass Through Data Set Two. 

This scheae gives snail weijhts to points associated 
with large residuals and large weights to points with snail 
residuals. One iteration of the robust locally weighted 
regression procedure is completed by calculating a new set 
of "fitted" values using  the weighting function 

»• 

WT -- W(U)*D(V) 

in step  three. 
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Execution of the entire LOHESS algorithm consisting of 

one locally weighted regression pass and two robust locally 

weighted regression passes produces a robust smoothed curve, 

Figur»; 2.9. The effect of the "outlier" can be seen very 

clearly. 

N0N-R08UST LOWESS F - .5 
'i       > 

ROBUST LOWESS F. - .5 
i      i 

Figure 2.9      Comparison of Hon-Bobust and Robust LOHESS 
Smoothing of Data Set Two,   (F=-5). 

Cleveland [Bef. 3], reports that the number of computa- 
tions reguired to complete the LOHESS algorithm on an entire 
data set is on the crder of FN*. For example, 60 linear 
regressions were used to complete the robust smoothing of 
the 20 artificial data points in Figure 2.9. The non-robust 
curve, on the other hand, reguired 2/3 fewer calculations 
and took less than 1/2 the time. The number of calculations 
required to produce a smoothed curve presents no significant 
problea for plots of fewer than 100 points. Computational 
time can be saved by grouping the Xi's on data sets that 
have repeated X values. This saving results from the fact 
that if Xi+1 = Xi then TI* 1 ■ U. Assigning the same Yi 
value to each of the Ni repeated Xi's reduces the number of 
regressions reguired by Hi for non-robust smoothing and by 
3Ni  for  zobust smoothing. 
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D.  CHCOSIHG F 

There are no set criteria for choosing F. Small values 

produce curves with high resolution and a lot of ncise. 

larger F's produce curves with low resolution and less 

noise, but reguire increased computational time. In 

general, increasing F tends to produce smoother curves, 

Figure 2.10. Cleveland, [Bef. 3], suggests that values 

between .2 and .8 shculd be satisfactory for most purposes. 

The goal is to choose the largest F that minimizes the vari- 

ability in the smoothed points without distorting patterns 

in the data. Computational time may become a consideration 

in choosing F when sioothing large data sets. In general 

though, F will decrease as the series length increases. 

ROBUST LOWESS r m .2 

• 

/     • V   s 
'/>y' 

M 

*/ 

• 

» 

• 

- 

• 

ROBUST LOWCSS F - .3 

ROBUST LOWESS f -   5 ROBUST 10*CSS F - .7 

Figure 2.10  Comparison of Robust LOBESS Smoothing of 
Data Set Two for Different falues of F. 
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Smoothing routines, LOWESS included, do not provide 

regression equations cr other analytical results on which to 

test goodness of fit. The user oust judge the adequacy of 

the results. The choice of F is not so critical for cases in 

vhich the purpose of the smoothing is to enhance the visual 

perception of gross patterns is the data. For example, the 

rough curve obtained fcy using F=.2 on data set two, the left 

hand plot of Figure 2.10, provides an adequate picture cf an 

overall increasing trend. More care must be taken in some 

applications, such as time series analysis, or when the 

smoothed (Xi,Ti) values may be used as a type of regression 

function, or finally, when the smoothed curve may be 

presented without an accompanying plot of the original data 

points. Taking F».5 is a reasonable choice when there is no 

clear idea of what is needed, [Bef. 3]. Chambers, [Bef. 1], 

suggests that it is often wise to try several values of F 

before selecting the "best" one for a particular 

application. 

Techniques for determining bandwidth using techniques of 

cross-validation have been considered by Cleveland [Bef. 3], 

and Bice [Bef. 9], but are not included here. 
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Ill-   gyAlOftTIOH Of THJ LOWESS  Cg£T£ SMOOTHING  E8QGBJH 

1.     GIHEBAL 

Smoothing routines are generally used to filter noisy 

data and approximate underlying relationships that may be 

too complex to describe mathematically or too difficult to 

fit by simple polynomial regression. Effective routines 

must be flexible and local. They must allow the data to 

determine the shape cf the smoothed curve and they must be 

able to follow abrupt as well as smooth changes in curva- 

ture. This evaluation will test LOWESS in each of these 

areas. 

B.  HETHCDOIOGY 

ICHESS, like most other curve smoothing schemes, 

provides no analytical solutions by which to measure its 

effectiveness. The correctness or adequacy of the fit must 

be judged subjectively. And there are no standard guidlines 

to follow. Sometimes the shape of the fit can be checked by 

comparing it to the physical laws that govern the applica- 

tion at hand. The programs written to support this thesis 

were evaluated by: 

1. examining their performance on a set of test data for 

which the underlying functional relationships were 

known; 

2. comparing their results with those obtained from 

widely used and previously validated curve smoothing 

techniques, namely; LEAST SQUARES REGRESSION, MOVING 

AVERAGE and CCSINE ARCH weighted smoothing. 

The theory of moving average procedures dates back to 

definitive studies of discrete time series models completed 

30 

• o ->. '•• « • » - » H *• %r ■>V« - • - • O * " O O * " *." • " • * * xO ^" */ • • <• *»• O • * • * v* - • KT* ■ - * v" o *••*-•• * ^* O • * -w* • * «*•»-" V •- % •- K •« 



by H. Wold in the aid 1930*s. The general process is tased 

on the assumptions and theories recounted in Chapter I. The 

moving average is defined by the expression 

N 
X(T) - I Aj Z(T-J)   T * 0. 1 ... 

J—M 

where H and H .are ncnnegative integers and the weighting 

coefficients Aj are real constants. Kendall and Stuart 

[Bef. H], and Koopaans [Bef, 10], present in depth discus» 

sions and theoretical derivations that expand on the ideas 

presented in Chapter I. The moving average routine employed 

in this analysis is contained in the IBM GH1FSTAT statis- 

tical graphics package. The weighting function used in that 

program takes the form 

A , - J_  J- -M... N J  M 

The COSINE ABCH saoothing procedure used here, is a 

moving average process that uses a cosine weighting function 

of the foes 

, .J-, -C0SJEU±11.   j.o,i... N-i 

It is characterized as a good smoother by Ansccate, 

[Bef. 11], and is often used as a trend remover during time 

series analysis. 

C.  TESTING PBOCED0BIS AMD BESOLTS 

Three sets of test data were developed to check all 

aspects of the L08ESS program*s capabilities; its ability to 
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follow linear trends as well as abrupt and smooth changes in 

curvature. 

1. Phase One.: Ljfleac, Trends 

Test set one. Figure 3.1, consists of 150 data 

points having the following functional relationship: 

Y = X + NORMAL(0.1) NOISE  OiXilO 

was designed to test 10WESS« ability to detect linear trends 

in noisy aata. Although this test appears redundant, aany 

complex smoothing procedures have failed because they did 

not return straight lines when that was the shape of the 

underlying curve. 

■  • 

Fig ore 3.1  Test Set One iith and lithout H(0,1) loise. 

lhe adequacy of LOIESS* performance on test set one 

was measured by comparing it with a linear least sguares 

regression line fitted to the same data. 

As pointed out in CHAPTER II, LOHBSS produces 

increasingly smoother curves as the parameter F approaches 

1. When F«1, each neighborhood used throughout the smoothing 

process contains H  • 1 * N points.  This implies that each 
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smoothed point (Xi,Yi) is computed from the equation of the 

TBICOBE weighted regression line fitted to all of the data. 

This procedure should produce a LOHESS smoothed curve that 

closely resembles the linear regression of I on X. The 

TRICUEE weighting function used in LOHESS may cause minor 

disparities between the two "fits," however. A visual 

inspection of the bottom two plots in Figure 3.2 reveals 

that LOWESS and the linear regression produced nearly 

identical "fits." 

■L 
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LOWCSSP-t LINEAR RCCRESSION 

• 

Y • -0.16324 •»  1.0143 > X 

Figur« 3.2  Comparison of I0IESS Smoothing and linear 
Regression of Test Set One. 

Goodness of fit can be measured by examining the 

residuals (Yi-Yi) from each smoothing procedure. A perfect 

reproduction of the underlying functional relationship,  Y = 
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X, would produce a set of residuals distributed Normal (0,1), 

the same distribution found in the noise. The results of the 

GRAFSTAT distribution fitting proceedure summarized in Table 

II indicate that the distribution of the regression resi- 

duals can be approximated as Normal(0,1.04) while the LOWESS 

residuals are approxiiately Normal(.002,1.016). 

Hypothesis tests comparing the means and variances 

of these distributions with those of the Normal(0,1) 

distributed noise, will provide some measure of the goodness 

of fit of each smoothing scheme. The results of these 

tests, conducted at the 955 confidence level, are summarized 

in Table I. 

The output of the GBAFSTAT distribution fitting 

procedure presented in Table II and the hypothesis tests 

summarized in Table I, suggest that there is no significant 

difference between the distribution of the residuals from 

the linear regression or LOWESS smoothing of test set one, 

and the Normal (0,1) noise incorporated into the data. This 

provides strong support for the premise that LOWESS depicts 

linear trends very well. Visual comparison of the LOWESS 

smooths in Figure 3.2 confirms- that LOWESS follows the same 

general trend regardless of what F is used; small values 

provide rougher curves that have the same general slope. 

T1BLE I 
Comparison of the deans and 

From Smooths of Test Set One 
Variances of Residuals 

to the Normal (0,1)   Noise 

ncise      T Z(1-°^2) P   ■ 
linear    mean 
rgrsn      var 

0.000       0      0.000 
1.040       1       0.346 

1.96 
1.96 

accept 
accept 

0.05 . 
0.07     , 

LOWESS    mean 
var 

0.002       0      0.024 
1.016       1       0.138 

1.96 
1.96 

acce pt 
accept 

0.05 , 
0.06 
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TABLE II 
Summary of GBAFSTAT  Distribution Pitting of 

Besiduals fro« Regression and IORESS Smooths of Test Set One 

RESIDUALS FROM LINEAR REGRESSION 
NORMAL DISTRIBUTION 

X BE» 
SELECTION ALL 
LABEL iCSQ 
SAMPLE SIZE 150 
MINIMA* -2.8«« 
MAXIMUM 3 151 
CENSORING NONE 
ESI.   METHOD MAXIMUM LIKELIHOOD 

SAMPLE     riTTED 
MEAN   :  2.0898E-H 2.0898E"14 
STO OEV :  1 0295E0   1 0295E0 
SKtWNESS:  1.1908C-1  0 OOOOEO 
KURTOSIS:  3 13S9EO   3 OOOOEO 

PERCENTlLES SAMPLE FITTED 

COVARIANCE MATRIX OF 
PARAMETER ESTIMATES 

M.I       SIGMA 
MU   0 0070189 0 
SICMA 0 0 003533 

COOONESS or riT 
5: -1   7J75 -1  8938E0 CM1-SQUARE 2.3078 

10 -1.3381 -1  3196E0 OEC FREED: 5 
25: -0.59U: -S 9409E-1 SlCNir 0 80513 
50: -0 032798 1 0399E-7 K0tM-<34lRN  : 0 04026« 

