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Work under ONR Contract N#00014-84-K-0027 has pro-

gressed significantly during the past contract year

(11/1/83-10/31/84). The major emphasizes of the research

were in the areas of three-dimensional plasticity

characteristics in fracture specimens, mesh adaptive

slow crack growth modeling, experimental plastic zone

measurement and comparison with finite element results

and the characterization of fatigue crack growth in sur-

face cracked specimens. This work resulted in five com-

pleted publications and presentations (listed in Appendix

A) and three publications pending completion.

The research in the area of crack front plasticity

characteristics in three-dimensional fracture specimens

demonstrated that hardening modeling (i.e., kinematic,

isotropic, etc.) has a significant effect on the predicted

local deformation in the neighborhood of the crack front

even under monotonic loading. This result was demonstrated

for various thickness specimens and for two-dimensional

specimens under biaxial loading. This result suggests

that the assumption of local-global load proportionality

under monotonic loading with no crack growth is incorrect.

Further investigations are underway to investigate the

relation between the applied loading and the local deforma-

tion response. Subsequently the effect of specimen thick-

ness has been studied and, for center-cracked panels (with

through cracks), the results demonstrate that plastic
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zones produced are not of plane-stress type even for very

thin specimens. The mid-plane zones in these specimens are

nearly plane strain type (as would be expected), however,

surface zones show distinctly mixed characteristics. The

results of these examinations were the subject of two papers

and a presentation. Appendices B and C are copies of these

papers and Appendix D contains copies of the abstract and

slides used in the invited lecture presented at the Fifth

ASCE meeting referenced previously.

An experimental investigation of the local plastic

deformation produced in a three-dimensional fracture speci-

men was initiated to validate the finite element results.

A special LVDT probe was developed to measure the residual

surface deformation remaining after a fracture specimen

was unloaded. These measurements were compared quite

favorably to the finite element predictions. A maximum

deviation of 3% between the average experimental and

finite element predictions was obtained. This is the

first comparison between actual local deformation and

finite element predictions known to the authors and

validates the finite element approach. Average experimental

measurements were used for comparison as the measured dis-

placements exhibited considerable scatter due to material

inhomogeneity, nonplanarity of the initial specimen surface

and lack of symmetry in the initial fatigue crack. A

complete summary of this work is presented in Appendix F

and will be the subject of a future publication.

• ,. •
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A new algorithm was developed for the computational
II

modeling of slow, stable crack growth in elastic-plastic

specimens. This algorithm convects the grid after each

increment of crack growth updating both the local geometry

and plastic state. The method has been applied quite

successfully to thin sheet panels which can be modeled

as two-dimensional plane-stress specimens. The results

of this investigation were presented as an invited lecture

at the 21st Annual Meeting of the SES referenced early.

The abstract and slides used at that lecture are given in

Appendix F. This work will be the subject of a future

publication.

An experimental evaluation of surface crack growth in

PM1A was initiated during this contract year. The main

conclusions of that study are that (in the absence of back

surface effects) arbitrary initial flaws will quickly obtain

an approximately elliptic shape, back surface influence was

not observed until the crack had traversed 50% of the

specimen thickness, cracks under the influence of the back

surface grew very rapidly and as the crack approached the

back surface, typical through-crack characteristics were

obtained (i.e., straight crack front, etc.). These results

are elaborated upon in Appendix G and will be the subject

of a future publication.

In summary, much work has been accomplished during the

i....... .................. ... °.....°..... .....
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current contract year. The results have been compiled and

presented in both the open literature and as various invited

papers and lectures. In addition, a review paper on Biaxial

Loading Effects was prepared as an invited paper for a

Special Issue of the Journal of the Aeronautical Society of

India and is included as Appendix H. Further work is

planned in the area of local-global load relations and

surface crack growth characteristics. The majority of

effort in the future, however, will be in the area of

Creep Fracture Mechanics. This understanding of this

field is vital to many areas of application and has not

been sufficiently studied to date.

. -. .
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APPENDIX A:

PUBLICATIONS UNDER ONR CONTRACT #N00014-84-K-0027

Fiscal Year 1984

1] "Biaxial Load Effects in the Mechanics of Fracture,"

E. T. Moyer, Jr. and H. Liebowitz. An invited paper

to appear in the Fracture Mechanics Special Issue of

the Journal of the Aeronautical Society of India

(March, 1985).

2] "Effect of Specimen Thickness on Crack Front Plas-

ticity Characteristics in Three-Dimensions," E. T.

Moyer, Jr. and H. Liebowitz. Presented at the Sixth

International Conference on Fracture, New Delhi, India,

December, 1984.

3] "A Mesh Adaptive Method for Modeling Slow Crack Growth,"

E. T. Moyer, Jr. and H. Liebowitz. An invited lecture

presented at the 21st Annual Meeting of the SES, VPI&SU,

Blacksburg, Virginia, October, 1984.

4] "The Effect of Biaxial Loading on Crack-Tip Yield Zones,"

E. T. Moyer, Jr. and H. Liebowitz. An invited lecture

presented at the Fifth ASCE-EMD Specialty Conference,

Laramie, Wyoming, August, 1984.

5] "Plastic Deformation and Hardening Characteristics in

Three-Dimensional Fracture Specimens," E. T. Moyer, Jr.

and H. Liebowitz. Proceedings of ICF International

Symposium on Fracture Mechanics (Beijing), an invited

lecture, Beijing, China, November, 1983.

S



APPENDIX B:

"Plastic Deformation and Hardening Characteristics in
Three-Dimensional Fracture Specimens," E. T. Moyer, Jr.
and H. Liebowitz. Proceedings of ICF International
Symposium on Fracture Mechanics (Beijing), an invited
lecture, Beijing China, November, 1983.

II

Ii

. -.

- ~~ ~.. . . .. . . . ... . . .. -. . .. ,. .,.-*..",



PLASTIC DEFORMATION AND

HARDENING CHARACTERISTICS IN

THREE-DIMENSIONAL FRACTURE

SPECIMENS

By

E. Thomas Moyer, Jr.

and

H. Liebowitz

April 1983

School of Engineering and Applied Science

The George Washington University

Washington, D.C. 20052

Si

.. .•.. ..



ABSTRACT

'-The formulation for general three-dimensional small

strain plasticity analysis is presented. A finite element

computer code has been developed to carry out the analysis.

General hardening characteristics are included as an input

option to the program allowing for the study of a wide class

of materials.

An example through crack problem is solved employing

three different hardening assumptions (isotropic, kinematic

and mixed). The plastic deformation in the region of the

crack front predicted with each of the models is compared.

While the predicted results are similar, several tundamexta3

characteristics of each assumption can be observed, Residual.

deformation zones are also calculated as a measure of the

extent of plastic deformation. The qualitative differences

between hardening assumptions are consistent between the

plasticity measures allowing for direct comparison with

experimental observation.,.
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INTRODUCTION

The study of ductile fracture processes has been widely

discussed in the literature during the past decade. Theo-

retical, numerical, experimental and many combined studies

have been presented. Fracture criteria have been proposed

based on many controlling quantities (e.g., stress, strain,

energy, displacements, etc.) both on global and local scale

levels. Without exception, all of these criteria show a

marked thickness and geometry dependence limiting their

predictive capabilities. While some of the proposed criteria

have been successful at predicting certain fracture phenomena

for mildly ductile specimens, the geometry dependence of the

controlling parameters makes application of these theories to

practical specimens extremely difficult. The purpose of this

study is to investigate the nature of the plastic deformation

near a three-dimensional stationary crack front in a ductile

material. Due to the three-dimensional nature of ductile

fracture, it is essential to accurately mode. the stress.-

strain response for a general three, dimensional crack problem.

The majority-of the studies on the plastic deformation

near a crack are based on two-dimensional approximations.

While these studies are a necessary first step in the study

of ductile phenomena, several fundamental effects remain

i.nadequately modeled. For specimens thick enough to be

modeled by plane-strain, ductility effects are usually not

............................................. ....-....-. •- ... ,
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significant. Most engineering metals exhibiting significant

plasticity effects are relatively thin. It is tempting,

therefore, for many applications, to employ a plane-stress

analysis. While the gross specimen behavior may be reason-

ably predicted with such an approach, the local effects near

the crack will not be adequately modeled. For linear elastic

materials it can be shown that the stress-strain state near a

crack front in three-dimensions-is essentially plane-strain

except at the intersection of the crack with a free surface

[1]. For problems involving plasticity, the incremental

deformations during loading will exhibit the same character-

istic behavior as an elastic body with an elastic modulus

equal to the instantaneous tangent modulus [2]. The local,

instantaneous response near an arbitrary crack fiont should

be one of plane-strain independent of the specimen thickness.

A fully three-dimensional analysis must be employed, therefore,

to accurately model the local plastic response of a cracked

medium.

To examine the local deformation response of a three-

dimensional elastic-plastic crack specimen, a finite element

code was developed. The formulation employs an incremental J2

flow theory of plasticity with an arbitrary, "Mixed" hardening

response. Two-dimensional studies have shown that different

materials exhibit different hardening properties that can be

load and geometry dependent. The generality of the hardening

law employed allows for user determined hardening input. The

0
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initial code generated for this study assumes infinitesimal

displacements and strains. The formulation is easily

modified, however, to account for finite strain effects.

This will be the topic of a later study.

The program was tested on many problems of uniform

expansion and simple geometric configurations with analytic

(or quasi-analytic) solutions. These test runs facilitated

the debugging of the convergence algorithms and iterative

routines. The present study focuses on a center-cracked

sheet made of an aluminum alloy similar in nature to 7075-T6751

aluminum. The response assuming kinematic hardening,

isotropic hardening and a combined law is found. The results

demonstrate that the local yield effects are moderately

sensitive to the hardening law. For the range studied, how-

ever, there is not significant enough differences between the

models to distinguish a preferred approach. Since reverse

yield and cyclic loading have not been investigated, large

distinction between hardening models is not anticipated. The

similarity of the predicted results, however, serves as a

strong indication-of the numerical consistency of the solu-

tions.

