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Work under ONR Contract N#00014-84-K-0027 has pro-
gressed significantly during the past contract year
(11/1/83-10/31/84). The major emphasizes of the research
were in the areas of three-dimensional plasticity
characteristics in fracture specimens, mesh adaptive
slow crack growth modeling, experimental plastic zone
measurement and comparison with finite element results
and the characterization of fatigue crack growth in sur-
face cracked specimens. This work resulted in five com-
pleted publications and presentations (listed in Appendix
A) and three publications pending completion.

The research in the area of crack front plasticity
characteristics in three-dimensional fracture specimens
demonstrated that hardening modeling (i.e., kinematic,
isotropic, etc.) has a significant effect on the predicted
local deformation in the neighborhood of the crack front
even under monotonic loading. This result was demonstrated
for various thickness specimens and for two-dimensional
specimens under biaxial loading. This result suggests
that the assumption of local-global load proportionality
under monotonic loading with no crack growth is incorrect.
Further investigations are underway to investigate the
relation between the applied loading and the local deforma-
tion response. Subsequently the effect of specimen thick-
ness has been studied and, for center-cracked panels (with

through cracks), the results demonstrate that plastic




zones produced are not of plane-stress type even for very

thin specimens. The mid-plane zones in these specimens are

nearly plane strain type (as would be expected), however,

surface zones show distinctly mixed characteristics. The ;f?
results of these examinations were the subject of two papers

and a presentation. Appendices B and C are copies of these

papers and Appendix D contains copies of the abstract and

slides used in the invited lecture presented at the Fifth ‘
ASCE meeting referenced previously.

An experimental investigation of the local plastic
deformation produced in a three-dimensional fracture speci-
men was initiated to validate the finite element results.

A special LVDT probe was developed to measure the residual oo
surface deformation remaining after a fracture specimen fﬁﬂi
was unloaded. These measurements were compared quite
favorably to the finite element predictions. A maximum
deviation of 3% between the average experimental and ‘ 1
finite element predictions was obtained. This is the

first comparison between actual local deformation and

finite element predictions known to the authors and

validates the finite element approach. Average experimental
measurements were used for comparison as the measured dis- L_ﬁf

placements exhibited considerable scatter due to material

inhomogeneity, nonplanarity of the initial specimen surface
and lack of symmetry in the initial fatigue crack. A

complete summary of this work is presented in Appendix

23]

and will be the subject of a future publication.
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A new algorithm was developed for the computational
modeling of slow, stable crack growth in elastic-plastic
specimens. This algorithm convects the grid after each
increment of crack growth updating both the local geometry
and plastic state. The method has been applied quite
successfully to thin sheet panels which can be modeled
as two-dimensional plane-stress specimens. The results
of this investigation were presented as an invited lecture
at the 21st Annual Meeting of the SES referenced early.
The abstract and slides used at that lecture are given in
Appendix F. This work will be the subject of a future
publication.

An experimental evaluation of surface crack growth in
PMMA was initiated during this contract year. The main
conclusions of that study are that (in the absence of back

surface effects) arbitrary initial flaws will quickly obtain

an approximately elliptic shape, back surface influence was
Ri not observed until the crack had traversed 50% of the

& specimen thickness, cracks under the influence of the back
L’ surface grew very rapidly and as the crack approached the
back surface, typical through-crack characteristics were

- obtained (i.e., straight crack front, etc.). These results
% are elaborated upon in Appendix G and will be the subject
5 of a future publication.

- In summary, much work has been accomplished during the
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current contract year. The results have been compiled and

presented in both the open literature and as various invited

papers and lectures. In addition, a review paper on Biaxial

Loading Effects was prepared as an invited paper for a

Special Issue of the Journal of the Aeronautical Society of

India and is included as Appendix H. Further work is
planned in the area of local-global load relations and
surface crack growth characteristics. The majority of
effort in the future, however, will be in the area of
Creep Fracture-Mechanics. This understanding of this
field is vital to many areas of application and has not

been sufficiently studied to date.
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APPENDIX A:

PUBLICATIONS - UNDER ONR CONTRACT #N00014-84-X-0027
Fiscal Year 1984

1] "Biaxial Load Effects in the Mechanics of Fracture," ELAE
i E. T. Moyer, Jr. and H. Liebowitz. An invited paper
to appear in the Fracture Mechanics Special Issue of
the Journal of the Aeronautical Society of India
r& (March, 1985).
2] "Effect of Specimen Thickness on Crack Front Plas-
ticity Characteristics in Three-Dimensions," E. T.
® Moyer, Jr. and H. Liebowitz. Presented at the Sixth

International Conference on Fracture, New Delhi, India,

Snto o aa an,

December, 1984.
E 3] "A Mesh Adaptive Method for Modeling Slow Crack Growth,"
- E. T. Moyer, Jr. and H. Liebowitz. An invited lecture
: presented at the 21st Annual Meeting of the SES, VPI§SU, _
o Blacksburg, Virginia, October, 1084. -]
4] "The Effect of Biaxial Loading on Crack-Tip Yield Zones,"

E. T. Moyer, Jr. and H. Liebowitz. An invited lecture

® presented at the Fifth ASCE-EMD Specialty Conference,
Laramie, Wyoming, August, 1984.

5] "Plastic Deformation and Hardening Characteristics in

[y QLI

- Three-Dimensional Fracture Specimens," E. T. Moyer, Jr.
and H. Liebowitz. Proceedings of ICF International

Symposium on Fracture Mechanics (Beijing), an invited

® lecture, Beijing, China, November, 1983,
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APPENDIX B:

"Plastic Deformation and Hardening Characteristics in
Three-Dimensional Fracture Specimens,'" E. T. Moyer, Jr.
and H., Liebowitz. Proceedings of ICF International
Symposium on Fracture Mechanics (Beijing), an invited
lecture, Beijing China, November, 1983.
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ABSTRACT
\
;§jThe formulation for general three-dimensional small
strain plasticity analysis is presented. A finite element
computer code has been developed to carry out the analysis.
General hardening characteristics are included as an input
option to the program allowing for the study of a wide class
of materials.

An example through crack problem is solved employing
three different hardening assumptions (isotropic, kinematic
and mixed). The plastic deformation in the region of the
crack front predicted with each of the models is compared.
While the predicted results are similar, several fundamential
characteristics of each assumption can be observed. Residual
deformation zones are also calculated as a measure of the
extent of plastic deformation. The qualitative differences
between hardening assumptions are consistent betw;en the
plasticity measures allowing for direct comparison with

experimental observation.RT‘
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INTRODUCTION

The study of ductile fracture processes has been widely
discussed in the literature during the past decade. Theo-
retical, numerical, experimental and many combined studies
have been presented. Fracture criteria have been proposed
based on many controlling quantities (e.g., stress, strain,
energy, displacements, etc.) both on global and local scale
levels. Without exception; all of these criteria show a
marked thickness and geometry dependence limiting their
predictive capabilities. While some of the proposed criteria
have been successful at predicting certain fracture phenomena

for mildly ductile specimens, the geometry dependence of the

.controlling parameters makes application of these theories to

practical specimens extremely difficult. The purpose of this
study is to investigate the nature of the plastic deformation
near a three-dimensional stationary crack front~i; a ductile
material. Due to the three-dimensional nature of ductile
fracture, it is essential to accurately model the stress-
strain response for a-general three-dimensional crack problem.
The majority of the studies on the plastic deformation
near a crack are based on two-dimensional approximations.
While these studies are a necessary first step in the study

of ductile phenomena, several fundamental effects remain

~inadequately modeled. For specimens thick enough o be

modeled by plane-strain, ductility effects are usually not
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' § significant. Most engineering metals exhibiting significant

| plasticity effects are relatively thin. It is tempting,
therefore, for many applications, to employ a plane-stress

i' analysis. While the gross specimen behavior may be reason-
ably predicted with such an approach, the local effects near
the crack will not be adequately modeled. For linear elastic

r' materials it can be shown that the stress-strain state near a

;i crack front in three-dimensions- is essentially plane-strain

except at the intersection of the crack with a free surface

[1]. For problems involving plasticity, the incremental

r———

v v

deformations during loading will exhibit the same character-
istic behavior as an elastic body with an elastic modulus
equal to the instantaneous tangent modulus [2]. The local,
instantaneous response near an arbitrary crack front should

be one of plane-strain independent of the specimen thickness.

-iwrvvvvva
. »

A fully three-dimensional analysis must be employed, therefore,

to accurately model the local plastic response of a cracked

medium.

To examine the local deformation response of a three-

°

dimensional elastic-plastic crack specimen, a finite element
_ code was developed. The formulation employs an incremental Js
: flow theory of plasticity with an arbitrary, "Mixed" hardening
[

response. Two-dimensional studies have shown that different
materials exhibit different hardening properties that can be
load and geometry dependent. The generality of the hardening

law employed allows for user determined hardening input. The
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n initial code generated for this study assumes infinitesimal
‘ displacements and strains. The formulation is easily
modified, however, to account for finite strain effects.
i This will be the topic of a later study.
The program was tested on many problems of uniform
expansion and simple geometric configurations with analytic
r; (or quasi-analytic) solutions. These test runs facilitated

the debugging of the convergence algorithms and iterative
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AR _

§ tions.

after unloading.

.............

sensitive to the hardening law.

models to distinguish a preferred approach.

f routines. The present study focuses on a center-cracked

aluminum. The response assuming kinematic hardening,
isotropic hardening and a combined law is found. The results
demonstrate that the local yield effects are moderately

For the range studied, how-

ever, there is not significant enough differences between the

Since reverse

yield and cyclic loading have not been investigated, large
distinction between hardening models is not anticipated. The
JP similarity of the predicted results, however, serves as a

strong indication of the numerical consistency of ithe solu-

A comparison was made between the yield zones on the
free surface predicted at maximum load with the von Mises

stress yield criterion and the residual contractions predicted

Good correlation was obtained in that the

.....

...............
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yield characteristics predicted by both measures were

................

sheet made of an aluminum alloy similar in nature to 7075-T6751
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qualitatively similar., The predicted zones using the stress
at maximum load were larger than the residual contraction

zones as was expected. A contraction of 1.E-04 inches was

l
T :
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the smallest contour plotted as this is on the order of

resolution of both experimental techniques and the numerical f
results. While numerical correlations are purely qualitative

without experimental calibration, they do serve to demonstrate

the consistency and probable accuracy of the code and the :

mesh employed.