75: 0.(32 34 « 9409E-1 SICNIf 0 96616 

90: 1  3208 1  3196E0 CRAUER-V U  . 0.027624 

95: 1  7182 1  S938E0 SICNIf 
ANOER-OARL   : 

SlCNir 

> 15 
0  1700« 
> 15 

KS.  AO.  AND CV SlCNir.   LEVELS NOT EXACT WITH ESMMATfO PARAMETERS 

0 95 CONTIOENCE   INIERVAtS 
PARAMETER      ESTIMATE LO*ER UPPER 
MU 2 0898E-14    -0 1(424    0>S42« 
SICMA I.0295E0 0(2471     11(13 

RESIDUALS FROM LOWESS SMOOTHING 
NORMAL DISTRIBUTION 

I i.0Wtit HtvaOMS 
SELECTION ALL 
LABEL LC4WCS 
SAMPLE sin »50 
MINIMUM -2 909 
MAXIMA« 3 090 
CENSORING NONE 
ESI    METHOD MAXIMUM LIKELIHOOD 

Si A*»LE        MtTEO 
MTAN         :  0 Ol«2«8    0 0*«2«8 
SID DCV      I 0237        I C237 
s«r»ifss  o 093313    0 
«URI05IS    3 i«52       3 

f 

cnvARUMCt MAiRix or 
PARAMUR  (S'IMAKS 

M. S.-JUA 

Ml»        0 0049MS 0 
SICMA 0 0 003««)} 

PERCENUIES SAMPLE        r|TTfO 
5 

10 
25 
50 
75 
«0 
95 

-1 
-1 
•0 
0 
0 

««4« 
3315 
53J17 
010179 
»49*8 
J«7« 
7125 

(67« 
795« 
I'D 
0167M 
7(4« I 
128« 
7005 

«S.  «0.  AND CV SlCNir    LEVELS NOt UACI • 

GOOONtSS or 
Cnl-Vi-ARf 

0(C  (R|(D 
SlCsil 

SICNI» 
CRAWIU V M 

SIC!» 
AM •"  ;i»«t 

SiCI' 
I'» li'l 

rit 
4 3«5 

:(0 

92CO» 

8911» 

»     Ü 
0   181V« 
>    15 

P«MAU( '(RS 

0 95 CONt I CM«'!   |Nl(RvAi$ 
PAPAMTKR      ESTIMATE       lO»*R l»WfR 
"J 0 OK?««      0  >4'0«    0  >,«5« 
SIOM i  07»' 0 «>*••     1   154« 
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2» IJläse Two: Abrupt Changes iß Curvature 

Test set two,  Figure 3.3,  consisting of 220 data 

points having the following oatheaatical relationship 

Y * 
.4X + N0RMAL(0,1) NOISE 0SXS10 
3 + .1X + NORMAL(O.I) NOISE 10<X*25 
14.6 - 3.67X + NORMAL(O.I) NOISE 25<X*40 

, 0 + NORMAL(O.I) NOISE 40<X*44 

was used to test LOBISS* ability to handle abrupt pattern 
changes. The smooth of test set two generated by LOWESS, was 
compared to those produced by MOVING AVERAGE and COSINE ABCH 
filtering of the sane data. 

i    i    i   i 

.•••■>   •■•■ ':.'.- 

10 JO JO 

x 

Figure 3.3  Test Set Two lith and iithout 1(0,1) Noise. 

Deteraining the aaount of saoothing reguired by a 

data sat is, perhaps, the aost difficult aspect of using any 

curve sacothing routine. Saoothness is controlled by the 

size of the parameter P in LOHBSS and by the paraaeter H 

(bandwidth) in NOTING AVERAGE and COSINE AECH saoothing. 

These parameters detcraine the nuaber of points, or neigh- 

borhood size, used to compute each saoothed value. The goal, 

regardless of the icthod chosen, is to use the largest 

neighborhood that aiaiaizes the variability in the saoothed 
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points without distorting patterns in the data. Another 

factor that oust also be considered when choosing M, is that 

MOVING AVERAGE and CCSINE ARCH smoothing routines produce 

only (N-M) smoothed points. Using proportionately large 

values of M, therefore, might result in losing significant 

portions of the original pattern at the ends. This shortcom- 

ming will he evident in the graphical comparisons made 

throughout the remainder of this chapter. 

Comparison tests made during phases two and three of 

this evaluation used selected 10WESS smooths and corre- 

sponding ROVING AVERAGE and COSINE ARCH smoothed curves. 

Parameters for the three processes are directly convertible 

ty the relationship M » F»N. 

Figure 3.4 presents graphical comparisons of LGWESS 

smooths (solid line) using parameter values F * .15,.25,.50 

and .75 to illustrate some of the considerations made during 

the parameter selection phase of 

a smoothing operation. The exact underlying relationships 

(dashed lines) were included to demonstrate how large values 

of F can cause pattern distortion. 

It is apparent from the sequence of illustrations in 

Figure 3.4, that 1CHESS produces smoother curves as F 

increases. The smoothest curves are not always the most 

desireable, however. The bottom two curves (F».50 and F*.75) 

have distorted the original pattern by using too many points 

to compute the smoothed values. Test set two contains 50 

points in the segment (0<I<10). Using a neighborhood such 

larger than 220*.25 * 55 points on this data set would have 

a tendency to fit the wrong slope to the first linear 

segment. Additionally, it would cause over smoothing of the 

corners. Figure 3.5 shows the neighborhood and linear 

regression used to sacoth the point (Z10,Y10) during produc- 

tion of the smoothed curve (F».75) pictured in the lower 

right cornet of Figure 3.4. It is easy to see that following 

this slope would distcrt the pattern presented by the data. 
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IOWESS F - .15 
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LOWtSS F - .50 
i     i     i     i     i     i     i 

<o 10 JO 

X 
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Figur« 3.«  Comparison of LOIESS Sioothing of Test Set Two 
Using Different Values of the Parameter P. 

^■■"^■"^ »  '  » 

till   h—i—rf- I   I   i 

10    JO 

* 

Pigore 3.5  Linear legression Step in Sioothing (Z10.T10) 
in Test Set Two Osing LOlfss lith F-.75. 

The F«.15 plot depicted in Figure 3.4«  demonstrates 

that snail P*s create very locally smoothed curves that 
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contain a great deal cf noise but follow gross patterns very 

veil. Using a small F is an excellent idea if the sole 

purpose of the smoothing is to highlight major trends in the 

data. 

The LOWESS smoothed curve obtained by using F=.25 is 

the one test suited fcr comparison with corresponding MOVING 

AVERAGE and COSINE AECH smooths, Figure 3.6. 

10WCSS F - 2 
>    >    «    i    i    i    i    i    i" » 

•■>• ji—i • 

to 

MOVING AVfRACE M - 44 COSINE ARCH U -  44 

Figure 3.6      Comparison of LOSESS.  flOViNG AVERAGE 
and COSINE ASCfi Ssmoothing of Ttest Sset  THO. 

Inspection of the plots in Figure 3.6 reveals that 
all of the smoothing procedures fit similarly shaped curves 
to most of the data, "he inability of the ROVING AVERAGE and 

COSINE ARCH routines to smooth the extreme edges of a plot 
precluded them from fitting a curve to the last segment of 
test  set two.     Practitioners of    these routines  often extend 
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the curve or fit the ends by eye. Applying these techniques 

to the bottom curves in Figure 3.6 does not reveal any 

significant pattern changes. IOWESS, although it does not 

follow the level trend accurately, does reveal a major 

pattern change in the last section of the data. 

All three of the procedures have a tendency to round 

sharp corners as the parameters F and M are increased. The 

MOVING AVERAGE curve, in the lover left, has a very rcunded 

shape and does not highlight the linear trend in segments 

one or tvo. The COSINE ARCH filter does a little better. It 

portrays the linearity of section three with nearly the 

correct slope but fits segments one and two with one smooth 

curve. Additionally, it has added a misleading huirp at the 

intersection of segmeits two and three. LOKESS is the only 

procedure that clearly pictures the underlying pattern as a 

series of straight lines. An experienced user who under- 

stands that LORESS icunds corners, could almost duplicate 

the original pattern by connecting the linear portions of 

the curve. 

Smoothing procedures are not only judged on their 

ability to depict patterns, but are also rated on their 

ability to filter out unwanted noise. Gross differences in 

their capabilities can be picked out easily in a graphical 

comparison. It is readily apparent that the MOVING AVERAGE 

curve in Figure 3.6 is much noisier that either the LCMESS 

or COSINE ARCH smooths. 

A more analytical measure of a procedure*s smoothing 

ability can be made by comparing periodograms of the unfil- 

tered and filtered data. A periodogram is an analysis tech' 

nique used to estimate the spectral density function of a 

time series at periodic frequencies, A v. The periodegram 

function is defined by 
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*   p, -I XVT, 2 
• u \y = 

Refer to Koopmans £Bef. 10], chapter 8, for a detailed 

discussicn of the periodogram and its distributional proper- 

ties. The periodograas in Figure 3.7 provide 

TEST SET TWO WITH NOISE 

fUEOUOCY 

LOWESS F - .2 

mouther 
COSINE ARCH U » 44 

mcouucr 

TEST SET TWO WITHOUT NOISE 

* ' 

€•   ■ • 

o 

ntcouCNor 

MOVING AVERAGE M - 44 

mCOUCNCY 

Figure 3.7  Comparison of Periodograas of LOfESS, HOVIHG 
AVEBAGE and C0SI1E ABCH Smoothing of Test Set Two. 

coipariscns of the filtering properties of each saoothing 

routine.  The  vertical lines on each  plot represent 
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periodicities, the spectral frequencies of which are 

measured along the abscissa. The height of the lines is an 

indicator of the significance of the associated frequencies. 

The plots in Figure 3.7, were truncated at Y * 6 to prevent 

the obscuration of the minor frequencies. 

A visual inspection of these periodograms reveals 

that IOWESS produces the smoothest (most noise free) curve. 

In fact, the periodogram of the LOHESS curve and noise free 

data are nearly identical. 

All of this evidence supports the conclusion that 

LOWESS performs at least as well on data sets that contain 

abrupt changes in curvature as do the widely accepted MOVING 

AVERAGE and COSINE ARCH procedures. 

3» jhase T&ree: Smooth, Changes in Curvature 

Test set three. Figure 3.8, comprised of 100 data 

points having the following relationship 

Y ■ SIN X + NORMAL(OJ) NOISE  0SXS2 

was used to evaluate LOHESS* ability to follow scocth 

changes in curvature. The same procedures used in the 

preceding section to test L0WE5S* ability to handle abrupt 

pattern changes were applied here. 

Test set three appears to either have a negative 

linear trend, or appears to cycle about the line Y ■ 0. A 

series of LCWESS smooths. Figure 3.9, starting with a small 

F parameter, was used to discover the general pattern 

(dashed line) and refine the resulting smoothed curve (solid 

line) . The distorted smooth in the lower right hand plot 

demonstrates the inherent danger in selecting a large F if 

only cce smoothing pass is planned. 
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Figure 3.8  Test Set Three iith and Without N(0,1) Noise. 
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Pigure 3.9  Comparison of LOfESS Saoothing of Test Set 
Three Osiag Different Values of the Paraaeter F. 