A comparison was made between the yield zones on the

free surface predicted at maximum load with the von Mises

stress yield criterion and the residual contractions predicted

after unloading. Good correlation was obtained in that the

yield characteristics predicted by both measures were

--... ...-.. / .. ............ . ... ..- % .. Z- : . .. u . . --- - ..- . . . - - --.
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qualitatively similar. The predicted zones using the stress

at maximum load were larger than the residual contraction

zones as was expected. A contraction of l.E-04 inches was

the smallest contour plotted as this is on the order of

resolution of both experimental techniques and the numerical

results. While numerical correlations are purely qualitative

without experimental calibration, they do serve to demonstrate

the consistency and probable accuracy of the code and the

mesh employed.

A companion experimental study is currently underway to

compare the predicted yield characteristics with the experi-

mentally observed deformations. The difficulty in any such

study is the necessity of achieving significant plastic

deformation without slow crack growth. The phenomena of

slow crack growth is an effect which must be modeled inde-

pendent of the deformation response. While slow growth is

undoubtedly controlled by the local deformation state, the

process is a fundamentally different physical failure

mechanism. The validity, of the plasticity model being

employed must be ascertained independent of the fracture

characteristics of the specimen.

(- ~~~~~ ~~~~~...... ...... .... ,............................ .... ......... ,.........,....,...,..,..,......,,,, ,.,,..
-.- a .. . . . . . . . . . . . . .... 4 . A.* 4
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CONTINUUM PLASTICITY FORMULATION

The goal of continuum plasticity theories is to provide

a relationship between the incremental changes in deformation

and stress as a material undergoes irreversible deformation.

Due to the complex nature of the deformation fields

generally produced in a solid, most mathematical theories

attempt to extrapolate the phenomena observed in uniaxial

tensile tests to more complex stress states. While many such

formulations have been advanced, few provide constitutive

relations which are practical for analysis of complex struc-

tures. Confining the discussion to incremental plasticity

theories which are strain rate independent, essentially all

the theories currently employed differ only in the hardening

assumptions made and the choice of a yield criteria. The two

most widely accepted yield criteria are the von Mises (J2)

criteria and the Tresca criteria. The Tresca criteria is

mathematically simpler to employ, however, the yield surface

exhibits singular points which are undesirable numerically.

While these points can be handled with Lagrange multipliers

[3], this approach renders the analysis as complex as the

von Mises criteria. For most engineering fracture problems,

it is generally agreed that the von Mises criteria more

accurately models a wider class of materials in more practical

applications than the Tresca criterion [4,5].

The incremental theory of plasticity employed in this

. . . . . . . . . . ...
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work is based on the classical rate proportionality assump-

tions and J2 flow theory. While the mathematical details

vary with the choice of yield criteria, the salient features

of all incremental theories are the same. This discussion

will, therefore, be confined to the specific theory employed

in this work.

Assuming stress-strain rate proportionality and J2 flow

theory (which assumes the plastic deformations are incompres-

sible) the stress-strain rate relations can be written as

[6]

+ f(a) S! a a > 0ej SI e °e e
.. = 1)

13

1 + V * Otherwise

where:

e = ij - 1 p 6ij are the deviatoric strain rate

components,

v is Poisson's ratio,

E is Young's modulus,

S = oi - 1 app 6ij are the deviatoric stress

components,

ai are the coordinates in stress space of the yield

* surface center,

0,-. .'..'.., . .'. .-.. ' ... "."'-.". '. .". .. "/ . "- .. -"°.: "'. .L ''. .2 '.'' .£ .- ,
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S!. = S.. - a.. are the deviatoric stress components

measured relative to the current yield

center,

a V1 Si is the effective stress,ae =tress,

af= S!S!. is the effective stress relative to the°e =i ii]th

current yield center,

a is the current yield stress, and

* denotes time differentiation.

Due to the incompressibility condition, the hydrostatic strain

rate is proportional to the mean stress rate and is given by

1 - 2(2)
pp =T- pp

The function f(ae) is dependent on the uniaxial stress-strain

curve and will be discussed subsequently. For a von Mises

(J2) material, the center of the yield surface moves at a

rate proportional to the projection of the stress rate vector

onto the local normal to the current yield surface and can be

written as
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31 8)stksjs/a°2 a = °>; 2e > 0

aij = (3)

0 Otherwise

where a varying from 0 to 1 will model hardening behavior

from kinematic (8 = 0) to isotropic (8 = 1).

The function f(ae) is derived from the uniaxial stress-
strain curve. For an uniaxial specimen, equation (1) reduces

to

axial transverse) -- e +f(ae)a (4)

in the plastic range. Thus,

f(ae = (axial -transverse e e (5)

Invoking incompressibility (i.e., £transverse = 1 xil,. Eaxia.)

the function f(ae) can be written as

./ao (6)e plastic e e

If the uniaxial stress-strain curve is expressed-in a multi-

linear fashion as shown in Figure 1, the stress-strain rela-

tion is

a1  a2 am

r .... . .... *.2(7)



IA
Lnn

Lfl

0

w.. 0

1-

(ii)

aC 1-1 Q

b4 CO"

:3 4

*r4 O.s



10

where am-1 < a < am and am is given by

am  (= A am(8)

From equation (7), the plastic strain rate is given by

ome
bplastic = r (9)

and thus from (6)

Sa
m

f(ae) = m (10)

Equations (1), (2), (3) and (10) provide a complete set

of elastic-plastic constitutive relations. Tcigether with

the equilibrium equations and the strain-displacement rela-

tions, a governing system will be formed.. It is- important

to note that the constitutive formulation outlined above is

acceptable for finite as well as infinitesimal strains.

Also of importance is the fact that. this formulation is

strain-rate independent. This assumption appears to be

realistic for most engineering metals at room temperature

(or cooler). For high temperature problems a rate-inde-

pendent formulation is dubious.

*-.~ . -........

.. . . . . . . . . .. . . . . . . . . . . . * . . .



FINITE ELEMENT STRESS ANALYSIS

Equations (1), (2), (3) and (10) provide the fundamental

relationships between stress and strain rates. The equilib-

rium conditions (governing equations) for a continuum body

in the absence of body forces and inertia effects can be

written as

a; ij/xj = 0 (11)

with the boundary conditions

ijnj= T. on S

and (12)

ui = u. on S

i
where Ti are the specified loading rates on the boundary

experiencing applied tractions (ST) and u. are the velocities
1

specified on the remainder of the boundary (Su). Utilizing

the standard strain-disp3acement relations

Cij= 7(ui/x + au /axi ) (13)

The details of the analysis will be limited to infinitesimal
strains for mathematical-simplicity. The solution procedure
with finite strains is identical, however, the notational
complexities are considerable.

i .. o .. ... ........... . .. . .. .:...... . ..... . . . ..... . .?- .. . ...... ---i. .-. 'Z . .[.
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and either employing the Principle of Virtual Work for in-

crements of displacement or by performing the standard

Galerkin technique on the governing equations, (11) and (12),

the finite element equations governing the nodal velocities,

U, can be written in terms of the loading rate vector, A, in

the form

K(U) - A = (14)

The standard finite element assumptions made are given by

u= N U

£ B °U

sD(U)

BTD(U) B dA

elements element area

where N are the shape functions and-two dimensional analysis

has been assumed (as :.ipliid by the; area integral). The set

of.-rate equations (14) will be integrated one load increment

(AR) at a given time to determine the corresponding new

displacement increment, AU. The Newton-Raphson or tangent

stiffness solution procedure is employed. At load increment

I. + 1, the L itial solution AIJ+1 is found from

L 1, the i . .......

-. '.,- ... . , .. --.,'. '.." ,' .- '.- .' .-. -. .- ".-.-. .,. .... . .. ".. ... .-. '-.-.,... .-.. .- ,...-. .- ,.. .-.. . . . . . . . . . -. -. -. . .- .- i£ ,- ,
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(U AU+ ARL. 1  (16)

The "new" displacement is then used in the stiffness matrix,

m

K(UL + AU'+,), and a new correction is obtained from
i=l

m

K U+ Ail AU m~l AR -

L  t+ AUiL+] LL + -L+1
i=l

m

UL + AU L+1

K(U) dU = 1(17)

UL

where the integral is approximated using Simpson's rule. The

procedure is repeated until two convergence criteria are met:

and (18)

i~~l 
1 /

where RL+ 1 is the total load at step L + 1.

I

...................
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In this study, 20-node quadratic isoparametric elements

were employed exclusively. All integration was carried out

utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.

Strains were calculated at the Gauss integration points in

each element from the strain-displacement relations of (13).

Stresses were cumulatively calculated at the Gauss points

from the stress-strain relations.

Directly calculating strains and stresses from the finite

element relations (15) at points on element boundaries in-

herently yields poor results. This is especially true when

C0 shape functions are employed. A superior approach is to

calculate the stresses and strains at-the Legendre quadrature

points and to extrapolate or smooth them to the boundaries.

This approach has been shown to yield very accurate resulius

for a wide variety of geometric mappings. In this study the

smoothing technique as developed in [7] is employed for a11

stress and strain evaluations.

Currently-, four methods of accounting for the crack tip

singularity are widely employed. -Each of these melhods is

based on an established technique in LEFM (Linear EPastic

Fracture Mechanics.).- The first method, the enriched element

approach (where the shape functions are modified with the

asymptotic crack solution vanishing at the nodes) has been

employed both for the multilinear stress-strain models and

for power law hardening models [8]. Enriched elements based

on the power law hardening model assume that the enriched

.. . ~ ~ . - -

-... .... . :. ." ." '...._......,-.. ....... ......... . .-.. .. ........ .. .
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element is fully yielded. This assumption is physically

unrealistic, especially behind the crack tip. The singular

solution employed for the power law hardening case also assumes

a circular yield zone which is far from realistic. The solu-

tions generated using enriched elements and a multilinear

stress-strain assumption are reasonably accurate providing a

judicious choice of enriched element size and surrounding

grid characteristics is made. The major drawback to the use

of enriched elements is the computation time required to obtain

convergence due to element incompatibility. The second method,

the most basic approach, uses a very fine mesh near the crack

tip and employs only conventional elements. This method pro-

duces reasonable results far from t he crack regio k but ques-

tionable local results. Convergence is usually rapid, there-

fore, gross specimen behavior can be obtained quickly. With

unrealistically fine grids, good local results can be obtained

(except in the elements bordering the crack tip) but only at

the expense of computer time [9]. The third method is based

on the fact that if isoparametric elements are chosen with

midside nodes, judicious choice of the placement of these

n odes results in the inducement of a /F term ia the displace-

ment shape functions [10, 11]. These elements are essentially

equivalent to enriching the shape functions, however, element

compatibility is preserved resulting in faster convergence.