A companion experimental study is currently underway to ‘
compare the predicted yield characteristics with the experi- T
mentally observed deformations. The difficulty in any such
study is the necessity of achieving significant plastic
deformation without slow crack growth. The phenomena of
slow crack growth is an effect which must be modeled inde-
pendent of the deformation response. While slow growth is
undoubtedly controlled by the local deformation éiate, the
process is a fundamentally different physical failure
mechanism. The validity. of the plasticity model being
employed must be ascertained independent. of the fracture

characteristics of the specimen.

...........................................
..................................................................




SR AR Ban Jeche st Sem Bl Jate - Beet Sunar e B ¢ T T T -~ (L BnEn s e MM Jaeee Jant e e Mtfen Mbue Aas Jates AV Bae ha A fen 4 —%

r] CONTINUUM PLASTICITY FORMULATION

The goal of continuum plasticity theories is to provide
. a relationship between the incremental changes in deformation
and stress as a material undergoes irreversible deformation.
- Due to the complex nature of the deformation fields
' generally produced in a solid, most mathematical theories
attempt to extrapolate the phenomena observed in uniaxial
tensile tests to more complex stress states. While many such
formulations have been advanced, few provide constitutive
relations which are practical for analysis of complex struc-
tures. Confining the discussion to incremental plasticity
theories which are strain rate independent, essentially all
the theories currently employed differ only in the hardening
assumptions made and the choice of a yield criteria. The two

g

most widely accepted yield criteria are the von Mises (JZ)

criteria and the Tresca criteria. The Tresca criteria is

LRI

mathematically simpler to employ, however, the yield surface

;' exhibits singular points which are undesirable numerically.

i While these points can be handled with Lagrange multipliers

E [3], this approach renders the analysis as complex as the

L von Mises criteria. For most engineering fracture problems,
i

it is generally agreed that the von Mises criteria more

- accurately models a wider class of materials in more practical

applications than the Tresca criterion [4,5].

The incremental theory of plasticity employed in this

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
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work is based on the classical rate proportionality assump-
tions and Ja flow theory. While the mathematical details
vary with the choice of yield criteria, the salient features
of all incremental theories are the same. This discussion
will, therefore, be confined to the specific theory employed
in this work.

Assuming stress-strain rate proportionality and J2 flow
theory (which assumes the plastic deformations are incompres-

sible) the stress-strain rate relations can be written as

[6]

,
1 + v 3 - .
—E 813 t 7 f(oe) Sijoe O¢ = Ty ¢ >0
€ij = 1 (1)
\ l_ﬁ_ﬁ Sij Otherwise

where:

1. . . .
eij = eij T epp Gij are the deviatoric strain rate

components,
v is Poisson's ratio,

E is Young's modulus,

= .1 . .
Sij oij x °pp Gij are the deviatoric stress

components,

aij are the coordinates in stress space of the yield

surface center,
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! = s = . @ i 1
] Sij S1J a1J are the deviatoric stress components
measured relative to the current yield
center,
de = Y % Sijsij is the effective stress,
1 = 1 1] s 3 3
r’ O v % sijsij is the effective stress relative to the
»

current yield center,

oy is the current yield stress, and

- denotes time differentiation.

Due to the incompressibility condition, the hydrostatic strain
rate is proportional to the mean stress rate and is given by
. 1 - 2v
€ = o 2
PP E PP (2)
The function f(ce) is dependent on the uniaxial stress-strain
curve and will be discussed subsequently:. For a von Mises
(JZ) material, the center of the yield surface moves at a
rate proportional to the projection of the stress rate vector

onto the local normal to the current yield surface and can be

written as

...................
.....................................
............
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4
{| %(1 - B) Silékzsij/céz 0 = 9y &e > 0
’ aj; = 1 (3)
i 0 Otherwise
S

where B8 varying from 0 to 1 will model hardening behavior
from kinematic (B = 0) to isotropic (B = 1).
r; The function f(ce) is derived from the uniaxial stress-

strain curve. For an uniaxial specimen, equation (1) reduces

to
3. .2 = 2 (1 + \)) . .
Z(€axial = Stransverse) = I E 9o * £(0g) 0,0, (4)
in the plastic range. Thus, o
~
— 2 * _ o .
f((’e) - K(Eaxial Etransverse)/oece (s)
Invoking incompressibility (i.e., &, . . = -1 taxial)
A the function f(oe) can be written as
P f(oe) - eplastic/oece (6)

If the uniaxial stress-strain curve is expressed in a multi-

linear fashion as shown in Figure 1, the stress-strain rela-
tion is

o, %1 *2 m
€ = E + E_(o-l-oy) + E—-(O‘Z‘Gy) L E—-(O"Um) ' (7)

.......................................
.......................
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[i where o _; < 0 < op and ap is given by ] .;
: ]
. R
- ' Ede - Ao e
N _ m m N
k{ ®m " -__TEi;—__— (8) o

From equation (7), the plastic strain rate is given by

° 4
a o
° me

Eplastic N (9

and thus from (6)

am
£(0,) = Eo_ (10)

Equations (1), (2), (3) and (10) provide a complete set
. of elastic-plastic constitutive relations. Together with
the equilibrium equations and the strain-displacement rela-

tions, a governing system will be formed. It is important

to note that the constitutive formulation outline& above is
acceptable for finite as well as infinitesimal strains.

L Also of importance is the fact that this formulation is

i strain-rate independeni. This assumption appears to be

,2 realistic for most engineering metals at room temperature
é.' (or cooler). For high temperature problems a rate-inde-

pendent formulation is dubious.
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11
FINITE ELEMENT STRESS ANALYSIS

Equations (1), (2), (3) and (10) provide the fundamental
relationships between stress and strain rates. The equilib-
rium conditions (governing equations) for a continuum body
in the absence of body forces and inertia effects can be

written as
acijlaxj =0 (11)

with the boundary conditions

and (12

where Ti are the specified loading rates on the boundary
experiencing applied tractions (ST) and Gi are the velocities
specified on the remainder of the boundary (Su). Utilizing
the standard. strain-displacement relations*

€35 ~ %-(aui/axj + auj/axi) (13)

The details of the analysis will be limited to infinitesimal
strains for mathematical simplicity. The solution procedure
with finite strains is identical, however, the notational
complexities are considerable.
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i and either employing the Principle of Virtual Work for in-
crements of displacement or by performing the standard
Galerkin technique on the governing equations, (11) and (12),

| the finite element equations governing the nodal velocities,

U, can be written in terms of the loading rate vector, R, in

the form

ol K(U) - g - g = 0 (14)

The standard finite element assumptions made are given by

u=N-1U
€=B-U
o (15)
5 =DW < £
. :
K(Uj = 2: f BTD(U) B dA -
K elements element area
) where N are the shape funciions and- two dimensional analysis
has been assumed (as implied by the area integral). The set
of . vate equations (14) will be integrated one load increment
) (AB) at a given time to determine the corresponding new

displacement increment, Ag. The Newton-Raphson or tangent

stiffness solution procedure is employed. At load increment

) . L+ 1, the i itial solution AUj,; is found from

.............................................................................................
...........................
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i f
i K(UL) » 8Up,p = B8Ry (16)
The "new'" displacement is then used in the stiffness matrix, .
I 2 ]
K(UL + E AUi+1), and a new correction is obtained from
i=1 ]
/ n
TR D RS St
i=1 ]
)
m B
e i :
Up * E : AUL+a :
. i=1 -
"L g
5
~‘ - -4
' where the integral is approximated using Simpson's rule. The
procedure is repeated until two convergence criteria are met: B
]
| rit%lar |* < c ’
~L+1 ~L+1 1 ]
and (18) -
' i+l 2 |
Foer| /[RLe1| <G _i
o
where R4 is the total load at step L + 1. ?
| 1

.............................
........................

........

e T,

T S P O S aalata Ve At sl e e td
PRSI R BRSSP AE A P I AP I IR JIAINP NSNS ORI JNr Sar PR W WY A ERRE W .




PP ae

14

In this study, 20-node quadratic isoparametric elements

PP VR GO W S

were employed exclusively. All integration was carried out

utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.

P

‘ Strains were calculated a* the Gauss integration points in
each element from the strain-displacement relations of (13).
Stresses were cumulatively calculated at the Gauss points

from the stress-strain relations.
»l

Directly calculating strains and stresses from the finite
element relations (15) at points on element boundaries in-
herently yields poor results. This is especially true when
C0 shape functions are employed. A superior approach is to

calculate the stresses and strains at the Legendre quadrature
Ei points and to extrapolate or smooth them to the boundaries.

This approach has been shown to yield very accurate results

for a wide variety of geometric mappings. In this study the

o smoothing technique as developed in [7] is employed for all
stress and strain evaluatious. |
Currently, four methods of accounting for the crack tip
singularity are widely employed. - Each of these meihods is
based on an established technique in LEFM (Linear Elastic
Fracture Mechanics). - The first method, the enriched elewment
approach (where the shape functions are modified with the
asymptotic crack solution vanishing at the nodes) has been
employed both for the multilinear stress-strain models and
for power law hardening models [8]. Enriched elements based

on the power law hardening model assume that the enriched
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element is fully yielded. This assumption is physically
unrealistic, especially behind the crack tip. The singular
solution employed for the power law hardening case also assumes
a circular yield zone which is far from realistic. The solu-
tions generated using enriched elements and a multilinear
stress-strain assumption are reasonably accurate providing a
judicious choice of enriched element size and surrounding

grid characteristics is made. The major drawback to the use
of enriched elements is the computation time required tc obtain
convergence due to element incompatibility. The second method,
the most basic approach, uses a very fine mesh near the crack
tip and employs only conventional elements. This method pro-
duces reasonable results far from the crack regioun but ques-
tionable local results. Convergence is usually rapid, there-
fore, gross specimen behavior cvan be obtained quickly. With
unrealistically fine grids, good local results can be obtained
(except in the elements bordering the crack tip) But only at
the expense of computer iime [9]. The third method is based

on the fact that if isoparametric elements are chosen with
midside nodes, judicious choice of the placement of these

nodes results in the inducement of a /T term iu the displace-
ment shape functions (10, 11]. These elements are essentially
equivalent to enriching the shape functions, however, element

compatibility is preserved resulting in faster convergence.