The LOfESS curve obtained by using F-.25 provided 

the aost saoothing without distorting the pattern and vas 
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used in a direct comparison with corresponding MOVING 

AVEBAGE and COSINE ARCH smooths, Figure 3.10. The LCMESS 

smooth is the only curve that has the characteristic sinu- 

soidal shape. The HCVING AVERAGE plot, although very ncisy, 

would present the proper picture if the ends of the curve 

were extended. The radical change in curvature on the left 

end of the COSINE ABCH smoothed curve detracts from its 

abiliity to represent the true shape of test set three. 

TEST SfT THREE 

> • 

MOVINC AVERAGE M - 25 

>■ • 

LOWESS F - .25 

> m 

m 
I 

t 4 
X 

COSINE ARCH M - 25 

> • 

Figure 3.10  Comparison of LCBE5S, MOVING AVERAGE and 
COSINE ARCH Smoothing of Test Set Three. 

Comparison of the periodograms presented in Figure 

3.11, shows, once again, that LOWESS produces the smoothest 

curve, while Figure 3.10 shows that it seems to follow the 

model the best. 
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ft. 

TEST SH THREE WITH NOISE 
i    i   'i    i    i    t    i    i    i    i 

llilll ...llll,. Hit ...ll llll..! 

TEST SET THREE WITHOUT NCXSC 
1     11 

1* M 30 «• 
rurouocY 

MOVtNC AVERAGE M - 25 

Fi9?ES hV      Comparison of Periodograas of LOBBSS, MOVING 
AVEBAGE ans COSINE ARCH Smoothing of Test Set Three. 

The graphical comparisons made in Figure 3. 10 and 

3.11 demonstrate clearly that LOHESS performs at least as 

well as MOVING AVERAGE and COSINE ARCH routines when 

smoothing data that has a smooth curvilinear pattern. 

t 
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*•• 2lil§S I2SI: pnegual Spacing 

Besides being able to smooth all of the data points, 

10WESS enjoys another possible advantage over MOVING AVERAGE 

type procedures, in that it was designed to work on unequal 

as well as equally spaced data. The definition of MOVING 

AVERAGES 

M 

Y, = I A/..J  I = 0,1,2.... 
J--U 

holds only if the Yi's are equally spaced and have a linear 

relationship over the interval (i-m) ... (i+m). Violation of 

the linearity assumption introduces bias into the results 

while violation of the equal spacing requirement invalidates 

them. LCWESS would indeed enjoy \ distinct advantage over 

MOVING AVERAGE type smoothing procedures if it produces 

acceptable results on irregularly spaced data. 

This section examines 10HESS' ability to smooth two 

different sets of this of type data. The first, natural log 

of energy dissipation versus depth, Figure 3.12, is a trans- 

formed portion of data collected during a turbulence meas- 

uring experiment conducted by the Department of 

Oceanography, U.S. Naval Postgraduate School. 

The LOWESS curves obtained by using linear and quad- 

ratic regressions during step Three of the smoothing proce- 

dure were compared to a quadratic least squares regression 

line fit to the same data, Figure 3.13 

Higher order regressions were rejected as plausible solu- 

tions because the regression coefficients Bj, j ■ 3,1,5... 
were found to be statistically insignificant compared to the 

Bjr j * 0,1,2 constants. A quadratic relationship also 

seemed to be a reasonable assumption since turbulence is a 
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Figure 3.12      Natural Log of Energy Dissipation vs Depth. 
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Table for Ln Energy Dissipation Versus Depth. 
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function of pressure which varies in proportion to depth 

squared. 

Figure 3.14 shows that the LOWESS curves (solid 

lines) for the linear (P = 1) smooths follow the general 

Quadratic regression (dashed lines) for small values of F 

tat flatten the pattern for large F»s. The quadratic (P = 2) 

LOWESS curves close is on the regression line as F increases 

and produce a fairly good match as F reaches .75. 

The quadratic LOWESS curve also appears to follow 

local peaks and valleys more accurately for small F's than 

does its linear counterpart. This is not unexpected. Figure 

3.15 shows that the characteristically bowed shape of a 
A 

quadratic curve produces larger Yi values in the middle of a 

data set (Xi is located in the middle of the LOWESS neigh- 

borhood) than a straight line fitted to the same data. 

The "fits" of Figure 3.14 can be compared analyt- 

ically, as was done in the Phase One test, by examining the 

distribution of their residuals. Combining these analytical 

results with graphical comparisons provides some goodness of 

fit measure for the two curves. The nonparametric Sairnov 

two sample test [Ref. 12], is appropriate in this case 

because the distribution of the residuals is unknown. The 

results cf this test conducted at the 95% confidence level, 

Table III, indicate the there is no significant statistical 

difference between the F=.75 quadratic LOWESS curve and the 

quadratic least squares regression line. See the lower eight 

hand plot of Figure 3.14 

This example demonstrates that LOWESS works quite 

well on unequally spaced data. It also shows that quadratic 

10SESS wcrks better than the linear model when neighborhood 

sizes are too large to support the assumption that the 

neighborhood points are related linearly. Quadratic LCHESS 

should be used whenever the data suggests that that assump- 

tion is not true. 
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ROBUST LOWESS SMOOTHING: ENERGY DISSIPATION DATA 
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Figure 3.1«      L01ESS smoothing of Energy Dissipation Data 
using Linear and Quadratic «egressions in Step Three. 

The second irregularly shaped plot to be saoothed, a 
lag-1 plot of 200 NSlfi(l) randoa variables, is pictured in 
Figure  3.16 
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Figure 3.15  LOiESS Smoothing of Z53 in Energy Dissipation 
Data using Linear and Quadratic Regressions in Step Three. 

TABLE III 

Siirnov Test Comparing the Distribution of 
Residuals fro« Sicothing ana Regression of Energy Data 

type 

if? 
guad 
quad 

F T Ksf.95) 
.149 

* 

f .216 re- ect 
.156 .149 re3 ect 

50 .156 .149 re- ect 
75 .078 .149 ace ept 

The NEAR (1) process« derived by Lawrence and levis 

[Ref. 13], is a new first order autoregressive time scries 

■odel with exponentially distributed larginals. NEAH (1) data 
is generated as a sitfie linear coabination of a series. En, 

of independent exponential randoa variables by the aodel 

XM = €M + BXN_, W.P. A      N - 0.1.2 

0    W.P. (1-A) 
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J 
-tlNTMl 

Figaro 3.16  Lag-1 Plot of NE1H(1) Randoa Variables 
Having Autocorrelation .75. 

t . 

These MEA8(1) variables have some interesting prop- 
erties that sake then especially suitable for testing 
smoothing routines. They have fixed serial lag-1 correla- 
tion«    p * AB and have conditional expectation 

tfWi-X] * 0"AB)X + AB* 

The following parameters were used to generate the variables 
for the test; A*.83, B*.9, A* 1. A successful saooth of 
Figure 3.16 should  produce a  straight line  of the for« 

Y - .25 + .75X 

not at all what one  would expect fron looking at  the plot. 
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Figure 3.17 presents comparison plots of robust and 

non-robust linear regression and robust and non-robust 

LOWESS smoothing of the near(1) data of Figure 3.16. The 

robust regression function contained in the IBM GBAFSTAT 

package was used in this example. 

Examination of the plots in Figure 3.17 shows, once 

again, that LOWESS smooths are comparable to those produced 

by accepted linear regression technigues. It also reveals 

that neither the linear regression nor LOWESS procedures 

vere able to reproduce the true lag-1 relationship, (T - .25 

♦ .75X), shown in the lower right hand plot. Both robust 

curves do present an accurate picture of where most of the 

data points lie, and could be used to predict where a 

majority of the future points are likely to fall. Belying on 

these curves, however, would probably lead to the conclusion 

that the points above and below these lines represent 

outliers, which may cr may not be the case. 

It must be concluded from LOWESS' performance on 

these two data sets, however, that it smooths unequally 

spaced data as well as currently available regression 

technigues. 
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Figure 3.17      Comparison of  Robust and Non-Hobust linear 
Begression and  1CHESS Smoothing of  the Lag-1  Plot 

of  NBiH(1)   Data. 
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17. OSIHG T.HE A£L IERSION OP LOWESS 

A.  07IBYIEW 

This chapter provides prospective users with detailed 

instructions for using LOWESS as a stand-alone program or in 

combination with the experimental GRAFSTAT graphics package. 

In either node, LOWESS will provide the user with vectors of 
A 

robust or non-robust smoothed Yi values and their associated 
residuals. When used in conjunction with GRAFST&T, it will 
also produce a scatter plot of the original data with the 
LOWESS smoothed curve superimposed. A similar type presenta- 
tion of the absolute value of the residuals versus Xi is 
also available on reguest from the program,  Figure 4.1 

NON-ROBUST LOWESS SMOOTHING; F - .7 
T I I 

W 120 

101AI U51HS 

Figure 4.1  Sample of Graphical Outputs from LOWESS: 
Smooths of the Data (left), and Residuals (right). 

LOWESS is a completely interactive program. All user 

defined parameters and option selections are entered in 

response to program gueries. The stand-alone and combined 

graphics modes of operation are differentiated only by their 

initial set up procedures and by the choice of terminals on 

which the program is run. 
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Although no API programming skills are required to 

operate LOWESS, users should become familiar with system 

commands and procedures for entering the APL environment, 

loading and copying workspaces and variables and for saving 

workspaces by reading appropriate sections of [Bef. 14]. 

Operating instructions presented in the follow-on sections 

of this chapter have been written for users who have had 

little or no experience with APL. Experienced users may find 

it more convient to refer to the summarized procedures 

presented in the Tables at the end of this chapter. 

1CW2SS is not a W«l Church computer center supported 

program and is not included in any of the APL libraries 

listed in [Bef. 15]. Interested users should contact 

Professor P.A.W. Lewis, Department of Operations Research, 

0.S. Naval Postgraduate School, for information concerning 

access to the APL workspace DTNLFNS. This workspace, which 

contains LOWESS and several other data analysis related 

programs, should be copied and stored on the user's A disk. 

B. TZBBIIAL BEQ0IBE1IBTS 

LOWESS, ifi £lie £tan,d-alone mode can be run on any APL 

capable terminal at the D. S. Naval Postgraduate School. The 
IBM GFAISTAT software, which generates the graphical 
displays when operating LOWESS in the combined graphics 
mode, requires the use of either IBM 3277GA or 3278/79 
graphics    display terminals. The    3278  terminals    require 
special modification to produce graphical displays. None of 
these terminals are available for public use at the Naval 
Postgraduate School.   See Table IV for a  summary. 

C. PEOGBAB INITIALIZATION: STAND-ALONE MODE 

Since LOWESS is written in APL, users must enter the APL 

sub-environment after    completing normal log    on  procedures. 
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This is done by typing the letters "APL" and depressing the 

enter key. The response "CLEAR HS" indicates that the 

computer is ready to accept API commands. 