'The fourth technique of modeling crack tip behavior is through

the use of hybrid elements where elements borderiiLg a surface

0_
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with traction boundary conditions are forced to satisfy those

conditions exactly and the elements bordering a surface with

displacement boundary conditions are also forced exactly. The

element boundaries are then matched by using Lagrange multi-

pliers in the variational equations to ensure element equilib-

rium and continuity in an approximate sense. Little work has

been done on comparisons of hybrid methods to conventional

methods in elastic-plastic crack problems, however, the tech-

nique was applied with questionable success in [12]. The

preferred method in the literature is still to use a very fine

mesh and standard elements. Complete discussions of the above

methods can be found in [13-15].

In this study, only conventional 20-nude elements are

employed. Studies on linear elastic through-crack specimens

has demonstrated the accuracy of this approach for predicting

local stress responses. Since the details of the local

singularity are unknown in the plasticity case, this approach

is the most likely to delineate the characteristics of the

numerical solution without the influence of singularity

assumptions. The grid employed is shown in Figures 4a, 4b

and 4c. The accuracy of the results predicted by this grid

are discussed in [16] for the linear elastic case. The choice

of grid characteristics is based on the convergence study

cited above. Since there are no known three-dimensional

elastic-plastic bench mark solutions available for comparison,

linear convergence studies appear to be the most reliable

S , -i-•• .



17

indicator of mesh accuracy. Few numerical solutions have been

presented in the literature for three-dimensional elastic-

plastic crack problems. The studies that have been done have
been limited to initial stress approaches (e.g., [17]) or de-

formation theory approaches (e.g., [18]). These were severely

limited in grid density due to computational restrictionsP

therefore, no comparison has been attempted. The computational

requirements of the present approach are extreme and will be

discussed subsequently.

: .'.. ... -' - --.-.-"-. " '."-'-," 
'
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PROBLEM DESCRIPTION AND FINITE ELEMENT MODELING

The problem chosen for study is that of a center-cracked

plate with a through crack. The plate has dimensions of 7

inches in length, 3.5 inches in width with a thickness of .5

inches. The applied load is assumed to be normal to the crack

orientation as shown in Figure 2 (i.e., Mode I loading). The

material properties chosen are typical of many aluminum alloys.

The assumed elastic properties are

E = 10.5 E + 06 PSI

v =0.3

cy 59.00 E + 03 PSI

The uniaxial stress-strain curve models the behavior of 7075-

T7651 aluminum. A trilinear approximation is employed in the

analysis. Both a typical experimental curve and the trilinear

approximation are shown in Figure 3. The effect of hardening

behavior modeling is studied by varying the hardening

* parameter 8, defined in equation (3). Isotropic hardening

(8 = 0), kinematic hardening (8 = 1.) and a mixed state

(8 = 0.5) were modeled.

* The finite element grid employed consists of 96 20-node

isoparametric elements with quadratic shape functions. No

"singular" elements are employed due to the unknown nature of

the crack front singularity in plasticity. The grid is shown

in Figures 4a, 4b and 4c. Computationally this grid is
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extremely expensive. The convergence studies cited previously

have demonstrated the advantages and desirability of this

approach. The grid has 1872 total degrees of freedom and

requires approximately 1 hour and 13 minutes of CPU time on a

VAX-11/780 to complete each iteration. Where significant

plasticity occurred, extreme runtimes where required (often

on the order of several days). While the current approach is

believed to be very accurate and reproducing the necessary

resolution to accurately describe the three-dimensional

elastic-plastic crack phenomena, the complexity of the calcu-

lation and extreme computational requirements should be

appreciated at the outset. Three-dimensional. elastic stulies

have indicated that these computational requiremeni:s are

necessary for accurate solution (7]. It is dubious that

simpler approaches will be able to predict the local fields

with any degree of confidence.

. ".
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RESULTS AND DISCUSSION

The yield zones predicted at the maximum load for each of

the three hardening models were calculated and plotted both on

the free surface and on the midplane. The stress components

were calculated in each element at the quadrature points and

interpolated to the surfaces using the technique discussed

previously.

F-.gure 5 is a-plot of the von Mises stress contours pre-

dicted on the free surface at the maximum load assuming an

isotropic hardening law. The maximum plastic radius predicted

is 0.541 inches. The extent of the plastic zone ahead of the

crack tip is 0.169 inches,-predicting a fairly rotund zone.

figure 6 is a-plot of the von Mises stress contours predicted

on the free surface with a kinematic hardening model. The

maximum plastic radius of 0.524 inches and crack line extent

of 0.148 inches are both significantly less than predicted

with isotropic hardening. The results assuming a mixed har-

dening model, are shown in Figure 7. The maximum plastic radius

of 0.544 inches is almost identical to the isotropic model..

The crack line extent predicted, however, is much less than

those predicted with either a kinematic or isotropic model.

The predicted zone is much narrower than the other models

demonstrate. It is unknown-whether this phenomena is due to

the inaccuracies of the numerical results or the physical

assumptions. The narrower predicted yield zone is consistent

'I
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with the dilatant stress field anticipated in front of the

crack.

Figure 8 is a plot of the von Mises contours predicted on

the midplane at the maximum load with an isotropic hardening

model. As expected, the zone is smaller than the surface zone.

The yielding along the crack line is, however, almost identical

to the surface prediction. Figures 9 and 10 show the predicted

midplane zones for the kinematic and mixed hardening assumptions.

In both cases, the yielding extent ahead of the crack tip is

very close to that predicted on the surface. The differences

between the maximum radii of the predicted midplane zones are

less than the surface zones. This phenomena is consistent with

the smaller amount of-plasticity and the nearly plane-strain

conditions on.the midplane.

One approach to predicting the extent of plastic deforma-

tion is to measure or calculate the amount of surface contrac-

tion or residual deformation on the surface after the specimen

has been unloaded. Inside the plastic region measurable

residual deformation should exist. Figure 11 is a plot of tb,;

surface contraction predicted after the specimei was unloaded

to zero applied load assuming a kinematic-hardening model.

Contraction contours of I.E-04 inches to 5.E-04 inches are

shown. The lowest contour plotted (I.E-04 inches) is on the

ordei of the deformation resolvable in the laboratory and is

also on the anticipated accuracy of the finite element method

being employed. The predicted plastic region is smaller than
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that predicted by the von Mises stress measure discussed above

(Figure 6). This is not unexpected as the stress criterion is

more sensitive to minimal plastic deformation. The yielded

extent predicted ahead of the crack tip is larger, however,

than predicted above. The deviation from a dilatational

stress state ahead of the tip will be detected sooner by the

residual deformation than by the effective stress (a large

deviatoric stress field must be present to create a von Mises

stress larger than the yield stress whereas any deviation in

the neighborhood of a significant residual field will cause

surface contractions). Figures 12 and 13 are plots of the

surface contours predicted with isotropic and mixed hardening

models. Consistent with the von Mises stress predictions, the

zones with an isotropic model are larger than those predicted

with any of the other models. The mixed hardening model pre-

dicts zones which are similar to the isotropic zones with less

yielding directly ahead of the crack tip. All three models

demonstrate more residual deformation ahead of the tip than

would be expected from the stress results.
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CONCLUSIONS

The finite element formulation for general three-dimen-

sional elastic-plastic bodies undergoing infinitesimal deforma-

tion has been presented. A computer code has been developed

and an example crack problem was solved with three widely

employed hardening models. The crack front yield zones pre-

dicted are very similar in size and shape. For many applica-

tions, the differences may be negligible. Significant varia-

tion in crack line extent yielding and surface curvature was

discovered. It is unknown at present as to which model will

more accurately describe different metals of interest to

engineers. The predicted differences are so slight, however,

that full three-dimensional experimental studies will be

needed to discern a valid model for specific applications.

To compare theoretical and experimental predictions, it

is proposed to measure the residual deformation on the surface

of the specimen in the unloaded state. The theoretical study

presented above demonstrates that the finite element predic-

* . tions are qualitatively realistic and sensitive to hardening

characteristics. Comparison with experimental results will

delineate the grid characteristics and hardening models which

best model specific geometric and material applications.

After successful "tuning" of the finite element model, a com-

plete description of the stress and energy state in a cracked

body can be predicted with confidence. Once fully three-

. .'....
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dimensional stress fields are predicted, ductile failure

theories can be tested and skeptically compared without the

bias of unrealistic analytical approximations.
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EFFECT OF SPECIMEN THICKNESS ON CRACK FRONT PLASTICITY
CHARACTERISTICS IN THREE-DIMENSIONS

E. Mover, Jr. and H. Liebowitz

School of Engineering and Applied Science, The George

Washington University, Washington, D.C.

ABSTRACT

A finite element investigation of the effect of thickness on plastic defor-
mation and yielding characteristics in three-dimensional cracked bodies is
presented. It is shown that the fundamental deformation modes and extent of
plastic deformation are significantly influenced by the specimen thickness.
The results show the transition from a local plane strain to plane stress
response near the crack front as the specimen thickness is decreased. While
the results are generated for a specific aluminum alloy (7075-T7651), the
predictions for other hardening materials would be oualitatively the same.

KEY1ORD S

Nonlinear finite-element calculations, plastic deformation, three-dimension-
al crack specimens, incremental analysis.

INTRODUCTION

Of fundamental importance to the accurate fracture assessment of components
and structures made of metals is the study of ductile fracture processes and
the plastic response near a crack. The basic deformation response near the
crack front must be resolved accurately for reliable predictions. Fracture
criteria have been proposed based on many controlling quantities (e.g.,
stress, strain, energy, displacements, etc.) both on global and local scale
levels. Without exception, all of these criteria require accurate local
deformation modeling.