" The fourth technique of modeling crack tip behavior is through

the use of hybrid elements wherc elements borderinug a surface
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with traction boundary conditions are forced to satisfy those
conditions exactly and the elements bordering a surface with
displacement boundary conditions are also forced exactly. The
element boundaries are then matched by using Lagrange multi-
pliers in the variational equations to ensure element equilib-
rium and continuity in an approximate sense. Little work has
been done on comparisons of hybrid methods to conventional
methods in elastic-plastic crack problems, however, the tech-
nique was applied with questionable success in [12]. The
preferred method in the literature is still to use a very fine
mesh and standard elements. Complete discussions of the above
methods can be found in [13-15].

In this study, only conventional 20-nude elements are
employed. Studies on linear elastic through-crack specimens
has demonstrated the accuracy of this approach for predicting
local stress responses. Since the details of the local
singularity are unknown in the plasticity case, tgis approach
is the most likely to delineate the characteristics of the
numerical solution without the influence of singularity
assumptions. The grid employed is shown in Figures 4a, 4b
and 4c. The accuracy of the results predicted by this grid
are discussed in [16] for the linear elastic case. The choice
of grid characteristics is based on the convergence study
cited above. Since there are no known three-dimensional
elastic-plastic bench mark solutions available for comparison,

linear convergence studies appear to be the most reliable
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indicator of mesh accuracy. Few numerical solutions have been
presented in the literature for three-dimensional elastic-
pPlastic crack problems. The studies that have been done have
been limited to initial stress approaches (e.g., [17]) or de-
formation theory approaches (e.g., [18]). These were severely
limited in grid density due to computational restrictions,
therefore, no comparison has been attempted. The computational

requirements of the present approach are extreme and will be

discussed subsequently.

‘
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r‘ PROBLEM DESCRIPTION AND FINITE ELEMENT MODELING

The problem chosen for study is that of a center-cracked
i plate with a through crack. The plate has dimensions of 7
, inches in length, 3.5 inches in width with a thickness of .5
inches. The applied load is assumed to be normal to the crack
{; orientation as shown in Figure 2 (i.e., Mode I loading). The
material properties chosen are typical of many aluminum alloys.

The assumed elastic properties are

E = 10.5 E + 06 PSI
v = 0.3
°y = 59,00 E + 03 PSI -

The uniaxial stress-strain curve models the behavior of 7075-

T7651 aluminum. A trilinear approximation is employed in the

analysis. Both a typical experimental.curve and the trilinear
approximation are shown in Figure 3. The effect of hardening
behavior modeling is studied by varying the hardening

® parameter B, defined in equation (3). Isotropic hardening

(B = 0), kinematic hardening (B = 1) and a mixed state

(B = 0.5) were modeled.

T T 'v. vy .

The finite element grid employed consists of 96 20-node
isoparametric elements with quadratic shape functions. No
"singular' elements are employed due to the unknown nature of
ré the crack front singularity in plasticity. The grid is shown

in Figures 4a, 4b and 4c. Computationally this grid is

....................................................
.............................................................................
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extremely expensive. The convergence studies cited previously
have demonstrated the advantages and desirability of this
approach. The grid has 1872 total degrees of freedom and
requires approximately 1 hour and 13 minutes of CPU time on a
VAX-11/780 to complete each iteration. Where significant
plasticity occurred, extreme runtimes where required (often
on the order of several days). While the current approach is
believed to be very accurate and reproducing the necessary
resolution to accurately describe the three-dimensional
elastic-plastic crack phenomena, the complexity of the calcu-
lation and extreme computational requirements should be
appreciated at the outset. Three-dimensional elastic stulies
have indicated that these computational requirements.are
necessary for accurate solution [7]. It is dubious that
simpler approaches will be able to predict the local fields

with any degree of confidence.
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RESULTS AND DISCUSSION

The yield zones predicted at the maximum load for each of
the three hardening models were calculated and plotted both on
the free surface and on the midplane. The stress components
were calculated in each element at the quadrature points and
interpolated to the surfaces using the technique discussed
previously.

Figure 5 is a plot of the von Mises stress contours pre-
dicted on the free surface at the maximum load assuming an
isotropic hardening law. The maximum plastic radius predicted
is 0.541 inches. The extent of the plastic zone ahead of the
crack tip is 0.169 inches, predicting a €fairly rotund zone.
Figure 6 is a plot of the von Mises stress contours predicted
on the free surface with a kinematic hardening model. The
maximum plastic radius of 0.524 inches and crack line extent
of 0.148 inches are both significantly less than Eredicted
with isotropic hardening. The results assuming a mixed haw-
dening model are shown in Figure 7. 7The maximum plastic radius

} of 0.544 inches is almost identical to the isotropic model.
The crack line extent predicted, however, is much less than
those predicted with either a kinematic or isotropic model.
The predicted zone is much narrower thaa the other models
demonstrate. It is unknown whether this phenomena is due to
the inaccuracies of the numerical results or the physical

assumptions. The narrower predicted yield zone is consistent
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with the dilatant stress field anticipated in front of the
crack.

Figure 8 is a plot of the von Mises contours predicted on
the midplane at the maximum load with an isotropic hardening
model. As expected, the zone is smaller than the surface zone.
The yielding along the crack line is, however, almost identical
to the surface prediction. Figures 9 and 10 show the predicted
midplane zones for the kinematic and mixed hardening assumptions.
In both cases, the yielding extent ahead of the crack tip is
very close to that predicted on the surface. The differences
between the maximum radii of the predicted midplane zones are
less than the surface zones. This phenomena is consistent wiih
the smaller amount of-plasticity and the nearly plane-strain
conditions on.the midplane.

One approach to predicting the extent of plastic deforma-
tion is to measure or calculate the amount of surface contrac-
tion.or residual deformation on the surface afteruthe specimen
has been unloaded. Inside the plastic region measurable
residual deformation should exist. Figure 11 is a plot of the
surface contraction predicted after the specimen was unloaded
to zero applied load assuming a kinematic- hardening modei.
Contraction contours of 1.E-04 inches to 5.E-04 inches are
shown. The lowest contour plotted (1.E-04 inches) is on the

order of the deformation resolvable in the laboratory and is

~also on the anticipated accuracy of the finite element method

being employed. The predicted plastic region is smaller than
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that predicted by the von Mises stress measure discussed above
(Figure 6). This is not unexpected as the stress criterion is
more sensitive to minimal plastic deformation. The yielded
extent predicted ahead of the crack tip is larger, however,
than predicted above. The deviation from a dilatational
stress state ahead of the tip will be detected sooner by the
residual deformation than by the effective stress (a large
deviatoric stress field must be present to create a von Mises
stress larger than the yield stress whereas any deviation in
the neighborhood of a significant residual field will cause
surface contractions). Figures 12 and 13 are plots of the
surface contours predicted with isotropic and mixed hardening
models. Consistent with the von Mises stress predictions, the
zones with an isotropic model are larger than those predicted
with any of the other models. The mixed hardening model pre-
dicts zones which are similar to the isotropic zones with less
yielding directly ahead of the crack tip. All thfee models
demonstrate more residual deformation ahead of the tip than

would be expected from the stress results.
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CONCLUSIONS

The finite element formulation for general three-dimen-
sional elastic-plastic bodies undergoing infinitesimal deforma-
tion has been presented. A computer code has been developed
and an example crack problem was solved with three widely
employed hardening models. The crack front yield zones pre-
dicted are very similar in size and shape. For many applica-
tions, the differences may be negligible. Significant varia-
tion in crack line extent yielding and surface curvature was
discovered. It is unknown at present as to which model will
more accurately describe different metals of interest to
engineers. The predicted differences are so slight, however,
that full three-dimensional experimental studies will be
needed to discern a valid model for specific applications.

To compare theoretical and experimental predictions, it
is proposed to measure the residual deformation oﬁ the surface
of the specimen in the unloaded state. The theoretical study
presented above demonstrates that the finite element predic-
tions are qualitatively realistic and sensitive tu hardening
characteristics. Comparison with experimental results will
delineate the grid characteristics and hardening models which
best model specific geometric and material applications.
After successful '"tuning" of the finite element model, a com-
plete description of the stress and energy state in a cracked

body can be predicted with confidence. Once fully three-
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(| dimensional stress fields are predicted, ductile failure
theories can be tested and skeptically compared without the

bias of unrealistic analytical approximations.
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EFFECT OF SPECIMEN THICKNESS ON CRACK FRONT PLASTICITY
CHARACTERISTICS IN THREE-DIMENSIONS

E. Moyer, Jr. and H. Liebowitz

School of Engineering and Applied Science, The George
Washington University, Washington, D.C.

ABSTRACT

A finite element investigation of the effect of thickness on plastic defor-
mation and vielding characteristics in three-dimensional cracked bodies is
presented. It 1is shown that the fundamental deformation modes and extent of
plastic deformation are significantly influenced by the specimen thickness.
The results show the transition from a local plane strain to plane stress
response near the crack front as the specimen thickness is decreased. While
the results are generated for a specific aluminum alloy (7075-T7651), the
predictions for other hardening materials would be qualitatively the same.

KEYWORDS

Nonlinear finite-element calculations, plastic deformation, three~dimension-
al crack specimens, incremental analysis.

INTRODUCTION

O0f fundamental importance to the accurate fracture assessment of components
and structures made of metals is the studv of ductile fracture processes and
the plastic response near a crack. The basic deformation response near the
crack front must be resolved accurately for reliable predictions. Fracture
criteria have been proposed based on many controlling quantities (e.g.,
Stress, strain, energy, displacements, etc.) both on global and local scale

levels. Without exception, all of these criteria require accurate local
deformation modeling.

To understand the scale shifting effects from the laboratorv specimen to the
structural component, it is imperative to discover the effects of specimen
thickness on the deformation response. This problem is an essentially
three-dimensional one and must be investigated accordingly.

The purpose of this investigation is to delineate the effect of specimen
thickness on local crack front vielding characteristics in a cracked speci-~
men. The three-dimensional elastic plastic finite element code developed in
[1] is employed for the analysis. Specimen thicknesses investigated range
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from well bevond ASTM plane-strain requirements to thin
The vield zones calculated in this work demonstrate the
latational to distortional dominance ahead of the crack

sheet dimensions.
transition from di-
tip as a function of

thickness (equivalent to a transition from plane strain to plane stress).
The magnitude as well as the extent of yielding 1s shown to be highly thick-
ness dependent. The results of this study also demonstrate that two-dimen-
sional analvsis based on plane strain (for thick specimens) or plane stress
(for thin specimens) can fail to accurately model the local response when
simple standards would dictate otherwise.