APL uses a special character set that is invoked by 

keying the APL ON/OFF key while depressing the ALT key on 

IBH 3278/79 terminals or by merely hitting the APL ON/OFF 

key on the 3277GA graphics display terminals. These special 

APL characters are imprinted in red (3278/79 terminals) or 

black (3277GA terminals) on the top and front surfaces of 

the ncrmal keys. The symbols located on the front of the 

keys are accessed by typing the appropiate key while 

depressing the APL AIT key. When two APL characters are 

pictured on the top surface of the same key, the uppermost 

character is invoked by hitting that key while depressing 

the SHIFT key, much the same as producing capital letters 

during normal typing operations. 

The final step in the initialization procedure consists 

of loading LOWESS and associated sub-programs into the 

active APL workspace. This is accomplished by entering the 

system command ") PCOFI DTNLFNS 10W£SS " ». This command 

copies a group of programs required to execute LOWESS* See 

[Ref. 16 #p.107], for information about the APL GSCOP 

command. The computer responds by presenting HS size and 

"date-saved" information when all programs have been loaded. 

Initialization is now complete and the user is ready to 

execute LOWESS by typing "LOWESS" and hitting enter. From 

this point on, user enteri.es are made in response to program 

queries or instructions. Table I summarizes these initiliza- 

tion procedures. 

1 Underscored letters are obtained by typing the desired 
letter while depressing the APL ALT key. 
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0.  PBOGBAH INITIALIZATION: COMBINED GRAPHICS NODE 

As noted in Section B of this chapter,  the combined • 

LOWESS-GBAFSTAT package can only be run on IBM 3 277GA,  3279 £-. 

or specially conFigcred 3278 graphics display terminals. ;>".; 

Additionally, efficient operation of GBAFSTAT reguires a 

minimum workspace size of 2 megabytes.   The P.R.  Church • 

Computer Center has established a limited number of public 

domain workspaces with special account numbers and passwords 

to meet this need,  £Bef. 5].   Hard copy graphics printers 
+.— 

are available for    use with  the 3277GA    terminals located in i 
Ingersall, Boot and Spanegall Halls. The remainder ot this 
secticn focuses on the use of  the 3277GA  terminals. 

Data files stored on the user's personal disk are 
unavailable for    use while    operating in    one of     the public f> 
workspaces.   Users may: 

1. send    files tc    the    public    workspace's user    number [/•; 
prior to  logging on and commencing a work session; !>;*' 

2. 'link    to his/her    own disk    after logging     on to    the • 
public workspace    useing CP link    procedures outlined 
in [Hef.   17]. 

After logging on to one of the public workspaces and 
completing the data transfer or linking procedures described 9. 
above, the user must enter the APL sub-environment by typing 
MAPlGS7"i and hitting the enter key. The response, "CLEAR 
WS" indicates that the computer is ready to accept APL 
commands. • 

The special APL characters, labelled in black, are 
invoked ry depressing the APL ON/OFF key. Since this key 
also turns the APL characters off, it may be necessary to 
check their status by trial  and error.  Detailed  instructions 9 

1. The command, "AFLGS7", invokes special system routines 
required to support the IBM GRAFSTAT software package. This 
procedure may change. Contact Professor P.A.9. Lewis, 
Department of Operations Research, if these procedures do 
not  work. 

57 

/ 
w-.-.,.■••■ .y .v. .•..•..■•.-• V;AWJ/AV:.-.-.-.-..,AV.,.-.,.%V.-.V'.V.N-.NV -•. •. . '.N-V. .:■ .•••-••.-...• .N^.v..-. 



for using the APL character set are presented in Section C 

of this chapter. 

The initializaticn procedure is completed by loading 

GRAFSTAT and LOWESS into the active APL workspace. GRAFSTAT 

should re loaded first, by entering the system command 

")LOAD GBAFSTAT". The GRAFSTAT package is quite large and 

nay take several minutes to load. The following set of user 

instructions will appear on the screen when GRAFSTAT is 

fully loaded: 

THIS IS A NEW (5/1/84) RELEASE OF GRAFSTAT. IT RUNS ON THE 

3277/GA OR ON THE 3276/79. IT HAS A NUMBER OF NEW FUNCTIONS. 

YOOR CID CONTROL VECTORS WILL WORK AS BEFORE. IF YCU )CCPY 

RATHER THAN )LOAD THIS WORKSPACE YOU MOST EXECUTE THE 

FUNCTION LATENT BEFORE STARTING. THE NEXT RELEASE IS 

SCHEDULED FOR 7/84. 

TO BEGIN, TYPE: START 

FOR MORE INFORMATION, TYPE: DESCRIBE 

It is not necessary for tne user to start, or even 

interact with GRAFSTAT to smooth a set of data: the GRAFSTAT 

message may be cleared by depressing the CLEAR key. 

Users who have the APL workspace DTNLFNS stored on the 

public workspace disk, or who are linked to their cwn 

personal disk where it is stored, need only enter ")FCOPY 

DTNLFNS IOWESS " to complete the initialization process. The 

computer responds by presenting WS size and date saved 

inforaatior when all programs have been leaded. 

Initialization is now complete and the user is ready to 

execute LOWESS by typing "LOWESS" and hitting enter. From 

this pcint on user enteries are made in response to prcgiam 

queries cr instructicES. See Table VI for a summary of these 

procedures. 
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I.  OPERATION OF LOWESS 

This section provides detailed descriptions of the user 

inputs required during normal operation of LOWESS. The 

discussion assumes that one of the initialization procedures 

described in Sections C and D of this chapter has already 

been completed. 

Execution of the IOWESS program is initiated by typing 

"LOWESS" and hitting the return key. Since the program is 

interactive it will respond with a series of queries or 

instructions requesting the user to input data or make deci- 

sions about the operation of the program. The exact sequence 

of program initiated gueries and instructions is formulated 

in response to user inputs. 

User-computer interactions required during executicn of 

LOWESS are categorized into two types; data input and 

program operation. 

Since the prograi cannot operate without data, the 

initial concern of LCHESS is to locate and read the data set 

it is about to smooth. Data can be read from the active APL 

workspace, a stored AEL workspace or from a stored CHS file. 

Data that is not lccated in the active workspace must be 

accessible from that workspace. This presents no problem 

when the user is operating under his/her personal user 

number and the data is stored on his/her disk. This may 

become a problem when the user is logged on to one of the 

public workspaces described in Section D of this cahapter, 

and has not: 

1. sent the data to the public workspace where he/she is 

working and stored it on the assoceated A disk; 

2. linked to his/her own disk prior to entering the APL 

sub-environment, see Section D of this chapter. 

Wherever the data is stored, it HOST be formatted into 

two separate lists, one containing the X values and the 
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other containing the corresponding Y values of the points 

being smoothed. 

Data which resides in the active workspace as APL 

vectors1 is entered into LOWESS when the user types the 

variable name and hits enter in response to appropriate 

program requests. 

Data which is stored in another APL workspace on the 

disk in use or on a disk to which the user is linked, will 

be transferred to the active workspace by the sub-program 

DATAINPD1. The user needs only to enter the workspace name 

and variable names when requested. DATAINPOT will also read 

and convert CHS files stored on the disk in use or on a disk 

to which the user is linked, provided they are formatted as 

described above and ccntain only numerical data. A mixture 

of alphabetic and numeric characters in a CHS data file will 

create an error and terminate execution of LOWESS. These 

data transfer features will work equally well in either mode 

of operation. The IEH GHAFSTAT program contains functions 

entitled CHS BEAD and CHS WRITE that will convert data in 

both directions when operating in the combined graphics 

mode, users will generally not need to use this feature of 

GRAFSTAT, however. 

Program operation inputs include: 

1. the value of the parameter F  (selection considera- 

tions are discussed in Chapter II Section C); 

2. whether robust or non-robust smoothing is desired; 

3. whether or net a plot of the original data and 

smoothed curve is desired; 

1 In APL, a list of data points stored under a single vari- 
able name is referred to as a vector. See [Ref. 14], for 
further details. 
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4. whether or not a plot of the absolute values of the 

residuals and associated smoothed curve is desired; 

5. X and Y axis labels for these plots. 

Plots can only be generated while operating 10WESS in 

the combined graphics mode. Requesting plots when GRAFSTAT 

has not been loaded will produce an error and terminate 

execution. Hard copies of plots may be obtained by 

depressing the HARD COPY button on the bottom of the 

graphics screen. 

TABL2 I? 

Summary of Terminal Requirements and 
Available Outputs 

Stand-Alone Mode Combined Graphics 

Terminal 
Required 

3277GA 3278 3279 3277GA, 3279 or 3278 
with graphics board 

Additional 
Software 
Required none IBM GRAFSTAT pgm. 

Available 
Output Numerical: 

YSMTH .. smooth Y 
X1 ... original X 
Y1 ... original Y 
RESY .. residuals 

Numerical: 
YSMTH .. smooth Y 
11 ... original X 
Y1 ... original Y 
RESY .. residuals 

Graphical: 
Smooth curve 
(Residuals| vs Xi 
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TABLE T 

Initialization Procedures, Stand- -Alone node 

Objective User Inputs Program Response 

(1) en^er APL 
environment "APL" »CLEAR WS" 

(2) invoke APL 
characters APL ON/OFF key none 

(3) load LOWESS 
and assoc.   ] 
programs 

PCOPY DTNLFNS 
LOWESS 

"saved (date) (time)" 

TABLE VI 

Initializati on Procedures, Combined Graphics 

Objective User Inputs Program Response 

(1) en^er APL 
environment "APLGS7" "CLEAR WS" 

(2) invoke APL 
characters APL ON/OFF key none 

(3) load 
GRAFSTAT ") LOAD GRAFSTAT" 

initialization 
screen, see p 59 

(*0 load • 
LOWESS 

") PCOPY DTNLFNS 
LOWESS" 

"saved (time) (date)" 

(5) execute "LOWESS" 
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7.   flSING 2|£ FOBTBAH  VERSION   OF. LOWESS 

A. OVIBVIEW 

This chapter provides prospective users with detailed 

instructions for using a FOBTBAN program that accomplishes 

the LOWESS curve smoothing procedure described in Chapter 

II. The program, entitled LOWESS, will provide the user with 

CMS files containing robust or non-robust Yi values and 

their associated residuals. These data files can be used to 

create {lots of the raw and smoothed data points using 

DISPLA [Bef. 7], EASYPLOT, or other W-B. Church computer 

center supported INSL or NON-IHSL plotting routines. 

LOWESS is a completely interactive program-, All user 

defined parameters and option selections are entered in 

response to program gueries. 

Although no FOBTBAN programming skills are required to 

operate LOWESS, users should become familiar with FOBTBAN 

and WATFIV operating system commands and also with the basic 

XEDIT editor, by reading appropriate sections of [Bef, 18], 

and [Bef. 19]. A limited ability to format, XEDIT and 

manipulate data files will be helpful when using LCWESS or 

vhen interacting vith any of the plotting routines mentioned 

earlier. 

B. TEBHINAL BEQOIBEBINTS 

LOWESS can be run on any remote terminal attached to the 

IBN computer located at the Naval Postgraduate School. The 

DISPLA and EASYPLOT plotting routines require the use of the 

IBM 3277GA graphics display terminals located in Ingersall, 

Boot and Spanegall Halls. Plotting routines that use the 

remote VEBSETEC or line printers can be accessed from any 

terminal. 