To understand the scale shifting effects from the laboratory specimen to the
structural component, it is imperative to discover the effects of specimen
thickness on the deformation response. This problem is an essentially
three-dimensional one and must be investigated accordingly.

The purpose of this investigation is to delineate the effect of specimen
thickness on local crack front yielding characteristics in a cracked speci-
men. The three-dimensional elastic plastic finite element code developed in
[1] is employed for the analysis. Specimen thicknesses investigated range



from well beyond ASTN plane-strain requirements to thin sheet dimensions.
The yield zones calculated in this work demonstrate the transition from di-
latational to distortional dominance ahead of the crack tip as a function of
thickness (equivalent to a transition from plane strain to plane stress).
The magnitude as well as the extent of yielding is shown to be highly thick-
ness dependent. The results of this study also demonstrate that two-dimen-
sional analysis based on plane strain (for thick specimens) or plane stress
(for thin specimens) can fail to accurately model the local response when
simple standards would dictate otherwise.

PLASTICITY FORMULATION

The incremental theory of plasticity employed in this work is based on the
classical rate proportionality assumptions and J flow theory. While the
mathematical details vary with the choice of yield criteria, the salient
features of all incremental theories are the same. This discussion will,
therefore, be confined to the specific theory employed in this work.

Assuming stress strain rate proportionality and J flow theory (which

assumes the plastic deformations are incompressible) the stress-strain rate
relations can be written as [2]

E ij + iE f(a) S; a > 0

eij=(i

S Otherwise

E ij

where:

eij = i _ are the deviatoric strain rate components,

ij 3pp ij10is Poisson's ratio,

E is Young's modulus,

S i - - a 6 are the deviatoric stress components,
ii m ij 3pp ij

a ij are the coordinates in stress space of the yield surface center

S' S - a are the deviatoric stress components measured relativeSiJ = S a to the current yield center,

= 3 S is the effective stress,
e 2 ijSij

a' -' Si' is the effective Stress relative to thpe current yield
e 2 ij icenter.

C is the current yield stress, and
y
* denotes time differentiation.

Due to the incompressibility condition, the hydrostatic strain rate is pro-
portional to the mean stress rate and is given by

1 - 2v
E =a 2pp E Gpp (2)

The function f(a ) is dependent on the uniaxial stress-strain curve and wille
be discussed subsequently. For a von Mises (J ) material, the center of the
yield surface moves at a rate proportional to ihe projection of the stress
rate vector onto the local normal to the current yield surface and can be
written as



3 2
-) S'" / c k A > 0

k..ij e v e

aij = (3)

O Otherwise

where B varying from 0 to 1 will model hardening behavior from kinematic
(P = 0) to isotropic (P - 1).

The function f(cr ) is derived from the uniaxial stress-strain curve. For a
uniaxial specimen, equation (1) reduces to

axial transverse 3 E a + f(ae) a a (4)

in the plastic range. Thus,2•

f(Te )  3 axial transverse) /a e (5)

Invoking incompressibility (i.e., %transverse = C a the function
f(ae) can be written as

e Eplastic /ae e(6)

If the uniaxial stress-strain curve is expressed in a multilinear fashion,
the stress-strain relation is

a 1a 2= + -(a-) + -(a-a) + + (-) (7)

E E I y' E 2y E

where a 1 < a < a and a is given by
M1m m
EL - Lam m )

a = C (8)m Aa
m

From equation (7), the plastic strain rate is given by

aa
me

Eplastic E(9)

and thus from (6)

am

f(a ) = (10)e Ea
e

Equations (1), (2), (3) and (10) provide a complete set of elastic-plastic

constitutive relations. Together with the equilibrium equations and the
strain-displacement relations, a governing system will be formed. It is
important to note that the constitutive formulation outlined above is
acceptable for finite as weil as infinitesimal strains. Also of importance
is the fact that this formulation is strain-rate independent. This assump-
tion appears to be realistic for most engineering metals at roo:a temperature
(or cooler). For high temperature problems a rate-independent formulation

is dubious.

Equations (1), (2), (3) and (10) provide the fundamental relationships be-
tween stress and strain rates. The equilibrium conditions (Roverning equa-
tions) for a continuum body in the absence of body forces and inertia
effects can be written as



Daij /ax = 0 (11)

with the boundary conditions
inj i on S

and (12)

U i = ui on S

where T are the specified loading rates on the boundary experiencing applied
A

tractions (S ) and ui are the velocities specified on the remainder of the
boundary (SUT. Utilizing the standard infinitesimal strain-displacement
relations

i (3 /axJ + uj /axi) (13)

and either employing the Principle of Virtual Work for increments of dis-
placement or by performing the standard Galerkin technique on the governing
equations, (11) and (12), the finite element equations governing the nodal
velocities, U can be written in terms of the loading rate vector, R, in
the form

K(U) 0 0 (14)

The standard finite element assumptions made are given by

u = N * U

: B U o
(15).

B

D = (U)

K(U) : l I BTD(U) B dA
elements element volume

where N are the shape functions. The set of rate equations (14) will be in--
tegrated one load increment (AR) at a given time to determine the corre-
sponding new displacement increment, AU. The Newton-Raphson ov tangent
stiffness solution procedure is employed as described in [3].

PROBLEM DESCRIPTION

To study the effects of specimen thickness on the yielding characteristics
of typical fracture specimens, a finite center-cracked plate was chosen for
investigation. The standard mode I configuration shown in Fig. 1 was

0 analyzed for total thicknesses of

2T - 2.54 cm 2T = 1.27 cm
2T = 6.35 mm 2T - 3.175 mm

The material investigated was a 7075-T7651 aluminum alloy with elastic pro-
perties

E = 7.24 E+04 MPa

v 0.3

a= 4.07 E+02 MPa
y "I The uniaxial stress-strain curve is shown in Fig. 2.
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Fig. 2. Uniaxial stress-strain curve for 7075-T6751 aluminum.

The finite element discretization employed in the analysis utilizes 20-Node

*quadratic isoparametric elements exclusively. A fine mesh near the crack
front is employed for accurate modeling. The grid characteristics and con-
vergence properties are discussed in (1,4]. The maximum load applied was

a = 1.77 E+02 MPa

A hardening parameter of 8 0.5 was also assumed in the analysis.

RESULTS AND DISCUSSION

The yield zones predicted at the maximum load for each of the four thick-
nesses studied were calculated and plotted both on the surface and midplane
of the specimen. The results demonstrate the significant influence thick-
ness has both on the nature and extent of the yielding.
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Figure 3a is a plot of the von Mises stress contour corresponding to the
specimen yield stress calculated at the maximum load on the surface of the
2.54 cm thick specimen. As expected for a thick specimen, this zone has the
characteristic form of a plane strain yield zone (i.e., minimal yielding
ahead of the crack tip and a very upright yield zone). The maximum extent
of yielding is 30.7% of the half crack length which is consistent with the
small strain assumptions made in the analysis requiring contained yielding.
Figure 3b is a plot of the surface zones for a specimen with total thickness
of 1.27 cm. The yield zone is slightly wider (more rounded) with this
thickness. The maximum radius is now 32.7% of the half crack length and the
yielding ahead of the tip has increased (though it is still small). The
zone still maintains the basic plane strain characteristics at this thick-
ness.

Figure 3c shows the surface yield
zone for a specimen with thickness of
6.35 mm. The zone is now much wider
with a larger maximum radius and

yield extent ahead of the tip. The
zone no longer exhibits the plane
strain characteristics but is in /

transition between plane strain and
plane stress. Figure 3d is a plot of /
the surface yield zone for a specimen
with total thickness of 3.175 mm.
The zone is significantly more
rounded thau any of the previous r/a - .045
zones with a larger maximum radius
and yield extent. The maximum yield Fig. 3a. Surface yield zones for
radii and extent of yielding ahead specimen with 2T 2.54 cm.
of the crack tip for the four thick-
ness surface zones are given in
Table la. These yield parameters
both increase with decreasing thick- /
ness as was expected. The final
zone at a thickness of 3.175 mm has
the rounded characteristic of a
plane stress yield zone. The direc- I

tioi of maximum yielding, however,
is still a fairly large angle rela-
tive to the crack line suggesting
some influence of dilatation. /a - .075
Though for this problem (with a

relatively small amount of plastic
deformation present) the difference Fig. 3b. Surface yield zones forspecimen with 2T - 1.27 cm.
between the maximum radii is not
large, the nature and extent of
yielding ahead of the crack tip show a large dependelice on the specimen
thickness.

Figure 4a is a plot of the von Mises stress contour corresponding to the
material yield stress on the midplane of the 2.54 cmm thick specimen. The
zone is typical of plane strain zones and is smaller than the surface zone
for the same thickness specimen. The shape of the zone with a minimal ex-
tent of yielding ahead of the crack tip suggests high dilatation in that
region. The midplane zone for the 1.27 cm thick specimen is shown in

. . . . .. . •. . . . . .. , • . - .,. . . . . . . • . - • . - - , . . ,



Fig. 4b. The zone is larger than that
of the thicker specimen, however,
there is still minimal yielding ahead
of the tip. The angle of maximum
yielding is more acute than in the
thicker specimen. The stress state,
however, would still be characterized
by plane strain.

Figure 4c shows the midplane yield
zone for the 6.35 mm thick specimen.
The zone is considerably wider and /a- .205
more rounded than for the thicker
specimens. It shows characteristics Fig. 3c. Surface yield zones for
of both plane strain and plane specimen with 2T 6.35 mm.
stress zones suggesting a region of
transition. Figure 4d is a plot of
the midplane yield zone for the
3.175 mm thick specimen. The zone
is basically a plane stress zone
and is larger than for the thicker
specimens. The maximum yield radii
and radius of yielding ahead of
the crack tip on the specimen mid-
planes are given in Table lb. Both
increase with decreasing thickness
as was expected. In all cases, the r/a .296
midplane yield zones are smaller
than the surface zones. Fig. 3d. Surface yield zones for

specimen with 2T = 3.175 mm.