PLASTICITY FORMULATION

The incremental theory of plasticity employed in this work is based on the
classical rate proportionality assumptions and J, flow theory. While the
mathematical details vary with the choice of yiezd criteria, the salient
features of all incremental theories are the same. This discussion will,
therefore, be confined to the specific theory employed in this work.

Assuming stress strain rate proportionality and J, flow theory (which
assumes the plastic deformations are incompressibze) the stress-strain rate
relations can be written as [2]

[P S SOOI SR N LA DY SN S O

.

i

1 + v e 3 ' . {

+ = =0 ;0 >0 :

) £ Sy; T 7 f(0) 84,0, 9, =9 9, ;

- 1 -

1+ v )

E Sij Otherwise :

{

where: }
é.. = é . —-l é 6,. are the deviatoric strain rate cumponents,

ij ij 3 “pp 1]

v is Poisson's ratio,

E is Young's modulus,
1

S,,=0,, ~— =0 &, .

13 13 3 "pp ij

aij are the coordinates in stress space of the yield surface center

are the deviatoric stress compomnents,

PCICAG §

Si. = Sij - aij are the deviatoric stress components measured relative !
J - to the current yield center, 1
3 S
g =y = |
e 7 Sijsij is the effective stress, oy
3 - i
¢! = v 5 5..S!, is the effective stress relative to the current yield ‘
e 2 13743 {
centet, )

Oy is the current yield stress, and

* denotes time differentiation.

Due to the incompressibility condition, the hydrostatic strain rate is pro-
portional to the mean stress rate and is given by

. 1 -2V
€ s —— g
2% E PP

The function f(ce) is dependent on the uniaxial stress-strain curve and will
be discussed subsequently. For a von Mises (J,) material, the center of the
vield surface moves at a rate proportional to the projection of the stress
rate vector onto the local normal to the current yleld surface and can be
written as

(2)
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ajy = (3)

0 Otherwise
where B varying from 0 to 1 will model hardening behavior from kinematic
(€ = 0) to isotropic (B = 1).

The function f(0 ) is derived from the uniaxial stress-strain curve. For a
uniaxial specimen, equation (1) reduces to

%(éaxial - étransverse - %.(l—%%lb &e * f(ce) ceée (4)
in the plastic range. Thus,

f(de) B %{éaxial - étransverse)/oeée )
i?g:§izgniggo$¥§iizibiiity (L.e., étransverse = - %-éaxial)’ the function

f(oe) = g:plast:ic/oec}e (6) )

If the uniaxial stress-strain curve is expressed in a multilinear fashion,
the stress-strain relation is

g 0‘l % OLm
e=g+ E—(cl—cy) + E—(oz-Oy) t ..o+ g (0-0) (7N
where cm—l < g < Om and am is given by
EAsm - Acm
%n T '_'EEZI"_' (&)

From equation (7), the plastic strain rate is given by

. OLmée
€plastic T TE (9
‘ and thus from (6)
i o
£(0,) = Fo- (10)
e

{ Equations (1), (2), (3) and (10) provide a complete set of elastic-plastic
o constitutive relations. Together with the equilibrium equations and the
strain-displacement relations, a governing system will be formed. It 1is
important to note that the constitutive formulation outlined above is
acceptable for finite as werl as infinitesimal strains. Also of importance
is the fact that this formulation is strain-rate independent. This assump-
tion appears to be realistic for most engineering metals at room temperature
® (or cooler). For high temperature problems a rate-independent formulation
is dubious.
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Equations (1), (2), (3) and (10) provide the fundamental relationships be-
tween stress and strain rates. The equilibrium conditions (governing equa-
tions) for a continuum body in the absence of bodv forces and inertia
effects can be written as
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30,,/3x, = 0 (11) _
13773
with the boundary conditions
6ijnj = ii on ST f*’i
and . 2 (12) ;;.E
u; = u, on Su

where T are the specified loading rates on the boundary experiencing applied .
* -
tractions (S;) and u, are the velocities specified on the remainder of the

boundary (Suf' UtilIzing the standard infinitesimal strain-displacement
relations h

21
Eij = 2(Bui/ax
and either employing the Principle of Virtual Work for increments of dis-
placement or by performing the standard Galerkin technique on the governing
equations, (11) and (12), the finite element equations governing the nodal
velocities, g can be written in terms of the loading rate vector, R, in

j + 3uj/3xi) (13)

the form
KU) + U -R=0 (14)

The standard finite element assumptions made are given by
u=N-+*U "
SR (15) .
S=p - ¢ B

T S

K(U) = z / B'D(U) B dA 1

elements element volume ~

where N are the shape functions. The set of rate equations (14) will be in-
tegratéd one load increment (AR) at a given time to determine the corre- -
sponding new displacement increment, AU. The Newton-Raphson ov tangent ’
stiffness solution procedure 1s employed as described in [3].

. s a A e_a

PROBLEM DESCRIPTION

To study the effects of specimen thickness on the yielding characteristics
of typical fracture specimens, a finite center-cracked plate was chosen for
investigation. The standard mode I configuration shown in Fig. 1 was
analyzed for total thicknesses of

2T e 2,54 cm 2T = 1.27 em

2T = 6.35 mm 2T = 3.175 m . t.
The material investigated was a 7075-T7651 aluminum alloy with elastic pro- e
perties

E = 7.24 E+04 MPa

v =203

cy = 4,07 E+02 MPa

The uniaxfal stress-strain curve is shown in Fig. 2.
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Fig., 2. Uniaxial stress-strain curve for 7075-T6751 aluminumn.

The finite element discretization employed in the analysis utilizes 20-Node
quadratic isoparametric elements exclusively. A fine mesh near the crack
front is employed for accurate modeling. The grid characteristics and con-
vergence properties are discussed in [1,4]. The maximum load applied was

o) = 1.77 E+02 MPa
max

A hardening parameter of B = 0.5 was also assumed in the analysis.

RESULTS AND DISCUSSION

The yield zones predicted at the maximum load for each of the four thick-
nesses studied were calculated and plotted both on the surface and midplane
of the specimen. The results demonstrate the significant influence thick-
ness has both on the nature and extent of the yielding.
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Figure 3a is a plot of the von Mises stress contour corresponding to the
specimen yield stress calculated at the maximum load on the surface of the
2.54 cm thick specimen. As expected for a thick specimen, this zone has the
characteristic form of a plane strain yield zone (i.e., minimal yielding
ahead of the crack tip and a very upright yield zone). The maximum extent
of yielding is 30.7% of the half crack length which is consistent with the
small strain assumptions made in the analysis requiring contained yielding.
Figure 3b is a plot of the surface zones for a specimen with total thickness
of 1.27 cm. The yield zone is slightly wider (more rounded) with this
thickness. The maximum radius is now 32.7% of the half crack length and the
vielding ahead of the tip has increased (though it is still small). The
zone still maintains the basic plane strain characteristics at this thick-
ness.

Figure 3¢ shows the surface yield
zone for a specimen with thickness of
6.35 mm. The zone is now much wider
with a larger maximum radius and
yield extent ahead of the tip. The
zone no longer exhibits the plane
strain characteristics but is in
transition between plane strain and
plane stress. Figure 3d is a plot of
the surface yield zone for a specimen
with total thickness of 3.175 mm.

The zone is significantly more
rounded thau any of the previous r/a = .045
zones with a larger maximum radius
and yield extent, The maximum yield
radii and extent of yielding ahead

of the crack tip for the four thick-
ness surface zones are given in

Table la. These yield parameters
both increase with decreasing thick-
ness as was expected. The final

zone at a thickness of 3.175 mm has !
the rounded characteristic of a

plane stress yleld zone. The direc-
tiou of maximum yielding, however,

is still a fairly large angle rela-
tive to the crack line suggesting

some influence of dilatation.

Though for this problem (with a
relatively small amount of plastic
deformation present) the difference Fig. 3b. Surface yield zones for
between the maximum radii is not specimen with 2T = 1.27 cu.
large, the nature and extent of

yielding ahead of the crack tip show a large dependeice on the specimen
thickness,

Fig. 3a. Surface yleld zones for
specimen with 2T = 2.54 enm.

r/e = ,07S

Figure 4a is a plot of the von Mises stress contour corresponding to the
material yield stress on the midplane of the 2.54 cmm thick specimen. The
zone is typical of plane strain zones and is smaller than the surface zone
for the same thickness specimen. The shape of the zone with a minimal ex-
tent of yielding ahead of the crack tip suggests high dilatation in that
region. The midplane zone for the 1.27 cm thick specimen is shown in
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Fig. 4b. The zone 1s larger than that
of the thicker specimen, however,
there is still minimal yilelding ahead
of the tip. The angle of maximum
yielding is more acute than in the
thicker specimen. The stress state,
however, would still be characterized
by plane strain.

i ga e man ane st saery

Figure 4c shows the midplane yield
zone for the 6.35 mm thick specimen.
The zone is considerably wider and
more rounded than for the thicker
specimens. It shows characteristics
of both plane strain and plane
stress zones suggesting a region of
transition. Figure 4d is a plot of
the midplane yield zone for the
3.175 mm thick specimen. The zone
is basically a plane stress zone
and is larger than for the thicker
specimens. The maximum yield radii
and radius of yielding ahead of

the crack tip on the specimen mid-
planes are given in Table 1lb. Both

Fig.

3e.

Surface yleld zones for
specimen with 2T = 6.35 mm.

increase with decreasing thickness
as was expected. In all cases, the
midplane yield zones are smaller

than the surface zones.
Fig.

3d.

Surface-yield zones for
specimen with 2T = 3,175 mm.

r/a = ,039

Fig. 4a. Midplane vield zones for

specimen with 2T = 2,54 cm.

Fig. 4b.

r/a = 0,071

Midplane yield zones for
specimen with 2T = 1.27 cm.