63 

£>££ä>£v^ 



C.  PBOGBAH INITIALIZATION (FOBTBAN 7EBSI0N) 

Since LOWESS is sot a W. B. Church computer center 

supported program, it is not available in any of the 

center's public access libraries. Interested users should 

contact Professor P.A.W. Lewis, Department of Operations 

Besearch, D.S. Naval Postgraduate School, for information 

concerning access to LOWESS and its supporting programs. 

Copies of the programs listed in Table VII should be 

obtained and stored co the user's A disk. Annotated copies 

of the source codes are contained in Appendix (B). 

TABLE ¥11 

Programs and Subroutines Beguired for the 
on ana Suppcrt of the FOBTBAN Version of LOWESS 

Filename 

LOWESS 
LOWS 
PXSOBT 
L1BQF 

Filetype 

FOBTBAN 
EXEC 
FOBTBAN 
FBOTBAN 

Filemode 

A1 
A1 
A1 
Al 

PXSOET and LLBQF are contained in the IMSL library. 

Users having access to these programs through the H.B. 

Church computer center need not obtain personal copies. 

The LOWS EXEC is used to activate system libraries, 

designate CHS storage space required for LOWESS input and 

output files. It is invoked by typing "LOWS EXEC» and 

hitting the ENTEB key. The file definitions contained in the 

LOSS EXEC are listed in Table VIII. See [Bef. 17], for into- 

nation on the use of EXEC executive programs. 

This EXEC defines enough file space to accomodate five 

data sets. The user need only enter the appropriate file 

number when gueried by LOWESS, to smooth any of the data 

sets. 
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TABLE VIII 

Input and Output File Definitions Used in LOWS 

File number    Filename Filetype 

2 L0W2 
3 LOW 3 
4 LOW4 
7 LOW7 
8 L0W8 

DATA 
DATA 
DATA 
DATA 
DATA 

». 

It nay become necessary to change these filenames to 

avoid losing data when smoothing a large number of data sets 

or when smoothing one set a number of times. This may be 

accomplished in one of the following ways: 

1. by entering the CHS command "XEDIT LOBS EXEC" and 

changing the appropriate names; 

2. by using the CHS command "R (old filename) (old file- 

type) (old filemode) (new filename) (new filetype) 

(new filemode)" for each file needing to be changed, 

see [Ref. 18]. 

File management is important. It is absolutely impera- 

tive that data input files have the same filename, filetype 

and filemode listed is the LOWS EXEC to prevent inadvertant 

smoothing of the wrong data or to prevent programming error. 

D.  DATA FILES (FOBTBA1 VERS IG N) 

LCRESS reguires that data be input in two columns of 

floating point constants in (2F15.5) format, X values on the 

left and Y values en the right. This is accomplished by 

creating a new file with the command "XEDIT (filename) 

(filetype)." The filename and filetype chosen should be one 

of these listed in Table VIII or one that is contained in 

the user's own LOWS EXEC. Refer to [Eef. 19], chapter 2, for 

more detailed instruction on creating files. The (2F15.5) 

format requires that all input variables contain a decimal 

point followed by nc more than five decimal places.  The X 
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values must be entered in the first fifteen spaces and the Y 

values in the second fifteen spaces of each line (one set 

per line). 

The output from LCWESS is placed in a file designated by 

the user. This can be the sane file used for inputting the 

(X,Y) values or a different one. A different file should be 

used if the same data set is going to be smoothed with 

several different parameters. This output is printed in 

(4F15.3) format. The first column is the original X values 

ordered from smallest to largest. Column two contains the 

corresponding Y values, while column three contains the 

smoothed Yi values and column four contains the (Yi-Yi) 

residuals. 

£.  05ERATI0H OF LOWESS (FORTBIN VERSION) 

This section provides detailed descriptions of the user 

inputs required during normal operation of LOWESS. The 

discussion assumes that the LOWS EXEC has been properly 

prepared and executed and that input files have been built 

according to instructions presented in Section C of this 

chapter. 

Execution of the LOSESS program is initiated by typing 

"HATFIV LOWESS * (XTYFE". Since the program is interactive, 

it will respond with a series of queries or instructions 

reguesting the user to input data or make decisions about 

the operation of the program. 

The initial concern of LOWESS is to locate and read the 

data set it is about to smooth. Data can only be read from 

one of the files defined in the LOWS EXEC routine. The user 

tells LOWESS what file to read by entering the appropriate 

file number (2,3,1,7 or 8) in response to the instruction 

"ENTER TEE FILE NONBIF OF THE INPUT DATA FILE." The program 

will terminate with an error if the LOWS EXEC was not 
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properly prepared or if the data file was not formatted as 

described in the preceding section. Other program requested 

inputs include: 

1. tba  value of the parameter F  (selection ccnsidera- 

k; tions are discussed in Chapter II Section C) ; 

2. whether or robust or non-robust smoothing is desired; 

3. the file number of the desired output file. 
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Ag£ENDII k 
APL PROGBAHS 

This Appendix contains annotated listings of the APL 

programs written for this thesis. Source listings of the 

systen library programs used to support the CMSREAD function 

called in the program DATAINPUT are not included. 

LOWESS is an interactive program that executes the 

Robust-Locally-Heighted Regression Scatter-Plot Smoothing 

procedure described in the preceeding sections of this 

paper. It calls the following subprograms; DATAINPUT, 

BEPEATCK, BEGBES, BEGRES2 PLOTQOERY and LOWS during execu- 

tion. Refer to Chapter IV for detailed user instructions. 

««LOWESS 
[B] L0WESS|N|Q|WX|J|I|A|B|Q|STRP|U|D»TX|WT|Z)BR|DA|DB|R»U1|H|R0| 

AR|RHS|PR0CEED|N1|PT|SKP|YS|F|R0B»REG|XAXIS)YAXIS| 
PHDR.QS3.QS6.PT 

[1] »»« DO NOT HOVE OR ERASE» GRAFSTAT FUNCTION HEADER 
[2] »•» GRAFSTAT WILL NOT ADD A LINE TO THIS FUNCTION WITHOUT 
[3] »■• THIS HEADER 
[4] »M 
[3] ■ •■ LOWESS CALLS THE FOLLOWING PROGRAHS AND VARIABLES: 
[6] «M DATAINPUT» REPEATCKi PLOTQUERYi REGRES» REGRES2» RPLTi 
[7] Mi NRPLTi RESPLT» SRESPLT 
[8] M« 
[9] 0PP*6 

9] DATAINPUT 
1] -»L?«l (PROCEED**N') 
2] ■•• 

14]  X1»-XH([AX]  JORDt*UMA 

'INPUT F ... (DSF*!)' 
QHB.3*Q«-(N1«-*X)»F«-0 
'DO YOU WANT TO USE LINEAR OR QUADRATIC FITTING DURING ' 
'THIS SHOOTHING ROUTINE?' 
'(LIN OR QUAD)' 
REGMtO 
'DO YOU WANT TO USE THE ROBUST SHOOTHING OPTION?' 
'(YES OR NO)' 
ROBH+O 
YStNIr« 
UXt-NtH 

c 
■»t 
••[ 
c 
c 
c 
t 
c 
c 
c 

3] 
A] 
7] 
B] 
9] 

[20] 
[21] 
[22] 
[23] 
[24] 
[23] 
[26]  >« 
[27] L«:J«-J*1J 
[28]  If« 
[29]  AM 
[3B]  B«-Q 

COUNTER FOR ROBUST SMOOTHING LOOP 

STARTS FIRST STRIP AT X, .. XQ 
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ADVANCE  STRIP 

[31] L2:I«-I+1       INCREMEMENTS THROUGH   Xi ...XN 
-♦[32] -M.6xi<I>N1) '   A 

[33] REPEATCK    PREVENTS   COMPUTATIONS OF Yi FOR   REPEAT   Xi 
•♦[34] «LSxHSKP-'Y') ' 
[35] STRP«-<A+<Ö,KB-A>>> 

•»[36] -»L3x\©j<D<-r/|UMX[I]».-X[STRP]>       - COMPUTES D| 
[37] YS[I]«-(+/CLST/Y)>+<+/LST«-X»X[I]>    USES AVG Yi IF D, = 0 

■»[38] -»L5 ' 
[39] L3:UT«-UX[STRP]xTX«-<<1-<|U»3>>»3>x<(|UHJ+D><1>TRlCUBE WT FCN 

■»[40] L4:-»R2X»<REGJ<'L,> ~1 
[41] X[STRP] REGRES Y[STRP] WEIGHTED REGRESSIONS 

■»[42] *L5 
[43] R2:X[STRP]  REGRES2 Y[STRP] _ 

■♦[44] L3:-»L2xi<BiN1)v<IiN1) 
■»[45] -H.2X» ((DAKX[I+1 ]-X[A]> >S<DB»-<X[B+1 ]-X[I+1]> >) 
[46] A«-A+l 
[47] B«-B+1 

■♦[48]       +L5 
[49] L6:RQHR[*<IR*-RESY*-<Y-YS>>] 

■♦[50]       4L10x»(0»«M«-0.5x+/|(RO[(rN1+2>,1+LN1+2]>) 
[31]      U1H 

■♦[52]       -»L11 
[53] L10:U1«-R+<6xM) 
[54] L11:UX«-((1-(U1«2))«2)x((|U1)(1) 

•♦[55]  ■♦L7xi<R0Bi<'Y,> 
■♦[56]  ■♦LixUJ«) 
[57] L7:PL0TQUERY RUN PLOTS 
[58]  YSHTH«-YS 

-♦[59] «■»L8xi<PTfi,Y,> 
-♦[60] »■♦0 
[61] L8:'THE OUTPUT FROH THIS LOUESS SMOOTHING IS STORED UNDER THE1 

[62]   'FOLLOWING VARIABLE NAHES:1 

[63]   '    YSHTH SHOOTHED Y VALUES' 
[64]   '    XI   X VALUES ARRANGED IN ASCENDING ORDER* 
[65]   '     YI   ORIGINAL Y VALUES' 
[66]   '    RESY  RESIDUALS' 

BICUBE WT FCN 
*)•,. 