If
:1

//

r/a - .039 r/a - 0.071

Fig. 4a. Midplane yield zones for Fig. 4b. Midplane yield zones for
specimen with 2T = 2.54 cm. specimen with 2T = 1.27 cm.

r/a * .193 r .8

Fig. 4c. Midplane yield zones for Fig. 4d. Midplane yield zones for
specimen with 2T - 6.35 mm. specimen with 2T - 3.175 mm.
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TABLE la Yield Radii as a function TABLE lb Yield Radii as a Function of
of Thickness for Surface Thickness for Midplane Yield
Yield Zones. Zones.

Thickness rnax/a ro/ Thiciesa r,,l/ ro/a

T - 2.54 cm 0.307 0.045 T - 2.54 cm 0.260 0.039

T - 1.27 cc 0.327 0.075 T - 1.27 = 0.280 0.071

T - 6.35 m 0.331 0.205 T - 6.35 m 0.283 0.193

- 3.175 a 0.343 0.296 T - 3.175 = 0.299 0.288

r m - maximum yield radius r 4 yield radius along crack linemax o

CONCLUSIONS

The results of this study demonstrate the thickness dependence of the yield
zones near a crack front on specimen thickness. It is shown that both the
extent of plastic deformation and the dominance of deformation type (i.e.,
dilatation or distortion) are controlled by the thickness. The nature of
the deformation is fundamental to the understanding of the incipient frac-
ture processes. The delineation of the fundamental deformation response
near a three-dimensional crack front is an imperative first step in the
understanding and accurate prediction of ductile fracture processes.

To further the understanding of ductile fracture, it is necessary to compare
theoretical and experimental deformation predictions local to the crack
front. Only through such comparisons can an assessment be made of the
accuracy and teliability of the numerical methods for plastic analysis. To-
ward this goal, it is proposed to measure the residual deformation on the
surface of the specimen in the unloaded state. The theoretical study pre-
sented above demonstrates that the finite element predictions are qualita-
tively realistic and sensitive to specimen thickness. Comparison with ex-
perimental results will delineate the grid characteristics and hardening
models which best model specific geometric and material applications. After
successful "tuning" of the finite element model, a complete description of
the stress and energy state in a cracked body can be predicted with confi-
dence. Once fully three-dimensional-stress fields are predicted, ductile
failure theories can be tested and skeptically compared without the bias of
unrealistic analytical approximations.
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THE EFFECT OF BIAXIAL LOADING ON CRACK TIP YIELD ZONES

E. Thomas Moyer, Jr.* and Harold Liebowitz**

The existence of a biaxial far-field stress component has been the
subject of much research in the past. Its influence on crack qrowth
characteristics, fracture strength and ultimate load capacity has been
investigated both theoretically and experimentally for thin sheet spec-
imens made of relatively brittle material [1]. The purpose of this
study is to investigate the influence of a biaxial load component on
the crack tip yield zones in a relatively ductile, plane strain sDeci-
men. Many applications require an understandinq of the deformation in
a relatively thick specimen made of ductile materials.

The problem chosen for investigation is a square, center-cracked
panel shown in Figure 1. The crack-length to width ratio is 0.5. The
material properties chosen model a class of very ductile aluminums in
the 6061 family. The true stress-strain curve and the associated
material properties are shown in Figure 2. A bi-linear approximation
has been assumed for the hardening features of the curve. The normal
applied stress (ay ) was held constant in the analysis and biaxial

load ratios (k = x) of 0.0, 0.2, 0.4, 0.6, and 0.8 were investi-

gated. Two values of the normal applied stress were tested, ay= Sy/3
and ay. = 0.45 x Sy. y y

The analysis employed a two-dimensional incremental plasticity
approach which accounts for large plastic strains, finite deformations A
and mixed hardening. J-2 Flow theory plasticity with a von Mises yield
criterion was assumed. A Newton-Raohson finite element solution was
generated using the code develooed in [2]. Convergence was assured by
employing local and global force balances and by using an Updated-
Lagrangian approach for the finite displacements.

Figure 3 shows the von Mises stress corresponding to the initial
yield stress for an applied normal stress of ay =Sy/3 and a biaxial

load factor k = 0.0. It is typical of plane strain yield zones.
Figures 4-7 show the near tip yield zone with the same applied normal
stress due to increasing biaxial load factor (k = 0.2,0.4,0.6,0.8).
The increasing biaxial load has the effect of reducing the amount of
local plastic deformation. This will cause a more brittle global re-
sponse.

*Senior Research Engineer
**Dean, School of Engineering and Applied Science, The George
Washington University, Washington, D.C. 20052.
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The same effect can be observed for larqer applied normal stress
values. Figure 8 shows the near tip yield zone for an applied normal
stress of ay =.45 x Sy and a biaxial load factor k = 0.0. Fioures 9-12

show the near tip yield zones with this larqer applied normal stress
due to increasing biaxial load factors (k = 0.2,0.4,0.6,0.8).

The decrease of plastic deformation with increasina biaxial load
factor should be expected since the addition of biaxial loadinq will
increase the local dilatational component of the stress field and de-
crease the distortional component which causes plasticity. Since the
response to larger biaxial load factors is more brittle, specimens
under biaxial loading should fail at lower load levels than those
without biaxial loading. The ductility of a cracked specimen, there-
fore, is strongly dependent on the nature of the loading. Increased
biaxial loading tend to render a specimen more brittle.
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APPENDIX E:

PLASTIC ZONE MEASUREMENTS AND COMPARISON

WITH FINITE ELEMENT RESULTS

The size and the shape of the plastic zone at the crack

tip was measured on a center-cracked specimen with width

8.89cm and crack length-to-width ratio 0.5. The material

used was an aluminum alloy 7075 in overaged condition

(T7651). The zone size was determined by measuring the

permanent reduction in thickness after the specimen was

unloaded. The contours of the plastic zones were determined

using a surface profile measuring device. The sensor of

which consisted of a stylus attached to a thin litanium

alloy sheet on which strain gauges were mounted to form a

four arm bridge circuit.

The specimen was also studied by the finite element

method. The grid described in Appendices B and C was used

to predict the local crack front deformation on unloading.

The program described in these papers was utilized. It

employs 20-node isoparametric elements as the main struc-

tural element, J-2 Flow Theory Plasticity and an iterative

Newton-Raphson computational procedure. The results are

compared with the experimental measurements below.

The results of the measurement on the four crack-tip

regions on the surfaces are shown in Figures 1 to 4 for

depths 0.0051, 0.0102, 0.0152 and 0.0203mm respectively.

The results show that there is scatter in the data obtained

from the four zones; however, the averaged values agree



2

well with the results obtained from the finite element

Ird analysis (shown as a solid line in the Figures).

Although the resolution of the sensor is very high

and is limited only by the extent of amplification of

the signal, errors can be introduced due to any nonplanarity

of this initial specimen surface and slight variations in

the pressure applied on the micrometer screws while ad-

vancing manually. The variation in pressure can cause an

error of approximately O.O001in. The planarity of the

surface was checked initially before deforming the specimen.

The size may not be indentical for all the four zones

measured in one specimen. This may be caused by the lack

of perfect symmetry in the fatigue crack growth on both

sides and by the nonhomogeneity of the material. The

measurement of the four zone sizes and averaging the results

reduced the errors introduced by these factors.
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APPENDIX F:

Iq

"A Mesh Adaptive Method for Modeling Slow Crack Growth,"
E. T. Moyer, Jr. and H. Liebowitz. An invited lecture
presented at the 21st Annual Meeting of the SES,
VPI&SU, Blacksburg, Virginia, October, 1984.

0,

0



A MESH ADAPTIVE METHOD FOR MODELING SLOW CRACK GROWTH

by

E. Thomas Moyer, Jr. and Harold Liebowitz
School of Engineering and Applied Science

The George Washington University
Washington, D.C. 20052

The accurate modeling of slow crack growth requires the coali-
tion of a careful stress analysis, a consistent crack growth
criterion (or constitutive relation) and a numerical scheme which
continually redefines the crack position and size. The numerical
scheme employed must account for the local unloading and stress
redistribution near the crack during the growth process.

Traditionally, the numerical schemes used to simulate crack
growth either did not address the local unloading [] (accurate for
very low load levels only) or required a mesh density such that the
crack tip element size corresponded exactly to one growth step
(e.g., [23). Other, more recent models employ springs at nodal
points whose stiffness can be relaxed during the growth process
(e.g., [3]). This approach has yielded extremely limited success
and requires a nodal spacing consistent with the growth incrementa-
tion. The major drawback the methods employed to date is that the
growth incrementation must be known a priori. Much of the work
also couples the crack growth criterion and the mesh spacing into
the same model making assessment of the validity of either impos-
sible.

A new method is presented in this work which alleviates the
drawbacks of the schemes described above. A standard elastic-
plastic stress analysis is performed to the load at the initiation
of crack growth. The load is then increased slightly. The amount
of crack growth is then predicted corresponding to the current loadlevel (the method will work with any fracture criterion). The near
crack mesh is convected to the new location of the crack tip. The
stress along the new section of crack is relaxed to zero and an up-
date is made in the stress analysis. Finally, the new stress state
is extrapolated to the current grid geometry. The process is

*9 repeated for each increment of crack growth.

An example problem in 2-dimensions is considered. A thin
(.0625 inch) 2024 aluminum panel with a central crack is loaded
uniaxially. The experimental Load vs Crack Growth curve is used
to dictate the crack growth incrementation (this approach tests the
validity of the numerical method independent of the fracture crite-
rion). The load-displacement relation is predicted by the numerical
method and compared to the experimental record. Three refinements
of crack incrementation are employed to assure convergence. The

.. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .
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results show good agreement with the experimental load-displacement
record.

By employing the technique described above, it is possible to
test various fracture criteria for slow crack growth. These
studies (to be reported subsequently) allow for a separation of
numerical and mechanical growth modeling which is essential for
delineating the validity of predicted results.