) |
-

r/a = ,193

Fig. 4c,

Midplane yield zones for
specimen with 2T = 6.35 mm,

Fig. 4d.

r/a = 288

Midplane yield zones for .
specimen with 2T = 3,175 mm.
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TABLE la Yield Radii as a function TABLE 1b Yield Radii as a Function of
of Thickness for Surface Thickness for Midplane Yield

Yield Zones. Zones.
Thickness “oax/a Tola Thickness Tmax/a Fo/a
T = 2.5 cu 0.307 0.045 T=25cm 0.260 0.039
T-1.27 o 0.327 0.075 T=1.27cm 0.280 0.071
Te6.35m 0.331 0.205 Te=6.35m 0.283 0.193
Te3175 0.343  0.296 Te=3175m 0.299 0.288
r -+ maximum yield radius T + yield radius along crack line
max
CONCLUSIONS

The results of this study demonstrate the thickness dependence of the yield
zones near a crack front on specimen thickness. It is shown that both the
extent of plastic deformation and the dominance of deformation type ({i.e.,
dilatation or distortion) are controlled by the thickness. The nature of
the deformation is fundamental to the understanding of the incipient frac-
ture processes. The delineation of the fundamental deformation response
near a three-dimensional crack front is an imperative first step in the
understanding and accurate prediction of ductile fracture processes.

To further the understanding of ductile fracture, it is necessary to compare
theoretical and experimental deformation predictions local to the crack
front. Only through such comparisons can an assessment be made of the
accuracy and reliability of the numerical methods for plastic analysis. To-
ward this goal, it 1s proposed to measure the residual deformation on the
surface of the specimen in the unloaded state. The theoretical study pre-
sented above demonstrates that the finite element predictions are qualita-
tively realistic and sensitive to specimen thickness. Comparison with ex-
perimental results will delineate the grid characteristics and hardening
models which best model specific geometric and material applications. After
successful "tuning" of the finite element model, a complete description of
the stress and energy state in a cracked body can be predicted with confi-
dence. Once fully three-dimensional stress fields are predicted, ductile
failure theories can be tested and skeptically compared without the bilas of
unrealistic analytical approximations.
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APPENDIX D:

"The Effect of Biaxial Loading on Crack-Tip Yield Zones,"
E. T. Moyer, Jr. and H. Liebowitz. An invited lecture
presented at the Fifth ASCE-EMD Specialty Conference,
Laramie, Wyoming, August, 1984.
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THE EFFECT OF BIAXIAL LOADING ON CRACK TIP YIELD ZONES

E. Thomas Moyer, Jr.* and Harold Liebowitz**

Adcd b ok

subject of much research in the past. Its influence on crack arowth
characteristics, fracture strength and ultimate load capacity has been
investigated both theoretically and experimentally for thin sheet spec-
imens made of relatively brittle material [1]. The purpose of this

- study is to investigate the influence of a biaxial load component on 4

ol the crack tip yield zones in a relatively ductile, plane strain speci-
men. Many applications require an understanding of the deformation in
a relatively thick specimen made of ductile materials.

L
\
:
FI The existence of a biaxial far-field stress component has been the
L

The problem chosen for investigation is a square, center-cracked

panel shown in Figure 1. The crack-length to width ratio is 0.5. The
o material properties chosen model a class of very ductile aluminums in
the 6061 family. The true stress-strain curve and the associated
material properties are shown in Figure 2. A bi-linear approximation
has been assumed for the hardening features of the curve. The normal
applied stress (Uym) was held constant in the analysis and biaxial

()

1oad ratios (k = 553) of 0.0, 0.2, 0.4, 0.6, and 0.8 were investi-

2 - -

—a

2

14
NN SR

—a

gated. Two values of the normal applied stress were tested, o <= S,/3
and o, = 0.45 x S_. y y

ye Yy

The analysis employed a two-dimensional incremental plasticity
approach which accounts for large plastic strains, finite deformations
and mixed hardening. J-2 Flow theory plasticity with a von Mises yield
criterion was assumed. A Newton-Raphson finite element solution was
generated using the code develoned in [2]. Convergence was assured by
employing local and global force balances and by using an Updated-
Lagrangian approach for the finite displacements.

,, ,.‘_
e il a4 matate e

Figure 3 shows the von Mises stress corresponding to the initial
yield stress for an applied normal stress of o = Sy/3 and a biaxial

load factor k = 0.0. It is typical of plane strain yield zones.

Figures 4-7 show the near tip yield zone with the same applied normal -
stress due to increasing biaxial load factor (k = 0.2,0.4,0.6,0.8). !
The increasing biaxial load has the effect of reducing the amount of
local plastic deformation. This will cause a more brittle qlobal re-

sponse.

PR TPRY DT N  SPRS

*Senior Research Engineer '3375
**Dean, School of Engineering and Applied Science, The George ’
Washington University, Washington, D.C. 20052. b
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The same effect can be observed for larger applied normal stress
values. Figure 8 shows the near tip yield zone for an apolied normal
stress of ¢ w=.45 X Sy and a biaxial load factor k = 0.0. Fiaqures 9-12

show the near tip yield zones with this larger applied normal stress
due to increasing biaxial load factors (k = 0.2,0.4,0.6,0.8).

The decrease of plastic deformation with increasina biaxial load
factor should be expected since the addition of biaxial loading will
increase the local dilatational component of the stress field and de-
crease the distortional component which causes plasticity. Since the
response to larger biaxial load factors is more brittle, specimens
under biaxial loading should fail at lower load levels than those
without biaxial loading. The ductility of a cracked specimen, there-
fore, is strongly dependent on the nature of the loading. Increased
biaxial loading tend to render a specimen more brittle.
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PLASTIC AREAS (A/A,..) :
MAX -
1
a =S /3 g = 0.45 3 !
yo ~ Sy ye Sy
o
.0 0.564 1.000
.2 0.256 0.641 :
.4 0.205 0.385 'i
.6 0.179 0.308
.8 0.154 0.205 ’ ‘}
-2 2
= 6.314 x 10
AMAX 6.314 x a |
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O e SY/S
‘ l k=0. |k=0.2 |k=0.4 k=0 k=0
%max/a | 6.312 0.222 0.187 0.171 0.160
{ : o 73e 73° 77° 73° 76°
cy°° 0.45 Sy
i k =0 k=0.2 |k=0.4 k=0 k =0
kmax/a 0.530 0.431 0.348 0.301 0.229
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MATERIAL ~ 6061 ALUMINUM

m
]

10.5 x 10° psI

[72]
]

43.6 KSI

v = 0,33

ANALYSIS

1] J2 Flow Theory

2] Incremental Solution

3] Newton-Raphson Iteration

L] Updated Lagranaian Approach
¢ 51 Finite Strain Theory
° 6] Model Converaence By Mesh Reduction
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APPENDIX E:
) PLASTIC ZONE MEASUREMENTS AND COMPARISON ]
L WITH FINITE ELEMENT RESULTS ]
The size and the shape of the plastic zone at the crack E
I tip was measured on a center-cracked specimen with width ‘
8.89cm and crack length-to-width ratio 0.5. The material
used was an aluminum alloy 7075 in overaged condition
r; (T7651). The zone size was determined by measuring the
permanent reduction in thickness after the specimen was ;
unloaded. The contours of the plastic zones were determined _ i
:. using a surface profile measuring device. The sensor of T
" which consisted of a stylus attached to a thin litanium
alloy sheet on which strain gauges were mounted to form a
C four arm bridge circuit. .
- The specimen was also studied by the finite element
i; method. The grid described in Appendices B and C was used
hj to predict the local crack front deformation on unloading. » 1
E‘ The program described in these papers was utilized. It :
; employs 20-node isoparametric elements as the main struc-
ﬁ- tural element, J-2 Flow Theory Plasticity and an iterative )
Ei Newton-Raphson computational procedure. The results are
E; compared with the experimental measurements below.
'Y The results of the measurement on the four crack-tip

regions on the surfaces are shown in Figures 1 to 4 for

te aslale 4 ao

depths 0.0051, 0.0102, 0.0152 and 0.0203mm respectively.

The results show that there is scatter in the data obtained 4

from the four zones; however, the averaged values agree

.................................................
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: well with the results obtained from the finite element ]
!. analysis (shown as a solid line in the Figures).

i:'

- Although the resolution of the sensor is very high

Ei and is limited only by the extent of amplification of

the signal, errors can be introduced due to any nonplanarity
of this initial specimen surface and slight variations in
the pressure applied on the micrometer screws while ad-
vancing manually. The variation in pressure can cause an
error of approximately 0.0001in. The planarity of the
surface was checked initially before deforming the specimen.
The size may not be indentical for all the four zones
measured in one specimen. This may be caused by the lack

of perfect symmetry in the fatigue crack growth on both
sides and by the nonhomogeneity of the material. The
measurement of the four zone sizes and averaging the results

reduced the errors introduced by these factors.
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"A Mesh Adaptive Method for Modeling Slow Crack Growth," B
E. T. Moyer, Jr. and H. Liebowitz. An invited lecture j
presented at the 21st Annual Meeting of the SES, .
VPI§SU, Blacksburg, Virginia, October, 1984. S
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A MESH ADAPTIVE METHOD FOR MODELING SLOW CRACK GROWTH

by

E. Thomas Moyer, Jr. and Harold Liebowitz
School of Engineering and Applied Science
The George Washington University
Washington, D.C. 20052

The accurate modeling of slow crack growth requires the coali-
tion of a careful stress analysis, a consistent crack growth
criterion (or constitutive relation) and a numerical scheme which
continually redefines the crack position and size. The numerical
scheme employed must account for the local unloading and stress
redistribution near the crack during the growth process.

Traditionally, the numerical schemes used to simulate crack
growth either did not address the local unloading [1] (accurate for
very low load levels only) or required a mesh density such that the
crack tip element size corresponded exactly to one growth step
(e.g., [2]). Other, more recent models employ springs at nodal
points whose stiffness can be relaxed during the growth process
(e.g., [3]). This approach has yielded extremely limited success
and requires a nodal spacing consistent with the growth incrementa-
tion. The major drawback the methods employed to date is that the
growth incrementation must be known a priori. Much of the work
also couples the crack growth criterion and the mesh spacing into

the same model making assessment of the validity of either impos-
sible.