DATAINPUT controls the data entry port j or« of the proce- 

dure. Data and program operating parameters are entered in 

response to program gueries. DATAINPUT accepts data that is 

stored in the active APL workspace, transfers data from 

other APL workspaces and converts CMS data into APL. 
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■-DATAINPUT 
[d]   DATAINPUT»«S1,BS2,QS4 
[1] PRQCEEDt-'V' 
[2]   • • ±-> 
[3]   'IS YOUR DATA SET LOCATE» IN IHtf WORKSPACE?' : 
[4]   '(YES OR NO)' ,.;•: 
[5] QSIHtB -V 

H&1 -»LPMKBSI-'N') >: 
[7]   'ENTER THE NAME OF THE X VARIABLE« V«: 

cai X*0 V-. 
[9]   'ENTER THE NAHE OF THE Y VARIABLE« *-• 
[IB] YH1 
1CH1 -»END 
[12] LPf:'IS YOUR DATA LOCATED:' 
[13]  '  (!) IN AN APL WORKSPACE LOCATED ON THIS DISK OR ON A DISK* 
CM3  •      THAT YOU ARE LINKED TO»' 
CIS]  •   (2) IN A CHS FILE ON THIS DISK OR ON A DISK THAT YOU ARE* 
[IB]   '      LINKED TO;' 
[17]  '   <3> NEITHER (I) OR (2) ABOVE.' r*" 
[IB]  'ENTER (1,2 OR 3)' " 
[19] fiS2*Q 

1[26] i(LP2.LP3,LP4)[QS2] 
[21] LP2:'TO TRANSFER YOUR DATA TO THIS WORKSPACE:« 
[22] '   (I) TYPE ...)PCOPY (WS NAHE) (X VARIABLE NAHE) <Y 

VARIABLE NAHE)' 
[23] ' EXAHPLE:  )PCOPY DATA X Y' — 
[24] •      IF YOUR DATA IS STORED AS TWO SEPERATE VARIABLES' 
[23] '   (2) TYPE ...)PCOPY (WS NAHE) (VARIABLE NAHE)' *'. 
[24] ' EXAHPLE:  >PCOPY DATA ARRAY' 
[27] '      IF YOUR DATA IS STORED UNDER A SINGLE VARIABLE NAHE* 
[28] •      AS IN A TWO OIHENSIONAL ARRAY' 
[29] • ' 
[36] •      DATE AND TINE SAVED INFORHATION IS DISPLAYED* V 
[3t] •     WHEN THE TRANSFER IS CGHFLETE. THEN ENTER   -»CO f~ 

[32] •      TO CONTINUE THE LOUESS SHOOTHINC PROGRAM* 
[33] SftDATAINFUTtGO 
[34] 60:'DO YOU NEED TO DEFINE YOUR X AND Y VARIABLES ANY FURTHER?1 
[33] 'ANSWER NO IF YOU ENTERED SEPARATE X AND Y VARIABLE NAHES* 
[36] 'IN THE PRECEDING STEP. OTHERWISE ANSWER YES.' 
[37] '(YES OR NO)' _ 
[38] QS3tf*a L 

■»[39] lENDil(QS3-'N') !^ 
[4©] 'DEFINE THE X VARIABLE* 
[4I] • XfO 
[42] 'DEFINE THE Y VARIABLE* 
[43] Y*0 

1[44] «END 
[43] LP3:'T0 TRANSFER YOUR CHS DATA FILE TO THIS WORKSPACE:* 
[44] *   (I) ANSWER THE FOLLOWING QUESTIONS ABOUT YOUR X DATA FILE* 
[47] XtCHSREAD 
[48] •  <2) ANSWER THE FOLLOWING QUESTIONS ABOUT YOUR Y DATA FILE* 
[49] Yi-CHSREAD 
[SB] 'YOU ARE NOW READY TO PROCEED WITH LOWESS* 

1[31] «END 
[32] LP4:'Y0UR DATA HUST BE STORED IN AN APL WORKSPACE OR IN A CHS 

FILE* _ 
[S3] 'LOCATED ON THIS BISK OR ON A BISK TO WHICH YOU ARE LINKED. 

LOWESS* 
[34] 'IS BEING TERMINATED. PLEASE COMPLY WITH CONDITION (I) OR (2) 

[55] »AND REINITIATE LOWESS.» 
[343 PROCEED*'N* 
f37] END:SADATAINPMT«-B ' 
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REPEATCK reduces the number of computations required to 

smooth a data set by assigning the same smoothed Y value to 

data points that have the same X value. 

REPEATCK 
CO] REPEATCK 
[1] SKP*-'H' 

+C2] -»ENDx\(I<;i) 
■»C3] -»ENDx\<X[I]*XCI- •U) 
C4] YS[I]«-YS[I-1] 
[5] SKP«-'Y' 
C6] END: 

JVV v-w. 

F10TC0ERY controls the the graphical output vhen oper- 
ating with the IBN GEAFSTSAT statistical graphics package. 
It calls the sub program LOWS to smooth the absolute value 
of the (li-Yi) residuals obtained from smoothing the orig- 
inal  data. 

»•PLOTQUERY 
CO!   PLOTQUERY 
en  ' ' 
[2] 'DO YOU WANT A PLOT OF YOUR LOUESS SMOOTHED CURVE?' 
C3] '(YES OR NO)   ENTER NO IF NOT USING GRAFSTAT' 
C4] PT«MtO 

+C3] •♦ENDM<PTI',Y,
> 

til 'INPUT X AXIS LABEL' 
C7] XAXISMJ 
C8] 'INPUT Y AXIS LABEL' 
C?] YAXIS*-Q 

-»C1Ö3 -*PL1«\<R0B>i'Y') 
CH] PHDR«-'ROBUST LOUESS SMOOTHINGj F - ',TF 
C12] BUN RPLT 

■»C13] «PL2 
CM] PL 1 :PHDR«-'NON-ROBUST LOUESS SMOOTHING, F » ',TF 
CIS] »UN NRPLT 
C14] PL2:'D0 YOU UANT A PLOT OF IRESIDUALSI VS X?' 
C17] '<YES OR NO)' 
C18] 9S3MtO 

*C1*] ■»ENDH(QS3K'Y') 
C20] 'DO YOU UANT THIS PLOT SMOOTHED?' 
C21] '<YES OR NO)' 
C22] QS6M tO 

*C23] +PL3xi<QWY,> 
C24] X LOUS(IRESY) 
C23] BUN SRESPLT 

•>C2&] -»END 
C27] PL3BUN RESPLT 
C28] END: 
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A 
IOWS is used to smooth the (Yi-Ii) residuals obtained 

from smoothing the original data set. It operates exactly 
like 10WESS except for the data input and graphical output 

setctions. 

HMH.0US 

C*3 X LOUS YiN1iQiWXiJsI;A»B!Q;rrRP;UjD»TX;UTiZ;BRjDA»0BiR8U1iM, 
ROJARJRHSJYZ 

C13 Y*YC*XJ 
C23 X«-XC*X] 
C3] QHa.5*QKN1«^X)*F 
C*3 YSHI1 ,Q 
C33 WXHllpI 
Z61 J*+ 

C81 I— 
191 AM 
C<»3 BMJ 
C1U L2:I«-I+1 

-»C123 -H.A«l<I>N1> 
C131 REPEATCK 

"»CM1 •M-5>n(SKP-'Y,> 
Ci5l rrRP*<A*<e,t<B-A))) 

■»C143 -M.3nei«D«-r/IU«-(XCIl».-XCrTRP]) 
Ci7] yT«-yxcrrRp]«rxi-Qfi 
C181 YfCI]*-(*/(LST/Y» +(*/Lrr«-X-XCIH] 

♦C1»3 -M-3 
C293 L3:UT«>UXCSTRP3iTXH(1-(|U«3))»3)«((|UHJ4>D)<f> 

*C213 L4:-»R2x\<REWL'> 
C223 XCJTRP3 REGREX YCJTRP3 

+C233 +L3 
C243 R2:XCSTRP3 REGREI2 YCXTRP] 

•»C253 L5:H^»t<8iNI)v<IiMn 
"»C2A3 +L2*\ < (0A«-(XCI*13-XCA3) >i(0B«-(XCB*1 3-XCI-M3> > > 
C273 A*A*1 
C29] B«-B*1 

•»C2»3 -KJ 
C3B3 U:RO«-|RC*<IR«-(Y-Yf))] 

•»C3I3 "»tie«WBi<H«-«.3«*/|(R0C(rM1+2).inNl+23)) 
C323 U1H 

■•C333 -H.I t 
C343 U©:U1*R*(6iN> 
C333 L11:MXM<t-<U1»2>>»2)i<C|U1><1> 

*C3*3 "H.12«l<R0WY') 
"»C373       -H.1IKJ12) 

C383 L12: 
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REGHES computes linear least squares regressions of Y on 

X while EEGEES2 computes quadratic least squares regressions 

of Y on X. 

"REGRES 

4f2 

;i; 

XR REGRES  YR;DENjU1iB1jB2 
DENM< + /W1)x<+/WixXR»2))-<<+/XRxU1<-WT*0.5)*2) 

Y|CI]M+/YR)+PYR 
U:B2M<<+/U1)x<+/<U1xXRxYR)))-<<+/W1xXR)x<+/W1xYR)>)+DEN 
B»M( +/W1XYR)-P2x(+/U1 XXR>) + <+/U1 ) 
YSCnfB1+B2xX[I] 

«REGRES2 

if. 

[8 

X? REGRES2 Y2 
A1»(+/X2x(UT«0.5>) 
A2M+/<X2»2)x<UT»i0.5)> 
A3M+/(X2»3>X(QT»0.5>> 
AR2*  3  3  £<+/WT»0.5>,Al.A2.A1.A2,A3,A2,A3,<+/<X2M) x <UT»0.5)) 
RHS2f(+/Y2xUT»O.5>,<+/X2xY2xWt*0.5) 
RHS2«-  3   1   PRHS2,<+/<X2»2)XY2XWT»0.5) 

YS[I]«-BRtltn+<BRC2j1]xXCI]) + (BR[3;nxX[n»2) 

m 

iß 

The following character strings are the screen vectors 

used by the RON function of GRAFSTAT to produce the plots of 

the ICRESS snoothe corves of the original data and absolute 

value of the residuals. 

•■NRPLT 73   CHARACTER 
M«X1»YtjY*«e ttMv.*+"A°Mtv''»FHDft«XAXII«YAXI:rV2ttl.IN«LIN9f I 100 I 

■»REIPLT 60   CHARACTER 
MtvXV<|RESY>«0«1t.*+iv*o«+t«'>9'>iXAXI5»l|RE5IDUALfr9229LIN«LIN9l   t 

mo i e ©» 

»«RPLT 73 CHARACTER 
M»XI«Yt|Y5»0  l»l».»*iv*ot4t»«'»PHI>RtXAXIX«YAXI5»2t«LIN0LIHft   I   IfrO  I 

0 t 

■■SRESPLT 85 CHARACTER 
M|«X«(|RE5Y>iYm 

|01v.itiVAO«ft0"f»XAXIf«l|RE;iDUALir»22«LINHINVI   1   100  I   0 
0« 
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FORTRAN PROGRAMS 

This appendix contains a listing of the FORTRAN program 

and subroutine written to support this thesis. IHSL 

programs, IIBQF and PXSORT, used to support the LCWESS 

program are not listed. Detailed user instructions for oper- 

ating these programs are contained in Chapter 7. 