While the example presented in this work is 2-dimensional, the
method will apply equally well in three-dimensions. Since larger,
high order elements are employed, crack growth studies in 3-dimen-
sions should be possible with current computer resources. The ex-
tension of nodal force release techniques to 3-dimensions requires
far to many elements (for accurate modeling) to be solved with
today's resources.
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CRACK GROWTH ALGORITHM - MODEL 2
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APPENDIX G:

SURFACE CRACK GROWTH IN FATIGUE

An experimental evaluation of the surface crack growth

in PMMA (Plexiglass) in tensile fatigue loading has been

made. Fatigue crack growth in specimens of thickness

ranging from 12.52mm to 25.4mm and width ranging from

50.8mm to 88.9mm was measured. The changes in the rate of

growth and the shape of a crack when initiated from a flow

and their dependence on the specimen width and thickness

were studied.

From the test results (Figures 1-3) the following

characteristics of crack growth were observed:

1. Regardless of the shape of the initial flaw, the

crack grew into an approximately elliptical shape before

the influence of the back surface affected crack growth.

2. The influence of the back surface was not observed

until after the crack grew through 50% of thickness, after

which the crack growth in the direction normal to the sur-

face slowed down rapidly distorting the elliptical shape

of the crack front. This trend was common to all thickness

studied.