A new method is presented in this work which alleviates the
drawbacks of the schemes described above. A standard elastic-
plastic stress analysis is performed to the load at the initiation
of crack growth. The load is then increased slightly. The amount
of crack growth is then predicted corresponding to the current load
level (the method will work with any fracture criterion). The near
crack mesh is convected to the new location of the crack tip. The
stress along the new section of crack is relaxed to zero and an up-
date is made in the stress analysis. Finally, the new stress state
is extrapolated to the current grid geometry. The process 1is
repeated for each Increment of crack growth.

An example problem in 2-dimensions is considered. A thin
(.0625 inch) 2024 aluminum panel with a central crack is loaded
uniaxially. The experimental Load vs Crack Growth curve is used
to dictate the crack growth incrementation (this approach tests the
validity of the numerical method independent of the fracture crite-
rion). The load-displacement relation is predicted by the numerical
method and compared to the experimental record. Three refinements
of crack incrementation are employed to assure convergence. The
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results show good agreement with the experimental load-displacement
record.

By employing the technique described above, it is possible to
test various fracture criteria for slow crack growth. These
studies (to be reported subsequently) allow for a separation of
numerical and mechanical growth modeling which is essential for .
delineating the validity of predicted results.

While the example presented in this work is 2-dimensional, the
method will apply equally well in three-dimensions. Since larger,
high order elements are employed, crack growth studies in 3-dimen-
sions should be possible with current computer resources. The ex-
tension of nodal force release techniques to 3-dimensions requires
far to many elements (for accurate modeling) to be solved with
today's resources.
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APPENDIX G:
SURFACE CRACK GROWTH IN FATIGUE

An experimental evaluation of the surface crack growth
in PMMA (Plexiglass) in tensile fatigue loading has been
made. Fatigue crack growth in specimens of thickness
ranging from 12.52mm to 25.4mm and width ranging from
50.8mm to 88.9mm was measured. The changes in the rate of
growth and the shape of a crack when initiated from a flow
and their dependence on the specimen width and thickness
were studied.

From the test results (Figures 1-3) the following

characteristics of crack growth were observed:

1. Regardless of the shape of the initial flaw, the
crack grew into an approximately elliptical shape before
the influence of the back surface affected crack growth.

2. The influence of the back surface was not observed
until after the crack grew through 50% of thickness, after
which the crack growth in the direction normal to the sur-
face slowed down rapidly distorting the elliptical shape
of the crack front. This trend was common to all thickness
studied.

3. Once the crack penetrated the back surface, it
grew rapidly at the back surface approaching the shape of
a straight through crack. However, the acceleration did

not occur until it had grown through about 95% of the

thickness.
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4. The pattern of crack growth suggests that the .

determination of stress intensity in the thickness direc-

tion alone or the assumption of the equivalency of a ;
B through crack for fatigue life prediction (as done by several o
investigations) in insufficient in crack growth estimation.
5. Unlike in ductile metallic materials, in PMMA the
(‘ crack front near the surface was essentially perpendicular -
‘l
to the surface.
| 6. No effect of the width change was observed in the
; ranges examined. .
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APPENDIX H:

"Biaxial Load Effects in the Mechanics of Fracture,"
E. T. Moyer, Jr. and H. Liebowitz. An invited paper
to appear in the Fracture Mechanics Special Issue of
the Journal of the Aeronautical Society of India
(March, 1985).
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ABSTRACT -

This paper reviews the current literature on the effects of biaxial
loading on the fracture behavior of materials and structures. Emphasis is
given to the fundamental results found in the literature (both theoretical
and experimental). A brief survey of the applications literature is also
made. Areas where further research is needed are delineated and recommenda-

tions for future studies are proposed.
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INTRODUCTION -

The importance of studying the effects of biaxial loading on the fracture

behavior of materials and structures has been recognized for many years. Most B
problems of interest in application involve at best a biaxial load condition ]
and usually extremely comlex loadings and geometries. An important first step
in understanding fracture behavior is the study of Mode I uniaxial loading as <
first investigated by Griffith [1] and clarified and expounded upon by Irwin
{2]. An important second step is the study of biaxial load effeets. All the
fracture parameters and specimen characteristics (i.e., crack growth proper- -
ties, energy release rate, fracture toughness, fatigue properties) are known zjf“

to be dependent on load biaxiality to some extent.

The purpose of this paper is to present a review of the literature in- ;;;i
volving biaxial load effects which has evolved over the years. The literature
base is far too large for a single review to encompass. This paper will con-
centrate on summarizing the most fundamental and important results which have . ::
been discovered (as determined by their use in applied studies and their
acceptance over time).

The paper starts out with a brief review of the experimental findings
which demonstrate the importance of biaxial load effects. Basic studies on
the effects of blaxial loading on fracture toughness, non-self-similar growth
problems, fatigue crack propagation and subcritical growth properties are
presented and summarized.

The third section discusses the fundamental analytic solutions for
problems of cracks in an elastic solid under biaxial loading. The basic
asymptotic field representations are presented along with several stress-

intensity factor solutions of both practical and theoretical interest.

«
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The fourth section looks at the effects of biaxial loading on problems
involving plastic deformation. Early asymptotic solutions for nonlinear
elastic as well as recent numerical results are presented. The emphasis is
on the solution of problems with significant plastic deformation and the dis-
cussion of stable crack growth.

The fifth section provides a survey of the applications literature for
the design and development of engineering structures. For conciseness, only
the problems studied and the references are presented.

The final section summarizes the need for biaxial studies and presents
suggestions for future research. For further details the reader is referred
to the references cited and to reviews [3, 4] which emphasize basic theoreti-
cal and experimental findings for stationary cracks and modeling of practical

problems and nonlinear behavior respectively.
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EXPERIMENTAL STUDIES -

During the past two decades, several experimental investigations have
been carried out to determine the effects of biaxial loading on the fracture

characteristics of test specimens and structures. Of primary interest is the

effect on fracture toughness, crack growth trajectory and crack growth rate
characteristics. Many of the early investigations showed large discrepancies :
in results. Much of the difference can be attributed to the use of test
specimens which did not preclude load interaction effects. Typical fracture
specimens for use in biaxial studies are reviewed in [5]. A specimen geometry -
and grip configuration which has proven to be consistent and relatively free : 1~i
of load interaction effects is shown in Figure 1. While this is not the only .;}‘}
specimen which can be validly employed for biaxial studies, it 1s a commonly :MJQ
employed and useful specimen.

Examining the remaining literature on biaxial effects on fracture char-

acteristics several qualitative trends can be found common to most experimental P

. . '. o
' .
s e e

investigations. Several investigators have found the fracture toughness of

engineering materials to be dependent on the biaxial load factor. The magni-

PR

tude of the effect, however, is not consistent among the published studies.
The results of Kibler and Roberts [6] demonstrate significant influence of
the biaxial load factor on the fracture toughness (KIC value) of 6061-T4, T6
aluminum alloys. Similar studies on plexiglass were carried out by Levers, ' i
et al. [7], whose results show negligible influence of bilaxial load factor
on fracture toughness. Kibler and Roberts had performed similar tests on
plexiglass and had found significant influence on fracture toughness. The

results of these studies are shown in Figures 2-4.
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Tests performed by Jones and Eftis [8] show a minimal amount of blaxial
load dependence of the fracture load for 7075-T6 and 2024-T3 aluminums.
Qualitatively, both show slight increases in fracture load with increasing
biaxial load factor, however, in many of the tests the experimental scatter
is larger than the demonstrated effect. Representative results are showm in
Figures 5 and 6.

Recent tests performed on PMMA by Ueda et al. [9] show negligible in-
fluence of biaxial loading on fracture load (fracture toughness). Their
tests show only slightly stronger dependence for mixed mode problems (i.e.,
a slanted crack in a bilaxial field). The results for a horizontal, Mode I

crack in a biaxial stress field are summarized in Table 1.

TABLE 1: Fracture Toughness As A Function Of Load Biaxiality In Plexiglass

o /o 0.0 0.2 0.5 0.8 1.0
Xy
Test 1: Kf/KIC 1.01 0.97 0.93 0.91 0.89
Test 2: Kf/KIc 1.03 1.01 0.99 0.98 0.95

One feature which has been demonstrated by many authors is that a straight
horizontal crack in a biaxial stress field will deviate from self-similar
growth at high biaxial load factors. This phenomena is documented in the re-
sults of [9, 10, 11]. An example from [10] is shown in Figure 7. This effect
can be predicted theoretically from elastic analysis using either the Strain
Energy Density Criterion [12] or The Maximum Tearing Stress Criterion [13] (to
be discussed in a subsequent section).

A few studies have been done on the influence of biaxial loads on fatigue
crack propagation rates. The results from [14] on RR58 alloy show a signifi-

cant influence on fatigue crack propagation rates by the biaxial load factor
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(Figure 8). The results from [15] on 6061-T6 aluminum, however, show little
or no influence. Results reported in [16] also suggest a significant biaxial
load effect on fatigue crack propagation rates for both 7075-T6 and 2024-T3
aluminums. These results, however, present too much scatter to conclusively
demonstrate more than a qualitative trends.

The fatigue crack growth rate studies discussed above all demonstrate
the tendency for increasing biaxial load factor to cause a decrease in crack
growth rate. The magnitude of this effect 1s, however, not adequately demon-
strated by the reported results. The scatter in the data, the inconsistencies
in the experimental procedures and the lack of reproducibility of the results
makes quantitative conclusions impossible. The effect appears to be load
level, stress ratio level, material and geometry dependent. Much additional
careful and consistent experimentation is needed to adequately characterize
the influence of biaxial loading on fatigue crack propagation rates.