$JOB  C 

X(200; 
REAL 

,WX (2001/200* 1.0/,A (2.2).B (2,1) 
(200) /200*0. 0/. BTY2(J0J/2Ö0*0.0/ 

..<A j«j, i/« Kuo, a |£«wi/*wv*0 . 0/, R1 (200) /200* 0. 0/, H 0, F,C (4) 
Z) , w, EETI 
INTEGER 

AX,BX.A 1.0,11.12,13,14,15,16,17,18,19,110,N,IWK(2) ,IER,SOE 

tATA*AV1/,ROB/-1/,N/0/  C 
F=.33 
IF1=2 
IF2=4 
N=0 

1 N=N+1 
READJIF1,901,ENE»2)X(N) ,Y(N) 
GO TO   1 

2 N=N-1 
CALL   XYSORT(X,T,1,N) 
Q=IFIXj (FLOAT{ M) *F) ♦. 5) 

4 CONTINUE 
AX=1 
i1=(AX-1) 
BX=Q 
DO 65  11=1,N 

12=0 
D*0.0 
DO   10   I3=AX,EX 

w ' 

5 
10 

15 

20 
25 

12=1.   . 
UJI2)=X(I1)-X(I3) 
IF(.N0T.AB5(U(I2J) .GE.DJGO  TO  5 

D=ABS(U(I2)) 
CONTINUE 

CONTINUE 
IF(.NOT.D.G1.0.00001) GO  TO   30 

DO  25  14 = 1  " 25  14 = 1,0 
U1=ABS(U(I41/D) 
IF(.NCT.lH.LT.I.O) .--..- ...... ..., GO   TO   15 

TX(I4) = (1.0-(U1**3))**3 
NT (I4)=TX(I4)*8X(AUI4) 
GO   TO   20 

CONTINUE 
TX(I4)=0.G 
RT(I4}=0.0 

CONTINUE 
CONTINUE 
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30 

35 
40 

GO  TO 
CONTINUE 

DO  35 
TX 
WT 

CONTI 
CONTINUE 

40 

15 = 1.Q 
[I5}=1.0 
I|)-WX(A1*I5) 

IDE 
C 

A 1,1)=0.0 
A 1,2)=0.0 
A 2,1 =0.0 
A 2,2' =0.0 
B 1,1' =0.0 
B 2,1)=0.0 
DO   45   16=1.Q 

I7=A1*I6 
W=SQRT(WT(I6) 

B 
45 

50 

2,2) ♦ 
♦ fX(l7)*W) 

W*(X(I7)**2)) 
Y(I7)*WJ 
Y(I7)*X (17) *H) 

uhr* 1,2)   C 
F(A.2.2,2,B.2.1.0.C,BETA,2,IWK,WK,IER) 
TAM,1)+BETA(5,1)*X(I1) 

TINOE 

-*j 

IF(BX.GE.N)GC  TO  60 
IF(I1.GE. N)GC 

55 
60 

65 

70 

TO 60 
DA=X(I1*1}-X(AX) 
DB=X{BX+li-Xm + 1) 
IF (.NOT.DA.GT. 

AX=AX*1 
BX=BX*1 
GO TO   50 

CONTINUE 
CONTINUE 
A1=(AX-1) 

CONTINUE   C 
DO  70  18=1,N 

Hjl8l=Y(l8)-XSj(I8) 
BT(I8)=ABS(B(l8)) 

CCKTINUE   C 
CALL  PXSOBT(R1,1,N)   C 

DB)GO TO   55 

L1=(N+1)/2 
L2=(N*2) /2 

71 

75 

80 
85 

991 

90 

900 
901 

MED«(B1 fL1)*Bl (I2JJ/2.0 
DO   85  I9=I1N 

IF((R1 (I9).G1.0.0).AND. (ABS(NED).3T.0.0))GO  TO   71 
WX|I9)=1.0 
GO  TO 80 

C*HED) 
(EU) .LT.1.0) GO  TO  75 
1.0-(RU**2)j **2 

RU=R(l9)/(6, 
IF (.NOT,ABS 

flX(l9)=( 
GO  TO  80 

CONTINUE 
WX(I9)=0 

CONTINUE C 
CONTINUE  C  TEST 
HRITE (6.9911 {WXjL)L=1. N) 
FOEHATHX, 10F7.3)   C  END 
FCB=ROB«-1   C 
DO  90 110=1.N 

V TEST C 
(.NOT. BOB.GE. 2) GO TO 4 

BRITE(IF$,900)X(I10),Y(I10),YS(I10) 
CONTINUE 
STCP 
F0BHAT(1X.3F15.3) 
FCFMAT(2F15.3) 
ENC C 
SUBROUTINE XISCET(A,B,II,JJ) C 
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5 
10 

20 

DIMENSION 
M=1 
1=11 
J=JJ 
IF(I   .GE. 
K=I 
IJ=(I+J)/2 
T=AjlJ) 
T1=B(IJ) 
IF (Am   .IE. 
A(IJ)=A(I) 
B  IJ =B  I 
A(I)=T 
B  I)=T1 
T=A{IJ) 
Ti=sm 

A(JJ),B(JJ) ,IU(16) ,11(16) 

J)GO   10   70 

T)   GO  TO   20 

15) 
IF(A(J)    .GE. 
A(IJ)=A(J] im 

T)   GO  TO   40 

B  IJ) 
A , J) =T 
B(J)=T1 
T=A(IJ) 
T1=B(IJ) 
IF(A(I)    .IE. 

■ wm I)=T 

40 

50 

A 
B 

B(IJ=T1 
T=A(IJ) 
T1=B(IJ) 
GO TO  40 

30 TT=A(I) 
TT1=B(I) 
A(IJ»A(KJ 
B(I =3jK) 
A (K: =TT 
B(K)=TT1 
1=1-1 

UMl) •GT- 
IF (A(K)   .IT. 
IF K   .IE.   I) 
IIjl-I  .IE. 
II (Ml «I 
IüjH)=I 
I=K 
H*B*1 
GO  TO  80 
IL(M)=K 
»?»■* 
H = H*1 
GO TO  80 
N=H-I 
IFJH   .EQ 
I=II(M) 
J=I0(flJ 

T)   GO  TO   40 

T)   GO  TO 

n 
J-K) 

GO 
TO 

TO 
30 

40 

50 

GO TO  60 

60 

70 
0)   RETURN 

80 

90 

100 

IF(J-I .GE. 
IFJI .EQ. I 
1=1-1 

11) GO  TO   10 
II)    GC TO  5 

1 = 1*1 
IF (I   .EQ. J) IF (A (I)   .IE'. 
T   «   11(1*1) 
T1»B(I*1) 
K=I 
A (K*1)=A(K) 
B(K*1)=3(K) 

GC TO  70 
A(I*1))   GO TO  90 
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i A(K+1)=T 
E BjK+1)=T1 

GO TO 90 
END SENTRY 

K= R—1 
IF(T .LT. A(K) ) GO TO 100 

■-\. 

.'■I 

The following ICWS EXEC routine sets the file defini- 
tions and invokes the appropriate systems libraries required 
to execute LOWESS. This routine is executed by typing "LOHS 
EXEC." 

(PERM 
PERM 
'PERM 
PERM 
PERM 

G1CBA1 HACLIB IHSLSP NONIMSL 
FI1EDEF 02 DISK LOW2 DATA A 
FIIEDEF 03 DISK LOH3 DATA A 
FI1EDEF 04 DISK Lowa DATA A 
FI1EDEF 07 DISK LOW7 DATA A 
FI1EDEF 08 DISK LOR8 DATA A 

V 

P 
L 
I. 
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APPENDII  C 

Dili   SETS 

This appendix contains four data sets that were used to 
compare 10WESS with MOVING AVERAGE, COSINE ARCH and IEAST 
SQUARES REGRESSION rooutines  in Chapter III.   They include: 

1. TEST SET    ONE  ...       used to    test  LOHESS«     ability  to 
detect and follow linear trends. 

2. TEST  SET TWO  ...   used to check LOWZSS*   performance on 
data sets that contain abrupt changes in curvature. 

3. TESI SET  THREE    ...     used to  test    LOWESS»   ability  to 
fellow smooth changes in curvature. 

4. Lag-1 points    from NEAR (1)     data    ...    used     to check 
1CHESS'   performance on unequally spaced data. 

L.  . 
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TABLE IX 

Data Set One 

X Y X Y X Y 
.200 ".398 10.200 8.696 20.200 21.520 
.400 -.811 10.400 10.305 20.400 19.996 
.600 -.103 10.600 10.997 20.600 21.018 
.800 1.156 10.800 10.273 20.800 21.047 

1.000 1.653 11.000 11.345 21.000 21.704 
1.200 1.416 11.200 10.477 21.200 21.832 
1.400 1.136 11.400 12.668 21.400 20.408 
1.600 3.402 11.600 11.569 21.600 23.367 
1.800 1.137 11.800 12.578 21.800 21.418 
2.000 2.110 12.000 14.180 22.000 21.089 
2.200 1.481 12.200 12.638 22.200 21.204 
2.400 2.821 12.400 13.733 22.400 23.595 
2.600 .669 12.600 12.851 22.600 22.441 
2.800 '    3.460 12.800 12.490 22.800 25.504 
3.000 1.897 13.000 12,077 23.000 22.802 
3.200 3.097 13.200 12.815 23.200 23.059 
3.400 2.340 13.400 14.558 23.400 23.811 
3.600 2.361 13.600 14.463 23.600 22.421 
3.800 1.911 13.800 12.765 23.800 23.522 
4.00C 3.026 14.000 13.807 24.000 22.419 
4.200 4.412 14.200 12.900 24.200 25.249 
4.400 4.893 14.400 14.707 24.400 24.703 
4.600 6.147 14.600 15.569 24.600 23.373 
4.800 3.445 14.800 14.053 24.800 24.870 
5.000 2.832 15.000 12.204 25.000 24.603 
3.200 4.171 15.200 15.897 25.200 26.589 
3.400 3.258 15.400 18.607 25.400 26.764 
3.600 3.0?3 15.600 16.136 25.600 26.258 
3.800 3.487 15.800 16.098 25.800 26.291 
6.000 5.406 16.000 (6.284 26.000 26.801 
6.200 6.532 16.200 17.160 26.200 25.433 
6.400 6.959 16.400 18.488 26.400 26.764 
6.600 7.500 (6.600 (8.(25 26.600 26.202 
6.800 6.599 16.800 16.605 26.800 27.664 
7.000 6.766 17.000 17.0(7 27.000 26.822 
7.200 8.650 17.200 (7.446 27.200 29.074 
7.400 9.236 17.400 (6.546 27.400 27.572 

!                 7.600 7.217 17.600 (8.758 27.600 28.872 
i                 7.800 7.955 17.800 (7.962 27.800 27.765 

8.000 7.035 18.000 19.557 28.000 26.499 
8.200 8.239 18.200 18.006 28.200 28.565 
8.400 9.165 18.400 20.051 28.400 28.201 
8.600 8.005 18.600 (6.70« 28.600 27.2(0 
8.800 8.930 18.800 20.623 28.800 29.029 
9.000 9.035 19.000 (7.482 29.000 29.27( 
9.200 8.573 19.200 (8.(49 29.200 28.834 
9.400 8.860 19.400 (9.450 29.400 30.777 
9.600 11.480 19.600 (8.(45 29.600 28.802 
9.800 8.796 19.800 20.267 29.800 28.863 

10.000 9.503 20.000 20.545 30.000 29.998 
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T1BLE X 