3. Once the crack penetrated the back surface, it

grew rapidly at the back surface approaching the shape of

a straight through crack. However, the acceleration did

not occur until it had grown through about 95% of the

thickness.

~~~~~~~~~~~~~~~~~...- ... .. ..... , . ............... . .. ...- . . -,., .•...... -. .".' .-.-- K..
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4. The pattern of crack growth suggests that the

determination of stress intensity in the thickness direc-

tion alone or the assumption of the equivalency of a

through crack for fatigue life prediction (as done by several

investigations) in insufficient in crack growth estimation.

5. Unlike in ductile metallic materials, in PMMA the

crack front near the surface was essentially perpendicular

to the surface.

6. No effect of the width change was observed in the

ranges examined.
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APPENDIX H:

"Biaxial Load Effects in the Mechanics of Fracture,"
E. T. Moyer, Jr. and H. Liebowitz. An invited paper
to appear in the Fracture Mechanics Special Issue of
the Journal of the Aeronautical Society of India
(March, 1985).
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ABSTRACT

This paper reviews the current literature on the effects of biaxial

loading on the fracture behavior of materials and structures. Emphasis is

given to the fundamental results found in the literature (both theoretical

and experimental). A brief survey of the applications literature is also

made. Areas where further research is needed are delineated and recommenda-

tions for future studies are proposed.
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INTRODUCTION

The importance of studying the effects of biaxial loading on the fracture

behavior of materials and structures has been recognized for many years. Most

problems of interest in application involve at best a biaxial load condition

and usually extremely comlex loadings and geometries. An important first step

in understanding fracture behavior is the study of Mode I uniaxial loading as

first investigated by Griffith (1] and clarified and expounded upon by Irwin

[2]. An important second step is the study of biaxial load effects. All the

fracture parameters and specimen characteristics (i.e., crack growth proper-

ties, energy release rate, fracture toughness, fatigue properties) are known

to be dependent on load biaxiality to some extent.

The purpose of this paper is to present a review of the literature in-

volving biaxial load effects which has evolved over the years. The literature

base is far too large for a single review to encompass. This paper will con-

centrate on summarizing the most fundamental and important results which have

been discovered (as determined by their use in applied studies and their

acceptance over time).

The paper starts out with a brief review of the experimental findings

which demonstrate the importance of biaxial load effects. Basic studies on

the effects of biaxial loading on fracture toughness, non-self-similar growth

problems, fatigue crack propagation and subcritical growth properties are

presented and summarized.

The third section discusses the fundamental analytic solutions for

problems of cracks in an elastic solid under biaxial loading. The basic

asymptotic field representations are presented along with several stress-

intensity factor solutions of both practical and theoretical interest.
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The fourth section looks at the effects of biaxial loading on problems

involving plastic deformation. Early asymptotic solutions for nonlinear

elastic as well as recent numerical results are presented. The emphasis is

on the solution of problems with significant plastic deformation and the dis-

cussion of stable crack growth.

The fifth section provides a survey of the applications literature for

the design and development of engineering structures. For conciseness, only

the problems studied and the references are presented.

The final section summarizes the need for biaxial studies and presents

suggestions for future research. For further details the reader is referred

to the references cited and to reviews [3, 4] which emphasize basic theoreti-

cal and experimental findings for stationary cracks and modeling of practical

problems and nonlinear behavior respectively.

. . . . . . . .. . . . . . . . . . . . . . . .



3

EXPERIMENTAL STUDIES

During the past two decades, several experimental investigations have

been carried out to determine the effects of biaxial loading on the fracture

characteristics of test specimens and structures. Of primary interest is the

effect on fracture toughness, crack growth trajectory and crack growth rate

characteristics. Many of the early investigations showed large discrepancies

in results. Much of the difference can be attributed to the use of test

specimens which did not preclude load interaction effects. Typical fracture

specimens for use in biaxial studies are reviewed in [5]. A specimen geometry

and grip configuration which has proven to be consistent and relatively free

of load interaction effects is shown in Figure 1. While this is not the only

specimen which can be validly employed for biaxial studies, it is a commonly .

employed and useful specimen.

Examining the remaining literature on biaxial effects on fracture char-

acteristics several qualitative trends can be found common to most experimental - -

investigations. Several investigators have found the fracture toughness of

engineering materials to be dependent on the biaxial load factor. The magni-

tude of the effect, however, is not consistent among the published studies.

The results of Kibler and Roberts [6] demonstrate significant influence of

the biaxial load factor on the fracture toughness (Klc value) of 6061-T4, T6

aluminum alloys. Similar studies on plexiglass were carried out by Levers,

et al. [7], whose results show negligible influence of biaxial load factor

on fracture toughness. Kibler and Roberts had performed similar tests on

plexiglass and had found significant influence on fracture toughness. The

results of these studies are shown in Figures 2-4.

. * .. . . . . . .. . . . . . . . .. ~~ .. . . . . . . . . . . . .]
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Tests performed by Jones and Eftis [8] show a minimal amount of biaxial

load dependence of the fracture load for 7075-T6 and 2024-T3 aluminums.

Qualitatively, both show slight increases in fracture load with increasing

biaxial load factor, however, in many of the tests the experimental scatter

is larger than the demonstrated effect. Representative results are shown in

Figures 5 and 6.

Recent tests performed on PMMA by Ueda et al. [9] show negligible in-

fluence of biaxial loading on fracture load (fracture toughness). Their

tests show only slightly stronger dependence for mixed mode problems (i.e.,

a slanted crack in a biaxial field). The results for a horizontal, Mode I

crack in a biaxial stress field are summarized in Table 1.

TABLE 1: Fracture Toughness As A Function Of Load Biaxiality In Plexiglass

a /a 0.0 0.2 0.5 0.8 1.0x y

Test 1: K f/Klc 1.01 0.97 0.93 0.91 0.89

Test 2: Kf/KIc 1.03 1.01 0.99 0.98 0.95

One feature which has been demonstrated by many authors is that a straight

horizontal crack in a biaxial stress field will deviate from self-similar

growth at high biaxial load factors. This phenomena is documented in the re-

suits of [9, 10, 11]. An example from [10] is shown in Figure 7. This effect

can be predicted theoretically from elastic analysis using either the Strain

Energy Density Criterion [12] or The Maximum Tearing Stress Criterion [13] (to

be discussed in a subsequent section).

A few studies have been done on the influence of biaxial loads on fatigue

crack propagation rates. The results from [14] on PR58 alloy show a signifi-

cant influence on fatigue crack propagation rates by the biaxial load factor
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(Figure 8). The results from (15] on 6061-T6 aluminum, however, show little

or no influence. Results reported in [161 also suggest a significant biaxial

load effect on fatigue crack propagation rates for both 7075-T6 and 2024-T3

aluminums. These results, however, present too much scatter to conclusively

demonstrate more than a qualitative trends.

The fatigue crack growth rate studies discussed above all demonstrate

the tendency for increasing biaxial load factor to cause a decrease in crack

growth rate. The magnitude of this effect is, however, not adequately demon-

strated by the reported results. The scatter in the data, the inconsistencies

in the experimental procedures and the lack of reproducibility of the results

makes quantitative conclusions impossible. The effect appears to be load

level, stress ratio level, material and geometry dependent. Much additional

careful and consistent experimentation is needed to adequately characterize

the influence of biaxial loading on fatigue crack propagation rates.

Recently, several studies have been undertaken to investigate the in-

fluence of load biaxiality on angled crack fracture properties (i.e., mixed-

mode effects). In this situation, the biaxiality not only influences the

higher order terms in the stress and displacement fields but also the stress

intensity factors. Obviously the fracture toughness and the angle of crack

propagation will be influenced by the biaxiality (based on stress intensity

arguments alone). Evidence exists, however, to indicate that the resultant

stress parallel to the crack also influences the angle of propagation. This

effect can best be demonstrated by the results of [9, 17, 181. Recently many

combinations of plane and anti-plane load interactions have been studied [9],

however, extreme scatter exists and these results have need to be reconfirmed

*by other investigators.

, * . • • . . . . . . . . .
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One difficulty in the experimental determination of biaxial load effects

on fracture properties is the significant influence of anisotropy and slight

eccentricities on observed phenomenon. Extreme caution must be exercised in

these studies. The choice of a proper specimen which eliminates load inter-

action effects is crucial. Even in the studies which were performed with con-

consistent and careful experimental designs, large scatter is evident in the

data. This scatter is often on the order of the effect being measured thus

precluding quantitative conclusions. It is beyond the scope of this review

to address the matter of experimental scatter and the subsequent interpreta-

tion of the results. It is important, however, to be aware of the inability

of the current existing data base to quantitatively provide predictive cap-

abilities for material characterization.

-0
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ANALYTICAL ASPECTS

The effect of biaxial loading on the stress and displacement fields near

a crack tip can yield important information delineating the modes and onset

of failure of fracture specimens. Many problems occurring in design appli-

cations involve a crack in a biaxial (or even triaxial) external stress

environment. This importance has been recognized by many authors and studies

concerning the effects of biaxial loading on stress intensity factors, stress

distributions and displacement distributions near crack tips have been per-

formed in the past.

Crack problems in the Mathematical Theory of Elasticity involve the solu-

tion of "Mixed" Boundary Value Problems. Many techniques have been employed

for the solution of these problems. For two-dimensional and axisymmetric

problems, the Complex Variable Technique (due mainly to Muskhelishvili [19]),

Eigenfunction Expaision Techniques (initiated by Williams [20]), and Transform

Techniques leading to either Dual Integral Equations (e.g., the work of

Sneddon [21]) or Singular Integral Equations (e.g., the work of Erdogan [22])

are employed. It is beyond the scope of this paper to review these methods.

The interested reader is directed to the referenced literature.

Consider the problem of an angled crack in an infinite sheet under in-

plane biaxial normal stress applied at infinite as shown in Figure 9. The

stress and displacement fields for this configuration can be written as
r
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rK 1  6 30 K11  0 0 30t ' coSY7 +r)rr 2i72 +v(27 sinc'- cos- cos-

K, 0 3 K
- cos [1 - sin 8~ -i 36 1 i e1 +c o 301

X (- 2wr) s r2 t2 (2T)72 + '2 S-2

+ G(1-k) cos2a

K1  6 e 30 +K11 e 0 3081
t y /- sinr- cos--cs2o[1 ir i-2

X3T- r2) 2 2 g o~-2 snisni

I1  r 0 20 6 1 rI 0e1
u - ()csj.(K-1) + sin .)+ -- (wsn~Kl

+ Cos2~~

+ 81J Lr~cos(+2t) + 'c cos(e-2t) + 2sin 0 sin2cx] + (Kic-i) a cos2ci}

(2)

u Z -~n--K1 - Cos -1+ - rco[11)+si
y - 2 q"2 .2(K 2 1 lr os-[:K Tr: sin 21

(1-k)ar
+ -{rsin(2t-e) + K sin(2a+e) -2sin0 cos2cxl + (K-s-) a sin2cd}

where

v is Poisson's Ratio,

u is the x component of displacement,
x

lu yis the y component of displacement,

t, X ytx are the 2-dimensional stress tensor components

and

K (3-4v) Plane strain

3-v
K () Plane stress

. . . . . . . . . . . . . . . . . . .. . .
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The stress intensity factors, K1 and K can be written as

K v a[(l+ - (1-k) cos2a]1 2

(3)

K'[(1-k) sin2a]

(from Eftis et al. [23]).

These equations include not only the standard singular terms but also a

nonsingular term adding a constant to the t stress term. This term has
xx

been demonstrated to have a significant influence on the maximum tangential

stress, maximum shear stress and local strain energy densities (at high bi-

axiality) for a straight crack problem [241. This influence will most

strongly effect the onset of crack tip plasticity and the subsequent plastic

behavior. The plasticity effects will be discussed in a subsequent section

dealing with numerical solutions.

From equation (3), it is seen that for the straight crack, a = 0.

the stress intensity factors are independent of the biaxial load factor. For -

elastic problems, the Strain Energy Release Rate (C) and the J-integral are

only nominally effected by the biaxial load factor (both in infinite [25] and

finite panels [24]). These results imply that, for truly brittle materials,

the biaxial load ratio does not alter the fracture load for Mode I problems.

Most problems of practical interest, however, involve plasticity and mixed-mode

conditions, therefore, biaxial effects may be of importance.

The biaxial load factor is extremely important in the prediction of the

angle of crack propagation. Even for Mode I, straight cracks in large biaxial

stress fields the angle of crack propagation can deviate from 0 (i.e., self-

similar growth) for biaxial load factors larger than 1.3 [241. Figure 10

" ~~~~. . ..-..... .. .............. °i . .. •.. ... . . . - •.. .
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shows the variation of the maximum tensile stress (crack opening stress) with

orientation for various biaxial load factors with a = 0 [7]. Deviation from

self-similar growth can be observed (using the maximum opening stress criterion)

for large biixial load factors. Note that the deviation from self-similar

growth does not occur for negative biaxial load factors. Similar results can

be obtained using the strain energy density criterion [241. Experimentally

deviation from self-similar growth has been observed in PMMA at high biaxial

load factors [8].

For mixed mode fracture problems, the angle of propagation and onset

crack growth are highly dependent on the biaxial load factor. Since the stress

intensity factors are directly effected, each problem must be individually

analyzed and general conclusions are difficult to draw. It is important,

however, to recognize that the presence of a remote normal stress component

parallel to the crack orientation direction can have significant influence on

the onset and direction of crack growth [261.

Many solutions have been generated for a wide variety of crack problems

involving different geometries and orientations. Consider the problem of a

crack in the shape of a circular arc under in-plane biaxial loading as shown

in Figure 11. The stress intensity factors for this problem have been

generated by Savin [27]:

KI  (at tip I) . AR sin eo  i, 8)

KI  (at tip 2) = R -sin 8 i, -8)

(4)

(at tip 1) = 'R sin 8° 42 (c, 8)

K (at tip 2) =  R sin o 42(ci
' -e)

D~ 2l

... . ... .... .... .

. .
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Figure 11: Semi-Circular Crack Subjected To Biaxial Loading
At Infinity.
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where 1 and 2 are given below:

28 28 -

(l+k) - (l-k)cos2a sin i cos 2 8

12 2 8
(I + sin 2

I2
+ (l-k)sin2a si 30 + (l-k)cos(2a- 3e

2e 2 8 (5)
(l+k) - (l-k)cos2 sin f cos - e

260 a sin2( 2) (1 + sin 2 e)

- (l-k)sin2x sin
2  co - (l-k)sin(2a - 3e

i S

When cracks are subjected to stress nonuniformities due to the presence

of geometric irregularities, biaxial loading can alter the resulting stress

intensity factors significantly. Consider the problem of two cracks emanatLng

from a circular hole in an infinite medium under biaxial loading as shown in