Recently, several studies have been undertaken to investigate the in-
fluence of load biaxiality on angled crack fracture properties (i.e., mixed-
mode effects). In this situation, the biaxiality not only influences the
higher order terms in the stress and displacement fields but also the stress
intensity factors. Obviously the fracture toughness and the angle of crack
propagation will be influenced by the biaxiality (based on stress intensity
arguments alone). Evidence exists, however, to indicate that the resultant
stress parallel to the crack also influences the angle of propagation. This
effect can best be demonstrated by the results of [9, 17, 18]. Recently many
combinations of plane and anti-plane load interactions have been studied [9],
however, extreme scatter exists and these results have need to be reconfirmed

by other investigators.
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One difficulty in the experimental determination of biaxial load effects
on fracture properties is the significant influence of anisotropy and slight
eccentricities on observed phenomenon. Extreme caution must be exercised in

these studies. The choice of a proper specimen which eliminates load inter-

g action effects is crucifal. Even in the studies which were performed with con-

| consistent and careful experimental designs, large scatter is evident in the

i~ data. This scatter is often on the order of the effect being measured thus

precluding quantitative conclusions. It is beyond the scope of this review

f to address the matter of experimental scatter and the subsequent interpreta-

{ tion of the results. It is important, however, to be aware of the inability -
of the current existing data base to quantitatively provide predictive cap-

abilities for material characterization.
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ANALYTICAL ASPECTS

The effect of biaxial loading on the stress and displacement fields near
a crack tip can yield important information delineating the modes and onset
of failure of fracture specimens. Many problems occurring in design appli-
cations involve a crack in a biaxial (or even triaxial) external stress
environment. This importance has been recognized by many authors and studies
concerning the effects of biaxial loading on stress intensity factors, stress
distributions and displacement distributions near crack tips have been per-
formed in the past.

Crack problems in the Mathematical Theory of Flasticity involve the solu-
tion of "Mixed" Boundary Value Problems. Many techniques have been employed
for the solution of these problems. For two-dimensional and axisymmetric
problems, the Complex Variable Technique (due mainly to Muskhelishvili [19]),
Eigenfunction Expaision Techniques (initiated by Williams [20]), and Transform
Techniques leading to either Dual Integral Equations (e.g., the work of
Sneddon [21]) or Singular Integral Equations (e.g., the work of Erdogan [22])
are employed. It is beyond the scope of this paper to review these methods.
The interested reader is directed to the referenced literature.

Consider the problem of an angled crack in an infinite sheet under in-
plane biaxial normal stress applied at infinite as shovm in Figure 9. The

stress and displacement fields for this confipuration can be written as
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where

and

13

K K
t = cos%[l + sing sinégl + 1L sin% cosg-coség
Y T /) Y (2mr)
K K
txx = cos%[l - sin% sin—E] - A sin%[Z + cos% cosggl
Y (27r) v(2rr)
+ o(1-k) cos2a
D)
K 8 39 . 1 8 9

R

siny cos-g cos— + cos={1 - sini sinégl

t
LA i 2 Jom 2

A YcosglE(k-1) + sin” 3] +—u— () sing(B(c+1)
+ c052 %]
+ G2% v (cos (8+20) + K cos(6-20) + 2sin 6 sin2a] + (k¥1) a cos2al
(2)
u, = I:—I (%F)sin%[—;—(l(+1) - cos’ —] +—— /(zt_”)cos—[ L1-¢) + stn? —J

+

(l%%lg{r[sin(ZQ-e) + K sin(20+8) - 2sin® cos2a] + (k+1) a sin2a}

v is Poisson's Ratio,

ux is the x component of displacement,
uy is the y component of displacement,

t , t_, t , are the Z-dimensional stress tensor components
XX' Yy Xy

K = (3-4V) Plane strain

K= (0 Plane stress

-— > e v —m — = =
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The stress intensity factors, K an be written as ~

1 and KII c

R, = % YTa[ (1+k) - (1-k) cos2a]

(3)

Kyp = -g-' Yma[(1-k) sin2a)

(from Eftis et al. [23]).

These equations include not only the standard singular terms but also a
nonsingular term adding a constant to the t x Stress term. This term has
been demonstrated to have a significant influence on the maximum tangential
stress, maximum shear stress and local strain energy densities (at high bi-
axiality) for a straight crack problem [24]. This influence will most
strongly effect the onset of crack tip plasticity and the subsequent plastic
behavior. The plasticity effects will be discussed in a subsequent section -
dealing with numerical solutions.

From equation (3), it is seen that for the straight crack, o = 0. ,
the stress intensity factors are independent of the biaxial load factor. For - -
elastic problems, the Strain Energy Release Rate (G) and the J-integral are
only nominally effected by the biaxial load factor (both in infinite [25] and
finite panels [24]). These results imply that, for truly brittle materials,
the biaxial load ratio does not alter the fracture load for Mode I problems.
Most problems of practical interest, however, involve plasticity and mixed-mode
conditions, therefore, biaxial effects may be of importance.

The biaxial load factor is extremely important in the prediction of the
angle of crack propagation. Even for Mode I, straight cracks in large biaxial

stress fields the angle of crack propagation can deviate from 0 (i.e., self-

similar growth) for biaxial load factors larger than 1.3 [24). Figure 10
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3

b

}

i shows the variation of the maximum tensile stress (crack opening stress) with ]
: orientation for various biaxial load factors with a = 0 [7]. Deviation from

self-similar growth can be observed (using the maximum opening stress criterion)

for large biaxial load factors. Note that the deviation from self-similar

growth does not occur for negative biaxial load factors. Similar results can

Py Y
Dt .

be obtained using the strain energy density criterion [24]. Experimentally

deviation from self-similar growth has been observed in PMMA at high biaxial

N
¥> load factors [8].

For mixed mode fracture problems, the angle of propagation and onset
crack growth are highly dependent on the biaxial load factor. Since the stress
intensity factors are directly effected, each problem must be individually 1

analyzed and general conclusions are difficult to draw. It is important, S

) however, to recognize that the presence of a remote normal stress component :::;J
parallel to the crack orientation direction can have significant influence on
the onset and direction of crack growth [26].

Many solutions have been generated for a wide variety of crack problems
involving different geometries and orientations. Consider the problem of a
crack in the shape of a circular arc under in-plane biaxial loading as shown
in Figure 11. The stress intensity factors for this problem have been
generated by Savin [27]: 1

KI (at tip 1)

¥R sin 60 ¢1(a, 8)

K (at tip 2)

i RS, 6, (@, -0)

O) ]

KII (at tip 1) YR sin éo ¢2(a, 9)

KII (at tip 2) = ¥R sin 50 ¢2(a, -8)
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where ¢1 and ¢2 are given below:

(1+k) - (1-k)cos2a sin2 %cos2 8
¢, (0,8) = cos=
1 2 (1 + sin®

2
_

+ (1-0sin2e stods + (1-Kcos(2a - 3

(5)
. (1+k) - (1-k)cos2a sin2 S cos2 8
o] 2 2 S
v bl 8 =3 28 siny
(1 + sin EO
- (1-k)sin2oa sin2 % cosg - (1-k¥)sin(2a - 2%)
°
When cracks are subjected to stress nonuniformities due to the presence
of geometric irregularities, biaxial locading can alter the resulting stress
iE intensity factors significantly. Consider the problem of two cracks emanating
' from a circular hole in an infinite medium under biaxial loading as shown in
Figure 12. The stress intensity factors at 3 biaxial load levels are shown
E_ in Figure 13 as generated by Newman [28]. For short cracks, the influence

of the biaxial load factor is significant. The interaction of two cracks in

a biaxial stress field has been studied by Badaliance and Gupta [29]. The

geometry and loading of that study are shown in Figure 14. The results of

a special case are shown in Figure 15a-15d. The results are given at 2 dif-

ferent biaxial load ratios demonstrating the influence of biaxiality. A final o
2-dimensional example is the problem of a "kinked" crack in a biaxial stress

field as solved by Kitagawa [30]. The geometry and loading for this problem E:i?<
are shown in Figure 16. The resulting stress intensity factors are shown in
Figure 17 for various biaxial load levels. The influence for even minimal

kinking is seen to be extremely significant. R
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A Kinked Crack In A Biaxial Stress Field.
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Figure 17: Stress Intensity Factors For The Kinked Crack
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The generation of stress intensity factor solutions for 3-dimensional
problems is much more difficult than for two-dimensional problems. An
extremely limited class of problems can even be approached analytically and
numerical techniques are usually employed. The problem of a circular crack
in an infinite 3-dimensional body under biaxial loading has been studied by
Sih and Kassir [31)]. The problem of a parabolic crack in an infinite 3-
dimensional domain has been studied by Kassir [32]. The geometry and loading
for this problem are shown in Figure 18. The resulting stress intensity

factors can be written as:

K, ='% YTl (1+k) + (1—k)cosZ¢](y;2 + Amz)% .
t 1
o} (mxo)é
K = /Z—JT?[(l-k)sinzm 7 " , (6)
(m~ + mxo)
1
Koo == (1-v)—=F o(1-k)sin2$ * —5—— .
Il V2 (m2 + mxo)a

The problem of an embedded elliptical crack under biaxial loading has been
studied by Subramonian and Liebowitz [33]. The stress intensity factors for

this problem can be written as:
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Figure 18: Parabolic Crack In A 3-Dimensional Solid.
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g S 1
« ] [2(1+k) + 2(1 k)cosz¢] ) (3)1(32 Sinz o + b2 cosz A )%
I E(ko) a 0 )
- a2b2k2 sin ¢ g-(l—k)sin2¢(a2 sin2 ¢ + b2 c052 Lo} )—%
_ o o 2 o] o
K11 = 372 : 3 T, v (7N
(ab) (ko + vko )E(ko) - vko K(ko)
- ab3k2 cos ¢ (1-v) g{l-k)sin2¢(a2 sin2 ¢ + b2 cos2 ¢ )-k
X - fo} /20 2 - : 0 [¢]
III 3 2 "2
(ab) (ko + \)ko )E(ko) - \)k0 K(ko)

2 2,2 ' ' 'y 2
where k' =1 -b"/a", x =acos ¢ ,y =bsin¢d and k * =1 - k7,
o o o’ o ) ) o

a > b; K(ko) and E(ko) are complete elliptical integrals of the first and
second kind, respectively.

The 3-dimensional solutions presented demonstrate the importance of
both crack front curvature and biaxial load factor when considering stress
intensity. These solutions also exemplify the difficulty in formulating a
3-dimensional fracture criterion based on energy release rate or critical
stress-intensity factors. A fracture criterion which is to be theoretically
valid in all domains must be a local criterion predicting the onset critical
conditions.