Data Set Tvo 
X 
.200 
.400 
.600 
.800 

1.000 
1.200 
1.400 
f .600 
1.800 
2.000 
2.200 
2.400 
2.600 
2.800 
3.000 
3.200 
3.400 
3.600 
3.800 
4.000 
4.200 
4.400 
4.600 
4.800 
3.000 
5.200 
5.400 
5.600 
5.300 
6.000 
6.200 
6.400 
6.600 
6.800 
7.000 
7.200 
7.40© 
7.600 
7.800 
8.000 
8.200 
8.400 
8.600 
8.800 
9.000 
9.200 
9.400 
9.600 
9.800 

lo.ooe 
(0.200 
10.400 
10.600 
10.800 
11.000 

Y 
".462 

'2.191 
(.405 

.947 

.475 

.832 
".137 
2.336 

.779 
2.597 
1.144 
1.832 
".406 

.419 
2.446 

.641 
1.937 
1.080 
1.384 

.251 

.410 
2.745 
1.795 
1.121 
1.235 
2.942 
2.104 
2.753 
2.717 
3.156 
2.880 
1.219 
3.015 
3.845 
3.529 

.503 
2.686 
2.717 
3.438 
2.689 
3.278 
4.967 
4.288 
3.788 
2.677 
3.6(0 
3.908 
3.283 
3.583 
4.413 
5.578 
(.596 
2.962 
3.203 
4.682 

X 
11.200 
11.400 
11.600 
11.800 
12.000 
12.200 
12.400 
12.600 
12.800 
13.000 
13.200 
13.400 
13.600 
13.800 
14.000 
14.200 
14.400 
14.600 
14.800 
15.000 
is.2eo 
15.400 
15.600 
15.800 
16.000 
(6.200 
(6.400 
(6.600 
(6.800 
(7.000 
17.200 
17.400 
17.600 
17.800 
18.000 
18.200 
18.400 
18.600 
18.800 
19.000 
19.20© 
19.400 
19.600 
19.800 
20.©00 
20.200 
20.400 
20.600 
20.800 
21.000 
21.200 
21.40© 
21.609 
21.30© 

Y 
3.849 
4.554 
3.182 
3.159 
4.518 
5.736 
4.989 
3.752 
5.165 
4.052 
3.594 
3.895 
3.747 
4.171 
4.962 
3.356 
4.792 
5.593 
4.630 
5.203 
4.468 
6.553 
5.484 
2.766 
4.635 
2.812 
5.668 
5. ©55 
5.319 
5.574 
6.472 
4.42© 
4.623 
5.396 
5.778 
3.765 
4.29© 
4.9©© 
2.397 
6. ©59 
3.894 
6.093 
4.174 
5.615 
5.820 
4.844 
3.602 
4.933 
5.634 
4.003 
4.389 
6.545 
4.34© 
3.417 
3.613 

X 
22.200 
22.400 
22.600 
22.800 
23.000 
23.200 
23.400 
23.600 
23.800 
24.000 
24.200 
24.400 
24.600 
24.800 
25.000 
25.200 
25.400 
25.60© 
25.800 
26.000 
26.200 
26.400 
26.600 
26.800 
27.000 
27.200 
27.40© 
27.600 
27.800 
28.000 
28.200 
28.400 
28.600 
28.80© 
29.00© 
29.200 
29.40e 
29.600 
29.80© 
39.300 
30.200 
30.400 
30.600 
30.800 
31.000 
31.200 
31.400 
31.60© 
31.80© 
32.000 
32.200 
32.400 
32.600 
32.80© 
33.©©© 

Y 
4.819 
4.469 
4.997 
6.256 
6.278 
6.49© 
5.499 
5.86© 
4.325 
4.949 
6.69© 
6.339 
5.899 
4.233 
3.823 
3.742 
4.873 
3.497 
7.697 
4.600 
3.374 
2.242 
4.078 
4.090 
3.319 
6.631 
3.513 
5.141 
4.818 
1.451 
5.936 
4.205 
3.202 
1.977 
4.046 
5.971 
4.175 
4.383 
3.479 
4.621 
1.989 
4.408 
3.896 
3.112 
3.422 
4.740 
3.108 
3.892 
1.630 
4.039 
4.60© 
2.123 
1.625 
1.602 
3.18© 

X 
33.200 
33.400 
33.600 
33.800 
34.000 
34.200 
34.400 
34.600 
34.800 
35.000 
35.200 
35.400 
35.600 
35.800 
36.000 
36.200 
36.400 
36.600 
36.800 
37.000 
37.200 
37.400 
37.60© 
37.800 
38.00© 
38.200 
38.400 
38.600 
38.800 
39.00© 
39.20© 
39.400 
39.600 
39.800 
40.000 
40.20© 
4©.4©0 
40.600 
40.800 
41.00© 
41.2©© 
41.4©© 
41.600 
41.80© 
42.000 
42.200 
42.40© 
42.60© 
42.800 
43.000 
43.20© 
43.40© 
43.600 
43.80© 
44.60© 

Y 
1.657 
2.245 

.862 
3.226 
1.362 
2.923 
2.736 
1.736 
2.129 
1.433 
1.313 
2.756 
1.576 

.363 
2.955 

.266 
1.664 

.323 

.783 
1.419 
1.997 

.533 
1.137 

.506 

.671 
".612 

.376 
1.921 
".476 

"1.014 
1.788 
1.306 
.853 

"1.468 
1.554 
".542 

"2.351 
1.165 

.627 

.075 

.352 
".697 
1.696 

.059 
1.797 

.264 

.872 
"1.446 
".701 
1.246 
".639 

.577 
".360 
".136 

*1.349 
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TABLE XI 

Data  Set Three 

X Y X Y X Y 
.063 .261 2.135 .560 4.208 "1.733 
.126 -.129 2.198 .716 4.270 ".860 
.188 .053 2.261 1.376 4.333 .049 
.251 -.293 2.324 .410 4.396 -.870 
.314 1.316 2.386 .988 4.45? -1.282 
.377 1.340 2.449 .326 4.522 "1.701 
.440 -.335 2.512   ' .875 4.584 "1.025 
.502 1.451 2.575 .175 4.647 -.811 
.365 .088 2.638 1.079 4.710 -.891 
.628 .435 2.700 .520 4.773 "1.088 
.691 .915 2.763 1.167 4.836 ".980 
.754 .522 2.826 .471 4.898 '.662 
.816 1.398 2.889 .684 4.961 ".508 
.87? 1.381 2.952 .835 5.024 -1.729 
.942 .011 3.014 .344 5.087 ".599 

1.005 .310 3.077 -.129 5.150 "1.211 
1.068 .496 3.140 -.055 5.212 ".595 
1.130 1.115 3.203 -.543 5.275 "1.151 
1.193 .713 3.266 -1.152 5.338 ".195 
1.256 1.304 3.328 -.111 5.401 -.275 
1.319 1.082 3.391 .024 5.464 "1.133 
1.382 .474 3.454 -.180 5.526 -.982 
1.444 1.062 3.517 -.520 5.58? .206 
1.507 .624 3.580 -.633 5.652 ".113 
1.57© .686 3.642 .088 5.715 "1.503 
1.633 1.695 3.705 -.339 5.778 ".228 
1.696 .168 3.768 .216 5.840 -.232 
1.758 -.025 3.831 -.223 5.?03 -.824 
1.821 1.215 3.894 .052 5.?66 -.?4? 
1.864 .174 3.956 "1.417 6.02? -.078 
1-947 .860 4.019 -.899 6.092 ".788 
2.010 1.028 4.082 '.310 6.154 .205 
2.072 .743 4.145 .074 6.217 ".100 
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TABLE Ill 
"'"   "  

Lag-1 Data derived from NEAR{1)   Process 

X Y X Y X Y X Y 
1.020 .466 .871 .822 .563 .650 .313 .304 

.035 1.020 .747 .871 .049 .563 .376 .313 

.12? .035 1.385 .747 .133 .049 .329 .376 

.125 .12? 1.18? 1.385 .334 .133 .363 .327 

.153 .125 .017 1.189 .596 .334 .556 .363 

.233 .153 .261 .017 .604 .596 .655 .556 
2.077 .233 .366 .261 .527 .604 .544 .655 
2.155 2.077 .34? .366 .934 .527 .569 .544 
1.821 2.155 .364 .349 1.797 .934 .531 .569 
.042 1.821 1.140 .364 1.496 1.797 .518 .531 
.036 .042 1.020 1.140 1.420 1.496 .584 .518 
.061 .036 3.508 1.020 1.522 1.420 4.292 .584 
.14? .061 3.122 3.508 1.353 1.522 3.610 4.292 

4.260 .14? 2.623 3.122 1.187 1.353 4.074 3.610 
4.095 4.260 2.654 2.623 1.050 1.187 3.492 4.074 
3.422 4.095 .20? 2.654 .898 1.050 3.644 3.492 
2.854 3.422 .255 .209 .854 .898 3.147 3.644 
2.60? 2.854 .271 .255 1.631 .854 .022 3.147 
2.176 2.60? 1.185 .271 1.363 1.631 .330 .022 
1.823 2.176 .?8? 1.185 1.172 1.363 .310 .330 
1.617 1.823 2.867 .989 1.303 1.172 .597 .310 
2.43? 1.617 2.488 2.867 1.229 1.303 .551 .597 
2.047 2.43? 2.086 2.488 1.061 1.229 .544 .551 
1.840 2.047 1.756 2.086 .962 1.061 .817 .544 
3.04? 1.840 1.530 1.756 .907 .962 .808 .817 
2.682 3.04? 1.456 1.530 .856 .907 .715 .808 
2.23? 2.682 .180 1.456 1.135 .856 .601 .715 
1.88? 2.23? .42? .180 .953 1.135 .618 .601 
1.577 1.88? .031 .429 1.728 .953 1.525 .618 
1.664 1.577 2.?51 .031 .010 1.728 1.526 1.525 

.103 1.664 2.565 2.951 .073 .010 1.279 1.526 

.133 .1C3 2.133 2.565 .082 .073 1.065 1.279 

.145 .133 3.737 2.133 .096 .082 .929 1.065 

.207 .145 3.180 3.737 .098 .096 .814 .929 

.221 .207 2.675 3.180 .234 .098 .703 .814 

.1?6 .221 2.307 2.61Z 1.046 .234 .704 .703 

.170 .1?6 1.996 2.307 1.017 1.046 .898 .704 

.185 .170 1.892 1.996 1.239 1.017 .785 .898 

.087 .185 1.700 1.892 .105 1.239 1.065 .785 
2.258 .087 1.716 1.700 .124 .105 .995 1.065 
1.?38 2.258 1.599 1.716 .122 .124 3.157 .995 
1.617 1.?38 1.498 1.59? .122 .122 2.710 3.157 
1.346 1.617 1.247 1.498 .154 .122 2.265 2.710 
1.184 1.346 .044 1.247 .165 .154 1.883 2.265 
1.007 1.134 .306 .044 .205 .165 1.566 1.883 

.853 1.007 .255 .306 .f90 .205 (.488 1.566 

.77? .853 .258 .255 .315 .190 1.268 1.488 

.727 .77? .519 .258 .i35 .315 1.206 1.268 

.822 .727 .650 .51? .304 .335 2.825 1.206 
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