Figure 12. The stress intensity factors at 3 biaxial load levels are shown

in Figure 13 as generated by Newman [28]. For short cracks, the influence

of the biaxial load factor is significant. The interaction of two cracks in

a biaxial stress field has been studied by Badaliance and Gupta [29]. The

geometry and loading of that study are shown in Figure 14. The results of

a special case are shown in Figure 15a-15d. The results are given at 2 dif-

ferent biaxial load ratios demonstrating the influence of biaxiality. A final

2-dimensional example is the problem of a "kinked" crack in a biaxial stress

field as solved by Kitagawa [301. The geometry and loading for this problem

are shown in Figure 16. The resulting stress intensity factors are shown in

Figure 17 for various biaxial load levels. The influence for even minimal

kinking is seen to be extremely significant.

. . .
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Figure 16: A Kinked Crack In A Biaxial Stress Field.
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The generation of stress intensity factor solutions for 3-dimensional

problems is much more difficult than for two-dimensional problems. An

extremely limited class of problems can even be approached analytically and

numerical techniques are usually employed. The problem of a circular crack

in an infinite 3-dimensional body under biaxial loading has been studied by

Sih and Kassir [311. The problem of a parabolic crack in an infinite 3-

dimensional domain has been studied by Kassir [32]. The geometry and loading

for this problem are shown in Figure 18. The resulting stress intensity

factors can be written as:

K I  = Y /[(l+k) + (l-k)cos2fl(y
2 + 4m 2

2

,

(mxo)00

K = ,7Tr[(l-k)sin2f] 0 (6)
II r s(M 2 + 0mx)

KI= _ (l-)__m a(l-k)sin2.. V (m2 + mx 0)

The problem of an embedded elliptical crack under biaxial loading has been

studied by Subramonian and Liebowitz [331. The stress intensity factors for

this problem can be written as:

0'I

0

..-. * -. . ,*- o.% %.o
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K [~ K1  =-(l+k) + !(l-k)cos2 a

2(2 b 2 2 2 2Ek C-) (a sin O +b cos
Eka 0 0

0

222 22
-ab k sin o (1-k)sin2 (a2 s in 2 + b2 Cos -

K = 0 0 2 i cos (7)
II (ab)3/ 2  (k2 + vk 2)E(ko) - vko2 K(k)

0 0 0 0 0

3 2 2 a s c-ab k0 cos to(1-V) T(l-k)sin2 (a2 s2 0 + b2 Cos
K~l = 3/2
III (ab)3/2  (k2 + Vk 2 )E(ko) - Vko2 K(k)

0 0 0 0

k2 b2a2 ' , '2 2
where k = 1 - b/a , x a cos y y = b sin 0o and ko2 = 1 -ko

000 0 0 0

a > b; K(k ) and E(k ) are complete elliptical integrals of the first and

second kind, respectively.

The 3-dimensional solutions presented demonstrate the importance of

both crack front curvature and biaxial load factor when considering stress

intensity. These solutions also exemplify the difficulty in formulating a

3-dimensional fracture criterion based on energy release rate or critical

stress-intensity factors. A fracture criterion which is to be theoretically

valid in all domains must be a local criterion predicting the onset critical

conditions.

For most loading and geometries in two and three dimensions, numerical

techniques must be employed to determine stress intensity factors. Often, for

design purposes, it is useful to introduce a finite boundary correction factor

into the stress intensity factor solutions presented above. In this manner,

many geometries can be handled by tabular or graphical geometric parameters

generated previously.

.-.- ' .. l .'.-.' " " "... .. .. . .."' "". . . . ... ... " " '" '". . . ..." "" '
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Theoretical and experimental studies performed to date demonstrate that

the presence of biaxial loads can be important in the fracture assessment of

laboratory specimens and, more critically, design structures. These works

also show that biaxial influences are more important in configurations and

loadings involving plasticity and complex geometries. These problems must

be handled with numerical techniques.

. . . . .. . . . . .. .. ..
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PLASTICITY EFFECTS AND NUMERICAL STUDIES

The fracture analysis of engineering specimens and structures must account

for the local crack tip plasticity which exists. The presence of an external

biaxial stress field will alter the plastic behavior from that expected without

biaxial loads. For small plastic effects, Irwin [34], Dugdale [35] and others

have presented simple models which account for plasticity. Unfortunately for

most problems of engineering interest these models are inadequate and a full

incremental plasticity theory must be employed.

As a first attempt to characterize crack tip plasticity, Hutchinson [36]

showed that the near tip stress and strain fields could be written asymptotically

in the form

ti = K O r
- ( /n +l) t ij()

(8)

- Kr -(n/n+l) E (e)C~~ij = E rEj @
.

1Jwhere K and K are the stress and strain intensity factors, respectively.

The assumptions of deformation theory plasticity were employed in the analysis.

The functions tij(e) and Eij(e) are dependent on e and are given in detail

for many problems in [37, 38].

One of the first numerical studies performed to delineate the effects of

load biaxiality was carried out by Hilton [39]. He studied the problem of a
0

straight line crack in a two-dimensional infinite panel under uniform biaxial

stress applied at infinity. The material was assumed to be nonlinear elastic

(i.e., deformation plasticity) and the uniaxial nonlinear behavior was modeled

as a power-law hardening type. The results for the stress and strain intensity

0

. . - . .-. -. , ,, .. , ". - . ,. . ". .. S . ' . .,.~ -". ..-. ,-, -,".-. "," ". . ." . .,5,, . .
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factors for various biaxialities and hardening parameters are shown in Figures

19a and 19b. For large values of the strain hardening exponent, these results

show an enhanced biaxial response. Compressive loads parallel to the crack

also affect the stress (or strain) intensity factors much more than tensile

loads.

The effect of biaxial load factors on crack tip plastic deformation has

also been studied. Lee and Liebowitz studied the problem of finite thin sheets

under uniform biaxial loading under plane stress conditions [39]. A full in-

cremental plasticity theory was used with a power-law hardening model. Their

analysis was restricted to small strain theory. The results of that study are

presented in Figure 20. Plastic zone area (A p) is plotted against the biaxial

load factor for several load levels. Their results indicate that tensile loads

parallel to the crack decrease the plastic zone size (for biaxial load ratios

less than 2) whereas compressive loads parallel to the crack increase the

plastic zone size. Recent results presented by Moyer and Liebowitz [40]

demonstrate similar trends for plane strain specimens. Their analysis employed

large deformation theory plasticity and a multilinear uniaxial model.

One parameter which has received much attention for plastic fracture

axialysis is the crack opening displacement. Adams [41] studied the influence

of load biaxiality on the crack opening displacement for mauy load levels, thhiL

sheets under plane stress conditions were investigated. Using the clitical

crack opening displacement criteria, he calculated the failure load as a func-

tion of the remote loads. His results are shown in Figure 21. Lee and

Liebowitz [39] have also studied the effect of applied load biaxiality on the

J-integral for various load levels and biaxial ratios. Their results show

that for biaxial-ratios of practical interest (IkI < 2) the J-integral increases

0
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•
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compressive biaxial loads and decreases for tensile biaxial loads. This is

consistent with the predicted yield trends as tensile loads parallel to the

crack decrease ductility while compressive loads increase ductility.

The subject of slow crack growth is one of fundamental importance for

problems involving significant ductility. Most materials in the ductile range

exhibit large amounts of crack growth prior to final instability. The effect

of applied load biaxiality on crack growth characteristics has attracted a

limited amount of research due to the lack of consistent predictive theories

to characterize stable growth and due to the inherent difficulties in solving

the mathematical problem involved.

Liebowitz et al. [42], developed a computational procedure to study slow

crack growth under biaxial load conditions. There results implied that a

linear relationship exists between the crack length and the plastic energy

dissipated. This result has been assumed by previous workers on the subject

of stable crack growth (e.g., Wnuk [43] and Cherapanov [44]). Subsequent

studies and tests on various aluminum alloys has shown this relationship to

hold true under uniaxial and biaxial loading, however, both the slope and the

plastic energy dissipated prior to the onset of growth are material, geometry

and load dependent limiting its utility as a fracture criterion.

Lee and Du [45] have further refined the procedure to use either the

plastic energy relation or the experimental gauge data as input to the numeri-

cal simulation procedure. A typical crack resistance curve starting with

plastic energy parameters is shown in Figure 22. Recently Lee et al. 46].

have studied the problem of non-self-similar crack growth under biaxial

loading conditions. As would be expected, their results show considerable

dependence of the predicted fracture path on load biaxiality (both for linear

and nonlinear predictions). Their results are presented for a slanted crack

. . . . . . . . -
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in Figures 23a, 23b, and 23c. The solid lines are the actual path predicted

from an incremental growth analysis and the dashed lines are the path predicted

by a static, pre-growth analysis. It is interesting to note that the actual

path deviated from the initially predicted path to a much larger extent at

higher biaxial load ratio. Their predictions are based on the assumption of a

linear plastic energy-crack growth relation. No experimental studies have been

done on mixed-mode plasticity problems involving stable crack growth to date.

Noticeably lacking from the literature are three-dimensional finite element

solutions for problems involving slow crack growth or plasticity. The numerical

complexities of the problem make it extremely difficult to perform the calcula-

tions. Advances in the numerical solution of three-dimensional elastic-plastic

crack problems [47] should make biaxial studies feasible in the near future.

Due to the fundamentally three-dimensional nature of crack problems involving

plastic deformation, much additional work is needed to verify the biaxial effect

predicted by two-dimensional analyses. Most of the work performed to date has

been under "plane stress" conditions.

. - - .- .- -. .-- Wm . .--. .



35

Figures 23 (a,b,c): The Initially Predicted And Actual Path Of Crack Growth.
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BIAXIAL EFFECTS TN APPLICATION

Many problems of practical interest to the design of engineering structures

involve the solution of problems with cracks in biaxial stress fields. Various

problems from the design application of Aircraft, Aerospace and Ship Structures

as well as from the Pressure Vessel and Piping industry have been studied

theoretically and experimentally. A representative sample from the open litera-

ture are summarized below. The results can be obtained from the literature.

Tong and Atluri 148] have investigated the problem of a crack emanating

from a lug hole under a biaxial stress field. Using a finite element approach

employing hybrid elements, they solved for the stress intensity factors (KI and

KII) as a function of crack orientation. Various aspects of cracks emanating

from holes in aircraft structures are discussed by Broek [49]. Many theoretical

and numerical approaches have been employed to solve problems involving cracks

emanating from loadec! holes. Wide variations exist in the reported results and

further work is needed. A review of several solution procedures is given in

150].

The problems of stiffened plates and shells with cracks are of fundamental

importance to many design applications. Empirical approaches to the problem of

stiffened cylindrical shells with cracks is discussed by Kuhn [51] and Anderson

and Sullivan [52]. Several semi-empirical and semi-theoretical solutions for

the stress intensity factors involved are presented and discussed in [53] by

Heath et al. The fatigue properties of stiffened cylinders were investigated

by Wang [54] under several biaxial load factors.

Swift [55] has studied the influence of load biaxiality on cracks in

stiffened panels and plates. Tensile load parallel to the crack is shown to

.-.......-. . . .
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panels have been carried out by Ratwani and Wilhelm [56]. J-integral techniques

are employed to explain the results obtained experimentally by Swift [57].

The effect of biaxial rivet forces on stiffened sheets with cracks has

been studied by Erdogan [58] employing complex stress functions. Several more

general loading conditions are considered by Rooke and Cartwright [59]. This

problem has been studied experimentally by Broek [601 for both stiffened panels

and cylinders. The fundamental solutions generated in [58, 59] are employed

to obtain semi-empirical stress intensity factor curves for various loading

configurations.

The concept of placing holes in structures to inhibit crack growth and

crack instability (so-called stop holes) has gained much attention recently.

DeRijk and Motter [61] and VanLeeuwen [62] have conducted independent studies on

the effects of stop holes on the fatigue properties of thin sheets. While these _

studies were performed under uniaxial loading conditions, several possible

implications of biaxial effects are discussed through extrapolation of the re-

sults. In design applications, the biaxial effects will, out of necessity,

need to be accounted for.

The studies cited above all demonstrate the need for considering biaxial

loading in application. Though the results of these investigations are highly

specialized to the problems being studied (precluding general conclusions as to

the nature of biaxial load effects), they emphasize the importance in carefully

delineating all important problem parameters (e.g., loading conditions, geometry,

etc.) when considering solutions for design purposes.

. =*
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SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH

The preceding sections have summarized the state of current research

into the influence of biaxial load factors on the fracture characteristics

of materials and structures. While much work has already been performed,

several areas need further investigation.

In the experimental field, further work is needed to delineate the

dependence of fracture toughness and fracture load levels on applied load

biaxiality. The scatter in the existing data is far to large to make con-

clusive qualitative assessment possible. Of interest would be careful

examination of materials in the higher ranges of ductility where biaxial

effects are known to be more severe. Also needed is careful study on the

dependence of fatigue properties on both steady and cyclic biaxial lopding.

Little work has been done on this aspect, especially in the more ductile

materials.

Noticeably lacking from the experimental base are slow growth studies

under biaxial loads. Numerical predictions have been made by extrapolating

results obtained under uniaxial loading. The validity of this approach needs

to be assessed experimentally. Also needed are tests on surface crack be-
0

havior under biaxial loading.

Analytically,-many fundamental solutions have been generated and the

predictions of linear elasticity are generally a closed issue in two-diraen-

sions. Further studies should be made, however, to investigate stress in-

tensity factor dependence on load biaxiality in three-dimensional con-

figurations (both for straight and curved through cracks and for surface

cracks). These investigations, out of necessity, will need to be performed

numerically.
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Further studies on stable crack growth are needed to test the various

models currently in vogue. It is unknown as to which approaches will hold

valid under biaxial conditions. CTOD and Plastic Energy approaches have been

used for a limited number of biaxial problems. Many more studies in compari-

son with experiments must be made to establish the validity of any of the

modeling schemes.

Three-dimensional plasticity studies must be undertaken as the basic

problems involved in ductile fracture are inherently three-dimensional. Both

stationary crack problems and stable growth problems need investigation. With

the rapid refinement of the numerical tools available for these analyses,

fundamental studies with full three-dimensional models will soon be practical.
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