For most loading and geometries in two and three dimensions, numerical
techniques must be employed to determine stress intensity factors. Often, for
design purposes, it is useful to introduce a finite boundary correction factor
into the stress intensity factor solutions presented above. In this manner,
many geometries can be handled by tabular or graphical geometric parameters

generated previously.
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Theoretical and experimental studies performed to date demonstrate that
the presence of biaxial loads can be important in the fracture assessment of
laboratory specimens and, more critically, design structures. These works
also show that biaxial influences are more important in configurations and
loadings involving plasticity and complex geometries. These problems must

be handled with numerical techniques.
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PLASTICITY EFFECTS AND NUMERICAL STUDIES

The fracture analysis of engineering specimens and structures must account
for the local crack tip plasticity which exists. The presence of an external ‘;-"t
biaxial stress field will alter the plastic behavior from that expected without
biaxial loads. For small plastic effects, Irwin [34], Dugdale [35] and others
have presented simple models which account for plasticity. Unfortunately for
most problems of engineering interest these models are inadequate and a full
incremental plasticity theory must be employed.
As a first attempt to characterize crack tip plasticity, Hutchinson [36]

showed that the near tip stress and strain fields could be written asymptotically

in the form

. =K r—(l/n+l) .

ij g ij(e)

(8)
.. =k ¢ (/D ¢

ij € ij(e)

where K0 and Ke are the stress and strain intensity factors, respectively.
The assumptions of deformation theory plasticity were emploved in the analysis.
The functions :ij(e) and Eij(e) are dependent on 8 and are given in detail
for many problems in [37, 38].

One of the first numerical studies performed to delineate the effects of
load biaxiality was carried out by Hilton [39]. He studied the problem of a
straight line crack in a two-dimensional infinite panel under uniform biaxial
stress applied at infinity. The material was assumed to be nonlinear elastic
(i.e., deformation plasticity) and the uniaxial nonlinear behavior was modeled

as a power-law hardening type. The results for the stress and strain intensity
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factors for various blaxialities and hardening parameters are shown in Figures 4
19a and 19b. For large values of the strain hardening exponent, these results
show an enhanced biaxial response. Compressive loads parallel to the crack
also affect the stress (or strain) intensity factors much more than tensile
loads.

The effect of biaxial load factors on crack tip plastic deformation has
also been studied. Lee and Liebowitz studied the problem of finite thin sheets
under uniform bilaxial loading under plane stress conditions [39]. A full in-
cremental plasticity theory was used with a power-law hardening model. Their
analysis was restricted to small strain theory. The results of that study are
presented in Figure 20. Plastic zone area (Ap) is plotted against the biaxial
load factor for several load levels. Their results indicate that tensile loads
parallel to the crack decrease the plastic zone size (for biaxial load ratios .
less than 2) whereas compressive loads parallel to the crack increase the
plastic zone size. Recent results presented by Moyer and Liebowitz [40]
demonstrate similar trends for plane strain specimens. Their analysis employed
large deformation theory plasticity and a multilinear uniaxial model.

One parameter which has received much attention for plastic fracture
aualysis is the crack opening displacement. Adams [41] studied the influence
of load biaxiality on the crack opening displacement for mauy load levels, thiu
sheets under plane stress conditions were investigated. Using the ciitical
crack opening displacement criteria, he calculated the failure load as a funec-
tion of the remote loads. His results are shown in Figure 21. Lee and
Liebowitz [39] have also studied the effect of applied load biaxiality on the
J-integral for various load levels and biaxial ratios. Their results show

that for biaxial-ratios of practical interest (lkl < 2) the J-integral increases
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compressive blaxial loads and decreases for tensile biaxial loads. This is
consistent with the predicted yield trends as tensile loads parallel to the
crack decrease ductility while compressive loads increase ductility.

The subject of slow crack growth is one of fundamental importance for
problems involving significant ductility. Most materials in the ductile range
exhibit large amounts of crack growth prior to final instability. The effect
of applied load biaxiality on crack growth characteristics has attracted a
limited amount of research due to the lack of consistent predictive theories
to characterize stable growth and due to the inherent difficulties in solving
the mathematical problem involved.

Liebowitz et al. [42], developed a computational procedure to study slow
crack growth under biaxial load conditions. There results implied that a
linear relationship exists between the crack length and the plastic energy
dissipated. This result has been assumed by previous workers on the subject
of stable crack growth (e.g., Wnuk [43] and Cherapanov [44]). Subsequent
studies and tests on various aluminum alloys has shown this relationship to
hold true under uniaxial and biaxial loading, however, both the slope and the
plastic energy dissipated prior to the onset of growth are material, geometry
and load dependent limiting its utility as a fracture criterion.

Lee and Du [45] have further refined the procedure to use either the
plastic energy relation or the experimental gauge data as input to the numeri-
cal simulation procedure. A typical crack resistance curve starting with
plastic energy parameters is shown in Figure 22. Recently Lee et al. [46]
have studied the problem of non-self-similar crack growth under biaxial
loading conditions. As would be expected, their results show considerable
dependence of the predicted fracture path on load biaxiality (both for linear

and nonlinear predictions). Their results are presented for a slanted crack
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in Figures 23a, 23b, and 23c. The solid lines are the actual path predicted
from an incremental growth analysis and the dashed lines are the path predicted
by a static, pre-growth analysis. It 1is interesting to note that the actual
path deviated from the initially predicted path to a much larger extent at
higher biaxial load ratioc. Their predictions are based on the assumption of a
linear plastic energy-crack growth relation. No experimental studies have been
done on mixed-mode plasticity problems involving stable crack growth to date.
Noticeably lacking from the literature are three-dimensional finite element
solutions for problems involving slow crack growth or plasticity. The numerical
complexities of the problem make it extremely difficult to perform the calcula-
tions. Advances in the numerical solution of three-dimensional elastic-plastic
crack problems [47] should make biaxial studies feasible in the near future.
Due to the fundamentally three-dimensional nature of crack problems involving
plastic deformation, much additional work is needed to verify the biaxial effect

predicted by two-dimensional analyses. Most of the work performed to date has

been under "plane stress’ conditions.
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Figures 23 (a,b,c): The Initially Predicted And Actual Path Of Crack Growth.
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BTAXIAL EFFECTS IN APPLICATION

Many problems of practical interest to the design of engineering structures
involve the solution of problems with cracks in biaxial stress fields. Various
problems from the design application of Aircraft, Aerospace and Ship Structures
as well as from the Pressure Vessel and Piping industry have been studied
theoretically and experimentally. A representative sample from the open litera-
ture are summarized below. The results can be obtained from the literature.

Tong and Atluri [48] have investigated the problem of a crack emanating
from a lug hole under a biaxial stress field. Using a finite element approach
employing hybrid elements, they solved for the stress intensity factors (K., and

I

KII) as a function of crack orientation. Various aspects of c¢racks emanating

from holes in.aircraft structures are discussed by Broek [49]. Many theoretical
and numerical approaches have been employed to solve problems involving cracks
emanating from loade¢ holes. Wide variations exist in the reported results and
further work is needed. A review of several solution procedures is given in
[50].

The problems of stiffened plates and shells with cracks are of fundamental
importance to many design applications. Empirical approaches to the problem of
stiffened cylindrical shells with cracks is discussed by Kuhn [51] and Anderson
and Sullivan {52]. Several semi-empirical and semi-theoretical solutions for
the stress intensity factors involved are presented and discussed in [53] by
Heath et al. The fatigue properties of stiffened cylinders were investigated
by Wang [54] under several biaxial load factors.

Swift [55] has studied the influence of load biaxiality on cracks in

stiffened panels and plates. Tensile load parallel to the crack is shown to
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panels have been carried out by Ratwani and Wilhelm [56]. J-integral techniques
are employed to explain the results obtained experimentally by Swift [571.

The effect of biaxial rivet forces on stiffened sheets with cracks has
been studied by Erdogan [58] employing complex stress functions. Several more
general loading conditions are considered by Rooke and Cartwright [59]. This
problem has been studied experimentally by Broek [60] for both stiffened panels
and cylinders. The fundamental solutions generated in [58, 59] are employed
to obtain semi-empirical stress intensity factor curves for various loading
configurations.

The concept of placing holes in structures to inhibit crack growth and

crack instability (so-called stop holes) has gained much attention recently.

DeRijk and Motter [61] and VanlLeeuwen [62] have conducted independent studies on
the effects of stop holes on the fatigue properties of thin sheets. While these ;.lj
studies were performed under uniaxial loading conditions, several possible  235
implications of biaxial effects are discussed through extrapolation of the re- ]
sults. In design applications, the biaxial effects will, out of necessity, :.)ﬁ
need to be accounted for. ‘

The studies cited above all demonstrate the need fer considering biaxial

loading in application. Though the results of these investigations are highly
specialized to the problems being studied (precluding general conclusions as to

the nature of biaxial load effects), they emphasize the importance in carefully

delineating all important problem parameters (e.g., loading conditions, geometry,

etc.) when considering solutions for design purposes. ]
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SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH

The preceding sections have summarized the state of current research El:}
into the influence of biaxial load factors on the fracture characteristics
of materials and structures. While much work has already been performed,
several areas need further investigation.
In the experimental field, further work is needed to delineate the
dependence of fracture toughness and fracture load levels on applied load
biaxiality. The scatter in the existing data is far to large to make con-
clusive qualitative assessment possible. Of interest would be careful -
examination of materials in the higher ranges of ductility where biaxial
effects are known to be more severe. Also needed is careful study on the
dependence of fatigue properties on both steady and cyclic biaxial loading. -
Little work has been done on this aspect, especially in the more ductile

materials.

Noticeably lacking from the experimental base are slow growth studies

.under biaxial loads. Numerical predictions have been made by extrapolating

results obtained under uniaxial loading. The validity of this approach needs
to be assessed experimentally. Also needed are tests on surface crack be-
havior under biaxial loading.

Analytically, many fundamental solutions have been generated and the
predictions of linear elasticity are generally a closed issue in two-dimen-
sions. Further studies should be made, however, to investigate stress in-
tensity factor dependence on load biaxiality in three-dimensional con-
figurations (both for straight and curved through cracks and for surface

cracks). These investigations, out of necessity, will need to be performed

numerically.

-
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Further studies on stable crack growth are needed to test the various
models currently in vogue. It is unknown as to which approaches will hold
valid under biaxial conditions. CTOD and Plastic Energy approaches have been
used for a limited number of biaxial problems. Many more studies in compari-
son with experiments must be made to establish the validity of any of the
modeling schemes.

Three-dimensional plasticity studies must be undertaken as the basic
problems involved in ductile fracture are inherently three-dimensional. Both
stationary crack problems and stable growth problems need investigation. With
the rapid refinement of the numerical tools available for these analyses,

fundamental studies with full three-dimensional models will soon be practical.
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